
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC INTRUSION ANALYST
Certification Practical V2.9

SANS Baltimore, Maryland 2001

James A Conz, Jr

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

(this page intentionally left blank)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 1

ASSIGNMENT 1 – NETWORK DETECTS

Network Detect 1: RPC Portmap Requests
 TRACE A:

 [**] RPC portmap request rstatd [**]
[Classification: Attempted Information Leak] [Priority: 3]
05/29-15:09:48.928810 202.130.248.188:875 -> XXX.XXX.XXX.12:111
UDP TTL:49 TOS:0x0 ID:58868 IpLen:20 DgmLen:84
Len: 64
[Xref => http://www.whitehats.com/info/IDS10]

 TRACE B:
 15:09:48.928810 202.130.248.188.875 > XXX.XXX.XXX.12.111: [udp sum ok]

udp 56 (ttl 49, id 58868, len 84)
0x0000 4500 0054 e5f4 0000 3111 63e3 ca82 f8bc E..T....1.c.....
0x0010 XXXX XX0C 036b 006f 0040 9be4 6407 ae72 k.o.@..d..r
0x0020 0000 0000 0000 0002 0001 86a0 0000 0002
0x0030 0000 0003 0000 0000 0000 0000 0000 0000
0x0040 0000 0000 0001 86b8 0000 0001 0000 0011
0x0050 0000 0000
15:09:49.030339 XXX.XXX.XXX.12.111 > 202.130.248.188.875: [udp sum ok]
udp 28 (ttl 64, id 3052, len 56)
0x0000 4500 0038 0bec 0000 4011 2f08 XXXX XX0C E..8....@./.....
0x0010 ca82 f8bc 006f 036b 0024 a98f 6407 ae72 o.k.$..d..r
0x0020 0000 0001 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 0000

1. Source of the trace:

These traces were collected on a client network. Note that the traces have been
sanitized (including the hex output).

2. Detect was generated by:
This detect was generated by the Snort Intrusion Detection system running in
packet logger mode. The data collected was later processed through snort again
in NIDS mode, generating the alert in Trace A.

3. Probability the source address was spoofed:
In that the attacker is attempting to gather information about the remote system
(in this case, for a possible future exploit), and would thus require some sort of
response from the remote system, it is unlikely that the source IP address is
spoofed.

4. Description of attack:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 2

This attack is an information gathering effort – the RPC portmapper can provide
information about the various RPC services that are available on a given host.
Many of these services have been the source of vulnerabilities. This type of
attack is currently a candidate for inclusion in the CVE list, referenced as CAN-
1999-0632.

5. Attack mechanism:
This attack works by querying the remote system to see if the RPC Portmapper
is running. A UDP packet is sent to port 111 on the remote system. If the
portmapper is running, and the packet is able to reach its destination, a response
is sent back to the attacker indicating success.
The RPC queries can be generated using the program “rpcinfo” that ships with
most flavours of UNIX. The example below illustrates a successful query. Note
the program number 100000 – this is the portmapper service itself:

echelon$ rpcinfo -u 192.168.99.11 100000
program 100000 version 2 ready and waiting
echelon$

An unsuccessful query will occur when the portmapper is not enabled or
reachable, or the program number is not available. In the following example, it is
not available:

echelon$ /usr/local/sbin/rpcinfo -u 192.168.99.77 100000
rpcinfo: RPC: Port mapper failure - RPC: Timed out
program 100000 is not available
echelon$

In this detect, the target host does indeed respond, indicating that the queried
program (bolded text 0001 86a0 in trace is equal to decimal 100000, or
portmapper) is available. The next step would be to query portmapper for a list of
registered RPC programs. The attacker can then search the list for an exploitable
vulnerability to complete the compromise.

6. Correlations:
This type of scan is common on the Internet (see
http://www.whitehats.com/info/IDS10).
However, the source host 202.130.248.188, was reported by the Computer and
Network Security Officer at the University of Auckland, New Zealand on May 23,
2001 as being the source of a port scan searching for DNS server (port 53
scan)†.
This host belongs to a Chinese network block, and is referenced in DNS by the
hostname idc.sta.net.cn. It is also, at the time of this writing, running a web
server: http://idc.sta.net.cn. This site is protected by username and password,
and is in Chinese.

7. Evidence of active targeting:
Given the fact that this host has been the source of many port scans, it seems
likely that the scan was part of a much larger, automated sweep.

8. Severity:
The severity of the incident is calculated using the following formula:

† See the original message at http://www.incidents.org/archives/intrusions/msg00397.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 3

(Criticality + Lethality) – (System Countermeasures + Network Countermeasures)

All four values are rated on a scale of one (1) to five (5), with five being the
highest. The resulting value is the overall severity level.
 CRITICALITY: 3
 The target host was a non-critical Linux server being used as a network diagnostic

tool.

 LETHALITY: 2
 The Lethality level of this attack is a 2 because it an information gathering effort.

However, the server did respond positively, indicating that the portmapper service was
indeed running. Follow on attacks would potentially have a much greater level of
severity.

SYSTEM
COUNTERMEASURES: 3

System countermeasures were inadequate to prevent against this type of attack.
Though the operating system was relatively recent, it was configured with vulnerable
services, and readily gave out a list of its registered RPC programs.

NETWORK
COUNTERMEASURES: 2

Network countermeasures were ineffective, primarily because the device in question
was located outside of the network’s firewall. Router packet filters, if present, did not
prevent the attack from taking place.

OVERALL SEVERITY: 0

9. Defensive recommendation:
Relocate the target behind the network’s firewall. This may not be possible
because of the type of tasks the device is performing (e.g., network monitoring).
At a minimum, the host should be hardened as much as possible by disabling all
unnecessary services (most evidently RPC portmapper at 111/udp and 111/tcp)
and installing host-based security tools such as PortSentry and TCP Wrappers.
Implement router ACLs to prevent unnecessary inbound traffic from reaching the
host.

10. Multiple choice test question:
What tool, common to most UNIX distributions, can be used to query the
portmapper service?
a. dig
b. pmap
c. rpcinfo
d. rpcq
Answer: c

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 4

Network Detect 2: SuperScan
 TRACE A:

 [**] ICMP superscan echo from windows [**]
06/29-04:37:43.867657 217.84.158.142 -> XXX.XXX.XXX.2
ICMP TTL:115 TOS:0x0 ID:29764 IpLen:20 DgmLen:36
Type:8 Code:0 ID:256 Seq:12340 ECHO

[**] ICMP superscan echo from windows [**]
06/29-04:37:43.881004 217.84.158.142 -> XXX.XXX.XXX.3
ICMP TTL:115 TOS:0x0 ID:29766 IpLen:20 DgmLen:36
Type:8 Code:0 ID:256 Seq:12852 ECHO

[**] ICMP superscan echo from windows [**]
06/29-04:37:43.898794 217.84.158.142 -> XXX.XXX.XXX.4
ICMP TTL:115 TOS:0x0 ID:29769 IpLen:20 DgmLen:36
Type:8 Code:0 ID:256 Seq:13620 ECHO

[**] INFO FTP anonymous FTP [**]
06/29-05:42:27.735825 217.84.158.142:3068 -> XXX.XXX.XXX.2:21
TCP TTL:51 TOS:0x0 ID:37351 IpLen:20 DgmLen:56 DF
AP Seq: 0x814B0D9C Ack: 0xD1EAE8A6 Win: 0xFFCD TcpLen: 20

 TRACE B:
 04:37:43.867657 217.84.158.142 > XXX.XXX.XXX.2: icmp: echo request (ttl

115, id 29764, len 36)
0x0000 4500 0024 7444 0000 7301 0770 d954 9e8e E..$tD..s..p.T..
0x0010 XXXX XX02 0800 c6cb 0100 3034 0000 0000 04....
0x0020 0000 0000 0dcb c6cb 036e 7331 0767 ns1.g
04:37:43.881004 217.84.158.142 > XXX.XXX.XXX.3: icmp: echo request (ttl
115, id 29766, len 36)
0x0000 4500 0024 7446 0000 7301 076d d954 9e8e E..$tF..s..m.T..
0x0010 XXXX XX03 0800 c4cb 0100 3234 0000 0000 24....
0x0020 0000 0000 0000 0000 0000 0000 0000
04:37:43.898794 217.84.158.142 > XXX.XXX.XXX.4: icmp: echo request (ttl
115, id 29769, len 36)
0x0000 4500 0024 7449 0000 7301 0769 d954 9e8e E..$tI..s..i.T..
0x0010 XXXX XX04 0800 c1cb 0100 3534 0000 0000 54....
0x0020 0000 0000 0000 0000 0000 0000 0000
05:42:27.735825 217.84.158.142.3068 > XXX.XXX.XXX.2.21: P [tcp sum ok]
2169179548:2169179564(16) ack 3521833126 win 65485 (DF) (ttl 51, id
37351, len 56)
0x0000 4500 0038 91e7 4000 3306 e9b3 d954 9e8e E..8..@.3....T..
0x0010 XXXX XX02 0bfc 0015 814b 0d9c d1ea e8a6 K......
0x0020 5018 ffcd 0663 0000 5553 4552 2061 6e6f P....c..USER.ano
0x0030 6e79 6d6f 7573 0d0a nymous..

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 5

1. Source of the trace:
These traces were collected on my company’s network. Note that the traces
have been sanitized (including the hex output).

2. Detect was generated by:
This detect was generated by the Snort Intrusion Detection system running in
NIDS mode. Trace A shows the snort alerts, and Trace B shows the raw
tcpdump output.

3. Probability the source address was spoofed:
This appears to be a reconnaissance effort. Since the attacker would need to
receive the response packets to gain any information, it is very unlikely that the
source IP addresses have been spoofed.

4. Description of attack:
As the snort signature indicates, the first three packets may have been generated
by the Windows port scanning program SuperScan. Three consecutive IP
addresses are ping’ed in rapid succession, and then a little more than an hour
later, the attacker returns and anonymously FTP’s to the first address
(XXX.XXX.XXX.2).

5. Attack mechanism:
A very probable explanation of this trace is that the attacker had been running a
sweep using the SuperScan‡ software. Once targets were identified, the attacker
returned and checked for anonymous FTP.
A closer look at the source IP address of the attacker reveals that it is a dial-up
IP address from the German telecommunications company, Deutsche Telekom.
This information was arrived at in the following manner:
r An nslookup was performed on the source IP address:

echelon$ nslookup 217.84.158.142
Server: xxx.xxx.com
Address: XXX.XXX.XXX.1

Name: pD9549E8E.dip.t-dialin.net
Address: 217.84.158.142

r A WHOIS query is issued via the Network Solutions home page to
determine the owner of the t-dialin.net domain. The following information is
returned:
Registrant:
Deutsche Telekom Online Service GmbH (T-DIALIN2-DOM)
 Waldstrasse 3
 Weiterstadt, D-64331
 DE

<snip>§

‡ For more information on SuperScan, see http://www.foundstone.com
§ Contact information and nameservers are also listed with Network Solutions, but omitted from this document for

brevity.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 6

6. Correlations:
A search of www.incidents.org, www.google.com, and www.altavista.com did not
reveal any correlating events from this source IP address. However, this IP
address does belong to a large dial-up provider, and it is very likely that the IP
address is only temporarily assigned to dial-up users.

7. Evidence of active targeting:
The initial scan was probably part of a sweep. The Anonymous FTP attempt,
however, was evidence of active targeting. Because of the time differential
between the ICMP ECHO_REQUEST packets and the anonymous FTP attempt,
it appears that the attacker manually returned to the target to check for the
existence of anonymous FTP. They may have been looking for writable FTP
servers, or vulnerable FTP services.

8. Severity:
The severity of the incident is calculated using the following formula:

(Criticality + Lethality) – (System Countermeasures + Network Countermeasures)

All four values are rated on a scale of one (1) to five (5), with five being the
highest. The resulting value is the overall severity level.
 CRITICALITY: 5
 The target host was a firewall and a core application server located behind it, and thus

the criticality level is very high.

 LETHALITY: 2
 The Lethality level of this attack is a 2 because it is an information gathering effort.

SYSTEM
COUNTERMEASURES: 5

System countermeasures were in place to ensure this type of attack would not be
successful. The server in question is running the latest operating system security
patches, and has been hardened through configuration minimization, best practices,
and host-based security software such as TCP wrappers.

NETWORK
COUNTERMEASURES: 4

Network countermeasures include router ACLs (though they did not prevent this
reconnaissance) and an application proxy firewall. Although very strong, they are
configured to permit both protocols involved in this reconnaissance effort. If the system
countermeasures were not configured to prevent the use of anonymous FTP, the
network countermeasures would not have prevented misuse of the FTP system. The
application proxy may have prevent compromise of the FTP server through buffer
overrun, but “normal” FTP traffic would have been permitted.

OVERALL SEVERITY: -2

9. Defensive recommendation:
Although the reconnaissance was successful, existing countermeasures would
likely prevent any exploitation of the information gained.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 7

That said, it’s always possible to increase security – so if FTP services are not
required, block using ACLs at the router and remove any rules permitting such
access from the firewall. Additionally, contact the ISP that hosts the attacking
machine, and notify them of the infraction. If they fail to respond, consider
applying ingress router ACLs that drop all packets from part of all of their IP
allocation. Note that this may affect legitimate use, so take this course of action
with caution.

