
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

e

GAIC Level Two Practicum
Intrusion Detection In Depth

Version 2.9 (22 May 2001)

SANS 2001 Baltimore, Maryland
13-20 May 2001

Garrott W. Christoph, Ph.D.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.2

Table of Contents

Introduction and Network Description 3

Assignment 1 – Five Network Detects
Detect 1: SYN Scan for Windows Net-Bios 5
Detect 2: SYN Scan for Misconfigured FTP Servers 11
Detect 3: SYN Scan for FTP interspersed with Net-Bios 25
Detect 4: DNS SYN Scan 32
Detect 5: UDP scan from a Possibly Trojaned Computer 37

(Because these are too similar, and, because, I need the practice.)
Detect 6: Looking for Sub Seven 45
Detect 7: Possible WinGate Activity 51
Detect 8: Trolling for Trojans (and maybe ftp) 57
Bibliography 65

Assignment 2 – Describe State of Intrusion Detection
Flag Burning 66
Introduction 66
Scanning 68
TCP Communications and TCP Flags 69
TCP Scans and OS Finger Printing Techniques 73
tft.c 77
Conclusion 83
Appendix: Source Code for tft.c 83
Bibliography 90

Assignment 3 – “Analyze This” 92
Introduction 92
Executive Summary 92
Statistics 93
Detects by Priority with Descriptions 101
“Top Talkers” Analysis and Link Maps 110
Defensive recommendations 126
Analysis Procedure 127
Appendix 130
Bibliography 132

Introduction and Network Description

The network, that is the subject of this practicum, is an academic scientific research
organization. Its size is equivalent to that of a university science department. For
purposes of discussion, this organization will be referred to as mynet.org; and the logs

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.3

presented are sanitized to suggest this. Mynet.org is one many research and
administrative elements in a larger entity referred to as the “organization” and which has
been sanitized to myorg.org.

There are three features of academic environments that have bearing on this practicum.
First, they are rich in intellectual resources, but devoid of informational assets of any
direct monetary value whatsoever. So, academic environments do not attract the kind of
hostile computer activity that, for example, a bank or credit card database might. On the
other hand, publicly prominent scientific institutions such as this are often targets of
hostile computer activity because the compromise of such institutions can provide a
certain cachet within intruder circles. Additionally, institutions such as ours are
sometimes targeted by organizations with a political, and often a quite unfriendly agenda.

In addition, academic environments do not operate under institutionally imposed top
down management structures. Rather, individual, and intellectually entrepreneurial
scientists budget, operate, and supervise their own laboratories, including computational
infrastructure. The quality of computer security policy, implementation, practice,
diligence, and awareness among laboratories varies between extraordinarily high to
appallingly low. Unfortunately, there is much too much of the later and not nearly
enough of the former. The level of computer security in scientific labs, is further
compromised by the predisposition of laboratories to obtain cutting edge, specialized,
high performance computer equipment, the computer security implications of which are
ill-understood, and the playful predisposition of scientists and students, perhaps with
insufficient training, to get their hands on new equipment to see how it works in detail.

Finally, academic organizations highly value academic freedom, the free exchange if ideas
and information, open networks, and open source software. They are inherently and
deeply resistant to firewalls, imposed security, rules, passwd aging, configuration policy,
etc, etc (It takes a root compromise, to raise a village.)

This network consists of 2 class C subnets with nearly 400 assigned IP addresses. The
network employs one gateway and several 10/100 Mbit switching hubs. It is
predominately a heterogeneous Unix shop (20 some flavors and versions). But has a
significant Windows 9x/NT/2000, Macintosh, and printer presence as well. We have one
gateway, but an occasional modem springs up unbeknownst to anyone. There is a porous
organizational firewall and IDS. The organizational IRT (not me or my lab) monitors and
blocks intrusive IP addresses, internal workstations undertaking hostile activity, and all
traffic through a few ports (especially napster and rpc requests). It is a very loose firewall,
whose policy is in keeping with the academic values of the organization.

Mynet.org does take proactive steps to increase the level of computer security within the
lab. We try (~85% successfully) to maintain root only with the two serious system
administrators in the laboratory. We run an extensive shell script tool on every Unix
computer every night to gather maintenance, configuration information, system status, as
well as security related information. We TCP wrap all computers with deny “ALL : ALL”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.4

rules plus exceptions and run inetd.conf daemons with “additional logging” parameters.
The central syslog server, thus monitors for “refused connect from” elements that are
used in turn to update automatically the hosts.deny file on the one computer through
which we funnel all ingress and egress connectivity to the laboratory. We have installed
ssh, and encourage (but not yet require) its use. We run crack on all passwds on a
365/24/7 basis. In practice, we have suffered 1-3 root compromises per year since 1994.

I have done “Let’s Pretend IDS” by reading syslogs/messages for several years. About
one month ago, I installed a “tcpdump/snort IDS” on 6 internal sensors on mynet.org.
This IDS, cannot gather all traffic to and from mynet.org, rather it samples traffic by
gathering broadcast traffic, all traffic through a few stand alone workstations, and all
traffic through some critical servers. This new IDS has already yielded a large trove of
new detects. These detects constitute the data used in Assignment 1 for this practicum.

Tcpdump binary files are collected in 24 hour segments, one for each sensor. At
midnight, they are transferred to a limited access IDS analysis server, where snort is run
on the files. Although I have made several modifications to it, and I anticipate further
pruning of the rule set as my understanding evolves, for now I basically use all the rule
sets provided by the www.snort.org site. As part of my daily computer chores, I look at
the results of the daily scripting tools and now the snort results each morning on arrival at
work

In the notes, the commands “geektools”, “arin”, “ripe”, and “apnic” are aliases to
“whois -h whois.geektools.com” etc.

The correct answers to multiple choice questions are indicated in bold

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.5

Assignment 1 – Five Network Detects

Detect 1: SYN Scan for Windows Net-Bios

Summary:
From: myorg.88.29 from varying but repeated ports.
To: mynet.org and port 139 (netbios)
Notice: Fast SYN scan

Monotonically increasing source port numbers
Repeat of probe to same dst IP addresses,
with different initial src ports,
But, with the same interval between src port numbers.
Possible (likely?) that all dst ports probed,
but IDS sensors are within mynet.org not
in front of mynet.org. So, not all packets captured.

Not Shown: Identical traffic from other inside the organization sites
myorg.76.89 2 scans
myorg.100.14 3 scans
myorg.88.29 1 scan

This IP address derives from inside my organization, but outside of my subnet, department, and
area or responsibility.

Observed Traffic:

#---- grep myorg.88.29 portscan.log ----------------------------

Jun 28 08:35:38 myorg.88.29:1965 -> mynet.5.167:139 SYN ******S*
Jun 28 08:35:38 myorg.88.29:1966 -> mynet.5.178:139 SYN ******S*
Jun 28 08:35:38 myorg.88.29:1969 -> mynet.5.166:139 SYN ******S*
Jun 28 08:35:41 myorg.88.29:1985 -> mynet.5.91:139 SYN ******S*
Jun 28 08:35:41 myorg.88.29:1990 -> mynet.5.196:139 SYN ******S*
Jun 28 08:35:43 myorg.88.29:1993 -> mynet.4.96:139 SYN ******S*
Jun 28 08:36:30 myorg.88.29:1965 -> mynet.5.167:139 SYN ******S*
Jun 28 08:36:30 myorg.88.29:1966 -> mynet.5.178:139 SYN ******S*
Jun 28 08:36:30 myorg.88.29:1969 -> mynet.5.166:139 SYN ******S*
Jun 28 08:36:32 myorg.88.29:1985 -> mynet.5.91:139 SYN ******S*
Jun 28 08:36:33 myorg.88.29:1990 -> mynet.5.196:139 SYN ******S*
Jun 28 08:36:34 myorg.88.29:1993 -> mynet.4.96:139 SYN ******S*
Jun 28 08:38:35 myorg.88.29:2129 -> mynet.5.195:139 SYN ******S*
Jun 28 08:38:36 myorg.88.29:2136 -> mynet.5.156:139 SYN ******S*
Jun 28 08:38:39 myorg.88.29:2172 -> mynet.5.74:139 SYN ******S*
Jun 28 08:38:41 myorg.88.29:2175 -> mynet.5.92:139 SYN ******S*
Jun 28 08:38:41 myorg.88.29:2176 -> mynet.5.148:139 SYN ******S*
Jun 28 08:38:45 myorg.88.29:2195 -> mynet.5.93:139 SYN ******S*
Jun 28 08:38:45 myorg.88.29:2197 -> mynet.5.52:139 SYN ******S*

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.6

#---- tcpdump –r dump_28June | grep angela4.mynet.org --------
All workstation specific tcpdumps look like this.
It seems odd to me that there are no recorded
probes to Unix boxes.
This is a SYN then PSH-ACK, clearly we are missing parts.
I have no IDS sensors on PCs. Sensors see broadcasts only.
08:36:30.032278 < myorg.88.29.1965 > angela4.mynet.org.netbios-ssn: S 4468865:4468865(0)
win 8192 <mss 1460> (DF) (ttl 125, id 56276)

08:46:32.887982 < myorg.88.29.1965 > angela4.mynet.org.netbios-ssn: P
4470454:4470493(39) ack 108354089 win 7869>>> NBT (DF) (ttl 125, id 61985)

#---- tcpdump –r dump_28June | grep ziffer3.mynet.org --------

08:38:45.494303 < myorg.88.29.2195 > ziffer3.mynet.org.netbios-ssn: S 4599335:4599335(0)
win 8192 <mss 1460> (DF) (ttl 125, id 2540)

08:48:48.149916 < myorg.88.29.2195 > ziffer3.mynet.org.netbios-ssn: P 4600544:4600583(39)
ack 853803629 win 8019>>> NBT (DF) (ttl 125, id 35122)

. . . . 194 qualitatively similar records

1) Source of Trace:
My Laboratory

2) Detect was Generated by:
Site maintains 6 IDS sensors running tcpdump 24/7.

% tcpdump –w dumpFile_24hour
% snort –r dumpFile_24hour -c /etc/snort/snort.conf

At midnight, on a designated analysis workstation, process data using several shell, sed,
awk, and perl scripts.
Gather all outside IP addresses and suspicious inside IP address of interest.
Obtain tcpdump data in separate files, for each “IP address of interest”.

% tcpdump –r dump_24hour -vv "dst $outsider or src $outsider" \
> tcpdump_IPaddress

% tcpdump -r dumpFile_24hour –vv -x \
 "dst $outsider or src $outsider" > tcpdump_hex_IPaddress

Snort Rule that generated this detect:
preprocessor portscan:

3) Probability that Source Address was Spoofed:
Unlikely.
Reason: This was a scan looking for netbios session service (open shares). The source

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.7

computer must be able to accept the response.

4) Description of Attack:
From: myorg.88.29 from varying but repeated ports.
To: mynet.org and port 139 (netbios)

Average Interval: 9.8 sec
Protocol: TCP
ID Numbers: Vary normally
Seq. Numbers: Vary normally
TTL: 125

This incident was a stimulus event.
This incident involved only “Normal TCP/IP” traffic.
This incident occurred at moderate speed (6.1 hits/minute).
This incident involved a modest volume of traffic. It encompassed only 2 subnets only. .
This incident was a reconnaissance.
The target OS for this incident was windows/9x/NT/2000.
The source OS for this incident appears to be another windows box, perhaps a windows
based server.

5) Attack Mechanism:
It is possible, that this is benign TCP/IP traffic from one part of the organization to
another. But, it is a SYN scan, and elements of this organization should not be doing this
against other elements. I have chosen to use this detect, because I did not fully
understand what was going on. Also because, this detect, has bearing on detect 3, and I
will be referring to it at that time.

It is not the consequence of a user browsing the “Network Neighborhood” in domains,
not their own. We permit, even encourage this activity in the organization. I was unable
to reproduce this activity by doing a “Network Neighborhood” browse against my
monitored network.

At very least this is a scripted nbstat –a mynet.org.255. While this is not strictly against
the “rules”, I view it as at least moderately unfriendly.

Typically windows netbios uses these ports:
Port 137 Netbios name service

Communication 137 <-> 137
Port 138 Netbios datagram service (UDP-like)

Communication Ephemeral <-> 138
Port 139 Netbios session service (TCP-like)

Communication Ephemeral <-> 139

All these communications are directed from the *.myorg.org to mynet.255:139 (session

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.8

service). The packets are looking for Windows services. This is most likely a “Share
Enumeration” by myorg.88.29 against mynet.org.

Name of tool: Perhaps the Windows command: nbtstat –a mynet.org.255

This incident has as it purpose the enumeration of open shares on Windows 9x boxes.
Northcutt et al. pp 156 (2001). If a Windows box permits shares of disk drives or other
resources, then the hostile can read, perhaps write to, or other wise alter and control the
contents on the disk. Passwds can be gathered for off site cracking, thus the future
integrity of the workstation can be compromised even when the share is removed, and
possibly sensitive information can be obtained from the computer. If write permissions
are granted the user also opens the computer to use as a repository of illegal software or
worse. Open shares are used by the virus community as a method of installing viruses
directly onto the computer without going through the uncertain process of sending a
*.vbs e-mail attachment which might not be opened, or might be blocked by the mail
exchange’s antivirus protection (http://www.cert.org/incident_notes/IN-2000-02.html,
http://www.cert.org/vul_notes/VN-2000-03.html). By spoofing the IP address of the
hostile source, this method can be used to DOS a Windows box, by allowing a remote
attacker to change a file sharing service, making it return an unknown driver type. This
will cause the target to crash (CVE-2000-1003, http://www.cert.org/vul_notes/VN-2000-
03.html).

Having said all that there are 2 other possibilities:
This is some kind of normal inside the Organization traffic which I do not fully 1)
understand. (I don’t think this is true). I called some of the users of these
computers (they are all PCs). I got no useful information.
A real spoofing of myorg.88.29, by an outsider, or a previously trojaned 2)
myorg.88.29 is auto scanning. (Unlikely)

The target for this kind of probe is a Windows 9x/NT/2000 PC.

This is, at most, the reconnaissance phase of an attack, and so no damage was done.
Rather, information was gathered for a later more directed assault on a specific Windows
box.

6) Correlations:
There are several CVE’s associated with netbio vulnerabilities
(http://cve.mitre.org/cve/):

CVE-1999-0153
Windows 95/NT out of band (OOB) data denial of service through NETBIOS port, aka
WinNuke.
CVE-1999-0288
Denial of servic
e in WINS with malformed data to port 137 (NETBIOS Name Service).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.9

CVE-1999-0810
Denial of service in Samba NETBIOS name service daemon (nmbd).
CVE-2000-0347
Windows 95 and Windows 98 allow a remote attacker to cause a denial of service via a
NetBIOS session request packet with a NULL source name.
CVE-2000-0673
The NetBIOS Name Server (NBNS) protocol does not perform authentication, which
allows remote attackers to cause a denial of service by sending a spoofed Name Conflict
or Name Release datagram, aka the "NetBIOS Name Server Protocol Spoofing"
vulnerability.

CVE-2000-1003
NETBIOS client in Windows 95 and Windows 98 allows a remote attacker to cause a
denial of service by changing a file sharing service to return an unknown driver type,
which causes the client to crash.

Hacking Exposed, Scambray, McClure, and Kurtz, pages 46 and 59, Second Edition,
Osborne/McGraw Hill (2001)

If the hostile was looking for Unix boxes with excessively shared exported file systems:
CAN-1999-0520: SMB shares with poor access control

Promiscuously shared Unix exports.
CAN-1999-0554: NFS exports to the world. (http://cve.mitre.org/cve/)

7) Evidence of Active Targeting:
This incident shows some of active targeting.
This incident scanned at least part of two entire subnets. It was aimed specifically at port
139 on Windows operating systems, but it relied on broadcast brute force to find them

8) Severity:
Severity = (Criticality + Lethality) – (CounterMeasuresSystem + CounterMeasuresNetwork)
Severity = (1 + 3) - (3 +1)
Severity = 0

Comment: All Windows boxes in the Organization are scanned monthly for open shares.
Users are “counseled”, usually they respond appropriately. It must be said, however,
that there are a minority of non-compliant users. So, I assign CounterMeasuresSystem = 3.

9) Defensive Recommendation:
Open shares and NFS world exported files systems are among the “Top-Ten Most Critical
Security Vulnerabilities” http://www.sans.org/topten.htm.
Port 137, 138, and 139 should be blocked at the organization firewall.
However, unless this IP address was spoofed and spoofed from outside the organization,
blocking at the firewall will not help in this case. (As the incident apparently derives from

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.10

inside to organization.)

10) Multiple Choice Test Question:

In the following detect, which of theses statements is true.

08:38:45.494303 < myorg.88.29.2195 > ziffer3.mynet.org.netbios-ssn: S 4599335:4599335(0)
win 8192 <mss 1460> (DF) (ttl 125, id 2540)

This is an example of a mal-formed or “crafted packet”.a)
The fact that the first two numbers in the “4599335:4599335(0)” element are b)
identical renders this as an “Interesting packet” worthy of investigation.
The source port is 139 (netbios-ssn) and the target is reserved port 2195.c)
The Time To Live for this packet is anomalous.d)
The DF flag, indicates that there will be more fragments to follow. e)
Because the source and destination for windows netbios traffic is always the same, f)
the fact that port 2195 is trying to communicate with port 139 (netbios-ssn) makes
this packet anomalous.
None of the above.g)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.11

Detect 2: SYN Scan for Misconfigured FTP Servers

I include this detect, because I see this activity almost every day. For several years, I have
detected these incidents with a script that continuously grep-s the central syslog server,
which then parses a sufficiently offending hostile to the /etc/hosts.deny file, within a few
seconds of the first detect. My new tcpdump/snort IDS, affords the possibility of a more
thorough study of this signature.

Summary:
From: 202.39.225.97 Increasing Ephemeral ports starting with 3623
To: mynet.org and 21 (ftp)
Notice: The targets are all ftp ports.

#----- geektools 202.39.225.97 -----------------
[whois.geektools.com]
Query: 202.39.225.97
Registry: whois.apnic.net
Results:

inetnum: 202.39.128.0 - 202.39.255.255
netname: HINET-TW
descr: CHTD, Chunghwa Telecom Co.,Ltd.
descr: Data-Bldg.6F, No.21, Sec.21, Hsin-Yi Rd.
descr: Taipei Taiwan 100
country: TW

Observed Traffic:

#---- grep 202.39.225.97 portscan.log ---------------------------

Jul 4 08:21:34 202.39.225.97:3623 -> mynet.4.182:21 SYN ******S*
Jul 4 08:21:34 202.39.225.97:3625 -> mynet.4.184:21 SYN ******S*
Jul 4 08:21:34 202.39.225.97:3627 -> mynet.4.186:21 SYN ******S*
Jul 4 08:21:34 202.39.225.97:3640 -> mynet.4.199:21 SYN ******S*
Jul 4 08:21:34 202.39.225.97:3642 -> mynet.4.201:21 SYN ******S*
Jul 4 08:21:34 202.39.225.97:3643 -> mynet.4.202:21 SYN ******S*
Jul 4 08:21:34 202.39.225.97:3676 -> mynet.4.235:21 SYN ******S*
Jul 4 08:21:34 202.39.225.97:3683 -> mynet.4.242:21 SYN ******S*
Jul 4 08:21:35 202.39.225.97:3787 -> mynet.5.90:21 SYN ******S*
Jul 4 08:21:35 202.39.225.97:3796 -> mynet.5.99:21 SYN ******S*
Jul 4 08:21:35 202.39.225.97:3825 -> mynet.5.128:21 SYN ******S*
Jul 4 08:21:35 202.39.225.97:3837 -> mynet.5.140:21 SYN ******S*
Jul 4 08:21:35 202.39.225.97:3838 -> mynet.5.141:21 SYN ******S*
Jul 4 08:21:35 202.39.225.97:3858 -> mynet.5.161:21 SYN ******S*
Jul 4 08:21:35 202.39.225.97:3865 -> mynet.5.168:21 SYN ******S*
Jul 4 08:21:38 202.39.225.97:3884 -> mynet.5.187:21 SYN ******S*
Jul 4 08:21:38 202.39.225.97:3896 -> mynet.5.199:21 SYN ******S*
Jul 4 08:22:27 202.39.225.97:3623 -> mynet.4.182:21 SYN ******S*
Jul 4 08:22:27 202.39.225.97:3625 -> mynet.4.184:21 SYN ******S*
Jul 4 08:22:27 202.39.225.97:3627 -> mynet.4.186:21 SYN ******S*

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.12

Jul 4 08:22:27 202.39.225.97:3640 -> mynet.4.199:21 SYN ******S*
Jul 4 08:22:27 202.39.225.97:3642 -> mynet.4.201:21 SYN ******S*
Jul 4 08:22:27 202.39.225.97:3643 -> mynet.4.202:21 SYN ******S*
Jul 4 08:22:27 202.39.225.97:3683 -> mynet.4.242:21 SYN ******S*
Jul 4 08:22:27 202.39.225.97:3686 -> mynet.4.245:21 SYN ******S*
Jul 4 08:22:28 202.39.225.97:3787 -> mynet.5.90:21 SYN ******S*
Jul 4 08:22:28 202.39.225.97:3796 -> mynet.5.99:21 SYN ******S*
Jul 4 08:22:28 202.39.225.97:3825 -> mynet.5.128:21 SYN ******S*
Jul 4 08:22:28 202.39.225.97:3837 -> mynet.5.140:21 SYN ******S*
Jul 4 08:22:28 202.39.225.97:3838 -> mynet.5.141:21 SYN ******S*
Jul 4 08:22:28 202.39.225.97:3858 -> mynet.5.161:21 SYN ******S*
Jul 4 08:22:28 202.39.225.97:3865 -> mynet.5.168:21 SYN ******S*
Jul 4 08:22:31 202.39.225.97:3884 -> mynet.5.187:21 SYN ******S*
Jul 4 08:22:31 202.39.225.97:3896 -> mynet.5.199:21 SYN ******S*

#---- tcpdump –r dump_04July | grep 202.39.225.97 --------------
These are PCs with no IDS sensors. So no RST packet observed.

08:22:20.017523 < 202.39.225.97.3459 > maria.mynet.org.ftp: S 3023291116:3023291116(0)
win 32120 <mss 1460,sackOK,timestamp 1396
64046[|tcp]> (DF) (ttl 38, id 19528)

08:22:20.020035 < 202.39.225.97.3464 > typhoon.mynet.org.ftp: S
3026893013:3026893013(0) win 32120 <mss 1460,sackOK,timestamp 13
9664046[|tcp]> (DF) (ttl 38, id 19533)

. . . . 95 qualitatively similar records

#---- This is traffic to one of the anonymous ftp servers ----------

First a 3-way TCP/IP connection handshake
08:22:23.318660 < 202.39.225.97.3564 > portal.mynet.org.ftp: S 3030255354:3030255354(0)
win 32120 <mss 1460,sackOK,timestamp 139664377[|tcp]> (DF) (ttl 38, id 19917)
08:22:23.318885 < portal.mynet.org.ftp > 202.39.225.97.3564: S 4064808221:4064808221(0)
ack 3030255355 win 10136 <nop,nop,timestamp 52272796 139664377,nop,[|tcp]> (DF) (ttl 255,
id 12825)
08:22:23.563665 < 202.39.225.97.3564 > portal.mynet.org.ftp: . 1:1(0) ack 1 win 32120
<nop,nop,timestamp 139664402 52272796> (DF) (ttl 38, id 19937)

Then data are transferred
08:22:23.939080 < portal.mynet.org.ftp > 202.39.225.97.3564: P 1:34(33) ack 1 win 10136
<nop,nop,timestamp 52272858 139664402> (DF) (ttl 255, id 12826)
08:22:24.183619 < 202.39.225.97.3564 > portal.mynet.org.ftp: . 1:1(0) ack 34 win 32120
<nop,nop,timestamp 139664464 52272858> (DF) (ttl 38, id 19953)
08:22:24.183943 < 202.39.225.97.3564 > portal.mynet.org.ftp: F 1:1(0) ack 34 win 32120
<nop,nop,timestamp 139664464 52272858> (DF) (ttl 38, id 19954)
08:22:24.184106 < portal.mynet.org.ftp > 202.39.225.97.3564: . 34:34(0) ack 2 win 10136
<nop,nop,timestamp 52272883 139664464> (DF) (ttl 255, id 12827)
08:22:24.184953 < portal.mynet.org.ftp > 202.39.225.97.3564: P 34:71(37) ack 2 win 10136
<nop,nop,timestamp 52272883 139664464> (DF) (ttl 255, id 12828)
08:22:24.194301 < portal.mynet.org.ftp > 202.39.225.97.3564: F 71:71(0) ack 2 win 10136
<nop,nop,timestamp 52272884 139664464> (DF) (ttl 255, id 12829)
08:22:24.430440 < 202.39.225.97.3564 > portal.mynet.org.ftp: R 3030255356:3030255356(0)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.13

win 0 (ttl 229, id 19957)
08:22:24.439102 < 202.39.225.97.3564 > portal.mynet.org.ftp: R 3030255356:3030255356(0)
win 0 (ttl 229, id 19958)
08:22:23.318660 < 202.39.225.97.3564 > portal.mynet.org.ftp: S 3030255354:3030255354(0)
win 32120 <mss 1460,sackOK,timestamp 139664377[|tcp]> (DF) (ttl 38, id 19917)
08:22:23.318885 < portal.mynet.org.ftp > 202.39.225.97.3564: S 4064808221:4064808221(0)
ack 3030255355 win 10136 <nop,nop,timestamp 52272796 139664377,nop,[|tcp]> (DF) (ttl 255,
id 12825)
08:22:23.563665 < 202.39.225.97.3564 > portal.mynet.org.ftp: . 1:1(0) ack 1 win 32120
<nop,nop,timestamp 139664402 52272796> (DF) (ttl 38, id 19937)
08:22:23.939080 < portal.mynet.org.ftp > 202.39.225.97.3564: P 1:34(33) ack 1 win 10136
<nop,nop,timestamp 52272858 139664402> (DF) (ttl 255, id 12826)
08:22:24.183619 < 202.39.225.97.3564 > portal.mynet.org.ftp: . 1:1(0) ack 34 win 32120
<nop,nop,timestamp 139664464 52272858> (DF) (ttl 38, id 19953)
08:22:24.183943 < 202.39.225.97.3564 > portal.mynet.org.ftp: F 1:1(0) ack 34 win 32120
<nop,nop,timestamp 139664464 52272858> (DF) (ttl 38, id 19954)
08:22:24.184106 < portal.mynet.org.ftp > 202.39.225.97.3564: . 34:34(0) ack 2 win 10136
<nop,nop,timestamp 52272883 139664464> (DF) (ttl 255, id 12827)
08:22:24.184953 < portal.mynet.org.ftp > 202.39.225.97.3564: P 34:71(37) ack 2 win 10136
<nop,nop,timestamp 52272883 139664464> (DF) (ttl 255, id 12828)

And the connection is closed
08:22:24.194301 < portal.mynet.org.ftp > 202.39.225.97.3564: F 71:71(0) ack 2 win 10136
<nop,nop,timestamp 52272884 139664464> (DF) (ttl 255, id 12829)
08:22:24.430440 < 202.39.225.97.3564 > portal.mynet.org.ftp: R 3030255356:3030255356(0)
win 0 (ttl 229, id 19957)
08:22:24.439102 < 202.39.225.97.3564 > portal.mynet.org.ftp: R 3030255356:3030255356(0)
win 0 (ttl 229, id 19958)

#---- Messages from the Central Syslog Server -------------------

Jul 4 07:56:21 aloft.mynet.org ftpd[29085]: refused connect from 202.39.225.97
Jul 4 08:22:03 ochre.mynet.org ftpd[686371]: refused connect from 202.39.225.97
Jul 4 08:22:03 octal.mynet.org ftpd[267263]: refused connect from 202.39.225.97
Jul 4 08:22:03 ocelot.mynet.org ftpd[1078571]: refused connect from 202.39.225.97
Jul 4 08:06:56 allegro.mynet.org ftpd[28045]: refused connect from 202.39.225.97

. . . . 81 qualitatively similar records

#---- /etc/inetd.conf -> in.ftpd -dl -t 10 -> enables session logging
to /var/adm/messages

Jul 4 08:22:23 portal inetd[147]: ftp[17260] from 202.39.225.97 3564
Jul 4 08:22:23 portal ftpd[17260]: FTPD: connection from 202.39.225.97 at Wed Jul 4
08:22:23 2001
Jul 4 08:22:23 portal ftpd[17260]: <--- 220
Jul 4 08:22:23 portal ftpd[17260]: portal FTP server () ready.
Jul 4 08:22:24 portal ftpd[17260]: <--- 221
Jul 4 08:22:24 portal ftpd[17260]: You could at least say goodbye.

Summary (similar detect):
From: 61.76.221.185 Increasing ports starting with 4371
To: mynet.org and 21 (ftp)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.14

Notice:

IP Address : 61.76.220.0-61.76.229.255
Network Name : KORNET-XDSL-PUSAN
Connect ISP Name : KORNET

Org Name : PUSAN NODE
State : PUSAN
Address : 75 4KA JUNGANGDONG JUNGKU
Observed Traffic:

#---- grep 61.76.221.185 portscan.log --------------------------

Jun 27 04:05:22 61.76.221.185:4371 -> mynet.4.122:21 SYN ******S*
Jun 27 04:05:22 61.76.221.185:4372 -> mynet.4.123:21 SYN ******S*
Jun 27 04:05:25 61.76.221.185:4448 -> mynet.4.199:21 SYN ******S*

. . . . 14 qualitatively similar records

#---- tcpdump –r dump_27June | grep 61.76.221.185 --------------

04:05:12.123492 < 61.76.221.185.4275 > cheers.mynet.org.ftp: S 1662583894:1662583894(0)
win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 101, id 5525)

04:05:12.136675 < 61.76.221.185.4280 > gmc1200.mynet.org.ftp: S
1662839276:1662839276(0) win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 101, id 5530)

04:05:12.141617 < 61.76.221.185.4282 > lex136.mynet.org.ftp: S 1662920388:1662920388(0)
win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 101, id 5532)

. . . . 55 qualitatively similar records

#---- This is one of the anonymous ftp servers -------------------

I am missing the initial 3-way TCP/IP connection handshake. This occurred at ~04:00 AM, which
is the time of day in which we do the central tape backups. It is possible that the backup traffic
caused some tcpdump packets to be dropped. In any event, this trace clearly shows TCP traffic
passing between the 2 computers.

04:05:23.060848 < 61.76.221.185.4372 > portal.mynet.org.ftp: . 1:1(0) ack 1 win 16968 (DF) (ttl
101, id 6087)
04:05:23.514468 < portal.mynet.org.ftp > 61.76.221.185.4372: P 1:34(33) ack 1 win 9898 (DF)
(ttl 255, id 42408)
04:05:24.329081 < 61.76.221.185.4372 > portal.mynet.org.ftp: P 1:17(16) ack 34 win 16935
(DF) (ttl 101, id 6138)
04:05:24.329210 < portal.mynet.org.ftp > 61.76.221.185.4372: . 34:34(0) ack 17 win 9898 (DF)
(ttl 255, id 42409)
04:05:24.346162 < portal.mynet.org.ftp > 61.76.221.185.4372: P 34:79(45) ack 17 win 9898
(DF) (ttl 255, id 42410)
04:05:25.154387 < 61.76.221.185.4372 > portal.mynet.org.ftp: P 17:38(21) ack 79 win 16890
(DF) (ttl 101, id 6170)
04:05:25.174921 < portal.mynet.org.ftp > 61.76.221.185.4372: P 79:127(48) ack 38 win 9898
(DF) (ttl 255, id 42411)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.15

04:05:26.012559 < 61.76.221.185.4372 > portal.mynet.org.ftp: P 38:49(11) ack 127 win 16842
(DF) (ttl 101, id 6253)
04:05:26.016248 < portal.mynet.org.ftp > 61.76.221.185.4372: P 127:156(29) ack 49 win 9898
(DF) (ttl 255, id 42412)
04:05:26.842861 < 61.76.221.185.4372 > portal.mynet.org.ftp: P 49:68(19) ack 156 win 16813
(DF) (ttl 101, id 6279)
04:05:26.848781 < portal.mynet.org.ftp > 61.76.221.185.4372: P 156:195(39) ack 68 win 9898
(DF) (ttl 255, id 42413)
04:05:27.694888 < 61.76.221.185.4372 > portal.mynet.org.ftp: P 68:82(14) ack 195 win 16774
(DF) (ttl 101, id 6290)
04:05:27.698638 < portal.mynet.org.ftp > 61.76.221.185.4372: P 195:237(42) ack 82 win 9898
(DF) (ttl 255, id 42414)
04:05:28.541673 < 61.76.221.185.4372 > portal.mynet.org.ftp: P 82:102(20) ack 237 win
16732 (DF) (ttl 101, id 6312)
04:05:28.546092 < portal.mynet.org.ftp > 61.76.221.185.4372: P 237:285(48) ack 102 win
9898 (DF) (ttl 255, id 42415)
04:05:29.389619 < 61.76.221.185.4372 > portal.mynet.org.ftp: P 102:118(16) ack 285 win
16684 (DF) (ttl 101, id 6338)
04:05:29.393205 < portal.mynet.org.ftp > 61.76.221.185.4372: P 285:329(44) ack 118 win
9898 (DF) (ttl 255, id 42416)
04:05:30.232338 < 61.76.221.185.4372 > portal.mynet.org.ftp: P 118:134(16) ack 329 win
16640 (DF) (ttl 101, id 6370)
04:05:30.235982 < portal.mynet.org.ftp > 61.76.221.185.4372: P 329:373(44) ack 134 win
9898 (DF) (ttl 255, id 42417)
04:05:32.977523 < portal.mynet.org.ftp > 61.76.221.185.4372: P 329:373(44) ack 134 win
9898 (DF) (ttl 255, id 42418)
tcpdump: pcap_loop: truncated dump file
04:05:33.048683 < 61.76.221.185.4372 > portal.mynet.org.ftp: P 118:134(16) ack 329 win
16640 (DF) (ttl 101, id 6532)
04:05:33.048829 < portal.mynet.org.ftp > 61.76.221.185.4372: . 373:373(0) ack 134 win 9898
(DF) (ttl 255, id 42419)
04:05:33.814336 < 61.76.221.185.4372 > portal.mynet.org.ftp: P 134:141(7) ack 373 win
16596 (DF) (ttl 101, id 6569)
04:05:33.818203 < portal.mynet.org.ftp > 61.76.221.185.4372: P 373:402(29) ack 141 win
9898 (DF) (ttl 255, id 42420)
04:05:34.636063 < 61.76.221.185.4372 > portal.mynet.org.ftp: P 141:160(19) ack 402 win
16567 (DF) (ttl 101, id 6593)
04:05:34.640317 < portal.mynet.org.ftp > 61.76.221.185.4372: P 402:441(39) ack 160 win
9898 (DF) (ttl 255, id 42421)
04:05:35.439448 < 61.76.221.185.4372 > portal.mynet.org.ftp: P 160:174(14) ack 441 win
16528 (DF) (ttl 101, id 6616)
04:05:35.443107 < portal.mynet.org.ftp > 61.76.221.185.4372: P 441:483(42) ack 174 win
9898 (DF) (ttl 255, id 42422)
04:05:36.241055 < 61.76.221.185.4372 > portal.mynet.org.ftp: F 174:174(0) ack 483 win 16486
(DF) (ttl 101, id 6635)
04:05:36.241181 < portal.mynet.org.ftp > 61.76.221.185.4372: . 483:483(0) ack 175 win 9898
(DF) (ttl 255, id 42423)
04:05:36.241845 < 61.76.221.185.4372 > portal.mynet.org.ftp: R 1669848882:1669848882(0)
win 0 (DF) (ttl 101, id 6636)
04:05:36.242600 < portal.mynet.org.ftp > 61.76.221.185.4372: P 483:520(37) ack 175 win
9898 (DF) (ttl 255, id 42424)
04:05:37.027485 < 61.76.221.185.4372 > portal.mynet.org.ftp: R 1669848882:1669848882(0)
win 0 (ttl 101, id 6646)
04:05:37.028110 < 61.76.221.185.4372 > portal.mynet.org.ftp: R 1669848882:1669848882(0)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.16

win 0 (ttl 101, id 6647)

#---- Messages from the Central Syslog Server --------------------

Jun 27 03:39:25 aloft.mynet.org ftpd[17536]: refused connect from 61.76.221.185

Jun 27 03:49:54 allegro.mynet.org ftpd[17670]: refused connect from 61.76.221.185

Jun 27 03:48:53 albedo.mynet.org ftpd[20968]: refused connect from 61.76.221.185

This one was not refused, it is an anonymous ftp server
Jun 27 04:05:23 portal.mynet.org in.ftpd[26837]: connect from 61.76.221.185

. . . . 73 additional “refused connect from” messages

#---- /etc/inetd.conf -> in.ftpd -dl -t 10 enables Logging -------
This is not nice!

