
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

IP Fragment Reassembly with scapy

GIAC (GCIA) Gold Certification

!"#$%&'()*&+(,*--.##/(0%1234415-6*7089%6(
!:;7<%&'(=79+(>*??.&(

!99.@#.:'(A"?.(1B#$(2412(

(!C<#&*9#(

(
D;.&0*@@7?-(EF(G&*-6.?#<(9*?(C.("<.:(CH(*##*9+.&<(#%($7:.(#$.7&(?.G*&7%"<(7?#.?#7%?<(
G&%6(7?#&"<7%?(:.#.9#7%?(<H<#.6(*?:(*?*0H<#<8(((D@.&*#7?-(<H<#.6<(-7;.(@&.G.&.?9.(#%(
%;.&0*@@7?-(G&*-6.?#<(C*<.:("@%?(.7#$.&(#$.(@%<7#7%?(7?(#$.(@*9+.#(%&(#$.(#76.(%G(
*&&7;*08(((!<(*(&.<"0#(G&*-6.?#.:(@*9+.#<(67-$#(C.(&.*<<.6C0.:(7?(%?.(%G(G7;.(
:7GG.&.?#(I*H<8(((EG(#$.(EJK(%&(#$.(*?*0H<#(:%(?%#(&.*<<.6C0.(#$.(@*9+.#<(#$.(<*6.(
I*H(*<(#$.(#*&-.#($%<#/(*?(*##*9+(6*H(<"99..:(*?:(-%("?:.#.9#.:8(((>$70.(<%6.(
7?#&"<7%?(:.#.9#7%?(<H<#.6<($*;.(#.9$?7L".<(G%&(:.*07?-(I7#$(#$.<.(*##*9+<(#$.&.(*&.(
;.&H(G.I(#%%0<(*;*70*C0.(#%(#$.(*?*0H<#(#%(0%%+(7?<7:.(#$.(&.*<<.6C0H(@&%9.<<(*?:(#&H(
#%("?:.&<#*?:(#$.(*##*9+.&M<(7?#.?#8((N$7<(@*@.&(I700(.O@0%&.($%I(*?(*?*0H<#(9*?("<.(
<9*@H(#%(&.*<<.6C0.(#$.(G&*-6.?#.:(*##*9+(@*9+.#<(7?(*(<7670*&(6*??.&(#%(P7?"O/(
>7?:%I</()*97?#%<$/(Q7<9%(&%"#.&<(*?:(%#$.&(%@.&*#7?-(<H<#.6<(#%(<..($%I(.*9$(
%@.&*#7?-(<H<#.6(I%"0:(7?#.&@&.#(#$.(G&*-6.?#.:(@*9+.#<8((((

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 2
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

1. Introduction
1.1. The Problem

Overlapping IP fragments can be used by attackers to hide their nefarious

intentions from intrusion detection system and analysts. Packets fragmentation will be

performed by a router when the size of a packet exceeds the link layers MTU of the

upstream network. (Fall, Stevens, 2011) The receiving host is responsible for

reassembling those fragmented packets and passing it up the TCP stack to the proper

application. The RFC’s are silent on the matter of what the receiving host is supposed to

do when the fragments it receives are retransmitted or overlap one another. No

guidance is given as to whether or not the host should favor the first “retransmitted”

fragment it receives, the second “retransmitted” fragment or the last. Similarly, should it

favor overlapping fragments with the lowest offset or the highest? As a result different

operating systems handle overlapping fragments in different ways. This problem is

illustrated by the paper “Active Mapping: Resisting NIDS Evasion Without Altering

Traffic” by Umesh Shankar and Vern Paxson (Shankar & Paxson, 2003) and then further

explained in “Target Based Fragmentation Assembly” by Judy Novak (Novak, 2005).