10. Multiple choice test question:
All of the following are true about ICMP ECHO_REQUEST and ECHO_REPLY
packets except:
a. They have sequence numbers
b. They have an identifier
c. They can carry data
d. They are ICMP type 0 and 8, respectively
e. They are ICMP type 8 and 0, respectively

Answer: d

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 8

Network Detect 3: IIS Unicode Attack!
 TRACE A:

 [**] spp_http_decode: IIS Unicode attack detected [**]
06/29-10:22:29.668933 217.127.10.182:21724 -> XXX.XXX.XXX.2:80
TCP TTL:111 TOS:0x0 ID:39053 IpLen:20 DgmLen:130 DF
AP Seq: 0x17571F Ack: 0xC65E0638 Win: 0x2238 TcpLen: 20

[**] WEB-MISC http directory traversal [**]
06/29-10:22:29.668933 217.127.10.182:21724 -> XXX.XXX.XXX.2:80
TCP TTL:111 TOS:0x0 ID:39053 IpLen:20 DgmLen:130 DF
AP Seq: 0x17571F Ack: 0xC65E0638 Win: 0x2238 TcpLen: 20

[**] spp_http_decode: IIS Unicode attack detected [**]
06/29-10:22:29.688547 217.127.10.182:21725 -> XXX.XXX.XXX.2:80
TCP TTL:111 TOS:0x0 ID:39565 IpLen:20 DgmLen:130 DF
AP Seq: 0x175723 Ack: 0x115B8BCD Win: 0x2238 TcpLen: 20

[**] WEB-MISC http directory traversal [**]
06/29-10:22:29.688547 217.127.10.182:21725 -> XXX.XXX.XXX.2:80
TCP TTL:111 TOS:0x0 ID:39565 IpLen:20 DgmLen:130 DF
AP Seq: 0x175723 Ack: 0x115B8BCD Win: 0x2238 TcpLen: 20

 TRACE B:
 10:22:29.668933 217.127.10.182.21724 > XXX.XXX.XXX.2.80: P [tcp sum ok]

1529631:1529721(90) ack 3328050744 win 8760 (DF) (ttl 111, id 39053, len
130)
0x0000 4500 0082 988d 4000 6f06 3a71 d97f 0ab6 E.....@.o.:q....
0x0010 XXXX XX02 54dc 0050 0017 571f c65e 0638 T..P..W..^.8
0x0020 5018 2238 e5e8 0000 4745 5420 2f73 6372 P."8....GET./scr
0x0030 6970 7473 2f2e 2e25 6331 2531 632e 2e2f ipts/..%c1%1c../
0x0040 7769 6e6e 742f 7379 7374 656d 3332 2f63 winnt/system32/c
0x0050 6d64 2e65 7865 3f2f 632b 6469 722b 633a md.exe?/c+dir+c:
0x0060 5c20 4854 5450 2f31 2e30 0d0a 486f 7374 \.HTTP/1.0..Host
0x0070 3a20 XXXX 2eXX XX2e 3231 2e32 0d0a 0d0a
:.XXX.XXX.XXX.2....
0x0080 0d0a ..

10:22:29.668933 217.127.10.182.21724 > XXX.XXX.XXX.2.80: P [bad tcp
cksum b2b4!] 0:90(90) ack 1 win 8760 (DF) (ttl 111, id 39053, len 130)
0x0000 4500 0082 988d 4000 6f06 3a71 d97f 0ab6 E.....@.o.:q....
0x0010 XXXX XX02 54dc 0050 0017 571f c65e 0638 T..P..W..^.8
0x0020 5018 2238 e5e8 0000 4745 5420 2f73 6372 P."8....GET./scr
0x0030 6970 7473 2f2e 2ec1 1c2e 2e2f 7769 6e6e ipts/....../winn
0x0040 742f 7379 7374 656d 3332 2f63 6d64 2e65 t/system32/cmd.e
0x0050 7865 3f2f 632b 6469 722b 633a 5c20 4854 xe?/c+dir+c:\.HT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 9

0x0060 5450 2f31 2e30 0d0a 486f 7374 3a20 36XX TP/1.0..Host:.XX
0x0070 XXXX XXXX XXXX 2e32 0d0a 0d0a 0d0a 0d0a XXXXXXXX........
0x0080 0d0a ..

10:22:29.688547 217.127.10.182.21725 > XXX.XXX.XXX.2.80: P [tcp sum ok]
1529635:1529725(90) ack 291212237 win 8760 (DF) (ttl 111, id 39565, len
130)
0x0000 4500 0082 9a8d 4000 6f06 3871 d97f 0ab6 E.....@.o.8q....
0x0010 XXXX XX02 54dd 0050 0017 5723 115b 8bcd T..P..W#.[..
0x0020 5018 2238 024b 0000 4745 5420 2f73 6372 P."8.K..GET./scr
0x0030 6970 7473 2f2e 2e25 6330 2539 762e 2e2f ipts/..%c0%9v../
0x0040 7769 6e6e 742f 7379 7374 656d 3332 2f63 winnt/system32/c
0x0050 6d64 2e65 7865 3f2f 632b 6469 722b 633a md.exe?/c+dir+c:
0x0060 5c20 4854 5450 2f31 2e30 0d0a 486f 7374 \.HTTP/1.0..Host
0x0070 XXXX XXXX XXXX XX2e XXXX 2e32 0d0a 0d0a
:.XXX.XXX.XXX.2....
0x0080 0d0a ..

10:22:29.688547 217.127.10.182.21725 > XXX.XXX.XXX.2.80: P [bad tcp
cksum 8b55!] 0:90(90) ack 1 win 8760 (DF) (ttl 111, id 39565, len 130)
0x0000 4500 0082 9a8d 4000 6f06 3871 d97f 0ab6 E.....@.o.8q....
0x0010 XXXX XX02 54dd 0050 0017 5723 115b 8bcd T..P..W#.[..
0x0020 5018 2238 024b 0000 4745 5420 2f73 6372 P."8.K..GET./scr
0x0030 6970 7473 2f2e 2ec0 2539 762e 2e2f 7769 ipts/...%9v../wi
0x0040 6e6e 742f 7379 7374 656d 3332 2f63 6d64 nnt/system32/cmd
0x0050 2e65 7865 3f2f 632b 6469 722b 633a 5c20 .exe?/c+dir+c:\.
0x0060 4854 5450 2f31 2e30 0d0a 486f 7374 3a20 HTTP/1.0..Host:.
0x0070 XXXX 2eXX XX2e XXXX 2e32 0d0a 0d0a 0d0a
XXX.XXX.XXX.2....
0x0080 0d0a ..

1. Source of the trace:

These traces were collected on my company’s network. Note that the traces
have been sanitized (including the hex output).

2. Detect was generated by:
This detect was generated by the Snort Intrusion Detection system running in
NIDS mode. Trace A shows the snort alerts, and Trace B shows the raw
tcpdump output.

3. Probability the source address was spoofed:
While it is not inconceivable that TCP session hijacking couple be employed in
this type of attack, it is unlikely. This particular implementation of this attack
returns information to the attacker’s browser, letting them know the attack has
been successful (dir output of the root system drive). For this reason alone, it is
highly unlikely that the source IP address has been spoofed in this case.

4. Description of attack:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 10

The attack exploits a serious vulnerability in unpatched versions of Microsoft IIS
4.0 and IIS 5.0, whereby an attacker can read files outside of the IIS server
document root, and, in many circumstances, execute arbitrary code. This
vulnerability is referenced by CVE-2000-0884 and BUGTRAQ:20001017.

5. Attack mechanism:
This attack is accomplished through the exploitation of a bug in Microsoft’s IIS
4.0 and IIS 5.0 whereby URL requests are not properly normalized before being
executed. Unicode characters are used to “break out” of the document root, and
traverse the directory structure. The following GET request was issued by the
attacker (several variations were also issued, mainly varying the Unicode
characters):

http://www.xxxxxxxxx.com/scripts/..%c1%1c../winnt/system32/
cmd.exe?/c+dir+c:\

Several other variations were also issued, mainly varying the Unicode
characters. This was likely due to the lack of success the attacker experienced.
This was in no small part due to the fact that the target host was not a Microsoft
machine at all, and thus not vulnerable to this type of attack.
Had this attack succeeded, it would have executed the Microsoft command shell
(cmd.exe) with the arguments “/c dir c:\.” The output of the command is piped
through the Web server and back to the attacker’s browser.
Obviously, there are far more serious implications to this than a mere directory
listing. The commands are executed with under the user account that IIS runs
under, which is typically IUSR_hostname. Although this account generally has
only limited privileges, they are, in most cases, more than enough to seriously
compromise the security of the target host. This includes theft of data (e.g., credit
card numbers), as well as possible destructive action.
A more detailed explanation of this attack can be found at
http://www.securiteam.com/windowsntfocus/Web_Server_Folder_Traversal_vuln
erability__Patch_available__exploit_.html
Note the presence of packets with bad TCP checksums – this is most probably
evidence of a bad connection between the attacker (probably dial-up link) and
the remote host. However, it could also be an indicator of poorly written exploit
code and packet crafting.

6. Correlations:
These attacks have been as widespread at the software they target.
This attack was sourced from an IP address belonging to a block assigned to
France Telecom. A search of www.incidents.org, www.google.com, and
www.altavista.com did not reveal any correlating attacks for this source IP
address.

7. Evidence of active targeting:
Active targeting is certainly in evidence in this case as the attacker tried several
times to compromise the target using the IIS Unicode vulnerability. The fact that
the target host was not, in fact, a Microsoft server did not seem to deter the
attacker (though it did deter the attack).

8. Severity:
The severity of the incident is calculated using the following formula:

(Criticality + Lethality) – (System Countermeasures + Network Countermeasures)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 11

All four values are rated on a scale of one (1) to five (5), with five being the
highest. The resulting value is the overall severity level.
 CRITICALITY: 4
 The target host was a WWW server located behind a firewall. This same host also

provides other important services.

 LETHALITY: 1
 This attack has a Lethality of 1 since the target host is not vulnerable to the intrusion

vector the attacker is targeting (it is a UNIX WWW server, and this attack relies on a
vulnerability in Microsoft code).

SYSTEM
COUNTERMEASURES: 5

In addition to being the wrong type of system to mount this attack on, other system
countermeasures were also in place. The server in question is running the latest
operating system security patches, and has been hardened through configuration
minimization, best practices, and host-based security software such as TCP wrappers.

NETWORK
COUNTERMEASURES: 3

This type of attack has traditionally evaded most network countermeasures since it
takes advantage of services typically opened to the Internet (HTTP). Additionally,
because the URL GET requests are not malformed (they typically comply with
HTTP/1.1), application proxy firewalls will probably not block this type of attack.

OVERALL SEVERITY: -3

9. Defensive recommendation:
The existing defensive posture, in this case, is very adequate to prevent this type
of attack from being successful. On an on-going basis, ensure that all Internet
exposed servers have the most recent security fixes applied.
If potentially vulnerable servers (IIS) are introduced to the network environment
at a future date, ensure that the latest security fixes are applied. Additional
information regarding fixes can be found at www.microsoft.com.

10. Multiple choice test question:
Thwarting Unicode attacks is best accomplished using which of the following
techniques:
a. Applying relevant hot-fixes
b. Changing the default password for the IUSR_host account
c. Installing an application proxy firewall
d. Running SSL

Answer: a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 12

Network Detect 4: The call is coming from inside the house!
 TRACE A:

 May 21 14:33:20 192.168.1.1:10978 -> XXX.XXX.XXX.12:5191 SYN ******S*
May 21 14:33:20 192.168.1.1:10979 -> XXX.XXX.XXX.12:5192 SYN ******S*
May 21 14:33:20 192.168.1.1:10980 -> XXX.XXX.XXX.12:5193 SYN ******S*
May 21 14:33:20 192.168.1.1:11001 -> XXX.XXX.XXX.12:113 SYN ******S*
May 21 14:33:20 192.168.1.1:10983 -> XXX.XXX.XXX.12:1025 SYN ******S*
May 21 14:33:20 192.168.1.1:10984 -> XXX.XXX.XXX.12:67 UDP
May 21 14:33:20 192.168.1.1:10985 -> XXX.XXX.XXX.12:19 SYN ******S*
May 21 14:33:20 192.168.1.1:10986 -> XXX.XXX.XXX.12:19 UDP
May 21 14:33:20 192.168.1.1:10987 -> XXX.XXX.XXX.12:4144 SYN ******S*
<snip>
May 21 14:33:22 192.168.1.1:26271 -> XXX.XXX.XXX.12:80 NMAPID **U*P*SF
May 21 14:33:22 192.168.1.1:26275 -> XXX.XXX.XXX.12:5190 XMAS **U*P**F

[**] SCAN nmap fingerprint attempt [**]
[Classification: Attempted Information Leak] [Priority: 3]
05/21-14:33:22.516894 192.168.1.1:26271 -> XXX.XXX.XXX.12:80
TCP TTL:128 TOS:0x0 ID:444 IpLen:20 DgmLen:60
**U*P*SF Seq: 0x4BC Ack: 0x0 Win: 0xC800 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL
[Xref => http://www.whitehats.com/info/IDS05]

[**] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 3]
05/21-14:33:22.516932 192.168.1.1:26272 -> XXX.XXX.XXX.12:80
TCP TTL:128 TOS:0x0 ID:444 IpLen:20 DgmLen:60
A* Seq: 0x4BC Ack: 0x0 Win: 0xC800 TcpLen: 40
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL
[Xref => http://www.whitehats.com/info/IDS28]

