
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth

GIAC (GCIA) Gold Certification

!"#$%&'() *#+,-./01%(2&3(4#/05*,67(55/2-(898(2
!:;/+%&'(<%0(=.(>,?,&(

!--,@#,:'(A20"2&6(BC#$(BDDC(

!?+#&2-#(

This is a short guidebook for network security analysts who want to find answers about

their networks and systems quickly. Using open-source software and off-the-shelf

components, an outstanding Check Point firewall log analysis platform can be built for

well under $10,000 for an enterprise, or as little as $1,000 or less for more modest needs.

Though the focus is on streaming near real-time Check Point firewall logs, the principles

herein can be applied to any firewall, or virtually any other log source. This document

provides real-world examples of ad-hoc investigations, watchdog anomaly alerting, host

profiling, and much more. Through hands-on application of skills every network security

analyst needs anyway, raw data can be sifted in every way imaginable. The resulting

experience is invaluable.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 2
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

1. Introduction
Firewall log analysis serves as a critical component of information security. It

ranks in the “Top 5 Essential Log Reports” by SANS (Brenton et al., 2009). Many major

information security standards, certifications, and laws have strict requirements for log

keeping, monitoring, and analysis; including NIST (National Institute of Standards and

Technology) sp800-41.pdf (Scarfone & Hoffman, 2009), HIPAA (Health Insurance

Portability and Accountability Act) 164.308(a)(1)(ii)(D) – Information System Activity

Review (HHS, 2007), CFR (Code of Federal Regulations) Title 16: Commercial

Practices, Part 313 Standards for Safeguarding Customer Information (e-CFR., 2009),

and more.

Outside of legal or compliance issues, other references provide many good

reasons to collect and analyze firewall logs. Barry Anderson cites the need for auditing

and optimizing firewall rules in Check Point firewalls - rulebase cleanup and

performance tuning (Anderson, B., 2008). Matt Willard proposes that firewall log

analysis is critical to defense-in-depth in Getting the Most out of your Firewall Logs

(Willard, J., 2003). CERT emphasizes log audit in the “Importance of Accountability” in

Defense in Depth: Foundations for Secure and Resilient IT Enterprises (May et al.,

2006).

This paper is a detailed schematic of an inexpensive firewall log analysis platform

that has proved its worth in two years of online production use on a ten-thousand-host

network. The described system has been a critical asset for both intrusion detection and

incident handling, often providing details about an incident that was missed by other

sensors. All of the following examples contain representative queries and scripts from

actual events and incidents where the system was pivotal in their analysis and handling.

2. Loggrabber System Concepts
2.1. Architecture

The server featured herein is an off-the-shelf system running Debian (Debian,

2009) with the MySQL (MySQL, 2009) database, Apache webserver (Apache.org, 2009),

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

Check Point Firewall Log Analysis In-Depth 3

unixODBC (Gorham, 2009), and a customized version of fw1-loggrabber (Fellhauer,

2005). Using the Checkpoint OPSEC LEA (Log Export API) transport (OPSEC, 2009),

log data is pulled securely at near real-time speed into the MySQL database.

The core to the system is a 64-bit Linux server with the fastest CPU and as much

RAM and disk space as budget allows. A 64-bit CPU and operating system are

fundamental components for performance sake. Without them, applications will be

limited to how much RAM they can use (Shah, 2004). The more RAM that MySQL can

use, the less it will have to write to the disks during queries. Then, more disks mean

more storage, faster reads, and possibly faster writes (depending on the RAID

architecture).

Here is a simple diagram of the firewall log data flow from the Check Point

management server to the MySQL database:

The fw1-loggrabber application on the database server pulls the Check Point log

transactions via an SSL connection, then passes the data through UnixODBC to MySQL

which stores it in the database.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

Check Point Firewall Log Analysis In-Depth 4

The following diagram shows the relationship between the firewall source logs

and the target database analysis server:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 5
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

2.2. fw1logs - the database
The circa 2005 code for fw1-loggrabber is excellent for spooling the firewall log

data to flat file databases for text searches or systems such as Splunk (Splunk, 2009), but

not necessarily ideal for dedicated connection analysis.

! In ‘online’ mode, which is the real-time streaming of data, all of the fields of the

firewall record are fetched. Many of the fields of the record are devoted to

VPN, IPS, and other features that are not essential for connection tracking and

analysis.

! The original fw1-loggrabber code was written before Check Point created the

field “rule_uid”, which is the only permanent identifier for a rule.

! Some original field data types pose problems, such as numeric port numbers that

can be transposed from NULL to ZERO.

! The only index created is the record number field (fw1number), which slows

searches on other critical fields considerably.

After discovering the above features early in the developmental phase of this

project, several changes were made to the source code to optimize the program for

connection analysis.

! All of the fields not strictly related to a firewall connection were eliminated and

the “rule_uid” field was added. This reduced the record length from 107 fields

to just 13.

! All of the fields except the record number and date-time were defined as

character fields.

! Indexes were created for the date-time, source IP (Internet Protocol) address,

destination IP address, and destination port (service) fields to speed up searches.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 6
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

To demonstrate the field definition situation in the original source code, observe

the sample output below from a stock fw1-loggrabber executable with its 107 defined

fields:

E(1FG0"H?,&(E(1FG#/H,(((((((((((((E(1FG2-#/%0(E(1FG%&/5((((((((E(1FG2*,&#(E(1FG/18:/&(E(1FG/1802H,(E(1FG@&%:"-#(((((((((E(1FG+&-(((((((((E(
1FG+8@%&#(E(1FG:+#(((((((((E(1FG+,&;/-,(E(1FG#-@1*25+(E(1FG@&%#%(E(1FG&"*,(E(1FGI*2#,+&-(E(1FGI*2#,:+#(E(1FGI*2#,+@%&#(E(
1FGI*2#,:@%&#(E(1FG02#8&"*,0"H(E(1FG&,+%"&-,(E(1FG,*2@+,:(E(1FG@2-3,#+(E(1FG?6#,+(E(1FG&,2+%0(E(1FG+,&;/-,802H,(E(
1FG25,0#(E(1FG1&%H(E(1FG#%(E(1FG+6+8H+5+(E(1FG1F8H,++25,(E(1FG/0#,&02*8-2(E(1FG+,&/2*80"H(E(1FG:0(E(1FG/-H@(E(
1FG/-H@8#6@,(E(1FG/-H@8#6@,B(E(1FG/-H@8-%:,(E(1FG/-H@8-%:,B(E(1FGH+5/:(E(1FGH,++25,8/01%(E(1FG*%58+6+8H,++25,(E(
1FG+,++/%08/:(E(1FG:0+8J",&6(E(1FG:0+8#6@,(E(1FG+-$,H,(E(1FG+&-3,6/:(E(1FG:+#3,6/:(E(1FGH,#$%:+(E(1FG@,,&852#,F26(E(
1FG/3,(E(1FG/3,8/:+(E(1FG,0-&6@#/%0812/*"&,(E(1FG,0-&6@#/%0812/*8&(E(1FG-%%3/,/(E(1FG-%%3/,&(E(1FG+#2#/H,(E(
1FG+,5H,0#8#/H,(E(1FG-*/,0#8/08@2-3,#+(E(1FG-*/,0#8%"#8@2-3,#+(E(1FG-*/,0#8/08?6#,+(E(1FG-*/,0#8%"#8?6#,+(E(1FG-*/,0#8/08/1(E(
1FG-*/,0#8%"#8/1(E(1FG+,&;,&8/08@2-3,#+(E(1FG+,&;,&8%"#8@2-3,#+(E(1FG+,&;,&8/08?6#,+(E(1FG+,&;,&8%"#8?6#,+(E(1FG+,&;,&8/08/1(E(
1FG+,&;,&8%"#8/1(E(1FGH,++25,(E(1FG02#82::&"*,0"H(E(1FG"+,&(E(1FG+&-02H,(E(1FG;@08"+,&(E(1FG%H(E(1FG%H8H,#$%:(E(
1FG2++/50,:8/@(E(1FGH2-(E(1FG2##2-3(E(1FG2##2-38/01%(E(1FG-*"+#,&8/01%(E(1FG:"&/058+,-(E(1FG1&25H,0#+8:&%@@,:(E(1FG/@8/:(E(
1FG/@8*,0(E(1FG/@8%11+,#(E(1FG#-@81*25+B(E(1FG+60-8/01%(E(1FG*%5(E(1FG-@H2:(E(1FG2"#$8H,#$%:(E(1FG#-@8@2-3,#8%%+(E(
1FG&@-8@&%5(E(1FG#$81*25+(E(1FG-@8H,++25,(E(1FG&,K,-#8-2#(E(

Here are the headers of the optimized version:

E(1FG*%-(E(1FG#/H,(((((((((((((E(1FG2-#/%0(E(1FG%&/5(((((((E(1FG/18:/&(E(1FG/1802H,(E(1FG+&-(((((((((E(1FG+8@%&#(E(1FG:+#((((((E(1FG+,&;/-,(E(
1FG#-@1*25+(E(1FG@&%#%(E(1FG&"*,8"/:(

This simplified output is ideal for installations where the Check Point system is

used only as a firewall. However, for an installation that uses more of the UTM (Unified

Threat Management) capabilities of the firewall appliance the extra data could be

valuable.

