
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Intrusion Detection In Depth

GCIA Practical Assignment
Version 3.1

Frans J.H. Kollee

SANS Parliament Square 2002
London, April 22 - 27, 2002

Page 2 of 68

Assignment 1 - Describe the State of Intrusion Detection - .. 4
Introduction. .. 4
Are scans worth to think about? ... 4
The purpose and origin of network and port scanning... 5
Should you worry about these network and port scans?.. 5
What can be done against these scans?... 6
Obfuscating scans.. 6

Honeyd - Network Rhapsody for You.. 7
Slowing down scans. ... 7

The LaBrea Tarpit ... 7
Other countermeasures that can be taken.. 8
Conclusion .. 8
References... 9
Additional references ... 9

Assignment 2 - Network Detects -... 10
Detect #1 - Outbound connection attempts to a host on TCP Port 3000110

Event traces... 10
1. Source of Trace ... 12
2. Detect was generated by .. 13
3. Probability the source address was spoofed .. 13
4. Description of attack.. 14
5. Attack mechanism ... 15
6. Correlations... 15
7. Evidence of active targeting... 16
8. Severity... 16
9. Defensive recommendation.. 16
10. Multiple choice test question.. 16

Detect #2 - Loadbalancing versus reconnaissance attack. ..17
Event traces... 17
1. Source of Trace ... 21
2. Detect was generated by .. 21
3. Probability the source address was spoofed .. 21
4. Description of attack.. 22
5. Attack mechanism ... 22
6. Correlations... 23
7. Evidence of active targeting... 24
8. Severity... 24
9. Defensive recommendation.. 24
10. Multiple choice test question.. 25

Detect #3 - SNMP "public" access attempt..26
Event traces... 26
1. Source of Trace ... 27
2. Detect was generated by .. 28
3. Probability the source address was spoofed .. 28
4. Description of attack.. 29
5. Attack mechanism ... 29
6. Correlations... 31
7. Evidence of active targeting... 31
8. Severity... 31
9. Defensive recommendation.. 32
10. Multiple choice test question.. 32

Page 3 of 68

Assignment 3 – “Analyze This”-Scenario - .. 33
Security Audit for “University”...33

Executive Summary... 33
List of Analyzed Files.. 34
List of Detects ... 34

Analyses of the Alerts log files... 34
Analyses of the OOS logfiles ... 48
Analyses of the Scan logfiles ... 50

Registration Information.. 53
Link Graph.. 57
Analyses Process ... 59

References..60

Appendix A - Overview of all alerts - ... 62

Appendix B - Commands and scripts used for assignment 3 - 64
Commands01..64
Script01..65
Script02..65
Perlscript apr - alert port reporter ..66

Page 4 of 68

Assignment 1 - Describe the State of Intrusion Detection -

Network scans and port scans: What to do with them?

Introduction.

As soon as you have setup and implemented an Intrusion Detection System and
Perimeter Device(s) as part of your company’s Security Policy, you probably get
overwhelmed by the detects that are being reported. Among these detects, you will see a
lot of port scans and network scans, consuming your bandwidth and CPU time. The
Security Policy describes what is allowed and what is not allowed. Network scans and
port scans with malicious intent should not be categorized as allowed.

This paper will describe possible techniques that can be used as a defense against these
overwhelming scans for vulnerable hosts and services. Network scans and host scans are
often classified as annoying but not severe enough to spent much time on. This type of
network traffic coming from the Internet will only increase, and it is worth to take actions
upon, not only by one organization or person, but by anyone who is connected to the
Internet.

From a technical perspective, there are some things that can be done against scanners by
giving a little more extra efforts while implementing the company’s overall security.

Are scans worth to think about?

Part of the company’s Security Policy, will probably include an Incident Response
Cookbook which describes how to react upon specific kind of detects that arise. At
http://www.sans.org/newlook/resources/IDFAQ/deploy.htm1, you will find a good
overview about this topic which describes possible actions and provides an example of
grading various incidents.

Network scans and port scans are often graded as “unfriendly” and the two major reasons
for this are:
• There are a lot of these scans which have become so common and therefore are

widely ignored. Investigation of every scan takes a lot of time and the results are
minor according to the effort.

• The perimeter device is there to block this traffic (with success) and eventually
reports upon the scans, so why spent a lot of time?

The most appropriate action is to record the source IP-address (which however could be
spoofed or could be one of a compromised host) and correlate this information with other
(public) sources which collect information about attackers. These public data-collections
which are the result of gathering data from multiple sensors all over the world, are
becoming more and more important because they can discover trends in activity.

Page 5 of 68

Useful information according these data collections can be found at:

• Distributed Intrusion Detection System: http://www.dshield.org/
• Internet Storm Center: http://isc.incidents.org/
• Security Focus DeepSight Analyzer (ARIS): http://aris.securityfocus.com/
• HackerWatch.org (McAfee Personal Firewall): http://www.hackerwatch.org/

The purpose and origin of network and port scanning.

Network and port scans are often performed because of the following reasons:
• Reconnaissance and OS fingerprinting.

The first step in hacking targets is developing an attack scheme and to learn as much
as possible about the target. The final attack will be performed in regard with the
previously collected information. Stealthy scans and distributed scanning are
preferable techniques because they can elude an IDS. Passive OS fingerprinting is
another technique used to gather information about specific hosts. Remember that
hackers are willing to invest a lot of time and that there can be a huge time gap
between reconnaissance and the actual hack.

• Script kiddies.
Ready to use scripts, operated by the script kiddies are also a major source of
annoying scans. These script kiddies use hacking tools downloaded from the Internet
and have fun in using them, just because it’s easy and exciting. They often have little
knowledge about the technique and in fact they provide proof that they have no skill
at all by the noisy scans.

• Virus-spreading by I-worms.
I-worms are spreading by looking for (nearby) servers and they try to open
backdoors, so hackers can gain control over these systems. Because this also is an
automated process that amplifies it self, the volume of these kind of scans is
enormous. Think of the different versions of Code Red. A good and detailed resource
according the spreading of I-worms like Code Red is at
http://www.icir.org/vern/papers/cdc-usenix-sec02/index.html 2.

• Scans originated within the internal network.
This point is summarized as a complement. Scans with their origin within the internal
network, should be treated as defined by the company’s Security Policy. This is also
true for Peer-to-Peer networks and Instant Messaging traffic with external hosts. If
not explicitly allowed and monitored, you should always be aware of the malicious
intent of this kind of traffic. Trojans are very likely the source of this traffic. The
internal hosts are under control of the company’s system administrators, so it should
be easy to take appropriate countermeasures to this type of scans.

Should you worry about these network and port scans?

The answer is a definite “yes, you should” (after all, these scans are unwanted activity).
The scans are not only consuming bandwidth and CPU time, but they might let you
decide to loosen the rules of the IDS because of the huge amount of false positives.

Page 6 of 68

The scans are often looking for exploitable services on your network and if there is one,
you can be sure that someone sooner or later will find it and will take advantage of it. A
successful scan which positively reports vulnerable services, isn’t always followed
immediately by a hack. The actual hack, can be long after the initial reconnaissance.

The summary report titled “Internet Risk Impact Summary” for March 26, 2002 through
June 24, 2002 published by Internet Security Systems available at
https://gtoc.iss.net/documents/summaryreport.pdf 3 is giving some numbers about
scanning. Some excerpts from this report:

• An unprotected computer will be compromised within a day of connection to the internet.
• A small but steady resurgence of the year-old Code Red.
• A known exploit for the Microsoft IIS vulnerability was noted in the wild, and an SQL worm

was released which automatically exploits SQL administrator accounts that do not have a
password.

• As expected Port 80, leads the list and is virtually unchanged from the previous report.
• ISS saw over half a million SQL worm events over 7500 different sources during this period.

What can be done against these scans?

Network and port scans will be on the Internet all the time and show up in different
flavors. A good start upon detecting these scans is the document titled Practical
Automated Detection of Stealthy Portscans which can be found at
http://www.silicondefense.com/pptntext/Spice-JCS.pdf 4 The document describes several
portscan detectors that can be used. One of these detectors is the Snort Portscan
Preprocessor. Spade, which is an implementation of the Spice anomaly detector, is
another useful preprocessor that can be used in conjunction with Snort.

Obfuscation and slowing down scans are possible countermeasures that can be done from
a technical point of view. The next two paragraphs will comment on these subjects.

Blocking (shunning) the source IP is a countermeasure which is not always useful
because the IP-address could be spoofed or could be randomly assigned to a customer,
only for the duration of a session.

After or during the implementation of the Security Policy, it just takes a little extra effort
to do something about the network and port scans. Whether you have only one, a couple,
or a range of several C-class or B-class IP-addresses, all actions against scanning will be
useful.

Obfuscating scans.

As stated before, one of the preliminary functions of scanning is OS fingerprinting. So
what if you could setup a dedicated host which handles all connection-requests targeted
to the unused addresses within the assigned (Internet routable) address-space and reports
all kinds of operating systems or even virtual services as response to these requests?

Page 7 of 68

What if you could setup an imaginary network topology which doesn’t necessarily reflect
the real network topology? You still would get the traffic at your site, consuming some of
your bandwidth, but it could be useful as possible preliminaries to an attack yet to come
and it would definitely mislead the scanner.

Honeyd - Network Rhapsody for You
The posting at http://archives.neohapsis.com/archives/sf/honeypots/2002-q2/0010.html
on April 08, 2002 by Niels Provos was the announcement of honeyd, a small daemon
that can create virtual hosts and services on a single host, providing the desired
functionality as previously described. More information is available at
http://www.citi.umich.edu/u/provos/honeyd/5 which is the home of honeyd.

Honeyd can be used for several tasks like:
• Simulating virtual hosts by just one host, so you could assign your unused IP-address

space and having them respond.
• Each virtual host can be configured to simulate arbitrary services.
• Each service can be proxied to another host.
• Simulating an operating system that fools tools like nmap and xprobe.
• Simulating routing topologies with configurable latency and packet loss.

The usefulness of this daemon is only limited by a persons imagination and it can be very
useful against OS-fingerprinting. It also functions as a low profile honeynet to detect an
attack that is being developed. The simulation of arbitrary services can be extended.

Slowing down scans.

Scanning for vulnerable hosts and specific services is done by using different techniques,
but at high speed. Why helping the high speed scanning techniques by sending TCP-RST
or ICMP messages, to notify the scanning host that he can go on with the next one?

The LaBrea Tarpit
The LaBrea Tarpit was developed as a means to respond to the overwhelming scans by
the Code Red worm. It started with a post by Tom Liston and the basic idea of the
LaBrea Tarpit is not to block the scanning host, but to delay the scanning-process using
the design of the TCP/IP stack.

An excerpt from http://www.hackbusters.net/LaBrea/LaBrea.txt6

LaBrea has the capability to capture and hold scanners - something that is of vital importance to
the overall health of the Internet.
At its peak, the Code Red worm infected approximately 300,000 servers, yet a quick "back of the
envelope" calculation (note 5) indicates that 1000 sites connected to T1 lines and dedicating only
5% of their total bandwidth to LaBrea's "-p" option would have been able to capture and hold all
Code Red scanning threads at once.
And by capturing these scanning threads, LaBrea makes it possible to contact compromised
system owners while keeping their systems from compromising other systems.

Page 8 of 68

The basic idea of the LaBrea Tarpit is that it monitors ARP requests and replies. When it
detects consecutive ARP-requests without replies to these requests, it responds with an
ARP-reply, saying that the IP-address is at a bogus MAC-address. LaBrea than monitors
inbound SYN-packets for this bogus MAC-address (0:0:f:ff:ff:ff) and responds with a
SYN/ACK. Taking advantage of the connection oriented design of TCP, the LaBrea
Tarpit responds with a small window-size advertisement (default 10) and completes the
three-way TCP-handshake. The LaBrea Tarpit can response to window-size probes with a
window-size of 0, meaning that the service isn’t ready to receive any data and keeps the
scanner busy.

There are several command-line options to configure the LaBrea Tarpit which tunes the
running daemon like selecting the interface, setting the arp time-out, safe operation in a
switched environment and more. It is also possible to define IP-addresses that must be
excluded.

The home of the LaBrea Tarpit is at http://www.hackbusters.net/LaBrea/ and for all of
them, running Windows on a cable or xDSL connection with perhaps only one assigned
IP-address, there is LaBrea@home, free for personal use, at
http://www.hackbusters.net/LaBrea/lbathome.html. The fact that you have been assigned
only one IP-address, is no excuse not participating in the battle against scanning.

Other countermeasures that can be taken.

Besides installing and configuring separate systems, there are other, simple things that
you can do against the scanners, for example:
• Configuring blackhole behavior. Some operating systems enable you to silence

inbound connections (UDP an TCP) so that a scanner sends retry-packets and thus
slows down

• Configuring your router to drop connections silently, the same as above but primarily
for non-existing hosts.

• Changing the default values of the TCP/IP stack like TTL-value, to fool OS-
fingerprinting.

• Setting up a listener that sends everything to a blackhole, for example netcat
redirecting everything to the null-device (be careful, this could lead to a DoS).

Conclusion

A lot of companies invest a lot in setting up and deploying a Security Policy and
probably an Incident Response Cookbook, but the network and port scans have become so
common that people are used to it and forget about them.

There are however some simple things from a technical perspective that can be done to
do something against scanners. Goal of these countermeasures is not to make the
scanners disappear but to make life less easy for them.

Page 9 of 68

Besides making things more difficult for scanners, bandwidth and CPU time that would
have to deal with the scans, can be saved and used to perform the basic tasks.

When setting up Intrusion Detection, you should not only make scanning detectable but
also take some countermeasures to react upon them. After all, scanning can be a
preliminary to an attack, a scan for known exploits or a spreading worm and all of these
are a potential threat.

Everyone, whether you are a home user or a large company, should act against the
worldwide scanning, in order to reduce it. Products like honeyd and LaBrea are ready to
use.

References

1. Morris, Chris. “What Do You Do After You Deploy the IDS?”. January 3, 2001
URL: http://www.sans.org/newlook/resources/IDFAQ/deploy.htm

2. Staniford, Stuart. Paxson, Vern. Weaver, Nicholas. “How to 0wn the Internet in Your
Spare Time” URL: http://www.icir.org/vern/papers/cdc-usenix-sec02/index.html

3. Internet Security Systems, Inc. “Executive Summary Internet Risk Summary”, for
March 26, 2002 through June 24 2002
URL: https://gtoc.iss.net/documents/summaryreport.pdf

4. Staniford, Stuart. Hoagland, James. McAlerney, Joseph. “Practical Automated
Detection of Stealthy Portscans”
URL: http://www.silicondefense.com/pptntext/Spice-JCS.pdf

5. Provos, Niels. “Honeyd - Network Rhapsody for You”.
URL: http://www.citi.umich.edu/u/provos/honeyd/

6. Liston, Tom. “Welcome To My Tarpit - The Tactical and Strategic Use of LaBrea”
URL: http://www.hackbusters.net/LaBrea/LaBrea.txt

Additional references

7. Schlotter, Chadd. “Anti-Hacking: The Protection of Computers”. April 2, 2001
URL: http://rr.sans.org/attack/antihack.php

8. Haig, Leigh. “LaBrea - A New Approach to Securing Our Networks”. Match 7, 2002.
URL: http://rr.sans.org/attack/labrea.php

9. Distributed Intrusion Detection System. URL: http://www.dshield.org/
10. Internet Storm Center. URL: http://isc.incidents.org/
11. Security Focus DeepSight Analyzer (ARIS). URL: http://aris.securityfocus.com/
12. HackerWatch.org (McAfee Personal Firewall). URL: http://www.hackerwatch.org/
13. Provos, Niels. “honeyd creates network schizophrenia”. April 8, 2002.

URL: http://archives.neohapsis.com/archives/sf/honeypots/2002-q2/0010.html
14. Homepage of the LaBrea Tarpit. URL: http://www.hackbusters.net/LaBrea/

Page 10 of 68

Assignment 2 - Network Detects -

Detect #1 - Outbound connection attempts to a host on TCP Port 30001

Event traces

The following log is from a Tunix firewall logging to syslog. The format of the logging
consists of the columns:

Month, Day of month, hh:mm:ss, hostname (xx), process which generated the log-
entry (kernel) and the log-message.

The message “redirecting TCP port 30001 to port xx (my.int.net.6:4706 -> 193.195.96.70:30001)” is best
interpreted as: “Internal host my.int.net.6:portnr wants to establish a TCP connection to
193.195.96.70 on port 30001, but there is no rule for this type of connection and
therefore, the connection is prohibited and redirected”.