Jun 27 04:05:23 portal inetd[143]: ftp[26837] from 61.76.221.185 4372
Jun 27 04:05:23 portal ftpd[26837]: FTPD: connection from 61.76.221.185 at Wed Jun 27
04:05:23 2001
Jun 27 04:05:23 portal ftpd[26837]: <--- 220
Jun 27 04:05:23 portal ftpd[26837]: portal FTP server () ready.
Jun 27 04:05:24 portal ftpd[26837]: FTPD: command: USER anonymous
Jun 27 04:05:24 portal ftpd[26837]: <--- 331
Jun 27 04:05:24 portal ftpd[26837]: Guest login ok, send ident as password.
Jun 27 04:05:25 portal ftpd[26837]: FTPD: command: PASS guest@here.com
Jun 27 04:05:25 portal ftpd[26837]: <--- 230
Jun 27 04:05:25 portal ftpd[26837]: Guest login ok, access restrictions apply.
Jun 27 04:05:26 portal ftpd[26837]: FTPD: command: CWD /pub/
Jun 27 04:05:26 portal ftpd[26837]: <--- 250
Jun 27 04:05:26 portal ftpd[26837]: CWD command successful.
Jun 27 04:05:26 portal ftpd[26837]: FTPD: command: MKD 010626170301p
Jun 27 04:05:26 portal ftpd[26837]: <--- 550
Jun 27 04:05:26 portal ftpd[26837]: 010626170301p: Permission denied.
Jun 27 04:05:27 portal ftpd[26837]: FTPD: command: CWD /public/
Jun 27 04:05:27 portal ftpd[26837]: <--- 550
Jun 27 04:05:27 portal ftpd[26837]: /public/: No such file or directory.
Jun 27 04:05:28 portal ftpd[26837]: FTPD: command: CWD /pub/incoming/
Jun 27 04:05:28 portal ftpd[26837]: <--- 550
Jun 27 04:05:28 portal ftpd[26837]: /pub/incoming/: No such file or directory.
Jun 27 04:05:29 portal ftpd[26837]: FTPD: command: CWD /incoming/
Jun 27 04:05:29 portal ftpd[26837]: <--- 550
Jun 27 04:05:29 portal ftpd[26837]: /incoming/: No such file or directory.
Jun 27 04:05:30 portal ftpd[26837]: FTPD: command: CWD /_vti_pvt/
Jun 27 04:05:30 portal ftpd[26837]: <--- 550
Jun 27 04:05:30 portal ftpd[26837]: /_vti_pvt/: No such file or directory.
Jun 27 04:05:33 portal ftpd[26837]: FTPD: command: CWD /
Jun 27 04:05:33 portal ftpd[26837]: <--- 250
Jun 27 04:05:33 portal ftpd[26837]: CWD command successful.
Jun 27 04:05:34 portal ftpd[26837]: FTPD: command: MKD 010626170309p
Jun 27 04:05:34 portal ftpd[26837]: <--- 550
Jun 27 04:05:34 portal ftpd[26837]: 010626170309p: Permission denied.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.17

Jun 27 04:05:35 portal ftpd[26837]: FTPD: command: CWD /upload/
Jun 27 04:05:35 portal ftpd[26837]: <--- 550
Jun 27 04:05:35 portal ftpd[26837]: /upload/: No such file or directory.
Jun 27 04:05:36 portal ftpd[26837]: <--- 221
Jun 27 04:05:36 portal ftpd[26837]: You could at least say goodbye.

#---- Finally, snort alerts for an Anonymous FTP Connection -------

[**] INFO FTP anonymous FTP [**]
06/27-04:05:24.329081 61.76.221.185:4372 -> mynet.4.123:21
TCP TTL:101 TOS:0x0 ID:6138 IpLen:20 DgmLen:56 DF
AP Seq: 0x6387DE84 Ack: 0x7198688F Win: 0x4227 TcpLen: 20

1) Source of Trace:
My Laboratory

2) Detect was Generated by:
Site maintains 6 IDS sensors running tcpdump 24/7.

% tcpdump –w dumpFile_24hour
% snort –r dumpFile_24hour -c /etc/snort/snort.conf

At midnight, on a designated analysis workstation, process data using several shell, sed,
awk, and perl scripts.
Gather all outside IP addresses and suspicious inside IP address of interest.
Obtain tcpdump data in separate files, for each “IP address of interest”.

% tcpdump –r dump_24hour -vv "dst $outsider or src $outsider" \
> tcpdump_IPaddress

% tcpdump -r dumpFile_24hour –vv -x \
 "dst $outsider or src $outsider" > tcpdump_hex_IPaddress

Snort Rule that generated this detect:
preprocessor portscan:

And

policy.rules:
alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"INFO FTP anonymous FTP";
content:"anonymous"; nocase; flags:A+;)

3) Probability that Source Address was Spoofed:
None
Reason: This was a scan of my entire network looking for anonymous ftp servers. He
required feedback to his computer to know when one was found. He found an
anonymous ftp server (actually he found 2, the second is not shown). He established a
TCP connection. All this activity requires 2-way communication. This could not have
been a spoofed address.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.18

4) Description of Attack:
From: 202.39.225.97 Increasing Ephemeral ports starting with 3623
From: 61.76.221.185 Increasing ports starting with 4371
To: mynet.org and 21 (ftp)

Average Interval: 1.7 seconds
Protocol: TCP
ID Numbers: Increment normally
Seq. Numbers: Increment normally
Ack. Numbers: Increment normally

These incidents were stimuli with normal TCP responses.
This incident involved no crafted packets rather it used “Normal TCP/IP” traffic.
This incident was moderately fast (> 35 hits/minute).
This incident involved a moderate volume of traffic. It encompassed two entire subnets, 4
buildings, and several other segments of the entire organization.
This incident was a reconnaissance and exploitation of vulnerability as discovered.
The target OS for this incident appears to be anonymous ftp servers, especially those with
with opportunistic write permissions, or perhaps unpatched wu-ftp stires.
The source OS for this incident is likely a Unix box.

5) Attack Mechanism:
This was a SYN scan to port 21. Following discovery of ftp servers listening to port 21,
ftp attempts were immediately made. Attempts were made to create directories, and
deposit software. Had he been successful, he would have deposited possibly illegally
obtained software, exotic and possibly illegal files (child pornography), but most likely he
would have installed the tools that could be used to break into and compromise this or
other computers.

6) Correlations:
A somewhat similar detect is described in Becky Bogle’s “GAIC Certification Practical”
from the 2001 New Orleans meeting. http://www.sans.org/giactc/Becky_Bogle_GCIA.doc
Her attack differs in that the initial scan was through SYN-FIN scans to port 21. As
explained by Ms. Bogle, that probe was likely diagnostic of a scan that had as its purpose
the gathering of FTP banner information, and subsequent attack of ftp servers with the
raman worm. The purpose of this attack would have been root compromise through
buffer overflow. The SYN scan on my network, was immediately followed by an attempt
to deposit files to my ftp servers, following anonymous login by the well know user:
guest@here.com. The strategy of the two detects, if not the goals, are qualitatively
similar.

There are many CVEs associated with ftp exploits (http://cve.mitre.org/cve/):

CVE-1999-0017

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.19

FTP servers can allow an attacker to connect to arbitrary ports on machines other than the
FTP client, aka FTP bounce.
CVE-1999-0035
Race condition in signal handling routine in ftpd, allowing read/write arbitrary files.
CVE-1999-0054
Sun's ftpd daemon can be subjected to a denial of service.
CVE-1999-0075
PASV core dump in wu-ftpd daemon when attacker uses a QUOTE PASV command
after specifying a username and password.
CVE-1999-0079
Remote attackers can cause a denial of service in FTP by issuing multiple PASV
commands, causing the server to run out of available ports.
CVE-1999-0080
wu-ftp FTP server allows root access via "site exec" command.
CVE-1999-0081
wu-ftp allows files to be overwritten via the rnfr command.
CVE-1999-0082
CWD ~root command in ftpd allows root access.
CVE-1999-0083
getcwd() file descriptor leak in FTP
CVE-1999-0097
The AIX FTP client can be forced to execute commands from a malicious server through
shell metacharacters (e.g. a pipe character).
CVE-1999-0183
Linux implementations of TFTP would allow access to files outside the restricted
directory.
CVE-1999-0185
In SunOS or Solaris, a remote user could connect from an FTP server's data port to an
rlogin server on a host that trusts the FTP server, allowing remote command execution.
CVE-1999-0201
A quote cwd command on FTP servers can reveal the full path of the home directory of
the "ftp" user.
CVE-1999-0202
The GNU tar command, when used in FTP sessions, may allow an attacker to execute
arbitrary commands.
CVE-1999-0219
Buffer overflow in Serv-U FTP server when user performs a cwd to a directory with a
long name.
CVE-1999-0256
Buffer overflow in War FTP allows remote execution of commands.
CVE-1999-0302
SunOS/Solaris FTP clients can be forced to execute arbitrary commands from a malicious
FTP server.
CVE-1999-0349
A buffer overflow in the FTP list (ls) command in IIS allows remote attackers to conduct

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.20

a denial of service and, in some cases, execute arbitrary commands.
CVE-1999-0351
FTP PASV "Pizza Thief" denial of service and unauthorized data access. Attackers can
steal data by connecting to a port that was intended for use by a client.
CVE-1999-0362
WS_FTP server remote denial of service through cwd command.
CVE-1999-0368
Buffer overflows in wuarchive ftpd (wu-ftpd) and ProFTPD lead to remote root access,
a.k.a. palmetto.
CVE-1999-0432
ftp on HP-UX 11.00 allows local users to gain privileges.
CVE-1999-0457
Linux ftpwatch program allows local users to gain root privileges.
CVE-1999-0671
Buffer overflow in ToxSoft NextFTP client through CWD command.
CVE-1999-0707
The default FTP configuration in HP Visualize Conference allows conference users to
send a file to other participants without authorization.
CVE-1999-0777
IIS FTP servers may allow a remote attacker to read or delete files on the server, even if
they have "No Access" permissions.
CVE-1999-0789
Buffer overflow in AIX ftpd in the libc library.
CVE-1999-0838
Buffer overflow in Serv-U FTP 2.5 allows remote users to conduct a denial of service via
the SITE command.
CVE-1999-0878
Buffer overflow in WU-FTPD and related FTP servers allows remote attackers to gain root
privileges via MAPPING_CHDIR.
CVE-1999-0879
Buffer overflow in WU-FTPD and related FTP servers allows remote attackers to gain root
privileges via macro variables in a message file.
CVE-1999-0880
Denial of service in WU-FTPD via the SITE NEWER command, which does not free
memory properly.
CVE-1999-0914
Buffer overflow in the FTP client in the Debian GNU/Linux netstd package.
CVE-1999-0950
"Buffer overflow in WFTPD FTP server allows remote attackers to gain root access via

a series of MKD and CWD commands that create nested directories."
CVE-1999-0955
Race condition in wu-ftpd and BSDI ftpd allows remote attackers gain root access via the
SITE EXEC command.
CVE-1999-0997
wu-ftp with FTP conversion enabled allows an attacker to execute commands via a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.21

malformed file name that is interpreted as an argument to the program that does the
conversion, e.g. tar or uncompress.
CVE-2000-0015
CascadeView TFTP server allows local users to gain privileges via a symlink attack.
CVE-2000-0040
glFtpD allows local users to gain privileges via metacharacters in the SITE ZIPCHK
command.
CVE-2000-0044
Macros in War FTP 1.70 and 1.67b2 allow local or remote attackers to read arbitrary files
or execute commands.
CVE-2000-0131
Buffer overflow in War FTPd 1.6x allows users to cause a denial of service via long MKD
and CWD commands.
CVE-2000-0150
Firewall-1 allows remote attackers to bypass port access restrictions on an FTP server by
forcing it to send malicious packets which Firewall-1 misinterprets as a valid 227 response
to a client's PASV attempt.
CVE-2000-0462
ftpd in NetBSD 1.4.2 does not properly parse entries in /etc/ftpchroot and does not chroot
the specified users, which allows those users to access other files outside of their home
directory.
CVE-2000-0514
GSSFTP FTP daemon in Kerberos 5 1.1.x does not properly restrict access to some FTP
commands, which allows remote attackers to cause a denial of service, and local users to
gain root privileges.
CVE-2000-0565
SmartFTP Daemon 0.2 allows a local user to access arbitrary files by uploading and
specifying an alternate user configuration file via a .. (dot dot) attack.
CVE-2000-0573
The lreply function in wu-ftpd 2.6.0 and earlier does not properly cleanse an untrusted
format string, which allows remote attackers to execute arbitrary commands via the SITE
EXEC command.
CVE-2000-0577
Netscape Professional Services FTP Server 1.3.6 allows remote attackers to read arbitrary
files via a .. (dot dot) attack.
CVE-2000-0587
The privpath directive in glftpd 1.18 allows remote attackers to bypass access restrictions
for directories by using the file name completion capability.
CVE-2000-0636
HP JetDirect printers versions G.08.20 and H.08.20 and earlier allow remote attackers to
cause a denial of service via a malformed FTP quote command.
CVE-2000-0640
Guild FTPd allows remote attackers to determine the existence of files outside the FTP
root via a .. (dot dot) attack, which provides different error messages depending on
whether the file exists or not.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.22

CVE-2000-0644
WFTPD and WFTPD Pro 2.41 allows remote attackers to cause a denial of service by
executing a STAT command while the LIST command is still executing.
CVE-2000-0674
ftp.pl CGI program for Virtual Visions FTP browser allows remote attackers to read
directories outside of the document root via a .. (dot dot) attack.
CVE-2000-0676
Netscape Communicator and Navigator 4.04 through 4.74 allows remote attackers to read
arbitrary files by using a Java applet to open a connection to a URL using the "file",
"http", "https", and "ftp" protocols, as demonstrated by Brown Orifice.
CVE-2000-0717
GoodTech FTP server allows remote attackers to cause a denial of service via a large
number of RNTO commands.
CVE-2000-0761
OS2/Warp 4.5 FTP server allows remote attackers to cause a denial of service via a long
username.
CVE-2000-0813
Check Point VPN-1/FireWall-1 4.1 and earlier allows remote attackers to redirect FTP
connections to other servers ("FTP Bounce") via invalid FTP commands that are
processed improperly by FireWall-1, aka "FTP Connection Enforcement Bypass."
CVE-2000-0837
FTP Serv-U 2.5e allows remote attackers to cause a denial of service by sending a large
number of null bytes.
CVE-2000-0856
Buffer overflow in SunFTP build 9(1) allows remote attackers to cause a denial of service
or possibly execute arbitrary commands via a long GET request.
CVE-2000-0870
Buffer overflow in EFTP allows remote attackers to cause a denial of service via a long
string.
CVE-2000-0871
Buffer overflow in EFTP allows remote attackers to cause a denial of service by sending a
string that does not contain a newline, then disconnecting from the server.
CVE-2000-0875
WFTPD and WFTPD Pro 2.41 RC12 allows remote attackers to cause a denial of service
by sending a long string of unprintable characters.
CVE-2000-0876
WFTPD and WFTPD Pro 2.41 RC12 allows remote attackers to obtain the full pathname
of the server via a "%C" command, which generates an error message that includes the
pathname.
CVE-2000-0943
Buffer overflow in bftp daemon (bftpd) 1.0.11 allows remote attackers to cause a denial of
service and possibly execute arbitrary commands via a long USER command.
CVE-2000-1027
Cisco Secure PIX Firewall 5.2(2) allows remote attackers to determine the real IP address
of a target FTP server by flooding the server with PASV requests, which includes the real

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.23

IP address in the response when passive mode is established.
CVE-2000-1182
WatchGuard Firebox II allows remote attackers to cause a denial of service by flooding
the Firebox with a large number of FTP or SMTP requests, which disables proxy
handling.
CVE-2001-0053
One-byte buffer overflow in replydirname function in BSD-based ftpd allows remote
attackers to gain root privileges.
CVE-2001-0054
Directory traversal vulnerability in FTP Serv-U before 2.5i allows remote attackers to
escape the FTP root and read arbitrary files by appending a string such as "/..%20." to a
CD command, a variant of a .. (dot dot) attack.
CVE-2001-0138
privatepw program in wu-ftpd before 2.6.1-6 allows local users to overwrite arbitrary files
via a symlink attack.
CVE-2001-0187
Format string vulnerability in wu-ftp 2.6.1 and earlier, when running with debug mode
enabled, allows remote attackers to execute arbitrary commands via a malformed
argument that is recorded in a PASV port assignment.
CVE-2001-0295
Directory traversal vulnerability in War FTP 1.67.04 allows remote attackers to list
directory contents and possibly read files via a "dir *./../.." command.
CVE-2001-0318
Format string vulnerability in ProFTPD 1.2.0rc2 may allow attackers to execute arbitrary
commands by shutting down the FTP server while using a malformed working directory
(cwd).

7) Evidence of Active Targeting:
This incident evidenced active targeting.
The attack was not “aimed” at specific workstation.
It was aimed at a specific series of networks.
And it was aimed at a particular service or port (21, ftp).

8) Severity:
Severity = (Criticality + Lethality) – (CounterMeasuresSystem + CounterMeasuresNetwork)
Severity = (4 + 4) - (5 + 1)
Severity = 2

Comment: The anonymous ftp servers in my laboratory are chrooted, TCP-wrapped, fully
patched, run on modern operating systems, and are closely monitored, so I assign
CounterMeasuresSystem = 5. I have had compromises in the distant past on ftp servers in
my lab, but none since I went on a campaign to properly configure them all.

9) Defensive Recommendation:
Damages: No damage done.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.24

This incident did penetrate the organizational firewall. On the other hand we maintain
anonymous ftp sites for appropriate and necessary scientific communication between our
scientists and the greater scientific community. This incident was automatically locked
out of the ftp server within a few seconds of his first ftp attempt. Unfortunately, this was
not before he attempted ftp access to the ftp server. (This happens about half of the time
in these kinds of probes.)

It is not reasonable to block port 21 at the firewall. (It is not remotely within the realm of
politically feasibility.) This service needs to be placed in a DMZ outside of a laboratory
firewall.

10) Multiple Choice Test Question:

The syslogs/messages files can be used to correlate information about intrusive ftp
activity. Consider the following trace from /var/adm/messages file as taken from this
detect.

Jul 4 08:22:23 portal inetd[147]: ftp[17260] from 202.39.225.97 3564
Jul 4 08:22:23 portal ftpd[17260]: FTPD: connection from 202.39.225.97 at Wed Jul 4
08:22:23 2001
Jul 4 08:22:23 portal ftpd[17260]: <--- 220
Jul 4 08:22:23 portal ftpd[17260]: portal FTP server () ready.
Jul 4 08:22:24 portal ftpd[17260]: <--- 221
Jul 4 08:22:24 portal ftpd[17260]: You could at least say goodbye.

Which of the following statements is true.

On the workstation portal, the deamon ftpd runs continuously.a)
This trace indicates that the hostile successfully logged in as the user anonymous.b)
It is likely, that the hostile in this episode acquired the ftp banner on portal.c)
Within the element “ftpd[17260]”, the fact the number 17260 remains the same in d)
throughout this detect, is indicative of packet crafting.
If tcpdump traces were available for this detect, it would not show a completed 3 e)
way TCP handshake connection, because no login occurred.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.25

Detect 3: SYN Scan for FTP interspersed with Net-Bios

Summary:
From: 128.100.70.4 Ports 137 and Ephemeral ports
To: mynet.org Ports 137 (Netbios name service) and 21 (ftp)
Notice: This is a simultaneous and interspersed scan for both Windows

name servers and vulnerable ftp sites.

Broadcast queries to port 137.
UDP port 137 scan through entire network
FTP prot 21 scan through entire network

[root@liar Process]# geektools 128.100.70.4
[whois.geektools.com]
Query: 128.100.70.4
Registry: whois.arin.net
Results:
University of Toronto Computing and Communications (NET-TORONTO)

255 Huron Street Room 350
Toronto ON, ON M5S1C1
CA

[root@liar Process]# nslookup 128.100.70.4

Non-authoritative answer:
4.70.100.128.in-addr.arpa name = lphm.phm.utoronto.ca.

Observed Traffic:

#---- grep 128.100.70.4 portscan.log -----------------------------

Jun 27 09:44:11 128.100.70.4:137 -> mynet.4.33:137 UDP
Jun 27 09:44:12 128.100.70.4:137 -> mynet.4.122:137 UDP
Jun 27 09:44:12 128.100.70.4:1816 -> mynet.4.184:21 SYN ******S*
Jun 27 09:44:13 128.100.70.4:137 -> mynet.5.52:137 UDP
Jun 27 09:44:13 128.100.70.4:1954 -> mynet.4.33:21 SYN ******S*
Jun 27 09:44:13 128.100.70.4:1968 -> mynet.4.235:21 SYN ******S*
Jun 27 09:44:14 128.100.70.4:137 -> mynet.5.127:137 UDP
Jun 27 09:44:14 128.100.70.4:137 -> mynet.5.140:137 UDP
Jun 27 09:44:14 128.100.70.4:137 -> mynet.5.144:137 UDP
Jun 27 09:44:14 128.100.70.4:137 -> mynet.5.148:137 UDP
Jun 27 09:44:14 128.100.70.4:137 -> mynet.5.69:137 UDP
Jun 27 09:44:14 128.100.70.4:137 -> mynet.5.93:137 UDP
Jun 27 09:44:14 128.100.70.4:137 -> mynet.5.99:137 UDP
Jun 27 09:44:14 128.100.70.4:2145 -> mynet.5.80:21 SYN ******S*
Jun 27 09:44:14 128.100.70.4:2172 -> mynet.4.122:21 SYN ******S*
Jun 27 09:44:14 128.100.70.4:2177 -> mynet.5.82:21 SYN ******S*
Jun 27 09:44:15 128.100.70.4:137 -> mynet.5.161:137 UDP
Jun 27 09:44:15 128.100.70.4:137 -> mynet.5.191:137 UDP
Jun 27 09:44:16 128.100.70.4:137 -> mynet.4.246:137 UDP
Jun 27 09:44:16 128.100.70.4:137 -> mynet.5.222:137 UDP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.26

Jun 27 09:44:17 128.100.70.4:2402 -> mynet.4.246:21 SYN ******S*
Jun 27 09:45:02 128.100.70.4:137 -> mynet.4.33:137 UDP
Jun 27 09:45:03 128.100.70.4:1816 -> mynet.4.184:21 SYN ******S*
Jun 27 09:45:04 128.100.70.4:137 -> mynet.5.52:137 UDP
Jun 27 09:45:04 128.100.70.4:1954 -> mynet.4.33:21 SYN ******S*
Jun 27 09:45:04 128.100.70.4:1994 -> mynet.4.245:21 SYN ******S*
Jun 27 09:45:05 128.100.70.4:137 -> mynet.5.127:137 UDP
Jun 27 09:45:05 128.100.70.4:137 -> mynet.5.140:137 UDP
Jun 27 09:45:05 128.100.70.4:137 -> mynet.5.144:137 UDP
Jun 27 09:45:05 128.100.70.4:137 -> mynet.5.148:137 UDP
Jun 27 09:45:05 128.100.70.4:137 -> mynet.5.69:137 UDP
Jun 27 09:45:05 128.100.70.4:137 -> mynet.5.93:137 UDP
Jun 27 09:45:05 128.100.70.4:137 -> mynet.5.99:137 UDP
Jun 27 09:45:05 128.100.70.4:2145 -> mynet.5.80:21 SYN ******S*
Jun 27 09:45:05 128.100.70.4:2177 -> mynet.5.82:21 SYN ******S*
Jun 27 09:45:06 128.100.70.4:137 -> mynet.5.161:137 UDP
Jun 27 09:45:06 128.100.70.4:137 -> mynet.5.191:137 UDP
Jun 27 09:45:07 128.100.70.4:137 -> mynet.4.246:137 UDP
Jun 27 09:45:07 128.100.70.4:137 -> mynet.5.222:137 UDP
Jun 27 09:45:08 128.100.70.4:2402 -> mynet.4.246:21 SYN ******S*

#---- tcpdump from src 128.100.70.4 ----------------------------

netbios name server requests
09:44:08.490204 < lphm.phm.utoronto.ca.netbios-ns > lex136.mynet.org.netbios-ns:NBT UDP
PACKET(137): QUERY; REQUEST; BROADCAST

09:44:09.853253 < lphm.phm.utoronto.ca.netbios-ns > susan.mynet.org.netbios-ns:NBT UDP
PACKET(137): QUERY; REQUEST; BROADCAST

09:44:09.976086 < lphm.phm.utoronto.ca.netbios-ns > lex136.mynet.org.netbios-ns:NBT UDP
PACKET(137): QUERY; REQUEST; BROADCAST

SYN and RST to Possible Unix ftp site (tcp-wrapped)
09:44:13.062039 < lphm.phm.utoronto.ca.1968 > sunder.mynet.org.ftp: S
29189079:29189079(0) win 8192 <mss 1460> (DF) [tos 0x10](ttl 112, id 24165)

09:44:13.062080 < sunder.mynet.org.ftp > lphm.phm.utoronto.ca.1968: R 0:0(0) ack 29189080
win 0 (DF) [tos 0x10] (ttl 112, id 50461)

. . . . 154 qualitatively similar records

#---- grep lphm.phm.utoronto.ca /etc/syslog -------------------------

All these Unix boxes are tcp-wrapped
Jun 27 09:44:48 ocarina.mynet.org ftpd[101486]: refused connect from lphm.phm.utoronto.ca
Jun 27 09:28:40 albedo.mynet.org ftpd[21291]: refused connect from lphm.phm.utoronto.ca
Jun 27 09:29:41 allegro.mynet.org ftpd[17836]: refused connect from lphm.phm.utoronto.ca

portal is the anonymous ftp server, (thus allows off site ftp)
Jun 27 09:45:01 portal.mynet.org in.ftpd[432]: connect from lphm.phm.utoronto.ca

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.27

. . . . 96 additional “refused connect from” messages

#----- egrep ’128.100.70.4|432’ /var/adm/messages ---------------
Jun 27 09:45:00 portal inetd[141]: ftp[432] from 128.100.70.4 1651
Jun 27 09:45:02 portal ftpd[432]: FTPD: connection from lphm.phm.utoronto.ca at Wed Jun 27
09:45:02 2001
Jun 27 09:45:02 portal ftpd[432]: <--- 220
Jun 27 09:45:02 portal ftpd[432]: portal FTP server () ready.
Jun 27 09:45:02 portal ftpd[432]: FTPD: command:
Jun 27 09:45:02 portal ftpd[432]: <--- 500
Jun 27 09:45:02 portal ftpd[432]: '': command not understood.
Jun 27 09:45:02 portal ftpd[432]: FTPD: command:
Jun 27 09:45:02 portal ftpd[432]: <--- 500
Jun 27 09:45:02 portal ftpd[432]: '': command not understood.
Jun 27 09:45:02 portal ftpd[432]: FTPD: command:
Jun 27 09:45:02 portal ftpd[432]: <--- 500
Jun 27 09:45:02 portal ftpd[432]: '': command not understood.
Jun 27 09:45:02 portal ftpd[432]: <--- 221
Jun 27 09:45:02 portal ftpd[432]: You could at least say goodbye.

Summary (Second Similar Detect)
From: 128.104.35.50 Ports 137 and Ephemeral ports
To: mynet.org Ports 137 (Netbios name service) and 21 (ftp)
Notice: This is a simultaneous and interspersed scan for both Windows

name servers and vulnerable ftp sites.

Unicast queries to port 137.
UDP port 137 scan through entire network
FTP prot 21 scan through entire network

[root@liar Process]# geektools 128.104.35.50
[whois.geektools.com]
Query: 128.104.35.50
Registry: whois.arin.net
Results:
University of Wisconsin-Madison (NET-WISC-HERD)

1210 West Dayton Street
Madison, WI 53706
US

[root@liar Process]# nslookup 128.104.35.50

50.35.104.128.in-addr.arpa name = soybean.agronomy.wisc.edu.

Observed Traffic:

#---- grep 128.104.35.50 portscan.log ---------------------------

Jun 27 18:12:00 128.104.35.50:137 -> mynet.4.96:137 UDP
Jun 27 18:12:02 128.104.35.50:137 -> mynet.4.23:137 UDP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.28

Jun 27 18:12:02 128.104.35.50:3321 -> mynet.4.184:21 SYN ******S*
Jun 27 18:12:02 128.104.35.50:3322 -> mynet.4.182:21 SYN ******S*
Jun 27 18:12:03 128.104.35.50:137 -> mynet.4.122:137 UDP
Jun 27 18:12:03 128.104.35.50:3487 -> mynet.4.23:21 SYN ******S*

. . . . 45 qualitatively similar records

#---- tcpdump from src 128.104.35.50 -----------------------------

Windows netbios name server requests (note Unicasts)
18:11:59.267983 < soybean.agronomy.wisc.edu.netbios-ns > typhoon.mynet.org.netbios-ns:NBT
UDP PACKET(137): QUERY; REQUEST; UNICAST

18:12:00.469611 < soybean.agronomy.wisc.edu.netbios-ns > cd_pc.mynet.org.netbios-ns:NBT
UDP PACKET(137): QUERY; REQUEST; UNICAST

And a SYN – RST couple to ftp on a Unix box
18:12:03.825178 < soybean.agronomy.wisc.edu.3499 > sunder.mynet.org.ftp: S
2020131264:2020131264(0) win 8192 <mss 1460> (DF) (ttl 116, id 13986)
18:12:03.825211 < sunder.mynet.org.ftp > soybean.agronomy.wisc.edu.3499: R 0:0(0) ack
2020131265 win 0 (DF) (ttl 116, id 46901)

. . . . 155 qualitatively similar records

#---- grep soybean.agronomy.wisc.edu /etc/syslog ------------------

All these Unix boxes are tcp-wrapped
Jun 27 18:12:39 octopus.mynet.org ftpd[205099]: refused connect from
soybean.agronomy.wisc.edu
Jun 27 18:12:39 ochre.mynet.org ftpd[662135]: refused connect from
soybean.agronomy.wisc.edu
Jun 27 18:12:39 octal.mynet.org ftpd[298552]: refused connect from
soybean.agronomy.wisc.edu
Jun 27 18:12:39 ocarina.mynet.org ftpd[101948]: refused connect from
soybean.agronomy.wisc.edu

spite is an anonymous ftp server
Jun 27 18:12:54 spite.mynet.org in.ftpd[10479]: connect from soybean.agronomy.wisc.edu

. . . . 85 qualitatively similar records

#----- egrep ’10479|soybean.agronomy.wisc.edu’ /var/adm/messages ---

Jun 27 18:12:54 spite ftpd[10479]: connection from soybean.agronomy.wisc.edu at Wed Jun 27
18:12:54 2001
Jun 27 18:12:54 spite ftpd[10479]: <--- 220
Jun 27 18:12:54 spite ftpd[10479]: spite NIH LCP-NMR FTP Server (Version 5.60N) ready.
Jun 27 18:12:54 spite ftpd[10479]: command:
Jun 27 18:12:54 spite ftpd[10479]: <--- 500
Jun 27 18:12:54 spite ftpd[10479]: '': command not understood.
Jun 27 18:12:54 spite ftpd[10479]: command:
Jun 27 18:12:54 spite ftpd[10479]: <--- 500

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.29

Jun 27 18:12:54 spite ftpd[10479]: '': command not understood.
Jun 27 18:12:54 spite ftpd[10479]: command:
Jun 27 18:12:54 spite ftpd[10479]: <--- 500
Jun 27 18:12:54 spite ftpd[10479]: '': command not understood.
Jun 27 18:12:54 spite ftpd[10479]: <--- 221
Jun 27 18:12:54 spite ftpd[10479]: You could at least say goodbye.

1) Source of Trace:
My Laboratory

2) Detect was Generated by:
Site maintains 6 IDS sensors running tcpdump 24/7.

% tcpdump –w dumpFile_24hour
% snort –r dumpFile_24hour -c /etc/snort/snort.conf

At midnight, on a designated analysis workstation, process data using several shell, sed,
awk, and perl scripts.
Gather all outside IP addresses and suspicious inside IP address of interest.
Obtain tcpdump data in separate files, for each “IP address of interest”.

% tcpdump –r dump_24hour -vv "dst $outsider or src $outsider" \
> tcpdump_IPaddress

% tcpdump -r dumpFile_24hour –vv -x \
 "dst $outsider or src $outsider" > tcpdump_hex_IPaddress

Snort Rule that generated this detect:
preprocessor portscan:

3) Probability that Source Address was Spoofed:
None
Reason: This was a UDP netbios scan, concurrent with TCP ftp connections as they were
found. The hostile wanted netbios information, requiring that the IP address not be
spoofed. And he wanted to penetrate anonymous ftp servers as he found them,
necessitating a 3-way TCP hand shake. So lphm.phm.utoronto.ca and
soybean.agronomy.wisc.edu are certainly the bad guys. (And, I always thought those
upper midwest and Canadian guys were such honest, above board, and straight shooters.
Another myth. . . down the tubes!)