Through over two years of continuous duty, the modifications to the fw1-

loggrabber code have proven reliable and effective. The creation of indexes for the

primary data fields has resulted in fast queries and table joins, and the drop in the number

of fields yields a reduction of both network bandwidth and disk storage space in the

database.

During production operation, the database tables are rotated and compressed on a

daily basis, with a typical size of between two and three gigabytes, depending on how

busy the network is on any given day. Additional improvements to the existing system

are planned, such as a full verification audit of the MySQL database against the online

Check Point logs with potential for eliminating duplicate archival storage of the raw logs.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 7
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

Before digging into the intricacies of mining the firewall log data, the following

table explains the record structure and the significance of the fields that were selected to

put the system into production.

Field Name Notes Tips

1FG*%-(L$/+(/+(#$,("0/J",(&,-%&:(0"H?,&(
2++/50,:(?6(#$,(1/&,F2**(H2025,H,0#(
+,&;,&("@%0(&,-,/@#.((

M#(-20(?,("+,:(1%**%F/05(*%5(&%#2#/%0(#%(
+,*,-#/;,*6(&,#&/,;,(206(H/++/05(&,-%&:+(
1&%H(#$,(@&,;/%"+(:26.(

1FG#/H,(1FG#/H,(/+(2(:2#,(20:(#/H,(1/,*:(/0(#$,(
1%&H2#(BDDCNDONDG(DC'GP'DD.(

Q+,(%1(#$,(4R*(1"0-#/%0(H/:ST(/+(2(;,&6(
@%F,&1"*(#%%*(1%&(+@*/##/05(#$,(1/,*:(/0#%(

+.(/#+(@2&#
1FG2-#/%0(>$2#(#$,(1/&,F2**(:/:(F/#$(#$,(

-%00,-#/%07(+"-$(2+(:&%@(%&(2--,@#.(
(

1FG%&/5(L$/+(/+(#$,(MU(2::&,++(%1(#$,(1/&,F2**(
/0#,&12-,(1%&(#$2#(V%0,.(

W,,@(2(@&/0#,:(-%@6(%1(2**(#$,+,(
/:,0#/1/,:(?6(1/&,F2**(V%0,(%0(6%"&(-"?,(
F2**X(

1FG/18:/&(L$,(:/&,-#/%0(%1(#&211/-(#$&%"5$(#$,(
1/&,F2**7(+"-$(2+(Y/0?%"0:Z.(

(

1FG/1802H,(L$/+(/+(#$,(:,;/-,(02H,(%1(#$,(0,#F%&3(
%0,.(/0#,&12-,(-2&:(1%&(#$2#(V

[2&:F2&,(2&-$/#,-#"&,(20:(\4(
:,@,0:,0#.(

1FG+&-(L$,(+%"&-,(MU(2::&,++.(L%(H23,(#$,(/0#,&12-,(H%&,("+,&(
#,I#.(1&/,0:*67(MU(2::&,++,+(2&,(+#%&,:(2+(

1FG+8@%&#(L$/+(/+(#$,(+%"&-,(@%&#(1&%H(#$,(
%&/5/02#/05($%+#.(

L$%"5$(#$,(:2#2(/+(+#%&,:(2+(#,I#(#%(
2;%/:($2;/05(]Q^^(#"&0,:(/0#%(2(V,&%7(
J",&/,+(:%(0%#($2;,(#%(?,(J"%#,:(#,I#.((
4/0-,(#$,(:2#2(/+(-%0;,&#,:(/0(+"-$(
J",&/,+7(@%&#(&205,+(-20(?,(+,*,-#,:.((
_%&(,I2H@*,7(2(#,I#(J",&6(F%"*:(?,(
1FG+8@%&#(`(YBGZ(%&(1FG+8@%&#(`(YBBZ7(
,#-.((M0+#,2:7("+/05(#$,(0"H,&/-(
%@,&2#%&(+"-$(2+(1FG+8@%&#((a(GDBb(
F%&3+(5&,2#.(

1FG:+#(1FG:+#(/+(#$,(:,+#/02#/%0($%+#(1%&(#$,(
#&211/-.((L%(H23,(#$,(/0#,&12-,(H%&,("+,&(
1&/,0:*67(MU(2::&,++,+(2&,(+#%&,:(2+(#,I#.(

(

(1FG+,&;/-,(L$,(:,+#/02#/%0(@%&#(%0(#$,(:,+#/02#/%0(
$%+#.(

L$%"5$(#$,(:2#2(/+(+#%&,:(2+(#,I#(#%(
2;%/:($2;/05(]Q^^(#"&0,:(/0#%(2(V,&%7(
J",&/,+(:%(0%#($2;,(#%(?,(J"%#,:(#,I#.((
4/0-,(#$,(:2#2(/+(-%0;,&#,:(/0(+"-$(
J",&/,+7(@%&#(&205,+(-20(?,(+,*,-#,:.((
_%&(,I2H@*,7(2(#,I#(J",&6(F%"*:(?,(
1FG+,&;/-,(`(YBGZ(%&(1FG+8@%&#(`(YBBZ7(
,#-.((M0+#,2:7("+/05(#$,(0"H,&/-(
%@,&2#%&(+"-$(2+(1FG+,&;/-,((a(GDBb(
F%&3+(5&,2#.(

1FG#-@1*25+(c,-%&:+(#$,(L=U(1*25+(1%&(%"#N%1N+#2#,(
@2-3,#+.(

L$/+(1/,*:(F/**(2*F26+(?,(]Q^^(1%&(;2*/:(
0:(1%&(2**(Q<U(#&211/-.(-%00,-#/%0+(2

1FG@&%#%(L$,(@&%#%-%*(%1(#$,(@2-3,#.((
1FG&"*,8"/:(L$/+(/+(#$,(@,&H20,0#("0/J",(/:,0#/1/,&(

1%&(#$,(1/&,F2**(&"*,(#$2#(F2+(2@@*/,:(#%(
#$,(-%00,-#/%0.(

(

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 8
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

To avoid the many hours of development and installation expended over the

course of this project, Section 7 of this document contains resource links for all the parts

and documentation necessary to put a comparable system online within a few hours. The

only ingredient not provided is the actual Checkpoint firewall and the hardware.

3. Ad hoc Data Analysis
In daily operation, this is the most frequently used activity and is invaluable for

incident handling. Analysis is commonly triggered by some event, such as a suspected

compromise or observation of abnormal network activity. The following are case studies

from actual incidents and serve to emphasize the need for log analysis in both intrusion

detection and incident response.

3.1. The Drive-By
The following traffic was observed in network traffic capture analysis of known

malicious IP addresses (Wireshark output):

No. Time Source Destination Protocol Info
2 2009-06-04 07:15:26.734532 172.16.224.16 217.112.94.230 HTTP GET
/iehostcx32.dll HTTP/1.1
3 2009-06-04 07:15:27.960984 172.16.224.16 217.112.94.230 HTTP GET
/xpdeluxe.exe HTTP/1.1

A short research trek on Google pointed to probable fake antivirus download

attempts. At that point, it seemed wise to find out if any other workstations had visited

that same malware site on June 4th.

mysql> select distinct count(*) as count,fw1src,fw1service,fw1proto,fw1action,fw1tcpflags
from fw1logs.fw1logs where fw1dst = "217.112.94.230" group by
fw1src,fw1service,fw1proto,fw1action order by count desc limit 900;
+-------+---------------+------------+----------+-----------+-------------+
| count | fw1src | fw1service | fw1proto | fw1action | fw1tcpflags |
+-------+---------------+------------+----------+-----------+-------------+
2	192.168.184.5	80	tcp	accept	NULL
2	172.16.224.16	80	tcp	accept	NULL
1	172.16.100.38	80	tcp	accept	NULL
+-------+---------------+------------+----------+-----------+-------------+