Imagine that we send the following 6 IP fragments that overlap in the following

ways. For the sake of this discussion each fragment is 8 bytes in length which is the

minimum size of a fragment. Also, to help keep things straight we will set the payload to

be an eight ASCII 1s for packet 1, 2s for packet 2 and so on. Fragment 1 has an offset of

zero and has a payload length of 24 bytes so that that fills fragment positions 0, 1 (offset

8) and 2 (offset 16). Fragment 2 begins at offset 24 and has a length of 16 bytes so that it

fills fragment positions 4 and 5. Fragment 3 has an offset of 48, length of 24 bytes and

fills fragment positions 6, 7 and 8. Fragment 4 has an offset of 8, a length of 32 and fills

fragment positions 1 (offset 8), 2 (offset 16), 3 (offset 24) and 4 (offset 32) causing it to

overlapping part of fragment positions 1 and 2. Fragment 5 has an offset of 48 and fills

positions 6, 7 and 8 so that it perfectly overlaps fragment 3. Fragment 6 has an offset of

72 and fills fragment positions 9, 0xa and 0xb. Visually it would look like this:

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 3
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

 Figure 1: 6 Fragmented Packets (Shankar & Paxson, 2003)(Novak, 2005)

Depending upon whether the reassembling host wants to favor the packets that

arrive first or last or favor the packets with the lowest offset the fragments may end up in

one of the 5 possible combinations. These combinations have been named First, Last,

Linux, BSD and BSD-Right.

Reassembled using policy: First (Windows, SUN, MacOS, HPUX)

Reassembled using policy: Last/RFC791 (Cisco)

Reassembled using policy: Linux (Linux)

Reassembled using policy: BSD (AIX, FreeBSD, HPUX, VMS)

Reassembled using policy: BSD-Right (HP Jet Direct)

Figure 2: 5 Reassembly Methods (Shankar & Paxson, 2003)(Novak, 2005)

These inconsistencies allow attackers to put a malicious payload in an overlapped

fragment. If the IDS and the host reassemble the packets differently the IDS will not see

the packets, but the reassembling host will. Although many IDS’s attempt to mitigate

this risk by reassembling the packets in multiple ways, such as SNORT’s frag3

preprocessor, the analyst is given very little insight to what happens inside the reassembly

engine. This can lead to the analyst incorrectly dismissing an attack as an IDS false

negative. Consider the following scenario. The attacker sends a crafted packet that

contains both a Linux Exploit and a Windows Exploit to a vulnerable Windows target.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 4
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

The IDS has an intelligent reassembly engine and successfully detect that exploitation of

the host. The Analyst then sees the alert and examines the full packet capture where he

finds a Linux exploit targeting a Windows host and incorrectly dismisses it as a false

positive. To avoid this situation an analyst has to be aware of the limitations of his tool

sets and find or create new tools to properly analyze these

attacks.

!"#$%&%' ("")*+#,%-,)."/%
01234%)25%612578/%
94$:71"%.,);<#2"/%
"),;#"12;%)%612578/%
=7/"

!"#$%>%' ?@!%*7,,#*":A%)//#<B:#/%
$)*+#"/%)/%"=#%"),;#"%=7/"%
873:5%)25%):#,"/%"=)"%"=#%
)"")*+%=)/%7**3,,#5

!"#$%C%' (2):A/"%94)<12#/%
"=#%.3::%$)*+#"%*)$"3,#D%
/##/%)%01234%#4$:71"%
"),;#"12;%612578/%)25%
51/<1//#/%"=#%.):/#%
$7/1"1E#

!"#$%&'()*+,%"-

."#/*(()*+,%"- ."#/*(()*+,%"-!"#$%&'()*+,%"-

(FF(-G9H%I?96 ?@!%%I?96 (J(0K!F%I?96

612578/%72%612578/L%
/3**#//.3:%)"")*+%(09HFMMM

01234%72%612578/%
.)1:#5%)"")*+L%%!"3$15%
?@!L%%J#4"%$)*+#"MM

Figure 3: Views of the attacker, IDS and analyst

For example, if an analyst uses Wireshark to extract the payload of fragmented

packets he will see neither the Linux payload NOR the Windows payload. Instead he

will see a combination of the two. Wireshark uses the BSD reassembly policy when

putting fragments back together. So, how then does an analyst know exactly what was

launched against their system?

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 5
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

(
Figure 4: Wireshark uses BSD reassembly technique

1.2. One Possible Solution
Tools such as scapy and Python can be used to quickly reassemble packets in each

of the differently combinations used by modern operating systems to get a better

understanding of what the attacker may have intended to exploit. Over the next few

pages we will examine how to recreate the reassembly engines as they are implemented

by various operating systems. Then we as analysts, can use these techniques to peer

behind the curtain and see how our reassembly engines would see that attackers packets.