4) Description of Attack:
From: 128.100.70.4 Ports 137 and Ephemeral ports
From: 128.104.35.50 Ports 137 and Ephemeral ports
To: mynet.org Ports 137 (netbios name service) and 21 (ftp)
Average Interval: 1.4 seconds
Protocol: UDP and TCP

(netbios-ns:NBT UDP PACKET(137):
QUERY; REQUEST; UNICAST)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.30

ID Numbers: Increment normally
Seq. Numbers: Increment normally
Ack. Numbers: Increment normally
TOS: [tos 0x10] “Minimize Delay”...unusual

These incidents were stimuli followed by responses.
This incident involved no crafted packets rather it used “Normal TCP/IP” traffic.
This incident was moderately fast (> 42 and 44 hits/minute).
This incident involved a moderate volume of traffic. It encompassed two entire subnets, 4
buildings, and several other segments of the entire organization.
This incident was a reconnaissance and exploitation of vulnerability as discovered.
The target OS for this incident appears to be writable anonymous ftp servers, and perhaps
un-patched ftp servers.
The source OS for this incident is likely a Unix box.

5) Attack Mechanism:
This incident differs from the more or less daily attempts of hostiles to scan mynet.org for
ftp sites, in which the hostile logs onto ftp servers, gathers banners, attempts to deposit
files, or attempts a buffer overflow. The question is, why would someone probe 137 ports
(netbios name server) associated with windows operating systems interspersed with ftp
connections attempts, a service that can be installed on windows, but is usually associated
with Unix boxes? I have been doing tcpdump/snort IDS for less than a month, but I have
been doing tcpwrappers/central syslog server IDS for several years. I have hundreds of
ftp attempts on my ftp servers. I have never seen this:

Jun 27 18:12:54 spite ftpd[10479]: '': command not understood.

Now, in one day, I have two detects with this signature. When I log onto my ftp servers
from several sites as several different logins and experiment I can generate this error
message by executing a “ ^ G” or some other such nonsense character. I do not have
access to a windows ftp server, but the windows ftp client will not generate this error
message in the course of normal traffic.

Clearly, this is a UDP/137 scan followed by a TCP/21 attempt. In most every case the
TCP/21 attempt follows the discovery of a candidate computer following the UDP/137
packet. The Unix boxes do not generally listen to port 137. I’m sure that the hostile
responds to the “ICMP Destination Unreachable Port” packet returned by the Unix box in
response. The fact that he uses a UDP/137 for discovery, suggests to me that he is
looking for ftp servers on windows NT/2000 boxes (perhaps some third party ftp server
on windows 9x). Presumably he wants access to windows ftp servers for the same
reasons that motivate hostile Unix based ftp activity (file deposition and trojan or virus
deposition). Remember, that windows ftp servers do not run in a chrooted environment,
like well configured Unix ftp servers do, so passwd and sensitive file acquisition will be
easier. When he finds a windows ftp server, I assume that the signature I see in the syslog
files ('': command not understood) may reflect activity that affords him some success.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.31

However when he hits the much more common Unix ftp server, the detect generates the
“noise” seen in my detect.

The theory, that this is a search for windows ftp servers has a counter argument. If he has
no interest in Unix ftp servers, why doesn’t he sort the UDP/137 responses from windows
boxes from the “ICMP Destination Unreachable Port” messages, and target only what he
wants, thereby leaving fewer foot prints? It is also possible that he was targeting linux
boxes running SMB.

6) Correlations:
Hacking Exposed, Scambray, McClure, and Kurtz, page 45, Second Edition,
Osborne/McGraw Hill (2001)

As indicated in “Detect 2”, there are many vulnerabilities and CVEs associated with ftp.
See Detect 2 for a list.

7) Evidence of Active Targeting:
This incident evidenced active targeting.
The attack was not “aimed” at specific workstation.
It was aimed at a specific series of networks.
And it was aimed at a particular service or ports (21, ftp and 137, netbios name service).

8) Severity:
Severity = (Criticality + Lethality) – (CounterMeasuresSystem + CounterMeasuresNetwork)
Severity = (4 + 4) - (5 + 1)
Severity = 2

9) Defensive Recommendation:
Damages: No damage done.

This incident did penetrate the organizational firewall. On the other hand we maintain
anonymous ftp sites for appropriate and necessary scientific communication between our
scientists and the greater scientific community. This incident was automatically locked
out of the ftp server within a few seconds of his first ftp attempt. And, so he was locked
out of the main laboratory ftp server, portal, before he reached it. He was not, however,
locked out of the second specialized ftp server, spite. I remain somewhat concerned that
these two detects present a new signature (port 21 and port 137), however, I take comfort
in that the 2 modes of intrusion in this incident seem to be working at cross purposes
(platforms) with one another.

It is not reasonable to block this port at the firewall. This service needs to be placed in a
DMZ outside of a laboratory firewall.

10) Multiple Choice Test Question:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.32

What features of this detect illustrate the shortcomings of just relying syslogs/messages as
the laboratory IDS.

The syslog server will record the failed and refused ftp attempts, but it will a)
completely miss the port UDP/137 packets.
The “command not understood” in the messages logs, while odd, would perhaps b)
not trigger the analysts concern without the other odd features in this detect.
(After all, ftp has lots of error messages; I am still discovering them.)
The syslogs for this detect, in that they only reflect Unix traffic, are essentially c)
identical to that for a “Looking for a Misconfigured FTP Server” detect as
illustrated in detect 2.
All the above.d)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.33

Detect 4: DNS SYN Scan

Summary:
From: 168.167.14.160 Ephemeral ports
To: mynet.org Port 53 (dns)
Notice: SYN scan to port 53

No evidence of packet crafting

[root@liar Process]# geektools 168.167.14.160
[whois.geektools.com]
Query: 168.167.14.160
Registry: whois.arin.net
Results:
University of Botswana (NET-BOTSNET)

Private Bag 0022,
Gaborone, Botswana
ZA

nslookup 168.167.14.160

160.14.167.168.in-addr.arpa name = mashadi.ub.bw.

Observed Traffic:
I have been doing tcpdump/snort IDS more or less properly since June 18 of this year (about 22
days). Already, I have had DNS scans from these addresses (some of them are repeat
offenders):

128.104.35.50
mynet.100.14 This needs reporting to myorg.org
168.167.14.160
193.140.46.43
myorg.76.141 This needs reporting to myorg.org
198.87.182.135
200.4.128.218
207.8.203.106
208.221.194.5
210.62.176.151
211.152.32.14
211.186.87.114
61.218.125.26
62.140.64.160
62.168.94.10
66.1.254.166

The good news is that I do not run DNS service on my network, rather I rely on the 3
organization wide DNS servers. The bad news is that I really rely on those DNS servers. My
colleagues, doing IDS at the organizational level suggest that they sometimes see this many
incidents directed at the dns servers per day. So this, while not directly affecting me, has
potentially serious impact on my network integrity. All these incidents look like this:

#---- grep 68.167.14.160 portscan.log -----------------------------

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.34

Jun 22 09:28:48 168.167.14.160:1067 -> mynet.4.26:53 SYN ******S*
Jun 22 09:28:48 168.167.14.160:1091 -> mynet.4.50:53 SYN ******S*
Jun 22 09:28:48 168.167.14.160:1092 -> mynet.4.51:53 SYN ******S*
Jun 22 09:28:49 168.167.14.160:1163 -> mynet.4.122:53 SYN ******S*
Jun 22 09:28:51 168.167.14.160:1093 -> mynet.4.52:53 SYN ******S*
Jun 22 09:28:52 168.167.14.160:1222 -> mynet.4.181:53 SYN ******S*
Jun 22 09:28:52 168.167.14.160:1276 -> mynet.4.235:53 SYN ******S*
Jun 22 09:28:53 168.167.14.160:1353 -> mynet.5.57:53 SYN ******S*
Jun 22 09:28:54 168.167.14.160:1373 -> mynet.5.77:53 SYN ******S*

. . . . 38 qualitatively similar records

. . . . 485 detects from this and other IP addresses

#----- tcpdump from src 168.167.14.160 ---------------------------

09:28:52.523598 < mashadi.ub.bw.1276 > sunder.mynet.org.domain: S
2762199139:2762199139(0) win 32120 <mss 1460,sackOK,timestamp
190947009[|tcp]> (DF) (ttl 48, id 6134)
09:28:52.523657 < sunder.mynet.org.domain > mashadi.ub.bw.1276: R 0:0(0) ack 2762199140
win 0 (DF) (ttl 48, id 63917)

09:29:42.687205 < mashadi.ub.bw.1201 > spinet.mynet.org.domain: S
2764258581:2764258581(0) win 32120 <mss 1460,sackOK,timestamp
190947009[|tcp]> (DF) (ttl 48, id 6059)
09:29:42.687508 < spinet.mynet.org.domain > mashadi.ub.bw.1201: R 0:0(0) ack 2764258582
win 0 (DF) (ttl 48, id 26211)

. . . . 155 qualitatively similar records

1) Source of Trace:
My Laboratory

2) Detect was Generated by:
Site maintains 6 IDS sensors running tcpdump 24/7.

% tcpdump –w dumpFile_24hour
% snort –r dumpFile_24hour -c /etc/snort/snort.conf

At midnight, on a designated analysis workstation, process data using several shell, sed,
awk, and perl scripts.
Gather all outside IP addresses and suspicious inside IP address of interest.
Obtain tcpdump data in separate files, for each “IP address of interest”.

% tcpdump –r dump_24hour -vv "dst $outsider or src $outsider" \
> tcpdump_IPaddress

% tcpdump -r dumpFile_24hour –vv -x \
 "dst $outsider or src $outsider" > tcpdump_hex_IPaddress

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.35

Snort Rule that generated this detect:
preprocessor portscan:

3) Probability that Source Address was Spoofed:
Unlikely
Reason: You can imagine a port 53 scan as some kind of DOS and thus a candidate for
spoofing, but more likely, the hostile is looking for a bind version, or for a misconfigured
dns server from which he can obtain a zone transfer thereby gathering information for
future attacks on other elements of the network. This is most likely a reconnaissance
probe looking for any workstation that will respond to a port 53 packet. After he finds
one he will be back with other tools, and at that time he may or may not spoof his
address. This is almost surely the hostiles current IP address.

4) Description of Attack:
From: 168.167.14.160 Ephemeral ports
To: mynet.org Port 53 (dns)

This incident was a stimulus event.
This incident involved only “Normal TCP/IP” traffic.
This incident was moderately fast (> 22 hits/minute).
This incident involved a substantial volume of traffic. It encompassed two subnets, 4
buildings, and other segments of the entire institution.
This incident was a reconnaissance scan.
The target OS for this incident appears to be Unix DNS servers.
The source OS for this incident is unknown.

Average Interval: 2.7 seconds
Protocol: TCP
ID Numbers: Increment normally
Seq. Numbers: Increment normally
Ack. Numbers: Increment normally

5) Attack Mechanism:
This is syn scan of port 53 (dns) on mynet.org. Had one of my workstations, responded
to a port 53 SYN packet, by establishing a 3 way handshake, it would have likely been
followed perhaps first by an nmap like tool to perform an operating system footprint
characterization, and certainly by bind version requests, zone transfers, or even buffer
overflow attempts. Perhaps he wants to masquerade as the dns server for our
organization.

6) Correlations:
There are several vulnerabilities associated with dns servers (http://cve.mitre.org/cve/).

CVE-1999-0010
Denial of Service vulnerability in BIND 8 Releases via maliciously formatted DNS

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.36

messages.
CVE-1999-0024
DNS cache poisoning via BIND, by predictable query IDs.
CVE-1999-0048
Talkd, when given corrupt DNS information, can be used to execute arbitrary commands
with root privileges.
CVE-1999-0101
Buffer overflow in AIX and Solaris "gethostbyname" library call allows root access
through corrupt DNS host names.
CVE-1999-0184
When compiled with the -DALLOW_UPDATES option, bind allows dynamic updates to
the DNS server, allowing for
malicious modification of DNS records.
CVE-1999-0223
Solaris syslogd crashes when receiving a message from a host that doesn't have an inverse
DNS entry.
CVE-1999-0274
Denial of service in Windows NT DNS servers through malicious packet which contains a
response to a query that wasn't made.
CVE-1999-0275
Denial of service in Windows NT DNS servers by flooding port 53 with too many
characters.
CVE-1999-0299
Buffer overflow in FreeBSD lpd through long DNS hostnames.
CVE-1999-0745
Buffer overflow in Source Code Browser Program Database Name Server Daemon
(pdnsd) for the IBM AIX C Set ++ compiler.
CVE-2000-0020
DNS PRO allows remote attackers to conduct a denial of service via a large number of
connections.
CVE-2000-0335
The resolver in glibc 2.1.3 uses predictable IDs, which allows a local attacker to spoof
DNS query results.
CVE-2000-0405
Buffer overflow in L0pht AntiSniff allows remote attackers to execute arbitrary
commands via a malformed DNS response packet.
CVE-2000-0536
xinetd 2.1.8.x does not properly restrict connections if hostnames are used for access
control and the connecting host does not have a reverse DNS entry.
CVE-2001-0050
Buffer overflow in BitchX IRC client allows remote attackers to cause a denial of service
and possibly execute arbitrary commands via an IP address that resolves to a long DNS
hostname or domain name.

7) Evidence of Active Targeting:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.37

This incident did not evidence Active Targeting of a particular workstation. It did,
however, target the subnet *.mynet.org. It was a TCP scan indiscriminately looking for
vulnerable dns servers.

8) Severity:
Severity = (Criticality + Lethality) – (CounterMeasuresSystem + CounterMeasuresNetwork)

On one hand:
Severity = (1 + 1) - (5 + 2)
Severity = -5
I do not have any dns servers (Criticality = 1), and attack is unlikely to succeed (Lethality
= 1).

On the other hand:
In the computer security business:

“We shall hang together, or surely we shall hang separately”
…Benjamin Franklin.

I do not have dns servers, but I certainly rely on them from the organizational level. If
they were compromised, it could severely and adversely affect my capacity to run my
network. So perhaps, I should amend this to

Severity = (5 + 5) - (5 + 2)
Severity = 7

The correct answer must lie between these extremes, and it clearly depends on where you
stand.

9) Defensive Recommendation:
DNS vulnerability is a “Top-Ten Most Critical Security Vulnerabilities”, in fact it is
number 1. http://www.sans.org/topten.htm

This was a scan. I have no dns servers; so, no harm no foul. But, I should notify the
organizational IDS team, to alert them of the existence of dns probes inside the firewall.
(It will be like preaching to the choir, as they will surely know of this probe and the 16
others that I observed over the last 22 days. Those guys are exquisitely tuned into dns
insecurities and run a very tight, modern, and well patched, and chrooted dns service in an
insecure academic environment.) I should tell the renegade scientist in my lab who runs
his own dns server for that one computer only, that this activity is going on. I should
request again (actually I should just get in line to request) that port 53 be blocked at the
organization’s porous firewall for all destinations except for the organizational dns
servers. Certainly, I should continue to monitor for this kind of activity, and keep the
organization apprised of any findings.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.38

10) Multiple Choice Test Question:

Consider this detect:

09:28:52.523598 < mashadi.ub.bw.1276 > sunder.mynet.org.domain: S
2762199139:2762199139(0) win 32120 <mss 1460,sackOK,timestamp
190947009[|tcp]> (DF) (ttl 48, id 6134)
09:28:52.523657 < sunder.mynet.org.domain > mashadi.ub.bw.1276: R 0:0(0) ack 2762199140
win 0 (DF) (ttl 48, id 63917)

Which of the following statements are true:
This is an UDP scan for dns servers.a)
This is an ICMP echo request scan for dns serves.b)
The workstation sunder is running a dns server.c)
The fact that the ttl in both packets is the same is indicative of a spoofed source d)
address.
None of the above.e)

Detect 5: UDP scan from a Possibly Trojaned Computer

Summary:
From: myorg.76.141 Ports 1032 and 1035
From: myorg.76.166 Ports 1032
To: mynet.org Port 38293
Notice: This is high port to high port communication (suspicious)

UDP port scans of sections of my PC network
There is a story here concerning Norton Corporate Antivirus Servers
The TTLs are wrong for on campus traffic?
I will conclude that this is likely a false positive.

This detect looks like high port number communication from a trojaned computer within
the organization. As such, it is hostile, and suggests the existence of a compromised
computer within the organization. If true, it requires immediate investigation.

It is also possible, that this detect is somewhat normal traffic associated with a “Norton
Corporate Anti-Virus Signature Update Server”. The evidence for this is that the ports
observed in this detect are those associated with this service. At best, it is only somewhat
normal, because if some other net within the organization is running this service, it should
under no circumstances be probing the computers on *.mynet.org (which does not use
this service). At very least I need to have a “discussion” with the owner of
commons2.oer.od.myorg.org.

[root@liar Process]# nslookup myorg.76.141

myorg.77.198.in-addr.arpa name = commons2.oer.od.myorg.org.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.39

[root@liar Process]# nslookup myorg.76.166

** server can't find 166.76.myorg.in-addr.arpa.: NXDOMAIN

Observed Traffic:
This happens most days, but not every day? And, it sometimes happens twice or three
times a day. There are roughly 24 hits per episode.

In the beginning, it happened at irregular times. The time interval between probes varied
from 16+ hours to 108+ hours. Probes do not start at odd hours but at the same minute.
Although, 2 start on the same hour and within 5 seconds of one another. So it is not
some kind of cron job (Or some windows equivalent to cron.) Later, the pattern became
more regular at 3 times a day, but again not every day, and not always 3 times a day.

Jun 20 02:28:28
Jun 21 10:26:05
Jun 22 12:47:53
Jun 23 04:48:44

Skipped 2 days
Jun 26 04:51:21

Skipped 4 days
Jul 1 16:01:04

Skipped 1 day
Jul 3 08:01:42
Jul 4 08:00:30
Jul 5 00:02:40
Jul 6 00:01:45

 Skipped 1 day
Jul 8 00:02:16
Jul 9 00:01:14

And, then 3 days later, they all of a sudden become more regular

Jul12 00:00
08:00
16:01

Jul 13 00:01
07:59
16:07

Jul 14 00:01
 08:02
16:01

Jul 15 00:01
 08:01

16:01

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.40

Jul 16 00:00
07:59
16:01

July 21 08:02

All these detected scans were directed against PCs. There are no Unix IP addresses in the
data. The same IP addresses are not scanned in each episode. Three IP addresses are
scanned once during each of the first twelve episodes. There are 3 IP addresses that were
scanned only one time during the first twelve episodes. On average any particular IP
address was scanned during only 4 to 5 of the first 12 episodes.

This is not a case in which a UDP scan finds PCs that just happen to be turned on. Three
PCs that are always on, 24/7, have never been probed. A fourth PC also on for 24/7 was
only probed only twice.

This is not a case in which the “Norton Corporate Anti-Virus Signature Update Server”
somehow knows which of the very few PCs in mynet.org just happen to be running the
“Norton Anti-virus Client Package” and then performs a signature update on just those
PCs. That is because most of the computers that were targeted by myorg.76.166 do not
run Norton anti virus client. The few that I found that were running Norton Clients
certainly did not choose to be updated from a corporate server outside of mynet.org. (A
service, for which I am quite sure some one pays real money.)

The “rules”, some of them informal, of this organization, are that one subnet within the
organization does not scan another subnet without prior notification and permission.

This is thus a scan, performed at random times, sometimes at 04:00 on the morning,
against random PC IP addresses. It does not feel like a “routine scan” from some kind of
regular service (Norton Corporate Anti-Virus Signature Update Server for example), that
has spilled over from one subnet within the Organization to my subnet in the
organization.

#---- grep myorg.76. portscan.log ------------------------

Jun 20 02:28:28 myorg.76.166:1032 -> mynet.5.194:38293 UDP
Jun 20 02:28:28 myorg.76.166:1032 -> mynet.5.223:38293 UDP
Jun 20 02:28:28 myorg.76.166:1032 -> mynet.5.233:38293 UDP
Jun 20 02:28:28 myorg.76.166:1032 -> mynet.5.80:38293 UDP

. . . . more records on this date

Jun 21 10:26:05 myorg.76.166:1032 -> mynet.4.96:38293 UDP
Jun 21 10:26:05 myorg.76.166:1032 -> mynet.5.167:38293 UDP
Jun 21 10:26:05 myorg.76.166:1032 -> mynet.5.178:38293 UDP
Jun 21 10:26:05 myorg.76.166:1032 -> mynet.5.73:38293 UDP

. . . . more records on this date

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.41

Jun 22 12:47:53 myorg.76.141:1032 -> mynet.5.227:38293 UDP
Jun 22 12:47:53 myorg.76.141:1032 -> mynet.5.72:38293 UDP
Jun 22 12:47:53 myorg.76.141:1032 -> mynet.5.75:38293 UDP
Jun 22 12:47:55 myorg.76.141:1032 -> mynet.4.110:38293 UDP

. . . . more records on this date

Jul 1 16:01:04 myorg.76.141:1035 -> mynet.5.167:38293 UDP
Jul 1 16:01:04 myorg.76.141:1035 -> mynet.5.178:38293 UDP
Jul 1 16:01:05 myorg.76.141:1035 -> mynet.4.96:38293 UDP
Jul 1 16:01:05 myorg.76.141:1035 -> mynet.5.166:38293 UDP

. . . . more records on this date

Jul 9 00:01:14 myorg.76.141:1035 -> mynet.5.56:38293 UDP
Jul 9 00:01:15 myorg.76.141:1035 -> mynet.5.64:38293 UDP
Jul 9 00:01:15 myorg.76.141:1035 -> mynet.5.75:38293 UDP
Jul 9 00:01:16 myorg.76.141:1035 -> mynet.5.148:38293 UDP

. . . . more records on this date

. . . . 773 qualitatively similar records

#---- tcpdump from src myorg.76.141 --------------------------

12:47:42.925982 < commons2.oer.od.myorg.org.1032 > angela1.mynet.org.38293: udp 16 (ttl
28, id 42867)
12:47:43.258966 < commons2.oer.od.myorg.org.1032 > caipc.mynet.org.38293: udp 16 (ttl 28,
id 56691)
12:47:50.811514 < commons2.oer.od.myorg.org.1032 > gwc_pc9.mynet.org.38293: udp 16 (ttl
28, id 27252)
12:47:53.243844 < commons2.oer.od.myorg.org.1032 > iwlpc5.mynet.org.38293: udp 16 (ttl 28,
id 35700)
12:47:53.349833 < commons2.oer.od.myorg.org.1032 > joanpc.mynet.org.38293: udp 16 (ttl 28,
id 40820)
12:47:53.498863 < commons2.oer.od.myorg.org.1032 > lapidus.mynet.org.38293: udp 16 (ttl 28,
id 48756)
12:47:55.836395 < commons2.oer.od.myorg.org.1032 > shuko_pc1.mynet.org.38293: udp 16 (ttl
28, id 56692)
12:47:56.656340 < commons2.oer.od.myorg.org.1032 > olgica.mynet.org.38293: udp 16 (ttl 28,
id 25205)

#---- tcpdump from src myorg.76.166

02:28:28.416495 < myorg.76.166.1032 > dgarrett3.mynet.org.38293: udp 16 (ttl 28, id 10118)
02:28:28.440748 < myorg.76.166.1032 > dtb_pc.mynet.org.38293: udp 16 (ttl 28, id 11654)
02:28:28.463556 < myorg.76.166.1032 > eh_pcWin.mynet.org.38293: udp 16 (ttl 28, id 12678)
02:28:28.521403 < myorg.76.166.1032 > femto2.mynet.org.38293: udp 16 (ttl 28, id 15494)
02:28:30.889747 < myorg.76.166.1032 > gwcpc2.mynet.org.38293: udp 16 (ttl 28, id 23942)
02:28:30.930889 < myorg.76.166.1032 > hjhpc.mynet.org.38293: udp 16 (ttl 28, id 25990)

1) Source of Trace:
My Laboratory

2) Detect was Generated by:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.42

Site maintains 6 IDS sensors running tcpdump 24/7.

% tcpdump –w dumpFile_24hour
% snort –r dumpFile_24hour -c /etc/snort/snort.conf

At midnight, on a designated analysis workstation, process data using several shell, sed,
awk, and perl scripts.
Gather all outside IP addresses and suspicious inside IP address of interest.
Obtain tcpdump data in separate files, for each “IP address of interest”.

% tcpdump –r dump_24hour -vv "dst $outsider or src $outsider" \
> tcpdump_IPaddress

% tcpdump -r dumpFile_24hour –vv -x \
 "dst $outsider or src $outsider" > tcpdump_hex_IPaddress

Snort Rule that generated this detect:
preprocessor portscan:

3) Probability that Source Address was Spoofed:
Unable to Tell
Reason: By default, and by centralized purchasing authority, the Organization buys and
uses the McAffee antivirus package all over campus (Network Associates). To individual
users and laboratories the McAffee anti virus services are “free”. All the windows mail
exchange servers on campus use McAffee tools to purge virus infected attachments from
all windows mail. It seems both foolish and unlikely that one entire subnet (incidentally,
in the administration office) is using the Norton antivirus system, although anything is
possible. Obviously, if this is a Norton Antivirus Corporate Server in another part of the
organization, which is running an improperly configured server, then this is not a spoofed
IP address.

But if this is a trojan mimicking the Norton ports, then all bets are off. In particular, the
organization runs a very porous firewall. By default it accepts all, with certain ports turned
off. The anti-spoofing filters that blocks external traffic arriving with internal IP addresses
are just being installed this month.

This suggests an elegant way to hide hostile traffic. An outside hostile, from his own or a
compromised computer, might spoof source IP addresses looking for trojans that listen to
port 38293. Most alarming of all, there could be a kind of Norton-Trojan sending packets
port 38293 from IP addresses with source addresses crafted as true “Norton Corporate
Antivirus Server”. Such traffic would be “trusted” by victims because it is seen to be
from the local virus update servers. The point of such software would be to poison pre-
existing viral signature files, or to install other trojans, like SubSeven, or even to install
Windows based DDOS client tools for later use in DDOS attacks against third party
victims. (I am not a hacker, nor have I ever been one. But, if I played one on
television…I would sure give this some serious thought.)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.43

Arguing for the hypothesis that this is the Norton Antivirus Corporate server, is the fact
that there are repeat scans to the same subnet . After all, if you are “trolling for trojans”,
and you do not find any, or if you are installing mal-ware that you installed yesterday
why do it again on the same net on the next day. It would increase the noise and elevate
the probability of discovery. And, perhaps the odd timing of the Norton scans occurs
because they are triggered by the presence of new anti-viral information obtained from
Symantec, rather than on a regular “cron-style” basis?

The best evidence I have that this is a spoofed address, derived from an off campus
hostile computer is outlined next.

In the “detects”, the TTL, for data packets sourced from myorg.76.141 and myorg.76.166
for the entire month, is 28 steps in all cases. But packets requested from
commons2.oer.od.myorg.org by me at mynet.org, possess a TTL of 124 steps remaining.

#--- ping myorg.76.141 Look at TTL in “icmp: echo reply”
09:56:43.950813 eth0 > liar.mynet.org > commons2.oer.od.myorg.org: icmp: echo request (DF)

(ttl 64, id 0)
09:56:43.950813 eth0 < commons2.oer.od.myorg.org > liar.mynet.org: icmp: echo reply (DF) (ttl
124, id 61675)

09:56:44.950785 eth0 > liar.mynet.org > commons2.oer.od.myorg.org: icmp: echo request (DF)
(ttl 64, id 0)
09:56:44.950785 eth0 < commons2.oer.od.myorg.org > liar.mynet.org: icmp: echo reply (DF) (ttl
124, id 61931)

#--- The same is true when attempting to form a 3-way TCP handshake
10:06:44.763826 eth0 > liar.mynet.org.33376 > commons2.oer.od.myorg.org.ftp: S
472245501:472245501(0) win 5840 <mss 1460,sackOK,timestamp 143966864 0,nop,wscale
0> (DF) (ttl 64, id 9837)
10:06:44.763826 eth0 < commons2.oer.od.myorg.org.ftp > liar.mynet.org.33376: R 0:0(0) ack
472245502 win 0 (ttl 124, id 47605)

By default, Windows NT sends TCP/IP packets with TTL set to 128
(http://www.map2.ethz.ch/ftp-probleme.htm). So, a TTL of 124 for an on campus NT
box to communicate with my network is reasonable. But the “hostile” detect has a TTL
of 28. Hmmm? I can think of only two possible explanations. The benign one is that
Symantec designed the Server to send packets with TTLs of 32. Perhaps they wanted
update packets to not travel far in the event that they escaped the local network? The less
benign explanation is that the address commons2.oer.od.myorg.org is being spoofed by
an off campus site that is over 100 hops away. I already know that the Organization
firewall is not blocking packets with both source and destination IP addresses from on
campus.

So there is insufficient information to determine if the address is spoofed. Of course the
technical person in that network is not in the office for two weeks, and I cannot ask him. I
have found out from third parties, that this IP address, while under the rubric of the
organization, is in fact under the control of an off campus contract company. This

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.44

company does run “Norton Antivirus Corporate Server”. So the likely hood is high that
this activity represents a mis-configured viral update server.

There remain the issues of why they direct traffic at my network, how their target PCs are
seemingly randomly selected. I cannot explain why the traffic is directed at PCs without
Norton Antivirus Clients; and I cannot explain why the traffic is not directed at the same
PCs on each and every scan. Finally, what is this IP address myorg.76.166, that is
responsible for 2 of the scans. I have never been able to ping it, and it is not on the local
dns. Is it a backup which is normally off? Do they have 2 servers? Is it a spoofed
address?

I called Symantec (Norton Anti Virus). Eventually, I found a technical support person
who was willing to confirm that the Norton Antivirus Corporate Server product does
indeed communicate through destination port 38293. I was unable to clearly ascertain
from the conversation whether the NAV server “pushes” its update information which
could explain why my network sees the packets from a misconfigured server, or whether
the clients must proactively “pull” the information. We are now undertaking an e-mail
correspondence in which I am trying to obtain the value of the TTL parameter used by the
product for UDP communication.

4) Description of Attack:
From: myorg.76.141 Ports 1032 and 1035
From: myorg.76.166 Ports 1032
To: mynet.org Port 38293

Average Interval: 4.6 seconds
Protocol: UDP
ID Numbers: Varies normally
TTL: 28

This incident was a stimulus.
It is unclear whether this incident involved crafted packets or indicated “Normal TCP/IP”
traffic. Although, the simplest assumption is that someone is running a misconfigured
Norton antivirus corporate server.
This incident was moderately fast (~ 13 hits/minute).
This incident involved a small volume of traffic. It encompassed PCs only on parts of 2
subnets, in a single building.
This incident was either a false positive, perhaps a reconnaissance, perhaps a search for
trojans, or perhaps an attempt to install mal-ware on PCs that might accept them.
The target OS for this incident was windows 9x/NT/2000 running on a PC.
The source OS for this incident appears to be another 9x/NT/2000 running on a PC,
probably NT/2000.

Attack Mechanism:5)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.45

This was likely Norton Antivirus Corporate server activity from a misconfigured server.

6) Correlations:
I found two sights that offer some information about the Norton AntiVirus Corporate
Edition”.
www.sans.org/y2k/092300.htm
www.sans.org/y2k/032101.htm

“Norton AntiVirus Corporate Edition” uses port number 38293 for client-to-server
communication Trust this issue if Norton Corporate Edition Anti-Virus is installed.”
http://www.networkice.com/Advice/Intrusions/2003412/default.htm

7) Evidence of Active Targeting:
This incident certainly evidenced active targeting of *.mynet.org. In addition, because
different PCs were targeted during different episodes, there is the likelihood that only
certain IP addresses were probed during a particular episode. The detect exhibits
“negative evidence” of active targeting in that only PCs were probed, the detect involves
no Unix boxes whatsoever. (Unix boxes constitute the majority of the assets on my
network.). If that is true, then specific PCs were targeted. I cannot think of a scenario in
which the IP addresses that were probed sensibly correlates with those PCs that were
powered on during the episode.

8) Severity:
Severity = (Criticality + Lethality) – (CounterMeasuresSystem + CounterMeasuresNetwork)
Severity = (2 + 4) - (2 + 1)
Severity = 3

Comment: These are PCs (Criticality = 1). If this is a Norton Antivirus Server, then the
lethality = 1 (0?). Of course if it is from an off campus site, and it is a “Norton-Trojan”,
then the lethality will be much higher. Even though I plead guilty to the occasional Unix
users “anti-windows bigotry”, this is likely more serious than the potential viral infection
of a single windows box. If a virus penetrates the Organizations anti virus defenses, and if
that virus does not come in as an e-mail attachment (that would be cleaned at the
Microsoft Exchange mail servers), and if that virus is one of the modern ones that
forwards itself to the entire mailing list (thousands of people in the Organization) then the
possibility of serious Organization wide viral infection is very real. The first such virus to
hit the Organization “I Love You”, incapacitated the network mail system for several
days. This escalates the Lethality to perhaps 4 or 5.

9) Defensive Recommendation:
Damages: None yet.
Firewall rules. Clearly this incident penetrated the firewall, either by stealth or by official
installation and misconfiguration. I have been unable to track down the administrator for
this network. Those I have tracked down have not understood my questions, passed me

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.46

on to others, or were out of the office till next week. And, I have not yet been able to
gather all the pertinent information from Symantec. So, while the resolution of this detect
is not quite finished for the GIAC submission date, I will peruse this to either my personal
embarrassment, or to its technical conclusion.

10) Multiple Choice Test Question:

Which of these statements are true.
TTL values are the number of seconds that an IP packet will remain active before a a)
router drops the packet.
All operating systems create packets with a TTL value of 128.b)
TTL values are variables that apply to TCP traffic only, the concept does not exist c)
in UDP and ICMP traffic.
The TTL for a packet that comes from there.org to here.org, should usually be the d)
same as the TTL for a packet that goes from here.org to there.org, as seen on the
IDS installed at here.org.
None of the above.e)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.47

Detect 6: Looking for Sub Seven

Summary:
From: 209.214.160.1 Ephemeral ports
From: 24.101.119.83 Ephemeral ports
From: 24.157.161.226 Ephemeral ports
To: mynet.org Port 1243
Notice:

[root@liar Process]# geektools 209.214.160.1
[whois.geektools.com]
Query: 209.214.160.1
Registry: whois.arin.net
Results:
BellSouth.net Inc. (NETBLK-BELLSNET-BLK4)

301 Perimeter Center North, Suite 400
Atlanta, GA 30346
US

[root@liar Process]# geektools 24.101.119.83
[whois.geektools.com]
Rogers@Home MTWH (NETBLK-ON-ROG-8-1MTWH-6) ON-ROG-8-1MTWH-6

 24.101.119.0 - 24.101.119.255

[root@liar Process]# arin NETBLK-ON-ROG-8-1MTWH-6
[whois.arin.net]
Rogers@Home MTWH (NETBLK-ON-ROG-8-1MTWH-6)

1 Mount Pleasant Road
Toronto, ON M4Y 2Y5
CA

[root@liar Process]# geektools 24.157.161.226
[whois.geektools.com]
Rogers@Home Ktchnr (NETBLK-ON-ROG-2-3KTCHNR-2) ON-ROG-2-3KTCHNR-2

24.157.161.128 - 24.157.161.255

Rogers@Home Ktchnr (NETBLK-ON-ROG-2-3KTCHNR-2)
1 Mount Pleasant Road
Toronto, ON M4Y 2Y5
CA

[root@liar Process]# nslookup 209.214.160.1
1.160.214.209.in-addr.arpa name = host-209-214-160-1.rdu.bellsouth.net.