In less than one second, two additional workstations had been confirmed as

visitors to the potentially damaging web server – so far that day. The next move was to

look a little further back in time for more potential problems.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 9
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

mysql> select distinct count(*) as count,fw1src,fw1service,fw1proto,fw1action,fw1tcpflags
from fw1logs.20090603 where fw1dst = "217.112.94.230" group by
fw1src,fw1service,fw1proto,fw1action order by count desc limit 900;
+-------+---------------+------------+----------+-----------+-------------+
| count | fw1src | fw1service | fw1proto | fw1action | fw1tcpflags |
+-------+---------------+------------+----------+-----------+-------------+
4	192.168.184.5	80	tcp	accept	NULL
3	172.16.224.16	80	tcp	accept	NULL
3	192.168.7.47	53	udp	accept	NULL
2	172.16.170.22	80	tcp	accept	NULL
1	172.16.27.23	80	tcp	accept	NULL
1	172.16.19.55	80	tcp	accept	NULL
1	172.16.25.170	80	tcp	accept	NULL
1	172.16.170.12	80	tcp	accept	NULL
1	172.16.20.43	80	tcp	accept	NULL
+-------+---------------+------------+----------+-----------+-------------+

mysql> select distinct count(*) as count,fw1src,fw1service,fw1proto,fw1action,fw1tcpflags
from fw1logs.20090602 where fw1dst = "217.112.94.230" group by
fw1src,fw1service,fw1proto,fw1action order by count desc limit 900;
+-------+----------------+------------+----------+-----------+-------------+
| count | fw1src | fw1service | fw1proto | fw1action | fw1tcpflags |
+-------+----------------+------------+----------+-----------+-------------+
4	172.16.100.15	80	tcp	accept	NULL
3	192.168.184.5	80	tcp	accept	NULL
2	192.168.7.47	53	udp	accept	NULL
1	172.16.165.145	80	tcp	accept	NULL
1	172.16.100.57	80	tcp	accept	NULL
1	172.16.96.154	80	tcp	accept	NULL
1	172.16.235.141	80	tcp	accept	NULL
1	172.16.160.85	80	tcp	accept	NULL
+-------+----------------+------------+----------+-----------+-------------+
8 rows in set (0.10 sec)

mysql> select distinct count(*) as count,fw1src,fw1service,fw1proto,fw1action,fw1tcpflags
from fw1logs.20090601 where fw1dst = "217.112.94.230" group by
fw1src,fw1service,fw1proto,fw1action order by count desc limit 900;
+-------+-----------------+------------+----------+-----------+-------------+
| count | fw1src | fw1service | fw1proto | fw1action | fw1tcpflags |
+-------+-----------------+------------+----------+-----------+-------------+
4	172.16.100.15	80	tcp	accept	NULL
2	192.168.185.11	80	tcp	accept	NULL
2	172.16.220.43	80	tcp	accept	NULL
2	192.168.7.47	53	udp	accept	NULL
1	172.16.226.74	80	tcp	accept	NULL
1	172.16.235.141	80	tcp	accept	NULL
1	172.16.165.75	80	tcp	accept	NULL
1	172.16.100.38	80	tcp	accept	NULL
1	172.16.98.32	80	tcp	accept	NULL
1	172.16.20.46	80	tcp	accept	NULL
1	192.168.245.213	80	tcp	accept	NULL
+-------+-----------------+------------+----------+-----------+-------------+
11 rows in set (0.16 sec)

Thusly, the above queries for the three days prior to the known incident produced

a much longer list of users who had visited the malware site. Hosts that made multiple

hits on the malware site, or visits on successive days, were confirmed to have had their

browser hijacked or were actually compromised with a trojan downloader.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 10
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

3.2. The DoS
As many of network security analysts have likely experienced, one day a user

began to complain of dropped connections. In this case, the user would establish an SSH

session with a server in another security zone, thus crossing a firewall boundary. After

only a few moments of inactivity, the user’s connection was dropped. Then, more reports

of connectivity problems began to arrive. Several circumstances could produce those

symptoms, outside of the obvious networking or host related problems. One of them

could be state table exhaustion (Gill, 2002) on the respective firewall.

Under normal conditions, most of the traffic traversing the firewall either starts a

new connection, or is related to an existing connection as tracked by the state table.

When the firewall receives an unexpected packet, it is said to be out-of-state. The source

might be a remote hacker performing a scan that sends ‘ACK’ (Acknowledgement)

packets to hosts that have no active TCP (Transmission Control Protocol) connections

listed in the state table. The source of the packet could also be from a valid source whose

connection has been purged from the state table.

The Check Point firewall logs out-of-state data in the field “fw1tcpflags”. If the

connection record is for valid connection, that field will be NULL. For out-of-state

traffic, the field will contain the TCP flags for the packet. Therefore, counting out-of-

state firewall log records on internal firewall interfaces is a valuable indicator of a

network or firewall problem. ‘Internal interface’ is stressed because Internet traffic is

typically ripe with scans containing invalid TCP flags.

During the mentioned connection problem episode, one analyst investigated the

operational status of the firewall, while another network security analyst began gathering

the count of out-of-state connection attempts in the firewall log database.

mysql> select distinct count(*) as Count,mid(fw1time,12,5) as Time,fw1orig from
fw1logs.20090605 where fw1time between "2009-06-05 09:00:00" and "2009-06-05 09:05:00"
and (fw1orig = "192.168.95.118" or fw1orig = "192.168.90.254") and fw1tcpflags is not
NULL group by Time,fw1orig;
+-------+-------+----------------+
| Count | Time | fw1orig |
+-------+-------+----------------+
60	09:00	192.168.90.254
76	09:01	192.168.90.254
67	09:02	192.168.90.254
68	09:03	192.168.90.254
96	09:04	192.168.90.254
+-------+-------+----------------+

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 11
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

5 rows in set (2 min 14.61 sec)

The previous query output is the summary of out-of-state connections on the

suspect firewall zone interfaces showing a range of between 60 and 96 such packets per

minute for the measured five minute period. Only comparison with a prior period of

known normal activity would determine if those numbers are abnormal. Since everything

was known to be working fine the day before, the previous query was repeated for that

day’s same five-minute period.

The comparison period query looked like this:

mysql> select distinct count(*) as Count,mid(fw1time,12,5) as Time,fw1orig from
fw1logs.20090604 where fw1time between "2009-06-04 09:00:00" and "2009-06-04 09:05:00"
and (fw1orig = "192.168.95.118" or fw1orig = "192.168.90.254") and fw1tcpflags is not
NULL group by Time,fw1orig;
+-------+-------+----------------+
| Count | Time | fw1orig |
+-------+-------+----------------+
26	09:00	192.168.90.254
3	09:01	192.168.90.254
3	09:02	192.168.90.254
3	09:03	192.168.90.254
10	09:04	192.168.90.254
+-------+-------+----------------+
5 rows in set (1 min 53.03 sec)

The out-of-state packets per minute numbers for the ‘normal day’ were observed

to be substantially lower than the 60 to 90 hits noticed in the traffic for the day of the

incident. The next logical step was to inspect the actual connections on that interface.

mysql> select distinct count(*) as Count,mid(fw1time,12,5) as Time,fw1src from
fw1logs.20090605 where fw1time between "2009-06-05 09:00:00" and "2009-06-05 09:05:00"
and (fw1orig = "192.168.95.118" or fw1orig = "192.168.90.254") group by Time,fw1src order
by Count desc limit 5;
+-------+-------+-----------------+
| Count | Time | fw1src |
+-------+-------+-----------------+
25257	09:01	192.168.128.151
22268	09:04	192.168.128.151
20995	09:03	192.168.128.151
15251	09:02	192.168.128.151
15054	09:00	192.168.128.151
+-------+-------+-----------------+
5 rows in set (2 min 13.67 sec)

The query results show one host originating between 15,000 and 25,000

connections per minute from one source IP address, which could be an indication of a

problem. However, comparison with the ‘known good’ period was again necessary.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 12
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

mysql> select distinct count(*) as Count,mid(fw1time,12,5) as Time,fw1src from
fw1logs.20090604 where fw1time between "2009-06-04 09:00:00" and "2009-06-04 09:05:00"
and (fw1orig = "192.168.95.118" or fw1orig = "192.168.90.254") group by Time,fw1src order
by Count desc limit 10;
+-------+-------+---------------+
| Count | Time | fw1src |
+-------+-------+---------------+
287	09:04	172.16.162.14
287	09:03	172.16.162.14
286	09:01	172.16.174.13
285	09:04	172.16.174.13
285	09:00	172.16.174.13
256	09:02	172.16.162.14
252	09:02	172.16.174.13
249	09:03	172.16.174.13
241	09:00	172.16.162.14
239	09:01	172.16.162.14
+-------+-------+---------------+
10 rows in set (1 min 53.52 sec)

Since the connection numbers from the comparison period are hardly negligible

(less than 300) in comparison with the data from the time of trouble (up to 25 thousand),

that appeared to confirm that the investigation was on the right track. The last step was to

find out what system was generating all the traffic and the nature of the connections.