Understanding the techniques being used by the attacker will give us greater insight to the

skill of our adversary and perhaps even help us identify attacks that our automated

reassembly engines might overlook. (Shankar & Paxson, 2003)(Novak, 2005)

2. Writing a fragment reassembly engine
Writing the IP fragmentation engines in our TCP stack is no easy task.

Fortunately for us, we do not have to deal with many of the difficulties the authors of

those programs do. We don’t have to worry about reassembly time-out, TTLs, memory

management and other issues associated with the live transmission of data. We are

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 6
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

reading our packets from stored packet captures. This gives us another advantage over

reassembling live packets in that we have all of the packets in our possession and can

reorder them as needed before processing them. To reassemble the packets we will

allocate a buffer in memory and then write each fragment to the buffer based allowing

fragments to overwrite existing data. Using this method the last fragments that we

process will overwrite any existing data in the buffer. To reassemble packets as each of

the different reassembly policies we will just have to reorder our packet before we

process them. For example, to process packets according to the “LAST/RFC791”

policy we would just process packets from the first one we received until the last in

chronological order. Since subsequent overlapping fragments will overwrite the

previous packets we are favoring the LAST packet to arrive. To process packets

according to the “FIRST” policy we process the same packets in reverse order filling the

buffer with the last packet to arrive, then the 2nd to last etc. The first packet to arrive

will overwrite any data that was written in the buffer by later packets thus favoring the

FIRST packets.

2.1. Python and scapy data structures
Python’s StringIO module provides us with a good data structure to use as our

buffer for the reassembled fragments. We can use StringIO’s seek() method to set the

location in the buffer to the fragments offset. Then we use the write() method to put our

data in the buffer. After we have processed all the fragments we can use the getvalue()

method to retrieve the contents of our completed fragment payload.

Scapy allows you to quicky and easily tear apart packets and get to the fields you

are interested in. By following a variable containing a packet with “[protocol]” and

“.field” you can pull the contents of various fields from each packet. For example, to

examine the IP ID field of a given packet we would simply address the variable

containing the packet as variablename[IP].id. This tells scapy you want the value

assigned to the ‘id’ field in the ‘IP’ layer of the packet. The field we are interested in is

the [IP].frag which contains the fragment offset of the current fragment and the payload

of each of the fragmented packets. The fragment offset will be the number of bytes into

fragment chain that the payload bytes should be written. (Kozierok, 2005) The scapy

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 7
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

frag field is a fragment position not the byte offset. To get the byte offset you need to

multiplying that number by 8 (8 bytes in the smallest fragment). Then using the

StringIO.seek() method we place the pointer into the buffer at the location where the

payload should be written. Using a FOR loop to step through each packet we have a

simple reassembly engine.

2.2. The “Last/RFC791” policy
Let’s look at the simplest reassembly policies “Last/RFC791”. This reassembly

policy gives preference to fragment that appear later in a packet capture. Assume we

have a list of all of the fragments that need to be reassembled. By processing the list of

packets from the first to the last allowing the later to overwrite the earlier we follow the

“Last” policy. When combined with scapy’s ability to easily parse packets and extract

fields like the fragment offset and payload we can write a very basic packet reassembly

engine in just a few lines of Python code. The following code will take a list of

fragments and assemble the payload according to the Last/RFC791 policy.

def rfc791(listoffragments):
 buffer=StringIO.StringIO()
 for pkt in listoffragments:
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()
(

Let’s look at this code line by line. The first line uses the keyword “def” to

define a new function called “rfc791” which will be passed a single parameter. The

parameter will be stored in a variable called “listoffragments”. As you might guess from

the name the parameter will be a Python data structure called a list, and it will contain all

of the fragments in a given fragment train. Notice that after the first line we begin

indenting the code by 4 spaces. The indention is very important to Python. It tells

Python that each of those indented lines is part of the “code block” that makes up the

“rfc791” function we are defining. The second line will create a variable in memory

called “buffer” which is of type StringIO. The variable “buffer” will be used to store all

of the pieces of the fragment train. Next we start a “FOR” loop to step through each

individual fragment inside of the fragment train. The for loop is followed by another

group of indented lines. Again, the indention is used to group lines of code into a “code

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 8
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

block”. The two lines that follow the for loop will be executed repeatedly as part of the

for loop for each individual fragment in our list “listoffragments”. The first time

through the loop the variable “pkt” will contain the first fragmented packet in

“listoffragment”. The second time through the loop it will contain the second

fragmented packet in “listoffragments”. This will repeat for every packet in

“listofpackets”. So, for every fragment in “listoffragments” we will execute these next

two lines. The first one, “buffer.seek(pkt[IP].frag*8)” sets the pointer that will be used

to write data in the buffer to the value that is contained in the scapy fragment position

field of the current packet multiplied by eight. To convert a scapy fragment position

number we multiply by 8 because each of these fragments will contain 8 bytes (64 bits).