[root@liar Process]# nslookup 24.101.119.83
83.119.101.24.in-addr.arpa name = 24.101.119.83.on.wave.home.com.

[root@liar Process]# nslookup 24.157.161.226
226.161.157.24.in-addr.arpa name = cr166156-a.ktchnr1.on.wave.home.com.

Sarcastic Comment: I may only have been doing tcpdump/snort IDS for a month, but I

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.48

have been focused on Unix computer security and have monitored syslogs/messages
since 1994, after my first root compromise. I must say, you could probably build a career
on following the hostile antics from *.home.com and *.wanadoo.fr.

Observed Traffic:
On June 23, there were 61 detects of packets looking for computers compromised with
SubSeven. They derived from these IP addresses:

Count Port
43 209.214.160.1
10 24.157.161.226

24.101.119.838

These happened between: 06/23-23:17:19.829544 -> 06/23-23:18:45.980296 (less than 2
minutes). This, and the fact that two of the three IP addresses are from *.on.wave.home.com
suggests that all 3 incidents were controlled by the same hostile.

#---- One complete episode of SubSeven search from 24.157.161.226 –
These are all directed against windows9x/NT/2000 boxes.

[**] Possible SubSeven access [**]
06/23-23:17:19.829544 209.214.160.1:1775 -> mynet.5.56:1243
TCP TTL:108 TOS:0x0 ID:23100 IpLen:20 DgmLen:48 DF
******S* Seq: 0x355D3D Ack: 0x0 Win: 0x2000 TcpLen: 28
TCP Options (4) => MSS: 536 NOP NOP SackOK

[**] Possible SubSeven access [**]
06/23-23:17:19.830030 209.214.160.1:1776 -> mynet.5.57:1243
TCP TTL:108 TOS:0x0 ID:23356 IpLen:20 DgmLen:48 DF
******S* Seq: 0x355D3E Ack: 0x0 Win: 0x2000 TcpLen: 28
TCP Options (4) => MSS: 536 NOP NOP SackOK

[**] Possible SubSeven access [**]
06/23-23:17:30.399180 209.214.160.1:1790 -> mynet.5.72:1243
TCP TTL:108 TOS:0x0 ID:46652 IpLen:20 DgmLen:48 DF
******S* Seq: 0x358AC2 Ack: 0x0 Win: 0x2000 TcpLen: 28
TCP Options (4) => MSS: 536 NOP NOP SackOK

[**] Possible SubSeven access [**]
06/23-23:17:30.412061 209.214.160.1:1793 -> mynet.5.75:1243
TCP TTL:108 TOS:0x0 ID:47420 IpLen:20 DgmLen:48 DF
******S* Seq: 0x358AC5 Ack: 0x0 Win: 0x2000 TcpLen: 28
TCP Options (4) => MSS: 536 NOP NOP SackOK

[**] Possible SubSeven access [**]
06/23-23:17:30.412582 209.214.160.1:1792 -> mynet.5.74:1243
TCP TTL:108 TOS:0x0 ID:47164 IpLen:20 DgmLen:48 DF
******S* Seq: 0x358AC4 Ack: 0x0 Win: 0x2000 TcpLen: 28
TCP Options (4) => MSS: 536 NOP NOP SackOK

[**] Possible SubSeven access [**]
06/23-23:17:30.439440 209.214.160.1:1798 -> mynet.5.80:1243

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.49

TCP TTL:108 TOS:0x0 ID:48700 IpLen:20 DgmLen:48 DF
******S* Seq: 0x358AC9 Ack: 0x0 Win: 0x2000 TcpLen: 28
TCP Options (4) => MSS: 536 NOP NOP SackOK

[**] Possible SubSeven access [**]
06/23-23:17:42.319263 209.214.160.1:1810 -> mynet.5.93:1243
TCP TTL:108 TOS:0x0 ID:3901 IpLen:20 DgmLen:48 DF
******S* Seq: 0x35B7A2 Ack: 0x0 Win: 0x2000 TcpLen: 28
TCP Options (4) => MSS: 536 NOP NOP SackOK

[**] Possible SubSeven access [**]
06/23-23:17:44.750108 209.214.160.1:1817 -> mynet.5.100:1243
TCP TTL:108 TOS:0x0 ID:12093 IpLen:20 DgmLen:48 DF
******S* Seq: 0x35B7A9 Ack: 0x0 Win: 0x2000 TcpLen: 28
TCP Options (4) => MSS: 536 NOP NOP SackOK

[**] Possible SubSeven access [**]
06/23-23:17:53.760742 209.214.160.1:1837 -> mynet.5.121:1243
TCP TTL:108 TOS:0x0 ID:25149 IpLen:20 DgmLen:48 DF
******S* Seq: 0x35E48D Ack: 0x0 Win: 0x2000 TcpLen: 28
TCP Options (4) => MSS: 536 NOP NOP SackOK

[**] Possible SubSeven access [**]
06/23-23:17:53.811172 209.214.160.1:1846 -> mynet.5.130:1243
TCP TTL:108 TOS:0x0 ID:27453 IpLen:20 DgmLen:48 DF
******S* Seq: 0x35E496 Ack: 0x0 Win: 0x2000 TcpLen: 28
TCP Options (4) => MSS: 536 NOP NOP SackOK

#---- Another episode of SubSeven search from 24.157.161.226 ---
This is directed against a Solaris NIS server.

[**] Possible SubSeven access [**]
06/23-23:17:42.401880 24.157.161.226:2159 -> mynet.4.235:1243
TCP TTL:110 TOS:0x0 ID:47319 IpLen:20 DgmLen:48 DF
******S* Seq: 0x77DD55E Ack: 0x0 Win: 0x2000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

#---- tcpdump from src 209.214.160.1 --------------------------
At present, the IDS does not see the RST packets returned by PCs

23:17:19.829544 < host-209-214-160-1.rdu.bellsouth.net.1775 >
mynet.5.56.1243: S 3497277:3497277(0) win 8192 <mss 536,nop,nop,sack
OK> (DF) (ttl 108, id 23100)

23:17:19.830030 < host-209-214-160-1.rdu.bellsouth.net.1776 >
rolfpc2.mynet.org.1243: S 3497278:3497278(0) win 8192 <mss 536,nop
,nop,sackOK> (DF) (ttl 108, id 23356)

23:17:30.399180 < host-209-214-160-1.rdu.bellsouth.net.1790 >
iwlpc5.mynet.org.1243: S 3508930:3508930(0) win 8192 <mss 536,nop,
nop,sackOK> (DF) (ttl 108, id 46652)

23:17:30.412061 < host-209-214-160-1.rdu.bellsouth.net.1793 >

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.50

lapidus.mynet.org.1243: S 3508933:3508933(0) win 8192 <mss 536,nop
,nop,sackOK> (DF) (ttl 108, id 47420)

23:17:30.412582 < host-209-214-160-1.rdu.bellsouth.net.1792 >
tras.mynet.org.1243: S 3508932:3508932(0) win 8192 <mss 536,nop,no
p,sackOK> (DF) (ttl 108, id 47164)

. . . . 209 qualitatively similar records

#---- tcpdump from src 24.157.161.226 (SYN – RST pair) -----------

23:17:42.401880 < cr166156-a.ktchnr1.on.wave.home.com.2159 > sunder.mynet.org.1243: S
125687134:125687134(0) win 8192 <mss 14
60, nop,nop,sackOK> (DF) (ttl 110, id 47319)

23:17:42.401907 < sunder.mynet.org.1243 > cr166156-a.ktchnr1.on.wave.home.com.2159: R
0:0(0) ack 125687135 win 0 (DF) (ttl 110, id 9679)

1) Source of Trace:
My Laboratory

2) Detect was Generated by:
Site maintains 6 IDS sensors running tcpdump 24/7.

% tcpdump –w dumpFile_24hour
% snort –r dumpFile_24hour -c /etc/snort/snort.conf

At midnight, on a designated analysis workstation, process data using several shell, sed,
awk, and perl scripts.
Gather all outside IP addresses and suspicious inside IP address of interest.
Obtain tcpdump data in separate files, for each “IP address of interest”.

% tcpdump –r dump_24hour -vv "dst $outsider or src $outsider" \
> tcpdump_IPaddress

% tcpdump -r dumpFile_24hour –vv -x \
 "dst $outsider or src $outsider" > tcpdump_hex_IPaddress

Snort Rule that generated this detect:
From the backdoor-lib:
alert tcp any any -> $HOME_NET 1243 (msg:"Possible SubSeven access"; flags: S;)

3) Probability that Source Address was Spoofed:
Very low
Reason: This was a scan looking for pre installed SubSeven trojans on mynet.org. In
order to learn of the success of this probe, the presumably infected workstation must
establish 3 way TCP communication. The source was not spoofed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.51

4) Description of Attack:
From: 209.214.160.1 Ephemeral ports
From: 24.101.119.83 Ephemeral ports
From: 24.157.161.226 Ephemeral ports
To: mynet.org Port 1243

Average Interval: 1.4 sec
Protocol: TCP
ID Numbers: Normal variation
Seq. Numbers: Normal variation
Ack. Numbers: Normal variation
TTL: Unremarkable
Window Size: Unremarkable

This incident was a stimulus event.
This incident involved only “Normal TCP/IP” traffic.
This incident fast scan (~ 42 hits/minute).
This incident involved a moderately small volume of traffic. It encompassed a single
subnet in one building.
This incident was a reconnaissance probe. It would presumably have involved an
immediate, or at least a near immediate exploitation of SubSeven, had it been discovered.
The target OS for this incident appears to be windows 9x/NT/2000.
The source OS for this incident is likely windows 9x/NT/2000

5) Attack Mechanism:
SubSeven is a Windows 9x/NT trojan. It originated in the Netherlands, was built by
“mobman”, and released in 1999. It is also known as Backdoor-G, Sub7, and Backdoor-
G2. It is a client/server application. A windows system becomes compromised in any of
the several ways that PCs acquire trojans, usually by inadvertent downloading from the
web or installation by e-mail attachment execution. The server runs on the compromised
host and controls programs on the compromised host. The server can be manipulated by
clients on other computers through a TCP port. The port over which it communicates is
configurable, but defaults to TCP/27374. It is often seen on ports 6711, 6776, 1243 (as in
this detect), and 1999. Intruders often undertake scans of networks looking for
compromised PCs running SubSeven.

6) Correlations:
There is a CAN number for trojans. (CANs are Canditates for inclusion on the CVE list)
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0660

The SubSeven trojan has an “Incident Note” at CERT.
http://www.cert.org/incident_notes/IN-2001-07.html

And, according to CERT, there have been recent increases in SubSeven activity:
http://www.cert.org/current/current_activity.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.52

There have been several GIAC practicums with detects and analysis of SubSeven.
http://www.sans.org/giactc/gcia.htm. c.f.

Robert Currie
Kevin Orkin
David Singer

And a NIPC advisories.
"New Scanning Activity (with W32-Leaves.worm) Exploiting SubSeven Victims "
http://www.nipc.gov/warnings/advisories/2001/01-014.htm,
"SubSeven DEFCON8 2.1 Backdoor" Trojan
http://www.nipc.gov/warnings/advisories/2000/00-056.htm

7) Evidence of Active Targeting:
This incident did evidence Active Targeting.
The attack was “aimed” at specific network, and it scanned most of that network.
Or attack was aimed only against port 1243 on windows OS.

8) Severity:
Severity = (Criticality + Lethality) – (CounterMeasuresSystem + CounterMeasuresNetwork)
Severity = (1 + 3) - (4 + 1)
Severity = -1

Comment: Our organization supports centrally administered anti-virus software support
from McAffee which will find and remove SubSeven. In principle all organizational
computers routinely run updated versions this software. In practice this is more true than
not.

9) Defensive Recommendation:
Damages: No SubSeven trojans were discovered buy this probe. Maintain due diligence
over user PCs and insure their ongoing use of anti-virus programs.
It would seem prudent to block targeted ports 1243 at the porous organizational firewall.
On the other hand SubSeven can be configured to use other ports, so this may not be
very effective.

10) Multiple Choice Test Question:

Select the true statement:
SubSeven always communicates on port TCP/1243.a)
SubSeven can be used to manipulate Unix workstations.b)
The hostile package SubSeven is a bad thing. The commercial product c)
PCanywhere is a good thing because…. On second thought, maybe it’s not.
All of the above.d)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.53

Detect 7: Possible WinGate Activity

Summary:
From: 202.39.9.109 Ports 1085, 2008, 2013, 1094, 1087
To: mynet.4.245 Ports 8080, 1085, 7000, 8000
To: mynet.4.52 Port 2008
Notice: It is not exclusively a WinGate (src Port 1080) search.

Snort discovered src port 1080, and
this is likely Wingate,
But, this looks at other high number ports.
He is probably for other trojaned sites.

[root@liar Process]# geektools 202.39.9.109
[whois.geektools.com]
Query: 202.39.9.109
Registry: whois.apnic.net
Results:

% Rights restricted by copyright. See http://www.apnic.net/db/dbcopyright.html
% (whois5.apnic.net)

inetnum: 202.39.0.0 - 202.39.255.255
netname: TWNIC-TW
descr: Taiwan Network Information Center
descr: 4F-2, No. 9 Sec. 2, Roosevelt Rd.,
descr: Taipei, Taiwan, 100
country: TW

[root@liar Process]# nslookup 202.39.9.109
** server can't find 109.9.39.202.in-addr.arpa.: NXDOMAIN

Observed Traffic:

#---- snort alert entry --------------------------

[**] MISC-WinGate-8080-Attempt [**]
07/05-06:13:54.804912 202.39.9.109:1085 -> mynet.4.245:8080
TCP TTL:100 TOS:0x0 ID:62601 IpLen:20 DgmLen:48 DF
******S* Seq: 0xAEB54404 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

#---- snort log files ----------------------------

First echo requests and replies -------------------------
[**] ICMP Echo Request [**]
07/05-06:13:34.582235 202.39.9.109 -> mynet.4.184
ICMP TTL:100 TOS:0x0 ID:42854 IpLen:20 DgmLen:64
Type:8 Code:0 ID:15368 Seq:0 ECHO
=+

[**] ICMP Echo Request [**]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.54

07/05-06:13:34.580428 202.39.9.109 -> mynet.4.184
ICMP TTL:100 TOS:0x0 ID:42854 IpLen:20 DgmLen:64
Type:8 Code:0 ID:15368 Seq:0 ECHO
=+

[**] ICMP Echo Request [**]
07/05-06:13:35.136786 202.39.9.109 -> mynet.4.245
ICMP TTL:100 TOS:0x0 ID:43420 IpLen:20 DgmLen:64
Type:8 Code:0 ID:15368 Seq:0 ECHO
=+

Then WinGate 1080 attempts from different src ports --------
[**] MISC-WinGate-1080-Attempt [**]
07/05-06:14:10.340286 202.39.9.109:2008 -> mynet.4.245:1080
TCP TTL:100 TOS:0x0 ID:12153 IpLen:20 DgmLen:48 DF
******S* Seq: 0xB1BE32AA Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
=+

[**] MISC-WinGate-1080-Attempt [**]
07/05-06:14:11.950243 202.39.9.109:2008 -> mynet.4.245:1080
TCP TTL:100 TOS:0x0 ID:13792 IpLen:20 DgmLen:48 DF
******S* Seq: 0xB1BE32AA Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
=+

[**] MISC-WinGate-1080-Attempt [**]
07/05-06:14:10.421494 202.39.9.109:2013 -> mynet.4.52:1080
TCP TTL:100 TOS:0x0 ID:12165 IpLen:20 DgmLen:48 DF
******S* Seq: 0xB1C1A436 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
=+

[**] MISC-WinGate-1080-Attempt [**]
07/05-06:14:11.957616 202.39.9.109:2013 -> mynet.4.52:1080
TCP TTL:100 TOS:0x0 ID:13793 IpLen:20 DgmLen:48 DF
******S* Seq: 0xB1C1A436 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
=+

[**] MISC-WinGate-8080-Attempt [**]
07/05-06:13:54.804912 202.39.9.109:1085 -> mynet.4.245:8080
TCP TTL:100 TOS:0x0 ID:62601 IpLen:20 DgmLen:48 DF
******S* Seq: 0xAEB54404 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
=+

#---- tcpdump tells a more complicated story
#---- tcpdump from src 209.214.160.1 --------------------------

First some echo requests and replies
06:13:34.580428 < 202.39.9.109 > mynet.4.184: icmp: echo request
06:13:35.136786 < 202.39.9.109 > mynet.4.245: icmp: echo request

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.55

06:13:35.137082 < mynet.4.245 > 202.39.9.109: icmp: echo reply (DF)

Then the “WinGate” activity
06:13:54.804912 < 202.39.9.109.1085 > mynet.4.245.8080: S 2931115012:2931115012(0)
win 16384 <mss 1460,nop,nop,sackOK> (DF)

06:13:54.805185 < mynet.4.245.8080 > 202.39.9.109.1085: R 0:0(0) ack 2931115013 win 0
(DF)

06:14:10.340286 < 202.39.9.109.2008 > mynet.4.245.1080: S 2982032042:2982032042(0)
win 16384 <mss 1460,nop,nop,sackOK> (DF)

06:14:10.340553 < mynet.4.245.1080 > 202.39.9.109.2008: R 0:0(0) ack 2982032043 win 0
(DF)

Then WinGate request to port 1080 on a new workstation
(no IDS on workstation, so we do not see some RSTs)
06:14:10.419766 < 202.39.9.109.2013 > mynet.4.52.7000: S 2982257718:2982257718(0) win
16384 <mss 1460,nop,nop,sackOK> (DF)

06:14:11.950512 < mynet.4.245.1080 > 202.39.9.109.2008: R 0:0(0) ack 1 win 0 (DF)

06:14:11.955828 < 202.39.9.109.2013 > mynet.4.52.1080: S 2982257718:2982257718(0) win
16384 <mss 1460,nop,nop,sackOK> (DF)

But, packets to ports 7000 and 8000, not seen by snort –
06:13:54.831363 < 202.39.9.109.1094 > mynet.4.245.7000: S 2931551856:2931551856(0)
win 16384 <mss 1460,nop,nop,sackOK> (DF)

06:13:54.831648 < mynet.4.245.7000 > 202.39.9.109.1094: R 0:0(0) ack 2931551857 win 0
(DF)

06:13:54.851488 < 202.39.9.109.1087 > mynet.4.245.8000: S 2931219832:2931219832(0)
win 16384 <mss 1460,nop,nop,sackOK> (DF)

06:13:54.851779 < mynet.4.245.8000 > 202.39.9.109.1087: R 0:0(0) ack 2931219833 win 0
(DF)

1) Source of Trace:
My Laboratory

2) Detect was Generated by:
Site maintains 6 IDS sensors running tcpdump 24/7.

% tcpdump –w dumpFile_24hour
% snort –r dumpFile_24hour -c /etc/snort/snort.conf

At midnight, on a designated analysis workstation, process data using several shell, sed,
awk, and perl scripts.
Gather all outside IP addresses and suspicious inside IP address of interest.
Obtain tcpdump data in separate files, for each “IP address of interest”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.56

% tcpdump –r dump_24hour -vv "dst $outsider or src $outsider" \
> tcpdump_IPaddress

% tcpdump -r dumpFile_24hour –vv -x \
 "dst $outsider or src $outsider" > tcpdump_hex_IPaddress

Snort Rule that generated this detect:
misc-lib:
alert tcp $EXTERNAL_NET !53 -> $HOME_NET 8080 (msg:"MISC-WinGate-8080-
Attempt";flags:S;)

And info.rules:
alert icmp !$HOME_NET any -> any any (msg:"ICMP Echo Request"; itype: 8; icode: 0;)

3) Probability that Source Address was Spoofed:
Unlikely
Reason: These packets were attempting to establish TCP 3 way handshake
communication. These were a few packets directed to 2 workstations, presumably
looking for a compromised port.

4) Description of Attack:
From: 202.39.9.109 Ports 1085, 2008, 2013, 1094, 1087
To: mynet.4.245 Ports 8080, 1085, 7000, 8000
To: mynet.4.52 Port 2008

Average Interval: 2.5 seconds
Protocol: ICMP & TCP
ID Numbers: Unremarkable
Seq. Numbers: Unremarkable
TOS: 0x00
TTL: 100
Window Size: Unremarkable

This incident was a stimulus event.
This incident involved only “Normal TCP/IP” traffic.
This incident was fast (~ 24 hits/minute).
This incident involved a small volume of traffic. It targeted 2 workstations only.
This incident was a reconnaissance
The target OS for this incident appears to be a Solaris workstations and a Network
Appliance (raided disk farm).
The source OS for this incident is unknown.

5) Attack Mechanism:
Socks servers are multi-application proxy servers often found on firewalled networks.
Hostiles can use socks and proxy servers to hide their addresses. So, WinGate running
on a windows box can be configured (misconfigured) to permit bounced traffic from an
external hostile source, anonymous communication with relay chat servers, or

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.57

anonymous web surfing. The “echo requests” scan in this detect were used to find live
machines. Then the SYN scan to port 1080 was used to look for the WinGate proxy.
This was followed by SYN packets to 3 other ports, presumably looking for trojans that
might reside there.

There are false positives associated with the WinGate alerts. I discount them in this detect
because there are also three attempts to communicate on three other ephemeral ports in
this incident. Hostiles who look for trojaned ports are quite likely to be interested
WinGate as well.

6) Correlations:
There are CERT incident notes for WinGate:
http://www.cert.org/incident_notes/IN-99-01.html
http://www.cert.org/vul_notes/VN-98.03.WinGate.html

White Hat has some information
http://www.whitehats.com/info/IDS175

There are CVEs from http://cve.mitre.org
CVE-1999-0290
The WinGate telnet proxy allows remote attackers to cause a denial of service via a large
number of connections to localhost.
CVE-1999-0291
The WinGate proxy is installed without a password, which allows remote attackers to
redirect connections without authentication.
CVE-1999-0441
Remote attackers can perform a denial of service in WinGate machines using a buffer
overflow in the Winsock Redirector Service.
CVE-1999-0494
Denial of service in WinGate proxy through a buffer overflow in POP3.
CAN-1999-0657
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0657

There have been several GIAC practicums with detects and analysis of SubSeven.
http://www.sans.org/giactc/gcia.htm. c.f.

Terri Bidwell
Becky Bogle
Guy Bruneau
Tom Chmielarski
Robert Clark
Bradley Galvin
Kyle Nakamura

7) Evidence of Active Targeting:
This incident certainly evidenced active targeting.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.58

The attack was “aimed” at 2 specific IP addresses.
And, attack was aimed only at Ports 8080, 1085, 7000, 8000, and 2008.

8) Severity:
Severity = (Criticality + Lethality) – (CounterMeasuresSystem + CounterMeasuresNetwork)
Severity = (2 + 4) - (3 + 2)
Severity = -1

Comment: One of these IP addresses is to our user area disk farm. It is patched, and
secure, and backed up every night. Nonetheless, it is a critical resource. I assign Lethality
= 4.

9) Defensive Recommendation:
Damages: None of the targets were configured as proxy servers, and so no penetration
occurred.
Check out the Disk Farm, to insure operating system integrity.

10) Multiple Choice Test Question:

Consider this tcpdump log:

06:13:54.831363 < 202.39.9.109.1094 > mynet.4.245.7000: S 2931551856:2931551856(0)
win 16384 <mss 1460,nop,nop,sackOK> (DF)

06:13:54.831648 < mynet.4.245.7000 > 202.39.9.109.1094: R 0:0(0) ack 2931551857 win 0
(DF)

Which statement is true?
This is UDP traffic.a)
This is crafted traffic because the number 2931551856 in the first packet, is b)
incremented by 1 in the second packet to 2931551857.
The “0:0” element in the second packet confirms that this is crafted.c)
The target port, 7000, indicates that this is WinGate activity.d)
The address mynet.4.245 in this detect must be spoofed.e)
The 0:0 element and the “(DF)” element in the second packet are inconsistent with f)
one another. This is more evidence of packet crafting.
None of the above.g)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.59

Detect 8: Trolling for Trojans (and maybe ftp)

Summary:
From: 203.198.8.202 Several ephemeral ports starting with 4837
To: mynet.4.245 To the following ports

All these port numbers were targeted.
The trojan names in this list are by NO means exhaustive
21 ftp, but also Back Construction, Trojan AKA: Back Construction,

Blade Runner, Cattivik FTP Server, CC Invader,
Dark FTP, Doly Trojan, Fore, Invisible FTP,
Juggernaut 42, Larva, MotIv FTP, Net Administrator,
Ramen, Senna Spy FTP, server, The Flu,
Traitor 21, WebEx, WinCrash Blade Runner,
Doly Trojan, Fore, FTP trojan, Invisible FTP,
Larva, WebEx, WinCrash

82 Unknown
83 Unknown, www.incidents.org identifies port 83 as the 31st most

commonly targeted port over the last 30 days.
86 Unknown
110 POP3, but also ProMail trojan
666 Attack FTP, Back Construction, BLA trojan,

Cain & Abel, NokNok, Satans Back Door - SBD,
ServU, Shadow Phyre, th3r1pp3rz (= Therippers),
Back Construction, doom Id Software, Cain & Abel,
Satanz Backdoor, ServeU, Shadow Phyre

1010 surf, Doly Trojan
1128 Unknown
2000 Der Späher / Der Spaeher, Insane Network, Last 2000,

Remote Explorer 2000, Senna Spy Trojan Generator, TransScout
2020 Unknown
2128 Unknown
3030 Unknown
4000 SkyDance
4080 Unknown
4128 Unknown
5050 Unknown
5080 Unknown
5128 Unknown
6000 The Thing
8000 Unknown, www.incidents.org identifies port 8000 as the 10th most

commonly targeted port over the last 30 days.
8070 Unknown
8085 Unknown
8086 Unknown
8800 Unknown

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.60

8877 Unknown

[root@liar July05]# geektools 203.198.8.202
[whois.geektools.com]
Query: 203.198.8.202
Registry: whois.apnic.net
Results:

inetnum: 203.198.0.0 - 203.198.31.255
netname: NETVIGATOR
descr: HongKong Telecom IMS
descr: 22/F, Tower II, Grand Central Plaza,
descr: Shatin, Hong Kong.
country: HK

[root@liar July05]# nslookup 203.198.8.202
202.8.198.203.in-addr.arpa name = pcd092202.netvigator.com.

Observed Traffic:

#---- Portscan from: 203.198.8.202 ---------------------------

Jul 5 22:14:43 203.198.8.202:4856 -> mynet.4.245:1128 SYN ******S*
Jul 5 22:14:46 203.198.8.202:4839 -> mynet.4.245:110 SYN ******S*
Jul 5 22:14:46 203.198.8.202:4840 -> mynet.4.245:82 SYN ******S*
Jul 5 22:14:46 203.198.8.202:4844 -> mynet.4.245:86 SYN ******S*
Jul 5 22:14:46 203.198.8.202:4862 -> mynet.4.245:3030 SYN ******S*
Jul 5 22:14:46 203.198.8.202:4865 -> mynet.4.245:4000 SYN ******S*
Jul 5 22:14:46 203.198.8.202:4867 -> mynet.4.245:4080 SYN ******S*
Jul 5 22:14:46 203.198.8.202:4868 -> mynet.4.245:4128 SYN ******S*
Jul 5 22:14:46 203.198.8.202:4870 -> mynet.4.245:5050 SYN ******S*
Jul 5 22:14:46 203.198.8.202:4872 -> mynet.4.245:5128 SYN ******S*
Jul 5 22:14:46 203.198.8.202:4873 -> mynet.4.245:6000 SYN ******S*
Jul 5 22:14:46 203.198.8.202:4887 -> mynet.4.245:8070 SYN ******S*
Jul 5 22:14:48 203.198.8.202:4841 -> mynet.4.245:83 SYN ******S*
Jul 5 22:14:49 203.198.8.202:4858 -> mynet.4.245:2020 SYN ******S*
Jul 5 22:14:52 203.198.8.202:4848 -> mynet.4.245:666 SYN ******S*
Jul 5 22:14:52 203.198.8.202:4853 -> mynet.4.245:1010 SYN ******S*
Jul 5 22:14:52 203.198.8.202:4857 -> mynet.4.245:2000 SYN ******S*
Jul 5 22:14:52 203.198.8.202:4871 -> mynet.4.245:5080 SYN ******S*
Jul 5 22:14:52 203.198.8.202:4881 -> mynet.4.245:8000 SYN ******S*
Jul 5 22:14:52 203.198.8.202:4891 -> mynet.4.245:8085 SYN ******S*
Jul 5 22:14:52 203.198.8.202:4892 -> mynet.4.245:8086 SYN ******S*
Jul 5 22:14:52 203.198.8.202:4897 -> mynet.4.245:8800 SYN ******S*
Jul 5 22:14:52 203.198.8.202:4900 -> mynet.4.245:8877 SYN ******S*

#---- snort logs from: 203.198.8.202 ---------------------------

[**] ICMP Echo Request [**]
07/05-22:14:12.633205 203.198.8.202 -> mynet.4.184
ICMP TTL:102 TOS:0x0 ID:12547 IpLen:20 DgmLen:64

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.61

Type:8 Code:0 ID:60420 Seq:0 ECHO
=+

[**] ICMP Echo Request [**]
07/05-22:14:14.613283 203.198.8.202 -> mynet.5.121
ICMP TTL:106 TOS:0x0 ID:16398 IpLen:20 DgmLen:64
Type:8 Code:0 ID:60420 Seq:0 ECHO
=+

[**] ICMP Echo Request [**]
07/05-22:14:14.786049 203.198.8.202 -> mynet.5.140
ICMP TTL:106 TOS:0x0 ID:16748 IpLen:20 DgmLen:64
Type:8 Code:0 ID:60420 Seq:0 ECHO
=+

[**] ICMP Echo Request [**]
07/05-22:14:14.830212 203.198.8.202 -> mynet.5.141
ICMP TTL:106 TOS:0x0 ID:16773 IpLen:20 DgmLen:64
Type:8 Code:0 ID:60420 Seq:0 ECHO
=+

[**] ICMP Echo Request [**]
07/05-22:14:14.884810 203.198.8.202 -> mynet.5.144
ICMP TTL:106 TOS:0x0 ID:16828 IpLen:20 DgmLen:64
Type:8 Code:0 ID:60420 Seq:0 ECHO
=+

. . . . 21 qualitatively similar records

#---- tcpdump from src 203.198.8.202 --------------------------
First some echo requests to a series of computers

22:14:12.633205 < pcd092202.netvigator.com > life.mynet.org: icmp: echo request (ttl 102, id
12547)
22:14:12.765982 < pcd092202.netvigator.com > life.mynet.org: icmp: echo request (ttl 102, id
12547)

Then sphinx provides an echo reply
22:14:13.393261 < pcd092202.netvigator.com > sphinx.mynet.org: icmp: echo request (ttl 106,
id 13818)
22:14:13.393589 < sphinx.mynet.org > pcd092202.netvigator.com: icmp: echo reply (DF) (ttl
255, id 31917)

More echo requests to other computers
22:14:14.613283 < pcd092202.netvigator.com > luckyluke.mynet.org: icmp: echo request (ttl
106, id 16398)
22:14:14.746084 < pcd092202.netvigator.com > luckyluke.mynet.org: icmp: echo request (ttl
106, id 16398)
22:14:14.746974 < pcd092202.netvigator.com > luckyluke.mynet.org: icmp: echo request (ttl
106, id 16398)
22:14:14.786049 < pcd092202.netvigator.com > daffyduck.mynet.org: icmp: echo request (ttl
106, id 16748)
22:14:14.830212 < pcd092202.netvigator.com > mastermind.mynet.org:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.62

. . . . 21 echo requests

sphinx echo replied, so he devotes some attention to it
This is a scan of ports, looking for Trojans.
The packets are mostly SYN-RST pairs
22:14:43.275489 < pcd092202.netvigator.com.4841 > sphinx.mynet.org.83: S
4051211602:4051211602(0) win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 106, id 5287)
22:14:43.275778 < sphinx.mynet.org.83 > pcd092202.netvigator.com.4841: R 0:0(0) ack
4051211603 win 0 (DF) (ttl 106, id 31918)

22:14:43.677783 < pcd092202.netvigator.com.4856 > sphinx.mynet.org.1128: S
4051948009:4051948009(0) win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 106, id 5498)
22:14:43.678054 < sphinx.mynet.org.1128 > pcd092202.netvigator.com.4856: R 0:0(0) ack
4051948010 win 0 (DF) (ttl 106, id 31919)

22:14:43.681830 < pcd092202.netvigator.com.4858 > sphinx.mynet.org.2020: S
4052039685:4052039685(0) win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 106, id 5511)
22:14:43.682105 < sphinx.mynet.org.2020 > pcd092202.netvigator.com.4858: R 0:0(0) ack
4052039686 win 0 (DF) (ttl 106, id 31920)

22:14:43.689740 < pcd092202.netvigator.com.4860 > sphinx.mynet.org.2128: S
4052141457:4052141457(0) win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 106, id 5528)
22:14:43.690015 < sphinx.mynet.org.2128 > pcd092202.netvigator.com.4860: R 0:0(0) ack
4052141458 win 0 (DF) (ttl 106, id 31921)

22:14:46.203148 < pcd092202.netvigator.com.4844 > sphinx.mynet.org.86: S
4051374189:4051374189(0) win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 106, id 10752)
22:14:46.203415 < sphinx.mynet.org.86 > pcd092202.netvigator.com.4844: R 0:0(0) ack
4051374190 win 0 (DF) (ttl 106, id 31922)

22:14:46.204804 < pcd092202.netvigator.com.4839 > sphinx.mynet.org.pop3: S
4051132429:4051132429(0) win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 106, id 10756)
22:14:46.205076 < sphinx.mynet.org.pop3 > pcd092202.netvigator.com.4839: R 0:0(0) ack
4051132430 win 0 (DF) (ttl 106, id 31923)

22:14:46.207188 < pcd092202.netvigator.com.4840 > sphinx.mynet.org.82: S
4051168581:4051168581(0) win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 106, id 10758)
22:14:46.207463 < sphinx.mynet.org.82 > pcd092202.netvigator.com.4840: R 0:0(0) ack
4051168582 win 0 (DF) (ttl 106, id 31924)

sphinx listens to ftp, so there is a completed 3-way handshake
There are also several Trojans that use port 21
22:14:46.208835 < pcd092202.netvigator.com.4837 > sphinx.mynet.org.ftp: S
4051021474:4051021474(0) win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 106, id 10759)
22:14:46.209119 < sphinx.mynet.org.ftp > pcd092202.netvigator.com.4837: S
863690456:863690456(0) ack 4051021475 win 9898 <nop,nop,sackOK,mss 1414> (DF) (ttl
255, id 31925)
22:14:46.408324 < pcd092202.netvigator.com.4872 > sphinx.mynet.org.5128: S
4052818077:4052818077(0) win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 106, id 11169)

But it is tcpwrapped, so the connection was was reset
22:14:46.408606 < sphinx.mynet.org.5128 > pcd092202.netvigator.com.4872: R 0:0(0) ack
4052818078 win 0 (DF) (ttl 106, id 31926)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.63

More SYN RST pairs
22:14:46.409947 < pcd092202.netvigator.com.4870 > sphinx.mynet.org.5050: S
4052711369:4052711369(0) win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 106, id 11170)
22:14:46.410223 < sphinx.mynet.org.5050 > pcd092202.netvigator.com.4870: R 0:0(0) ack
4052711370 win 0 (DF) (ttl 106, id 31927)

22:14:46.411117 < pcd092202.netvigator.com.4865 > sphinx.mynet.org.polygenld: S
4052440792:4052440792(0) win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 106, id 11171)
22:14:46.411401 < sphinx.mynet.org.polygenld > pcd092202.netvigator.com.4865: R 0:0(0) ack
4052440793 win 0 (DF) (ttl 106, id 31928)

22:14:46.412368 < pcd092202.netvigator.com.4867 > sphinx.mynet.org.4080: S
4052563589:4052563589(0) win 16384 <mss 1414,nop,nop,sackOK> (DF) (ttl 106, id 11172)
22:14:46.412658 < sphinx.mynet.org.4080 > pcd092202.netvigator.com.4867: R 0:0(0) ack
4052563590 win 0 (DF) (ttl 106, id 31929)

. . . . 62 similar lines, several different ports. . . .