mysql> select distinct count(*) as Count,mid(fw1time,12,5) as
Time,fw1src,fw1dst,fw1service,fw1proto from fw1logs.20090605 where fw1time between "2009-
06-05 09:00:00" and "2009-06-05 09:05:00" and (fw1orig = "192.168.95.118" or fw1orig =
"192.168.90.254") group by Time,fw1src,fw1dst,fw1service,fw1proto order by Count desc
limit 20;
+-------+-------+-----------------+-----------------+------------+----------+
| Count | Time | fw1src | fw1dst | fw1service | fw1proto |
+-------+-------+-----------------+-----------------+------------+----------+
17462	09:01	192.168.128.151	192.168.7.48	53	udp
14943	09:03	192.168.128.151	192.168.7.48	53	udp
14599	09:04	192.168.128.151	192.168.7.48	53	udp
10876	09:00	192.168.128.151	192.168.7.48	53	udp
9928	09:02	192.168.128.151	192.168.7.48	53	udp
7795	09:01	192.168.128.151	192.168.7.47	53	udp
7669	09:04	192.168.128.151	192.168.7.47	53	udp
6052	09:03	192.168.128.151	192.168.7.47	53	udp
5323	09:02	192.168.128.151	192.168.7.47	53	udp
4178	09:00	192.168.128.151	192.168.7.47	53	udp
188	09:00	172.16.166.139	192.168.152.134	445	tcp
179	09:05	192.168.128.151	192.168.7.48	53	udp
151	09:02	192.168.153.67	64.46.197.23	14230	tcp
151	09:02	192.168.153.67	64.46.197.23	14220	tcp
150	09:02	192.168.153.67	64.46.197.23	14240	tcp
150	09:01	192.168.153.67	64.46.197.23	14220	tcp
150	09:01	192.168.153.67	64.46.197.23	14240	tcp
150	09:01	192.168.153.67	64.46.197.23	14230	tcp
149	09:04	192.168.153.67	64.46.197.23	14230	tcp
149	09:04	192.168.153.67	64.46.197.23	14220	tcp
+-------+-------+-----------------+-----------------+------------+----------+
20 rows in set (2 min 14.66 sec)

Apparent high volume DNS queries from a single host could very easily be the

source of the problem. Even if the traffic was not abnormal in content, the high

connection rate was apparently having a denial-of-service affect on the firewall state table

and possibly a performance impact on the target DNS servers as well. Either of which

could have a serious effect on network connectivity and performance.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 13
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

Since the default udp connection timeout value for a Check Point firewall is 40

seconds, it would not take very long for a high traffic rate to exhaust the connection table,

interfering with other systems connecting through the same firewall. A udp connection is

determined by any unique combination of source IP address, source port, destination IP

address, and destination port. If the above culprit was varying the source port for every

connection, that would confirm the nature of the problem.

The following query focused on the source of the suspicious traffic.

mysql> select mid(fw1time,12,8) as Time,fw1src,fw1s_port,fw1dst,fw1service,fw1proto from
fw1logs.20090605 where fw1time between "2009-06-05 09:00:00" and "2009-06-05 09:05:00"
and (fw1orig = "192.168.95.118" or fw1orig = "192.168.90.254") and fw1src =
"192.168.128.151" and (fw1dst = "192.168.7.47" or fw1dst = "192.168.7.48") order by Time
limit 20;
+----------+-----------------+-----------+--------------+------------+----------+
| Time | fw1src | fw1s_port | fw1dst | fw1service | fw1proto |
+----------+-----------------+-----------+--------------+------------+----------+
09:00:28	192.168.128.151	54038	192.168.7.48	53	udp
09:00:28	192.168.128.151	54038	192.168.7.47	53	udp
09:00:28	192.168.128.151	51573	192.168.7.48	53	udp
09:00:28	192.168.128.151	59508	192.168.7.48	53	udp
09:00:28	192.168.128.151	56207	192.168.7.48	53	udp
09:00:28	192.168.128.151	56207	192.168.7.47	53	udp
09:00:28	192.168.128.151	58100	192.168.7.48	53	udp
09:00:28	192.168.128.151	60238	192.168.7.48	53	udp
09:00:28	192.168.128.151	49758	192.168.7.48	53	udp
09:00:28	192.168.128.151	49758	192.168.7.47	53	udp
09:00:28	192.168.128.151	61368	192.168.7.48	53	udp
09:00:28	192.168.128.151	61350	192.168.7.48	53	udp
09:00:28	192.168.128.151	58047	192.168.7.48	53	udp
09:00:28	192.168.128.151	58047	192.168.7.47	53	udp
09:00:28	192.168.128.151	52253	192.168.7.48	53	udp
09:00:28	192.168.128.151	54378	192.168.7.48	53	udp
09:00:28	192.168.128.151	62709	192.168.7.48	53	udp
09:00:28	192.168.128.151	62709	192.168.7.47	53	udp
09:00:28	192.168.128.151	54231	192.168.7.48	53	udp
09:00:28	192.168.128.151	54492	192.168.7.48	53	udp
+----------+-----------------+-----------+--------------+------------+----------+
20 rows in set (2 min 10.31 sec)

Now, the picture is complete. In only minutes of firewall log analysis, a host was

confirmed to be producing an abnormally high rate of udp traffic from varying source

ports, which could be presumed to be capable of exhausting the state table on the

firewall. The next step was to contact the system owner and ask them to check their

system, encourage network operations to attempt some rate limiting on the switch, and

explore other remediation approaches. The ‘lessons learned’ phase of incident handling

also recommended boosting the size of the firewall cluster’s connection table.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 14
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

During such an incident stopping or seriously limiting the offending traffic should

result in a complete return to normal state for the firewall after the UDP timeout of 40

seconds and would be absolute confirmation that the suspect system’s traffic was causing

the connection problems.

4. Watchdog Alerting
Raising the alarm on a select set of circumstances is often critical to information

security, especially when malicious attacks or abnormal network traffic are detected. The

usual sensor to generate such alerts is an IDS or possibly a Network Anomaly Detection

system. However, tracking unusual connections with the firewall log analysis database

can be an excellent backup for other systems. Sometimes it is simply more reliable than

other sensors. What sets ‘Watchdog Alerting’ apart from ‘Ad hoc Data Analaysis’ is the

scheduling of periodic analysis and triggering message alerts for preset criteria. The

following are examples of actual production watchdog alerting systems.

4.1. SPAMBOT
During two years of operations, firewall log database analysis has been extremely

reliable for alerting on abnormal outbound SMTP from IP addresses that are not

recognized as mail servers. Although IDS signatures did a good job of detecting bursts of

SMTP traffic from workstations, false alarms were frequent. Thus, a handy little shell

script known as spambotchk.sh was born.

The theory of operation is simple. Every three minutes, the server’s crontab runs

the script, which will query the previous five minutes of firewall logs for Internet bound

port 25 TCP activity originating from internal IP addresses not found in the list of

recognized mail servers. If the count of connections and destination IP addresses exceeds

a threshold, the script will generate an alert email to incident handlers. The IP address of

any detected spambot is then added to a list of notices sent, which prevents any runaway

spamming of the incident handlers. The notification list is cleared every night.

Once the thresholds were tweaked to allow for legitimate bursts of SMTP traffic,

the spambot script has proven 100% reliability with zero false alarms. Future

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 15
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

development of the system will provide for initiating network capture of any offenders

with automated analysis of the email content.

The pseudo code for the spambo

!

t detection script looks like this:

4#%&,(#$,(:2#,(+#&/05(1%&(d]%Fe(
=2*-"*2#,(#$,(:2#,(+#&/05(1%&(dO(H/0"#,+(25%e(

! %#(
!