(Kozierok, 2005) Now that the pointer is set, the next line will write the payload of the

fragment into the buffer at the location that was just set by the seek method. Once we

have done that for all of the fragments we simply retrieve the contents of the buffer with

the getvalue() method and return that from our function. (Python Software Foundation,

2012)

2.3. The “First” policy
To write the FIRST reassembly engine we can follow the exact same process we

followed to favor the LAST packet, but process our packets in reverse order. In doing so

the first shall be last and our packets will be assembled properly. Python lists make it

very easy to process a list in reverse order. By simply adding “[::-1]” to the end of our

list of fragments we reverse the list. (Lutz, 2012) Now writing our “FIRST” reassembly

engine is almost identical to rfc791.

def first(listoffragments):
 buffer=StringIO.StringIO()
 for pkt in listoffragments[::-1]:
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()
((

2.4. The “BSD-Right” policy
(

Our remaining 3 reassembly policies look at more than just the chronological

order the fragments arrived in. They also take the fragment offset into consideration

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 9
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

when deciding which fragment takes precedent. We need to reorder the packets so we

process them based upon both the time they arrived and their offset according to the

different reassembly engines. For the BSD-Right policy we need to process fragments in

order by their fragment offset from lowest to highest. If two packets have the same

offset then we allow the last one to arrive chronologically to overwrite the existing data.

Since our fragments are already in chronological order, sorting the packets based on their

fragment offset will line the packets up for the BSD policy. We can use the sorted()

function to put the fragments in to order by fragment offset then by chronological order.

We pass the sorted function two parameters. We will pass it the list we want to sort and

a “key” function to sorted() and it returns a list that is sorted based on the key. In this

case our key function is “lambda x:x[IP].frag” which tells sorted() to put them in

fragment offset order.

def bsdright(listoffragments):
 buffer=StringIO.StringIO()
 for pkt in sorted(listoffragments, key=lambda x:x[IP].frag):
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()
(

2.5. The “BSD” policy
(

BSD is simply BSD-Right in reverse. Processing the BSD-Right sorted

fragments from last to first will cause the early fragments to overwrite the latter ones.

We can take the same approach we used with FIRST and process the packets backwards

by adding a ‘[::-1]’ to the end of our list of fragments. Because we want to process them

in reverse order after they have been sorted, we add the [::-1] to the end of the sorted

function. Now we will processing the packet the same way we did for BSD-Right but in

reverse.

def bsd(listoffragments):
 buffer=StringIO.StringIO()
 for pkt in sorted(listoffragments,key=lambda \
x:x[IP].frag)[::-1]:
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()
(

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 10
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

2.6. The “Linux” policy
The Linux Policy also takes the fragment offset into consideration. It favors

whatever packet has the lowest offset. By processing the packets in reverse fragment

offset order we allow the lowest fragments to overwrite the highest. So we need to sort

our packets with the highest fragment offset appearing first in the list. To reverse a sort is

as simple as passing the parameter “reverse=True” to our sorted command. By applying

a reverse sort to our fragments before processing them first to last we get a Linux

reassembly policy.

def linux(listoffragments):
 buffer=StringIO.StringIO()
 for pkt in sorted(listoffragments, key= lambda x:x[IP].frag,\
reverse=True):
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()

2.7. Testing the code

To test the code we can reassemble various fragmented packets samples from

internet. We can craft our own fragmented packets using tools such as fragroute and

fragrouter. We can also craft our own packets using scapy. The following section of

code will generate the six packet fragments outlined in the introduction with the offsets

specified in the Shankar/Paxson and Novak papers.

def genfragments():
 pkts=scapy.plist.PacketList()
 pkts.append(IP(flags="MF",frag=0)/("1"*24))
 pkts.append(IP(flags="MF",frag=4)/("2"*16))
 pkts.append(IP(flags="MF",frag=6)/("3"*24))
 pkts.append(IP(flags="MF",frag=1)/("4"*32))
 pkts.append(IP(flags="MF",frag=6)/("5"*24))
 pkts.append(IP(frag=9)/("6"*24))
 return pkts
(