[**] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 3]
05/21-14:33:22.517010 192.168.1.1:26274 -> XXX.XXX.XXX.12:5190
TCP TTL:128 TOS:0x0 ID:444 IpLen:20 DgmLen:60
A* Seq: 0x4BC Ack: 0x0 Win: 0xC800 TcpLen: 40
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL
[Xref => http://www.whitehats.com/info/IDS28]

May 21 14:33:24 192.168.1.1:31476 -> XXX.XXX.XXX.12:80 SYN ******S*
May 21 14:33:24 192.168.1.1:31477 -> XXX.XXX.XXX.12:80 NULL ********
May 21 14:33:24 192.168.1.1:31478 -> XXX.XXX.XXX.12:80 NMAPID **U*P*SF
May 21 14:33:24 192.168.1.1:31480 -> XXX.XXX.XXX.12:5190 SYN ******S*
May 21 14:33:24 192.168.1.1:31482 -> XXX.XXX.XXX.12:5190 XMAS **U*P**F

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 13

May 21 14:33:24 192.168.1.1:31483 -> XXX.XXX.XXX.12:512 UDP
May 21 14:33:24 192.168.1.1:31489 -> XXX.XXX.XXX.12:80 SYN ******S*

[**] SCAN nmap fingerprint attempt [**]
[Classification: Attempted Information Leak] [Priority: 3]
05/21-14:33:24.514116 192.168.1.1:31478 -> XXX.XXX.XXX.12:80
TCP TTL:128 TOS:0x0 ID:444 IpLen:20 DgmLen:60
**U*P*SF Seq: 0x4BC Ack: 0x0 Win: 0xC800 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL
[Xref => http://www.whitehats.com/info/IDS05]

[**] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 3]
05/21-14:33:24.514152 192.168.1.1:31479 -> XXX.XXX.XXX.12:80
TCP TTL:128 TOS:0x0 ID:444 IpLen:20 DgmLen:60
A* Seq: 0x4BC Ack: 0x0 Win: 0xC800 TcpLen: 40
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL
[Xref => http://www.whitehats.com/info/IDS28]

[**] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 3]
05/21-14:33:24.514232 192.168.1.1:31481 -> XXX.XXX.XXX.12:5190
TCP TTL:128 TOS:0x0 ID:444 IpLen:20 DgmLen:60
A* Seq: 0x4BC Ack: 0x0 Win: 0xC800 TcpLen: 40
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL
[Xref => http://www.whitehats.com/info/IDS28]

May 21 14:33:26 192.168.1.1:25487 -> XXX.XXX.XXX.12:79 SYN *2****S*
May 21 14:33:26 192.168.1.1:25475 -> XXX.XXX.XXX.12:79 NULL ********
May 21 14:33:26 192.168.1.1:25476 -> XXX.XXX.XXX.12:79 NMAPID **U*P*SF
May 21 14:33:26 192.168.1.1:25478 -> XXX.XXX.XXX.12:5190 SYN ******S*
May 21 14:33:26 192.168.1.1:25480 -> XXX.XXX.XXX.12:5190 XMAS **U*P**F
May 21 14:33:26 192.168.1.1:25481 -> XXX.XXX.XXX.12:512 UDP
<snip>

 TRACE B:
14:33:24.514188 0:50:4:a1:f3:97 0:50:8b:a:c0:57 0800 74:
192.168.1.1.31480 > 12.46.112.83.5190: S [tcp sum ok] 1212:1212(0) win
51200 <wscale 10,nop,mss 265,timestamp 1061109567 0,eol> (ttl 128, id
444, len 60)

14:33:24.514232 0:50:4:a1:f3:97 0:50:8b:a:c0:57 0800 74:
192.168.1.1.31481 > 12.46.112.83.5190: . [tcp sum ok] ack 0 win 51200
<wscale 10,nop,mss 265,timestamp 1061109567 0,eol> (ttl 128, id 444, len
60)

14:33:24.514272 0:50:4:a1:f3:97 0:50:8b:a:c0:57 0800 74:
192.168.1.1.31482 > 12.46.112.83.5190: FP [tcp sum ok] 1212:1212(0) win

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 14

51200 urg 0 <wscale 10,nop,mss 265,timestamp 1061109567 0,eol> (ttl 128,
id 444, len 60)

14:33:24.514431 0:50:8b:a:c0:57 0:3:6b:b5:bd:60 0800 60:
12.46.112.83.5190 > 192.168.1.1.31480: R [tcp sum ok] 0:0(0) ack 1213
win 0 (DF) (ttl 128, id 26447, len 40)

14:33:24.514497 0:50:8b:a:c0:57 0:3:6b:b5:bd:60 0800 60:
12.46.112.83.5190 > 192.168.1.1.31481: R [tcp sum ok] 0:0(0) win 0 (DF)
(ttl 128, id 26448, len 40)

1. Source of the trace:

These traces were collected on a client’s network. Note that the traces have
been sanitized (including any hex output).

2. Detect was generated by:
This detect was generated by the Snort Intrusion Detection system running in
packet logger mode. The resulting binary tcpdump format output was then
processed through snort in NIDS mode. SnortSnarf** was then used to collate the
data into a more readable format. Excerpts from the SnortSnarf output are listed
as Trace A.

3. Probability the source address was spoofed:
At first glance, the answer would seem to be a resounding yes, since the source
IP address is 192.168.1.1 – a RFC1918 private address that should not be
routable on the Internet. A portscan with a spoofed IP address has little direct
reconnaissance value to an attacker, since they will not receive the response
packets and won’t learn anything.
A few possible scenarios present themselves:

r A novice script kiddie has launched the scan using a spoofed IP address,
not realizing that it doesn’t really work like that;

r A more astute attacker has launched the scan with a spoofed IP address as
a decoy to distract attention from his/her real target;

r The attacker has somehow managed to get the ISP to route his traffic using
the RFC1918 address. This could be the result of egregiously misconfigured
routers at the ISP;

r The attack is coming from within the organization’s own network, most
probably on the external network between the firewall and the Internet
router.

A closer look at the trace makes the last option seem the most likely. Note the
TTL value of the packets (in bold) that generated regular snort alerts (rather than
the portscan output). They are all 128, a common starting value. Since every
router that received the packet would have decremented the TTL by 1, it seems
likely that these packets are being sourced on the same network at the
destination.

** SnortSnarf is available at http://www.silicondefense.com

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 15

Trace B corroborates this theory. In the first packet, notice the source MAC
address (in bold). The first three octets of the MAC address usually indicate the
manufacturer of the network card that generated the packet on the local wire.†† In
this case, the first three octets are “00-50-04”. According to the list at IEEE
(http://standards.ieee.org/regauth/oui/oui.txt), this packet was generated by
3COM hardware.
The next bolded packet shows the target host responding with a TCP RST
packet, but its destination MAC address is different! The target host is
responding to its default gateway, the Internet router (a Cisco – “00-03-6b”).
To summarize, using the MAC addresses, we are able to determine with
reasonable certainty that the packets did not arrive via the Internet router, and
thus were very probably generated locally.

4. Description of attack:
This is a scan performed using the publicly available port scanning software
nmap by Fyodor.‡‡ The nmap tool is a port scanner capable of performing a wide
variety of scanning methods. This OS fingerprinting portion of this attack has
been tentatively defined by CVE candidate CAN-1999-0454 and
http://www.whitehats.com/info/IDS05.

5. Attack mechanism:
This particular detect appears to be a TCP SYN scan, with OS fingerprinting
enabled. The presence of packets that are out of specification (multiple,
conflicting flags turned on such as SYN and FIN in the same packet) strongly
suggests OS fingerprinting. nmap’s OS fingerprinting method crafts packets with
various flags and options set and looks for subtle (sometimes not-so-subtle)
variations in the responses. Note the following excerpt from Trace A:

[**] SCAN nmap fingerprint attempt [**]
[Classification: Attempted Information Leak] [Priority: 3]
05/21-14:33:24.514116 192.168.1.1:31478 -> XXX.XXX.XXX.12:80
TCP TTL:128 TOS:0x0 ID:444 IpLen:20 DgmLen:60
**U*P*SF Seq: 0x4BC Ack: 0x0 Win: 0xC800 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

This packet is a TCP packet sent to the finger port on the target host with the
SYN, FIN, URG, and PSH flags all set, along with several TCP options: windows
size (WS), NOP, maximum segment size (MSS), time stamp (TS), and end of
options (EOL). The way the operating system responds to this packet, including
the way it treats the TCP options, will be used by nmap to determine the
operating system type. A more complete treatment of this subject can be found at
http://www.insecure.org/nmap/nmap-fingerprinting-article.html.

†† It should be noted that MAC addresses can also be spoofed, and that some machines will override the hard-coded

MAC address of the networking hardware by default (e.g., Sun). Some older networking protocols such as DECnet
also modify the MAC address.

‡‡ nmap is available at http://www.insecure.org.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 16

The other part of this attack is the TCP SYN scan, also known as a stealth scan
or a half-open scan. This type of scan is executed by crafting TCP SYN packets
that are sent to the destination host. If the destination port is listening, it should
send back a SYN|ACK packet, in which case the connection is torn down with a
RST packet and nmap logs the port as open. If the destination port is not
listening, the remote host should send back a RST packet in response to the
initial SYN. The idea is that this type of scanning is “quieter” than a full TCP
connect scan (where the three way hand-shake is completed), and that it may
evade some forms of perimeter defense or intrusion detection. The reality today
is that any IDS or firewall worth its weight will detect and log this type of activity.

6. Correlations:
The use of nmap is widespread on the Internet. It is a favourite tool of both the
“hacking community” and security professionals. Detailed information regarding
nmap can be found at http://www.insecure.org/nmap/nmap_doc.html.

7. Evidence of active targeting:
This was a reconnaissance effort that was launched locally, and thus it would
seem that there was indeed evidence of active targeting. In fact, it is very
conceivable that the attack was launched from a compromised system located
outside of the network’s firewall, which was the target of the attack.

8. Severity:
The severity of the incident is calculated using the following formula:

(Criticality + Lethality) – (System Countermeasures + Network Countermeasures)

All four values are rated on a scale of one (1) to five (5), with five being the
highest. The resulting value is the overall severity level.
 CRITICALITY: 5
 The target host is the organization’s primary Internet firewall.

 LETHALITY: 2
 Lethality of this attack is low since both the TCP scan and the OS fingerprinting

portions of the attack are information-gathering efforts.

SYSTEM
COUNTERMEASURES: 5

 The system being targeting is a firewall (hardened, of course) running the latest
patches and hot-fixes.

NETWORK
COUNTERMEASURES: 2

Since the firewall was the actual target of this attack, and the attack appears to have
originated from the local network, network countermeasures were ineffective at
preventing this assault. If they had been effective, direct access to the local external
network would not have been possible, and the scan would have had to take place
from the Internet, where router ACLs would have provided an additional layer of
protection (in fact, blocking the attack since they would drop packets sourced with
RFC1918 addresses).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 17

OVERALL SEVERITY: 0

9. Defensive recommendation:
Immediately locate the server that originated the attack. If this attack was indeed
generated locally, it is imperative to ascertain whether the box is a compromised
host or an unauthorized interloper and follow appropriate incident response
procedures to remedy the situation.

10. Multiple choice test question:
What IP header field is decremented by routers?
a. MSS
b. Fragment Offset
c. Time Stamp
d. TTL

Answer: d

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 18

Network Detect 5: In Search Of… Silly Gs
 TRACE A:

 Feb 24 14:16:01 XXX.XXX.XXX.1 10715: %SEC-6-IPACCESSLOGP: list 120
denied tcp 216.87.208.233(40771) -> XXX.XXX.XXX.0(5232), 1 packet

Feb 24 14:16:01 XXX.XXX.XXX.1 10716: %SEC-6-IPACCESSLOGP: list 120
denied tcp 216.87.208.233(40771) -> XXX.XXX.XXX.1(5232), 1 packet

Feb 24 14:16:01 XXX.XXX.XXX.1 10717: %SEC-6-IPACCESSLOGP: list 120
denied tcp 216.87.208.233(40771) -> XXX.XXX.XXX.3(5232), 1 packet

Feb 24 14:16:01 XXX.XXX.XXX.1 10718: %SEC-6-IPACCESSLOGP: list 120
denied tcp 216.87.208.233(40771) -> XXX.XXX.XXX.5(5232), 1 packet

Feb 24 14:16:01 XXX.XXX.XXX.1 10719: %SEC-6-IPACCESSLOGP: list 120
denied tcp 216.87.208.233(40771) -> XXX.XXX.XXX.6(5232), 1 packet

<snip>

Feb 24 14:16:02 XXX.XXX.XXX.1 10764: %SEC-6-IPACCESSLOGP: list 120
denied tcp 216.87.208.233(40771) -> XXX.XXX.XXX.60(5232), 1 packet

Feb 24 14:16:02 XXX.XXX.XXX.1 10765: %SEC-6-IPACCESSLOGP: list 120
denied tcp 216.87.208.233(40771) -> XXX.XXX.XXX.61(5232), 1 packet

Feb 24 14:16:02 XXX.XXX.XXX.1 10766: %SEC-6-IPACCESSLOGP: list 120
denied tcp 216.87.208.233(40771) -> XXX.XXX.XXX.62(5232), 1 packet

Feb 24 14:16:02 XXX.XXX.XXX.1 10767: %SEC-6-IPACCESSLOGP: list 120
denied tcp 216.87.208.233(40771) -> XXX.XXX.XXX.63(5232), 1 packet

1. Source of the trace:

These traces were collected on my company’s network. Note that the traces
have been sanitized.