Jun 21 14:11:36 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1312 -> 193.195.96.70:30001)
Jun 21 14:11:36 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1312 -> 193.195.96.70:30001)
Jun 21 14:11:36 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1312 -> 193.195.96.70:30001)
Jun 21 14:11:37 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1312 -> 193.195.96.70:30001)
----- more of these lines -----
Jun 24 14:11:13 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1657 -> 193.195.96.70:30001)
Jun 24 14:11:13 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1657 -> 193.195.96.70:30001)
Jun 24 14:11:14 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1657 -> 193.195.96.70:30001)
Jun 24 14:11:14 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1657 -> 193.195.96.70:30001)
----- more of these lines -----
Jun 24 15:37:35 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1038 -> 193.195.96.70:30001)
Jun 24 15:37:36 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1038 -> 193.195.96.70:30001)
Jun 24 15:37:36 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1038 -> 193.195.96.70:30001)
Jun 24 15:37:37 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1038 -> 193.195.96.70:30001)
----- more of these lines -----
Jun 26 11:07:17 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1626 -> 193.195.96.70:30001)
Jun 26 11:07:18 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1626 -> 193.195.96.70:30001)
Jun 26 11:07:18 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1626 -> 193.195.96.70:30001)
Jun 26 11:07:19 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1626 -> 193.195.96.70:30001)
----- more of these lines -----

Page 11 of 68

Correlated output of the tcpdump log with refused connections:

----- connection attempt with source port 1657 -----
14:11:13.139739 my.int.net.6.1657 > 193.195.96.70.30001: S
210723337:210723337(0) win 8192 <mss 4016> (DF)
14:11:13.139832 193.195.96.70.30001 > my.int.net.6.1657: R 0:0(0) ack
210723338 win 0

14:11:13.648646 my.int.net.6.1657 > 193.195.96.70.30001: S
210723337:210723337(0) win 8192 <mss 4016> (DF)
14:11:13.648731 193.195.96.70.30001 > my.int.net.6.1657: R 0:0(0) ack
210723338 win 0

14:11:14.195688 my.int.net.6.1657 > 193.195.96.70.30001: S
210723337:210723337(0) win 8192 <mss 4016> (DF)
14:11:14.197129 193.195.96.70.30001 > my.int.net.6.1657: R 0:0(0) ack
210723338 win 0

14:11:14.742151 my.int.net.6.1657 > 193.195.96.70.30001: S
210723337:210723337(0) win 8192 <mss 4016> (DF)
14:11:14.742237 193.195.96.70.30001 > my.int.net.6.1657: R 0:0(0) ack
210723338 win 0

----- connection attempt with source port 1038 -----
15:37:35.698708 my.int.net.6.1038 > 193.195.96.70.30001: S
261370831:261370831(0)
win 8192 <mss 4016> (DF)
15:37:35.698822 193.195.96.70.30001 > my.int.net.6.1038: R 0:0(0) ack
261370832 win 0

15:37:36.240024 my.int.net.6.1038 > 193.195.96.70.30001: S
261370831:261370831(0)
win 8192 <mss 4016> (DF)
15:37:36.240464 193.195.96.70.30001 > my.int.net.6.1038: R 0:0(0) ack 1
win 0

15:37:36.786780 my.int.net.6.1038 > 193.195.96.70.30001: S
261370831:261370831(0)
win 8192 <mss 4016> (DF)
15:37:36.786911 193.195.96.70.30001 > my.int.net.6.1038: R 0:0(0) ack 1
win 0

15:37:37.333532 my.int.net.6.1038 > 193.195.96.70.30001: S
261370831:261370831(0)
win 8192 <mss 4016> (DF)
15:37:37.333633 193.195.96.70.30001 > my.int.net.6.1038: R 0:0(0) ack 1
win 0

Correlated output of a tcpdump log with a connection in the honeypot-setup:

13:03:33.405896 my.int.net.6.4170 > 193.195.96.70.30001: S
545229220:545229220(0) win 8192 <mss 4016> (DF)
0x0000 aaaa 0300 0000 0800 4500 002c 5d97 4000E..,].@.
0x0010 8006 4816 xxxx xxxx c1c3 6046 104a 7531 ..H...)...`F.Ju1
0x0020 207f 89a4 0000 0000 6002 2000 e96c 0000`....l..
0x0030 0204 0fb0

Page 12 of 68

13:03:33.405976 193.195.96.70.30001 > my.int.net.6.4170: S
3032401167:3032401167(0) ack 545229221 win 9800 <mss 1960> (DF)
0x0000 aaaa 0300 0000 0800 4500 002c 4ce1 4000E..,L.@.
0x0010 4006 98cc c1c3 6046 xxxx xxxx 7531 104a @.....`F..).u1.J
0x0020 b4be c50f 207f 89a5 6012 2648 714d 0000`.&HqM..
0x0030 0204 07a8

13:03:33.406168 my.int.net.6.4170 > 193.195.96.70.30001: . ack 1 win
9800 (DF)
0x0000 aaaa 0300 0000 0800 4500 0028 5e97 4000E..(^.@.
0x0010 8006 471a xxxx xxxx c1c3 6046 104a 7531 ..G...)...`F.Ju1
0x0020 207f 89a5 b4be c510 5010 2648 8afe 0000P.&H....

13:03:33.406728 my.int.net.6.4170 > 193.195.96.70.30001: P 1:264(263)
ack 1 win 9800 (DF)
0x0000 aaaa 0300 0000 0800 4500 012f 5f97 4000E../_.@.
0x0010 8006 4513 xxxx xxxx c1c3 6046 104a 7531 ..E...)...`F.Ju1
0x0020 207f 89a5 b4be c510 5018 2648 f769 0000 P.&H.i..
0x0030 4745 5420 2f69 6d61 6765 732f 3130 372e GET./images/107.
0x0040 312f 3436 3878 3036 302e 6769 663f 6d61 1/468x060.gif?ma
0x0050 726f 6b6b 6f70 2048 5454 502f 312e 300d rokkop.HTTP/1.0.
0x0060 0a41 6363 6570 743a 202a 2f2a 0d0a 5265 .Accept:.*/*..Re
0x0070 6665 7265 723a 2068 7474 703a 2f2f 6164 ferer:.http://ad
0x0080 732e 6d61 726f 6b6b 6f2e 6e6c 2f61 6466 s.marokko.nl/adf
0x0090 7261 6d65 2e70 6870 3f77 6861 743d 616c rame.php?what=al
0x00a0 6c2c 5f34 3638 7836 3026 7461 7267 6574 l,_468x60&target
0x00b0 3d5f 626c 616e 6b0d 0a41 6363 6570 742d =_blank..Accept-
0x00c0 4c61 6e67 7561 6765 3a20 6e6c 0d0a 5573 Language:.nl..Us
0x00d0 6572 2d41 6765 6e74 3a20 4d6f 7a69 6c6c er-Agent:.Mozill
0x00e0 612f 342e 3020 2863 6f6d 7061 7469 626c a/4.0.(compatibl
0x00f0 653b 20xx xxxx xxxx xxxx xxxx xxxx xxxx e;.xxxxxxxxxxxxx
0x0100 xxxx xxxx xxxx xxxx xxxx xxxx xxxx 486f xxxxxxxxxxxxxxHo
0x0110 7374 3a20 6261 6e6e 6572 7331 2e72 6573 st:.banners1.res
0x0120 756c 746f 6e6c 696e 652e 636f 6d3a 3330 ultonline.com:30
0x0130 3030 310d 0a0d 0a 001....

13:03:33.419257 193.195.96.70.30001 > my.int.net.6.4170: P 1:40(39) ack
264 win 9800 (DF)
13:03:33.540527 my.int.net.6.4170 > 193.195.96.70.30001: . ack 40 win
9761 (DF)
13:03:33.554171 193.195.96.70.30001 > my.int.net.6.4170: P 40:222(182)
ack 264 win 9800 (DF)
13:03:33.759185 my.int.net.6.4170 > 193.195.96.70.30001: . ack 222 win
9579 (DF)

13:05:34.087903 my.int.net.6.4170 > 193.195.96.70.30001: F 264:264(0)
ack 222 win 9579 (DF)
13:05:34.089730 193.195.96.70.30001 > my.int.net.6.4170: F 222:222(0)
ack 265 win 9800 (DF)
13:05:34.089950 my.int.net.6.4170 > 193.195.96.70.30001: . ack 223 win
9579 (DF)

1. Source of Trace

The source of this trace is obtained from a Tunix firewall on the network of a customer
which is being monitored by my company. This firewall is a multihomed system,

Page 13 of 68

connected to the Internet, the internal network and a screened subnet. The following
diagram is only a simplified representation to illustrate the basic setup and does not
necessarily represent the real setup which is far more complex.

Simplified network diagram:

2. Detect was generated by

The detect was made by examine the log files of the customer’s firewall. The connection
attempts were blocked by the firewall and reported. There were over 3000 connection
attempts from this internal source-IP to the same Internet host on TCP port 30001 logged
for a couple of days in a row. It was possible to extend this logging by generating a
tcpdump log of the blocked connections and a tcpdump log of a “successful” connection
using a simple honeypot setup. This scenario was possible because these connection-
attempts were successfully blocked by the firewall and the environment was under
control.

The user of this specific source-IP was interviewed by the local system administrator, but
there was no indication about how this traffic was generated.

The fact that one internal host tries to connect to a specific Internet host on a high port
(TCP 30001), for several days at various intervals, is suspicious. TCP port 30001 is a
default port used by the Trojan “ErrOr32”19+20

3. Probability the source address was spoofed

The TCP-SYN package with an internal source-IP is answered with a TCP-RST package.
There are 3 immediate retries of the same TCP-SYN package, within 1 second, which
could indicate that the TCP-RST packets arrive at the source-IP, or that the originator is
sending 4 forged TCP-SYN packets in a row without waiting for a response. There is no
evidence that the TCP-RST packets arrive at the originator of the connection. This
evidence could be acquired by monitoring the internal router and the MAC-addresses, but
this should be done in conjunction with the local system administrator which was not
possible at this time.

Page 14 of 68

There was no evidence found in the firewall logs that packages with an internal source
address from outside the internal network passed through the firewall, so the TCP-SYN
package is most probably originating from the internal network.

After setting up the honeypot, there is evidence of a completed three-way TCP
handshake, TCP session and four-way TCP-FIN sequence, indicating that the originating
host is indeed on the internal network and that the address is not spoofed. The traffic
stopped from occurring right after changing the specific host to use the proxy.

4. Description of attack

This is standard HTTP-protocol traffic connecting to a web-server listening on port
30001. The web server listening seems to be a Boa/0.94.12rc8 server and the welcome
page indicates that the host-name is banners1.resultonline.com.
This is the GET-request on port 30001 with the server-response:

GET /index.html HTTP/1.0

HTTP/1.0 200 OK
Date: Sun, DD Jun 2002 12:51:31 GMT
Server: Boa/0.94.12rc8
Connection: close
Content-Length: 5839
Last-Modified: Mon, 01 Oct 2001 15:49:12 GMT
Content-Type: text/html

The DNS-administration seems to be inconsistent for banners.resultonline.com and
should be updated. There are also two different geographical locations for the
resultonline.com webservers:

Authority records for banners1.online.com:
dig banners1.resultonline.com
;; ANSWERS:
banners1.resultonline.com. 9357 A 193.195.96.70
;; AUTHORITY RECORDS:
resultonline.com. 79003 NS bram.wiwo.nl.
resultonline.com. 79003 NS sec-ns.wiwo.nl.
resultonline.com. 79003 NS taz.wiwo.nl.

Pointer-record for 193.195.96.70:
dig -x 193.195.96.70
;; ANSWERS:
70.96.195.193.in-addr.arpa. 11453 PTR banners.resultonline.com.
;; AUTHORITY RECORDS:
96.195.193.in-addr.arpa. 251835 NS ns1.demon.co.uk.
96.195.193.in-addr.arpa. 251835 NS ns2.demon.net.
96.195.193.in-addr.arpa. 251835 NS ns0.demon.co.uk.

Page 15 of 68

Authority records for banners.online.com:
dig banners.resultonline.com
;; ANSWERS:
banners.resultonline.com. 9462 A 146.101.66.152
;; AUTHORITY RECORDS:
resultonline.com. 79035 NS bram.wiwo.nl.
resultonline.com. 79035 NS sec-ns.wiwo.nl.
resultonline.com. 79035 NS taz.wiwo.nl.

Pointer-record for 146.101.66.152:
dig -x 146.101.66.152
;; ANSWERS:
152.66.101.146.in-addr.arpa. 16790 PTR nl-wit-01.amst2.eu.psigh.com.
;; AUTHORITY RECORDS:
66.101.146.in-addr.arpa. 35520 NS pri3.dns.psinet.fr.
66.101.146.in-addr.arpa. 35520 NS pri1.dns.psinet.fr.
66.101.146.in-addr.arpa. 35520 NS pri2.dns.psinet.fr.

5. Attack mechanism

Traffic is redirected to the banners1.resultonline.com server by HTML-links who are
dynamically generated on various webpages. By analyzing the traffic preceding this
connection, it was possible to reveal the webpage which caused the connection request
for banners1.resultonline.com on port 30001. The URL: http://ajax.network.to (and the
related URLs http://feyenoord.network.to and http://psv.network.to) have a randomized
banner in the top of their homepage. One of these random banners is redirecting to
banners1.resultonline.com:30001.

6. Correlations

At first sight, it looked like the internal host was using the client version of the Trojan
Err0r32 program. There are no specific CVE-numbers, but the URLs:

• http://www.dark-e.com/archive/trojans/err32/beta/
• http://www.megasecurity.org/trojans/e/error32/Error32.html

explain the Trojan behavior as a server and client application. It is possible to gain remote
control over an infected host with this Trojan.

After looking closer into the logs of many other firewalls that are being monitored by my
company, it turned out that a few customer’s experienced the same connection attempts
to the same destination IP, so the possibility that the Err0r32-client was used became less
obvious. In all cases in turned out to be the same benign traffic.

There was no specific information found according the targeted webserver.

Page 16 of 68

7. Evidence of active targeting

There is no evidence of active targeting. The HTTP-protocol is used to display random
banners in a browser application when visiting a web-page which happens to have a link
to a web-server listening on port 30001, which is unusual for a webserver.

8. Severity

severity = (criticality + lethality) - (system countermeasures + network countermeasures)
Each element is ranked in a scale from 1-5, with 1 being low and 5 being high.

Criticality: 3
The targeted system is an Internet host (webserver) but the traffic originated from
the internal host was benign.

Lethality: 1
The traffic causes no damage.

System countermeasures: 3
The internal host runs updated anti-virus software and has recently patches
installed. There is nothing known about the targeted web-server. There is a
possibility that the user could have installed the Trojan client.

Network countermeasures: 4
The connection attempts were blocked by a firewall.

Severity = (3 + 1) - (3 + 4) = -3

9. Defensive recommendation

Defenses are fine since the attempted connection was blocked by the firewall and the
internal host happens to run updated anti-virus software. However by using the
application level proxy which resides on the firewall, protocol screening would be
applied and the application level proxy could be allowed to setup the connection,
showing the web-page as intended by the developer. The local administrator was
informed and appropriate actions were taken.

10. Multiple choice test question

This log has been generated by a firewall’s syslog which happens to be the default route
of the internal host my.int.net.6. It reports on attempted connections to host 193.195.96.70
on port 30001, which are being blocked.

Jun 26 11:07:17 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1626 -> 193.195.96.70:30001)
Jun 26 11:07:18 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1626 -> 193.195.96.70:30001)
Jun 26 11:07:18 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1626 -> 193.195.96.70:30001)

Page 17 of 68

Jun 26 11:07:19 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:1626 -> 193.195.96.70:30001)
----- more of these lines -----
Jun 26 17:28:25 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:2066 -> 193.195.96.70:30001)
Jun 26 17:28:25 xx kernel: redirecting TCP port 30001 to port xx
(my.int.net.6:2066 -> 193.195.96.70:30001)

Knowing that my.int.net.6 is an IP-address on the internal network protected by a
firewall, which of the following is most likely shown in the trace above?

a) This internal host is infected by a Trojan
b) This internal host tries to connect to an Internet host on a high port.
c) This is a spoofed packet, generated from within the internal network.
d) This is a spoofed packet, generated from outside the internal network.

 Answer: ‘b’
 Although it looks like Trojan behavior, you can’t definite tell from the trace it selves.

Detect #2 - Loadbalancing versus reconnaissance attack.

Event traces

The 4 event traces below are sanitized in a way to protect the guilty and the innocent. The
ip-ranges aa.bbb.ccc.128/25 and dd.eee.ff.128/25 are two ip-ranges registered to the same
company, connected to two different ISPs.

Trace 1 - Excerpt from a Snort Alert log-file:

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
08/08-15:32:17.238726 aa.bbb.ccc.130:80 -> my.net.two.126:53
TCP TTL:46 TOS:0x0 ID:36803 IpLen:20 DgmLen:40
A* Seq: 0x22A Ack: 0x0 Win: 0x578 TcpLen: 20

[**] [1:504:2] MISC source port 53 to <1024 [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
08/08-15:32:17.238983 aa.bbb.ccc.130:53 -> my.net.two.126:53
TCP TTL:46 TOS:0x0 ID:36804 IpLen:20 DgmLen:40
******S* Seq: 0xDD301D49 Ack: 0x0 Win: 0x578 TcpLen: 20

[**] [1:654:5] SMTP RCPT TO overflow [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
08/08-15:32:23.645566 aa.bbb.ccc.190:12736 -> my.net.two.126:25
TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:1821
AP Seq: 0xB4073D13 Ack: 0xDB0A645B Win: 0x2238 TcpLen: 20

Page 18 of 68

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
08/08-16:19:51.250467 aa.bbb.ccc.130:80 -> my.net.one.39:53
TCP TTL:46 TOS:0x0 ID:50271 IpLen:20 DgmLen:40
A* Seq: 0x1AC Ack: 0x0 Win: 0x578 TcpLen: 20

[**] [1:504:2] MISC source port 53 to <1024 [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
08/08-16:19:51.251073 aa.bbb.ccc.130:53 -> my.net.one.39:53
TCP TTL:46 TOS:0x0 ID:50272 IpLen:20 DgmLen:40
******S* Seq: 0x7B52E6F Ack: 0x0 Win: 0x578 TcpLen: 20

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
08/09-18:32:07.901594 aa.bbb.ccc.130:80 -> my.net.two.126:25
TCP TTL:46 TOS:0x0 ID:40087 IpLen:20 DgmLen:40
A* Seq: 0x3C4 Ack: 0x0 Win: 0x578 TcpLen: 20

[**] [1:654:5] SMTP RCPT TO overflow [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
08/09-18:32:14.238734 aa.bbb.ccc.195:5878 -> my.net.two.126:25
TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:3294
AP Seq: 0x5E88DF60 Ack: 0xFFDB7A6C Win: 0x2238 TcpLen: 20

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
08/09-18:35:04.206237 aa.bbb.ccc.130:80 -> my.net.one.39:53
TCP TTL:46 TOS:0x0 ID:40994 IpLen:20 DgmLen:40
A* Seq: 0xDE Ack: 0x0 Win: 0x578 TcpLen: 20

[**] [1:504:2] MISC source port 53 to <1024 [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
08/09-18:35:04.206817 aa.bbb.ccc.130:53 -> my.net.one.39:53
TCP TTL:46 TOS:0x0 ID:40995 IpLen:20 DgmLen:40
******S* Seq: 0x87C9F351 Ack: 0x0 Win: 0x578 TcpLen: 20

The following two logs are from firewalls logging to syslog. The format of the logging
consists of the columns:

Month, Day of month, hh:mm:ss, hostname (host1 or host2), process which
generated the log-entry (kernel, mpgr, txp, smtp), and the log-message.