Now we can pass that fragment train off to each of our functions to see how it

“puts humpty back together”. Passing the results of genfragments() to the first()

function will generate our fragment test pattern, then reassemble the packets using the

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 11
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

first policy. By calling each of the reassembly engines we can see if our results match

those outlines in paper.

print "Reassembled using policy: First"
print first(genfragments())
print "Reassembled using policy: Last/RFC791"
print rfc791(genfragments())
print "Reassembled using policy: Linux"
print linux(genfragments())
print "Reassembled using policy: BSD"
print bsd(genfragments())
print "Reassembled using policy: BSD-Right"
print bsdright(genfragments())
(

Running our script we would get the following result and we can see that indeed

our reassembled packets do match what is expected from each of the reassembly engines.

Figure 5: Output of running a simple fragment generator and reassembly engine

2.8. Extending the code
With the basic reassembly engines completed we can turn our attention to making

the code user friendly and useful. One possible use would be to place each of the

reassembly routines into a modularize script so you can “import” it into your existing

scapy sessions to reassemble payloads as needed. Another application of this code

would be to add functionality that extracts fragmented packets from pcap files then

reassembles them using each of the 5 different policies so the analyst can see how the

packets would be interpreted by different operating systems. The extended application

could also allow the analyst to write reconstructed packets to disk. Although the review

of that source code is beyond the scope of this paper, I have produced that tool for you

and provided it in the appendix of this paper. Let’s look at how we can use that

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 12
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

application to analyze fragmented packets generated by fragroute and scapy. The

extended version of this script will read the packets from disk, find all fragmented

packets, prompt the user and ask if they want to process a given fragment train and

display the reassembled packet on the screen or write the payload to disk. As this script

is updated the latest source code will be available for download at the address

http://baggett-scripts.googlecode.com/svn/trunk/reassembler/ . The version that was used

for testing in this paper is included in the Appendix. First let’s take a look at the

options that are available to the program. We can see the options by passing “—help”

as an option to the script.

Figure 6 : Help for reassembler.py

Here you can see we can pass it –r to read a pcap from disk and process it. We

can use –w if we want it to write the payloads to disk instead of printing to the screen.

Finally,–p is specified if we want to specify the filename prefix to use when using the –w

option to create payload files on disk. There is also the –d option which will generate a

fragmented packet stream then decode it. The –d option is used to quickly gain an

understanding of what each of the fragmentation engines does. If we really want to test

the application we need some fragmented packets to test with. For that we can use a tool

like fragroute or fragrouter to generate our packets.

Although several fragmentation combinations were tested, here is one example of

how we can create fragmented packets to test the software. First we create a fragroute

configuration file that tells fragroute how to break our packets down. Here is an

example of a fragroute configuration file.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 13
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

Figure 7: Fragroute Configuration File

This configuration file tells fragroute to break the data into 8 byte fragments then

insert duplicate packets with random payloads. Then transmit the fragments in random

order. Note that the “ip_chaff dup” creates duplicate overlapping fragments. There are

no partially overlapping fragments. The fragments perfectly overlap other fragments.

All of the engines will reassemble the payloads as they to packets 3 and 5 from our

overlapped packet test pattern. Therefore, we expect the “FIRST” and “BSD” patterns to

reassemble packet one way and the other engines to assemble them the other way.

Figure 8: Results of assembling fragroute generated packets

As expected First and BSD reassemble the packets one way and the other engines

see a totally different payload. In this case First and BSD see the real payload and the

other engines all see random garbage that was created by fragroute. Now, let’s test to

see if our code that writes the payloads to disk with an optional prefix works properly.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 14
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

Figure 9: Writing reassembled payloads to disk

It works!! This should be suitable for extracting binary payloads such as shell

code and other exploits which may not behave well when displayed to the screen. Now,

we as analysts can get the same insight to fragmented packets that our IDS engine may

already have and make better informed decisions about the threat posed by a given attack