2. Detect was generated by:
This detect was generated by a Cisco router with access control lists and logging
enabled. Subsequent processing of the text-based log files was performed using
WebTrend’s Firewall Suite and grep.

3. Probability the source address was spoofed:
It is unlikely that the source address has been spoofed in this case, since in order
for the attack to work the attacker must receive a response. It is conceivable, but
improbable, that the attacker is spoofing an IP address to “frame” the true owner
of the IP address.

4. Description of attack:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 19

This is a scan looking for Silicon Graphics IRIX machines. It is described in
http://www.kb.cert.org/vuls/id/28027, and tentatively referenced by CVE
candidate CAN-2000-0893.

5. Attack mechanism:
This scan is a primitive and rudimentary OS fingerprinting effort in search for
Silicon Graphics IRIX machines. IRIX runs a service called the Distributed GL
Daemon (dgld) that listens on 5232/tcp. This attack works by sending a TCP
SYN packet to a host (more typically, a range of hosts, as is the case in this
detect) on port 5232. If a response it received, it is likely that the responding host
is a Silicon Graphics IRIX machine.
This trace was generated by a Cisco router with access control lists. The access
control lists log all traffic that they block, so these packets did not reach their
intended recipient. However, note the gaps in the destination IP sequence (not
the intentionally omitted portion indicated by the <snip>). The entire trace
appears to proceed through the entire subnet range (XXX.XXX.XXX.0 ->
XXX.XXX.XXX.63), but skips XXX.XXX.XXX.2 and XXX.XXX.XXX.4. These two
IP addresses were either not scanned, or not blocked by the router (and thus not
logged). Since the trace scans every other IP address in the range, a likely
explanation is that the router is not blocking 5232/tcp to the two skipped IP
addresses. This is significant only in that if these two IP addresses belong to IRIX
hosts, they may have been fingerprinted.
Also interesting in this trace is the fact that the source port remains the same
through the entire detect. This is very unnatural behaviour; a new ephemeral port
should be allocated for each new TCP connection. Since each of the TCP SYN
packets is sent to a new destination IP address, the source port should change.
This is evidence of packet crafting.
The scan was performed very quickly – according to the time stamps, only 1
second elapsed from start to finish.

6. Correlations:
A search of the www.incidents.org and www.neohapsis.com archives revealed
several correlating events. One of the earliest reported detects of this type dates
back to April 12, 2000 and is attributed to Korea University (see
http://www.incidents.org/archives/y2k/041200.htm).
Several other similar scan types were reported, but the most interesting
correlating event was reported by John Springer, who detected and reported the
same scan, from the same IP address, on the same date
(http://www.incidents.org/archives/y2k/030101.htm).

7. Evidence of active targeting:
The correlating events strongly suggest that this was a broad sweep. Exactly
how broad can not be determined as actual destination IP addresses were not
provided in the correlating events, but it seems clear that the target network in
this detect was not singled out for attack.

8. Severity:
The severity of the incident is calculated using the following formula:

(Criticality + Lethality) – (System Countermeasures + Network Countermeasures)

All four values are rated on a scale of one (1) to five (5), with five being the
highest. The resulting value is the overall severity level.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 20

CRITICALITY: 5
 The target is a network sweep that includes the firewall and Internet router. For this

reason, criticality is set very high.

 LETHALITY: 1
 The lethality of this attack is low because it is merely a crude attempt to fingerprint a

specific operating system type.

SYSTEM
COUNTERMEASURES: 5

All exposed systems are hardened, running security-enhancing software (of varying
types, depending on the machines function), and patched with the latest operating
system patches. None of the servers matched the attacks target operating system
type.

NETWORK
COUNTERMEASURES: 4

 The router that created the logs block almost all of the packets generated in the attack,
however, two were allowed to pass.

OVERALL SEVERITY: -3

9. Defensive recommendation:
Network and system countermeasures are very adequate in protecting against
this type of attack. However, the ISP hosting the machine that generated the
scan should be notified of the infraction. If they fail to respond, consider applying
ingress router ACLs that drop all packets from part of all of their IP allocation.
Note that this may affect legitimate use, so take this course of action with
caution.

10. Multiple choice test question:
Which of the following is not evidence of packet craft?
a. Identical IP ID fields in packet fragments
b. Overlapping fragment offsets
c. Repeating TCP source ports to different destination ports
d. SYN and FIN flags both set in the same packet

Answer: a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 21

ASSIGNMENT 2 – DESCRIBE THE STATE OF INTRUSION DETECTION

Intrusion Prevention: The Next Generation of Security Software?
Introduction

The constant stream of new vulnerabilities discovered in major software products
deployed all over the Internet presents a continuous and never ending challenge to
IT staff and security professionals alike. Firewalls and network-based intrusion
detection systems help mitigate the risk, but have their flaws. Products are
emerging on the market to address these shortcomings. At times, they have been
referred to as “application behaviour control” or “intrusion prevention” products. Are
these new products necessary? If so, are they effective? Where do they fit in with
existing security tools?

The Problem with Firewalls and Intrusion Detection Systems

The shortcomings of firewalls have long been a subject of debate. The proponents
of so-called stateful inspection firewalls (circuit-level gateways) praise the high
levels of performance circuit-level technology affords, while the advocates of the
application level gateway argue the sacrifice of speed for security is a worthy one.
However, people in both camps will generally readily admit that the firewall is not a
panacea for their security concerns, but it is rather the first step in establishing a
secure network infrastructure.
The next step to securing a network is the deployment of a network-based intrusion
detection system (NIDS). These systems are designed to listen to traffic on the
network and look for patterns that match known hostile behaviour. When such
behaviour is detected, an alert is generated notifying the security administrators of
the infraction. More recently, NIDS have become more aggressive, and can
actually take action against an attacker. Some of the more common methods
employed include “killing” the connection by spoofing a TCP RST packet, or
proactively “hardening” a firewall by ordering it to block the offending IP address.
Even with the ability to kill connections and harden firewalls, the fact remains that
the NIDS is not functioning in real-time (despite the assertions of the marketing
people). The NIDS is responding after the fact – in many cases, the damage may
already be done before the NIDS has had a chance to take action. This fact is
highlighted in the very name of the technology: intrusion detection.
In addition to a lack of true real-time response capability, NIDS can only detect
known attacks – or attacks that match some sort of known pattern than can be
defined to the NIDS as hostile behaviour. Since new attacks are being developed
every day, and they are often in wide circulation among the “hacker” community
before they are defined in the IDS, there is a significant window of opportunity
where a NIDS may completely miss the attack. This is a serious problem.
There is some active research in the field of “anomaly detection” whereby the NIDS
uses statistical deviations to determine when a certain type of traffic may be
threatening, but this is likely to be problematic for some time to come for a few
reasons. The first, and perhaps most important, is that anomaly detection is very
likely to lead to a great many false positives. Although this is not unusual in NIDS, it
is one of the primary reasons legitimate alerts are overlooked.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 22

Host-based intrusion detection systems suffer from some of the same limitations. In
fact, some host-based “intrusion detection systems” are really nothing more than
log file monitoring utilities. In these cases, the host-based IDS relies on the
operating system or other add-on components to generate log file messages. It
then compares the log file messages against its set of signatures, and generates
an alert when a match is found. Thus, not only is the IDS completely reliant on the
operating system to detect the behaviour, but also can only detect attacks that
have been previously defined to it.

A Solution?

A relatively new approach centers on controlling the behaviour of an application by
limiting its access to operating system calls. The concept is simple: software is
installed that shims itself between the application programming interface (API) for
the operating system and the actual kernel itself. The software then intercepts API
calls and processes them against a rule set to determine if the call should be
permitted or denied. In a way, this type of solution is a type of “kernel firewall” –
legitimate application activity can be defined and permitted, and all else blocked.
Consider the following example: a typical web server buffer overrun exploit will
often seem like legitimate traffic to a firewall. After all, it is traffic destined for a
WWW server on port 80/tcp and the firewall is configured to permit this traffic.
Assuming the firewall is not performing any data scanning at the application layer,
the traffic will almost certainly be permitted to pass. If the attack is new and not yet
defined to the NIDS, it may pass without triggering an alarm.§§ At this point, it is
now up to the application and its host operating system to defend against the
attack. Since the application is vulnerable to the buffer overrun in the first place, it’s
clearly not going to be much help in preventing the attack. The buffer overrun
succeeds; code is injected into the stack and executed. In this example, let’s say
the code reads the SAM file, and e-mails it to the attacker.
Now imagine for a second that our “kernel firewall” was installed, and configured
with a rule set defining behaviour that is normal for an IIS server. When the injected
code attempts to read the SAM file, the kernel firewall intercepts the system call
and checks it against its rule set. As there is no rule permitting such an operation,
the system call is denied, and an alert is generated to notify the administrator of the
attempted infraction.

The Players

More than one than player currently competes in this market space. Entercept,
Okena, and WatchGuard are among the companies that have released products
that “firewall” the kernel.
Entercept’s products include a general, rule-based engine that intercepts system
and API calls and compares them against a known set of attacks (signatures) as
well as a set of rules governing access to system resources such as the file system
or registry. A special add-on is tailored for use with Microsoft’s Internet Information
Server (IIS), a frequent source of vulnerabilities.
Entercept’s HTTP engine looks for known attacks using signatures, very much like
existing network-based intrusion detection systems. However, one of Entercept’s
primary advantages is that it receives HTTP traffic after the data is decrypted.
Normal network-based IDS cannot detect attacks that may be launched over an
SSL connection since the data is encrypted on the wire.

§§ Many network-based IDS are configured to detect strings that are common to most buffer overruns (e.g., the NOP

slide). However, this is non-deterministic, and it is quite possible that a buffer overrun could evade such a signature.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 23

The general Entercept engine increases network security by protecting system
resources:
r File and Registry protection – the Entercept software will prevent system

files from being modified. This helps protect against Trojan attacks where
system binaries are replaced with modified files. Additionally, Entercept has
the ability to limit the process that can modify a file. For example, a web
server’s document directory can be protected so that the files can only be
modified by a previously defined service.

r Process/Service protection – attempts to kill (or stop) services such as the
Web server itself are blocked by the Entercept software.

r User Account protection – to ensure that privileges cannot be escalated,
Entercept allows rules to prevent an attacker from increasing the privileges
of a user account (such as the account a WWW server is running under).

Since there are some signatures involved, the Entercept software has a facility to
automatically check for and install updates to the signature base.
Okena’s StormWatch is very similar architecturally to the Entercept product in that
it is centered on a rule-processing engine that intercepts calls to the operating
system. Okena refers to these as “interceptors,” each of which watches a specific
part of the operating system:
r The network traffic interceptor handles network based security events,

detecting such attacks as port scans;
r The registry interceptor controls access by applications to the registry;
r The file system interceptor mediates access to system files.

Events that are intercepted are processed by the “Rule/Event Correlation Engine”
which bases its decisions not only on the rule base, but also on previous actions
performed by the application. Additionally, one benefit StormWatch has over
Entercept is the ability to correlate events and take action based on the correlated
data. For example events generated by a network read by an address, followed by
a file system write can be correlated by the StormWatch engine. The two events
occurring together can trigger an action, such as an alert or a block of the offending
IP address.
WatchGuard’s ServerLock again is architecturally very similar to the other two
products mentioned, intercepting calls to the file system and registry, and
processing them against a rule set.

What About the Operating System?

Although the notion of “intrusion prevention” or “behaviour control” security tools is
being sold as a new approach to enterprise security, the fact of the matter is that
it’s not really a new concept at all. Some of the earliest security controls were
implemented as host-based controls – passwords, user accounts, and file
permissions are all mechanisms operating systems have used for decades to
regulate access to resources. In fact, the management of system resources is one
of the primary functions of the operating system:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 24

in every computer system is the software that controls processing, manages
resources, and communicates with external devices like disks and printers. …[we] will
use the broader term operating system.***

It is impossible to effectively manage system resources without securing them,
since by its very definition the term manage means “to direct or control the use of”,
according to the American Heritage Dictionary.
Modern operating systems provide a wide array of mechanisms that can be used to
secure resources, from individual user accounts with discrete privilege profiles to
complex access controls lists (ACLs) that can be applied to system resources. Yet,
we are still plagued by exploitable security vulnerabilities that make products like
Entercept, Okena, and WatchGuard necessary. There are many contributing
factors:
r The size of modern operating systems and applications has grown

exponentially. Doug Comer’s XINU operating system was less than 10,000
lines of code – it is axiomatic that there is security in simplicity. It’s far easier
to debug 10,000 lines of code than it is 1,000,000, and there are far fewer
places for vulnerabilities to hide.

r The proliferation of the “personal computer.” The personal computer did not
need security features since it was designed to be used by one person.
Early PC operating systems such as DOS and CPM contained little or no
security features at all. To this day, Microsoft’s Windows 9x/ME operating
systems lack even the most basic security features such as file access
permissions and discretionary user accounting.

r Today’s popular operating systems are products of evolution rather than
holistically engineered programs with clearly defined design parameters.
Microsoft’s operating systems, including Windows 2000, as well as modern
UNIX variants, are all designed with requirements to support legacy
applications. So called “trusted systems” are systems designed from the
ground up with security as a primary objective – however, these systems are
often proprietary making it hard to find applications to run on them, or
making them too complex and difficult to use for the average user.

r The race to market drives software makers to produce products that are not
properly tested, often resulting in egregious security vulnerabilities
discovered only after they are widely deployed. This is powerfully
demonstrated by continued stream of buffer overrun vulnerabilities that are
almost routinely discovered against products such as Microsoft’s IIS. With
basic good programming practices, these types of bugs should never occur.

r Operating system security features are often disabled or misconfigured.
Security and ease of use are often inversely proportional, thus operating
systems such as Windows 2000 typically install with a very lax default
configuration. It is up to the user to secure the operating system and
“harden” it against attack. More often than not, this is not done. Often due to
a lack of security awareness, or a lack of the necessary skills or knowledge,
systems are deployed without any of their security features enabled.