The message “redirecting UDP port 37852 to port xx (aa.bbb.ccc.130:55 -> my.net.one:37852)” is best
interpreted as: “The UDP packet 37852 coming from aa.bb.ccc.130 to my.net.one.39 is
prohibited and discarded”. The other log-messages are explained between ‘--
<explanation>--‘ as they occur in the logging.

The time setting between the alert logging and the two firewall logs are not synchronized.
The time-gap between the NIDS and host1 is about 18 seconds and can be correlated
through entries in the syslog of host 1 (trace 2) which match the entries in the tcpdump
log (trace 4) which was made on the NIDS. The time-gap between the NIDS and host2 is
about 23 seconds and can be correlated through entries in the alert log (trace 1) with
matching connections in the syslog of host2 (trace 3).

Page 19 of 68

Trace 2 - Syslog for my.net.one (host1):
The highlighted text is to synchronize the time with the tcpdump log (trace 4) for my.net.one.

Aug 8 16:19:34 host1 kernel: redirecting UDP port 37852 to port xx
(aa.bbb.ccc.130:55 -> my.net.one.39:37852)
Aug 8 16:19:34 host1 kernel: redirecting UDP port 37852 to port xx
(dd.eee.ff.130:53 -> my.net.one.39:37852)

Aug 9 18:34:46 host1 kernel: redirecting UDP port 37852 to port xx
(aa.bbb.ccc.130:55 -> my.net.one.39:37852)
Aug 9 18:34:46 host1 kernel: redirecting UDP port 37852 to port xx
(dd.eee.ff.130:53 -> my.net.one.39:37852)

The same type of traffic also occurred in July. Two UDP packets, 1 from
aa.bbb.ccc.130:55 and 1 from dd.eee.ff.130:53. The date and time of
these packets:

 Jul 1 12:10:23 Jul 22 18:44:06
Jul 1 16:51:58 Jul 23 08:32:22

Trace 3 - Syslog for my.net.two (host2):

--<Normal mail exchange from my.dom to other.dom>--
Aug 7 15:06:09 host2 mprg[18122]: xxxxx: to=<o.ailer1@other.dom>,
ctladdr=<m.ailer1@my.dom> (0/0), delay=00:00:03, xdelay=00:00:02,
mailer=smtp, relay=mail1.other.dom. [aa.bbb.ccc.195], stat=Sent
(smtp1.other.dom: Message accepted for delivery)

--<After the mail exchange is closed, 2 UDP 37852 packets to my.dom>--
Aug 7 15:06:15 host2 kernel: redirecting UDP port 37852 to port xx
(aa.bbb.ccc.130:55 -> my.net.two.126:37852)
Aug 7 15:06:15 host2 kernel: redirecting UDP port 37852 to port xx
(dd.eee.ff.130:53 -> my.net.two.126:37852)

--<and mail to confirm that the previous message was recieved>--
Aug 7 15:06:15 host2 txp[17882]: exec aa.bbb.ccc.195:9830 to
my.net.two.126:25 ()
Aug 7 15:06:17 host2 smtp[17882]: host=unknown/aa.bbb.ccc.195
bytes=2081 from=<> to=<m.ailer1@my.dom>
Aug 7 15:06:17 host2 smtp[17882]: exiting host=unknown/aa.bbb.ccc.195
bytes=2081

--<Two UDP 37852 packets from two different IP-numbers>--
Aug 8 15:32:00 host2 kernel: redirecting UDP port 37852 to port xx
(aa.bbb.ccc.130:55 -> my.net.two.126:37852)
Aug 8 15:32:00 host2 kernel: redirecting UDP port 37852 to port xx
(dd.eee.ff.130:53 -> my.net.two.126:37852)

--<followed by a mail, sent by other.dom to my.dom>--
Aug 8 15:32:01 host2 txp[5923]: exec aa.bbb.ccc.190:12736 to
my.net.two.126:25 ()
Aug 8 15:32:07 host2 smtp[5923]: host=unknown/aa.bbb.ccc.190 bytes=1915
from=<o.ailer1@other.dom> to=<m.ailer1@my.dom>
Aug 8 15:32:07 host2 smtp[5923]: exiting host=unknown/aa.bbb.ccc.190
bytes=1915

Page 20 of 68

--<Normal mail exchange from my.dom to other.dom>--
Aug 8 16:19:35 host2 mprg[29371]: xxxxx: to=<o.ailer1@other.dom>,
ctladdr=<m.ailer1@my.dom> (0/0), delay=00:00:02, xdelay=00:00:01,
mailer=smtp, relay=ns1.other.dom. [dd.eee.ff.194], stat=Sent
(smtp1.other.dom: Message accepted for delivery)

--<Normal mail exchange from other.dom to my.dom>--
Aug 8 16:19:55 host2 txp[29035]: exec dd.eee.ff.194:4253 to
my.net.two.126:25 ()
Aug 8 16:19:56 host2 smtp[29035]: connect
host=ns1.other.dom/dd.eee.ff.194
Aug 8 16:19:56 host2 smtp[29035]: host=ns1.other.dom/dd.eee.ff.194
bytes=2099 from=<> to=<m.ailer1@my.dom>
Aug 8 16:19:56 host2 smtp[29035]: exiting
host=ns1.other.dom/dd.eee.ff.194 bytes=2099

--<Two UDP 37852 packets from two different IP-numbers>--
Aug 9 18:31:50 host2 kernel: redirecting UDP port 37852 to port xx
(aa.bbb.ccc.130:5880 -> my.net.two.126:37852)
Aug 9 18:31:50 host2 kernel: redirecting UDP port 37852 to port xx
(dd.eee.ff.130:5878 -> my.net.two.126:37852)

--<followed by mail, sent by other.dom to my.dom>--
Aug 9 18:31:50 host2 txp[28458]: exec aa.bbb.ccc.195:5878 to
my.net.two.126:25 ()Aug 9 18:31:55 ns smtp[28458]: connect
host=host3.other.dom/aa.bbb.ccc.195
Aug 9 18:33:28 host2 smtp[28458]: host=host3.other.dom/aa.bbb.ccc.195
bytes=3992922 from=<o.ailer2@other.dom> to=<m.ailer2@my.dom>
Aug 9 18:33:28 host2 smtp[28458]: exiting
host=host3.other.dom/aa.bbb.ccc.195 bytes=3992922

Trace 4 - Log from tcpdump (-v option) , running incidentally on the NIDS for several
selected TCP-ports for the my.net.one address-space. This dump is useful to synchronize
with the alert log and to determine the overall traffic flow.

Part 1
16:19:51.243468 dd.eee.ff.194.53 > my.net.one.39.53: [udp sum ok] 20870
A? host.my.dom. [|domain] (ttl 48, id 23462, len 61)
16:19:51.250470 aa.bbb.ccc.130.80 > my.net.one.39.53: . [tcp sum ok] ack
0 win 1400 (ttl 46, id 50271, len 40)
16:19:51.251075 aa.bbb.ccc.130.53 > my.net.one.39.53: S [tcp sum ok]
129314415:129314415(0) win 1400 (ttl 46, id 50272, len 40)
16:19:51.256206 my.net.one.39.53 > dd.eee.ff.194.53: [udp sum ok]
20870* 1/3/3 host.my.dom. A xxx.yy.zzz.3 (167) (ttl 62, id 46313, len
195)
16:19:51.261849 my.net.one.39.53 > aa.bbb.ccc.130.80: R [tcp sum ok]
0:0(0) win 0 (ttl 62, id 46316, len 40)
16:19:51.262670 my.net.one.39.53 > aa.bbb.ccc.130.53: S [tcp sum ok]
1205388193:1205388193(0) ack 129314416 win 8192 <mss 1460> (DF) (ttl 62,
id 46317, len 44)
16:19:51.379821 dd.eee.ff.130.53 > my.net.one.39.37852: [udp sum ok] 0
[0q] (10) (ttl 49, id 50275, len 38)
16:19:51.388672 aa.bbb.ccc.130.53 > my.net.one.39.53: R [tcp sum ok]
129314416:129314416(0) win 1400 (ttl 46, id 50274, len 40)
16:19:51.392761 aa.bbb.ccc.130.53 > my.net.one.39.53: R [tcp sum ok]
129314416:129314416(0) win 1400 (ttl 49, id 50276, len 40)

Page 21 of 68

Part 2
18:35:04.195780 dd.eee.ff.189.16093 > my.net.one.39.53: [udp sum ok]
2018 A? host.my.dom. [|domain] (ttl 48, id 27864, len 61)
18:35:04.206236 aa.bbb.ccc.130.80 > my.net.one.39.53: . [tcp sum ok] ack
0 win 1400 (ttl 46, id 40994, len 40)
18:35:04.206816 aa.bbb.ccc.130.53 > my.net.one.39.53: S [tcp sum ok]
2278159185:2278159185(0) win 1400 (ttl 46, id 40995, len 40)
18:35:04.208753 my.net.one.39.53 > dd.eee.ff.189.16093: [udp sum ok]
2018* 1/3/3 host.my.dom. A xxx.yy.zzz.3 (167) (ttl 62, id 29417, len
195)
18:35:04.217833 my.net.one.39.53 > aa.bbb.ccc.130.80: R [tcp sum ok]
0:0(0) win 0 (ttl 62, id 29420, len 40)
18:35:04.218653 my.net.one.39.53 > aa.bbb.ccc.130.53: S [tcp sum ok]
3895922867:3895922867(0) ack 2278159186 win 8192 <mss 1460> (DF) (ttl
62, id 29421, len 44)
18:35:04.339561 dd.eee.ff.130.53 > my.net.one.39.37852: [udp sum ok] 0
[0q] (10) (ttl 49, id 41015, len 38)
18:35:04.348440 aa.bbb.ccc.130.53 > my.net.one.39.53: R [tcp sum ok]
2278159186:2278159186(0) win 1400 (ttl 46, id 41014, len 40)

1. Source of Trace

The source of this trace is a combined network running 2 different C-address blocks
which is monitored by my company. The NIDS and the two Tunix firewalls which
generated the syslog are not on the same logical network.

Simplified network diagram:

2. Detect was generated by

Snort NIDS version 1.8.6 and two different Tunix firewalls logging to syslog. The Snort
Alerts were the stimulus to start analyzing this detect. The two firewall logs and the
tcpdump log provided more insight in the alerts.

3. Probability the source address was spoofed

The UDP packets with destination port 37258 and the DNS requests could easily be
spoofed. The same is true for the ACK’s without preceding SYN-ACK, however there

Page 22 of 68

was also a completed 3-way TCP handshake which is difficult to spoof. The TTL-values
in the tcpdump log are the same for all packets originated from the same IP-address, this
makes spoofing unlikely. There is however one contradiction. Host aa.bbb.ccc.130
arrives with a TTL value of 46, except one TCP-RST packet which arrives with a TTL
value of 49. This TTL value happens to be the same as the preceding UDP packet with
destination port 37852.

16:19:51.379821 dd.eee.ff.130.53 > my.net.one.39.37852: [udp sum ok] 0
[0q] (10) (ttl 49, id 50275, len 38)
16:19:51.388672 aa.bbb.ccc.130.53 > my.net.one.39.53: R [tcp sum ok]
129314416:129314416(0) win 1400 (ttl 46, id 50274, len 40)
16:19:51.392761 aa.bbb.ccc.130.53 > my.net.one.39.53: R [tcp sum ok]
129314416:129314416(0) win 1400 (ttl 49, id 50276, len 40)

This could be explained by the fact that IP ‘dd.eee.ff.130’ and ‘aa.bbb.ccc.130’ reside on
the same host or that a NATting is in the traversal path.

The syslog for my.net.two (trace 3) shows two successful mail exchange’s, preceded by
the UDP 37852 packets. (aa.bbb.ccc.190:12736 and aa.bbb.ccc.195:5878) which makes
the probability of spoofing low.

4. Description of attack

This is probably some kind of load-balancing device to determine the most efficient
connection to use. It looks like LinkProof, a product made by Radware,
http://www.radware.com/content/products/link.asp. Radware claims that LinkProof the
fastest content delivery for networks with multiple connections to the Internet ensures.
There is no CVE number for LinkProof.
The two ranges of the source-IP numbers belong to the same organization, but different
ISP’s, what could confirm the load balancing theory.

5. Attack mechanism

There are no evidences found of a netscan or hostscan done by the source-IP ranges. All
traffic is targeted at a specific host. By examining the first part of the tcpdump log and
the syslog of my.net.one.host1, the following connect pattern is discovered:

• Connection 1
dd.eee.ff.194:53 à my.net.one.39:53 = => DNS-query using UDP port 53
This query is being answered since my.net.one:53 is a public DNS-server and the
request is legitimate.

• Connection 2
aa.bbb.ccc.130:80 à my.net.one.39:53 = => TCP-ACK(0) packet.
There is no preceding SYN-ACK therefore my.net.one.39:53 sends back a TCP-RST
to tear down the connection.

Page 23 of 68

• Connection 3
aa.bbb.ccc.130:53 à my.net.one.39:53 = => TCP-SYN
This TCP-SYN is being answered by my.net.one.39:53 with a SYN-ACK but
aa.bbb.ccc.130:53 does not complete the three-way handshake, but sends a TCP-RST
to tear down the connection. In this specific case, aa.bbb.ccc.130:53 sends two TCP-
RST packets with different TTL’s (49 and 46) to tear down the connection. This
could indicate that there is some kind of duplicating device.

• Connection 4
aa.bbb.ccc.130:55 à my.net.one.39:37852 = => UDP (0) packet.
This packet could be a probe for a specific service or it’s purpose is to gather
information by the ICMP package which could be returned by the host (i.e. A port-
unreachable message)

• Connection 5
dd.eee.ff.130:53 à my.net.one:37852 = => UDP (0) packet.
This packet has a different source address, but could be from the same host
(aa.bbb.ccc.130) with a different connection and traverse path. The TTL of this
packet is 49 which is the same as the second TCP-RST packet in connection 3. This
could indicate that there is some kind of network address translation which did not do
the job very well.

The second part of the tcpdump-log (trace 3) shows the same pattern, except that the host
in connection 1 is different and uses a high source-port for the DNS-query which could
indicate that the attacker.net use two different DNS-resolver implementations at the same
subnet (both give a TTL of 48). The second difference is that there is only one TCP-RST
packet to tear down connection 3.

It is very likely that attacker.net uses some device to detect the most efficient connection
by sending unsolicited TCP-ACK and UDP packet to a port which is very likely not used
by a service, to elicit a TCP-RST or ICMP “port unreachable” message from which they
can determine the fastest connection.

Trace 3 shows that whenever a connection is initiated by a host on attacker.net, this
connection is preceded by the UDP 37852 packet (and trace 4 shows that this UDP 37852
packet is preceded by other connections). They could also use ICMP echo-requests to get
responses, but most perimeter devices are configured not to let ICMP traffic through,
which makes them useless. The traces 1-4 do not mention ICMP traffic because they
were configured to ignore ICMP packets so that does not implicate that there are no
ICMP-requests.

There is evidence in trace 3 that the traffic which generates the alerts is followed by
benign traffic (mail-exchange), so the load-balancing theory could be true.

6. Correlations

John Benninghoff reported a similar detect and an explanation from the owner of the
offending IP-address at http://www.sans.org/y2k/031401.htm This attack used in also

Page 24 of 68

ICMP echo-request packets and never used a source port 55 for the second UDP packet
targeted at port 37852. He also mentioned RadWare but the whitepapers at
http://www.radware.com/content/products/link.asp do not contain the technical
information that is needed to confirm the traffic flow.
At http://www.telecomdatacom.net/radware-linkproof-whitepaper.asp, I found a more
detailed overview of the features.

Another report at http://www.incidents.org/archives/y2k/032401-1230.htm is from Gary
Portnoy which also reports source port 55 and a second source-IP. Even more matching
correlations can be found in the thread which can be found at
http://www.incidents.org/archives/intrusions/msg08119.html and the follow-up at
http://www.incidents.org/archives/intrusions/msg08129.html.

Dshield reports (http://www.dshield.org/ipinfo.php?ip=aa.bbb.ccc.130) this source-IP,
but there was (at this time) no Fightback sent.