4,*,-#(-%00,-#/%0+(%0(#$,(M0#,&0,#(1/&,F2**(/0#,&12-,+(F$,&,(#$,(+%"&-,(/+(0
2(30%F0(H2/*(+,&;,&7(#$,(+,&;/-,(/+(@%&#(BO7(20:(#$,(@&%#%-%*(/+(L=U(

! 4#,@(#$&%"5$(#$,(*/+#(%1(:2#2(-%H@2&/05(#$,(-%"0#(%1(,H2/*+(20:(0"H?,&(%1(
:,+#/02#/%0(MU(2::&,++,+(252/0+#(#$,(#$&,+$%*:+(1%&(,2-$(

! M1(#$,($%+#e+(#&211/-(/+(%;,&(#$,(#$&,+$%*:(1%&(?%#$(#%#2*(-%"0#(20:(:,+#/02#/%0(
$%+#+7(+,0:(2*,&#(,H2/*+(20:(&,-%&:(#$,(MU(2::&,++(/0(#$,(*/+#(%1(2*,&#+(+,0#(

Here is a sample email notification from the script:

From: Spambotchk [do_not_reply@fw1log-server]
Sent: Tuesday, June 09, 2009 8:24 AM
To: Stingley, Mark
Subject: 192.168.184.117: SPAMBOT

SPAMBOT detected
2009-06-09 08:24

192.168.184.117, 126 connections, 105 targets

An example query for that spambot activity looks like the following, which is

what the script evaluates:

mysql> select distinct count(*) as count, fw1src, fw1service, fw1proto,
count(distinct fw1dst) as targets from fw1logs.20090609 where fw1time
between "2009-06-09 08:19:00" and "2009-06-09 08:24:00" and fw1src =
"192.168.184.117" and fw1service = "25" group by
fw1src,fw1service,fw1proto;
+-------+-----------------+------------+----------+---------+
| count | fw1src | fw1service | fw1proto | targets |
+-------+-----------------+------------+----------+---------+
| 126 | 192.168.184.117 | 25 | tcp | 105 |
+-------+-----------------+------------+----------+---------+
1 row in set (0.03 sec)

The ‘count’ column at the left is the total number of connections made, which is

compared to the threshold for total amount of SMTP connections. The ‘targets’ column

at the right is the number of unique destination IP addresses. By evaluating both the

amount of SMTP connections (count) and the number of targeted mail servers (targets),

burst mail to destinations such as Google mail and Yahoo will be ignored. Otherwise,

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 16
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

those users who compose a large number of messages offline would trigger the spambot

watchdog when they connect to the network.

This is the actual production script in use (inline comments document each step):

spambotchk.sh

#!/bin/sh

#Version 20090903.01

#create some secure temporary files
TMPFILE=`tempfile`
TMPQRY=`tempfile`
MAILTMP=`tempfile`

#store the times NOW and 5 minutes ago in MySQL date time format
TNOW=`date "+%Y-%m-%d %H:%M"`
TTHEN=`date -d "5 minutes ago" "+%Y-%m-%d %H:%M"`

#botchk.list is a daily list of reported spambots, a simple way
#of avoiding self-spam and noise
#if the file doesn’t exit, create it
if [! -f /var/run/botchk.list]; then
 touch /var/run/botchk.list
fi

#build the query with the following criteria
#1. for the past five minutes
#2. for valid connections (not dropped)
#3. on internet firewall interfaces 192.168.15.1 and 192.168.15.2
#4. originating from internal systems (networks 192.168. and 172.16.)
#5. excluding internal destinations (NOT networks 192.168. and 172.16.)
#6. excluding known mailservers (subnets 192.106.101 and 192.168.8)
#7. looking at only SMTP traffic (destination port 25)
#8. examine only the top 40 talkers

echo "select distinct count(*) as count, count(distinct fw1dst) as
targets,fw1src,fw1service,fw1proto from fw1logs.fw1logs where fw1time
between \"$TTHEN\" and \"$TNOW\" and fw1action = \"accept\" and
(fw1orig = \"192.168.15.1\" or fw1orig = \"192.168.15.2\") and
(mid(fw1src,1,8) = \"192.168.\" or mid(fw1src,1,7) = \"172.16.\") and
mid(fw1dst,1,8) != \"192.168.\" and mid(fw1dst,1,7) != \"172.16.\" and
mid(fw1src,1,11) != \"192.168.101\" and mid(fw1src,1,10) !=
\"192.168.8.\" and fw1service = \"25\" group by fw1src, fw1service,
fw1proto order by count desc limit 40;" > $TMPQRY

#ISQL needs a blank line after the query statement
echo "" >> $TMPQRY

#run the query with the 32 bit version of isql (renamed isql32)
#$2>100 is total connections, $3>10 is greater than 10 destinations
isql32 -b FWLogs32 logger somepassword < $TMPQRY | grep '\.' | awk -
F"|" '{if ($2>100 && $3>10) print $2$3$4}' >> $TMPFILE

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 17
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

#example output for a confirmed spambot
#+-------+---------+----------------+------------+----------+
#| count | targets | fw1src | fw1service | fw1proto |
#+-------+---------+----------------+------------+----------+
#| 809 | 564 | 192.168.124.38 | 25 | tcp |
#| 4 | 2 | 192.168.139.1 | 25 | tcp |
#| 3 | 1 | 172.16.104.26 | 25 | tcp |
#| 1 | 1 | 172.16.103.91 | 25 | tcp |
#+-------+---------+----------------+------------+----------+

#stored text in $TMPFILE after the above grep/awk
809 564 192.169.124.38

#read the resulting file, exiting if no spambots were found
while read LINE; do

 if ["$LINE"]; then

 #for each line grab the total count, number of targets, and
 #ip address of the source
 CNT=`echo "$LINE" | awk '{print $1}'`
 TGT=`echo “$LINE” | awk ‘{print $2}’`
 IP=`echo "$LINE" | awk '{print $3}'`

 #see if the spambot has already been reported
 grep "$IP" /var/run/botchk.list

 #if the spambot IP address is a new discovery, process it
 if [$? -ne 0]; then

 #add the spambot’s IP address to the daily list
 echo "$IP" >> /var/run/botchk.list

 #build the text file to be emailed and sent to cell phones
 echo "SPAMBOT detected" > $MAILTMP
 echo `date "+%Y-%m-%d %H:%M"` >> $MAILTMP
 echo -e "\n" >> $MAILTMP
 echo "$IP, $CNT connections, $TGT targets" >> $MAILTMP

 mail -s "$IP: SPAMBOT" somebody@example.com < $MAILTMP
 mail -s "$IP: SPAMBOT" phone-number@mms.example.com < $MAILTMP

 #pause 15 seconds to let the mailer do its thing
 sleep 15

 fi

 fi

done < $TMPFILE

#delete the temporary files
rm -f $TMPFILE
rm -f $TMPQRY
rm -f $MAILTMP

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 18
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

4.2. High Traffic
Since the connection rate can affect the firewall state table and degrade other

traffic to the destination systems, critical systems can be watched closely. One example

of a high-risk network asset is a DNS server. Following a prior incident, the lessons-

learned resulted in development of a watchdog script to alert when connection rates to

internal DNS servers exceeded a preset threshold.

In order to derive limits for alerting on high connection activity, a series of

queries was executed to determine what was normal, such as follows:

mysql> select distinct mid(fw1time,12,4) as Time,count(*) as count from
fw1logs.20090205 where (fw1dst = "192.168.7.47" or fw1dst =
"192.168.7.48") and fw1src like "192.168.%" group by Time, fw1dst order
by count desc limit 10;
+------+-------+
| Time | count |
+------+-------+
08:5	5498
02:0	5122
04:0	3121
09:1	2916
09:0	2719
13:5	2454
13:0	1803
09:3	1761
08:4	1739
11:0	1732
+------+-------+
10 rows in set (2.53 sec)

After collecting the ten-minute summaries from many days of firewall log records

such as above, all of the peak traffic periods were more closely inspected to ensure that

the data was indeed ‘normal’. After all, if the evaluation criteria included anomalous

traffic, any threshold limits would be invalid and would overlook situations that should

be reported and investigated. Once a ‘normal’ peak number was determined, a starting

threshold of fifty-percent over that number became the value for alerting.

The last adjustment to the watchdog script resulted from one server that had a

large surge of DNS traffic for a very short period at the same time every day. The script

was revised to except that one IP address during a small window around that time.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 19
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

The following is the production script used for alerting on DNS server connection

rates (inline comments document each step):

dnsdoschk.sh

#!/bin/sh

#Version 20090903.01

#create the temporary files
TMPFILE=`tempfile`
TMPQRY=`tempfile`
MAILTMP=`tempfile`

#store the times for NOW and 5 minutes ago in MySQL date time format
TNOW=`date "+%Y-%m-%d %H:%M"`
TTHEN=`date -d "5 minutes ago" "+%Y-%m-%d %H:%M"`

#convert HH:MM to HHMM for comparison to a known surge period
MINUTE=`date -d "$TNOW" "+%H%M"`

#the daily surge occurs between 04:00 and 04:15
TLOW="0400"
THIGH="0415"

#create a list of reported DNS DOS hosts, if it doesn’t exist
if [! -f /var/run/dnschk.list]; then

 touch /var/run/dnschk.list

fi

#create a query file with the following criteria
#1. examine the last five minutes (THEN and NOW)
#2. grab only DNS (port 53) traffic
#3. traffic for DNS servers at 192.168.19.12 and 192.168.19.13
#4. where the source is subnets 192.168.51,52,53, and 54
these were subnets traversing the firewall for internal DNS
echo "select distinct count(*) as count,fw1src,fw1dst from
fw1logs.fw1logs where fw1time between \"$TTHEN\" and \"$TNOW\" and
fw1service = \"53\" and (fw1dst = \"192.168.19.12\" or fw1dst =
\"192.168.19.13\") and (fw1src like \"192.168.51.%\" or fw1src like
\"192.168.52.%\" or fw1src like \"192.168.53.%\" or fw1src like
\"192.168.54.%\") group by fw1src,fw1dst order by count desc limit 10;"
> $TMPQRY