*** Comer, 1.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 25

While it is clearly in the charter of the operating system to provide the security
services, the concept of “outsourcing” the security services to a third party product
is certainly not a new one. IBM mainframes, most notably the MVS operating
system, have traditionally used third party (CA) add-on products such as CA-ACF/2
and CA-Top Secret to secure system resources. Providing “hooks” in the operating
system for security software may not be such a bad idea – end users could then
select a third party security application based on their security requirements. The
“intrusion prevention” applications are a step in that direction.

Conclusion

Enterprise security has come full circle, back to the notion of implementing security
controls at the host itself rather than at the network perimeter. The best security
approach includes both network-based and host-based security solutions, and due
to factors such as buggy code and misconfiguration of operating system security
controls, applications such as Entercept, Okena’s StormWatch, and WatchGuard’s
ServerLock are gaining in popularity. These solutions may be a stop-gap measure,
providing features the operating systems themselves can or should provide, or they
may be a move toward extricating the security functions from the operating system
and placing them in the hands of third-party add-on applications. Either way, at the
moment they provide a critical extra layer of protection in the quest to remain
secure in a world where time-to-market has replaced quality assurance.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 26

ASSIGNMENT 3 – ANALYZE THIS

Introduction
The following document contains the results of security audit performed for Foo
University. It intended to be a practical tool to assist University technical staff in
increasing the security of their network by clearly identifying key areas of vulnerability
and threat, and providing recommendations to improve security in these areas.
Foo University has provided a limited amount of information for analysis. Though the
size and volume of the intrusion detection logs were copious, they do not necessarily
provide a clear picture of the University’s network architecture. The following items
would have allowed a much more thorough and effective security audit to be performed:

r Network diagrams depicting the architecture of the Foo University network
infrastructure and, specifically, the location of the Snort sensors providing
the IDS log data;

r Copies of the Snort configuration and rule files used to generate the IDS log
data;

r Access to Foo University technical staff for the purposes of interviewing and
clarification.

The following log files were used in the creation of this report:
 DATE FILENAMES
 01 July 2001 alert.010701, scans.010701, oos_Jul.1.2001
 02 July 2001 alert.010702, scans.010702, oos_Jul.2.2001
 03 July 2001 alert.010703, scans.010703, oos_Jul.3.2001
 04 July 2001 alert.010704, scans.010704, oos_Jul.4.2001
 05 July 2001 alert.010705, scans.010705, oos_Jul.5.2001

Overview
Some significant security issues must be address to improve the security posture of the
Foo University network. It is understood that as a University there is a fine balance
between usability and the freedom often demanded by academics, and maintaining a
minimally acceptable security stance. Since access to Foo University personnel was not
possible during the course of this audit, it was impossible to ascertain the security
requirements (or lack thereof) of the organization.
When reviewing this document please be sure to consider all of the issues raised and
recommendations made within the context of Foo University’s organizational
requirements. It is strongly recommended, however, that the level of security awareness
and the security posture as a whole at Foo University be raised. The current
environment represents a risk not only for the University’s users but also for others in
the Internet community who might be affected by security incidents occurring on the
University’s network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 27

Network Detects
The following is a list of the network detects reported in the log files listed above. The
list is sorted by the number of detects each signature generated, with a brief description
as to the purpose and intent of the signature. Note that since the actual Snort rule files
that were used to generate the log files were not made available during the course of
this audit, it was, at times, necessary to make an educated guess as to the intent and
construction of the signature generating the detect. This was done through analysis of
the actual log file entries and cross-referencing with existing material on sites such as
www.sans.org, www.incidents.org, and www.securiteam.com.
 SIGNATURE ALERTS
POSSIBLE TROJAN SERVER ACTIVITY 15408
 This signature appears to look for traffic destined to or sourced from 27374/tcp, a port commonly

used by Trojan Horse programs such as SubSeven, Bad Blood, and Def Con 8.

 UDP SRC AND DST OUTSIDE NETWORK 10892
 UDP traffic where neither the source nor the destination IP address match the local network

(HOMENET, presumably) cause this signature to fire. This can be an indication that source
routing is in use, or that internal hosts are spoofing source addresses

 WATCHLIST 000220 IL-ISDNNET-990517 1808
 Traffic sourced from the IP network 212.179.0.0 (or a subset thereof) causes this signature to

fire. According to RIPE, this network belongs to ISDN Net, Ltd. in Israel.

 EXTERNAL RPC CALL 1610
 Inbound calls to RPC (111/tcp) from external hosts are indicated by this signature. RPC has

historically been the source of many vulnerabilities. There are many CVE entries related to this
vulnerability. Among them are CVE-1999-0003, CVE-1999-0008, CVE-1999-0208, and CVE-
1999-0212.

 CONNECT TO 515 FROM OUTSIDE 965
 Connections from external networks to the LPR port, 515/tcp. Serious vulnerabilities in certain

versions LPR software (most notably, LPRng) make this signature of significant concern. [CVE-
1999-0032, CVE-1999-0335]

 SMB NAME WILDCARD 475
 This signature detects attempts to enumerate shares on a system running SMB file sharing

(usually Microsoft Windows platforms). This can be a precursor to an attack, as it can potentially
reveal a great deal about the target system, such as usernames and poorly protected shared
resources [CVE-1999-0225, CVE-1999-0391]

 QUESO FINGERPRINTING 307
 Different IP stacks will respond in different ways when they receive packets that are out-of-

specification (e.g., unusual combinations of flags or options, such as setting both the SYN and
FIN bits on the same packet). The response is used by programs such as Queso and nmap to
“fingerprint” the remote operating system. Once the OS is identified, an attacker can narrow the
scope of their attack [CAN-1999-0454]

 SYN-FIN SCAN! 273
 Sending packets with both the SYN and FIN bits set is an attempt to fingerprint remote systems

by sending them a packet that is out-of-specification. As in a Queso scan, the response is used
to help ascertain the operating system type.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 28

 SIGNATURE ALERTS
WINGATE 1080 ATTEMPT 270
 WinGate is a firewall/connection-sharing product by DeerField, Inc. that has had many

vulnerabilities. This signature fires when it detects packets destined for port 1080/tcp, commonly
used by the WinGate software. It is also conceivable that this may be a false positive caused by
legitimate SOCKS traffic (which also uses port 1080/tcp) [CVE-1999-0290, CVE-1999-0291,
CVE-1999-0441, CVE-1999-0494, CAN-1999-0657, CAN-2000-1048].

 PORT 55850 TCP – POSSIBLE MYSERVER ACTIVITY – REF. 010313-1 165
 Traffic from 55850/tcp triggers this signature. This traffic may be generated by or destined for a

Trinoo type Trojan called MyServer.

 ATTEMPTED SUN RPC HIGH PORT ACCESS 91
 Sun RPC programs running on high ports (usually above 32000) have had a history of serious

vulnerabilities. This signature appears to detect traffic destined for those port numbers, but also
appears to look into the packet payload to determine that the RPC access attempt did not
success (see later signature “SUNRPC highport access!”) [CVE-1999-0003, CVE-1999-0008,
CVE-1999-0208, and CVE-1999-0212].

 NMAP TCP PING! 96
 Fyodor’s nmap uses TCP packets with the ACK bit set to detect hosts that are up and running.

The packets are sent to the target host or network; hosts that are up and running should respond
with a TCP RST, telling nmap that they’re up and running. This allows an attacker to get past
perimeter devices that may block standard ICMP pings.

 SUNRPC HIGHPORT ACCESS! 91
 Like the previous Sun RPC signature, this too looks for traffic destined for the high ports

commonly used by RPC programs. However, this signature appears to look into the payload
packet for signs of a successful access [CVE-1999-0003, CVE-1999-0008, CVE-1999-0208, and
CVE-1999-0212].

 WATCHLIST 000222 NET-NCFC 90
 Traffic sourced from the IP network 159.226.0.0 /16 triggers this signature. This network belongs

to the Computer Network Center at the Chinese Academy of Sciences.

 TCP SRC AND DST OUTSIDE NETWORK 72
 TCP traffic where neither the source nor the destination IP address match the local network

cause this signature to fire. This can be an indication that source routing is in use, or that internal
hosts are spoofing source addresses

 NULL SCAN! 69
 The Null scan turns off all flags in the TCP header (including the ACK flag). Operating systems

that properly implement the TCP/IP standard should drop the packet with no response when sent
to an open (listening) port, and send back a RST when sent to a port that is not listening.
Microsoft and a few others have ignored the standard and always send back RSTs, so this
scanning method is not effective against all hosts. Several of these Null scans, in this case, were
in search of hosts running the peer-to-peer file sharing application Gnutella.

 HIGH PORT 65535 TCP – POSSIBLE RED WORM – TRAFFIC 58
 This signature looks for TCP traffic on the highest port, 65535. It is apparently attempting to

detect the “Red Worm” a.k.a. Adore.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 29

 SIGNATURE ALERTS
RUSSIA DYNAMO – SANS FLASH 28-JUL-00 20
 Judging from the traces themselves, this signature appears to be looking for traffic destined to

1214/tcp – a port that is generally used by a peer-to-peer application called Kazaa. The SANS
Flash referenced in the description refers to a notice concerning Trojans sending data to Russia.

 HIGH PORT 65535 UDP – POSSIBLE RED WORM – TRAFFIC 14
 This signature looks forUDP traffic on the highest port, 65535. It is apparently attempting to

detect the “Red Worm” a.k.a. Adore.

 BACK ORIFICE 3
 These detects were triggered by an attempt to connect to 31337/tcp or 31337/udp (not possible

to tell from the log file provided), the port commonly used by the Back Orifice Trojan.

 TCP SMTP SOURCE PORT TRAFFIC 3
 Presumably (again, limited information can be gained from the log files provided), this signature

fires when a connection attempt is made sourced on TCP port 25 (i.e., a TCP SYN packet is sent
to a host sourced from port 25).

 CONNECT TO 515 FROM INSIDE 2
 Connections from internal networks to the LPR port, 515/tcp. This is potentially serious as it could

be an attempt to located vulnerable hosts running LRP [CVE-1999-0032, CVE-1999-0335].

 STATDX UDP ATTACK 1
 This signature fires when it detects traffic destined for the STATD RPC program. Severe, root-

compromise level vulnerabilities exist in some versions of this software. A successful attack can
result in a “fully owned” box for the attacker [CVE-1999-0018]

 ICMP SRC AND DST OUTSIDE NETWORK 1
 ICMP traffic where neither the source nor the destination IP address match the local network

(HOMENET, presumably) cause this signature to fire. This can be an indication that source
routing is in use, or that internal hosts are spoofing source addresses.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 30

The Top Talkers (Alerts)
The following table lists the top ten “talkers” – meaning the IP addresses that generated
the most alerts (not including port scans, which will be listed separately):
 IP ADDRESS ALERTS
 169.254.161.0 5800
 63.250.213.124 2331
 63.250.213.26 1788
 212.179.34.114 551
 211.23.6.234 433
 165.132.31.137 432
 164.164.87.134 333
 199.84.54.32 311
 24.159.128.162 306
 211.180.236.194 274
 169.254.161.0

The most alerts were generated by the IP address 169.254.161.0, which is belongs
to a Class B range of IP addresses called LINKLOCAL reserved by IANA / ICANN.
Windows machines (and others perhaps) take an IP address from this range when
they are configured to use DHCP and unable to get a lease from a DHCP server.
The signature associated with all of these alerts was the UDP SRC and DST
outside network. Since all of these alerts are destined for port 137, which is used
by Microsoft’s WINS name service, it is probably safe to assume that these alerts
were generated by misconfigured Microsoft machines.

63.250.213.124 and 63.250.213.26

The next two IP addresses, 63.250.213.124 and 63.250.213.26, both belong to a
network range allocated to Yahoo! Broadcast Services, which also helps explain
their destination addresses, all of which belong to the multicast range (224.0.0.0 –
239.255.255.255). This also explains the Snort alert: UDP SRC and DST outside
network. The snort sensors were apparently not configured to recognize multicast
addresses as local.