7. Evidence of active targeting

There is no evidence of active targeting at a specific host. The traffic which generates the
alerts are in conjunction with normal traffic exchange between the source and destination
networks.

8. Severity

severity = (criticality + lethality) - (system countermeasures + network countermeasures)
Each element is ranked in a scale from 1-5, with 1 being low and 5 being high.

Criticality: 4
The targeted systems are DNS-servers so criticality is high, but the traffic was
mainly used for reconnaissance.

Lethality: 2
The traffic causes no damage, but the DNS-servers have to deal with the
connection requests.

System countermeasures: 3
The DNS servers are maintained at regular intervals and patch levels are current.

Network countermeasures: 4
The connection attempts which are not allowed, were successfully blocked by
firewalling devices.

Severity = (4 + 2) - (3 + 4) = -1

9. Defensive recommendation

Defenses are fine since the attack was blocked by firewalls. As an extra confirmation, I
asked for more information by E-mail at the registrar of the 2 IP-ranges. This E-mail has

Page 25 of 68

not been answered. This kind of traffic could be an advantage to the hackers community,
to perform another kind of stealth scanning.

10. Multiple choice test question

16:19:51.243468 dd.eee.ff.194.53 > my.net.one.39.53: [udp sum ok] 20870
A? host.my.dom. [|domain] (ttl 48, id 23462, len 61)

16:19:51.250470 aa.bbb.ccc.130.80 > my.net.one.39.53: . [tcp sum ok] ack
0 win 1400 (ttl 46, id 50271, len 40)

16:19:51.251075 aa.bbb.ccc.130.53 > my.net.one.39.53: S [tcp sum ok]
129314415:129314415(0) win 1400 (ttl 46, id 50272, len 40)

16:19:51.256206 my.net.one.39.53 > dd.eee.ff.194.53: [udp sum ok]
20870* 1/3/3 host.my.dom. A xxx.yy.zzz.3 (167) (ttl 62, id 46313, len
195)

16:19:51.261849 my.net.one.39.53 > aa.bbb.ccc.130.80: R [tcp sum ok]
0:0(0) win 0 (ttl 62, id 46316, len 40)

16:19:51.262670 my.net.one.39.53 > aa.bbb.ccc.130.53: S [tcp sum ok]
1205388193:1205388193(0) ack 129314416 win 8192 <mss 1460> (DF) (ttl 62,
id 46317, len 44)

16:19:51.379821 dd.eee.ff.130.53 > my.net.one.39.37852: [udp sum ok] 0
[0q] (10) (ttl 49, id 50275, len 38)

16:19:51.388672 aa.bbb.ccc.130.53 > my.net.one.39.53: R [tcp sum ok]
129314416:129314416(0) win 1400 (ttl 46, id 50274, len 40)

16:19:51.392761 aa.bbb.ccc.130.53 > my.net.one.39.53: R [tcp sum ok]
129314416:129314416(0) win 1400 (ttl 49, id 50276, len 40)

Which of the following is most likely shown in the tcpdump log above?

a) Host aa.bbb.ccc.130 is a secondary dns server for host my.net.one.39.
b) Host aa.bbb.ccc.130 runs a webserver and a dns server.
c) This is proof of a poor connection between two networks.
d) This is some kind of reconnaissance traffic, done by host aaa.bbb.ccc.130.

 Answer: ‘d’
 Note the UDP 37852, the unsolicited TCP-ACK and the TCP-RST packets.

Page 26 of 68

Detect #3 - SNMP "public" access attempt

Event traces

Trace 1 - Snort log with payload included.

08/12-02:21:55.298255 216.236.156.62:29158 -> my.own.net.0:161
UDP TTL:106 TOS:0x0 ID:25600 IpLen:20 DgmLen:265 Len: 245
30 81 EA 02 01 00 04 06 70 75 62 6C 69 63 A1 81 0.......public..
DC 02 01 00 02 01 00 02 01 00 30 81 D0 30 0B 06 0..0..
07 2B 06 01 02 01 01 01 05 00 30 0B 06 07 2B 06 .+........0...+.
01 02 01 01 03 05 00 30 0B 06 07 2B 06 01 02 01 0...+....
01 05 05 00 30 0D 06 09 2B 06 01 02 01 02 02 01 0...+.......
06 05 00 30 0D 06 09 2B 06 01 02 01 04 14 01 01 ...0...+........
05 00 30 0E 06 0A 2B 06 01 02 01 19 03 02 01 03 ..0...+.........
05 00 30 10 06 0C 2B 06 01 04 01 0B 02 03 09 01 ..0...+.........
01 07 05 00 30 10 06 0C 2B 06 01 04 01 0B 02 03 0...+.......
09 05 01 03 05 00 30 10 06 0C 2B 06 01 04 01 0B 0...+.....
02 04 03 08 03 02 05 00 30 10 06 0C 2B 06 01 04 0...+...
01 0B 02 04 03 08 03 03 05 00 30 0F 06 0B 2B 06 0...+.
01 04 01 0B 02 04 03 0A 07 05 00 30 0F 06 0B 2B 0...+
06 01 04 01 0B 02 04 03 0A 0D 05 00 30 0F 06 0B 0...
2B 06 01 04 01 0B 02 04 03 0D 01 05 00 +............
=+
08/14-08:33:58.481328 12.155.155.17:50343 -> my.own.net.254:161
UDP TTL:109 TOS:0x0 ID:35213 IpLen:20 DgmLen:265 Len: 245
30 81 EA 02 01 00 04 06 70 75 62 6C 69 63 A1 81 0.......public..
DC 02 01 00 02 01 00 02 01 00 30 81 D0 30 0B 06 0..0..
07 2B 06 01 02 01 01 01 05 00 30 0B 06 07 2B 06 .+........0...+.
01 02 01 01 03 05 00 30 0B 06 07 2B 06 01 02 01 0...+....
01 05 05 00 30 0D 06 09 2B 06 01 02 01 02 02 01 0...+.......
06 05 00 30 0D 06 09 2B 06 01 02 01 04 14 01 01 ...0...+........
05 00 30 0E 06 0A 2B 06 01 02 01 19 03 02 01 03 ..0...+.........
05 00 30 10 06 0C 2B 06 01 04 01 0B 02 03 09 01 ..0...+.........
01 07 05 00 30 10 06 0C 2B 06 01 04 01 0B 02 03 0...+.......
09 05 01 03 05 00 30 10 06 0C 2B 06 01 04 01 0B 0...+.....
02 04 03 08 03 02 05 00 30 10 06 0C 2B 06 01 04 0...+...
01 0B 02 04 03 08 03 03 05 00 30 0F 06 0B 2B 06 0...+.
01 04 01 0B 02 04 03 0A 07 05 00 30 0F 06 0B 2B 0...+
06 01 04 01 0B 02 04 03 0A 0D 05 00 30 0F 06 0B 0...
2B 06 01 04 01 0B 02 04 03 0D 01 05 00 +............
=+
08/15-02:47:09.174882 216.236.156.62:48249 -> my.own.net.1:161
UDP TTL:106 TOS:0x0 ID:63089 IpLen:20 DgmLen:265 Len: 245
30 81 EA 02 01 00 04 06 70 75 62 6C 69 63 A1 81 0.......public..
DC 02 01 00 02 01 00 02 01 00 30 81 D0 30 0B 06 0..0..
07 2B 06 01 02 01 01 01 05 00 30 0B 06 07 2B 06 .+........0...+.
01 02 01 01 03 05 00 30 0B 06 07 2B 06 01 02 01 0...+....
01 05 05 00 30 0D 06 09 2B 06 01 02 01 02 02 01 0...+.......
06 05 00 30 0D 06 09 2B 06 01 02 01 04 14 01 01 ...0...+........
05 00 30 0E 06 0A 2B 06 01 02 01 19 03 02 01 03 ..0...+.........
05 00 30 10 06 0C 2B 06 01 04 01 0B 02 03 09 01 ..0...+.........
01 07 05 00 30 10 06 0C 2B 06 01 04 01 0B 02 03 0...+.......
09 05 01 03 05 00 30 10 06 0C 2B 06 01 04 01 0B 0...+.....
02 04 03 08 03 02 05 00 30 10 06 0C 2B 06 01 04 0...+...
01 0B 02 04 03 08 03 03 05 00 30 0F 06 0B 2B 06 0...+.
01 04 01 0B 02 04 03 0A 07 05 00 30 0F 06 0B 2B 0...+
06 01 04 01 0B 02 04 03 0A 0D 05 00 30 0F 06 0B 0...
2B 06 01 04 01 0B 02 04 03 0D 01 05 00 +............
=+

Page 27 of 68

Trace 2 - Tcpdumplog (with -v option) of the same packets.

02:21:55.298255 216.236.156.62.29158 > my.own.net.0.161: [udp sum ok] {
SNMPv1 { GetNextRequest(220) R=0 .1.3.6.1.2.1.1.1 .1.3.6.1.2.1.1.3
.1.3.6.1.2.1.1.5 .1.3.6.1.2.1.2.2.1.6 .1.3.6.1.2.1.4.20.1.1
.1.3.6.1.2.1.25.3.2.1.3 .1.3.6.1.4.1.11.2.3.9.1.1.7
.1.3.6.1.4.1.11.2.3.9.5.1.3 .1.3.6.1.4.1.11.2.4.3.8.3.2
.1.3.6.1.4.1.11.2.4.3.8.3.3 .1.3.6.1.4.1.11.2.4.3.10.7
.1.3.6.1.4.1.11.2.4.3.10.13 .1.3.6.1.4.1.11.2.4.3.13.1} } (ttl 106, id
25600, len 265)

08:33:58.481328 12.155.155.17.50343 > my.own.net.254.161: [udp sum ok]
{ SNMPv1 { GetNextRequest(220) R=0 .1.3.6.1.2.1.1.1 .1.3.6.1.2.1.1.3
.1.3.6.1.2.1.1.5 .1.3.6.1.2.1.2.2.1.6 .1.3.6.1.2.1.4.20.1.1
.1.3.6.1.2.1.25.3.2.1.3 .1.3.6.1.4.1.11.2.3.9.1.1.7
.1.3.6.1.4.1.11.2.3.9.5.1.3 .1.3.6.1.4.1.11.2.4.3.8.3.2
.1.3.6.1.4.1.11.2.4.3.8.3.3 .1.3.6.1.4.1.11.2.4.3.10.7
.1.3.6.1.4.1.11.2.4.3.10.13 .1.3.6.1.4.1.11.2.4.3.13.1} } (ttl 109, id
35213, len 265)

02:47:09.174876 216.236.156.62.48249 > my.own.net.1.161: [udp sum ok] {
SNMPv1 { GetNextRequest(220) R=0 .1.3.6.1.2.1.1.1 .1.3.6.1.2.1.1.3
.1.3.6.1.2.1.1.5 .1.3.6.1.2.1.2.2.1.6 .1.3.6.1.2.1.4.20.1.1
.1.3.6.1.2.1.25.3.2.1.3 .1.3.6.1.4.1.11.2.3.9.1.1.7
.1.3.6.1.4.1.11.2.3.9.5.1.3 .1.3.6.1.4.1.11.2.4.3.8.3.2
.1.3.6.1.4.1.11.2.4.3.8.3.3 .1.3.6.1.4.1.11.2.4.3.10.7
.1.3.6.1.4.1.11.2.4.3.10.13 .1.3.6.1.4.1.11.2.4.3.13.1} } (ttl 106, id
63089, len 265)

Trace 3 - Firewall logging to syslog

--<packet is not allowed to go through and redirected>--
Aug 12 02:21:35 myhost kernel: redirecting UDP port 161 to port xx
(216.236.156.62:29158 -> my.own.net.0:161)

--<The packetfilter has blocked and silent dropped the packet>--
Aug 15 02:46:46 myhost /usr/local/etc/local/ipf/ipmon[1595]:
02:46:46.245824 ef0 @38 b 216.236.156.62,48249 -> my.own.net.1,161 PR
udp len 20 265

There is no entry for the alert from 12.155.155.17.50343 to my.own.net.254:161 since this packet was
allowed to pass. It got however blocked at the next hop.

1. Source of Trace

The source of this trace is made on a C-class address space network which is monitored
by my company. The traces are made by a NIDS on the outside of the network and a
Tunix firewall logging to syslog. The next diagram shows a simplified representation to
illustrate the basic setup and does not necessarily represent the real setup which is far
more complex.

Page 28 of 68

Simplified network diagram:

2. Detect was generated by

Snort NIDS version 1.8.6. and a Tunix firewall logging to syslog.
The trace shows a reconnaissance attempt, using the “public” community string in a
SNMP getNextRequest packet.

3. Probability the source address was spoofed

Source addresses in UDP-packets are likely to be spoofed, since it is usually one-way
traffic and often used to launch a DoS attack. In this case, it is not likely that the source
address was spoofed because the attacker launches the attack to gather information from
the return-packets. It could however be possible that the attacker is somewhere along the
return-path where he can sniff and gather the information that is returned along the
return-path. In that case, he could have used an unused address belonging to a network up
the return-path chain for which he knew that these return packets would be silently
dropped, or he could use an existing address for which he knows that the return packets
are silently dropped.

The tcpdump log shown below, is a TCP-RST packet which was sent as a response to a
stimulus originated on my.own.net.0 to check if the TTL value could give more insights.

16:06:33.371077 216.236.156.62.25 > my.own.net.128.2946: R [tcp sum ok]
0:0(0) ack 4249990451 win 8192 <mss 1460,nop,wscale 0,nop,nop,timestamp
37021175 0> (DF) (ttl 25, id 19352, len 60)

The packet shows a TTL value of 25 while the SNMP-packets initiated from this IP,
show a TTL value of 106. A TTL value of 106 could indicate a host which is 128-106=22
hops away. The TTL of 25 could indicate a host which is 60-25=35 hops away. It is
possible that the TTL value in the SNMP-packets is forged, but if not, the different TTL’s
confirm the theory that the attacker is somewhere residing along the upstream return-path
and that the source address is spoofed.

The initial TTL’s used are based on the fact that common initial TTL’s are 30, 60,
64(Linux, BSDI, FreeBSD), 128(Windows), and 255 (OpenVMS).

Page 29 of 68

CAN-2002-0515 discusses a design failure of IPFilter in which a port that is filtered by
IPFilter will return a RST with a TTL field set to 60, whereas the operating system will
return it’s default TTL value for a RST.

A window size of 8192 is known to be used by a Solaris 2.2, BSD 4.4 or AIX 3.2, these
systems are known platforms for IPFilter.

4. Description of attack

This is a reconnaissance attack by using the Simple Network Management Protocol
SNMP protocol and is related to CVE CAN-2002-0013. The goal of this attack is to pull
information out of the Management Information Database (MIB) which is a hierarchical
flat file, containing useful information about the device it resides on.

5. Attack mechanism

The trace shows three packets originated from 2 different IP-addresses. The trace with
source address 12.155.155.17 has the same odd payload as the packets from source
address 216.236.156.62 and is included to support the following: Both sources request the
following MIB identifiers which could indicate that it is the same person, operating from
2 different sources, or that this is a known exploit and that they use the same tool:

ObjectID Textual name Description

1.3.6.1.2.1.1.1 sysDescr Name and version of the device (hardware type and OS)

1.3.6.1.2.1.1.3 sysUpTime Uptime since the last re-initialization

1.3.6.1.2.1.1.5 sysName Administratively assigned name for the node (Often the
FQDN)

1.3.6.1.2.1.2.2.1.6 ifPhysAddress The interface's physical address

1.3.6.1.2.1.4.20.1.1 ipAdEntAddr The IP-address

1.3.6.1.2.1.25.3.2.1.3 hrDeviceDescr A textual description of the device (manufacturer, revision
and/or serial number)

1.3.6.1.4.1.11.2.3.9.1.1.7 Undocumented (HP)
These could belong to HP Jetdirect or to the HP-UX MIB's.

Both agents happen to have vulnerabilities through which it is
possible to gain administrator privileges

1.3.6.1.4.1.11.2.3.9.5.1.3 Undocumented (HP)

1.3.6.1.4.1.11.2.4.3.8.3.2 npNpiPaeClass Returns printer, plottor or xStation for HP devices

1.3.6.1.4.1.11.2.4.3.8.3.3 NpNpiPaeIdentification Returns the device class(laserjet-IIISI or laserjet-4SI)

1.3.6.1.4.1.11.2.4.3.10.7 NpIpxGetUnitCfgResp2 The Get Unit Config Response in the IPX code

1.3.6.1.4.1.11.2.4.3.10.13 NpIpxRcfgAddress The 12 octet IPX address

1.3.6.1.4.1.11.2.4.3.13.1 npPortNumPorts The number of interfaces supported by the device

http://www.mibcentral.com/index.shtml offers a search engine through about 4700 MIB's with over
650.000 OID's. The information above was extracted using this search engine.

Page 30 of 68

The SNMP protocol can be used to maintain and query the MIB of a lot of devices like
hubs, switches, routers and printers. Even X-terminals have SNMP agents. The
information is protected by passwords, one for querying and one for maintaining the
MIB. These passwords are called the Community String and have often defaults like
“public” for read and “private” for write access. These passwords are transmitted in
plain text (SNMPv1). The traces show usage of the default community string “public”
and SNMPv1 to query the MIB. An attacker can use this vulnerability in SNMP to gather
information and in a second stage, the attacker could reconfigure or shut down devices
remotely.