ISQL needs a blank line after the query
echo "" >> $TMPQRY

#use awk to grab counts above the limit ($2>2000)
isql32 -b FW1-Logs32 logger some-password < $TMPQRY | grep '\.' | awk -
F"|" '{if ($2>2000) print $2$3}' >> $TMPFILE

#example output for a definite problem
#+-------+----------------+---------------+

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 20
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

#| count | fw1src | fw1dst |
#+-------+----------------+---------------+
#| 42595 | 192.168.52.152 | 192.168.19.13 |
#| 20293 | 192.168.52.152 | 192.168.19.12 |
#| 55 | 192.168.53.223 | 192.168.19.12 |
#| 50 | 192.168.52.153 | 192.168.19.12 |
#| 49 | 192.168.53.226 | 192.168.19.12 |
#| 49 | 192.168.53.71 | 192.168.19.12 |
#| 48 | 192.168.53.225 | 192.168.19.12 |
#+-------+----------------+---------------+

read one line at a time from the file, exiting if empty
while read LINE; do

 if ["$LINE"]; then

 #store the count and the IP address for notification
 CNT=`echo "$LINE" | awk '{print $1}'`
 IP=`echo "$LINE" | awk '{print $2}'`

 #ignore the known surge from 192.168.53.14 if it’s the right time
 if (["$IP" == "192.168.53.14"] && [$MINUTE -ge $TLOW] && [
$MINUTE -le $THIGH]); then

 #log the known surge alert to a separate file
 echo "$TNOW: $IP - $CNT hits, skipped" >>
/var/log/loggrabber/dnsskip.txt
 continue

 fi

 #check if the offender has already been reported
 grep "$IP" /var/run/dnschk.list

 #if not, store the IP address then send email alerts
 if [$? -ne 0]; then

 echo "$IP" >> /var/run/dnschk.list

 echo "DNS DOS detected" > $MAILTMP
 echo `date "+%Y-%m-%d %H:%M"` >> $MAILTMP
 echo -e "\n\n" >> $MAILTMP
 echo "$IP, $CNT connections" >> $MAILTMP
 mail -s "$IP: DNS DOS" some.user@example.com < $MAILTMP
 mail -s "$IP: DNS DOS" phone.number@mms.example.com < $MAILTMP

 sleep 15

 fi

 fi

done < $TMPFILE
#delete the temporary files

rm -f $TMPFILE

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 21
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

rm -f $TMPQRY
rm -f $MAILTMP

Granted, the script is not the most sophisticated programming example. But, it

works reliably and very seldom generates false alarms. Both the DNS DoS and Spambot

watch were created rapidly using very simple tools and techniques to serve a specific

need. Neither was meant to be a permanent solution. Future evolution of the scripts will

likely move toward use of Perl for direct database access with the venerable DBI (Bruce,

2009) and DBD-mysql (Galbraith, 2009) modules. Use of a more powerful programming

language than the Linux shell script will provide for more sophisticated data evaluation,

faster operation, and eliminate the need for temporary files.

Outside of the critically useful alerting provided by such watchdog scripts, their

development and use paves the way for tuning and verification of larger commercial

systems such as security information or event managers. An inexpensive and simple

system like the loggrabber and watchdog script combination can save serious

embarrassment should an expensive appliance not alert on a serious security event.

5. Deep Analysis
Hardware resources limit the amount and complexity of data analysis that can be

performed on the fw1-loggrabber server. If the server does not have enough CPU power,

plenty of RAM, and fast disk drives, long running and complex queries will have a

serious impact on both the insertion of data from the firewalls and any watchdog scripts.

Once the server falls behind on the task of inserting the data into the database as it is

received, the records are backlogged to the disk creating a downward performance spiral.

The result is a system that no longer stores records fast enough to drive other queries that

rely on near real-time data.

The solution is a big and fast replica server for any data analysis other than simple

queries with limited scope. By offloading the more intensive analytical tasks to another

server, a myriad of useful reports can be scheduled without fear of disrupting near real-

time data collection. Deeper analysis is truly limited only by the imagination and desire

to discover the unknown.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 22
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

5.1. Firewall Rule Usage
 A very useful daily query is accumulation of rule uid frequency, because

knowing which rules fire most often is critical to optimization of firewall performance.

To quote Check Point:

Rule base processing is a top down process and more CPU expense will be

incurred matching rules that are towards the bottom of the rule base than for those

towards the top of the rule base. Once the traffic profile is known, you may be able to

reorder rules so that the most heavily used rules, are nearer to the top of the rulebase to

make rule matching more CPU efficient. When a packet is matched against a rule, no

further processing of the packet in the rulebase is needed so if a heavily used rule is at

the bottom of the rulebase it unnecessarily creates more workload. (Check Point, 2009)

As mentioned earlier, the rule UID is the only permanent identifier for a specific

Check Point firewall rule. The other rule identifier, the rule ID, is temporary and it will

change with every ruleset change and profile push. That is why the field “fw1rule” was

eliminated from the fw1-loggrabber code revision.

The initial table for rule uid analysis is created with a query like this:

create table fw1logs.rule_stats select distinct mid(fw1time,1,10) as
Date,fw1rule_uid as RuleUID,count(*) as Count from fw1logs.20090130
group by Date,RuleUID order by Count desc;

Thereafter, updates are performed with:

insert into fw1logs.rule_stats select distinct mid(fw1time,1,10) as
Date,fw1rule_uid as RuleUID,count(*) as Count from fw1logs.20090131
group by Date,RuleUID order by Count desc;

Even though results can be retrieved by date, summary calculations can be done

of a wide range of dates, such as:

select distinct RuleUID,sum(Count) as Total from fw1logs.rule_stats
group by RuleUID order by Total desc limit 10;
+--+----------+
| RuleUID | Total |
+--+----------+
{29DEE165-1363-6C71-3645-E6C332366508}	26376773
{20DC7494-2629-19A2-AF45-3BD4FD3624A5}	10836056
{3247A3D5-12F5-1484-8C8E-5E9E8973363D}	5199081
NULL	4363912
{7DB51D19-F27B-42AE-812B-B1D854C58B4A}	1934826
{41353DC6-2FEC-4CBA-94DE-7229D10AE6FB}	1796534

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 23
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

{0D2EF33F-CDF0-32FA-92A4-14E19333A4FC}	1597358
{321B2E4D-FE38-4835-8E20-73C4CAF7DA63}	1386822
{BEF6A9D1-C02F-15DB-7211-4F3285D5DE12}	1044397
{55510EF2-91A0-441A-A8BE-1C4EAC22AB0E}	543500
+--+----------+
10 rows in set (0.00 sec)

Notice that the fourth row of the most active ruleUID data is NULL. Those

firewall log records are out-of-state connections and should be investigated. In addition

to looking at the most frequently used rules as above, it is also important to review rules

that are rarely used.

As with the previous uses of loggrabber data, the system can do a reasonable job

of analyzing rule use for institutions that cannot afford more expensive commercial tools.

Then, those who can afford commercial firewall profile analysis tools can use the

loggrabber technology to verify their output.

5.2. Open Ports
It can be said, “If hundreds of volunteer hackers around the world are

continuously scanning the network, why not put that to good use?” Every well-trained

network security analyst knows that frequent vulnerability assessments of the firewall

from the outside are critical to the first line of defense. Audits of what firewall ports are

open to what sources are necessary and usually required by some regulation or policy.

Much of that analysis can be automated, preferably on a daily basis.

Here is the structure of the following query that tabulates the top internal targets

and their ports open to outsiders on the Internet.

1. Collect only accepted connections

2. Looking only at the Internet firewall interfaces (192.168.99.123-124)

3. Exclude internal network source hosts (192.168. and 172.16)

4. Collect only internal network targets (192.168. and 172.16)

mysql> select distinct fw1dst as Destination, fw1service as Port,
count(*) as Count from fw1logs.20090218 where fw1action = "accept" and
(fw1orig = "192.168.99.123" or fw1orig = "192.168.99.124") and not
(mid(fw1src,1,8) = "192.168." or mid(fw1src,1,7) = "172.16.") and
(mid(fw1dst,1,8) = "192.168." or mid(fw1dst,1,7) = "172.16.") group by
Destination,Port order by Count desc limit 20;

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 24
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

+-----------------+------+--------+
| Destination | Port | Count |
+-----------------+------+--------+
192.168.149.15	25	617286
192.168.149.17	25	514737
192.168.148.24	443	303666
192.168.149.13	53	252626
192.168.149.12	53	245822
192.168.148.141	443	237265
192.168.149.80	80	103965
192.168.149.106	80	39385
192.168.9.114	443	39194
192.168.149.22	2048	24524
+-----------------+------+--------+
10 rows in set (1 min 31.18 sec)

Therefore, by methodically tabulating all of the accepted traffic inbound from the

Internet, the free vulnerability assessment efforts of hackers can be put to good use.