212.179.34.114

With 551 entries, 212.179.34.114 is the fourth largest source of alerts. All of these
alerts were generated by the Watchlist 000220 IL-ISDNNET-990517 rule. With
the exception of one (1) alert, all others were generated by traffic destined for
1214/tcp, a port used by the peer-to-peer file sharing software Kazaa. The other
alert was generated by traffic destined for 6346/tcp, a port typically used by another
peer-to-peer file sharing program called Gnutella. They do not appear to be
malicious, but rather the actual applications themselves. Note that this cannot be
definitively determined with the data provided for this security audit.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 31

211.23.6.234

These detects are significantly more disturbing than the previous. According to the
log files, this host performed a scan of part of the MY.NET.0.0 network looking for
hosts running RPC Portmapper (111/tcp). At the end of the scan, the attacker
apparently tried to launch an attack using the STATD vulnerability against an
identified target:
07/01-08:47:19.012259 [**] External RPC call [**] 211.23.6.234:4599 -
> MY.NET.137.170:111
07/01-08:47:19.094212 [**] External RPC call [**] 211.23.6.234:4605 -
> MY.NET.137.176:111
07/01-09:00:37.454441 [**] STATDX UDP attack [**] 211.23.6.234:835 ->
MY.NET.6.15:32776

Although the target was not scanned in the log files that were used in this audit, it is
very conceivable that the attacker may have foot-printed the target in a previous
scan. It is recommended that the host MY.NET.6.15 be checked immediately for
signs of compromise.

165.132.31.137

These alerts were generated by yet another scan, this time looking for servers
running vulnerable LPR services on port 515/tcp. A review for the scan files reveals
that this is a simplistic TCP SYN scan, executed very quickly (within one minute).
There were no correlating entries in the OOS files. The originating host is located in
Korea at a university.

164.164.87.134 and 199.84.54.32

Another RPC scan, this time the attacker has cleverly randomized the destination
IP address so that the hosts are not sequentially scanned. Nevertheless, still a very
noisy scan. No evidence of OS fingerprinting and no evidence of compromise is
present in the analyzed log files. The first IP address, 164.164.87.134 is registered
to Software Technology Park in Bangalore, India, and the second to Babilliard
Synapse Inc. in Quebec, Canada.

24.159.128.162

Some very disturbing output, indeed – this host performed a scan of the
MY.NET.111.0 and MY.NET.112.0 subnets in search of Trojans, most likely
SubSeven, and apparently found many infected hosts! The following output snippet
indicates responses being sent back to the scanning host:
07/02-19:49:42.769754 [**] Possible trojan server activity [**]
MY.NET.111.75:27374 -> 24.159.128.162:3624
<snip>
07/02-19:51:50.257592 [**] Possible trojan server activity [**]
MY.NET.112.100:27374 -> 24.159.128.162:3894

The origin of the scan is from a network registered to Charter Communications.
211.180.236.194

Interesting detects generated from this source IP address. The first five alerts were
generated by traffic destined for MY.NET.6.15 (previously seen to be the possible
victim of a STATD attack, and thus potentially compromised).
07/03-13:12:10.697188 [**] External RPC call [**] 211.180.236.194:111
-> MY.NET.6.15:111

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 32

07/03-13:12:11.599415 [**] External RPC call [**]
211.180.236.194:2385 -> MY.NET.6.15:111
07/03-13:12:11.605117 [**] External RPC call [**] 211.180.236.194:941
-> MY.NET.6.15:111
07/03-13:12:12.151780 [**] External RPC call [**]
211.180.236.194:2385 -> MY.NET.6.15:111
07/03-13:12:12.409276 [**] External RPC call [**] 211.180.236.194:941
-> MY.NET.6.15:111

The first packet is 111/tcp -> 111/tcp, and may be part of the port scan. The four
subsequent packets are sources on different ports, two from 2385 and two from
941. This may a Portmapper call enumerating RPC services, or something more
sinister.
Approximately 30 minutes later, a full-on SYN-FIN scan begins, sourced on and
destined for port 111/tcp. IP IDs, SYN and ACK sequence numbers are identical
across the scan as evidenced in the corresponding OOS log file:
=+
07/03-13:21:11.894885 211.180.236.194:111 -> MY.NET.132.22:111
TCP TTL:25 TOS:0x0 ID:39426
SF** Seq: 0x572E1953 Ack: 0x39977805 Win: 0x404
00 00 00 00 00 00

=+
07/03-13:21:11.939228 211.180.236.194:111 -> MY.NET.132.24:111
TCP TTL:25 TOS:0x0 ID:39426
SF** Seq: 0x572E1953 Ack: 0x39977805 Win: 0x404
00 00 00 00 00 00

=+
07/03-13:21:11.974906 211.180.236.194:111 -> MY.NET.132.26:111
TCP TTL:25 TOS:0x0 ID:39426
SF** Seq: 0x572E1953 Ack: 0x39977805 Win: 0x404
00 00 00 00 00 00
=+

The source IP address of 211.180.236.194 is registered to the Korean NIC. The
host is an unhardened Linux box running kernel version 2.2.12 (it even has telnet
enabled).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 33

Top Port Scanners
The following table lists the top five scanners – meaning the IP addresses that
generated the most port scan log entries.
 IP ADDRESS SCAN LOG ENTRIES
 MY.NET.160.114 66991
 211.207.15.190 30156
 66.68.62.229 23501
 205.188.233.121 15059
 205.188.233.153 14921
 The internal host MY.NET.160.114 should be investigated – as the highest single
source of port scans, it may be compromised.
The link graph below indicates the distribution of the port scan detects for the top five
scanners across the five days of log files. Of particular interest is the fact that the two
AOL IP addresses (205.188.233.X) both performed their scans on the same days –
although it may also be obvious since they are from the same IP network, and were
performing the same type of scan, it is now very clear that it is the same attacker.

Top Sources of Out-of-Spec Packets
The following table lists the top five sources of out-of-specification packets.
 IP ADDRESS OOS ENTRIES
 211.180.236.194 557
 210.77.146.33 390
 199.183.23.194 175
 24.66.152.186 108
 216.5.180.10 41

Port Scans

0
10000
20000
30000
40000

1 2 3 4 5

Day

Pa
ck

et
s

MY.NET.160.11
4
211.207.15.190

66.68.62.229

205.188.233.121

205.188.233.153

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 34

Attacker Information
The following table includes registration information regarding ten IP addresses that
warrant particular attention because of the their potentially hostile activity on the Foo
University network. The first five are the top external generators of non-portscan
preprocessor alerts, and the second five are the top external generators of portscan
entries. Note that they are not necessarily in order of importance or severity.
 IP ADDRESS REGISTRATION INFORMATION COMMENTS
211.23.6.234 Chiao Chu Co., Ltd.

No. 10, Lane 154
Iang So St.
Taoyuan, Taiwan
211.23.6.232 /29
Source: whois.twnic.net

This IP address generated the most
overtly hostile alerts. In addition to RPC
scanning, there is also some evidence
that a compromise may have taken place
(the STATDX UDP attack signature was
triggered). At the time of this writing, this
IP address is an unprotected Red Hat
Linux box running Red Hat 7.0.

165.132.31.137 Yonsei University
134, Shinchon-dong, Seodaemnu-
gu
Seoul, 120-749
Korean
Source: www.arin.net

This IP address was the second largest
clearly hostile generator of alerts,
performing fast scans of 515/tcp
presumably looking for vulnerable LPR
services to exploit.

164.164.87.134 Software Technology Park-
Block III, KSSIDC Complex
Keonics Electronics City
Bangalore 562 158
India
Source: www.arin.net

The source of randomized RPC scans,
and third largest generator of non-
portscan preprocessor alerts.

199.84.54.32 Babilliard Synapse Inc.
22 Beloeil
Gatineau, Quebec; J8T7G3
Canada
Source: www.arin.net

The source of randomized RPC scans,
and fourth largest generator of non-
portscan preprocessor alerts.

24.159.128.162 Charter Communications
12444 Powerscourt Drive
St. Louis, MO 63131
USA
Source: www.arin.net

This host performed a Trojan scan in
search of SubSeven, and apparently
found some infected hosts. Definitely
one to keep an eye on.

211.207.15.190 Hanaro Telecom Inc. (DSL)
1445-3 Seocho-Dong Seocho-Gu
137-728
Seoul, Korea
+82-2-106
Source: whois.nic.or.kr

This IP address generated a massive
amount of portscan entries, sweeping a
huge chunk of the MY.NET.0.0 /16
subnet for FTP servers (SYN scan to
21/tcp).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 35

66.68.62.229 Roadrunner Southwest
13241 Woodland Park Road
Herndon, VA 20171
USA
Source: www.arin.net

A focused port scan against
MY.NET.219.42 was launched from this
host. Since the scan was targeted,
activity from this host should be watched
closely.

205.188.233.121
205.188.233.153

America Online, Inc.
22080 Pacific Blvd
Sterling, VA 20166
USA
Source: www.arin.net

AOL users scanning a large range of
hosts for 6970/udp – probably looking for
the GateCrasher Trojan.

148.223.228.15 UniNet S.A. de C.V
Periferico Sur #31900
Jardines del Pedregal
Mexico, D.F. 01900
Mexico
Source: www.arin.net

This IP is registered to a Mexican ISP. It
SYN scanned a large range of IP
addresses in the MY.NET.0.0 /16 block
looking for DNS servers (53/tcp).

61.222.34.170 Data Communication Business
Group
Chunghwa Telecom Co., Ltd.
21, Section 1, Hsin-Yi Road
Tapei 100
Taiwan
Source: whois.twnic.net

A cursory examination of the IP address
revealed that it is a Red Hat Linux 7.0
host, running Apache 1.3.12. The
Apache test pages have not been
removed, so they provided the
hostname: mail.eurasian.com.tw, which
was confirmed by forward DNS lookup.
This host, like the previous, performed
SYN scans of a large range of addresses
looking for DNS servers (53/tcp)..

Correlations
Many correlations exist with previous audit carried out for Foo University by other GIAC
professionals. Some notable correlations are listed below:
r Robert Sorenson’s practical had several correlations to data analyzed in this document. On

the more interesting, is the STATDX attack to MY.NET.6.15, but from a different source IP
address. Robert’s detect was generated by 206.210.80.6, while the detect reported in this
document was sourced from 211.23.6.234. This is more evidence that the host
MY.NET.6.15 is either compromised, or running a service that appears to vulnerable to the
STATD exploit (at least to the attackers).

r Many other practicals reported high numbers of alerts generated by the Watchlist 000220
IL-ISDNNET-990517 signature.

r Roderick Campbell noted a large number of Connect to 515 from Outside alerts, noting
that because of the vulnerabilities associated with LPR (which runs on port 515/tcp) this port
should be blocked.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 36

Defensive Recommendations
As has been demonstrated in just five days worth of intrusion detection data, there are
some very serious security issues that Foo University needs to address. The following
steps should be taken as soon as possible to increase the security of the Foo University
network:
r The network perimeter must be clearly defined, with all points of egress and ingress into the

network identified and secured with a perimeter security device such as a firewall, or, at an
absolute minimum, a packet filtering router;

r Firewalls and/or routers should be configured to pass the minimally required traffic inbound,
and should restrict outbound traffic to required services (e.g., HTTP, FTP, NNTP).
Restricting traffic to only the required services will help prevent insecure applications from
being used on the network. An application proxy gateway may further mitigate this by
ensuring the data passing over a particular port is what it’s supposed to be, for example
non-HTTP protocols will not be able to pass the perimeter device using 80/tcp.

r Institute a comprehensive virus remediation program to address the issue of Trojan and
other virus infection. Specifically, ensure that the infected hosts in the subnets
MY.NET.111.0 and MY.NET.112.0 are cleaned.

r Ensure Internet-accessible hosts (which again, should be an absolute minimal subset of Foo
University’s machines) have the latest security hot-fixes and patches, paying particular
attention to the traditional intrusion vectors: DNS and WWW servers. Follow industry best
practices for hardening the exposed hosts against attack from the Internet, by disabling
unnecessary services, removing unneeded software, and installing third party security tools
to enhance the operating systems defensive mechanisms.

r Immediately verify that the host MY.NET.6.15, discussed in the “top talkers” section, is free
from compromise. There is some evidence to suggest that the box may have fallen victim to
a RPC vulnerability.

r Immediately verify that the host MY.NET.160.114, discussed in the “top talkers” section, is
free from compromise. This host was the source of numerous port scans.

r Routinely review logs from intrusion detection sensors as well the firewalls.

Analysis Process
In order to ensure that the analysis process yielded practical results that would be
useful to the technical staff at Foo University as a tool to help improve the security of
their network, I chose to analyze five days worth of the vast amount of intrusion
detection data that was provided for the practical. This is, of course, a snapshot in time
but it provides a great deal of information regarding security infrastructure problems that
need to be addressed.
There were several key tools used in the process of analysis the intrusion detection
data:

r SnortSnarf v52301.1, available at http://www.silicondefense.com. This tool
was extremely helpful in analyzing the Snort output logs.

r snort_stat.pl, by Yen-Ming Chen <chenym@alumni.cmu.edu>. This tool was
not natively able to read the munged format that the snort logs were
provided in, and required some modification in order to get the desired
results.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 37

r UNIX utilities such as perl, grep, awk, sed, sort, and uniq were all very
important in the analysis of this data.