The requested information is focused on specific OID’s:
• General system information

• Hardware type and OS
• Uptime
• FQDN

• Interface information
• Physical address
• IP address

• Device information like manufacturer, revision and/or serialnumber
• Specific information about HP devices:

• Two undocumented OID’s which could belong to agents which happen to have
known vulnerabilities to gain administrator privileges.

• Class-type of the device
• IPX information
• Number of supported interfaces

The attacker is using the SNMP query “GetNextRequest”. In general, the
GetNextRequest command is used to perform MIB table traversal, and in other cases
where the querier does not know the exact MIB name of the object it desires. In that case,
the SNMP agent returns the next lexicographically ordered object in the MIB (Stevens16,
Chapter 25).

The first alert is using the IP-address my.own.net.0 which happens to be the network
address. Under normal condition, this UDP packet would be sent to all the hosts residing
on this network. All listening SNMP agents on the network could answer with return
packets and give information to the attacker about themselves which could be used by the
attacker to run known exploits against the device or to learn more about the internals of
the network.

The second alert is only used for correlation purposes. It is suspicious that this attacker
uses the same odd payload. This could indicate a toolbox or that the attack is performed
by the same person/group.

The third alert is targeted at my.own.net.1, about three days after the first alert which is
most likely an indication for a slow reconnaissance scan. It is most probably one packet
in a large scan.

Page 31 of 68

6. Correlations

The SNMP default community string exploit is one of the most critical Internet Security
threads which is confirmed by several resources like for example
http://www.sans.org/topten.htm.

CVE’s regarding this vulnerability:
• CAN-1999-0516

An SNMP community name is guessable.
• CAN-1999-0517

An SNMP community name is the default (e.g. public), null, or missing
• CAN-2002-0013

Vulnerabilities in the SNMPv1 request handling of a large number of SNMP
implementations allow remote attackers to cause a denial of service or gain privileges
via (1) GetRequest, (2) GetNextRequest, and (3) SetRequest messages, as
demonstrated by the PROTOS c06-SNMPv1 test suite.
NOTE: It is highly likely that this candidate will be SPLIT into multiple
candidates, one or more for each vendor. This and other SNMP-related candidates
will be updated when more accurate information is available.

http://www.sans.org/newlook/resources/IDFAQ/SNMP.htm describes the SNMP
vulnerability to gather information in detail.

This detect with this specific payload has not been reported yet, but this SNMP
vulnerability used to gather information using the default community strings is well
known.

According to http://www.dshield.org/ipinfo.php?ip=216.236.156.62 An E-mail message
was sent to rsehorbach@newcom.com on 2002-08-14 08:57:40 but the message was
bounced. This particular IP was accountable for 811 recorded attacks, all against port
161.

7. Evidence of active targeting

This attack is for reconnaissance purposes and probably part of a very large scan so there
is no evidence of active targeting.

8. Severity

severity = (criticality + lethality) - (system countermeasures + network countermeasures)
Each element is ranked in a scale from 1-5, with 1 being low and 5 being high.

Criticality: 5
The targeted systems are SNMP agents using default community strings. The
traffic which caused the alerts was mainly used for reconnaissance but when

Page 32 of 68

successful, the next step would be setting MIB identifiers with the default
community string, which could cause a DoS to the entire network behind a router.

Lethality: 2
This particular traffic is for reconnaissance only and does not cause any
disturbance.

System countermeasures: 4
All devices with SNMP agents have this function disabled.

Network countermeasures: 4
SNMP traffic is blocked by firewalling devices at all network-levels.

Severity = (5 + 2) - (4 + 4) = -1

9. Defensive recommendation

Defenses are fine since the attack was blocked and logged by the firewall. In general,
systems should not run SNMP agents if not necessary. Running SNMP agents on devices
should not be equipped with the default community strings and should only allow SNMP
traffic from authorized internal hosts. SNMP traffic coming from the Internet should be
blocked by default. If SNMP is necessary, than it is recommended to use SNMPv3 which
has better security regarding authentication, privacy, authorization and access control.

10. Multiple choice test question

The log below shows detailed information regarding a Simple Network Management
Protocol (SNMP) packet. This packet is the only SNMP packet among other various
packets that is captured in a tcpdump binary formatted file named ‘dump.log’ in it’s
native binary state.

02:47:09.174876 216.236.156.62.48249 > my.own.net.1.161: [udp sum ok] {
SNMPv1 { GetNextRequest(220) R=0 .1.3.6.1.2.1.1.1 .1.3.6.1.2.1.1.3
.1.3.6.1.2.1.1.5 .1.3.6.1.2.1.2.2.1.6 .1.3.6.1.2.1.4.20.1.1
.1.3.6.1.2.1.25.3.2.1.3 .1.3.6.1.4.1.11.2.3.9.1.1.7
.1.3.6.1.4.1.11.2.3.9.5.1.3 .1.3.6.1.4.1.11.2.4.3.8.3.2
.1.3.6.1.4.1.11.2.4.3.8.3.3 .1.3.6.1.4.1.11.2.4.3.10.7
.1.3.6.1.4.1.11.2.4.3.10.13 .1.3.6.1.4.1.11.2.4.3.13.1} } (ttl 106, id
63089, len 265)

Which command has been used to display this detailed information regarding this packet?

a) snort -dvr dump.log 'udp and port 161'
b) snort -devr dump.log 'udp and port 161'
c) tcpdump -nvr dump.log 'udp and port 161'
d) tcpdump -nvvr dump.log 'udp and port 161'

 Answer: c
 The newer versions of tcpdump have knowledge about some application data
 and SNMP is one of them. Answer ‘d’ would give even more information.
 (tcpdump version used is 3.6.3)

Page 33 of 68

Assignment 3 – “Analyze This”-Scenario -

Security Audit for “University”

Executive Summary

This audit is in response to the request from “University” and is the result of analyzing 6
consecutive days of data that was generated by a Snort Network Intrusion Detection
System, configured with a fairly standard ruleset. The ruleset is extended with some
customized additions. The exact content of the ruleset used is unknown. The internal
Security Policy and network topology are also not provided by “University” in the
interest of expediency.

The data that was analyzed, proofs the existence of Trojan activity on some internal
servers which is further explained in this audit. There is also evidence of bandwidth
consuming applications like IRC-channels, Chat-sessions and file sharing applications.
Internal servers are also used for distributed file-access without satisfying security
measurements.
Restricting these services will not only enhance security but will also improve network
performance.

A lot of network devices are administered by using SNMPv1 and the default community
string for reading the configuration of these devices which is not recommended since
potential attackers can gain a lot of information regarding the internal organization

Recommendations.
The Snort NIDS produces a lot of noise which could lead to information overload and
real important events could easily be overlooked because of this noise. It is recommended
that the ruleset will be tuned. If however the Snort NIDS will also be used as a reporting
tool concerning traffic flow, then it is recommended to run another Snort NIDS, which
performs this task and thus remaining another NIDS to monitor on vulnerabilities and
unwanted traffic.

In general, it is recommended to patch all systems, especially the servers, with the latest
security patches available on a regular basis. Anti-virus software with the latest signature
database should run on all hosts, especially the hosts involved with IRC channels and
MSN Messenger. Updates of the Anti-virus signatures should be scheduled with short
intervals.

If not already available, procedures and policies should be implemented addressing the
use of the high risks and bandwidth consuming application. This policy should also cover
potential leakage of certain information which should not be distributed along he Internet.

The use of SNMPv1 to manage network devices should be very restrictive and avoided
whenever possible. The usage of the default community strings should not occur.

Page 34 of 68

List of Analyzed Files

The data analyzed consists of the 6-day period between June 11, 2002 through June 16,
2002. The Out Of Specs (OOS) data for June 16 was not available, therefore, the data for
June 17 was supplied. The data included Snort Alert reports, Snort Scan reports and Snort
OOS reports.

Table A - List of analyzed files

Alert Scan OOS

alert.020611.gz scans.020611.gz oos_Jun.11.2002.gz

alert.020612.gz scans.020612.gz oos_Jun.12.2002.gz

alert.020613.gz scans.020613.gz oos_Jun.13.2002.gz

alert.020614.gz scans.020614.gz oos_Jun.14.2002.gz

alert.020615.gz scans.020615.gz oos_Jun.15.2002.gz

alert.020616.gz scans.020616.gz oos_Jun.17.2002.gz

Total: 780,438 entries Total: 2,129,956 entries Total: 35 entries

The number of entries as mentioned in Table A, are the number of raw entries counted
after decompressing the files and checking the files for anomalies like corrupted lines. A
checksum in regard to the files is not available. For future use, it is recommended that
checksums are provided, since these files are distributed through a public server over the
Internet. The version of the Snort NIDS which generated the logs, and the contents of the
used ruleset are unknown. The generated alerts are compared against the ruleset of Snort
version 1.8.6, to determine whether a default rule generated the alert, or a custom made
rule.

List of Detects

Analyses of the Alerts log files

The set of 6 alert-files was concatenated into one large file. After that, all the portscan-
alerts are subtracted because these are available in a set of separate scan-files.
The result of the subtraction was, that the totaled alerts-file was reduced with all the
spp_portscan noise which was 65.15 percent of all alerts.

Table B - Percentage of portscans in Alerts-file

Entries Number of entries Percentage of total

Alerts without spp_portscan entries 272045 35.85%

Alerts only spp_portscan entries 508393 65.15%

All alerts 780438 100.00%

Page 35 of 68

The alerts without spp_portscan entries are used for the alerts-analyze process and is
further referred to as alerts. These alerts are split into three area’s: Local (L), External-
outbound (O) and External-inbound (I) traffic.

• Local: Source-IP and destination-IP are both local.
• External-outbound: Source-IP is local and destination-IP is not local.
• External-inbound: Source-IP is not local and destination-IP is local.

Dividing the alerts into these three areas is necessary to obtain a good impression about
what is happening at “University” network. Table C - Alerts Summary is sorted by
“Alerts total”.

The “Alerts total” column is divided into the three area’s as mentioned above. The rank
number preceding the area-sub-total is the rank number the entry has in it’s specific area
(L, O or I). This table includes only 8 entries, being all entries until all top 3 alerts of
every area is included. The complete table with all reported alerts can be found in
appendix A. The alerts of Table C are all described and analyzed.

Table C - Alerts Summary (no scans - excerpt until top 3 of all three areas included)

Alerts
Total

R
a
n
k

Alerts
Local
(L)

R
a
n
k

Alerts
Out-

bound
(O)

R
a
n
k

Alerts
In-

bound
(I)

Description of the Alert Severity

59224 1 59224 SMB Name Wildcard noise

52002 2 52002 SNMP public access medium

46878 7 383 1 43746 4 2749 spp_http_decode: IIS Unicode attack detected high

28111 1 28111 MISC Large UDP Packet medium/high

27142 3 27141 20 1 ICMP Echo Request L3retriever Ping noise

21959 2 21959 INFO Possible IRC Access medium

8471 3 4154 3 4317 INFO MSN IM Chat data medium

4906 2 4906 AFS - Off-campus activity low

SMB Name Wildcard

Snort rule and description
The Snort rule generating these alerts is a custom made rule. In terms of Intrusion
Detection, this rule generates a lot of noise on a network which works with NetBIOS
name resolution since this is normal NetBIOS name resolution behavior.

Alert stimulus and traffic analyses
All alerts reported concern only traffic between local machines. This indicates that either
the rule which generates the alerts is defined to monitor only local addresses with the
SMB Name Wildcard signature, or that all traffic with this signature is being monitored
but that the perimeter devices are blocking incoming traffic and that there is no outgoing

Page 36 of 68

traffic. The amount of these alerts indicate the usage of file sharing between Windows
hosts or the use of Samba.

The largest part of these alerts (53777 alerts = 90%) is between hosts on the subnet
130.85.152.0/24 and 3 specific hosts, which could indicate normal traffic on this network.
The next largest part is originating from 1 host (4147 alerts = 7%).

Hosts on Network
(A)

Specific host
(B)

Alerts from
(A) àà (B)

Alerts from
(B) àà (A)

Total
Alerts

130.85.152.0/24 130.85.11.5 1416 1445 2861

130.85.152.0/24 130.85.11.6 11503 11658 23161

130.85.152.0/24 130.85.11.7 13776 13979 27755

130.85.0.0/16 130.85.5.89 308 3839 4147

More in-depth details regarding SMB Name Wildcard is described by Alexander Bryce at
http://www.sans.org/newlook/resources/IDFAQ/port_137.htm

Recommendation
It is recommended that the Snort ruleset is reconfigured to alert only SMB Name
Wildcard traffic when a non local address is involved. As for now, the rule being used is
only generating noise from an Intrusion Detection perspective if this traffic is considered
normal activity.

SNMP public access

Snort rule and description
The Snort rule generating these alerts is probably coming from the standard rulesets and
known as SID 1411 and SID 1412. The severity is categorized as “attempted-recon”. All
alerts reported have their origin and destination on the local network, but are all triggered
due the usage of the well known default community-name “public”. The Simple
Network Management Protocol (SNMP) is used to manage network-devices from
specific management-hosts.

Alert stimulus and traffic analyses
There are 20 different originating hosts (al local) as listed in table D (to 150 different
destinations). Since the default community-name to read the MIB of devices through
SNMP is used (“public”), it is not unlikely that there has been some kind of abusive
usage.

Table D - Alerts generated from source-IP

Alerts Src-IP # Alerts Src-IP # Alerts Src-IP # Alerts Src-IP

12105 130.85.70.177 4362 130.85.88.145 444 130.85.88.212 80 130.85.186.10

8773 130.85.88.181 4354 130.85.88.207 394 130.85.88.225 51 130.85.88.176

4766 130.85.150.198 4335 130.85.88.136 358 130.85.153.178 28 130.85.183.11

4414 130.85.88.203 2155 130.85.150.245 152 130.85.91.74 2 130.85.150.114

4372 130.85.88.159 729 130.85.88.251 127 130.85.153.191 1 130.85.6.45

Page 37 of 68

The top 10 critical Internet security threats at http://www.sans.org/topten.htm includes
this vulnerability and is known as CVE entries:
• CAN-1999-0517 - Default or blank SNMP community name (public)
• CAN-1999-0516 - Guessable SNMP community name
• CAN-1999-0524, CAN-1999-0186 - Hidden SNMP community strings

Recommendation
It is recommended that the use of SNMP is reduced whenever possible, or otherwise use
non-default community-strings and SNMPv3. There are no alerts from or to external
addresses which could indicate than only local traffic is being monitored or that perimeter
devices block incoming SNMP-traffic. This does not exclude that there are no internal
compromised hosts used to perform further reconnaissance by an attacker.
The hosts in Table D should be checked against the list of known management-hosts and
the 150 destinations should be patched and validated against the list of manageable
devices through SNMP. If one of these management hosts is compromised then there
may be unauthorized control of manageable clients.

spp_http_decode: IIS Unicode attack detected

Snort rule and description
This alert is generated by the Snort http_decode preprocessor which normalizes HTTP
requests by converting any %XX character substitutions to their ASCII equivalent. These
Unicode attacks are used by Code Red, Nimda and Sadmind to traverse and escape from
the directory used by IIS web-servers.

Alert stimulus and traffic analyses
The alert is generated because of the occurrence of unicode characters in HTTP-requests.
This vulnerability is described at http://www.kb.cert.org/vuls/id/111677 and known under
CVE-2000-0884. The targeted ports reported are 45,149 alerts to port 80 and 1,729 alerts
to port 8080. This could indicate that the http_decode preprocessor is configured to alert
on these 2 ports only.

Inbound traffic.

Inbound traffic is originated from the following external source-IPs:
Alerts Source - IP # Alerts Source - IP # Alerts Source - IP # Alerts Source - IP

10 130.13.107.28 9 202.28.38.209 453 217.225.209.131 5 64.230.87.107

7 130.13.109.53 5 207.230.107.168 12 217.80.93.79 614 65.92.145.85

14 130.13.140.18 7 211.90.223.111 490 217.82.225.167 440 67.81.229.120

9 130.13.166.73 26 213.93.221.118 315 24.101.140.253 276 80.11.161.54

20 130.13.77.117 25 217.167.171.49 12 61.243.8.61

Page 38 of 68

The targeted internal hosts are on the following subnets:
Alerts Subnet/Host # Different hosts # Alerts Subnet/Host # Different hosts

1413 130.85.150.0/24 17 hosts 1111 130.85.5.0/24 5 hosts

24 130.85.151.114 1 host 68 130.85.88.0/24 3 hosts

133 130.85.153.0/24 2 hosts

Outbound traffic.

The outbound connections are originated from the subnets:
Alerts Subnet/Host # Different hosts # Alerts Subnet/Host # Different hosts

1431 130.85.150.0/24 4 hosts 32701 130.85.153.0/24 59 hosts

611 130.85.151.0/24 3 hosts 7970 130.85.88.0/24 12 hosts

1033 130.85.152.0/24 20 hosts

Information regarding the destinations of these outbound connections:
• Unique hosts targeted: 496 targets.
• When dropping the 4th octet (C-class): 193 targets.
• When dropping the 3rd and 4th octet (B-class): 109 targets.
• When dropping the last 3 octets (A-Class): 27 targets.
• The most interesting range is 211.aa.bb.cc. There are 311 different hosts in this range

which are being targeted by hosts from within the "University"-network.

Local traffic.