Syslog server: grep cd092202.netvigator.com /var/log/syslog
Jul 5 22:14:46 sphinx.mynet.org ftpd[29108]: refused connect from pcd092202.netvigator.com

1) Source of Trace:
My Laboratory

2) Detect was Generated by:
Site maintains 6 IDS sensors running tcpdump 24/7.

% tcpdump –w dumpFile_24hour
% snort –r dumpFile_24hour -c /etc/snort/snort.conf

At midnight, on a designated analysis workstation, process data using several shell, sed,
awk, and perl scripts.
Gather all outside IP addresses and suspicious inside IP address of interest.
Obtain tcpdump data in separate files, for each “IP address of interest”.

% tcpdump –r dump_24hour -vv "dst $outsider or src $outsider" \
> tcpdump_IPaddress

% tcpdump -r dumpFile_24hour –vv -x \
 "dst $outsider or src $outsider" > tcpdump_hex_IPaddress

Snort Rule that generated this detect:
preprocessor portscan:

And, and info.rules:
alert icmp !$HOME_NET any -> any any (msg:"ICMP Echo Request"; itype: 8; icode: 0;)

3) Probability that Source Address was Spoofed:
Very Unlikely
Reason: Using “echo requests” the hostile found computers that were alive. He knew
they were alive because of the “echo reply”. Then he established (and tried to establish)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.64

TCP 3 way handshake communication to various ports. All this activity requires that the
hostile be actively listening.

4) Description of Attack:
From: 203.198.8.202 Several ephemeral ports starting with 4837
To: mynet.4.245 To often trojaned ports

Average Interval: 2.3 seconds
Protocol: ICMP and TCP
ID Numbers: Unremarkable
Seq. Numbers: Unremarkable
Ack. Numbers: Unremarkable
TOS: 0x00
TTL: 102

This incident was a stimulus event (echo request) followed by a second stimulus (SYN).
This incident involved only “Normal TCP/IP” traffic.
This incident was fast (~ 26 hits/minute).
This incident involved a small volume of traffic. It scanned elements of an entire subnet,
then targeted 1 workstation only.
This incident was a reconnaissance and exploitation of vulnerability as discovered
The target OS for this incident is a Solaris workstation.
The source OS for this incident is unknown.

5) Attack Mechanism:
Following an ICMP “Echo Request” scan, a SYN scan, perhaps by netcat or similar tool
(good for scanning ports), was used to probe “Echo Reply” positive workstations. This
detect was clearly an attempt to find trojaned computers because all the target ports were
either ephemeral, or well associated with known trojan activity.

Many of these trojans work on windows 9x/NT/2000 workstations. So this was certainly
a target. There were likely other operating system targets as well, as indicated by the
shear number of probed ports.

The source operating system is unknown.

6) Correlations:
There are CERT advisories for trojaned programs:
http://www.cert.org/advisories/CA-1999-02.html
http://www.cert.org/JHthesis/Word6/Glossary.doc

And several CVEs that deal with trojans
CVE-2000-0663
The registry entry for the Windows Shell executable (Explorer.exe) in Windows NT and
Windows 2000 uses a relative path name, which allows local users to execute arbitrary

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.65

commands by inserting a Trojan Horse named Explorer.exe into the %Systemdrive%
directory, aka the "Relative Shell Path" vulnerability.
CVE-2000-0854
When a Microsoft Office 2000 document is launched, the directory of that document is
first used to locate DLL's such as riched20.dll and msi.dll, which could allow an attacker
to execute arbitrary commands by inserting a Trojan Horse DLL into the same directory
as the document.
CVE-2000-1072
iCal 2.1 Patch 2 installs many files with world-writeable permissions, which allows local
users to modify the iCal configuration and execute arbitrary commands by replacing the
iplncal.sh program with a Trojan horse.
CVE-2000-1073
csstart program in iCal 2.1 Patch 2 searches for the cshttpd program in the current
working directory, which allows local users to gain root privileges by creating a Trojan
Horse cshttpd program in a directory and calling csstart from that directory.
CVE-2000-1074
csstart program in iCal 2.1 Patch 2 uses relative pathnames to install the libsocket and
libnsl libraries, which could allow the icsuser account to gain root privileges by creating a
Trojan Horse library in the current or parent directory.
CVE-2000-1163
ghostscript before 5.10-16 uses an empty LD_RUN_PATH environmental variable to find
libraries in the current directory, which could allow local users to execute commands as
other users by placing a Trojan horse library into a directory from which another user
executes ghostscript.
CVE-2001-0289
Joe text editor 2.8 searches the current working directory (CWD) for the .joerc
configuration file, which could allow local users to gain privileges of other users by
placing a Trojan Horse .joerc file into a directory, then waiting for users to execute joe
from that directory.

There is a CAN number for trojans. (CANs are Canditates for inclusion on the CVE list)
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0660

Hacking Exposed, Scambray, McClure, and Kurtz, page 555-561, Second Edition,
Osborne/McGraw Hill (2001)

7) Evidence of Active Targeting:
This incident certainly evidenced active targeting.
The attack was aimed a specific network. After finding, a living workstation, the attack
was “aimed” at 1 specific IP addresses.
It probed for the presence of specific Trojans that might be listening to one of 25 ports.

8) Severity:
Severity = (Criticality + Lethality) – (CounterMeasuresSystem + CounterMeasuresNetwork)
Severity = (2 + 4) - (5 + 2)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.66

Severity = -1

Comment: This system has been patched, it has not been compromised by any trojans.
The command lsof determined that sphinx does not listen to any unexplained or exotic
ports.

9) Defensive Recommendation:
Damages: No penetration
Consider blocking some of these ports at the firewall.

10) Multiple Choice Test Question:

Consider the following trace:

[**] ICMP Echo Request [**]
07/05-22:14:12.633205 203.198.8.202 -> mynet.4.184
ICMP TTL:102 TOS:0x0 ID:12547 IpLen:20 DgmLen:64
Type:8 Code:0 ID:60420 Seq:0 ECHO
=+

[**] ICMP Echo Request [**]
07/05-22:14:14.613283 203.198.8.202 -> mynet.5.121
ICMP TTL:106 TOS:0x0 ID:16398 IpLen:20 DgmLen:64
Type:8 Code:0 ID:60420 Seq:0 ECHO
=+

[**] ICMP Echo Request [**]
07/05-22:14:14.786049 203.198.8.202 -> mynet.5.140
ICMP TTL:106 TOS:0x0 ID:16748 IpLen:20 DgmLen:64
Type:8 Code:0 ID:60420 Seq:0 ECHO

Which statement is true.
These are tcpdump files alert logsa)
This is TCP trafficb)
The element “[**] ICMP Echo Request [**]” is part of the observed traffic.c)
The elements ”Type:8 Code:0” mean an Echo Request sent by host.d)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.67

Bibliography

Network Intrusion Detection, An Analyst’s Handbook, S. Northcutt, New Riders,
(1999).

Intrusion Signatures and Analysis, S. Northcutt, M. Cooper, M Fearnow, and K.
Frederick, New Riders, (2001).

Hacking Exposed: Network Security Secrets and Solutions, Second Edition, J.
Scambray, S. McClure, G. Kurtz, Osborne/McGraw Hill, (2001).

TCP/IP Illustrated, Volume 1, WR Stevens, Addison-Wesley, (1994).

TCP/IP Illustrated, Volume 2, WR Stevens, Addison-Wesley, (1995).

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0657
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0660
http://cve.mitre.org/cve
http://www.cert.org/advisories/CA-1999-02.html
http://www.cert.org/current/current_activity.html
http://www.cert.org/incident_notes/IN-2000-02.html
http://www.cert.org/incident_notes/IN-2001-07.html
http://www.cert.org/incident_notes/IN-99-01.html
http://www.cert.org/JHthesis/Word6/Glossary.doc
http://www.cert.org/vul_notes/VN-2000-03.html
http://www.cert.org/vul_notes/VN-98.03.WinGate.html
http://www.incidents.org
http://www.map2.ethz.ch/ftp-probleme.htm
http://www.nipc.gov/warnings/advisories/2000/00-056.htm
http://www.nipc.gov/warnings/advisories/2001/01-014.htm
http://www.sans.org/giactc/Becky_Bogle_GCIA.doc
http://www.sans.org/giactc/gcia.htm
http://www.sans.org/topten.htm
http://www.snort.org
http://www.whitehats.com/info/IDS175

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.68

Assignment 2 – Describe the State of Intrusion Detection

Flag Burning

Introduction
This paper concerns the general problem of “Operating System Finger printing” and the
role it plays in intrusive computer activity. I have been drawn to this topic by the
astonishing observation in the “Analyze This” assignment of this practicum, that during
the one-month period of analysis performed for Assignment 3, that there were 139
different exotic TCP flag combinations observed in just under 59,000 detects. In the
GIAC “Intrusion Detection in Depth” course, one learns of SYN-FIN scans, NULL scans,
Christmas Tree scans, and the role that those scans play in OS finger printing. Indeed, in
the Assignment 3 data, these three mal-formed, but well-known, TCP flag combinations
constituted some 45,000 of the exotic TCP flag settings observed. Those cases are
indicated by bold in the following table. There remains however, some 14,000 detects
with one of 137 other exotic TCP flag settings.

Alert Mal Formed Alert Mal Formed Alert Mal Formed Alert Mal Formed
Count Flags Count Flags Count Flags Count Flags

44511 **SF**** 16 21S*R*AU 11 *1SF**** 7 ***FRPAU
7726 21S***** 15 **SF**AU 11 *1SF**AU 7 *1SF***U
4396 RESERVEDBITS 15 **SFRPA* 11 *1SFR*AU 7 *1SF**A*
460 ******** 15 21*FR*** 11 2*SFR*** 7 *1SFRPA*
94 ***FR*A* 15 21S***AU 11 21*F**A* 7 *1SFRPAU
93 **S*R*A* 15 21S**P*U 11 21*FRP** 7 2*SF**A*
79 **SFRP*U 15 21S*R*** 11 21S**PA* 7 21**RP**
37 ***F**** 15 21SF**** 10 ***FRP** 7 21*FR**U
28 ****RP** 15 21SF*PA* 10 *1SFRP*U 7 21S***A*
28 **SFR**U 15 21SF*PAU 10 21**RPAU 7 21S**PAU
25 2*SFR*AU 15 21SFR**U 10 21*F***U 7 21S*RP**
25 21*F**** 15 21SFR*AU 10 21*FR*A* 7 21S*RP*U
24 ***FR*** 15 21SFRPAU 10 21*FRPA* 7 21SF**AU
24 21*F*PA* 14 2*SFRPA* 10 21SF**A* 6 *****P*U
23 **SF***U 14 21S*R**U 9 *1SF*P** 6 ***FRP*U
23 **SF*PAU 14 21S*RPA* 9 *1SF*PA* 6 **S*RP**
23 2*SFRP*U 14 21S*RPAU 9 *1SFR*A* 6 *1SFR***
23 21*FR*AU 13 *1SF*P*U 9 2*SFR*A* 6 21**R***
21 **S*RP*U 13 2*SF*PA* 9 2*SFRPAU 6 21S*R*A*
21 **SF*PA* 13 2*SF*PAU 9 21*F**AU 5 **S****U
21 2*SF***U 13 21*F*P** 9 21*F*P*U 5 **S**PA*
20 21*FRPAU 13 21SF***U 9 21*FRP*U 5 **S*RPA*
19 ***F*P*U 13 21SFR*A* 9 21SF*P** 5 **S*RPAU
19 **SF**A* 12 *******U 9 21SFR*** 4 **S**P**
19 **SF*P** 12 **S***AU 9 21SFRP** 4 **S**P*U

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.69

19 **SFR*** 12 **SFR*AU 9 21SFRP*U 4 **S*R*AU
19 2*SF**** 12 *1SFRP** 9 21SFRPA* 3 ****R**U
18 ****RP*U 12 2*SF**AU 8 **SFRP** 3 ****R*AU
18 ***FRPA* 12 2*SF*P*U 8 *1SFR**U 3 ****RPAU
18 21**RPA* 12 21*F*PAU 8 2*SF*P** 3 ***F***U
17 **SF*P*U 12 21S**P** 8 2*SFR**U 3 ***FR**U
17 2*SFRP** 11 ***F*P** 8 21**R**U 3 **S**PAU
17 21**R*AU 11 **S*R*** 8 21**RP*U 2 ***FR*AU
16 *1SF*PAU 11 **SFR*A* 8 21S****U 2 **S*R**U
16 21**R*A* 11 **SFRPAU 8 21SF*P*U

This discussion will undertake to synopsize the general methods of intrusive network
scanning, especially as they pertain to operating system finger printing. This will be
followed by a synopsis of normal and abnormal TCP flagged traffic. Finally, I will briefly
discuss the source code for tft.c, a tool that exercises a target workstation’s TCP stack by
passing it all possible combinations of 64 TCP flags.

Scanning
There exist tools for the “script kiddy” that permit the user to remain more or else clueless
about what he or she is doing as they are merrily used against computer networks every
day. And, while most of this intrusive activity is little more than noise in what passes for
the life of serious computer security person; serious “hackers” (I prefer the term hostiles)
and serious “hacking” involves competent committed intellectual effort devoted to
breaking into, taking over, and using un-owned computer systems. It also involves the
considerable effort and competence to write those no-brainer GUI, three clicks and attack
tools used by the less skillful. The serious, and seriously intrusive hostile computer
activity requires a plan, and such activity follows a reasonably well characterized pattern.

First there is target selection and open source information gathering, web browsing,
whois, nslookup, social engineering, dumster diving, and the like. This is followed by a
scanning phase, in which tools are used to map out the target network and resources, and
an effort is made to determine the operating systems with their versions, obtain passwds,
obtain dns zone transfers, learn the versions of installed software, enumerate shares,
security policies, firewall rules, etc. From this, the hostile prepares maps of current IP
addresses, and locations of networked services. Additionally, hostiles make an
evaluation of the general level of system administration alertness (perhaps even
cluefullness). Only then, is serious intrusive activity undertaken to compromise a
computer, a series of computer, or an entire network. This is followed by one of many
possible scenarios depending on the motivation of the intruder: perhaps intrusive tool
installation, relay chat installation, web defacement, data theft, or DDOS slave
configuration, back door creation, trojan installation, etc, etc. In this paper, I will focus on
the scanning OS finger printing stage of this process.

The purpose of scanning is to gather information remotely about a network, computer, or
service that will enable more intrusive computer activity by the intruder. Scanning starts
out using tools that gather elementary information such as an enumerated list of subnet

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.70

address space and a list of live IP addresses. Scanning then proceeds to enumerate lists of
available services and open ports that might be exploited. Enumerated knowledge of the
open ports, by itself, may be enough to identify the operating system behind a live IP
address. For example, netbios ports, 137, 138, and 139, can be indicative of Windows
architecture and port 111 is the Solaris portmapper and indicates a Unix computer on an
nfs network. Finally, scanning tools are used to determine operating systems types and
versions so that specific vulnerabilities can be targeted in the invasive stages. Several
tools are used for the scanning stage of a computer compromise.

Ping and ICMP Echo request Tools
The command ping sends an ICMP “echo request” packets to a targeted computer, which
if alive will return an “echo reply”. Things get more complicated if there is an
intermediate firewall which blocks ICMP echo requests. The source computer might see
a “destination unreachable” or no message what so ever. Careful interpretation of this
traffic permits the hostile to map out IP address in the target network. This task can be
simplified by the use of automated ping tools that ping networks through broadcasts to
blocks of 255 IP addresses (or larger) at once, e.g. fping and gping
(http://packetstormsecurity.org/Exploit_Code_Archive/fping.tar.gz)
(http://www.hackingexposed.com/tools/tools.html). These tools, used with various
combinations of switches, permit the hostile to search a range of network IP addresses for
accessible (pingable) computers. The tool nmap –sP (http://www.insecure.org/nmap) can
also be used to ping sweep a network by using a starting IP address and netmask. These
are Unix tools. But there are Windows tools as well, pringer
(http://www.nmrc.org/files/snt), WS_ping (http://www.ipswitch.com), and netscan
(http://www.nwpsw.com). The tool icmpenum
(http://www.nmrc.org/files/sunix/icmpenum-1.1.1.tgz) permits sending not only echo
requests, but time stamp requests, and ICMP info requests as well. This tool used in
these modified ways, may enable intruders to get around firewalls that block direct ICMP
echo requests.

NMAP
As discussed above, the tool nmap, can be used to perform ping sweeps, but it is much
more versatile than that. Nmap can be used for port scanning (nmap -sP), TCP ping or
ACK scanning directed at a specific port (e.g. to scan smtp, nmap -pT25). It provides port
numbers, service names, and service owners. Additionally it can be used for TCP stealth
scans (nmap -sS), UDP port scans (nmap -sU), stealth FIN scans (nmap -sF), and
RPC/identd scans (nmap -sR). It has an operating system determination mode using TCP
fingerprinting techniques (nmap -O), a decoy mode to hide scans by simultaneous
bombardment of the target or IDS with bogus packets (nmap -D), a paranoid mode to
slowly scan networks using large time intervals between packets (nmap -T), you can
choose whether or not to do DNS resolution (nmap -n), you can send results to log files
in one of several formats (nmap -iL), and you can specify the network interface or source
address (nmap -S). You can use namp to fragment TCP packets in order to attempt
evasion of the firewall (nmap -f). You can use nmap to hide the true source IP identity of
a portscan by going through a misconfigured proxy ftp server (nmap -b) in a so-called ftp-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.71

bounce attack. This makes a portscan virtually untraceable. Of course you can scan IP
addresses or entire networks. It is the Rolls Royce of hacker tools.

Hping
The tool hping (http://www.kyuzz.org/antirez/hping.html) is a TCP ping/port scanning
utility, which permits the user to craft elements of the TCP packet. In addition it supports
UDP, ICMP, and RAW-IP protocols. According to its home page it is useful for testing
firewalls, port scanning, network testing, TOS MTU and fragmentation testing, remote OS
finger Printing, and TCP/IP stack auditing.

NETCAT
Netcat (or nc) is a basic all-purpose TCP/UDP port scanning tool. It does arbitrary
portscanning, provides verbose output, provides timeouts, and it simultaneously targets
ranges of IP addresses to enumerate lists of open ports.

Strobe
Strobe is an old tool (ftp://ftp.freeBSD.org/pub/FreeBSD/ports/packages/security/strobe-
1.06.tgz). It is a TCP scanner. It can be used to obtain banners, and generally is used to
enumerate a list of open ports on target IP addresses.

UDP_Scan
Complementary to strope is udp_scan (http://wwdsilx.wwdsi.com). It has a reputation as
one of the best udp port scanning tools available. It is part of the satan/saint security
vulnerability tool, and its use, fortunately, generates a satan alert in most IDS rule sets.

Windows based scanners
Of course, there are windows equivalents to these tools as well. NetScanTools Pro 2000
(http://www.netscantools.com/nstdownload.html) permits DNS queries, nslookup, dig,
whois, ping sweeps, NetBIOS scans, SNMP scans, etc. You can perform simultaneous
multiple component scans on the same network. SuperScan
(http://www.foundstone.com/rdlabs/termsofuse.php?filename=superscan.exe) is another
TCP scanner (freeware). There are several others.

TCP Communications and TCP Flags
TCP is an internet communication transport layer protocol that provides a reliable, bi-
directional, error correcting service between two computers. Through the assignment of
identifying session ID numbers, sequence numbers, and acknowledgement numbers to
individual fragmented packets, TCP while not guaranteeing error free transmission of
information does guarantee that all the pieces of a conversation will be transmitted,
accepted, reassembled, and confirmed as they are transmitted from the source to the
destination computer. The information in this section is synopsized from Stevens (1994,
1995) and Northcutt et al (2001).

To achieve this result, the TCP header, immediately following the IP header contains both
the transmitted data as well as the auditing and descriptive information. In particular, the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.72

TCP header contains the source and destination ports, the sequence and
acknowledgement numbers, 32 bits of data offset, windows size, and special “flags” that
categorize the type of TCP packet being sent. There are checksums, urgent pointers (if
necessary), options, and finally the actually transmitted data.

In order to organize this traffic, TCP datagrams are identified with “flags” that identify the
datagram as containing any one of several kinds of information:

Flag Flag Description
SYN Synchronize Sequence Numbers, initiates a connection
ACK Set the Acknowledgement Number (Acknowledges the receipt of

information)
PSH Push data from the source to the target
URG Alert target that the urgent pointer is set
FIN Terminate connection, no more data
RST Reset the connection

In addition, flags can be sent in certain (but not all) combinations to efficiently convey
multiple bits of information from the source to the destination.

Flag or Flag
Combination

Description

SYN-ACK Synchronize the Sequence number and sets the
Acknowledgement number

RST-ACK Sets the Acknowledgement number and Resets the connection
FIN-ACK Sets the Acknowledgement number and ends the session

gracefully
FIN-PSH-ACK Pushes additional data, Sets the Acknowledgement number,

and ends the connection gracefully
URG-ACK Sets the Acknowledgement number and set the urgent pointer
PSH-ACK Sets the Acknowledgement number and push additional data

Flags and flag combinations other than these are at least quite uncommon, and in most
cases improper, in that they do not conform to the RFC 793, which specifies the
requirements for TCP communications.

The following figure, illustrates the proper structure of a TCP “SYN packet” with some
data. The raw hex TCP header is indicated on the top row of the spreadsheet fragment
shown below. The particular data for this header is parsed in the subsequent rows of the
spreadsheet. Data in rows above the “blue row” indicate bit, hex, and byte counts of the
TCP header. Cells in rows below the “blue row” contain the data associated with the TCP
datagram shown on the first row, and are shown in binary, hex, and decimal. (I apologize
for difficulty in reading this figure, it was built on a 21 inch monitor, and is difficult to
read when pasted into a word processor. When printed, this page is much easier to read.)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.73

TCP Header
03fe0016823c156b0000000060022238cf360000020405b45555
Bit Count 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Hex Count
Byte Count

Description

Binary 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
Hex
Decimal

Bit Count 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Hex Count
Byte Count

Description

Binary 1 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1
Hex
Decimal

Bit Count 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
Hex Count
Byte Count

Description

Binary 0
Hex
Decimal

Bit Count 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
Hex Count
Byte Count

Description

U
R

G

AC
K

PS
H

R
ST

SY
N

FI
N

Binary 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
Hex
Decimal 0 0 0 0 1 0

Bit Count 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
Hex Count
Byte Count

Description

Binary 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hex
Decimal

Bit Count 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
Hex Count
Byte Count

Description

Binary 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 0
Hex
Decimal

Bit Count 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
Hex Count
Byte Count

Description

Binary 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Hex
Decimal 5 5 5 5

Data (If Any)

5 5 5 5

tcp[24] tcp[25] tcp[26] tcp[27]
52 53 54 5548 49 50 51

0 5 11 40 2 0 4

Options (If Any)

0 2 0 4 0 5 b 4

tcp[20] tcp[21] tcp[22] tcp[23]

53046 0

40 41 42 43 44 45 46 47

16 bit Check Sum 16 bit Urgent Pointer

c f 3 6 0 0 0 0

tcp[16] tcp[17] tcp[18] tcp[19]
36 37 38 3932 33 34 35

8
6 0 8760

4 bit Data Offset 6 bit Reserved 16 bit Window Size

6 0 0 2 2 2 3

tcp[12] tcp[13] tcp[14] tcp[15]

0

24 25 26 27 28 29 30 31

32 bit Acknowledgement Number

0 0 0 0 0 0 0 0

tcp[8] tcp[9] tcp[10] tcp[11]

2184975723

16 17 18 19 20 21 22 23

32 bit Sequence Number

8 2 3 c 1 5 6 b

tcp[4] tcp[5] tcp[6] tcp[7]

1022 22

8 9 10 11 12 13 14 15

16 bit Source Port Number 16 bit Destination Port Number

0 3 f e 0 0 1 6

tcp[0] tcp[1] tcp[2] tcp[3]
4 5 6 70 1 2 3

TCP communication is divided into 3 stages. First a “3-way handshake” is established
between a source and a destination computer. In this stage, the source initiates
communication with a SYN packet (which initiates and synchronizes a sequence

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.74

number), the destination returns a SYN-ACK (that synchronizes its own sequence
number, and sets an acknowledgement number), finally the source returns an ACK
packet (that resets the acknowledgement number). All this occurs before the transfer of
any data. In the second stage, the two computers send PSH, PSH-ACK packets, and if
necessary RST-ACK packets back and forth as data is transferred between computers.
Finally, the communication is taken down gracefully by a series of FIN, and FIN-ACK
packets, or ungracefully by a RST packet. This is illustrated in the next figure. Many
such diagrams, clearly illustrating variations on TCP communication, can be found in the
fine series of books by Stevens (1994, 1995).

Schematic of a normal TCP communication session

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.75

RFC 793 specifies that there are 6 possible flags that can be set in a TCP datagram at
tcp[13]. As indicated above, they can be sent in a “few” different combinations to
accelerate communication of multiple bits of information in the same packet. Because 6
bits are required to specify all the flags in a datagram, there are 26 = 64 possible
combinations of flags that are possible to send from a source to a target. Add to this the 2
most significant bits in tcp[13], that is two of the so-called “reserved bits” which have
been set aside for future use there are 28 = 256 possible settings that can, in principle, be
sent from a source to a target. The 4 least significant bits in tcp[12], also reserved bits,
provide additional possibilities to created mal-formed packets. Most of these
combinations are not allowed under the rubric of RFC 793. Indeed, most of these flag
settings are logically inconsistent. For example, if the flags SYN-FIN are set in the same
packet, this directs the target to both initiate the first step in a TCP 3-way connection and
terminate that connection before it is established. Normal TCP traffic does not employ
these improper flag settings. So, of course, hostile computer activity employs such traffic
all the time.

The RFCs were designed to enumerate the rules for normal traffic. Only limited attention
is devoted to all possible ways in which that traffic can be mal-formed. In general, the
rule for a target computer when presented with a mal-formed TCP flag settings, is to
return a RST. And usually, this is what happens. Unfortunately, some implementations
of the TCP/IP implement the RFC standards in ways that are not uniform across
platforms. For example, some vendors employ the “reserved bits” for ECN, but, some
vendors simply do not get all the details right in their implementations of TCP/IP. The
use of reserved bits for specialized application like ECN is a perfectly appropriate; on the
other hand, exercising the reserved bits to scan targets for OS finger printing information
is hostile activity.

Destinations controlled by certain operating systems respond to packets with improper
flag settings differently from those controlled by other operating systems. Some
operating systems are unable to process mal-formed packets properly, resulting if a frozen
TCP communications session. In the worst cases, special combinations of flags at certain
stages of a TCP communication session kill processes and daemons on the target
computer or will even freeze the computer. For example, in the WinNuke vulnerability,
unpatched Windows systems will “blue Screen” when a TCP packet is sent to an open
port, the URG flag is set, and the urgent values is set to 3. Several operating systems can
be finger printed by closely monitoring the returned flags when specially crafted packets
with mal-formed flag combinations are sent to targets. See examples in the next section.

TCP Scans and OS Finger Printing Techniques

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.76

The simplest way of OS finger printing is by telneting to the target IP address and reading
the banner (no login or passwd required). By telneting to the appropriate target ports, this
technique can also be used to determine the version numbers of some services (ftp, smtp).
Responsible system administrators, having caught on to this, have long ago starting
removing, disabling, or decoying banners. In order to perform OS finger printing against a
securely maintained network, a hostile must resort to scanning.

TCP scanning techniques are widely used to gather information about networks by
hostiles. In particular, several TCP scanning techniques are useful for “Operating System
Finger Printing”. Most of this information in this section derives from the GIAC Intrusion
Detection Course books, Scambray et al. (2001), and
http://www.insecure.org/nmap/nmap-fingerprinting-article.html. The last paper, written
by “Fyodor” the author of nmap contains the first serious reference to OS finger printing
using scanning techniques.

TCP Connect Scan
In this scan, a full 3-way TCP connection is established and immediately closed. To be
successful it must repeat this process on all ports for which information is desired.

TCP SYN Scan
In this more stealthy scanning technique scan, the source sends SYN packets to ports on
the target. No other packets are sent. If the target is listening on the target port, the target
returns a SYN-ACK packet, otherwise the target returns a RST. This information permits
the source to enumerate IP addresses and open ports on the target. This scan is
sometimes called a “half-open scan” or simply a “half-scan”.

TCP FIN Scan
Isolated FIN packets targeting Unix boxes will result in a RST returned packet on closed
ports. Open ports do not respond according to RFC 793. Unfortunately, windows NT
responds with a FIN-ACK other operating systems return a RST from open ports. Thus
this technique can be employed to perform OS finger printing.

TCP Xmas Tree Scan
When a source sends a “Christmas Tree” scan it sends an out of spec FIN-URG-PSH
packet. The target will return a RST if the port is closed.

TCP Null Scan
A null scan is a TCP packet with no flags set. Again, because this is an out of spec
packet, closed ports should return a RST packet. Some operating systems do not.

TCP ACK Scan
“ACK only” scans are used to probe firewalls. ACK packets will pass a “stateless”
firewall, as the firewall is configured to permit “established TCP traffic”, and so it
interprets an ACK packet as part of an established connection. On the other hand, a
“stateful” firewall, one that monitors entire communications sessions, discards

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.77

information regarding that communication only at the end of a complete session. So, a
stateful firewall will block an isolated ACK packet at the firewall.

TCP Window Size Scan
Some Unix operating systems report TCP windows sizes in varying ways. This can be
used to OS fingerprint AIX and FreeBSD.

TCP RPC Scan
On Unix systems, RPC ports are revealed by communication to various RPC ports the
port numbers of which are OS specific. This technique is used for OS fingerprinting and
the enumeration of available RPC ports.

Bogus Flag Probes
When a TCP SYN packet is sent with an undefined TCP “flag”, the appropriate response
for the target is not to respond. Unfortunately, Linux will respond with the bogus flag set.
Other operating systems reply with RST.

Initial Sequence Number Sampling
Different operating systems employ different patterns in the ISN values upon the
initiation of a 3-way TCP connection. This pattern can be deduced by multiple TCP
queries. Old Unix boxes use 64K, Newer Solaris, Irix, freeBSD and others boxes use
random increments, Windows uses an ISN incremented by a small time interval, and
some boxes use a constant ISN (some 3com hubs, Apple LaserWriter printers). Even the
random number generators can be characterized by their standard deviation and means
and other arithmetic tests.

ACK Value
The acknowledgement numbers returned by closed ports, are normally are the same as
the ISN for FIN, PSH, or URG flags. Windows uses ISN + 1. Additionally, Windows
responds with an inconsistent ACK number when an open port is presented with a SYN,
FIN, URG or PSH.

Don’t Fragment Bit
Whether or not a TCP packet sets the DF flag by default is OS specific. And some OSs
enable the DF bit only under some unique circumstances. Monitoring the use of this bit,
reveals information about the OS version.

ICMP Error Message Quenching
According the RFC 1812, ICMP error messages are returned at a limited rate. That rate
varies among OSs. For example, Linux sends only 80 destination unreachable messages
in 4 seconds before imposing 0.25 second penalty. By sending a large number of UDP
packets to a high number port, and counting the number of unreachable messages
returned per time interval can be used for OS finger printing.

ICMP Message Quoting

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.78

ICMP error messages return a quoted portion of the ICMP message that caused the error.
The length of the quoted returned segment is OS dependent. Usually, the error message
returns 8 bytes, Solaris returns more and Linux returns even more.

ICMP Error Message Echoing Integrity
Some stacks alter the IP headers when returning ICMP error messages. These alterations
are OS specific.

Type of Service
In ICMP port unreachable messages, the TOS is usually 0x00. Linux uses 0xc0.

Fragmentation handling
Different operating systems process overlapping fragments differently as they reassemble
the fragmented packets. Some over write data, others give precedence to older data.

TCP Options
There is wide variation in how different operating systems handle TCP options. As
options, not all implementations even handle all of them, they are placed in the options
portions of the TCP header in different order, and different operating systems use
different vales for different options. If a TCP packet is sent with all options set, the target
will respond with only the supported options set in the return packet.

There are additional techniques that may be useful for OS finger printing. However, they
can be counter-productive for the hostile. For example:

Exploit Chronology
All the techniques listed above are unable to distinguish among the various Windows
flavors. The reason for this is that the Windows stack has remained unaltered as the
technology was passed unchanged from Windows 95 -> Windows 98 -> Windows NT.
Of course “Fyodor” is contemptuous of this state of affairs; because to him, it seems to
indicate corporate engineering sloth. (“Marketing” in the Redmond office probably
considers it a “feature”.) In any event, “Fyodor” does not despair for long. His solution
is to bombard the Windows box with a sequence of well-known and older windows
attack tools. (Ping-o-death, WinNuke, etc.) Following each attack, he suggests sending
additional packets to the target to determine its alive/dead status. Of course, the attacker
must have a large collection of attack tools and a reliable database informing him which
version of windows is vulnerable to which attack. This technique has the advantage of
not only learning the Windows version, but also the Service pack release number for the
target as a bonus. I am not at all sure whether or not this method is, at root, more
motivated by some kind of political agenda, and it undeniably would be a fine DOS plan,
but to me it seems relatively un-useful as a “stealthy OS finger print” tool.