The first step in analysis the data was to concatenate the five days of alert log files, and
change the MY.NET to 77.77 (all log files were previously grep’ed to make sure that
77.77 did not really exist) so it will be readable by the SnortSnarf scripts. The
commands used to do this were present in many practicals:

for $afile in `ls alert.*`
do
 cat $afile | sed ‘s/MY.NET/77.77/g’ >> master.alerts
done

The same process was followed for the scan and OOS log files. To generate the “top”
lists, including the “Top Talkers,” “Top Scan Sources” and “Top OOS Sources”, a few
different perl scripts were used in combination with some command line UNIX utilities.
To grab the source IP address from the master.alert log file, and calculate the top
talkers, the following scripts/commands were used (note that these perl scripts could
also have been constructed in a single line):

sourceipalerts.pl:
while (<>) {
 if ($_ =~ m/\[**\]\s([\d\.]+)/ox) {
 print $1 . "\n" ;
 }
}
perl sourceipalerts.pl < master.alerts | sort | uniq –c | \

sort –n –r > toptalkers.txt
For the top scan sources:

sourceipscans.pl:
while (<>) {
 if ($_ =~ m/^\w{3}\s+\d+\s\d+\:\d+\:\d+\s([\d\.]+)/ox) {
 print $1 . "\n" ;
 }
}
perl sourceipscans.pl < master.scans | sort | uniq –c | \

sort –n –r > topscanners.txt
For the top OOS sources:

sourceipoos.pl:
while (<>) {
 if ($_ =~ m/\.\d{6}\s([\d\.]+)/ox) {
 print $1 . "\n" ;
 }
}
perl sourceipscans.pl < master.oos | sort | uniq –c | \

sort –n –r > topoossrc.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 38

REFERENCES

American Heritage Dictionary of the English Language, Fourth Edition. Houghton Mifflin
Company, 2000: New York, NY.

Bayerkohler, Marc. SANS Intrusion Detection Practical.

Bidwell, Teri. GIAC Network Intrusion Detection GCIA Practical.

Campbell, Roderick. GIAC Intrusion Analyst Certification Practical Submittal. URL:
http://www.sans.org/y2k/practical/Roderick_Campbell_GCIA.doc (30 August 2001).

Common Vulnerabilities and Exposures. URL: http://cve.mitre.org (30 August 2001).

Comer, Douglas. Operating System Design: The XINU Approach. Prentice-Hall, Inc.,
1984: Englewood Cliffs, NJ.

DeShon, Markus. Practical for SANS DC 2000.

Garcia, Andy. “Intercepting Intrusions with Entercept.” 26 March 2001. URL:
http://www.sans.org/infosecFAQ/intrusion/entercept.htm (15 August 2001).

Goodwin, PJ. GIAC Level 2 Practical Assignment for Capitol SANS.

Hollander, Yona. “The Future of Web Server Security.” URL:
http://www.entercept.com/products/entercept/whitepapers/wpfuture.asp (15 August
2001).

Incidents.org. URL: http://www.incidents.org (15 August 2001).

OKENA. “StormWatch: A Technical White Paper.” URL: http://www.okena.com (15
August 2001).

SANS Institute. URL: http://www.sans.org (15 August 2001).

Schupp, Steve. “Limitations of Network Intrusion Detection.” 1 December 2000. URL:
http://www.sans.org/infosecFAQ/intrusion/net_id.htm (15 August 2001).

Sorensen, Robert. Practical Assignment for SANS Security New Orleans 2001. URL:
http://www.sans.org/y2k/practical/Robert_Sorensen_GCIA.htm (30 August 2001).

Stevens, W. Richard. TCP/IP Illustrated: Volume I. Reading: Addison-Wellesly, 1994.

WatchGuard Technologies, Inc. “Protecting Corporate Information Assets: The
Architecture of ServerLock.” (April 2001). URL:
http://www.watchguard.com/docs/sl_whitepaper.pdf (15 August 2001).

Zeltser, Lenny. Practical Assignment for SANS Security DC 2000.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 39

APPENDIX A: MODIFIED SNORT_STAT PERL SCRIPT

$Author: yenming $
Yen-Ming Chen, <chenym@ALUMNI.CMU.EDU>
$Date: 2001/07/31 14:51:29 $

Angelos Karageorgiou, <angelos@unix.gr>
contributed the DNS resolve and cache

Andrew R. Baker <andrewb@uab.edu>
2000.03.06 - modifications to read snort alert file
- added html output option

Paul Bobby, <paul.bobby@lmco.com>
03/13/2000 added scan for portscan detection in logs

Ned Patterson, <jpatter@alum.mit.edu>
4/26/2000 - correctly parse "last message repeated" syslog messages
- variable column widths for text output

Ryan Jian-Da Li, <jdli@freebsd.csie.nctu.edu.tw>
6/07/2000 - fix the problem of portscan() (add my %s5)
- fix the problem of signature matching
for the case ' IDS154 - PING CyberKit 2.2 Windows'
- enhance portscan(), add port counts

James Conz
7/15/2001 – Modified for use in SANS GCIA practical v2.9

use Getopt::Std; # use Getopt for options
use Socket; # use socket for resolving domain name from
IP
use vars qw($opt_r $opt_f $opt_a $opt_h $opt_p $opt_n $opt_t);
%HOSTS = (); # Hash for IP <-> domain name mapping

getopts('rfht:') || die "Could not getopts"; # get options in command line
$saddr_len = 15;
$daddr_len = 15;
$timeout = 3; # for name resolver
$th = $opt_t || 0; # default threshold

process whatever comes in
while (<>) {
 my $alert = {};
 chomp;
 # if the line is blank, go to the next one
 next if $_ eq "";
 # is this line an alert message
 if ($_ =~ /^\[**\]/) {
 $line = <>;
 chomp($line);
 unless ($line eq "") {
 # strip off the [**] from either end.
 s/(\s)*\[**\](\s)*//og;
 s/\s*\[[0-9:]+\]\s*//o;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 40

 if ($_ =~ /^spp_anomsensor\:[\D]+\:\s([\d\.]+)/ox) {
 $alert->{PLUGIN} = "anomsensor"; $alert->{TYPE} = "plugin";
 $alert->{SIG} = $alert->{PLUGIN};
 } elsif ($_ =~ /^spp_portscan\:\sEnd\sof\sportscan\sfrom\s([\d\.]+)/ox)
{
 $alert->{PLUGIN} = "portscan"; $alert->{TYPE} = "plugin";
 $alert->{SADDR} = $1; $alert->{SIG} = $alert->{PLUGIN};
 process_data($alert); $lastwassnort = 1; next;
 } elsif ($_ =~ /[^:]/ox) {
 $alert->{SIG} = $_; $alert->{TYPE} = "alert";
 $alert->{PLUGIN} = "none";
 }
 if ($line =~
m/^\[Classification\:([^\]]*)\]\s\[Priority\:\s(\d+)\]/ox) {
 $alert->{CLASS} = $1; $alert->{CONTENT} = $2; $alert->{PRIORITY} =
$3;
 $line=<>;
 }
 if ($line =~ m/^(\d+)\/(\d+)\-(\d+)\:(\d+)\:(\d+)\.(\d+)\s
 ([\d\.]+)[\:]*([\d]*)\s[\-\>]+\s([\d\.]+)[\:]*([\d]*)/ox) {
 $alert->{MON} = $1; $alert->{DAY} = $2; $alert->{HOUR} = $3;
 $alert->{MIN} = $4; $alert->{SEC} = $5; $alert->{SADDR} = $7;
 $alert->{SPORT} = $8; $alert->{DADDR} = $9; $alert->{DPORT} = $10;
 $alert->{HOST} = "localhost";
 process_data($alert); $lastwassnort = 1; next;
 }
 } else {
 print STDERR "Warning, file may be incomplete\n";
 next;
 }
 }
 # The following code modified by James Conz for the purposes
 # of the SANS GCIA Practical v2.9, Summer 2001. This code has
 # been changed to read the stripped down snort file format used
 # in the practical. It’s not necessarily elegant, but it works ;-)
 #
 # JC
 #
 if (($_ =~ m/^(\d{2})\/(\d{2})\-(\d{2})\:(\d{2})\:(\d{2})\.\d{6}
 \s+\[**\]\s([^\[**\]]+)\[**\]\s+
 ([\d\.]+)[\:]?([\d]*)\s[\-\>]+\s([\d\.]+)[\:]?([\d]*)/ox)
 && ($_ !~ m/spp_portscan/ox)) {
 $alert->{MON} = $1; $alert->{DAY} = $2; $alert->{HOUR} = $3;
 $alert->{MIN} = $4; $alert->{SEC} = $5; $alert->{HOST} =
"localhost";
 $alert->{SIG} = $6; $alert->{CLASS} = ""; $alert->{PRIORITY} = "";
 $alert->{SADDR} = $7; $alert->{SPORT} = $8; $alert->{DADDR} = $9;
 $alert->{DPORT} = $10; $alert->{TYPE} = "sys";
 $alert->{PLUGIN} = "none";
 process_data($alert); $lastwassnort = 1; next;
 } elsif ($_ =~ m/^(\d{2})\/(\d{2})\-(\d{2})\:(\d{2})\:(\d{2})\.\d{6}
 \s+\[**\]\sspp_portscan\:\sEnd\sof\sportscan\sfrom\s
 ([\d\.]+)/ox) {
 $alert->{MON} = $1; $alert->{DAY} = $2; $alert->{HOUR} = $3;
 $alert->{MIN} = $4; $alert->{SEC} = $5; $alert->{HOST} = $6;
 $alert->{SADDR} = $7; $alert->{TYPE} = "plugin";
 $alert->{PLUGIN} = "portscan";
 process_data($alert); $lastwassnort = 1; next;
 } elsif ($_ =~ m/^(\w{3})\s+(\d+)\s(\d+)\:(\d+)\:(\d+)\s([\w+\.]*)\s

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 41

[\w+\/\[\d+\]]*\:\sspp_anomsensor\:\sAnomaly\sthreshold\sexceeded\:
 \s([\d\.]+)\:\s([\d\.]+)\:([\d]+)\s[\-\>]+\s([\d\.]+)\:([\d]+)/ox)
{
 $alert->{MON} = $1; $alert->{DAY} = $2; $alert->{HOUR} = $3;
 $alert->{MIN} = $4; $alert->{SEC} = $5; $alert->{HOST} = $6;
 $alert->{SADDR} = $8; $alert->{SPORT} = $9; $alert->{DADDR} = $10;
 $alert->{DPORT} = $11; $alert->{THR} = $7;
 $alert->{TYPE} = "plugin"; $alert->{PLUGIN} = "anomsensor";
 process_data($alert); $lastwassnort = 1; next;
 }
 # If a snort message has been repeated several times
 elsif ($lastwassnort && $_ =~ m/last message repeated (\d+) times/) {
 # put the data in the matrix again for each repeat
 $repeats = $1;
 while ($repeats) {
 push @result, $result[-1];
 $repeats--;
 }
 next;
 } else {
 $lastwassnort = 0;
 next;
 } # Message not related to snort
}

begin statistics
I should've used $#result + 1 as $total in the first version! :(
$total = $#result + 1;

for $i (0 .. $#result) {
 # for the same pair of attacker and victim with same sig
 # to see the attack pattern
 # used in same_attack()
 $s0{"$result[$i]->[9]:$result[$i]->[7]:$result[$i]->[6]"}++;
 # for the same pair of attacker and victim
 # to see how many ways are being tried
 # used in same_host_dest()
 $s1{"$result[$i]->[7]:$result[$i]->[9]"}++;
 # from same host use same method to attack
 # to see how many attacks launched from one host
 # used in same_host_sig()
 $s2{"$result[$i]->[6]:$result[$i]->[7]"}++;
 # to same victim with same method
 # to see how many attacks received by one host
 # used in same_dest_sig_stat()
 $s3{"$result[$i]->[6]:$result[$i]->[9]"}++;
 # same signature
 # to see the popularity of one attack method
 # used in attack_distribution()
 $s4{"$result[$i]->[6]"}++;
 # source ip
 $s5{"$result[$i]->[7]"}++;
 # destination ip
 $s6{"$result[$i]->[9]"}++;
}

begin report

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 42

print_head();
print_summary();
print_menu();
same_attack();
same_host_dest();
same_host_sig();
same_dest_sig_stat();
attack_distribution();
if ($opt_p) {
 portscan();
}
if ($opt_n) {
 anomsensor();
}
print_footer();

print the header (e.g. for mail)
sub print_head {
 if ($opt_h) {
 print "<html>\n<head>\n";
 print "<title>Snort Statistics</title>";
 print "</head>\n<body>\n";
 print "<h1>Snort Statistics</h1>\n";
 } else {
 print "Subject: snort daily report\n\n";
 }
}

print the time of begin and end of the log
sub print_summary {
 if ($opt_h) {
 print "<table>\n";
 print "<tr><th>The log begins at:</th>\n";
 print "<td>$result[0]->[0] $result[0]->[1] $result[0]->[2]:$result[0]-
>[3]:$result[0]->[4]</td></tr>\n";
 print "<tr><th>The log ends at:</th>\n";
 print "<td>$result[$#result]->[0] $result[$#result]->[1]
$result[$#result]->[2]:$result[$#result]->[3]:$result[$#result]-
>[4]</td></tr>\n";
 print "<tr><th>Total events:</th><td> $total</td></tr>\n";
 print "<tr><th>Signatures recorded:</th><td> ". keys(%s4)
."</td></tr>\n";
 print "<tr><th>Source IP recorded:</th><td> ". keys(%s5) ."</td></tr>\n";
 print "<tr><th>Destination IP recorded:</th><td> ". keys(%s6)
."</td></tr>\n";
 print "<tr><th>Portscan detected:</th><td> ", eval '$#posres
+1',"</td></tr>\n" if $opt_p;
 print "<tr><th>Anomaly detected:</th><td> ", eval '$#anores
+1',"</td></tr>\n" if $opt_n;
 print "</table>\n";
 print "<hr>\n";
 } else {
 print "The log begins from: $result[0]->[0] $result[0]->[1] $result[0]-
>[2]:$result[0]->[3]:$result[0]->[4]\n";
 print "The log ends at: $result[$#result]->[0] $result[$#result]->[1]
$result[$#result]->[2]:$result[$#result]->[3]:$result[$#result]->[4]\n";
 print "Total events: $total\n";
 print "Signatures recorded: ". keys(%s4) ."\n";
 print "Source IP recorded: ". keys(%s5) ."\n";