The local alerts originate from 3 particular hosts:
Alerts Host # Alerts Host # Alerts Host

379 130.85.10.89 1 130.85.152.180 3 130.85.83.90

The destinations of these local alerts are:
Subnet/Host # Different hosts Subnet/Host # Different hosts

130.85.88.0/24 3 hosts 130.85.150.0/24 18 hosts

130.85.11.4 1 hosts 130.85.153.0/24 2 hosts

130.85.152.0/24 20 hosts 130.85.5.0/24 5 hosts

The tables above indicate that the “University” network is attacked by using the unicode
vulnerability from the outside. It is hard to say if the targeted hosts are patched, but there
are however strong indications that a lot of internal hosts, especially on the
130.85.153.0/24 subnet are already infected by one of the worms as mentioned before
and are trying to spread.

Page 39 of 68

Recommendation
It is recommended that all originating hosts on the local network are checked whether
they are compromised (they surely are) and than these compromised hosts should be
cleaned and patched. The perimeter devices should be setup in a way that they block this
kind of hostile traffic. The URL http://www.incidents.org/react/ has several links with
useful information regarding this vulnerability.

MISC Large UDP Packet

Snort rule and description
This alert has the highest number of entries (rank 1) regarding inbound traffic. The rule
which is generating this alert, is probably from the basic ruleset and known as SID 521.
The rule triggers on incoming UDP packets with a payload of more than 4000 bytes. The
alert is classified as “bad-unknown”. In general, since this alert is caused by UDP
packets, the source addresses can easily be forged.

The underground programmer known as "Mixter" describes these large packages as a
possible DDoS attack since Stateful UDP sessions are normally using small UDP packets.
(http://www.digitaltrust.it/arachnids/IDS247/research.html)

Alert stimulus and traffic analyses
It is necessary to have (some) of the payload for detailed investigation and value these
alerts properly. For now, only some conclusions about the origins and destinations can be
made. To determine if this was an attack or benign traffic, it is also important to know
what was the stimulus. Since not all packets are being captured, this cannot be
determined accurately from the given log-files. However, it is possible to gather all traffic
between the hosts and ports involved. There are only 16 connections which generate this
alert.

Alerts Source IP Destination IP # Ports # Alerts Source IP Destination IP # Ports

12708 140.142.8.72 130.85.153.157 11 552 211.233.77.23 130.85.153.115 52

5810 202.102.249.118 130.85.88.140 8 372 205.188.244.227 130.85.151.108 5

3283 140.142.8.71 130.85.153.159 6 125 10.16.2.1 130.85.150.209 2

1642 211.63.185.15 130.85.153.179 7 49 207.189.78.251 130.85.152.186 2

1107 211.63.185.21 130.85.153.179 8 47 202.123.219.153 130.85.153.187 12

1023 10.16.2.4 130.85.150.209 8 27 202.103.102.114 130.85.153.45 3

716 202.210.163.74 130.85.152.21 29 16 211.233.45.59 130.85.88.222 6

633 208.252.239.125 130.85.150.209 2 1 210.220.161.102 30.85.153.203 1

The column “# Ports” summarizes the number of destination ports that were targeted.
The Source-IP’s where checked against the alert file and all source-IP’s but only one was
reported in this alert. The exception was source-IP 207.189.78.251 which was also alerted
on inbound alert rank 2 (AFS - Off-campus activity), connecting to 130.85.153.210 on
port 7001 (once).

Page 40 of 68

At least two IP numbers indicate spoofing or misconfigured hosts on the local network
since these rfc1218 (http://www.rfc-editor.org/rfc/rfc1918.txt - private range address-
space) should not pass the perimeter devices:

• IP 10.16.2.1 which targeted port 0 (3 times) and port 4145 (122 times)
• IP 10.16.2.4 which targeted port 0 (6 times), port 20583 (once), port 3238 (613

times), port 3257 (147 times), port 3630 (90 times), port 40716 (once), port 4133 (164
times) and port 7000 (once).

The targeted host (130.85.150.209) was also targeted by 208.252.239.125 on ports 2259
(294 times) and 2283 (339 times) This host 208.252.239.125 was the only source-address
which did not try to connect to port 0.

There where 141 distinct destination ports out of 162 reported ports used of which 136
ports were only addressed once. The ports which are targeted by more than 1 host are port
0 (15 hosts), port 1588 (4 hosts), port 7000 (3 hosts) and port 25970 (2 hosts).

The following responses were found because of the Snort rule SID 410 which triggers on
“ICMP Fragment Reassembly Time Exceeded”:

Alerts From To # Alerts From To

4 130.85.150.209 208.252.239.125 3 130.85.153.179 211.63.185.21

11 130.85.152.21 202.210.163.74 3 130.85.88.140 202.102.249.118

5 130.85.153.115 211.233.77.23 13 130.85.88.222 211.233.45.59

This indicates that the local hosts did process the UDP packets but that reassembly did
not succeed. This could be caused by forged packets.

Practical #525 at http://www.giac.org/practical/Tod_Beardsley_GCIA.doc sent in by Tod
A. Beardsley, discovered that Windows Media Services sometimes relies on large UDP
packets to deliver streaming content.

Recommendation
It is recommended to investigate and tune these alerts. The use of destination (and source)
port 0 indicates some kind of reconnaissance and could be blocked by the perimeter
devices. There are also indications that the local hosts identified are using applications
which depend on these large UDP packages. Misuse of these hosts should be
investigated.

ICMP Echo Request L3retriever Ping

Snort rule and description
The Snort rule generating these alerts is probably coming from the standard ruleset and
known as SID 466. The severity is categorized as “attempted-recon” and it alerts on
ICMP echo request (type 8, code 0) packets with a content of
“ABCDEFGHIJKLMNOPQRSTUVWABCDEFGHI” at the start of the payload.

Page 41 of 68

The “L3 Retriever 1.5” security scanner is a legitimate tool for security assessments,
distributed by Symantec to discover network components, which has the same signature.
Since this traffic depends on ICMP packets, the source IP address could be easily forged,
but for reconnaissance, it is necessary that the return packet arrives or at least passes on
its way back to the attacker.

According to ArachNIDS (http://www.digitaltrust.it/arachnids/IDS311/event.html) event
IDS311, there are reported incidents where legitimate traffic may cause an intrusion
detection system to raise “false positive” alerts for this event.
Begin quote

“This type of ICMP ping seems to be also generated by (plain) Win2K host talking to
Win2K domain controllers.” --nnposter

End quote.

Alert stimulus and traffic analyses
There was only 1 outbound packet reported and this packet was from local IP
130.85.88.140 to IP 202.119.37.5. There are no other alerts found for IP 202.119.37.5,
neither in the Alert, Scans or OOS logs. This has probably been a misconfiguration.

All other alerts are local and can be categorized into 196 connections. These connections
are summarized by subnet and destination. There are only 12 different destinations

Information according the 196 different connections:

Subnet
hosts on

subnet
Destinations

(#alerts)

130.85.152.0/24 55 130.85.11.5
(1433)

130.85.11.6
(11528)

130.85.11.7
(13832)

130.85.150.0/24 12 130.85.5.4
(181)

130.85.5.35
(12)

130.85.5.3
(2)

130.85.88.0/24 10 130.85.5.4
(79)

130.85.130.187
 (28)

202.119.37.5
(1)

130.85.151.0/24 4 130.85.5.4
(14)

130.85.5.35
(5)

130.85.153.0/24 2 130.85.5.4
(12)

130.85.0.0/16
(remaining)

9 130.85.5.96
(11)

130.85.5.92
(2)

130.85.5.46
(1)

130.85.5.64
(1)

Recommendation
Given the fact that this could be legitimate Windows 2000 traffic, it is recommended to
fine-tune this rule in regard to existing WINDOWS 2000 domain controllers, so that there
will be less noise generated. This fine-tuning consists of configuring pass-rules for
legitimate Windows 2000 domain controllers which are probably identical to the
destinations mentioned in the table above.

Page 42 of 68

INFO Possible IRC Access

Snort rule and description
The snort rule generating these alerts is probably a local defined rule which alerts on
traffic to a port ranging from 6666 to 7000. The ruleset 1.8.6 is more specific with this
type of traffic to these ports and would generate more meaningful alerts by looking into
the content of the packets. These 1.8.6. rules have the following characteristics:

Alert message Contents in the packet must include the string:

CHAT IRC nick change "NICK "

CHAT IRC DCC file transfer request "PRIVMSG " " \:.DCC SEND"

CHAT IRC DCC chat request "PRIVMSG " " \:.DCC CHAT chat"

CHAT IRC channel join "JOIN \: \#

CHAT IRC message "PRIVMSG "

CHAT IRC dns request "USERHOST"

CHAT IRC dns response "\:" " 302 " "=+"

CHAT IRC EXPLOIT topic overflow "|eb 4b 5b 53 32 e4 83 c3 0b 4b 88 23 b8 50 77|"

CHAT IRC EXPLOIT Ettercap parse overflow attempt "PRIVMSG nickserv IDENTIFY"

A good start to find more about IRC could be http://www.irchelp.org. This site also
maintains IRC-server lists which could be useful. The index of these lists can be found at
http://www.irchelp.org/irchelp/networks/servers/index.html. These lists also contain port
information which reveals that monitoring the port range 6666-7000 is definitely not
sufficient since there are a lot of other ports that are used like 6660-7000, 5555, 7770-
7775, 7777, 8000 and 9000.

IRC servers make a living out of the IRC services and most of them put a lot of effort in
protective measures, but still, the IRC channels spread viruses and people are often
unaware of specific commands they type which makes them vulnerable to hackers. Social
Engineering is another attack which is performed through the IRC channels.

There are 35 CVE entries or candidates that match a search on the keyword "IRC" and a
lot of them describe buffer overflows, bypasses on firewalls and gaining control over the
client-host.

The CVE entries are:
CVE-1999-0672 CVE-2000-0594 CVE-2002-0060 CAN-2000-0785 CAN-2002-0006
CVE-1999-0679 CVE-2000-0601 CVE-2002-0197 CAN-2000-0857 CAN-2002-0382
CVE-1999-0939 CVE-2000-0661 CAN-1999-0220 CAN-2000-1102 CAN-2002-0425
CVE-1999-0968 CVE-2000-0787 CAN-1999-0255 CAN-2000-1150 CAN-2002-0593
CVE-1999-1351 CVE-2001-0050 CAN-1999-0645 CAN-2000-1151 CAN-2002-0928
CVE-2000-0183 CVE-2001-0274 CAN-1999-0661 CAN-2000-1152 CAN-2002-0983
CVE-2000-0586 CVE-2001-1056 CAN-1999-1228 CAN-2001-0177 CAN-2002-0984

Page 43 of 68

Alert stimulus and traffic analyses
There are only 20 different connections who generates these alerts:

Source-IP Destination-IP # Alerts Source-IP Destination-IP # Alerts

64.246.34.181 6650 151.189.12.24 2

66.62.70.248 7459 195.159.0.90 2130.85.151.90

66.28.132.168 7814 203.121.68.222 2

130.85.150.165 14 151.189.12.20 1

130.85.88.151 4 212.110.161.45 1

130.85.153.202

207.68.167.253

1

130.85.88.165

64.212.171.241 1

130.85.153.150 1 130.85.152.244 64.212.171.241 1

130.85.153.71 1 130.85.88.143 211.192.139.41 1

130.85.153.197 209.151.249.50 1 211.192.139.41 1

130.85.153.162 216.152.64.62 1
130.85.153.203

211.63.185.161 1

After digging deeper into the alerts for correlated connections of these possible IRC
access alerts, following related alerts showed up which could all confirm the use of IRC.
The IP-numbers in italic have no correlated data.

Alert Source-IP Destination-IP port # Alerts

64.246.34.181 6667 7

66.28.132.168 6667 14

IRC evil - running XDCC

This could indicate a chat or file transfer request
which is not advisable.

130.85.151.90

66.62.70.248 6667 58

195.159.0.90 130.85.88.165 3128 3

216.152.64.62 130.85.153.162 3128 1

66.28.132.168 130.85.151.90 3128 2

INFO - Possible Squid Scan

This is 'normal' behavior for IRC-servers to test if a
IRC client is not behind a squid-server.

66.62.70.248 130.85.151.90 3128 5

1080 4
195.159.0.90 130.85.88.165

8080 3

1080 1
216.152.64.62 130.85.153.162

8080 1

1080 4
66.28.132.168 130.85.151.90

8080 2

1080 10

SCAN Proxy attempt

This is 'normal' behavior for IRC-servers to test if a
IRC client is not behind a proxy-server.

66.62.70.248 130.85.151.90
8080 5

Recommendation
It is recommended to apply the most recent ruleset whenever the IRC services are needed
and to patch the IRC-clients very well. Also training of the users is very important. The
rule which generates the current alerts, is to noisy. The top 3 of destination-IP’s for this
alert is also the top 3 of all outbound destinations.

Page 44 of 68

INFO MSN IM Chat data

Snort rule and description
This is probably a custom made Snort rule, since it is either activated by outbound traffic
on destination port 1863 and inbound traffic from port 1863 or, more likely, it triggers on
hosts in the network range 64.4.12.0/23 which is registered by MS Hotmail (NETBLK-
HOTMAIL). It reports only on connections and from an intrusion analyses perspective,
these alerts can be classified as noise.

Alert stimulus and traffic analyses
There are 63 hosts on net 64.4.12.0/24 and 4 hosts on net 64.4.13.0/24 targeted by 38
different internal hosts. These 38 internal hosts are:

Alerts Local host # Alerts Local host # Alerts Local host # Alerts Local host
1334 130.85.150.242 217 130.85.88.215 101 130.85.88.236 14 130.85.153.168

855 130.85.150.232 201 130.85.151.55 101 130.85.88.165 14 130.85.150.133

652 130.85.153.142 196 130.85.150.165 91 130.85.153.167 12 130.85.88.220

630 130.85.153.157 184 130.85.153.110 55 130.85.153.109 7 130.85.150.206

589 130.85.153.107 183 130.85.88.146 53 130.85.153.111 5 130.85.88.143

587 130.85.153.46 139 130.85.153.190 46 130.85.150.113 5 130.85.153.180

491 130.85.153.45 137 130.85.153.159 42 130.85.151.64 2 130.85.153.120

448 130.85.150.241 134 130.85.88.229 35 130.85.150.59 2 130.85.150.46

345 130.85.88.201 120 130.85.88.151 24 130.85.153.125 2 130.85.150.143

311 130.85.88.154 107 130.85.88.140

The traffic itself is benign in nature, but is susceptible for virus and Trojans issues,
especially new ones. The targeted MSN hosts triggered no other alerts.

Recommendation
It is recommended that this traffic is blocked by the perimeter devices, however when
these MSN Messenger Services are necessary, all hosts involved should be patched and
run up to date anti-virus software with the most recent virus signatures. Training of the
users and security awareness is also preferable. More info about MSN Instant Messenger
(IM) can be found at http://messenger.msn.com.

AFS - Off-campus activity

Snort rule and description
These alerts are generated by a custom made Snort rule which most likely is defined to
trigger on inbound traffic destined for port 7001, the default port for AFS-server. AFS
(Andrew File System) enables distributed file sharing and has several levels of security.
The most secure configuration is when AFS is configured to use Kerberos authentication
and mutual authentication. Mutual authentication is the means through which parties
prove their genuineness and works with generated session keys. It is also possible to
generate IP based Access Control Lists. More info about AFS can be found at
http://www.transarc.com and http://www.openafs.org

Page 45 of 68

There is an integer overflow bug in the SUNRPC-derived RPC library used by OpenAFS
that could be exploited to crash certain OpenAFS servers (volserver, vlserver, ptserver,
buserver) or to obtain unauthorized root access to a host running one of these processes.
OpenAFS Security Advisory records this overflow bug as "ID 2002-001- 1.0-1.2.5, 1.3.0-
1.3.2 xdr_array integer overflow".

Alert stimulus and traffic analyses
There were 91 different internet hosts which connected to 36 different internal hosts,
causing 147 different connections. In most cases, the source port was 7000 and the
destination port was 7001.

Exceptions to this destination port 7001 are the following connections which generated
also traffic from another source port:

Source - IP Source - port (A) # alerts on A # alerts on source port 7000 Destination - IP Dest.-port

12.151.57.37 7003 4 2125 130.85.88.245 7001

128.8.70.9 7003 2 6 130.85.153.168 7001

18.181.0.19 7003 2 71 130.85.153.189 7001

18.181.0.22 7003 1 0 130.85.153.189 7001

18.181.0.23 7003 6 108 130.85.153.189 7001

66.28.225.156 512 1 185 130.85.151.95 7001

The 36 internal hosts were visited by the following number of external hosts:

Alerts # Hosts Destination - IP # Alerts # Hosts Destination - IP # Alerts # Hosts Destination - IP

2129 1 130.85.88.245 40 4 130.85.152.216 5 1 130.85.152.246

640 7 130.85.151.95 36 3 130.85.153.179 4 2 130.85.152.165

297 7 130.85.152.19 28 6 130.85.150.240 4 1 130.85.153.148

297 21 130.85.153.168 27 4 130.85.153.176 3 1 130.85.88.140

291 12 130.85.151.66 23 3 130.85.153.159 3 1 130.85.153.187

222 9 130.85.150.232 17 1 130.85.153.115 2 1 130.85.153.216

219 1 130.85.153.46 15 4 130.85.88.201 2 1 130.85.152.48

197 12 130.85.153.165 12 1 130.85.152.150 1 1 130.85.153.210

188 3 130.85.153.189 8 1 130.85.88.183 1 1 130.85.153.157

71 10 130.85.153.142 7 3 130.85.150.46 1 1 130.85.152.21

58 8 130.85.153.145 7 2 130.85.88.235 1 1 130.85.152.157

44 3 130.85.153.169 5 3 130.85.152.164 1 1 130.85.150.209

There is a lot of traffic to the AFS ports. When condensing the traffic on network
boundary’s, it turned out that the connections come from a few network ranges which
could indicate that traffic originated at these networks is allowed.