3. Conclusions

The use of overlapping IP fragments for IDS evasion has been around since the

20th century. While some IDSs reduce the risk of false negatives through various

reassembly mechanisms, the IDS Analyst is often blind to these attacks and left to trust

the technology is not overlooking the threat. However, with tools such as Python, scapy

and a little elbow grease the analyst can see exactly what malicious activities are being

launched against their organization. By making use of these tools and techniques

analysts are less likely to incorrectly dismiss an IDS generated true positive as a false

positive.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 15
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

4. References

Shankar, U., & Paxson, V. (2003). Active mapping: Resisting nids evasion without

altering traffic. Retrieved April 29, 2012 from

http://www.icir.org/vern/papers/activemap-oak03.pdf

Novak, J. (2005, April). Target-based fragmentation reassembly. Retrieved April 29,

2012 from http://www.snort.org/assets/165/target_based_frag.pdf

Fall, K., & Stevens, W. R. (2011). TCP/IP illustrated . (2nd ed., Vol. 1, p. 148). Ann

Arbor, Michigan: Pearson Education Inc.

Lutz, M. (2012). Python pocket reference. (4th ed., p. 16). North Sebastopol, CA:

O'Reilly Media Inc.

Seitz, J. (2009). Grey Hat Python. San Francisco, CA: No Starch Press.

Python Software Foundation (2012). Python Online Documentation. Retrieved from

http://www.python.org/doc/

Kozierok, C. (2005). The TCP Guide. (p. 374). San Francisco, CA: No Starch Press.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 16
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

5. Appendix
P*#.<#(<%"&9.(9%:.(*?:(<*6@0.(G&*-6.?#.:(@*9+.#<(*&.(*;*70*C0.(G%&(:%I?0%*:(*#(#$.(
G%00%I7?-(R=P8((N$.(;.&<7%?(%G(9%:.("<.:(G%&(#.<#7?-(7?(#$7<(@*@.&(7<(7?90":.:(C.0%I8(
(
$##@'SSC*--.##T<9&7@#<8-%%-0.9%:.89%6S<;?S#&"?+S&.*<<.6C0.&S(
(
Program 1 – Simple fragment generator & reassembler
(
from scapy.all import *
import StringIO

def rfc791(fragmentsin):
 buffer=StringIO.StringIO()
 for pkt in fragmentsin:
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()

def first(fragmentsin):
 buffer=StringIO.StringIO()
 for pkt in fragmentsin[::-1]:
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()

def bsdright(fragmentsin):
 buffer=StringIO.StringIO()
 for pkt in sorted(fragmentsin, key= lambda x:x[IP].frag):
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()

def bsd(fragmentsin):
 buffer=StringIO.StringIO()
 for pkt in sorted(fragmentsin, key=lambda x:x[IP].frag)[::-1]:
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()

def linux(fragmentsin):
 buffer=StringIO.StringIO()
 for pkt in sorted(fragmentsin, key= lambda x:x[IP].frag):
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()

def genjudyfrags():
 pkts=scapy.plist.PacketList()
 pkts.append(IP(flags="MF",frag=0)/("1"*24))
 pkts.append(IP(flags="MF",frag=4)/("2"*16))
 pkts.append(IP(flags="MF",frag=6)/("3"*24))
 pkts.append(IP(flags="MF",frag=1)/("4"*32))
 pkts.append(IP(flags="MF",frag=6)/("5"*24))
 pkts.append(IP(frag=9)/("6"*24))
 return pkts

print "Reassembling the following packets:"
print "111111111111111111111111 2222222222222222333333333333333333333333"
print " 44444444444444444444444444444444
555555555555555555555555666666666666666666666666"

print "Reassembled using policy: First (Windows, SUN, MacOS, HPUX)"
print first(genjudyfrags())

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 17
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

print "Reassembled using policy: Last/RFC791 (Cisco)"
print rfc791(genjudyfrags())

print "Reassembled using policy: Linux (Umm.. Linux)"
print linux(genjudyfrags())

print "Reassembled using policy: BSD (AIX, FreeBSD, HPUX, VMS"
print bsd(genjudyfrags())

print "Reassembled using policy: BSD-Right (HP Jet Direct)"
print bsdright(genjudyfrags())