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 43

 print "Destination IP recorded: ". keys(%s6) ."\n";
 print "Portscan recorded: ", eval '$#posres +1',"\n" if $opt_p;
 print "Anomaly recorded: ", eval '$#anores +1',"\n" if $opt_n;
 }
}

print menu for HTML page
sub print_menu {
 if ($opt_h) {
 print "\n";
 print "Number of attacks from same host to same
destination with same method\n";
 print "Percentage and number of attacks from a
host to a destination\n";
 print "Percentage and number of attacks from one
host to any with same method\n";
 print "Percentage and number of attacks to one
certain host\n";
 print "Distribution of attack methods\n";
 print "Portscans performed to/from
HOME_NET\n" if $opt_p;
 print "Anomaly detected by SPADE\n" if $opt_n;
 print "<HR>\n";
 }
}

to see the frequency of the attack from a certain pair of
host and destination
sub same_attack {
 if ($opt_h) {
 print "<h3>Number of attack from same host to same
destination using same method</h3>\n";
 print "<table>\n";
 print "<tr><th># of
attacks</th><th>from</th><th>to</th><th>with</th></tr>";
 foreach $k (sort { $s0{$b} <=> $s0{$a} } keys %s0) {
 @_ = split ":",$k;
 print "<tr><td>$s0{$k}</td><td>$_[1]</td><td>$_[0]</td>
 <td>$_[2]</td></tr>\n" if $s0{$k} > $th;
 }
 print "</table>Top<hr>\n";
 } else {
 section_header("The number of attacks from same host to same
destination using same method\n", "asdm");
 foreach $k (sort { $s0{$b} <=> $s0{$a} } keys %s0) {
 @_ = split ":",$k;
 printf(" %-2d %-${saddr_len}s %-${daddr_len}s %-20s\n",
 $s0{$k},$_[1],$_[0],$_[2]) if $s0{$k} > $th;
 }
 }
}

to see the percentage and number of attacks from a host to a destination
sub same_host_dest {
 if ($opt_h) {
 print "<h3>Percentage and number of attacks from a
host to a destination</h3>\n";
 print "<table>\n";

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 44

 print "<tr><th>%</th><th># of
attacks</th><th>from</th><th>to</th></tr>\n";
 foreach $k (sort { $s1{$b} <=> $s1{$a} } keys %s1) {
 @_ = split ":",$k;
 printf("<tr><td>%-2.2f</td><td>%-2d</td><td>%-20s</td><td>%-20s</td>
 <td>\n",$s1{$k}/$total*100,$s1{$k},$_[0],$_[1]) if $s1{$k} >
$th;
 }
 print "</table>Top<hr>\n";
 } else {
 section_header("Percentage and number of attacks from a host to a
destination\n", "pasd");
 foreach $k (sort { $s1{$b} <=> $s1{$a} } keys %s1) {
 @_ = split ":",$k;
 printf("%5.2f %-2d %-${saddr_len}s %-${daddr_len}s\n",
 $s1{$k}/$total*100, $s1{$k},$_[0],$_[1]) if $s1{$k} > $th;
 }
 }
}

to see how many attacks launched from one host
sub same_host_sig {
 if ($opt_h) {
 print "<h3>Percentage and number of attacks from one
host to any with same method</h3>\n";
 print "<table>\n";
 print "<tr><th>%</th><th># of
attacks</th><th>from</th><th>type</th></tr>\n";
 foreach $k (sort { $s2{$b} <=> $s2{$a} } keys %s2) {
 @_ = split ":",$k;
 printf("<tr><td>%-2.2f</td><td>%-4d</td><td>%-20s</td><td>%-28s</td>
 </tr>\n",$s2{$k}/$total*100,$s2{$k},$_[1],$_[0]) if $s2{$k} >
$th;
 }
 print "</table>Top<hr>\n";
 } else {
 section_header("Percentage and number of attacks from one host to any
with same method\n", "pasm");
 foreach $k (sort { $s2{$b} <=> $s2{$a} } keys %s2) {
 @_ = split ":",$k;
 printf("%5.2f %-4d %-${saddr_len}s %-28s\n",
 $s2{$k}/$total*100, $s2{$k},$_[1],$_[0]) if $s2{$k} > $th;
 }
 }
}

to see how many attacks received by one host (destination correlated)
sub same_dest_sig_stat {
 if ($opt_h) {
 print "<h3>Percentage and number of attacks to one
certain host</h3>\n";
 print "<table>\n";
 print "<tr><th>%</th><th># of
attacks</th><th>to</th><th>type</th></tr>\n";
 foreach $k (sort { $s3{$b} <=> $s3{$a} } keys %s3) {
 @_ = split ":",$k;
 printf("<tr><td>%-2.2f</td><td>%-4d</td><td>%-25s</td><td>%-
28s</td><td>\n",$s3{$k}/$total*100,$s3{$k},$_[1],$_[0]) if $s3{$k} > $th;
 }

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 45

 print "</table>Top<hr>\n";
 } else {
 section_header("Percentage and number of attacks to one certain host \n",
"padm");
 foreach $k (sort { $s3{$b} <=> $s3{$a} } keys %s3) {
 @_ = split ":",$k;
 printf("%5.2f %-4d %-${daddr_len}s %-28s\n",$s3{$k}/$total*100 ,
 $s3{$k},$_[1],$_[0]) if $s3{$k} > $th;
 }
 }
}

to see the popularity of one attack method
sub attack_distribution {
 if ($opt_h) {
 print "<h3>Distribution of attack methods</h3>\n";
 print "<table>\n";
 print "<tr><th>%</th><th># of attacks</th><th>methods</th></tr>\n";
 foreach $k (sort { $s4{$b} <=> $s4{$a} } keys %s4) {
 @p1 = split ":",$k;
 if ($s4{$k} > $th) {
 printf("<tr><td>%-2.2f</td><td>%-4d</td><td>%-32s</td>
 </tr>\n", $s4{$k}/$total*100,$s4{$k},$p1[0]);
 foreach $k2 (sort { $s0{$b} <=> $s0{$a} } keys %s0) {
 @p2 = split ":",$k2;
 printf("<tr><td></td><td>%-4d</td><td>%-32s</td></tr>\n", $s0{$k2},
join(" -> ", $p2[1],$p2[0])) if $p1[0] eq $p2[2];
 }
 }
 }
 print "</table>Top<hr>\n";
 } else {
 section_header("The distribution of attack methods\n", "pam");
 foreach $k (sort { $s4{$b} <=> $s4{$a} } keys %s4) {
 @p1 = split ":",$k;
 if ($s4{$k} > $th) {
 printf("%5.2f %-4d %-32s\n",
$s4{$k}/$total*100,$s4{$k},$p1[0]);
 foreach $k2 (sort { $s0{$b} <=> $s0{$a} } keys %s0) {
 @p2 = split ":",$k2;
 printf("\t\t %-4d %-${saddr_len}s -> %-${daddr_len}s\n", $s0{$k2},
$p2[1],$p2[0]) if $p1[0] eq $p2[2];
 }
 }
 }
 }
}

portscan (if enable -p switch)
Please use '-A fast' to generate the log, so portscan() can process it.
contributed by: Paul Bobby, <paul.bobby@lmco.com>
Jian-Da Li, <jdli@freebsd.csie.nctu.edu.tw>
sub portscan {
 my (%s7, %s8);
 # to see how many times a host performs portscan
 # used in portscan()
 for $i (0 .. $#posres) {
 $s7{"$posres[$i]->[0]"}++;
 }

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 46

 if ($opt_h) {
 print "<h3>Portscans performed to/from
HOME_NET</h3>\n";
 print "<table>\n";
 print "<tr><th>Scan Attempts</th><th>Source Address</th></tr>\n";
 foreach $k (sort { $s7{$b} <=> $s7{$a} } keys %s7) {
 print "<tr><td>$s7{$k}</td><td>$k</td></tr>\n" if $s7{$k} > $th;
 }
 print "</table>Top<HR>\n";
 } else {
 section_header("Portscans performed to/from HOME_NET\n", "as");
 foreach $k (sort { $s7{$b} <=> $s7{$a} } keys %s7) {
 printf(" %-4d %-${saddr_len}s\n", $s7{$k},$k) if $s7{$k} > $th;
 }
 }
}

anomsensor (if enable -n switch)
This function process data generated by spp_anomsensor plug-in (SPADE)
By Yen-Ming Chen <chenym@alumni.cmu.edu>
sub anomsensor {
 my (%s7);
 # to see how many times a host performs portscan
 # used in anomsensor()
 for $i (0 .. $#anores) {
 $s7{"$anores[$i]->[1],$anores[$i]->[3],$anores[$i]->[4]"}++;
 }
 if ($opt_h) {
 print "<h3>Anomaly detected by SPADE</h3>\n";
 print "<table>\n";
 print "<tr><th>Scan Attempts</th><th>Source Address</th><th>Destination
Address</th><th>Destination Ports</th></tr>\n";
 foreach $k (sort { $s7{$b} <=> $s7{$a} } keys %s7) {
 @_ = split(/,/,$k);
 print
"<tr><td>$s7{$k}</td><td>$_[0]</td><td>$_[1]</td><td>$_[2]</td></tr>\n" if
$s7{$k} > $th;
 }
 print "</table>Top<HR>\n";
 } else {
 section_header("Anomaly detected by SPADE\n", "asdo");
 foreach $k (sort { $s7{$b} <=> $s7{$a} } keys %s7) {
 @_ = split(/,/,$k);
 printf(" %-4d %-${saddr_len}s %-${daddr_len}s\t%-6d\n",
$s7{$k},$_[0],$_[1],$_[2]) if $s7{$k} > $th;
 }
 }
}

print the footer (needed for html)
sub print_footer {
 if ($opt_h) {
 print "Generated by snort_stat.pl\n";
 print "</body>\n</html>\n";
 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 47

resolve host name and cache it
contributed by: Angelos Karageorgiou, <angelos@stocktrade.gr>
edited by: $Author: yenming $

sub resolve {
 local ($mname, $miaddr, $mhost = shift);
 $miaddr = inet_aton($mhost);
 if (!$HOSTS{$mhost}) {
 $mname ="";
 eval {
 local $SIG{ALRM} = sub {die "alarm\n" }; # NB \n required
 alarm $timeout;
 $mname = gethostbyaddr($miaddr, AF_INET);
 alarm 0;
 };
 die if $@ && $@ ne "alarm\n"; # propagate errors
 if ($mname =~ /^$/) {
 $mname = $mhost;
 }
 $HOSTS{$mhost} = $mname;
 }
 return $HOSTS{$mhost};
}

Use a title and a short code to write the section headers
This is used in place of a FORMAT as this allows variable column widths
contributed by: Ned Patterson, <jpatter@alum.mit.edu>

sub section_header {
 my $linelength;
 $title = shift;
 $_ = shift;
 print("\n\n$title");
 # constant for method length for now
 $linelength = (/p/?7:0) + (/a/?20:0) + (/s/?$saddr_len:0) +
 (/d/?$daddr_len+3:0) + (/m/?20:0);
 print('=' x $linelength, "\n");
 print(" " x 7, " # of\n") if (/pa.*/);
 print(" # of\n attacks ") if (s/^a([sdm]*)/$1/);
 print(" % ") if (s/^p([asdm]*)/$1/);
 print("attacks ") if (s/^a([sdm]*)/$1/);
 printf("%-${saddr_len}s ", "from") if (s/^s([dm]*)/$1/);
 printf("%-${daddr_len}s ", "to") if (s/^d(m*)/$1/);
 printf("%-5s ", "ports") if (s/^o(m*)/$1/);
 print("method") if (/^m/);
 print("\n");

 print('=' x $linelength, "\n");
}

Put data $alert into matrix for further process
INPUT: $alert
sub process_data() {
 $self = shift;
 # if the resolve switch is on
 if ($opt_r) {
 $self->{SADDR} = resolve($self->{SADDR});
 unless ($opt_f) {
 if (length($self->{SADDR}) > $saddr_len) {

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Intrusion Analyst Practical V2.9

James Conz July 13, 2001 Page • 48

 $saddr_len = length($self->{SADDR});
 }
 }
 $self->{DADDR} = resolve($self->{DADDR});
 unless ($opt_f) {
 if (length($self->{DADDR}) > $daddr_len) {
 $daddr_len = length($self->{DADDR});
 }
 }
 }
 # put those data into a big matrix
 if ($self->{PLUGIN} eq "anomsensor") {
 push @anores , [$self->{THR},$self->{SADDR},$self->{SPORT},
 $self->{DADDR},$self->{DPORT}];
 $opt_n = 1;
 } elsif ($self->{PLUGIN} eq "portscan") {
 push @posres , [$self->{SADDR}];
 $opt_p = 1;
 } elsif ($self->{TYPE} eq "sys" || $self->{TYPE} eq "alert") {
 push @result ,[$self->{MON},$self->{DAY},$self->{HOUR},$self->{MIN},
 $self->{SEC},$self->{HOST},$self->{SIG},$self->{SADDR},
 $self->{SPORT},$self->{DADDR},$self->{DPORT}];
 $lastwassnort = 1;
 }
 1;
}