Page 46 of 68

Net # hosts Destination # Alerts Net # hosts Destination # Alerts

130.85.153.165 197 130.85.150.232 221

130.85.153.168 236 130.85.150.240 28

130.85.153.179 9 130.85.152.164 4
211.239.164.0/24 24

130.85.88.201 15 130.85.152.165 4

130.85.150.232 1 130.85.152.19 296

130.85.151.66 82 130.85.152.216 40

130.85.152.19 1 130.85.153.142 6

130.85.153.142 64 130.85.153.145 48

63.250.205.0./24 14

130.85.88.235 7

63.250.219.0/24 9

130.85.153.159 20

210.115.150.0/24 2 130.85.153.176 5 130.85.151.66 75

130.85.153.169 44
66.28.14.0/24 3

130.85.151.95 116

130.85.153.115 17 210.115.150.0/24 2 130.85.153.176 22

130.85.153.168 1 63.208.104.0/24 3 130.85.150.46 7

130.85.153.148 4 130.85.151.66 56

130.85.153.216 2
66.250.64.10/32 1

30.85.151.66 124

211.233.25.0/24 8

130.85.152.164 1

The remaining connections are sorted by destination and included to check against the
allowed AFS usage list:

Alerts Source-IP Destination-IP # Alerts Source-IP Destination-IP

3 202.102.249.118 130.85.88.140 10 213.239.135.175 130.85.153.145

1 208.252.239.125 130.85.150.209 1 63.211.17.234 130.85.153.157

22 64.215.213.238 130.85.151.95 3 140.142.8.71 130.85.153.159

192 195.92.228.141 130.85.151.95 4 28.8.10.207 130.85.153.168

1 202.210.163.74 130.85.152.21 48 129.2.128.54 130.85.153.168

2 64.15.254.25 130.85.152.48 26 218.50.55.40 130.85.153.179

12 64.15.254.25 130.85.152.150 1 211.63.185.21 130.85.153.179

1 63.250.214.130 130.85.152.157 3 202.123.219.153 130.85.153.187

5 63.210.47.79 130.85.152.246 1 207.189.78.251 130.85.153.210

1 202.58.56.172: 130.85.153.142

There were also two suspicious connects:
• 219 alerts from IP 10.16.1.40:7000 to IP 130.85.153.46:7001
• 8 alerts from IP 10.16.3.3:7000 to IP 130.85.88.183:7001

Recommendation
It is recommended that when AFS is needed, to use Kerberos and mutual authentication.
The alerts indicate that there are “known” remote hosts/networks and random hosts which
connect. If both type of hosts are required, than it is recommended to split the backend
servers to protect some of them (the ones that are used by known hosts) with ACL’s. The

Page 47 of 68

Snort ruleset should be adjusted in a way that the allowed hosts are only registered and
other hosts are alerted upon to reduce the noise. It seems that the AFS login function has
been used which is plain text authentication traveling the Internet which is not advisable.

Top Talkers list - Alerts

The top Alert talkers list is composed using the same area’s as the alert analyses and
without the scan-alerts. The area’s are Local, Inbound and outbound traffic.

Table E - Top 10 Alerts talkers -Local

Alerts Source – IP # Alerts Destination – IP

1 13979 130.85.11.7 1 29663 130.85.11.7

2 12129 130.85.70.177 2 27417 130.85.150.195

3 11658 130.85.11.6 3 24588 130.85.11.6

4 8773 130.85.88.181 4 4820 130.85.150.84

5 4766 130.85.150.198 5 3123 130.85.5.96

6 4414 130.85.88.203 6 2849 130.85.11.5

7 4376 130.85.88.159 7 2828 130.85.5.97

8 4362 130.85.88.145 8 2690 130.85.5.127

9 4355 130.85.88.207 9 2175 130.85.152.109

10 4343 130.85.88.136 10 1647 130.85.113.202

Table F - Top 10 Alerts talkers - Inbound

Alerts Source - IP Reverse dns-lookup # Alerts Destination - IP

1 12708 140.142.8.72 Media-wm-2.cac.washington.edu 1 13093 130.85.153.157

2 5813 202.102.249.118 SOA in domain .zz.ha.cn 2 5864 130.85.88.140

3 3286 140.142.8.71 Media-wm-1.cac.washington.edu 3 3498 130.85.153.179

4 2452 12.151.57.37 SOA in domain .securitas.bz 4 3373 130.85.153.159

5 2038 212.179.40.132 station-131.gadot.org.il 5 2452 130.85.88.245

6 1642 211.63.185.15 SOA in domain .kornet.net 6 2273 130.85.150.209

7 1165 65.92.145.85 HSE-Montreal-ppp337094.sympatico.ca 7 2070 130.85.88.162

8 1108 211.63.185.21 SOA in domain .kornet.net 8 1305 130.85.5.96

9 1023 10.16.2.4 Private range address 9 729 130.85.150.232

10 834 217.82.225.167 pD952E1A7.dip.t-dialin.net 10 726 130.85.152.21

Page 48 of 68

Table G - Top 10 Alerts talkers - Outbound
Alerts Source - IP # Alerts Destination - IP Reverse dns-lookup

1 22003 130.85.151.90 1 7828 66.28.132.168 unf.unf.unf.u.nf

2 9893 130.85.153.179 2 7517 66.62.70.248 SOA in domain .in-tch.com

3 4683 130.85.153.136 3 6657 64.246.34.181 SOA in domain .ev1.net

4 3718 130.85.88.201 4 3300 211.210.13.212 SOA in domain .krnic.net

5 2456 130.85.88.143 5 2295 211.239.164.163 SOA in domain .gngidc.net

6 2239 130.85.153.165 6 2256 211.239.164.180 SOA in domain .gngidc.net

7 2158 130.85.153.163 7 1880 211.63.185.30 SOA in domain .kornet.net

8 2129 130.85.153.168 8 1749 209.10.239.135 SOA in domain .globix.net

9 2090 130.85.153.157 9 1136 211.63.185.26 SOA in domain .kornet.net

10 1416 130.85.153.115 10 1060 211.239.123.75 SOA in domain .gngidc.net

Analyses of the OOS logfiles

Out Of Spec (OOS) log files contain the clear text Snort output of those IP packets which
do not comply with the RFC TCP/IP specifications. These packets are often crafted or the
result of a malfunctioning network device.

The OOS files were dated one day later than the actual contents. The actual range of OOS
was from 06/10 until 06/15. There were two entries in the OOS file that contained data
which could be the result of an overloaded logging process or manual editing of the data.
These entries are:

=+
06/10-19:06:09.354134 65.42.230.217:1342 -> MY.NET.88.162:0
TCP TTL:115 TOS:0x0 ID:62883 DF
21**RP** Seq: 0x4BE0040 Ack: 0x84883C72 Win: 0x5010
TCP Options => EOL EOL EOL EOL EOL EOL SackOK Opt 21 Opt 21 Opt 21 Opt 21 Opt 21
Opt 21 Opt 21 Opt 21 Opt 21 Opt 21 Opt 21 Opt 21 Opt 21 Opt 21 Opt 21 Opt 21 Opt
21 Opt 21 Opt 21 Opt 21 Opt 21 Opt 21 Opt 21 Opt 21 Opt 21 Opt 21 Opt 21 Opt 21
Opt 21 Opt 21 Opt 21 Opt 21 Opt 21
=+
06/13-17:54:54.956901 64.4.124.151:4 -> MY.NET.88.165:3193
TCP TTL:113 TOS:0x0 ID:65215 DF
21**R*** Seq: 0x4F50FC7 Ack: 0x31D87D88 Win: 0x5010
TCP Options => EOL EOL EOL EOL EOL EOL SackOK SackOK SackOK EOL Opt 53 Opt 53
Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt
53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53 Opt 53
Opt 53 Opt 53 Opt 53 Opt 53 Opt 53
=+

The timestamp of the second entry was within the range of scans and alerts logfiles and
this timestamp was checked against both files for the amount of entries during that time.
There was no evidence found that the NIDS was overloaded during that time.

There were 5 packets originating from 65.65.224.233 to MY.NET.88.162 which have the
"DF" and "MF" flags both set. This is an out of spec because they can not be set both in
the same packet. GCIA Practical #0489 by Hee So analyzed packets with exactly the
same signature (http://www.giac.org/practical/Hee_So_GCIA.doc).

Page 49 of 68

=+
06/10-16:59:22.453703 65.65.224.233 -> MY.NET.88.162
TCP TTL:110 TOS:0x0 ID:1553 DF MF
Frag Offset: 0x0 Frag Size: 0x22
91 87 92 50 1E DA B2 02 72 12 2B 94 03 C3 BE DF ...P....r.+.....
EB 14 B6 86 C4 D1 D8 AC 65 F0 FA 29 E5 2D E9 2C e..).-.,
EF 0A ..
=+

The IP identification is incremented for every packet, the Fragment Offset is always 0
and the Fragment size is 34 (0x22) bytes. There are no correlations to the other logs since
they contained no entries dated 06/10. The source IP does not further show up in the other
logs. This could be an improperly functioning network device as stated by Hee So.

The remaining packets had all weird TCP flags combination and the connections were
matched against the alerts file which results in the following overview of suspect
behavior.

#
Alerts

Alert
Code Connection

#
OOS OOS-SRC OOS-DST

IP 64.4.124.151

1 A 64.4.124.151:3193 -> 130.85.88.165:1269 1 64.4.124.151:0 MY.NET.88.165:3193

14 B 64.4.124.151:3193 -> 130.85.88.165:1269 5 64.4.124.151:3193 MY.NET.88.165:1269

8 C 64.4.124.151:3193 -> 130.85.88.165:1269 1 64.4.124.151:4 MY.NET.88.165:3193

IP 24.112.58.210

4 B 24.112.58.210:2656 -> 130.85.150.209:6346 1 24.112.58.210:166 MY.NET.150.209:2656

1 D 24.112.58.210:2656 -> 130.85.150.209:6346 5 24.112.58.210:2656 MY.NET.150.209:6346

IP 193.6.40.86

2 E 193.6.40.86:55089 -> 130.85.150.209:6346 2 193.6.40.86:55089 MY.NET.150.209:634

IP 195.101.94.208

1 E 195.101.94.208:1107 -> 130.85.150.83:80 1 195.101.94.208:1107 MY.NET.150.83:80

1 E 195.101.94.208:1385 -> 130.85.5.96:80 1 195.101.94.208:1385 MY.NET.5.96:80

1 E 195.101.94.208:2033 -> 130.85.5.95:80 1 195.101.94.208:2033 MY.NET.5.95:80

1 E 195.101.94.208:2102 -> 130.85.5.95:80 1 195.101.94.208:2102 MY.NET.5.95:80

IP 62.78.169.87

1 E 62.78.169.87:38498 -> 130.85.150.209:6346 1 62.78.169.87:38498 MY.NET.150.209:6346

1 D 2.78.169.87:38498 -> 130.85.150.209:6346

IP 62.99.143.178

1 E 62.99.143.178:59781 -> 130.85.150.83:80 1 62.99.143.178:59781 MY.NET.150.83:80

IP 62.99.143.179

1 E 62.99.143.179:42643 -> 130.85.150.83:80 1 62.99.143.179:42643 MY.NET.150.83:80

IP 12.217.65.38

2 B 12.217.65.38:4106 -> 130.85.88.162:1214 1 12.224.236.145:65329 MY.NET.88.162:1214

IP 12.217.65.38

0 1 12.217.65.38:0 MY.NET.88.162:4106

Alert-Code A: EXPLOIT x86 setuid 0 Alert-Code D: INFO Inbound GNUTella Connect request
Alert-Code B: Null scan! Alert-Code E: Queso fingerprint
Alert-Code C: SCAN FIN

Page 50 of 68

IP 64.4.124.151 is definitely scanning the local host 130.85.88.165 for vulnerabilities.
The destination ports are 3193 and 1269. Port 1269 is known to be used by the Trojan
called Matrix. The scan logs also contain several entries (41 alerts), all with malformed
TCP-flag combinations. This IP is referenced in the Registration Information section. It is
recommended to notify the owner of this IP.

The Queso fingerprint which is the most reported alert, is used to determine the OS of the
target host. The TCP-flags are denoted by "21S*****". More information is available at
http://www.digitaltrust.it/arachnids/IDS29/research.html.

Top Talkers list - OOS

Alerts Source - IP Reverse dns-lookup # Alerts Destination – IP

1 7 64.4.124.151 64-4-124-151.dmt.ntelos.net 1 11 MY.NET.88.162

2 6 24.112.58.210 CPE00045a7be40b.cpe.net.cable.rogers.com 2 9 MY.NET.150.209

3 5 65.65.224.233 adsl-65-65-224-233.dsl.spfdmo.swbell.net 3 7 MY.NET.88.165

4 4 195.101.94.208 x1crawler1-1-0.x-echo.com 4 3 MY.NET.5.96

5 2 24.120.177.22 cm022.177.120.24.lvcm.com 5 3 MY.NET.150.83

6 2 193.6.40.86 bazooka.saturnus.vein.hu 6 2 MY.NET.5.95

7 1 68.80.114.202 pcp01351643pcs.benslm01.pa.comcast.net 7 0 None

8 1 68.50.107.141 bgp01545206bgs.gambrl01.md.comcast.net 8 0 None

9 1 66.25.185.163 cs6625185-163.austin.rr.com 9 0 None

10 1 65.42.230.217 adsl-65-42-230-217.dsl.ipltin.ameritech.net 10 0 None

Analyses of the Scan logfiles

The Snort NIDS generated 2,129,956 scan log entries which are divided into:

137,411 entries : Inbound scans
291,995 entries : Outbound scan
1,700,550 entries : Scans on the local network

Scans on the Local Network
The top 10 destination ports within the scans on the local network are listed in the next
table. The “# Alerts”-column shows the total amount of alerts generated to a specific port
for one protocol (UDP/TCP).
The “# Total-Alerts”-column shows the total number of alerts for all protocols.

Page 51 of 68

Alerts Destination port Type Description # Total-Alerts

606475 161 UDP SNMP 606477

135369 7001 UDP AFS callback 135371

88003 53 UDP Dns 88021

83819 7000 UDP AFS 83819

53426 137 UDP NETBios name service 53428

24453 0 UDP Unused 24453

21765 7003 UDP AFS vlserver 21766

16419 1346 UDP Alta analystics lic. Man. or Ghost multicast 16421

15413 139 SYN NETBios session service 15442

12031 514 UDP Syslog 12034

Most of the traffic listed above is normal. Only destination port ‘0’ is definitely none
standard traffic. There are 134 internal hosts which generate this traffic which all (except
3 connections) use source-port 0. These 134 hosts should be investigated.

Another anomaly is that when looking at the difference between “# Alerts” and “# Total-
Alerts” there are 2 hosts which are mainly responsible for these other connections:

From: 130.85.28.2 port 38976 to 130.85.151.90 port 161 SYN ******S*
port 7001 SYN ******S*
port 137 SYN ******S*
port 1346 SYN ******S*
port 514 SYN ******S*

From: 130.85.253.10 port 44591 to 130.85.88.245 port 161 SYN ******S*
port 7001 SYN ******S*
port 137 SYN ******S*
port 7003 SYN ******S*
port 514 SYN ******S*

It is recommended to investigate these hosts thoroughly on being compromised or not.

Inbound scans
The top 2 destination ports within the inbound scans are:

49532 alerts to port: 6970 Trojan GateCrasher
24753 alerts to port: 0 Unused

These scans mainly originate from host 12.151.57.37 and the network 205.188.222.0/24
which are also listed in the “Top Talkers list –Scans”. See also the Registration
Information section.

Page 52 of 68

The top 10 of internal hosts that were scanned by one external host, ranked on destination
port:

IP 12.151.57.37 probed 130.85.88.245 on 7492 ports (45027 alerts)
IP 195.92.228.141 probed 130.85.151.95 on 663 ports (3328 alerts)
IP 10.16.1.40 probed 130.85.153.46 on 562 ports (2454 alerts)
IP 213.239.135.175 probed 130.85.153.145 on 210 ports (351 alerts)
IP 211.239.164.43 probed 130.85.153.168 on 185 ports (413 alerts)
IP 63.250.205.12 probed 130.85.153.142 on 171 ports (388 alerts)
IP 211.239.164.15 probed 130.85.153.168 on 157 ports (427 alerts)
IP 63.119.175.56 probed 130.85.88.226 on 155 ports (155 alerts)
IP 211.233.25.31 probed 130.85.153.169 on 153 ports (388 alerts)
IP 211.239.164.44 probed 130.85.153.168 on 135 ports (431 alerts)

Outbound scans
The top 10 destination ports for generated scans leaving the local network are:

Alerts Port Type # Alerts Port Type

187074 80 SYN 2230 1214 SYN

33582 1214 UDP 1759 443 SYN

14700 6667 SYN 1684 6257 UDP

11915 6346 SYN 1081 5190 SYN

4342 427 UDP 799 8080 SYN

The huge amount of entries for port 80 mostly originate from hosts on the subnets
130.85.153.0/24, 130.85.152.0/24, 130.85.151.0/24, 130.85.150.0/24 and 130.85.88.0/24
which correlates with the alert analyses of the “spp_http_decode: IIS Unicode attack
detected” and confirms that these originating hosts are probably compromised.