The preceding is only a rough example of the potential for such analysis. A more

comprehensive system should store the results by date and make delta comparisons with

prior data. Such efforts may sometimes result in an outlier hit on a seldom-used valid

port, but that is a small amount of noise and bother. The rewards are priceless for finding

out quickly that an external host is reaching an internal host on a port that should not be

open to the Internet.

5.3. Host Behavior
Profiling host activity is perhaps one of the most complex forms of analysis. The

primary reason for the complexity is often the need for supplemental or correlating

information. For example, just because a workstation hits the external host at IP address

1.2.3.4 many times a day is meaningless. Even if the domain name of the site is known,

little can be determined without further correlation. However, if the host country

identification is tied to the IP address, that can be significant.

Early in 2007 during the mass RBN/MPack (Martinez, 2007) exploitation of

public websites, a predicable pattern of workstation exploitation emerged in repeated

network traffic capture and subsequent firewall connection analysis. Although the initial

attack vector was most often a hacked legitimate U.S. website, one or more non-U.S.

websites would be hit immediately thereafter by the host to download a veritable cocktail

of malware.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

Check Point Firewall Log Analysis In-Depth 25

That trend appears to continue to this day with loggrabber analysis of many

confirmed compromised hosts. A possible explanation is that the cybercriminal

enterprises prefer to host their primary or “bullet proof” malware sites in countries that do

not appear to have stronger information security laws and scrutiny or resources to cope

with the situation (Armin, 2009). Regardless of the reason, the mere pattern change of

host activity can be an indicator of a compromise or attempt.

Granted, working in one of those malware site ridden countries presents a greater

challenge to host profiling. Such efforts will likely require reliance on other factors than

just the geographic location. For many other analysts though, creating a running profile

of daily workstation http activity will provide at the very least a list of hosts that deserve

scrutiny.

To support the potential geographic relationship to malware, here is the

Threatexpert.com (ThreatExpert, 2009) view of malware sources on 2009-07-15:

Threat Expert, 2009-07-15 04:20 UCT 1

Another reliable source of known malware sites is the venerable ZeuS Tracker,

which documents the activity of the ZeuS crimeware network of Trojan Zbot notoriety.

Here are the top 10 sources known to host malicious files (abuse.ch, 2009):

 30 Russian Federation (RU)

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 26
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

 29 United States (US)
 26 China (CN)
 7 Netherlands (NL)
 6 Ukraine (UA)
 6 Latvia (LV)
 5 Germany (DE)
 4 Lithuania (LT)
 4 Canada (CA)
 3 Taiwan (TW)

The following analytical example involves the use of a supplementary database

table created by mapping the host country to the IP address using a tool called

geoiplookup (GeoIP, 2009), which is available in most Linux distributions. The country-

to-ip-address database table (fw1logs.DST_COUNTRY) has been populated with all of

the unique http destination addresses and country codes. In an automated daily analysis

system, a scheduled script would populate the table on a regular interval.

Here is a typical examination of firewall connection patterns for port 80 during

forensic analysis of a host that was discovered to be compromised. This query was used:

mysql> select distinct country,count(distinct ipaddr) as Count from
fw1logs.20090130 natural left join fw1logs.DST_COUNTRY where fw1src =
"172.16.196.21" and fw1service = "80" and fw1dst = ipaddr group by
country order by Count desc;
+---------+-------+
| country | Count |
+---------+-------+
| US | 122 |
| FR | 3 |
+---------+-------+
2 rows in set (0.03 sec)

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 27
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

Continuing analysis of that host, the following table displays the connection

pattern analysis for the period in question. The column below each date is the number of

nnections outbound from that host to each country listed. port 80 co

=%"0#&6(1/30 1/31 2/1 2/2 2/3 2/4 2/5
Q4(122 362 256 138 292 173 fO(
_c(3 11 7 6 g(
hQ(4 1 (
]^(4 2 2 2 4 (
=!(4 2 5 6 7 (
ij(3 2 1 (
<h(2 1 (
M^(2 1 1 (
Mh(1 1 (
AU(1 (
^k(1 2 (
cQ(1 3 1 (
Q!(1 (
!](1 (
!Q(1 1 (
jc(2 2 (
^Q(1 (
hh((((((G((

This is a simple exercise, but a powerful one. At the beginning of the period and

at the end, the user exhibits identical patterns. All the days in between, the user was

hitting multiple countries. The key is deviation from established behavior.

The workstation in question was discovered to be compromised by

Worm.Win32.AutoTDSS (AutoTDSS, 2009) on February 4th by routine manual analysis

of daily network traffic captures of known malware IP addresses. Manual analysis is

thorough, but tedious. There is a limit to the amount of traffic that can be ‘eyeballed’ by

a trained analyst, which can produce delays in discovery of compromised systems. Had

the described host geo-to-ip profiling system been automated and online at that time, it is

very likely that the compromise would have been discovered by the user’s http traffic

habit change on January 31st , or at least the morning of February 1st.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 28
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

Such a system would have alerted on the http pattern change between January 30th

and January 31st. A simple query could have retrieved the initial sequence of abnormal

http hits (the DST_COUNTRY table maps IP address to country) like so:

select fw1time,fw1dst,country from fw1logs.20090131 natural left join
fw1logs.DST_COUNTRY where fw1src = "172.16.196.21" and fw1service =
"80" and fw1dst = ipaddr and country != "" and country != "US" and
country != "FR" order by fw1time limit 25;
+---------------------+-----------------+---------+
| fw1time | fw1dst | country |
+---------------------+-----------------+---------+
2009-01-31 13:04:28	206.223.183.156	IE
2009-01-31 13:04:28	206.223.183.156	IE
2009-01-31 13:08:06	204.11.52.67	CA
2009-01-31 13:08:07	81.3.150.213	RU
2009-01-31 13:11:57	92.61.149.127	DE
2009-01-31 13:11:57	92.61.149.127	DE
2009-01-31 13:11:58	92.61.149.127	DE
2009-01-31 13:11:58	92.61.149.127	DE
2009-01-31 13:11:58	92.61.149.127	DE
2009-01-31 13:12:01	88.214.197.132	GB
2009-01-31 13:12:01	88.214.197.132	GB
2009-01-31 13:12:01	88.214.197.132	GB
2009-01-31 13:12:01	88.214.197.132	GB
2009-01-31 13:12:02	88.214.197.132	GB
2009-01-31 13:13:35	122.249.238.191	JP
2009-01-31 13:13:35	122.249.238.191	JP
2009-01-31 13:13:37	80.77.86.202	EU
2009-01-31 13:13:38	80.77.86.202	EU
2009-01-31 13:13:38	80.77.86.202	EU
2009-01-31 13:13:39	194.165.4.7	UA
2009-01-31 13:13:40	94.247.3.40	LV
2009-01-31 13:13:40	94.247.3.40	LV
2009-01-31 13:13:55	94.247.3.40	LV
2009-01-31 13:13:55	94.247.3.40	LV
2009-01-31 13:13:55	94.247.3.40	LV
+---------------------+-----------------+---------+
25 rows in set (0.06 sec)

All of the IP addresses found in the first twenty-five http hits were recorded at the

time as malware sites at various locations that track cyber criminal activity. And, it is a

good bet that the compromise happened at 2009-01-31 13:04:28 as the result of an

injected web site visited by the user immediately prior to that time. Even though the

actual compromise was not discovered through firewall log analysis, work continues on

the automated system that will process the data in the described manner.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 29
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

The system is far from perfect. Yet, such behavioral analysis is sometimes the

only way to discover compromises by more sophisticated malware that defies signature

recognition by network or host protection systems. Problem hosts are going to be those

that do not routinely acquire the same IP address. A multi-national, multi-ethnic user

population is a challenge as well. It is possible that a production system would profile

only known high-risk workstations. Whatever the hurdles, they are worth jumping over

to be able to see into the unknown.

6. Conclusions
This paper could have easily grown into a sizeable book packed with scores of

case studies involving intrusion detection and incident handling. The data analysis

potential of the system is that vast and infinitely rewarding. Though scrutiny of the

firewall logs alone does not always yield the answer to a given suspect network traffic

situation, it is almost always a reliable map to the answer.

Implementing the loggrabber technology in this project has been a departure from

two historically common approaches to firewall log analysis: use of a third-party product,

or coding the actual analysis in a programming language. With use of a third-party

platform, flexibility can often be limited and much time devoted to a learning curve that

is not portable to other analysis. Coding the actual log analysis in a programming

language requires strong skills and considerable time, and the end product typically does

not scale and is difficult to maintain.