SYN Flood Resistance
After establishing a certain number of partially open connections derived from SYN
packets arriving from forged IP addresses, some operating systems will stop accepting

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.79

new connections. Most operating systems will accept only 8 partially open connections.
So, by establishing 8 such connections, and probing the target for evidence of its
willingness to accept more, the source use this information to characterize the OS. While
more subtle that the “Exploit Chronology” this technique also suffers from being a bit to
high profile to be useful. Neither of these techniques are used in the nmap code built by
“Fyodor”.

Finally there are other composite “wonder tools” that combine many of these techniques
into one stand-alone tool. Cheops is a network mapping tool, with ping, traceroute,
portscanning, a queso operating system detection tool, all rolled up into a single package
with GUI. (http://www.marko.net/cheops) And, there are others in a similar vein.

tft.c

Queso
Queso (CERT® Incident Note IN-98.04, http://www.cert.org/incident_notes/IN-
98.04.html, GIAC, Intrusion Detection 1-3, pp178-179) is not a technique, so much as a
stand-alone intrusion package. It is an old tool, and these days most operating systems
and IDS rule sets can prevent its successful use. The purpose of queso is to determine the
operating system finger print of a target computer. And, it achieves this result by sending
TCP packets with mal-formed flag settings and closely monitoring the returned packets.

NMAP
As discussed earlier, the nmap tool is a remarkably versatile and useful tool for hostile
computer activity. (I suppose it even has some legitimate uses.) In the context of this
section, one of its most useful features is that it provides the best OS finger printing tool
available to the hostile community. This is a direct quote from “fyodor”,
http://www.insecure.org/nmap/nmap-fingerprinting-article.html .

“We use the command:
 nmap -sS -F -o transmeta.log -v -O www.transmeta.com//24

This says SYN scan for known ports (from /etc/services), log the results to
'transmeta.log', be verbose about it, do an OS scan, and scan the class 'C' where
www.transmeta.com resides. Here is the gist of the results:

neon-best.transmeta.com (206.184.214.10) => Linux 2.0.33-34
www.transmeta.com (206.184.214.11) => Linux 2.0.30
neosilicon.transmeta.com (206.184.214.14) => Linux 2.0.33-34
ssl.transmeta.com (206.184.214.15) => Linux unknown version
linux.kernel.org (206.184.214.34) => Linux 2.0.35
www.linuxbase.org (206.184.214.35) => Linux 2.0.35

(possibly the same machine as above)”

As an exercise for the student, I ran nmap against one computer only, on mynet.org with

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.80

the OS finger print options set:

[root@liar ids]# /usr/bin/nmap -sS -F -v -O mynet.org.4.235

Starting nmap V. 2.53 by fyodor@insecure.org (www.insecure.org/nmap/)
Host sunder.mynet.org (mynet.org.4.235) appears to be up ... good.
Initiating SYN half-open stealth scan against sunder.mynet.org (mynet.org.4.235)
Adding TCP port 111 (state open).
Adding TCP port 32777 (state open).
Adding TCP port 4045 (state open).
Adding TCP port 2049 (state open).
Adding TCP port 32773 (state open).
Adding TCP port 110 (state open).
Adding TCP port 6112 (state open).
Adding TCP port 515 (state open).
Adding TCP port 514 (state open).
Adding TCP port 6000 (state open).
Adding TCP port 22 (state open).
Adding TCP port 25 (state open).
Adding TCP port 143 (state open).
Adding TCP port 7100 (state open).
Adding TCP port 32772 (state open).
Adding TCP port 32771 (state open).
Adding TCP port 748 (state open).
Adding TCP port 2766 (state open).
The SYN scan took 0 seconds to scan 1062 ports.
For OSScan assuming that port 22 is open and port 1 is closed and neither are firewalled
Interesting ports on sunder.mynet.org (mynet.org.4.235):
(The 1044 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh
25/tcp open smtp
110/tcp open pop-3
111/tcp open sunrpc
143/tcp open imap2
514/tcp open shell
515/tcp open printer
748/tcp open ris-cm
2049/tcp open nfs
2766/tcp open listen
4045/tcp open lockd
6000/tcp open X11
6112/tcp open dtspc
7100/tcp open font-service
32771/tcp open sometimes-rpc5
32772/tcp open sometimes-rpc7
32773/tcp open sometimes-rpc9
32777/tcp open sometimes-rpc17

TCP Sequence Prediction: Class=random positive increments
Difficulty=47758 (Worthy challenge)

Sequence numbers: 9B5770BB 9B57AA29 9B598137 9B59C29E 9B5A13EF 9B5BBB77
Remote OS guesses: Solaris 2.6 - 2.7, Solaris 7

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.81

Nmap run completed -- 1 IP address (1 host up) scanned in 4 seconds

That was impressive, and more to the point, the results are right. At the target end, on
sunder.mynet.org, here is a very abbreviated response as determined by tcpdump. On
sunder.mynet.org, this nmap triggered tcpdump generated nearly 1685 packets.

/opt/sbin/tcpdump -vv "dst mynet.org.4.142 or src mynet.org.4.142"

14:03:44.489430 < arp who-has liar.mynet.org tell gwcpc.mynet.org
14:03:44.606863 < liar.mynet.org > sunder.mynet.org: icmp: echo request
14:03:44.606903 < sunder.mynet.org > liar.mynet.org: icmp: echo reply (DF)
14:03:44.607030 < liar.mynet.org.56399 > sunder.mynet.org.http: . 765984771:765984771(0)
ack 2838295973 win 1024
14:03:44.607067 < sunder.mynet.org.http > liar.mynet.org.56399: R
2838295973:2838295973(0) win 0 (DF)
14:03:44.908789 < liar.mynet.org.ircs > sunder.mynet.org.731: udp 88 (DF)
14:03:44.909003 < sunder.mynet.org.731 > liar.mynet.org.ircs: udp 156 (DF)
14:03:44.912298 < liar.mynet.org.56379 > sunder.mynet.org.135: S 500425597:500425597(0)
win 1024
14:03:44.912380 < liar.mynet.org.56379 > sunder.mynet.org.4132: S 500425597:500425597(0)
win 1024
14:03:44.912458 < liar.mynet.org.56379 > sunder.mynet.org.1374: S 500425597:500425597(0)
win 1024
14:03:44.912538 < liar.mynet.org.56379 > sunder.mynet.org.6668: S 500425597:500425597(0)
win 1024
14:03:44.912616 < liar.mynet.org.56379 > sunder.mynet.org.6142: S 500425597:500425597(0)
win 1024
14:03:44.912697 < liar.mynet.org.56379 > sunder.mynet.org.10005: S
500425597:500425597(0) win 1024
14:03:44.912775 < liar.mynet.org.56379 > sunder.mynet.org.1411: S 500425597:500425597(0)
win 1024
14:03:44.912853 < liar.mynet.org.56379 > sunder.mynet.org.559: S 500425597:500425597(0)
win 1024
14:03:44.912932 < liar.mynet.org.56379 > sunder.mynet.org.1664: S 500425597:500425597(0)
win 1024
14:03:44.913012 < liar.mynet.org.56379 > sunder.mynet.org.197: S 500425597:500425597(0)
win 1024
14:03:44.913060 < sunder.mynet.org.135 > liar.mynet.org.56379: R 0:0(0) ack 500425598 win
0 (DF)

. . . . 1685 total number of lines . . .

14:03:48.451736 < liar.mynet.org.56381 > sunder.mynet.org.ssh: R
2683758064:2683758064(0) win 0 (DF)
14:03:48.481523 < liar.mynet.org.56382 > sunder.mynet.org.ssh: S
2683758064:2683758064(0) win 1024
14:03:48.481564 < sunder.mynet.org.ssh > liar.mynet.org.56382: S
3590933174:3590933174(0) ack 2683758065 win 9112 <mss 53
6> (DF)
14:03:48.481733 < liar.mynet.org.56382 > sunder.mynet.org.ssh: R
2683758065:2683758065(0) win 0 (DF)
14:03:48.511529 < liar.mynet.org.56383 > sunder.mynet.org.ssh: S

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.82

2683758065:2683758065(0) win 1024
14:03:48.511569 < sunder.mynet.org.ssh > liar.mynet.org.56383: S
3590940072:3590940072(0) ack 2683758066 win 9112 <mss 53
6> (DF)
14:03:48.511737 < liar.mynet.org.56383 > sunder.mynet.org.ssh: R
2683758066:2683758066(0) win 0 (DF)
14:03:48.541529 < liar.mynet.org.56384 > sunder.mynet.org.ssh: S
2683758066:2683758066(0) win 1024
14:03:48.541570 < sunder.mynet.org.ssh > liar.mynet.org.56384: S
3590965818:3590965818(0) ack 2683758067 win 9112 <mss 53
6> (DF)
14:03:48.541741 < liar.mynet.org.56384 > sunder.mynet.org.ssh: R
2683758067:2683758067(0) win 0 (DF)
14:03:48.571537 < liar.mynet.org.56385 > sunder.mynet.org.ssh: S
2683758067:2683758067(0) win 1024
14:03:48.571579 < sunder.mynet.org.ssh > liar.mynet.org.56385: S
3591009122:3591009122(0) ack 2683758068 win 9112 <mss 53
6> (DF)
14:03:48.571749 < liar.mynet.org.56385 > sunder.mynet.org.ssh: R
2683758068:2683758068(0) win 0 (DF)
14:03:49.601451 < arp who-has sunder.mynet.org tell liar.mynet.org
14:03:49.601492 < arp reply sunder.mynet.org is-at 8:0:20:b0:32:e4

Only these flag settings were culled from the snort alerts that derived from this detect.

12 ******S* Normal flags
4 **U*P*SF Mal-formed flags
4 ***A**** Normal flags
2 **U*P**F Mal-formed flags

***A**S* Normal flags2

All these flags were culled from all the TCP packets exchanged between
sunder.mynet.org and liar.mynet.org

855 ******S* Normal flags
765 ***A*R** Normal flags
25 *****R** Normal flags
22 ***A**S* Normal flags
3 ***A**** Normal flags
2 **U*P*SF Mal-formed flags
2 ******** Mal-formed flags
1 **U*P**F Mal-formed flags
1 *2****S* Mal-formed flags

Tools such as queso and nmap do not explain the very large number of exotic flags seen
in the thirty day “Analyze This” portion of this practicum alluded to I the opening
paragraph of this paper. Both queso and nmap do indeed send exotic flag combinations
to prospective victim-targets, however they do not send the very large range of mal-
formed flag settings that are observed in the OOS alert files. Something else is at work
here.

Following some web searching, I found an interesting tool at http://rootshell.com/archive-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.83

j457nxiqi3gq59dv/199807/tft.c.html. It can also be found at
http://packetstormsecurity.org/new-exploits/tft.c. The tool, tft.c, was apparently built by
Lamont Granquist, and posted onto rootshell.com in 1998. It is advertised as a

“TCP Flag Test – ‘excersizes' a machines TCP/IP stack by passing it all
combinations of 64 TCP flags and seeing which flags are usable to determine
which ports on the machine are open or not”

Of course, I do not know that the program tft.c was used to generate the oos detects
recorded at http://www.research.umbc.edu/~andy or not. It seems clear to me, that if not
this tool, then a tool very much like this tool was used. It is quite clear that if this tool
were used against several dozen known operating systems, the returned packets would
yield a wealth of information that a motivated hostile could use for operating system
finger printing. This information could be cataloged into a database that would provide a
superior tool for network scanning.

I made a moderately serious effort to compile and test this program. The comments in
the code specifically suggest that the code compiles on NetBSD, and perhaps NetBSD
only. I do not have immediate access to any freeBSD flavors. It failed to compile it on
Solaris, Irix and Linux. In any event, I am reluctant to exercise this kind of software on
my net out of pure excessive caution; so I did not try all that hard.

Here is an abbreviated outline of what I think is going on in the code. The crucial
fragments of the code are presented here as something like pseudo-code in order to clarify
the function of the program.

Of course, there is a main:
int main(int argc, char *argv[]) {
It initializes ports

initialize();
It gathers two port numbers from the command line

oport = atoi(argv[2]);
cport = atoi(argv[3]);

It resolves an IP address, also obtained from the command line
if(resolve_host(argv[1], &dst_inaddr) < 0)

Something to do with sockets, apparently this comes from libpcap
sethdrinclude(sd);

It builds an IP header
char *ip_field[] = { "ip_vhl" , "ip_tos" , "ip_len" , "ip_len" ,

"ip_id" , "ip_id" , "ip_off" , "ip_off" ,
"ip_ttl" , "ip_p" , "ip_sum" , "ip_sum" ,
"ip_src" , "ip_src" , "ip_src" , "ip_src" ,

 "ip_dst" , "ip_dst" , "ip_dst" , "ip_dst" ,
"th_sport", "th_sport", "th_dport", "th_dport",
"th_seq" , "th_seq" , "th_seq" , "th_seq" ,
"th_ack" , "th_ack" , "th_ack" , "th_ack" ,
"th_xoff" , "th_flags", "th_win" , "th_win" ,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.84

"th_sum" , "th_sum" , "th_urp" , "th_urp" };
Then opens a packet sniffer (kludged from tcpdump)
open_pkt_sniffer(cmdbuf, 60, NULL)
It exercises a for loop, once for each of 64 possible flag combination
for(i = 0; i<64; i++) {

In which it builds and sends a TCP packet
send_tcp_raw(sd, &my_inaddr, &dst_inaddr, MAGICPORT, oport, i, NULL, 0);
Listens for returned traffic using the packet sniffer (from tcpdump)
cp = read_pkt_sniffer(pd);
It sends another TCP packet
send_tcp_raw(sd, &my_inaddr, &dst_inaddr, MAGICPORT, cport, i, NULL, 0);
And again listens to the sniffer for a response
cp = read_pkt_sniffer(pd);
And, he processes then prints the tcp returned Flags
if (!fl) printf("(null) ");
if (fl & TH_URG) printf("URG ");
if (fl & TH_ACK) printf("ACK ");
if (fl & TH_PUSH) printf("PSH ");
if (fl & TH_RST) printf("RST ");
if (fl & TH_SYN) printf("SYN ");
if (fl & TH_FIN) printf("FIN ");

if (cp) {
memcpy(cresp, cp, 40);
strip_ip_fields(cresp);
/* hdump(cresp, 40); */

}
if ((op && !cp) || (cp && !op)) {

printf("(dropped) ");
/* might be ploss */
printflags(i);

}

}

Conclusion
Serious hostile computer intrusion requires network scanning. These scans are designed
to map networks, enumerate operating systems, identify software services, catagorize
firewalls and firewall rules, and find out the OS version numbers where ever possible.
Destination responses to TCP packets with malformed flags and reserved bits provide a
rich set of information from which operating system finger printing is possible. There
exist a wide variety of such tools for hostile use. Tools like tft.c, provide additional
avenues for hostile tool extension.

Appendix: Source Code for tft.c

Editorial Comment: He seems to suffer from e. e. cummings envy ?

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.85

/* tft.c
Lamont Granquist
Tue Jul 7 23:30:36 PDT 1998 [http://www.rootshell.com/]

"TCP Flag Test" -- 'excersizes' a machines TCP/IP stack by passing it all combinations of 64
TCP flags and seeing which flags are usable to determine which ports on the machine are open
or not. it takes as arguments the machine to test, plus 2 ports -- one which you already know is
open and one which you already know is closed. it may hose the inetd process on the machine
being tested. it might even hose the machine itself, although i've never seen this behavior
myself. if it crashes your machine don't blame me -- no warantees implied and such. caveat
hacker.

to compile:

cc -o tft tft.c -lpcap

you must have the libpcap library, and it'll need to know where to find the pcap.h file (tip: this
means you'll need a -I flag most likely). Your pcap version may need to be >= 0.4a6, this can be
difficult to determine, so if in doubt, just find a fresh copy to download. this works on NetBSD. as
it uses SOCK_RAW, you must be r00t to run it -- although it doesn't bother to inform you of this
nicely, it'll just die with something like "socket: permission denied." it will probably not work on
Solaris versions less than 2.6, or FreeBSD, or any other Unix which has funky byte ordering
problems in SOCK_RAW. i believe that SOCK_RAW tends to cause KERNEL PANICS in Digital
Unix, so don't try to run this on a DU box. this will probably not compile cleanly on unixes other
than NetBSD, and

I HAVE ABSOLUTELY NO INTENTION OF ATTEMPTING TO PORT OR SUPPORT THIS
PROGRAM ON DIFFERENT PLATFORMS. I DON'T WANT ANY E-MAIL ABOUT THIS
PROGRAM.

if you have difficulties porting this script to another platform, I suggest you check out nmap
(www.insecure.org/nmap/index.html) and see how nmap is ported to your architecture, then hack
together something similar. if nmap isn't ported to your architecture, then even if you dug up my
e-mail address i woulnd't be able to help you, so don't even bother trying then (and if nmap _is_
ported to your architecture then you need to do the work yourself, so don't bother then either...).
e-mail me with offers of sex or money *ONLY*.

any swiped code is probably fyodor's (apologies). this program could probably be built into
something that would attempt to 'fingerprint' a given TCP/IP stack and report back on the
probable type of O/S running on the machine -- see various papers on 'active probing' which
have been published in the security literature – Comer and Lin's paper is one example that i've
become familiar with. this may have already been done by someone else in the lit, in which case
i offer my apologies, but the motivation for this was based on Uriel Maimon's suggestion in
Phrack P49-15 that other flags might be suitable for "FIN scanning".

if you don't understand the output, read the code, if you don't understand the code, give up. this
program will not get you r00t access on anything and is not a (very good) denial-of-service
attack. if you don't understand what this code does, do not lose sleep over it.
*/

ifdef HAVE_INLINE
#define __inline__ inline
#else
#define __inline__

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.86

#endif

#include "pcap.h"
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <malloc.h>
#include <math.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <netdb.h>

#ifndef MAXHOSTNAMELEN
#define MAXHOSTNAMELEN 64
#endif

#define MAGICPORT 0xc23c

char myname[MAXHOSTNAMELEN+1];
struct in_addr my_inaddr;

__inline__
unsigned short in_cksum(unsigned short *ptr,int nbytes) {

/* swiped -- see TCP/IP Illustrated */

register long sum; /* assumes long >= 32 bits */
u_short oddbyte;
register u_short answer; /* assumes u_short == 16 bits */

sum = 0;
while (nbytes > 1) {

sum += *ptr++;
nbytes -= 2;

}

if (nbytes == 1) {
oddbyte = 0;

 *((u_char *) &oddbyte) = *(u_char *)ptr;
 sum += oddbyte;

}

sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16);
answer = ~sum;
return(answer);

}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.87

void hdump(unsigned char *bp, int length) {

/* stolen from tcpdump, then kludged extensively */

static const char asciify[256] = "................................
!\"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{
|}~.................................
!\"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{
|}~.";

register const u_short *sp;
register const u_char *ap;
register u_int i, j;
register int nshorts, nshorts2;
register int padding;

printf("\n\t");
padding = 0;
sp = (u_short *)bp;

 ap = (u_char *)bp;
 nshorts = (u_int) length / sizeof(u_short);
nshorts2 = (u_int) length / sizeof(u_short);
i = 0;
j = 0;
while(1) {

while (--nshorts >= 0) {
printf(" %04x", ntohs(*sp));
*sp++;
if ((++i % 8) == 0)

break;
}
if (nshorts < 0) {

if ((length & 1) && (((i-1) % 8) != 0)) {
printf(" %02x ", *(u_char *)sp);

 padding++;
}
nshorts = (8 - (nshorts2 - nshorts));
while(--nshorts >= 0) {

printf(" ");
}
if (!padding) printf(" ");

}
printf(" ");

while (--nshorts2 >= 0) {
printf("%c%c", asciify[*ap], asciify[*(ap+1)]);
ap += 2;
if ((++j % 8) == 0) {

printf("\n\t");
break;

}
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.88

if (nshorts2 < 0) {
if ((length & 1) && (((j-1) % 8) != 0)) {

printf("%c", asciify[*ap]);
}
break;

}
}
if ((length & 1) && (((i-1) % 8) == 0)) {
 printf(" %02x", *(u_char *)sp);
 printf(" %c", asciify[*ap]);

}
printf("\n");

}

__inline__
int send_ip_raw(int sd, char *packet, unsigned short datalen,

unsigned char proto, struct in_addr *source,
struct in_addr *dest) {

/* all we do is add the ip header to the packet and send it */

struct ip *ip = (struct ip *) packet;
struct sockaddr_in sock;
int res;

bzero((char *)packet, sizeof(struct ip));

sock.sin_family = AF_INET;
sock.sin_port = htons(20934); /* does it matter? */
sock.sin_addr.s_addr = dest->s_addr;

ip->ip_v = 4;
ip->ip_hl = 5;
ip->ip_len = htons(sizeof(struct ip) + datalen);
ip->ip_id = 0xc05e; /* rand(); */
ip->ip_ttl = 255;
ip->ip_p = proto;
ip->ip_src.s_addr = source->s_addr;
ip->ip_dst.s_addr = dest->s_addr;
ip->ip_sum = in_cksum((unsigned short *)ip, sizeof(struct ip));

if ((res = sendto(sd, packet, ntohs(ip->ip_len), 0,
(struct sockaddr *)&sock, (int) sizeof(struct sockaddr_in))) == -1) {

perror("sendto in send_ip_raw");
return -1;

}

return res;

}

int send_tcp_raw(int sd, struct in_addr *source, struct in_addr *dest,
unsigned short sport, unsigned short dport, unsigned char

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.89

flags, char *data, unsigned short datalen) {

/* sd should be SOCK_RAW + IP_HDRINCL */

struct phdr { /* tcp pseudo header */
unsigned long s_addy;
unsigned long d_addy;
char zer0;
unsigned char protocol;
unsigned short length;

};

char *packet = (char *) malloc(sizeof(struct ip)
+ sizeof(struct tcphdr) + datalen);

struct tcphdr *tcp = (struct tcphdr *) (packet + sizeof(struct ip));
struct phdr *pseudo = (struct phdr *) (packet + sizeof(struct ip)

- sizeof(struct phdr));

bzero((char *)packet, sizeof(struct ip) + sizeof(struct tcphdr));

if (data)

memcpy(packet + sizeof(struct ip) + sizeof(struct tcphdr), data, datalen);

pseudo->s_addy = source->s_addr;
pseudo->d_addy = dest->s_addr;

 pseudo->protocol = IPPROTO_TCP;
 pseudo->length = htons(sizeof(struct tcphdr) + datalen);

tcp->th_sport = htons(sport);
tcp->th_dport = htons(dport);
tcp->th_seq = rand() + rand();
tcp->th_ack = rand() + rand();
tcp->th_urp = rand();
tcp->th_off = 5;
tcp->th_flags = flags;
tcp->th_win = htons(2048);

tcp->th_sum = in_cksum((unsigned short *)pseudo, sizeof(struct tcphdr) +
sizeof(struct phdr) + datalen);

return(send_ip_raw(sd, packet, datalen+sizeof(struct tcphdr), IPPROTO_TCP,
source, dest));

}

__inline__
void sethdrinclude(int sd) {

int one = 1;
setsockopt(sd, IPPROTO_IP, IP_HDRINCL, (void *) &one, sizeof(one));

}

void initialize(void) {
struct hostent *myhostent;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.90

srand(time(NULL));

if (gethostname(myname, MAXHOSTNAMELEN) == -1) {
perror("gethostname");
exit(1);

}
if ((myhostent = gethostbyname(myname)) == NULL) {

perror("gethostbyname");
exit(1);

}

memcpy(&my_inaddr, myhostent->h_addr_list[0], sizeof(struct in_addr));

}

__inline__
int resolve_host(char *host, struct in_addr *host_inaddr_p) {

struct hostent *host_hent;

if (inet_aton(host, host_inaddr_p) == 0) {
if ((host_hent = gethostbyname(host)) != NULL) {

memcpy(host_inaddr_p, host_hent->h_addr_list[0], sizeof(struct in_addr));
} else {

return(-1);
}

}
return(0);

}

pcap_t *open_pkt_sniffer(char *cmdbuf, int snaplen, char *device) {

bpf_u_int32 localnet, netmask;
struct bpf_program fcode;
pcap_t *pd;
char ebuf[PCAP_ERRBUF_SIZE];
int i;

if (device == NULL) {

device = pcap_lookupdev(ebuf);
if (device == NULL) {

fprintf(stderr, "%s", ebuf);
return(NULL);

}
}
pd = pcap_open_live(device, snaplen, 0, 100, ebuf);
if (pd == NULL) {

fprintf(stderr, "%s", ebuf);
return(NULL);

}
i = pcap_snapshot(pd);
if (snaplen < i) {

fprintf(stderr, "snaplen raised from %d to %d", snaplen, i);
snaplen = i;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.91

}
if (pcap_lookupnet(device, &localnet, &netmask, ebuf) < 0) {

localnet = 0;
netmask = 0;
fprintf(stderr, "%s", ebuf);

}
if (pcap_compile(pd, &fcode, cmdbuf, 1, netmask) < 0) {

fprintf(stderr, "%s", pcap_geterr(pd));
return(NULL);

}
if (pcap_setfilter(pd, &fcode) < 0) {

fprintf(stderr, "%s", pcap_geterr(pd));
return(NULL);

}

return(pd);

}

char *read_pkt_sniffer(pcap_t *pd) {
static pcap_t *last = NULL;
struct pcap_pkthdr head;
static int offset;
char *p;
int datalink;
int i = 0;

if (!last || pd != last) {
if ((datalink = pcap_datalink(pd)) < 0) {

fprintf(stderr, "no datalink info: %s\n", pcap_geterr(pd));
return(NULL);

}
switch(datalink) {

case DLT_EN10MB:
offset = 14; break;

case DLT_NULL:
case DLT_PPP:

offset = 4; break;
case DLT_SLIP:

offset = 16; break;
case DLT_RAW:

offset = 0; break;
case DLT_SLIP_BSDOS:

 case DLT_PPP_BSDOS:
offset = 24; break;

case DLT_ATM_RFC1483:
offset = 8; break;

case DLT_IEEE802:
offset = 22; break;

default:
fprintf(stderr, "unknown datalink type (%d)", datalink);
return(NULL);

}
last = pd;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.92

}
while (i++ < 2) { /* why twice? i don't know */

p = (char *) pcap_next(pd, &head);
if (p) {

p += offset;
break;

}
}
return p;

}

__inline__
void strip_ip_fields(char *packet) {

struct ip *ip = (struct ip *)packet;
struct tcphdr *tcp = (struct tcphdr *)(packet + sizeof(struct ip));

ip->ip_id = 0;
ip->ip_sum = 0;

tcp->th_sum = 0;
tcp->th_sport = 0;
if(tcp->th_ack) tcp->th_ack = 1;
if(tcp->th_seq) tcp->th_seq = 1;
if(tcp->th_urp) tcp->th_urp = 1;

}

char *ip_field[] = { "ip_vhl" , "ip_tos" , "ip_len" , "ip_len" ,
"ip_id" , "ip_id" , "ip_off" , "ip_off" ,
"ip_ttl" , "ip_p" , "ip_sum" , "ip_sum" ,
"ip_src" , "ip_src" , "ip_src" , "ip_src" ,
"ip_dst" , "ip_dst" , "ip_dst" , "ip_dst" ,
"th_sport", "th_sport", "th_dport", "th_dport",
"th_seq" , "th_seq" , "th_seq" , "th_seq" ,

 "th_ack" , "th_ack" , "th_ack" , "th_ack" ,
"th_xoff" , "th_flags", "th_win" , "th_win" ,
"th_sum" , "th_sum" , "th_urp" , "th_urp" };

__inline__
int pkt_compare(char *p1, char *p2, int n) {

int i;
int fl = 0;

for(i=0;i<n;i++) {
if(*p1++ != *p2++) {

if (i < 41) {
printf("%s ", ip_field[i]);

} else {
printf("%d ", i);

}
fl++;

}
}
return(fl);

}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.93

__inline__
void printflags(int fl) {

if (!fl) printf("(null) ");
if (fl & TH_URG) printf("URG ");
if (fl & TH_ACK) printf("ACK ");
if (fl & TH_PUSH) printf("PSH ");
if (fl & TH_RST) printf("RST ");
if (fl & TH_SYN) printf("SYN ");
if (fl & TH_FIN) printf("FIN ");
printf("\n");

}

int main(int argc, char *argv[]) {
struct in_addr dst_inaddr;
int sd;
int i;
pcap_t *pd;
unsigned short oport, cport;
char cmdbuf[256], dstaddr[32];

initialize();

if (argc != 4) {
fprintf(stderr,"usage: tft target open_port closed_port\n");
exit(1);

}

oport = atoi(argv[2]);
cport = atoi(argv[3]);

if(resolve_host(argv[1], &dst_inaddr) < 0) {
fprintf(stderr, "i don't know who %s is\n", argv[1]);
exit(1);

}

if ((sd = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)) < 0) {
perror("socket");
exit(1);

}

sethdrinclude(sd);

sprintf(dstaddr, "%s", inet_ntoa(dst_inaddr));
sprintf(cmdbuf, "tcp and src host %s and dst host %s and dst port %d",

dstaddr, inet_ntoa(my_inaddr), MAGICPORT);

if ((pd = open_pkt_sniffer(cmdbuf, 60, NULL)) == NULL) {
fprintf(stderr, "can't open packet sniffer\n");
exit(1);

}

for(i = 0; i<64; i++) {
char oresp[40], cresp[40];
char *op, *cp;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.94

/* printf("doing %d\n", i); */
send_tcp_raw(sd, &my_inaddr, &dst_inaddr, MAGICPORT, oport, i, NULL, 0);
usleep(1000);
op = read_pkt_sniffer(pd);
if (op) {

memcpy(oresp, op, 40);
strip_ip_fields(oresp);
/* hdump(oresp, 40); */

}
send_tcp_raw(sd, &my_inaddr, &dst_inaddr, MAGICPORT, cport, i, NULL, 0);
usleep(1000);
cp = read_pkt_sniffer(pd);
if (cp) {

memcpy(cresp, cp, 40);
strip_ip_fields(cresp);
/* hdump(cresp, 40); */

}
if ((op && !cp) || (cp && !op)) {

printf("(dropped) ");
/* might be ploss */
printflags(i);
continue;

}
if (op && cp) {

if (pkt_compare(oresp,cresp,((u_short *)cresp)[1])) {
printflags(i);

}
}

}

return(0);

}

Bibliography

“Level Two Intrusion Detection in Depth”, Course Manuals,Volumes 1 – 5, Northcutt,
Kessler, Pomeranz, Irwin, Brenton, Novak, and Roesch, http://www.sans.org, (2001)

Network Intrusion Detection, An Analyst’s Handbook, S. Northcutt, New Riders,
(1999).

Intrusion Signatures and Analysis, S. Northcutt, M. Cooper, M Fearnow, and K.
Frederick, New Riders, (2001).

Hacking Exposed: Network Security Secrets and Solutions, Second Edition, J.
Scambray, S. McClure, G. Kurtz, Osborne/McGraw Hill, (2001).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.95

TCP/IP Illustrated, Volume 1, WR Stevens, Addison-Wesley, (1994).

TCP/IP Illustrated, Volume 2, WR Stevens, Addison-Wesley, (1995).

ftp://ftp.freeBSD.org/pub/FreeBSD/ports/packages/security/strobe-1.06.tgz
http://packetstormsecurity.org/Exploit_Code_Archive/fping.tar.gz
http://packetstormsecurity.org/new-exploits/tft.c
http://rootshell.com/archive-j457nxiqi3gq59dv/199807/tft.c.html
http://wwdsilx.wwdsi.com
http://www.cert.org/incident_notes/IN-98.04.html
http://www.foundstone.com/rdlabs/termsofuse.php?filename=superscan.exe
http://www.hackingexposed.com/tools/tools.html
http://www.insecure.org/nmap
http://www.insecure.org/nmap/nmap-fingerprinting-article.html
http://www.ipswitch.com
http://www.kyuzz.org/antirez/hping.html
http://www.marko.net/cheops
http://www.netscantools.com/nstdownload.html
http://www.nmrc.org/files/snt
http://www.nmrc.org/files/sunix/icmpenum-1.1.1.tgz
http://www.nwpsw.com
http://www.research.umbc.edu/~andy

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.96

Assignment 3 – “Analyze This”

Introduction
The purpose of this assignment is to prepare a detailed analysis of 30 days of IDS logs. I
have chosen to study data obtained from http://www.research.umbc.edu/~andy for the
month of June 2001. These data were acquired through the use of the open source snort
IDS software, (http://www.snort.org). The data are provided as 30 sets of three files for
each day of the month. The three files for each day record the portscans as derived from
the “preprocessor portscan” in snort, the alert headers as obtained from the rules sets that
can be obtained and modified from snort.org, and a file of “out of spec” alerts that are
enumerations of alerts whose TCP/IP packets exhibit parameters that are outside of RFC
specifications for network traffic. The predominance of data in the oos files reflect data
derived from crafted packets of one kind or another. The month of June has yielded over
400 MB of snort data for analysis. This data has been sanitized so that revealing elements
of the IP addresses have been replaced with my.net.

Executive Summary
IDS logs derived from monitoring network traffic during the month of June 2001 shows a
large amount of hostile traffic both to and from the MY.NET.* network.

While this is a lot of activity, it must be remembered that this is also a large university site.
Academic networks are plagued by computer security problems related to their sheer size,
their well-known public identity, and their extremely heterogeneous computer network
structure. Academic networks are notorious as networks lacking in centralized
configuration and purchasing authority, and an excess of users, perhaps on the verge of
flunking out, with way to much time on their hands, and who are for the first time in their
lives located in a truly high performance network environment. Many of these problems
could be addressed by the aggressive enforcement of university wide “appropriate
computer use” policy, with public ally enforced consequences for deviation. However, all
universities experience many of the same security issues experienced by this site over the
last month. Certainly, this site, which seems fairly well maintained, does not experience
more than its share of intrusive activity.

The evidence presented in this report, suggest that there are computers within the
university that are in need of investigation for signs of either compromise of improper
use. Much of this activity derives from a relatively few number of subnets.

In addition, the university is a popular target for probes, system wide portscans, and
directed assaults onto specific computers. All of this activity is essentially outside of the
control of responsible figures in the university. However, the nature the external traffic
suggests that there are several ports that the university might want to block at the firewall.
In addition, there are some external subnets with a particularly bad record of hostile
activity directed against MY.NET, that are good candidates for blocking at the university
firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.97

Specific recommendations are presented in the “Defensive Recommendations” section.

Statistics
Over the period of 1 June -> 30 June 2001, the dataset exhibits the following alerts.