PROGRAM 2 – Extending the code to reassemble fragments from disk

from scapy.all import *
import StringIO
from optparse import OptionParser
import os
import sys

def rfc791(fragmentsin):
 buffer=StringIO.StringIO()
 for pkt in fragmentsin:
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()

def first(fragmentsin):
 buffer=StringIO.StringIO()
 for pkt in fragmentsin[::-1]:
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()

def bsdright(fragmentsin):
 buffer=StringIO.StringIO()
 for pkt in sorted(fragmentsin, key= lambda x:x[IP].frag):
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()

def bsd(fragmentsin):
 buffer=StringIO.StringIO()
 for pkt in sorted(fragmentsin, key=lambda x:x[IP].frag)[::-1]:
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()

def linux(fragmentsin):
 buffer=StringIO.StringIO()
 for pkt in sorted(fragmentsin, key= lambda x:x[IP].frag, reverse=True):
 buffer.seek(pkt[IP].frag*8)
 buffer.write(pkt[IP].payload)
 return buffer.getvalue()

def genjudyfrags():
 pkts=scapy.plist.PacketList()
 pkts.append(IP(flags="MF",frag=0)/("1"*24))
 pkts.append(IP(flags="MF",frag=4)/("2"*16))
 pkts.append(IP(flags="MF",frag=6)/("3"*24))
 pkts.append(IP(flags="MF",frag=1)/("4"*32))
 pkts.append(IP(flags="MF",frag=6)/("5"*24))
 pkts.append(IP(frag=9)/("6"*24))
 return pkts

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 18
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

def processfrags(fragmenttrain):
 print "Reassembled using policy: First (Windows, SUN, MacOS, HPUX)"
 print first(fragmenttrain)
 print "Reassembled using policy: Last/RFC791 (Cisco)"
 print rfc791(fragmenttrain)
 print "Reassembled using policy: Linux (Umm.. Linux)"
 print linux(fragmenttrain)
 print "Reassembled using policy: BSD (AIX, FreeBSD, HPUX, VMS)"
 print bsd(fragmenttrain)
 print "Reassembled using policy: BSD-Right (HP Jet Direct)"
 print bsdright(fragmenttrain)

def writefrags(fragmenttrain):
 fileobj=open(options.prefix+"-first","w")
 fileobj.write(first(fragmenttrain))
 fileobj.close()
 fileobj=open(options.prefix+"-rfc791","w")
 fileobj.write(rfc791(fragmenttrain))
 fileobj.close()
 fileobj=open(options.prefix+"-bsd","w")
 fileobj.write(bsd(fragmenttrain))
 fileobj.close()
 fileobj=open(options.prefix+"-bsdright","w")
 fileobj.write(bsdright(fragmenttrain))
 fileobj.close()
 fileobj=open(options.prefix+"-linux","w")
 fileobj.write(linux(fragmenttrain))
 fileobj.close()

def main():
 parser=OptionParser(usage='%prog [OPTIONS]')
 parser.add_option('-r','--read',default="",help='Read the specified packet
capture',dest='pcap')
 parser.add_option('-d','--demo',action='store_true', help='Generate classic fragment
test patter and reassemble it.')
 parser.add_option('-w','--write',action='store_true', help='Write 5 files to disk
with the payloads.')
 parser.add_option('-p','--prefix',default='reassembled', help='Specify the prefix for
file names')

 if (len(sys.argv)==1):
 parser.print_help()
 sys.exit()

 global options, args
 (options,args)=parser.parse_args()

 if options.demo:
 processfrags(genjudyfrags())

 if not os.path.exists(options.pcap):
 print “Packet capture file not found.”
 sys.exit(2)

 packets=rdpcap(options.pcap)
 filtered=[a for a in packets if a[IP].flags==1 or a[IP].frag > 0]

 if len(filtered)==0:
 print “No fragments in packet capture file.”
 sys.exit(2)

 uniqipids={}
 for a in filtered:
 uniqipids[a[IP].id]='we are here'

 for ipid in uniqipids.keys():
 print "Packet fragments found. Collecting fragments now."
 fragmenttrain = [a for a in filtered if a[IP].id == ipid]
 processit = raw_input("Reassemble packets between hosts "+str(a[0][IP].src)+" and
"+str(a[0][IP].dst)+"? [Y/N]")

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Fragment Reassembly with Scapy 19
(

)*&+(,*--.##/(0%1234415-6*7089%6(((

 if str(processit).lower()=="y":
 if options.write:
 writefrags(fragmenttrain)
 else:
 processfrags(fragmenttrain)

if __name__ == '__main__':
 main()