Perhaps the greatest benefit of implementing a SQL data analysis platform for

Check Point firewall log data is not in the analysis of the data, but in the process itself.

The focus has been shifted to using skills that are portable across a wide variety of

database platforms. The minimal shell scripting or Perl skills necessary to convert data

or automate analysis tasks are well within the scope of network security analysts.

Further, once an analyst becomes proficient with crunching the firewall logs, attention to

can turned to importing and correlating data from any source that can write a text file or

ccept a SQL query. a

(

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 30
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

7. Resource Links
(
L$,(?2+/-(^/0"I(+,&;,&("+,:(1%&(#$/+(@&%K,-

jT(

#(/+(+#%-3(<,?/20(^/0"I(O.I(&,#&/,;,:(1&%H'(
(
0,#/0+#(=<(/H25,(S5,0,&2**6(GPONGfO()
(
$##@'llFFF.:,?/20.%&5l=<l0,#/0+#l(

(1%&(#$/+(@&%K,-#(/+'(
(
L$,(%11/-/2*(1/&,F2**(202*6+/+(+"@@%&#(@25,

##@'llFFF.2*#+,-./01%l1F:2#2@&%K.$#H*
(
$ (
(

2#,&/2 (2
(
)
(

*+ ;2/*2?*,(/0-*":,'(

 G. L$,(H%:/1/,:(;,&+/%0(1FGN*%55&2??,&(,I,-"#2?*,.(
B. !0(1FGN*%55&2??,&(,I,-"#2?*,(#$2#(H,,#+(#$,(%&/5/02*(;G.GG.G(:,+/50(

+@,-+(S2**(%&/5/02*(1/,*:+T.(
P. !(@2-325,(%1(#$,(0,-,++2&6(PBN?/#(<,?/20(*/?&2&/,+(#%(&"0(1FGN*%55&2??,&(

%0(gbN?/#(+,&;,&+.(
b. 4/H@*,(/0+#2**2#/%0(/0+#&"-#/%0+(1%&(#$,(@2-325,:(;,&+/%07(/0-*":/05(^h!(

2@@*/-2#/%0(+,#"@(%0(=$,-3(U%/0#.(
 0O. !(-%H@&,$,0+/;,(:%-"H,0#(1%&(1"**N?*%F0(+,&;,&(+,#"@(2
 (*%5+.(

:(-%H@/*2#/%0.(
g. 4-&/@#+(1%&(+#2&#/05(1FGN*%55&2??,&(20:(&%#2#/05(#$,

 *.(f. !(F/:,(;2&/,#6(%1(202*6+/+(+-&/@#+(/0(j2+$(20:(U,&
m. !::/#/%02*(&,+%"&-,+(2+(#$,(@&%K,-#(H%;,+(2*%05.(

(
(
(
(

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 31
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

8. sU eful Links
 !.)64R^(@,&1%&H20-,(#/@+'((
$##@'ll1%&5,.H6+J*.-%HlF/3/lL%@GD4R^U,&1%&H20-,L/@+(

 F.-6?,&-/#/.?/Vl#/@+l*/0"IN$"5,#*?1+Nj.)64R^(c!)(#"0/05(%0(^/0"I'($##@'llFF
20:NH6+J*N@,&1%&H20-,.$#H*(

'((=. h02?*/05(^2&5,(U25,(4"@@%&#(/0()64R^
$##@'ll:,;.H6+J*.-%Hl:%-l&,1H20lO.Dl,0l*2&5,N@25,N+"@@%&#.$#H*(

&,8\U4h=8^h!8/0@"#

<. 4@*"03(&,+%"&-,+(1%&(1FGN*%55&2??,&'(
$##@'llFFF.+@*"03.-%Hl?2+,l=%HH"0/#6'=%01/5" (

h. L$,(%11/-/2*(1FGN*%55&2??,&(@&%K,-#(@25,'((
$##@'ll+%"&-,1%&5,.0,#l@&%K,-#+l1FGN*%55&2??,&l(

_. L$,(4@*"03(1FGN*%55&2??,&(@2-325/05(S2(&,2*(#/H,N+2;,&T'(
$##@'llFFF.+@*"03.-%Hl;/,Fl4UN=!!!jAk(7(%&(
$##@'ll:%F0*%2:.+@*"03.-%Hl+"@@%&#l\U4h=l1FGN*%55&2??,&N+@*"03.#2&.5V(

(
(

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 32
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

9. References
Brenton, C., Bird, T., & Ranum, M. J. (2009). Top 5 essential log reports. Retrieved from

http://www.sans.org/resources/top5_logreports.pdf

Scarfone, K., & Hoffman, P. (2009, September). Guidelines on firewalls and firewall

policy. Retrieved from http://csrc.nist.gov/publications/nistpubs/800-41-

Rev1/sp800-41-rev1.pdf

HHS . (2007). Security Standards: Administrative Safeguards. HIPPA Security Series.

Retrieved (2009, July 08) from

http://www.cms.hhs.gov/EducationMaterials/Downloads/SecurityStandardsAdmi

nistrativeSafeguards.pdf

e-CFR. (2009) Electronic Code of Federal Regulations (Title 16: Part 313). implements

sections 501 and 505(b)(2) of the Gramm-Leach-Bliley Act. Retrieved 2009, July

08 from http://ecfr.gpoaccess.gov/cgi/t/text/text-

idx?c=ecfr;sid=81db4c4ff02598be46d83c12b08c3c46;rgn=div8;view=text;node=

16%3A1.0.1.3.38.0.38.1;idno=16;cc=ecfr

Anderson, B. (2008). Check Point firewalls - rulebase cleanup and performance

tuning. Retrieved from

http://www.sans.org/reading_room/whitepapers/firewalls/check_point_firewalls_r

ulebase_cleanup_and_performance_tuning_32884

Willard, J. (2003). Getting the Most out of your Firewall Logs. Retrieved from

http://www.sans.org/reading_room/whitepapers/firewalls/getting_the_most_out_o

f_your_firewall_logs_811

May, C. J., Hammerstein, J., Mattson, J., & Rush, K. (2006). CERT (Computer

Emergency Response Team). Retrieved from

http://www.cert.org/archive/pdf/Defense_in_Depth092106.pdf

Debian (2009). Debian – The Universal Operating System. Retrieved from

http://www.debian.org/

MySQL (2009). MySQL :: Developer Zone. Retrieved from http://dev.mysql.com/

 Apache.org (2009). The Apache Webserver Foundation. Retrieved from

http://httpd.apache.org/

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Check Point Firewall Log Analysis In-Depth 33
(

)2&3(4#/05*,67(55/2-(898(2*#+,-./01%(

Gorham, N. (2009). The unix ODBC Project Page. Retrieved from

http://www.unixodbc.org/

Fellhauer, T. (2005). The fw1-loggrabber Project Page. Retrieved from

http://sourceforge.net/projects/fw1-loggrabber/

OPSEC (2009). OPSEC SDK 6.0 Documentation download page (unzip LEA.PDF).

Retrieved from (may require free account login)

http://www.opsec.com/cp_products/90.htm

Shah, A. (2004). High Memory In The Linux Kernel. Retrieved from

http://kerneltrap.org/node/2450/7217

Splunk (2009). OPSEC LEA integration. Retrieved from

http://www.splunk.com/view/SP-CAAABJV

Gill, S. (2002). Maximizing Firewall Availability. Retrieved from

http://www.cymru.com/gillsr/documents/maximizing-firewall-availability.htm

Bruce, T. & Sterin, I. (2009). Perl DBI. Retrieved from http://dbi.perl.org/

Galbraith, P. (2009). DBD::mysql. Retrieved from

http://search.cpan.org/~capttofu/DBD-mysql-4.012/lib/DBD/mysql.pm

Check Point (2009). High CPU utilization on IPSO. Retrieved from

https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGovie

wsolutiondetails=&solutionid=sk38645

 Martinez, V. (2007). MPack. Retrieved from

http://blogs.pandasoftware.com/blogs/images/PandaLabs/2007/05/11/MPack.pdf

Armin, J. (2009). HE Reports. Retrieved from http://hostexploit.com/.

 ThreatExpert (2009). ThreatExpert; an advanced automated threat analysis system.

Retrieved from http://www.threatexpert.com/

abuse.ch (2009). ZeuS Tracker :: monitor. Retrieved from

https://zeustracker.abuse.ch/monitor.php?filter=filesonline

GeoIP (2009). MaxMind: GeoLite Country. Retrieved from

http://www.maxmind.com/app/geolitecountry

AutoTDSS (2009). ThreatExpert: Worm.Win32.AutoTDSS. Retrieved from

http://www.threatexpert.com/report.aspx?md5=66298b831793c09ec471c36d9eb8

5c96