Alert Count

Watchlist 000220 IL-ISDNNET-990517 153539
Possible trojan server activity 85286
spp_portscan: PORTSCAN DETECTED 20633
SYN-FIN scan! 18728
External RPC call 16291
WinGate 1080 Attempt 10685
Port 55850 tcp - Possible myserver activity - ref. 010313-1 6474
connect to 515 5943
SMB Name Wildcard 5705
High port 65535 tcp - possible Red Worm - traffic 5591
Tiny Fragments - Possible Hostile Activity 4764
Queso fingerprint 3132
High port 65535 udp - possible Red Worm - traffic 2311
Watchlist 000222 NET-NCFC 1760
Back Orifice 1283
TCP SRC and DST outside network 489
Null scan! 350
SUNRPC highport access! 214
NMAP TCP ping! 204
Attempted Sun RPC high port access 134
ICMP SRC and DST outside network 40
Russia Dynamo - SANS Flash 28-jul-00 26
STATDX UDP attack 6
SNMP public access 5
Probable NMAP fingerprint attempt 4
SITE EXEC - Possible wu-ftpd exploit - GIAC000623 2
hax0r boy 010615 1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.98

Alerts generated by the university IDS during the month of June 2001

Over the period of 1 June -> 30 June 2001, the dataset exhibits over a million portscans
sourced from within the university. Fourteen of the total 51 subnets within the university
are responsible for over 10,000 portscans each. Three networks are responsible for over
100,000 portscans. False positives derived from ntpd and within the university dns traffic
have been pruned from these results.

Source Source
Subnet Portscan Subnet Portscan

Count Count

MY.NET.150.* 327191 MY.NET.182.* 290
MY.NET.160.* 193825 MY.NET.201.* 206
MY.NET.98.* 142562 MY.NET.19.* 204
MY.NET.60.* 99759 MY.NET.137.* 188
MY.NET.97.* 96846 MY.NET.181.* 171
MY.NET.70.* 35580 MY.NET.184.* 111

Watchlist

Possible trojan
server activity

spp_portscan

SYN-FIN

External RPC call

WinGate
Possible myserver

connect to 515

Red Worm

SMB Name Wildcard

Tiny Fragments Queso fingerprint

Other

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.99

MY.NET.217.* 33958 MY.NET.109.* 87
MY.NET.104.* 32450 MY.NET.106.* 81
MY.NET.100.* 21560 MY.NET.157.* 50
MY.NET.153.* 21177 MY.NET.85.* 49
MY.NET.218.* 17187 MY.NET.143.* 42
MY.NET.179.* 14397 MY.NET.1.* 35
MY.NET.253.* 12763 MY.NET.115.* 28
MY.NET.140.* 11479 MY.NET.7.* 21
MY.NET.69.* 3213 MY.NET.152.* 20
MY.NET.219.* 1747 MY.NET.5.* 19
MY.NET.6.* 1679 MY.NET.145.* 18
MY.NET.156.* 1627 MY.NET.182.* 16
MY.NET.71.* 1173 MY.NET.107.* 16
MY.NET.138.* 972 MY.NET.105.* 16
MY.NET.162.* 887 MY.NET.17.* 14
MY.NET.110.* 742 MY.NET.99.* 9
MY.NET.53.* 739 MY.NET.163.* 9
MY.NET.111.* 581 MY.NET.15.* 8
MY.NET.75.* 570 MY.NET.101.* 1
MY.NET.130.* 301

Internal subnets responsible for portscans during the month of June 2001

MY.NET.160.*

MY.NET.150.*

MY.NET.98.*

MY.NET.60.*

MY.NET.97.*

MY.NET.70.*

MY.NET.217.*

MY.NET.104.*

MY.NET.100.*
MY.NET.153.*

MY.NET.218.* MY.NET.179.* OtherMY.NET.140.*MY.NET.253.*

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.100

During the period of 1 June -> 30 June 2001, the dataset shows nearly 900,000 portscans
sourced from outside the university directed within. This portscan traffic derives from
1561 IP addresses, 32 of which probed the university more than 10,000 times and 235 of
which probed the university more than 100 times.

This table shows the 32 most active outside portscanners during June 2001. All these
sites probed Universities more than 10,000 times each.

32 Most active Target
Outside Hostile IP name or Organization Porscan IP Address
Port Scanners Count Count

193.253.243.190 APuteaux-102-1-5-190.abo.wanadoo.fr 43135 16983
205.188.233.153 g2lb5.spinner.com 39390 31
213.93.23.218 e23218.upc-e.chello.nl 37543 16718
205.188.233.121 g2lb4.spinner.com 36801 33
61.219.90.189 61-219-90-189.HINET-IP.hinet.net 29123 22811
198.247.29.18 Verio, Inc. (NET-VRIO-198-247) 28851 15908
205.188.233.185 g2lb6.spinner.com 26106 35
205.188.244.121 g2lb1.spinner.com 23898 29
205.188.246.121 America Online, Inc (NETBLK-AOL-DTC) 22848 29
213.56.40.58 ca-ol-montpellier-1-58.abo.wanadoo.fr 21193 14756
139.134.102.192 BDIP-T-010-p-102-192.tmns.net.au 20050 12829
217.81.194.157 pD951C29D.dip.t-dialin.net 19508 13976
203.34.37.133 dialin04.inverell.northnet.com.au 17117 12821
205.188.244.249 g2lb2.spinner.com 16539 28
211.184.223.2 DEOKSAN ELEMENTARY SCHOOL, KR 16226 11258
128.32.131.127 erlik.CS.Berkeley.EDU 16124 16124
217.136.37.76 adsl-42316.turboline.skynet.be 15265 10321
195.190.34.55 main.texnikoi.gr 14451 11004
211.240.28.66 ITBUSINESS, KR 14378 14319
217.58.147.39 Unknown 13940 9814
217.75.226.210 dns.dammedia.es 13894 13567
217.80.206.28 pD950CE1C.dip.t-dialin.net 13735 10201
210.125.151.139 CHUNGBUK NATIONAL UNIVERSITY, KR 13369 10182
211.72.171.75 Grand Tek Technology Co., Ltd., TW 13276 10778
200.181.53.131 Brasil Telecom S.A., BR 12971 12921
210.47.244.15 Dalian Medical University, CN 12648 10319
165.230.53.35 conklina25.rutgers.edu 12575 11526
194.100.55.131 mars.tvk.fi 12368 9582
213.100.81.113 catv-213-100-81-113.swipnet.se 11370 7732
212.179.225.193 bzq-225-193.bezeqint.net 11095 9253
207.236.81.82 Dolisos Canada Inc., CA 10867 5566
192.204.190.76 Verio, Inc. (NET-VRIO-192-204) 10637 10632

Editorial Aside: I am fascinated by the following observation. These data come from an
important American university. I am a system/security administrator in an academic

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.101

research environment, but wholly unrelated to this one. The addresses observed in this
“Analyze This” assignment are many of the same addresses that I encounter probing my
network as well. See quote by Benjamin Franklin in “Detect 4”.

These data reveal two kinds of portscans. All of these portscans involve over 10,000
sessions to various computers on the university net. But, some of the portscans (c.f
APuteaux-102-1-5-190.abo.wanadoo.fr) are scans to over 10,000 IP addresses. These are
obviously portscans that targeted most of the computers in the entire university looking
for one or a very few open ports. On the other hand 6 of these scans are directed at fewer
than 36 computers (c.f . *.spinner.com, and there are 5 such scans). That is to say, these 6
scans are deeply focused on just a few computers and each of those computers is probed
many times.

This table shows the 6 hostile IP addresses that were focused on a few local IP addresses
only. Additionally, it shows the top ten targets of each for those hostile IP addreses.

Targets
Hostile This Top Ten Portscan

IP Address Many IPs Local Targets Count

205.188.233.153 31 MY.NET.108.15 3901
MY.NET.70.92 3635
MY.NET.110.33 3406
MY.NET.178.154 3074
MY.NET.145.197 2844
MY.NET.107.4 2822
MY.NET.110.169 2439
MY.NET.108.13 2324
MY.NET.178.222 1896
MY.NET.145.166 1773

205.188.233.121 33 MY.NET.106.178 3114
MY.NET.178.154 3080
MY.NET.109.62 3062
MY.NET.110.33 3014
MY.NET.104.127 2461
MY.NET.108.13 2224
MY.NET.108.15 2179
MY.NET.107.4 1932
MY.NET.110.169 1862
MY.NET.15.223 1769

205.188.233.185 36 MY.NET.145.166 2463
MY.NET.106.178 2270
MY.NET.15.223 1726
MY.NET.110.33 1671
MY.NET.107.4 1646

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.102

MY.NET.110.169 1445
MY.NET.108.15 1420
MY.NET.178.188 1231
MY.NET.70.92 1220
MY.NET.178.222 1187

205.188.244.121 29 MY.NET.110.169 2332
MY.NET.108.13 2323
MY.NET.145.166 2063
MY.NET.111.30 1944
MY.NET.106.178 1664
MY.NET.110.33 1657
MY.NET.178.222 1604
MY.NET.109.62 1485
MY.NET.178.154 1187
MY.NET.180.76 1073

205.188.246.121 29 MY.NET.178.154 2208
MY.NET.108.13 1922
MY.NET.145.166 1663
MY.NET.110.169 1536
MY.NET.70.92 1460
MY.NET.145.197 1412
MY.NET.106.178 1329
MY.NET.178.222 1285
MY.NET.107.4 1071
MY.NET.110.33 1065

205.188.244.249 28 MY.NET.178.154 1863
MY.NET.70.92 1623
MY.NET.110.169 1353
MY.NET.110.33 1271
MY.NET.145.197 1013
MY.NET.108.13 1001
MY.NET.146.17 953
MY.NET.106.178 947
MY.NET.178.222 884
MY.NET.108.15 772

Another interesting observation is presented in the next table. The 6 most focused hostile
IP addresses were busy scanning the same local addresses. This table show how may
times the top ten targets of the 6 most focused hostile IP addresses were targeted.

Target Incident
IP Address Count

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.103

MY.NET.110.169 6
MY.NET.110.33 6
MY.NET.106.178 5
MY.NET.108.13 5
MY.NET.178.154 5
MY.NET.178.222 5
MY.NET.107.4 4
MY.NET.108.15 4
MY.NET.145.166 4
MY.NET.70.92 4
MY.NET.145.197 3
MY.NET.109.62 2
MY.NET.15.223 2

The following table enumerates the ports that were communicated with in the month of
June 2001. Ports appear in this table, if they were targeted more than 1000 times during
the month.

Count Port Count Port Count Port

2041167 5779 8948 1524 1541 7788
434232 21 7651 27500 1482 8889
292779 28800 6424 7003 1418 113
164497 53 5854 515 1347 7777
164011 6970 5822 47017 1280 27019
127268 1234 4489 6347 1271 41003
115365 27005 4368 9705 1070 28000
100492 27374 4352 55850 1070 27961

63384 6112 3366 27020 1053 21439
54377 23 3357 80 1045 22952
44709 1214 3262 4236 1041 24979
40196 7778 3179 27243 1039 7782
39952 6346 3035 27025 1033 27040
39439 9001 2910 44444 1013 27050
34933 137 2907 4020
30633 111 2696 27960
28836 24452 2247 27018
19379 110 2227 2049
19163 25 2100 7001
18299 1080 1964 27035
14385 4241 1800 2072
11556 1033 1762 27045
10294 31337 1726 27030

9948 13139 1679 1025
9614 7000 1618 2213

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.104

The following table is an enumeration of the important target port traffic for the entire
network during the month of June 2001. Lines in bold are important network ports used
for network traffic (e.g. port 21, ftp). Some of the traffic directed against those ports likely
reflect false positives; however, the remaining alerts represent hostile activity directed
against the most crucial computational resources of the university. In addition, counts are
enumerated for ports of associated with known hostile traffic (e.g SubSeven on port
27374), and finally counts are enumerated for all ports for which the traffic exceeds
10,000 episodes.

Port Count Port Description

0 217 Reserved
20 147 File Transfer [Default Data],
21 434232 File Transfer [Control],
22 218 SSH Remote Login Protocol, SSH Remote Login Protocol
23 54377 Telnet,
25 19163 Simple Mail Transfer, mail
53 164497 Domain Name Server,
67 163 bootps
69 118 Trivial File Transfer,
79 105 Finger,
80 3357 World Wide Web HTTP, World-Wide-Web protocol

110 19379 POP version 3
111 30633 sunrpc SUN Remote Procedure Call
137 34933 NETBIOS Name Service, NetBIOS Name Service
138 157 NETBIOS Datagram Service, NetBIOS Datagram Service
139 107 NETBIOS Session Service, NetBIOS Datagram Service
143 378 Imap
152 104 Background File Transfer Program
161 106 SNMP, Simple Net Mgmt Proto
389 102 Lightweight Directory Access Protocol
481 105 Ph service
529 101 IRC-SERV
530 101 rpc

1001 104 Der Späher / Der Spaeher, Le Guardien, Silencer, WebEx
1033 11556 Unknown Port
1080 18299 Socks, socks proxy server
1214 44709 KAZAA
1234 127268 SubSeven, Infoseek Search Agent
1243 147 SubSeven
2140 28 Deep Throat
4241 14385 VRML Multi User Systems
5779 2041167 Unknown Port
6000 30 X-server

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.105

6112 63384 dtspcd, CDE subprocess control
6346 39952 gnutella-svc
6347 4489 gnutella-rtr
6970 164011 GateCrasher
7778 40196 Interwise
9001 39439 Unknown Port

12345 898 NetBus (and many variants)
12346 22 NetBus
24452 28836 Unknown Port
27374 100492 SubSeven, SubSeven variants, Ramen
28800 292779 Unknown Port
31337 10294 Hi Back Orifice trojan horse
44444 2910 Trojan: Prosiak

Detects by Priority with Descriptions
Presented below are brief descriptions for each of the observed alerts obtained during the
month of June 2001. Within most of the descriptions enumerated below are short tables
of data. Unless otherwise noted, these tables contain two columns. The first column lists
the number of counted detects as described in the paragraph, and the second column lists
the IP address, subnet, or port number associated with the counts. If there is a third
column, it will be there to make a comment or recommendation.

Attempted Sun RPC high port access
Five external cpmputers attempted to communicate with Solaris workstations on the high-
number RPC ports. The two most serious offenders were:

113 205.188.153.101
10 205.188.153.103

They targeted 6 MY.NET computers, especially these:
99 MY.NET.217.18 Investigate for compromise
14 MY.NET.217.38 Investigate for compromise
10 MY.NET.97.237 Investigate for compromise

These communications were sourced on port 4000 and 53, and were targeted to port
32771 (portmapper) on the targets. This is an attempt to look for misconfigured and
vulnerable services in Solaris Unix boxes.

Back Orifice
There were 16 off campus sites that attempted communication with MY.NET computers
through the Back Orifice port. The most serious were:

231 203.107.244.195
180 203.155.244.91
168 203.146.127.236

203.107.244.13128
There were 254 targets on MY.NET for this activity. No computer in MY.NET received
more than 10 scans looking for Back Orifice; these were scans looking for BO. Most of
these attempts look like searches with no positive detects.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.106

connect to 515
There were 22 external IP addresses that attempted to connect with printers on the
MY.NET using the LPD printer service on port 515. Some of this activity occurred
hundreds of time per external address. The top five offenders were:

1422 64.27.27.1
774 150.183.110.179
622 202.109.72.113
450 216.139.196.151
308 161.184.162.126

These were university wide scans, that did not focus on a few subnets of workstations.
There are worms that exploit the lpd deamon, see http://www.sans.org/y2k/040401.htm.
It would seem reasonable for the university to consider blocking access to port 515 from
the outside, in order to stop theses scans.

External RPC call
There were 66 external computers that made RPC calls to on campus computers. The 10
worst offenders were:

1304 202.98.10.70
1243 61.143.127.86
1229 134.198.26.42
1176 211.152.241.1
800 129.49.65.82
759 212.209.79.162
734 24.147.14.159
651 128.95.12.195
614 129.186.213.89
394 24.27.62.134

1279 MY.NET.* computers were targeted in this activity. The activity was not focused on
a few networks or workstations, rather it was spread throughout the university. There
seem to have bee some 17 scans that touched large parts of the network. Of course, ll of
this traffic was directed at port 111. and was motivated by search for vulnerable rpc
services (especially on SUN workstations) that might be subject to buffer overflow and
nfs exported file systems accessible by the world.

hax0r boy 010615
On one occasion the onsite computer MY.NET.60.11:23, attempted an attack on
24.19.166.5.
This is trojan activity.

High port 65535 tcp - possible Red Worm – traffic
There were 72 computers, 22 of which were internal, that attempted to communicate over
port 65535. This port has been associated with Red Worm trojan activity
(http://www.datafellows.com/v-descs/adore.shtml). The worst offenders were:

4918 192.207.123.2
178 MY.NET.253.24 Investigate for compromise

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.107

67 64.12.168.249
52 205.188.156.154
24 MY.NET.6.47 Investigate for compromise
20 MY.NET.6.34 Investigate for compromise

The primary targets were:
4918 MY.NET.99.51 Investigate for compromise
103 MY.NET.253.24 Investigate for compromise

 67 MY.NET.111.139 Investigate for compromise
62 205.188.156.154
60 199.154.149.191
22 195.121.6.51

As part of it’s activity the Red Worm/Adore installs a backdoor, that when activated by a
specific ping packet, will open a back door root shell that listens on port 65535. This scan
is looking for those ports. The targets of this activity should be inspected for evidence of
this compromise.

High port 65535 udp - possible Red Worm – traffic
There are 2311 alerts concerning traffic form or to port 65535, which has lately been
associated with the Red Worm trojan. Most of this traffic derived from the following
sources:

2064 216.169.36.189
30 217.59.83.44
26 MY.NET.70.242 Investigate for compromise
23 195.200.18.28
22 217.59.83.45
13 64.182.96.150
10 212.27.54.28

And most of the traffic has been directed against
2118 MY.NET.70.242 Investigate for compromise
52 MY.NET.163.54 Investigate for compromise
31 MY.NET.160.169 Investigate for compromise
16 MY.NET.69.209 Investigate for compromise
11 64.40.88.100

This traffic has predominately been associated with these ports:

From Ports: To Ports:

Count Port Count Port

2192 65535 2107 27960
52 5314 119 65535
26 27961 23 27961
22 6112 12 53

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.108

Particular attention should be paid to
216.169.36.189:65535 -> MY.NET.70.242:27960 2064 alerts
217.59.83.45:5314 -> MY.NET.163.54:65535 22 alerts
217.59.83.44:5314 -> MY.NET.163.54:65535 30 alerts

Significant traffic has gone in both directions to these MY.NET computers. It is almost
certain that they have been compromised with Red Worm.

ICMP SRC and DST outside network
There were 40 detects of ICMP packets crossing the IDS with source and destination
addresses outside MY.NET.*. This is evidence of packet crafting. It indicates that there
are either compromised workstation(s) or uncompromised workstations operated by
people up to no good. At very least the source addresses are spoofed. It will be difficult
to track down these computers. It might be useful to watch for ingress activity at the
firewall from the computers targeted In these alerts. If the targets return to the university,
their future targets my provide a clue or starting place to look for the internal packet
crafters.

See below in the alert “TCP SRC and DST outside network”. These episodes are similar,
except for use of TCP packets. None of the destination IP address in these incidents are
the same. From the time stamps, it is clear that while some of the activity on the two
workstations occurred on the same day; in only a couple of cases do the time of day
stamps overlap when the activity occurs on the same day. These two alerts likely reflect
activity from an unrelated but similarly compromised workstations in MY.NET.

NMAP TCP ping!
Thirty four exterior sites sent NMAP generated TCP pings to 34 MY.NET computers.
These packets came predominately from:

70 209.135.37.205
22 207.238.101.253
21 202.187.24.3
19 204.167.220.253
16 199.197.130.21

And were targeted mostly at:
72 MY.NET.1.8
14 MY.NET.1.3
13 MY.NET.60.14
12 MY.NET.253.125
12 MY.NET.1.9

MY.NET.100.16512
The TCP ping is a tool use to port scan and perform operating system finger printing.

Null scan!
There were 234 null scans directed against MY.NET. The heaviest traffic came from:

19 62.252.40.153

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.109

10 62.243.160.209
9 202.92.71.208
7 24.7.213.142
7 24.29.186.167
6 24.79.67.190

24.226.169.2285
The most common targets were:

88 MY.NET.70.97
37 MY.NET.217.18
29 MY.NET.150.133
28 MY.NET.70.66
15 MY.NET.150.220
10 MY.NET.70.77
10 MY.NET.219.50
10 MY.NET.218.126
10 MY.NET.150.225

A null scan is a technique whereby TCP packets with no flags are sent to target
computers, in hopes of OS fingerprinting and network reconnaissance. These packets are
set with sequence number equal to 0. This is crafted traffic, that does not normally occur.
Such activity is usually a precursor to a more serious attack.

Port 55850 tcp - Possible myserver activity - ref. 010313-1
This activity derives form 78 sources within and offsite from the University. However the
prime offenders seem to be:

4144 MY.NET.1.6 talking to 128.8.128.180
64.213.55.2 talking to MY.NET.130.1221785

This is trojan activity.
http://www.sans.org/y2k/082200.htm

Possible trojan server activity
There are 3569 alerts associated with trojan activity. The serious hostiles are:

31890 MY.NET.70.38 Investigate for compromise
11073 216.220.167.76
7050 129.170.104.19
6006 MY.NET.146.95 Investigate for compromise
5606 216.220.164.141 Investigate for compromise
2440 205.157.65.4
1293 204.210.139.127

And the most common targets are:
7906 216.220.167.76
6006 205.157.65.4
4675 216.220.164.141
4454 MY.NET.218.82 Investigate for compromise
4144 128.8.128.180
2738 129.170.104.19

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.110

2440 MY.NET.146.95 Investigate for compromise
1786 MY.NET.130.122 Investigate for compromise

The target ports most commonly communicated with are 27374 (SubSeven), 55850
(unknown), 6346 (Gneutella), 2072 (inknown). The MY.Net computers need to be
investigated for possible signs of trojan compromise.

Probable NMAP fingerprint attempt
These off site computers performed a fingerprint probe on MY.NET.

1 24.201.107.143
1 151.112.2.25

This probe targeted:
1 MY.NET.60.8
1 MY.NET.218.22

Additionally the computer MY.NET.100.65:62178, performed a similar fingerprint against
MY.NET.101.141:7 on 2 occasions. The NMAP fingerprint probe uses TCP packets with
improper flag settings. Different operating systems will respond in various ways to such
traffic. Reconnaissance techniques such as this, often precede more serious attacks.

Queso fingerprint

Russia Dynamo - SANS Flash 28-jul-00
The Russian dynamo is a windows trojan that gathers windows configuration information
and sends it to 194.87.6.255 (http://www.sans.org/y2k/072818.htm). It would be prudent
to block this class C address range at the university firewall. The MY.NET computers that
have been communicating with this Russian subnet, and therefore have likely had
configuration and passwd information compromised are the following:

7 MY.NET.182.120 Investigate for compromise
3 MY.NET.104.111 Investigate for compromise
2 MY.NET.70.97 Investigate for compromise

SITE EXEC - Possible wu-ftpd exploit - GIAC000623
The offsite computer 211.235.241.145 attempted to compromise the onsite computer
MY.NET.144.59 on 2 occasions. The ftp server, wu-ftp, has a known vulnerability to root
compromise when used in the “site exec” mode. This computer need to be checked to
insure that the ftp service has not bee compromised
(http://www.sans.org/y2k/063000.htm).

SMB Name Wildcard
There are 1125 external computers that attempted to enumerate open shares on a SAMBA
server running in a Unix system. The probe, which is directed against port 137, is also
used by windows NETbios name service, and can be used to enumerate open shares on
windows systems. The worst offenders were:

1492 165.230.53.35
257 216.63.216.27

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.111

166 216.61.41.249
100 216.67.164.34

This activity manifested itself as scans on the entire MY.NET, and did not focus on a few
subnets or workstations. The university should strongly encourage users to impose
strong passwd on windows resources, as well as limiting the extent to which
computational resources can be read. Through university policy, users should be strongly
encouraged to insure good passwds on openly shared resources, especially Windows
shared directories, and Unix file systems should be exported only to well delineated
subnets within the university. If possible these should be checked by regular university
scanning.

SNMP public access
This alert derives from an attempt by a source to administer or configure another
computer using the SNMP protocol. The usual course of action is for the hostile
computer to exploit the default passwd “public”. The outside IP address 146.242.123.29
initiated SNMP traffic with MY.NET.134.1. This should be investigated to insure passwd
integrity, to insure workstation integrity, and to disable the service if it is unused.

spp_portscan: PORTSCAN DETECTED
The university suffered 20633 portscans in the month of June. The statistics of these
portscans are presented in the previous section.

STATDX UDP attack
This alert reflects an attempt to exploit the Red Hat rpc.statd service
(http://www.sans.org/y2k/120600-1200.htm, http://www.kulua.org/Archives/kulua-
l/200008/msg00159.html, http://www.whitehats.com/info/IDS442). The computer
MY.NET.6.15 was assaulted on port 32776, by these off site computers:

2 212.209.79.162
1 210.90.168.5
1 210.107.198.164
1 139.142.135.118
1 129.49.65.82

This computer needs to be inspected to insure that it has not been compromised.

SUNRPC highport access!
There were 21 off campus sites that attempted to communicate with the Solaris RPC
portmapper port in order to enumerate the high port number services enabled on Sun
boxes. The worst offenders were:

45 129.244.36.81
31 66.26.252.85
19 35.9.37.225

66.26.255.10316
And, the most common targets were port 32771 on:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.112

45 MY.NET.218.78
44 MY.NET.217.198
26 MY.NET.217.18
24 MY.NET.218.146
19 MY.NET.100.153
15 MY.NET.253.52
10 MY.NET.6.7
10 MY.NET.253.51
10 MY.NET.179.78

SYN-FIN scan!
There were over 18,000 SYN-FIN scans directed against the network. All but 4 of them
were directed against port 21 (ftp). The remaining 4 were directed against high ports
(probably looking for trojans) and port 109 (pop2). These crafted packets are designed to
find ftp servers with writable directories, to elicit information from the target, gather
banners, to aid in targeting services for buffer overflow and in OS determination. There
were 3 serious sources for the SYN-FIN probes:

14348 211.240.28.66
4220 61.13.106.35
156 211.114.44.2

These scans did not target specific workstations or subnets, they spanned the entire
university computer system.

TCP SRC and DST outside network
There were 489 detects of TCP packets crossing the IDS with source and destination
addresses outside MY.NET.*. This is evidence of packet crafting. It indicates that there is
either a compromised workstation(s) or uncompromised workstations operated by people
up to no good. At very least the source addresses are spoofed.

Looking at the target ports extracted from these detects, suggests port scanning activity.
All the detects organize into no more than 3 portscans, in addition these specific ports
were communicated with more than 3 times:

80 21 ftp
59 0 Clear evidence of packet crafting
56 5190 AOL
19 8888 Unknown, but associated with special commercial services
10 1863 Unknown, but associated with special commercial services
6 3090 Unknown, but associated with special commercial services
5 1410 Unknown, but associated with special commercial services
4 3088 Unknown, but associated with special commercial services
4 119 news

There is no obvious evidence in this to suggest a possible method of compromise.
However, looking at the source ports:

113 27374 SubSeven

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.113

59 0 Packet crafting
18 6346 Gnutella
18 2006 Unknown
14 1055 Unknown
13 111 Portmapper
12 53 DNS

This is a computer running or compromised with SubSeven. The activity has been going
on all month. This computer(s) need to be found and cleaned.

Watchlist 000220 IL-ISDNNET-990517
There were in excess of 155,000 detects from the 156.226.0.0. and 212.179.0.0 class B
networks. This activity derives especially from 212.179.58.200, 212.179.79.2,
212.179.56.5, 212.179.47.70, and 212.179.72.226. These attacks were directed against
many subnets within the university, however primarily MY.NET.100.*, MY.NET.150.*,
MY.NET.217.*, MY.NET.218.*, MY.NET.70.*, MY.NET.97.*, and MY.NET.98.*.
Particular attention should be paid to the computers MY.NET.150.220, MY.NET.218.198,
MY.NET.97.175, and MY.NET.97.210; these computers suffered nearly 150,000 contacts
with these hostile sources. This activity is associated 62 ports, but especially with ports
1234, 4241, 4236, 4020, 1214, and 41003. One associates port 1243 with SubSeven, but
SubSeven is configurable, and it is commonly seen on 1234. This activity likely reflects
that several of the computers targeted are compromised with SubSeven. And the large
amount of communication clearly indicated that many of these computers are
compromised with some trojan.

Handlers at the Global Incident Analysis Center in their daily detects site, explore data
quite similar to this, and have discussed the prospect that this traffic may be related to
some “good citizen” grey hat who has built a worm that invades PCs through open
shares but only leaves messages of an “instructional” nature. If you believe this
interpretation (and it is the hostile’s interpretation), then you can imagine it to be more
benign than not. I would not treat it that way, and it does not look like the “handlers on
duty” do either. It is a worm, it has no business on your net.
http://www.sans.org/y2k/051900.htm.
http://www.sans.org/y2k/052000.htm

These computers need special attention.
127165 MY.NET.150.220
14369 MY.NET.218.198
2987 MY.NET.97.44
2893 MY.NET.97.175
1268 MY.NET.97.210

Watchlist 000222 NET-NCFC
There were 21 computers on the 159.226.0.0 Class B net, that communicated with
MY.NET during the month. These computers were especially busy:

681 159.226.45.3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.114

607 159.226.41.166
137 159.226.121.37
59 159.226.39.26

159.226.5.9453
This traffic was directed at 19 computers in MY.NET, especially

516 MY.NET.253.42
300 MY.NET.100.56
223 MY.NET.100.83
206 MY.NET.253.43
177 MY.NET.6.7

These addresses are associated with the recent heavy activity from the China. The activity
communicated over the mail port as well as these high number ports 42513, 34164, 8765,
61490, 37027, 1431, 1523, and 1523 on MY.NET targets.

WinGate 1080 Attempt
There were 227 outside sites that attempted WinGate access to MY.NET computers.
These were attempts to communicate with the WinGate Proxy Server. This service,
which occurs on port 1080, can be used to hide the original source from further web
surfing, or intrusive activity by making subsequent computer connection anonymous.
Most of this activity was scan activity looking for available servers. These were the top 5
scanners:

693 208.151.245.252
584 24.200.15.30
527 24.249.236.109
504 24.130.201.49
476 62.54.255.94

The scans were not focused on a few networks or workstations, rather they were
dispersed over the entire university network.

“Top Talkers” Analysis and Link Maps
During the month of June 2001, there were 9,309,042 individual incidents of portscan,
alerts or oos packets. Including both sources and destinations, this traffic involves175,991
distinct IP addresses. The “Top Talkers” in this traffic defined as those with more than
40,000 individual episodes in either portscan, alert or oos logs are the following:

Incident
Count IP Address Net Name or Organization

969712 63.250.213.73 Yahoo! Broadcast Services, Inc.
969712 233.28.65.227 Internet Assigned Numbers Authority (Reserved IP address)
873324 233.28.65.62 Internet Assigned Numbers Authority (Reserved IP address)
487253 63.250.213.119 Yahoo! Broadcast Services, Inc.
386071 63.250.213.124 kfogw.broadcast.com (Yahoo)
291209 MY.NET.160.114 MY.NET
155867 MY.NET.150.220 MY.NET

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.115

155318 MY.NET.150.133 MY.NET
140300 63.250.213.26 Yahoo! Broadcast Services, Inc.
140300 233.28.65.164 Internet Assigned Numbers Authority (Reserved IP address)
140184 MY.NET.150.225 MY.NET
127124 212.179.58.200 NV-PICTUREVISION, Bezeq International
109689 MY.NET.60.16 MY.NET
75475 MY.NET.70.38 MY.NET
51932 205.188.233.153 g2lb5.spinner.com
48201 205.188.233.121 g2lb4.spinner.com
45876 211.240.28.66 ITBUSINESS, KR
45007 193.253.243.190 APuteaux-102-1-5-190.abo.wanadoo.fr
44554 MY.NET.150.204 MY.NET

All of these IP addresses are associated with portscans, alerts or oos packets. Seven of
the IP addresses are internal to the university. Two of the IP addresses are reserved
addresses, and hence derive from packet crafting.

63.250.213.73 and 233.28.65.227
63.250.213.119 and 233.28.65.62
63.250.213.124 and 233.28.65.62
63.250.213.26 and 233.28.65.164
#---
#---- Monthly Communication Stats for 63.250.213.73
#---

#--- There were 1 src address and 1 src port involved with 63.250.213.73

#--- Of which the top ten source addresses were From:
969712 63.250.213.73

#--- The top ten source ports were:
969712 1042

#--- There was 1 des addresses and 1 des port involved with 63.250.213.73

#--- Of which the top ten destination addresses were To:
969712 233.28.65.227

#--- The top ten destination ports were:
969712 5779

#---
#---- Monthly Communication Stats for 233.28.65.62
#---

#--- There were 2 src addresses and 2 src ports involved with 233.28.65.62

#--- Of which the top ten source addresses were From:
487253 63.250.213.119
386071 63.250.213.124

#--- The top ten source ports were:
487253 1036

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.116

386071 1031

#--- There were 1 des addresses and 1 des ports involved with 233.28.65.62

#--- Of which the top ten destination addresses were To:
873324 233.28.65.62

#--- The top ten destination ports were:
873324 5779

#---
#---- Monthly Communication Stats for 63.250.213.26
#---

#--- There were 1 src addresses and 2 src ports involved with 63.250.213.26

#--- Of which the top ten source addresses were From:
140300 63.250.213.26

#--- The top ten source ports were:
126586 1038
13714 1039

#--- There were 1 des addresses and 1 des ports involved with 63.250.213.26

#--- Of which the top ten destination addresses were To:
140300 233.28.65.164

#--- The top ten destination ports were:
140300 5779

This represents nearly one million packets between 2 IP addresses and just 2 ports; it
must be a denial of service attack. The alert messagefor this traffic is “[**] UDP SRC and
DST outside network”. The destination address is a reserved IP address unavailable to the
network; so, the destination must be crafted. There can be no return traffic to these
crafted source IP addresses. The source address is from Yahoo. Packets that really are
from Yahoo to a reserved destination address would not have been seen by the MY.NET
firewall. Therefore the packets must have originated from within MY.NET. Therefore,
the source address (Yahoo) must also be spoofed. This is a compromised MY.NET
computer doing a DOS against the MY.NET firewall, or It is an on campus hostile in
need of some administrative discipline.

Because the packets were found at the MY.NET firewall, then this was a denial of service
attack from a reserved (crafted IP address) 63.250.213.73, directed against 233.28.65.227.
This means that the traffic derives from inside the MY.NET, and has a spoofed source
address and was targeting a yahoo computer.

The five noisiest talkers are undertaking this activity. One pair of IP addresses lasted all
month. A second pair persisted for the first half of the month, and shifted to another pair
of IP addresses for the second half. Because all the IP addresses are crafted in these three
incidents, it is unknown if the this all derives from the same internal MY.NET computer
of more than one. See the link maps below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.117

63
.2

50
.2

13
.7

3
->

233.28.65.227
233.28.65.227

233.28.65.227
233.28.65.227

233.28.65.227

233.28.65.227

233.28.65.227

233.28.65.227

233.28.65.227

233.28.65.227

233.28.65.227

233.28.65.227
233.28.65.227

63
.2

50
.2

13
.7

3
->

233.28.65.62

233.28.65.62
233.28.65.62
233.28.65.62
233.28.65.62
233.28.65.62

233.28.65.62
233.28.65.62
233.28.65.62
233.28.65.62
233.28.65.62

233.28.65.62
63

.2
50

.2
13

.1
24

->

233.28.65.62
233.28.65.62
233.28.65.62

233.28.65.62

233.28.65.62

233.28.65.62

D
en

ia
lo

fS
er

vi
ce

ag
ai

ns
tM

Y.
N

ET
ID

S
Li

nk
M

ap
s

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.118

The computer MY.NET.160.114 needs to be tracked down and looked at. It is port
scanning predominantly from source port 777 has performed 28,220 portscans and 7726
IP target IP addresses against off site computers. It has either been compromised, or
being used by an on campus hacker.

#---
#---- Monthly Communication Stats for MY.NET.160.114
#---

#--- There were 23 src addresses and 25 src ports involved with MY.NET.160.114

#--- Of which the top ten source addresses were From:
189095 MY.NET.160.114

2 217.136.37.76
2 213.93.23.218
2 165.230.53.35
2 129.170.104.19
1 62.243.115.13
1 61.219.90.189
1 217.81.194.157
1 217.58.147.39
1 217.57.19.30

#--- The top ten source ports were:
189090 777

2 4676
2 3563
2 2702
2 2152
2 21
2 1623
2 110
1 4741
1 4717

#--- There were 28220 des addresses and 7726 des ports involved with MY.NET.160.114

#--- Of which the top ten destination addresses were To:
7145 66.92.70.235
6610 24.17.25.146
6196 24.16.155.180
6076 24.43.12.34
5597 65.0.39.132
5097 204.210.138.197
4937 64.180.86.74
4625 24.252.125.150
4236 24.202.11.107

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.119

3957 24.68.214.133
#--- The top ten destination ports were:
115309 27005

7145 27500
3179 27243
1613 2213
1053 21439
1045 22952
1041 24979
996 21089
947 14673
921 21069

MY.NET.150.220
The computer MY.NET.150.220, suffered as a target for most of the month. In addition,
it appeared as a source in many portscans and alerts. It should be looked at for signs of
compromise.

#---
#---- Monthly Communication Stats for MY.NET.150.220
#---

#--- There were 45 src addresses and 815 src ports involved with MY.NET.150.220

#--- Of which the top ten source addresses were From:
127124 212.179.58.200
24191 MY.NET.150.220

35 24.79.67.190
18 212.179.81.12
11 65.2.13.164
8 212.179.30.106
6 211.220.73.227
5 212.179.84.89
4 66.27.72.46
4 62.252.40.27

#--- The top ten source ports were:
94489 3697
32635 3620
22603 28800

323 2345
79 2385
32 1847
13 2314
8 3339
7 6699
7 2390

#--- There were 1487 des addresses and 172 des ports involved with MY.NET.150.220

#--- Of which the top ten destination addresses were To:
127270 MY.NET.150.220

253 62.248.32.111
246 24.156.113.142

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.120

193 137.226.141.184
185 24.160.141.26
182 213.113.113.202
180 65.11.138.153
176 216.232.117.138
172 63.57.141.9
165 62.54.19.179

#--- The top ten destination ports were:
127173 1234
20425 28800

644 8888
322 6257
185 1214
146 7777
123 6699
79 2304
61 1891
53 1702

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.121

65.11.138.153&217addresses

M
Y.

N
ET

.1
50

.2
20

->

216.177.32.98&23addresses

63.64.164.91&34addresses

63.64.164.91&31addresses
63.64.164.91&7addresses

63.64.164.91&41addresses

24.156.113.142&533addresses

63.64.164.91&74addresses
MY.NET.150.220&38addresses

211.72.171.75
24.201.151.97

212.179.58.200

210.125.151.139

65.2.13.164&213.93.23.218

212.179.83.224&211.184.223.2
213.51.0.253

212.179.30.106&55addresses

211.220.73.227&200.207.166.126

65.2.13.164&217.58.147.39

212.179.81.12&124addresses
24.79.67.190&217.75.226.210

194.251.100.186

213.56.40.58&3addresses

212.120.95.64&2addresses

62.252.40.27&65.28.76.185

24.88.242.189&213.73.155.194

212.17.78.79

24.3.98.110&129.170.104.19
165.230.53.35

63.64.164.91&51addresses

62.163.22.155and13addresses
213.46.119.161&22addresses

204.221.88.39&343addresses

Li
nk

Pl
ot

fo
rM

Y.
N

ET
15

0.
22

0

MY.NET.150.133
MY.NET.150.225
MY.NET.150.204

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.122

The computers MY.NET.150.133, MY.NET.150.225, and MY.NET.150.204, suffered as
fate qualitatively similar to MY.NET 150.114. They should likewise be investigated for
signs of compromise.

#---
#---- Monthly Communication Stats for MY.NET.150.133
#---

#--- There were 257 src addresses and 598 src ports involved with MY.NET.150.133

#--- Of which the top ten source addresses were From:
124486 MY.NET.150.133

60 66.72.115.95
59 212.179.4.50
57 212.179.27.6
40 213.10.221.182
38 212.179.82.238
36 212.179.81.36
33 212.179.84.222
23 212.179.83.69
21 212.179.127.40

#--- The top ten source ports were:
122745 28800

588 3060
578 3052
161 1419
70 2382
65
45 2306
23 2474
18 3451
18 1247

#--- There were 1954 des addresses and 523 des ports involved with MY.NET.150.133

#--- Of which the top ten destination addresses were To:
2573 203.168.199.138
2536 24.167.51.143
2389 61.183.120.174
2208 210.200.167.41
2162 200.191.17.58
2137 66.20.77.197
2084 208.180.106.54
2015 24.201.39.17
2009 24.240.221.236
2004 200.171.233.236

#--- The top ten destination ports were:
115537 28800

952 1214
265 3479
189 1664
172 1052
165 1024

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.123

150 1087
145 2296
145 1071

2148142

#---
#---- Monthly Communication Stats for MY.NET.150.225
#---

#--- There were 134 src addresses and 347 src ports involved with MY.NET.150.225

#--- Of which the top ten source addresses were From:
128306 MY.NET.150.225

75 193.226.113.248
32 212.179.81.73
29 212.179.34.114
22 212.179.83.72
18 212.179.83.109
17 212.179.82.216
15 212.179.80.148
14 212.179.81.114
12 212.179.82.147

#--- The top ten source ports were:
85104 28800
18501 2109
17712 2102
4833 3186
1560 2089
255 2354
75 2308
49 3161
45 2379
32 2330

#--- There were 1964 des addresses and 526 des ports involved with MY.NET.150.225

#--- Of which the top ten destination addresses were To:
1365 24.78.135.13
1203 217.136.32.88
1151 24.160.141.26
1086 213.113.113.202
975 213.7.4.114
954 62.211.61.158
950 151.25.142.50
884 24.167.51.143
827 24.226.152.203

 771 61.143.212.186
#--- The top ten destination ports were:
109350 28800

586 1214
458 1026
302 1127
294 1350
292 21024

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.124

290 4390
280 1746
264 1066

1024256

#---
#---- Monthly Communication Stats for MY.NET.150.204
#---

#--- There were 14 src addresses and 16 src ports involved with MY.NET.150.204

#--- Of which the top ten source addresses were From:
37506 MY.NET.150.204

3 217.75.226.210
3 129.170.104.19
2 213.93.23.218
2 213.56.40.58
2 139.134.102.192
1 61.13.106.35
1 217.96.196.117
1 217.81.194.157
1 217.80.206.28

#--- The top ten source ports were:
25530 28800
11967 1403

8 2328
3 2225
3 1969
2 3516
2 3135
2 3084
2 21
1 4653

#--- There were 457 des addresses and 120 des ports involved with MY.NET.150.204

#--- Of which the top ten destination addresses were To:
627 212.156.201.103
603 210.200.167.41
575 204.221.88.39
496 172.146.116.94
484 64.123.58.51
475 63.38.64.110
475 172.160.28.15
465 149.225.84.128
460 202.129.238.207
422 66.37.135.177

#--- The top ten destination ports were:
34455 28800

234 21027
142 4671
120 1024
89 1575
88 1056

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.125

67 1203
67 1189
66 1490
63 1992

212.179.58.200
On 18 June from 11:00 to 18:00, the computer MY.NET.150.220, undertook a lengthy
conversation with 212.179.58.200. This computer is in the “Watchlist 000220 IL-
ISDNNET-990517”. The name of this Israeli company is “NV-PICTUREVISION”. This
suggests the possibility that this is benign streaming video, perhaps audio. Nonetheless,
the computer disserves scrutiny by virtue of it being on the watchlist.

#------ 06/18 11:00 -> 27136 Detects
06/18 11:00 From:

212.179.58.200 27136
06/18 11:00 To:

MY.NET.150.220 27136

#------ 06/18 12:00 -> 16010 Detects
06/18 12:00 From:

212.179.58.200 16010
06/18 12:00 To:

MY.NET.150.220 16010

#------ 06/18 13:00 -> 11787 Detects
06/18 13:00 From:

212.179.58.200 11787
06/18 13:00 To:

MY.NET.150.220 11787

#------ 06/18 14:00 -> 22028 Detects
06/18 14:00 From:

212.179.58.200 22028
06/18 14:00 To:

MY.NET.150.220 22028

#------ 06/18 15:00 -> 11473 Detects
06/18 15:00 From:

212.179.58.200 11473
06/18 15:00 To:

MY.NET.150.220 11473

#------ 06/18 16:00 -> 11180 Detects
06/18 16:00 From:

212.179.58.200 11180
06/18 16:00 To:

MY.NET.150.220 11180

#------ 06/18 17:00 -> 10102 Detects
06/18 17:00 From:

212.179.58.200 10102

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.126

06/18 17:00 To:
MY.NET.150.220 10102

#------ 06/18 18:00 -> 17408 Detects
06/18 18:00 From:

212.179.58.200 17408
06/18 18:00 To:

MY.NET.150.220 17408

205.188.233.153
205.188.233.121
These two outside computers have been aggressively port scanning MY.NET. Perhaps
this subnet should be blocked at the firewall. Port 6970 is associated with the trojan
GateCrasher.

#---
#---- Monthly Communication Stats for 205.188.233.121
#---

#--- There were 1 src addresses and 709 src ports involved with 205.188.233.121

#--- Of which the top ten source addresses were From:
36801 205.188.233.121

#--- The top ten source ports were:
346 23416
154 8414
150 28348
150 22054
148 10220
146 21692
145 13806
141 25718
141 15164
140 22354

#--- There were 33 des addresses and 5 des ports involved with 205.188.233.121

#--- Of which the top ten destination addresses were To:
3114 MY.NET.106.178
3080 MY.NET.178.154
3062 MY.NET.109.62
3014 MY.NET.110.33
2461 MY.NET.104.127
2224 MY.NET.108.13
2179 MY.NET.108.15
1932 MY.NET.107.4
1862 MY.NET.110.169
1769 MY.NET.15.223

#--- The top ten destination ports were:
36608 6970

186 6972
4 7084

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.127

2 7080
70821

#---
#---- Monthly Communication Stats for 205.188.233.153
#---

#--- There were 1 src addresses and 778 src ports involved with 205.188.233.153

#--- Of which the top ten source addresses were From:
39390 205.188.233.153

#--- The top ten source ports were:
225 26512
191 15860
159 8562
157 27794
155 17530
154 27558
153 19084
148 16208
144 16902
144 16206

#--- There were 31 des addresses and 2 des ports involved with 205.188.233.153

#--- Of which the top ten destination addresses were To:
3901 MY.NET.108.15
3635 MY.NET.70.92
3406 MY.NET.110.33
3074 MY.NET.178.154
2844 MY.NET.145.197
2822 MY.NET.107.4
2439 MY.NET.110.169
2324 MY.NET.108.13
1896 MY.NET.178.222
1773 MY.NET.145.166

#--- The top ten destination ports were:
39247 6970

143 6972

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.128

20
5.

18
8.

23
3.

12
1-

>

MultipleelementsofMY.NET

MultipleelementsofMY.NET
MultipleelementsofMY.NET
MultipleelementsofMY.NET

MultipleelementsofMY.NET

MultipleelementsofMY.NET

MultipleelementsofMY.NET

MultipleelementsofMY.NET

MultipleelementsofMY.NET

MultipleelementsofMY.NET
MultipleelementsofMY.NET

20
5.

18
8.

23
3.

15
3-

>

MultipleelementsofMY.NET

MultipleelementsofMY.NET
MultipleelementsofMY.NET

MultipleelementsofMY.NET

Po
rts

Sc
an

A
ct

iv
ity

fro
m

*.
sp

in
ne

r.c
om

211.240.28.66
193.253.243.190
These were very large attempts to communicate with ftp services in MY.NET by
211.240.28.66 and 193.253.243.190. There were 10s of thousands of ftp attempts, a few
windows netbios attempts, and they were targeted to over 58,000 IP addresses within
MY.NET.

#---

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.129

#---- Monthly Communication Stats for 211.240.28.66
#---

#--- There were 3 src addresses and 81 src ports involved with 211.240.28.66

#--- Of which the top ten source addresses were From:
45310 211.240.28.66

4 169.254.101.152
2 MY.NET.150.139

#--- The top ten source ports were:
45233 21

4 137
1 2910
1 2907
1 2904
1 2846
1 2815
1 2799
1 2789
1 2753

#--- There were 16589 des addresses and 2 des ports involved with 211.240.28.66

#--- Of which the top ten destination addresses were To:
6 MY.NET.105.91
6 211.240.28.66
5 MY.NET.100.59
5 MY.NET.100.165

 5 MY.NET.100.153
4 MY.NET.99.104
4 MY.NET.71.15
4 MY.NET.70.92
4 MY.NET.70.68
4 MY.NET.70.27

#--- The top ten destination ports were:
45312 21

1374

#---
#---- Monthly Communication Stats for 193.253.243.190
#---

#--- There were 1 src addresses and 3944 src ports involved with 193.253.243.190

#--- Of which the top ten source addresses were From:
43135 193.253.243.190

#--- The top ten source ports were:
31 3538
30 3542
29 3540
28 3554
28 3536
28 3532
26 3959

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.130

26 3895
26 3582
26 3566

#--- There were 16983 des addresses and 1 des ports involved with 193.253.243.190

#--- Of which the top ten destination addresses were To:
3 MY.NET.99.97
3 MY.NET.99.95
3 MY.NET.99.93
3 MY.NET.99.91
3 MY.NET.99.87
3 MY.NET.99.8
3 MY.NET.99.77
3 MY.NET.99.75
3 MY.NET.99.71
3 MY.NET.99.65

#--- The top ten destination ports were:
43135 21

The following table enumerates the mal-formed TCP packet flags incident upon MY.NET
during the month of June 2001. Most analysts know about SF, null scans, Christmas
trees, and reserved bits; but this is an impressive list of exotic flag settings. These results
are obtained from the portscans and OOS files.

Alert Mal Formed Alert Mal Formed Alert Mal Formed Alert Mal Formed
Count Flags Count Flags Count Flags Count Flags

44511 **SF**** 16 21S*R*AU 11 *1SF**** 7 ***FRPAU
7726 21S***** 15 **SF**AU 11 *1SF**AU 7 *1SF***U
4396 RESERVEDBITS 15 **SFRPA* 11 *1SFR*AU 7 *1SF**A*
460 ******** 15 21*FR*** 11 2*SFR*** 7 *1SFRPA*
94 ***FR*A* 15 21S***AU 11 21*F**A* 7 *1SFRPAU
93 **S*R*A* 15 21S**P*U 11 21*FRP** 7 2*SF**A*
79 **SFRP*U 15 21S*R*** 11 21S**PA* 7 21**RP**
37 ***F**** 15 21SF**** 10 ***FRP** 7 21*FR**U
28 ****RP** 15 21SF*PA* 10 *1SFRP*U 7 21S***A*
28 **SFR**U 15 21SF*PAU 10 21**RPAU 7 21S**PAU
25 2*SFR*AU 15 21SFR**U 10 21*F***U 7 21S*RP**
25 21*F**** 15 21SFR*AU 10 21*FR*A* 7 21S*RP*U
24 ***FR*** 15 21SFRPAU 10 21*FRPA* 7 21SF**AU
24 21*F*PA* 14 2*SFRPA* 10 21SF**A* 6 *****P*U
23 **SF***U 14 21S*R**U 9 *1SF*P** 6 ***FRP*U
23 **SF*PAU 14 21S*RPA* 9 *1SF*PA* 6 **S*RP**
23 2*SFRP*U 14 21S*RPAU 9 *1SFR*A* 6 *1SFR***

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.131

23 21*FR*AU 13 *1SF*P*U 9 2*SFR*A* 6 21**R***
21 **S*RP*U 13 2*SF*PA* 9 2*SFRPAU 6 21S*R*A*
21 **SF*PA* 13 2*SF*PAU 9 21*F**AU 5 **S****U
21 2*SF***U 13 21*F*P** 9 21*F*P*U 5 **S**PA*
20 21*FRPAU 13 21SF***U 9 21*FRP*U 5 **S*RPA*
19 ***F*P*U 13 21SFR*A* 9 21SF*P** 5 **S*RPAU
19 **SF**A* 12 *******U 9 21SFR*** 4 **S**P**
19 **SF*P** 12 **S***AU 9 21SFRP** 4 **S**P*U
19 **SFR*** 12 **SFR*AU 9 21SFRP*U 4 **S*R*AU
19 2*SF**** 12 *1SFRP** 9 21SFRPA* 3 ****R**U
18 ****RP*U 12 2*SF**AU 8 **SFRP** 3 ****R*AU
18 ***FRPA* 12 2*SF*P*U 8 *1SFR**U 3 ****RPAU
18 21**RPA* 12 21*F*PAU 8 2*SF*P** 3 ***F***U
17 **SF*P*U 12 21S**P** 8 2*SFR**U 3 ***FR**U
17 2*SFRP** 11 ***F*P** 8 21**R**U 3 **S**PAU
17 21**R*AU 11 **S*R*** 8 21**RP*U 2 ***FR*AU
16 *1SF*PAU 11 **SFR*A* 8 21S****U 2 **S*R**U
16 21**R*A* 11 **SFRPAU 8 21SF*P*U

In addition to traffic with mal-formed TCP flags directed at the network, there was
significant amount of traffic found with exotic TCP options set. Some particularly
aggregious example are shown below:

=+
06/22-18:30:59.182025 192.168.1.1:0 -> 216.235.163.151:0
TCP TTL:93 TOS:0x94 ID:1062
IP Options => ^@EOL EOL EOL EOL
21S**P** Seq: 0xAFE6500 Ack: 0xEFF8E700 Win: 0x0
TCP Options => EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL
EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL EOL EO
L EOL EOL EOL EOL EOL EOL EOL

=+
06/05-02:19:29.367812 24.29.186.167:3872 -> MY.NET.217.62:61327
TCP TTL:18 TOS:0x0 ID:17547 DF
*1SFRP** Seq: 0xF18FF18F Ack: 0xF28FF48F Win: 0xFC8F
TCP Options => SackOK SackOK WS: 15 EOL CCECHO: 583322423 CCECHO: 583322423
CCECHO: 583322423 CCECHO: 583322423 CCECHO: 583322423
CCECHO: 583322423 CCECHO: 583322423 CCECHO: 583322423 CCECHO: 583322423

CCECHO: 583322423 CCECHO: 583322423 CCECHO: 583322423 CC
ECHO: 583322423 CCECHO: 583322423 CCECHO: 583322423 CCECHO: 583322423
CCECHO: 583322423 CCECHO: 583322423 CCECHO: 583322423 CCECH
O: 583322423 CCECHO: 583322423 CCECHO: 583322423 CCECHO: 583322423 CCECHO:
583322423 CCECHO: 583322423 CCECHO: 583322423 CCECHO:
583322423 CCECHO: 583322423 CCECHO: 583322423 CCECHO: 583322423 CCECHO:
583322423 CCECHO: 583322423 CCECHO: 583322423 CCECHO: 583
322423 CCECHO: 583322423 CCECHO: 583322423

=+
06/22-07:31:03.671206 211.220.73.227:2096 -> MY.NET.150.220:1234

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.132

TCP TTL:112 TOS:0x0 ID:1931 DF
*1SFR*AU Seq: 0x920001 Ack: 0xAD2022C3 Win: 0x5010
TCP Options => Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt
45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Op
t 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 45
Opt 45 Opt 45 Opt 45 Opt 45 Opt 45 Opt 4

Opt 45 Opt 45 Opt 45 Opt 45 Opt 455

=+
06/12-13:52:49.696675 62.180.222.141:32798 -> MY.NET.150.133:9824
TCP TTL:112 TOS:0x0 ID:60503 DF
21SF***U Seq: 0xFAE0E80D Ack: 0x11D4DEC1 Win: 0xA522
TCP Options => Opt 255 (11): A6B9 8651 8C09 A981 82B3 Opt 179 Opt 179 Opt 179 Opt 179
Opt 179 Opt 179 Opt 179 Opt 179 Opt 179 Opt
179 Opt 179 Opt 179 Opt 179 Opt 179 Opt 179 Opt 179 Opt 179 Opt 179 Opt 179 Opt 179 Opt

179 Opt 179 Opt 179 Opt 179 Opt 179 Opt
179 Opt 179 Opt 179 Opt 179 Opt 179 Opt 179 Opt 179 Opt 179 Opt 179 Opt 179 Opt 179 Opt
179 Opt 179 Opt 179

This traffic is represetative of that used by hostiles to exercise TCP stacks in order to
gather information, e.g OS finger printing, or damage or to confuse services and perhaps
disrupt rsevices running on potential targets.

Defensive Recommendations
If the university does not have one, it needs an “appropriate computer use” policy that is
unambiguous and rigorously enforced. A few high profile disciplinary actions on the
part of the university might well help in discouraging hostile activity that might emanate
from personnel and students within the university.

In my institution, we use the SARA scanning tools (http://www-
arc.com/sara/index.shtml) to make regular scans of the entire network looking for
vulnerable services and misconfigured computational resources. Tools like this may
enable institutions like universities to proactively deal with security problems before they
develop into security incidents. This course of action is high-maintenance, intrusive on
sysadmins limited time resources, and requires significant additional personnel resources.
It is, however, effective in discovering and addressing problems before they become
crises.

I recommend that certain ports be blocked at the university firewall. Certainly the RPC
ports (111) and perhaps the lpd port (515).

There are several inside the university IP subnets associated with a great deal of hostile
activity as seen by the IDS. There are also a large number of alerts that have derived from
that traffic These subnets are the sources of significant internally sourced portscan and
hostile activity. Perhaps some closer supervision of these nets is warranted.

MY.NET.150.*
MY.NET.160.*
MY.NET.98.*

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.133

MY.NET.60.*
MY.NET.97.*

The following computers, in particular, have been involved in significant hostile traffic as
detected by the IDS. This activity suggests that many of these computers may be root
compromised. I recommend that all these computer be looked at for signs of
compromise or trojan infection.

MY.NET.104.111 MY.NET.150.133 MY.NET.253.24
MY.NET.106.178 MY.NET.150.133 MY.NET.6.34
MY.NET.107.4 MY.NET.150.204 MY.NET.6.47
MY.NET.108.13 MY.NET.150.220 MY.NET.60.16
MY.NET.108.15 MY.NET.150.225 MY.NET.69.209
MY.NET.109.62 MY.NET.160.114 MY.NET.70.242
MY.NET.110.169 MY.NET.160.169 MY.NET.70.38
MY.NET.110.33 MY.NET.163.54 MY.NET.70.92
MY.NET.111.139 MY.NET.178.154 MY.NET.70.97
MY.NET.130.122 MY.NET.178.222 MY.NET.97.175
MY.NET.144.59 MY.NET.182.120 MY.NET.97.210
MY.NET.145.166 MY.NET.218.198 MY.NET.99.51
MY.NET.145.197 MY.NET.218.82
MY.NET.146.95 MY.NET.253.24

These external IP addresses have undertaken enormous, apparently hostile, traffic with a
few internal IP addresses.. Perhaps they should be blocked at the firewall.

156.226.0.0
193.253.243.190
205.188.233.121
205.188.233.153
205.188.233.185
205.188.244.121
205.188.244.249
205.188.246.121
211.235.241.145
211.240.28.66
212.179.0.0
212.179.58.200
212.179.79.2
94.87.6.255

Analysis Procedure

“If the only tool you have is a hammer, you tend to see every problem as a nail.”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.134

. . . . Abraham Maslow

I am good at shell scripting, awk, sed, vi, and Microsoft Excel. I chose those tools to
“Analyze This”. Apart from the aggravating process of transferring data back and forth
between my linux IDS analysis box where I run snort, and my office PC on which I run
Excel, there is a fundamental limitation to Excel in that it that permits only 65,536 rows of
data. I can easily generate the comma separated files for immediate input of tcpdump
files into Excel spreadsheets. But Excel proved insufficient to the task of looking at the
large blocks of data associated with “analyze this”. In the end, I only used Excel for
preparing columns of data and graphs for this report.

It may be possible to use Excel on my much smaller network (508 IP addresses soon
double). However, the ftp file transfer is a considerable headache, and I can easily
imagine running into future problems associated with the Excel row constraints.

Over the last three months and throughout the GIAC “Intrusion Detection In Depth”
course especially in the snort portion, I learned of what seems to be a sensible avenue of
approach to this problem in using SQL databases. These exist for Linux, and perhaps I
need to put learning about databases on my B+ list of things to do. (It is something I have
actively avoided for years….alas.)

I built shell scripting tools to analyze my own tcpdump/snort data, and used them for this
exercise. The tools went through two or three revisions, as I first wrote them for analysis
of data on my own network, then rewrote them for the “Analyze This“ project, and found
out that the improvements were useful for work back on my own network. (This is a
good thing.)

I wrote scripts to:
Gather all the portscans, alerts, and oos files into three large single files •
(accumulated_portscans, etc).
For entire data set (all 3 accumulated_* files), gather all the src and dst ports, and •
the src and dst IP addresses; sort and count them.
Gather each alert message; sort and count them.•
For each alert message, Gather all the src and dst ports and IP addresses •
associated with that port; sort and count them.
I built a complicated script that follows one IP address through out the one month •
period. The purpose of this script was to help in building the time line link maps.
It extracts all the detects from alerts, portscans, and oos files for one IP as either
source or dst. While the IP address is a source, it gathers, sorts, and counts the dst
IP addresses and ports. While the IP address is the destination, it gathers, sorts,
and counts the src IP addresses and the dst ports. In addition it does this three
times and creates three separate reports. The first report provides monthly grand
totals for all detects associated with the “IP address of interest”; the second
provides day by day sub totals of the same information; and the third file provides
hour by hour sub totals. These files are rich in detail that permits one to step back

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.135

and get a good overview of the activity of one address. I was astonished at how
much clearer my understanding of the data became after doing this.

The results of this script have suggested to me the outline of an interesting project
that I will be working on in the very near future. I think that I can expand the
utility of this tool to obtain iterative information. By which I mean, select an IP
address -> gather its monthly, daily, and hourly statistics -> this will suggest other
interesting IP address for further study -> return to step 1. Then figure out a way
to automatically graph the multi-IP address information (which I failed to do for
the “Analyze This” exercise). As much as I love and use Excel, it’s graphing
capabilities are terrible (really, really terrible). But I think I can create useful
output files that can be imported into Matlab (a high-end number crunching
platform that I use). Matlab has grown-up graphing capabilities that I think I can
use it to present this information in a clarifying manner. More important, I think I
can make this a nearly automated tool, that can be used on the fly when an
interesting IP address pops up in the daily snort files.

In addition I have built some other tools, whose utility have grown as they were built for
my own use, modified for “Analyze This”, and/or rebuilt for my use>

processIP: This script is basically a “grep IPaddress detect.logs” command. There •
are multiple lines per detect issues, and there are date format translation issues
requiring sed, awk etc. So it is a bit more complicated than the grep command
suggests.
processPortscan: Gathers all portscans for a target portscan.log; then it sorts and •
segregates by src IP, sorts by time, performs nslookup. This script identifies and
organizes, and isolates all portscan activity from a portscan.log. It makes the
portscan.log readable and useful.
processAlert: This script greps for the “[**]” element of an alert file. It sorts and •
counts alerts. It is the first script I run every morning to see what happened
yesterday.
cull: This script is always run following processAlert. It gathers all the alerts •
associated with an alert header.

For example:

What alerts happened on July 20?

[root@liar ids]# ./processAlert July20
332 [**] ICMP Destination Unreachable [**]
318 [**] ICMP Time Exceeded (Undefined Code!) [**]
27 [**] SCAN-SYN FIN [**]

 14 [**] RPC portmap request mountd [**]
 14 [**] RPC Info Query [**]
 6 [**] MISC traceroute [**]
. . . And another 30 lines . . .

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.136

There were 27 SYN-FIN detects that occurred on July 20. Who is responsible for
this?

[root@liar ids]# ./cull "SCAN-SYN FIN" July20
[**] SCAN-SYN FIN [**]
07/20-19:35:23.104940 211.251.138.129:600 -> mynet.org.4.33:600
TCP TTL:15 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x5E77F2E Ack: 0xB674CE Win: 0x404 TcpLen: 20

[**] SCAN-SYN FIN [**]
07/20-19:35:24.884754 211.251.138.129:600 -> mynet.org.4.122:600
TCP TTL:15 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x61EE5A32 Ack: 0x2AC80AC7 Win: 0x404 TcpLen: 20

. . . And there are 25 more just like these . . .

Appendix

It is “padding” to present all the scripts; I think it is more important to describe the
functionality of the scripts as done above. I will show only one so that the reader can see
the way that all of these scripts work. The script I have selected is processPortscan. I use
it several times a day, it is for all practical purposes finished. Note: I have the habit of
writing code with long lines on my 20 inch monitor. It does not copy and paste well into
the 8.5x11 inch word processing format. I tried to edit this with “\” in the right places. I
hope they are all there.

[root@liar ids]# cat processPortscan
#!/bin/sh

#--- Sanity Checking
if [$# -ne 1]
then

echo "
This script organizes portscan.log into a more useful document.

Grammar:
./processPortscan July04

"
exit

fi

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.137

if [! -d /home/ids/$1]
then

echo "
Time to work on out cluefulness skills....

The directory /home/ids/$1,
actually has to exist, for this to work.

./processPortscan July04
"
exit

fi

source=$1
dir="/home/ids"

#----- Main ---
cp /dev/null acc_portscan.log
cat $dir/$source/portscan.log > $dir/acc_portscan.log 2> /dev/null

#--- For now we do not deal with scans from inside network
cat $dir/acc_portscan.log | awk '{if ($4 !~ /mynet.org.4./) {print \ $0}}' > $dir/foo_not_from_4
cat $dir/foo_not_from_4 | awk '{if ($4 !~ /mynet.org.5./) {print $0}}' \ > $dir/foo_not_from_4_or_5

#--- Make sure there are no double counts
sort $dir/foo_not_from_4_or_5 | uniq > $dir/portscan.log_sorted

if [-f $dir/acc_portscan.log] ; then rm $dir/acc_portscan.log; fi
if [-f $dir/foo_not_from_4] ; then rm $dir/foo_not_from_4 ; fi
if [-f $dir/foo_not_from_4_or_5] ; then rm $dir/foo_not_from_4_or_5 \ ; fi

#--- There are repeated scans by the same IP address, gather them together

cat $dir/portscan.log_sorted | gawk '{print $4}' | gawk -F: '{print $1}' | sort | uniq >
$dir/temp_hostile

cp /dev/null $dir/portscan.log_sorted_colated

for hostile in `cat $dir/temp_hostile`
do
 echo "#---- Portscan from: $hostile ---------------------------" >> $dir/portscan.log_sorted_colated

nslookup $hostile > temp_nslookup 2> /dev/null

egrep -v "^Server:" $dir/temp_nslookup | egrep -v "^Address:" | \ sed 's/^/ /' >>
$dir/portscan.log_sorted_colated

echo "" >> $dir/portscan.log_sorted_colated

grep $hostile $dir/portscan.log_sorted | grep "^Jan " >> \ $dir/portscan.log_sorted_colated
grep $hostile $dir/portscan.log_sorted | grep "^Feb " >> \ $dir/portscan.log_sorted_colated
grep $hostile $dir/portscan.log_sorted | grep "^Mar " >> \ $dir/portscan.log_sorted_colated
grep $hostile $dir/portscan.log_sorted | grep "^Apr " >> \ $dir/portscan.log_sorted_colated
grep $hostile $dir/portscan.log_sorted | grep "^May " >> \ $dir/portscan.log_sorted_colated
grep $hostile $dir/portscan.log_sorted | grep "^Jun " >> \ $dir/portscan.log_sorted_colated

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.138

grep $hostile $dir/portscan.log_sorted | grep "^Jul " >> \ $dir/portscan.log_sorted_colated
grep $hostile $dir/portscan.log_sorted | grep "^Aug " >> \ $dir/portscan.log_sorted_colated
grep $hostile $dir/portscan.log_sorted | grep "^Sep " >> \ $dir/portscan.log_sorted_colated
grep $hostile $dir/portscan.log_sorted | grep "^Oct " >> \ $dir/portscan.log_sorted_colated
grep $hostile $dir/portscan.log_sorted | grep "^Nov " >> \ $dir/portscan.log_sorted_colated
grep $hostile $dir/portscan.log_sorted | grep "^Dec " >> \ $dir/portscan.log_sorted_colated
echo "" >> $dir/portscan.log_sorted_colated
echo "" >> $dir/portscan.log_sorted_colated

done

if [-f $dir/temp_nslookup] ; then rm $dir/temp_nslookup ; fi
if [-f $dir/temp_nslookup] ; then rm $dir/portscan.log_sorted ; fi
if [-f $dir/portscan.log_sorted] ; then rm $dir/portscan.log_sorted \ ; fi
if [-f $dir/temp_hostile] ; then rm $dir/temp_hostile ; fi

cat $dir/portscan.log_sorted_colated | more

Bibliography

http://ouah.bsdjeunz.org/George_Bakos.html
http://www-arc.com/sara/index.shtml
http://www.datafellows.com/v-descs/adore.shtml
http://www.kulua.org/Archives/kulua-l/200008/msg00159.html
http://www.research.umbc.edu/~andy
http://www.sans.org/y2k/040401.htm
http://www.sans.org/y2k/051900.htm
http://www.sans.org/y2k/052000.htm
http://www.sans.org/y2k/063000.htm
http://www.sans.org/y2k/082200.htm
http://www.sans.org/y2k/120600-1200.htm
http://www.snort.org
http://www.whitehats.com/info/IDS442