The alerts to port 1214 are mostly originated from the hosts 130.85.88.162 (24251 alerts)
and 130.85.150.113 (9125 alerts) and there are 11223 different targets. This indicates the
usage of KaZaa/Morpheous/Grokster filesharing. It is recommended to check the usage
of this file sharing against the policy.

The alerts to port 6667 confirm the heavy use of IRC communications as stated in the
alert analyses of “INFO Possible IRC Access”.

The alerts to port 6346 and 6257 indicate the use of Gnutella, BearShare or WinMX file
sharing. The use of Gnutella on outbound connections is also reported with the alerts
analyses (ranked 7, outbound connections).

The alert to port 5190 indicates the usage of AOL instant messenger.

Page 53 of 68

Top Talkers list - Scans

Table H Top 10 Scan talkers - External source and Internal source

Alerts External source Reverse dns-lookup # Alerts Internal source

1 45027 12.151.57.37 SOA in .securitas.bz 1 608566 130.85.5.89

2 11336 205.188.228.129 mslb6.streamops.aol.com 2 371371 130.85.60.43

3 10721 205.188.228.1 mslb1.spinner.com 3 48530 130.85.6.49

4 9802 205.188.228.145 mslb7.streamops.aol.com 4 45727 130.85.6.45

5 6778 205.188.228.17 mslb2.spinner.com 5 41365 130.85.28.2

6 6673 205.188.228.65 mslb4.spinner.com 6 39166 130.85.6.52

7 4389 205.188.228.33 mslb3.spinner.com 7 37698 130.85.253.10

8 3328 195.92.228.141 SOA in .theplanet.net 8 31912 130.85.6.51

9 2454 10.16.1.40 Private range address 9 31395 130.85.6.50

10 1963 66.28.225.156 SOA in .dns.cogentco.com 10 26198 130.85.88.162

Table I - Top 10 Scan talkers - Internal destination and External destination

Alerts Source - IP # Alerts Destination - IP Reverse dns-lookup

1 82738 130.85.88.245 1 5767 216.40.225.68 h-216-40-225-68.23i.net

2 55504 130.85.1.3 2 4345 216.239.51.101 www.google.com

3 41411 130.85.151.90 3 4268 224.0.1.22 Multicast address (srvloc.mcast.net)

4 30567 130.85.1.4 4 4228 131.118.254.39 a131-118-254-
39.deploy.akamaitechnologies.com

5 29040 130.85.11.7 5 3698 205.188.228.65 mslb4.spinner.com

6 23720 130.85.6.45 6 3583 131.118.254.38 a131-118-254-
38.deploy.akamaitechnologies.com

7 23703 130.85.11.6 7 3223 205.188.228.129 mslb6.streamops.aol.com

8 19567 130.85.60.43 8 3142 205.188.228.33 mslb3.spinner.com

9 15971 130.85.5.55 9 3051 66.28.132.168 unf.unf.unf.u.nf

10 15654 130.85.6.60 10 2959 66.62.70.248 SOA in .in-tch.com

Registration Information

IP 64.4.124.151 was chosen because of the targeted scanning to the internal host
130.85.88.165.

WHOIS information:
Ntelos North Cisco DSL DHCP Range #2 CFW-64-4-124-NNC (NET-64-4-124-0-1)
64.4.124.0 - 64.4.124.255
CFW Communications CFW-BLK-2 (NET-64-4-96-0-1) 64.4.96.0 - 64.4.127.255

Page 54 of 68

Reverse DNS-lookup:
Host-name: 64-4-124-151.dmt.ntelos.net.
Nameservers: ns.cfw.com and ns4.cfw.com.

Additional registration information:
OrgName: CFW Communications
OrgID: CFW
NetRange: 64.4.96.0 - 64.4.127.255
CIDR: 64.4.96.0/19
NetName: CFW-BLK-2
NetHandle: NET-64-4-96-0-1
Parent: NET-64-0-0-0-0
NetType: Direct Allocation
NameServer: NS.CFW.COM
NameServer: NS2.NTELOS.NET
NameServer: NS1.NTELOS.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2001-03-20
Updated: 2001-07-24

TechHandle: DNS56-ORG-ARIN
TechName: Domain Name Services
TechPhone: +1-540-946-2638
TechEmail: dns@cfw.com
CFW Communications (CFW)
Wilkes, Charles (CW284-ARIN) cfw@pobox.com +1-408-229-2748
CFW Network Inc. (AS7795) CFWNET 7795

Registered nets by CFW Communications which are traveled by a traceroute traversal:
CFW Communications CFW-BLK-1 (NET-216-12-0-0-1) 216.12.0.0 - 216.12.127.255
CFW Network - Router Sync Ports CFW-216-12-2 (NET-216-12-2-0-1) 216.12.2.0 - 216.12.2.255
CFW Network - WV Backbone #2 CFW-216-12-96 (NET-216-12-96-0-1) 216.12.96.0 - 216.12.96.255

IP 195.101.94.208 was chosen because this IP targeted the most different internal hosts
wit OOS-packets and was also reported because of scanning to these hosts on port 80 and
alerted as Queso fingerprint.

WHOIS information:
inetnum: 195.101.94.0 - 195.101.94.255
netname: FR-ECHO
descr: Socite ECHO
country: FR
admin-c: CR308-RIPE
tech-c: CR308-RIPE
status: ASSIGNED PA
notify: addr-reg@rain.fr
mnt-by: RAIN-TRANSPAC
changed: noc@rain.fr 19970514
source: RIPE
route: 195.101.94.0/24
descr: ECHO
origin: AS8891
mnt-by: OLEANE-NOC
changed: hostmaster@oleane.net 19980929
source: RIPE
person: Christophe RUELLE
address: ECHO
address: 20 Parc des hautes Technologies

Page 55 of 68

address: 06250 MOUGINS
phone: +33 4 92 28 32 00
fax-no: +33 4 92 28 32 01
e-mail: ruelle@echo.fr
nic-hdl: CR308-RIPE
notify: addr-reg@rain.fr
mnt-by: RAIN-TRANSPAC
changed: nathalie@rain.fr 20000324
source: RIPE

Reverse DNS-lookup:
Host-name: x1crawler1-1-0.x-echo.com.
Nameservers: ns.x-echo.com. ns1.x-echo.com.

Additional information:
This IP is reported at http://www.dshield.org/ipinfo.php?ip=195.101.94.208 and
fightback was sent to ruelle@echo.fr on 2002-04-23 18:24:27. There is no reply received.

IP 12.151.57.37 was chosen because of the overwhelming scans originated from this host.

WHOIS information:
AT&T WorldNet Services ATT (NET-12-0-0-0-1) 12.0.0.0 - 12.255.255.255
ATLIGHTSPEED A-LIGHT112-56 (NET-12-151-56-0-1) 12.151.56.0 - 12.151.63.255

Reverse DNS-lookup:
Host-name: no PTR-record
Nameservers: ns1.securitas.bz. NS3.securitas.bz.ns.cfw.co

Additional registration information:
OrgName: CFW Communications
OrgID: CFW
NetRange: 64.4.96.0 - 64.4.127.255
CIDR: 64.4.96.0/19
NetName: CFW-BLK-2
NetHandle: NET-64-4-96-0-1

OrgName: ATLIGHTSPEED
OrgID: LSPD
NetRange: 12.151.56.0 - 12.151.63.255
CIDR: 12.151.56.0/21
NetName: A-LIGHT112-56
NetHandle: NET-12-151-56-0-1
Parent: NET-12-0-0-0-1
NetType: Reallocated
Comment:
RegDate: 2001-10-11
Updated: 2002-08-22

TechHandle: JM2923-ARIN
TechName: McCoy, Jeff
TechPhone: +1-720-264-2029
TechEmail: jmccoy@atlightspeed.com

Additional information:
This IP is reported at http://www.dshield.org/ipinfo.php?ip=12.151.57.37 and there was
no fightback sent. The attacked ports registered are 1350 and 1443.

Page 56 of 68

IP 195.92.228.141was chosen because this host was in the Top Talkers list - scans and all
scans from this host are targeted at only 1 internal host as shown in the top 10 of internal
hosts that were scanned by one external host. The targeted host is 130.85.151.95.

WHOIS information:
inetnum: 195.92.224.0 - 195.92.231.255
netname: E2-WEB1
descr: Energis Squared Managed Web Server Network
descr: In case of problems, please contact +44 113 2346068
descr: Please do not send abuse reports to tech or admin contacts
descr: Abuse reports to abuse@energis-squared.com please!
country: GB
admin-c: PJ3130-RIPE
tech-c: PJ3130-RIPE
rev-srv: earth.theplanet.net
rev-srv: venus.theplanet.net
rev-srv: pluto.theplanet.net
status: ASSIGNED PA
notify: ripe-adm@planet.net.uk
mnt-by: AS5388-MNT
changed: darrenh@energis-squared.net 20001123
source: RIPE
route: 195.92.0.0/16
descr: Planet Online Limited
descr: The White House
descr: Melbourne St.
descr: Leeds LS2 7PS United Kingdom
origin: AS5388
mnt-by: AS5388-MNT
changed: matthew@planet.net.uk 19960612
source: RIPE
person: Pedro Jones
address: Energis Squared
address: Melbourne St
address: Leeds, LS2 7PS
phone: +44 113 207 6000
fax-no: +44 113 2345656
e-mail: pedro.jones@energis-squared.com
nic-hdl: PJ3130-RIPE
mnt-by: AS5388-MNT
changed: ripe-adm@planet.net.uk 20010920
source: RIPE

Reverse DNS-lookup:
Host-name: no PTR-record
Nameservers: earth.theplanet.net. pluto.theplanet.net. venus.theplanet.net.

IP 24.112.58.210 was chosen because this host was second in the Top Talkers list - OOS
and was responsible for two alert types (Null scan and INFO inbound GNUTella Connect
request) and targeted only internal host 130.85.150.209

WHOIS information:
OrgName: Rogers Cable Inc.
OrgID: ROCB
NetRange: 24.112.0.0 - 24.112.255.255
CIDR: 24.112.0.0/16
NetName: ROGERS-CAB-1
NetHandle: NET-24-112-0-0-1

Page 57 of 68

Parent: NET-24-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.WLFDLE.RNC.NET.CABLE.ROGERS.COM
NameServer: NS2.WLFDLE.RNC.NET.CABLE.ROGERS.COM
NameServer: NS1.YM.RNC.NET.CABLE.ROGERS.COM
NameServer: NS2.YM.RNC.NET.CABLE.ROGERS.COM
Comment:
RegDate:
Updated: 2002-08-20
TechHandle: AD30-ARIN
TechName: Budd, Paul
TechPhone: +1-416-935-4729
TechEmail: abuse@rogers.com

Reverse DNS-lookup:
Host-name: CPE0000863e27fd.cpe.net.cable.rogers.com.
Nameservers: ns1.wlfdle.rnc.net.cable.rogers.com. ns2.wlfdle.rnc.net.cable.rogers.com.

ns1.ym.rnc.net.cable.rogers.com. ns2.ym.rnc.net.cable.rogers.com.

Link Graph

The link graph on the next page shows the connections that are detected due to the alert
“INFO Possible IRC Access” and the correlated alerts that did arise for these connections.
The local systems are grouped together according the subnet they reside on.

The graph also shows the traffic that is generated from potential IRC servers to the local
hosts to test if the IRC-client is not behind some kind of proxy server. The number on the
line, show the number of generated “INFO Possible IRC Access”-alerts. The two tables
that are used for this graph can be found in paragraph “INFO Possible IRC Access “.

The local hosts are represented by a “monitor”-icon and the external hosts are represented
by a “PC-tower”-icon. The local host 130.85.151.90 is a high volume user.

Page 58 of 68

Link Graph

Page 59 of 68

Analyses Process

The analyses started with a health check of the files that were provided. The more
confident the log-files are, the more accurate the analyses will be.
Each set of the three different kind of logfiles was concatenated into one large file for
each set and checked (See appendix B:commands01).

The global health check was performed on these three concatenated files. It is possible
that the logging process produces malformed loglines due speed limitations on high
volume networks. A script which counts the number of characters for each line and
displaying the shortest and longest line found, could detect malformed log entries.
Malformed log lines can often be detected because they are extremely long or extremely
large. Script01 was used to check this (See appendix B:script01). The same script was
used to run against the independent files in each set of files for completeness.

A sample of the usage and output is given below:
cat work/alerts | ./script01
 Shortest line is: 77 characters
 06/11-10:15:53.593335 [**] Null scan! [**] 80.144.59.96:0 -> 130.85.88.179:0
 Longest line is: 140 characters
 06/13-10:20:10.432574 [**] spp_portscan: portscan status from 130.85.28.2:
 3562 connections across 1 hosts: TCP(3561), UDP(1) STEALTH [**]
 Number of lines is: 780438 lines

It turned out that the files 'oos_Jun.11.2002.new' and 'oos_Jun.14.2002.new' both had one
entry which was suspicious and indicated a malformed entry.

The script was also run against a subset of the 'work/alerts' file, excluding the
'spp_portscan' alerts: cat work/alerts | grep -v 'spp_portscan' | ./script01

Because there is a separate scan-file, the work/alerts file was split into two files:
grep -iv 'spp_portscan' work/alerts > work/alerts-no-scan
grep -i 'spp_portscan' work/alerts > work/alerts-only-scan

The alerts-no-scan file was processed by Script02 to gather the most interesting alerts
(See appendix B:script02). The script checks the alerts-file on three existing columns
which are separated by '[**]'. The script can produce output for each column given on the
command-line, separated by a '#'.

Perlscript apr was written to do various ways of research on the alert files and gathers
information based on the source IP-address. The script can easily be altered to run against
the scan files (example included in the source) or to gather the information based on the
destination IP-address.

This perlscript and various UNIX commands like sort, uniq, grep, sed, awk and vi are
used to gather all kind of information. Tools like SnortSnarf, SnortRep and ACID have
not been used since it was fun digging into the logs without any prejudice.

Page 60 of 68

References

1. Morris, Chris. “What Do You Do After You Deploy the IDS?”. January 3, 2001
URL: http://www.sans.org/newlook/resources/IDFAQ/deploy.htm

2. Staniford, Stuart. Paxson, Vern. Weaver, Nicholas. “How to 0wn the Internet in Your
Spare Time” URL: http://www.icir.org/vern/papers/cdc-usenix-sec02/index.html

3. Internet Security Systems, Inc. “Executive Summary Internet Risk Summary”, for
March 26, 2002 through June 24 2002
URL: https://gtoc.iss.net/documents/summaryreport.pdf

4. Staniford, Stuart. Hoagland, James. McAlerney, Joseph. “Practical Automated
Detection of Stealthy Portscans”
URL: http://www.silicondefense.com/pptntext/Spice-JCS.pdf

5. Provos, Niels. “Honeyd - Network Rhapsody for You”. URL:
http://www.citi.umich.edu/u/provos/honeyd/

6. Liston, Tom. “Welcome To My Tarpit - The Tactical and Strategic Use of LaBrea”
URL: http://www.hackbusters.net/LaBrea/LaBrea.txt

7. Schlotter, Chadd. “Anti-Hacking: The Protection of Computers”. April 2, 2001
URL: http://rr.sans.org/attack/antihack.php

8. Haig, Leigh. “LaBrea - A New Approach to Securing Our Networks”. Match 7, 2002.
URL: http://rr.sans.org/attack/labrea.php

9. Distributed Intrusion Detection System. URL: http://www.dshield.org/
10. Internet Storm Center. URL: http://isc.incidents.org/
11. Security Focus DeepSight Analyzer (ARIS). URL: http://aris.securityfocus.com/
12. HackerWatch.org (McAfee Personal Firewall). URL: http://www.hackerwatch.org/
13. Provos, Niels. “honeyd creates network schizophrenia”. April 8, 2002.

URL: http://archives.neohapsis.com/archives/sf/honeypots/2002-q2/0010.html
14. Homepage of the LaBrea Tarpit. URL: http://www.hackbusters.net/LaBrea/
15. Braun, Joakim von. “What port numbers do well-known trojan horses use?”. July

2002. URL: http://www.sans.org/newlook/resources/IDFAQ/oddports.htm
16. Stevens W. Richard. TCP/IP Illustrated, Volume 1. Reading: Addison Wesley

Longman Inc.1994 (17th printing April 2000).
17. Northcutt, Stephan and Novak, Judy and McLachlan, Donald. Network Intrusion

Detection – An Analyst’s handbook. 2nd Edition New Riders Publishing. 2001
18. SamSpade, Information about registrations. URL: www.samspade.org.
19. Info on Error32. URL: http://www.dark-e.com/archive/trojans/err32/beta/
20. Error32. URL: http://www.megasecurity.org/trojans/e/error32/Error32.html
21. RadWare. “LinkProof” URL: http://www.radware.com/content/products/link.asp.
22. Romanski, James. “Using SNMP for Reconnaissance” August 12, 2000.

URL:http://www.sans.org/newlook/resources/IDFAQ/SNMP.htm
23. MIB - Information. URL: http://www.mibcentral.com/index.shtml
24. SecurityFocus. “IPFilter TTL Fingerprinting Vulnerability” Updated April 2, 2002.

URL:http://online.securityfocus.com/bid/4403/discussion/
25. Network Working Group. “SNMPv1”. May, 1990.

URL:http://www.ietf.org/rfc/rfc1157.txt
26. Sans Institute. “How To Eliminate The Ten Most Critical Internet Security Threats

The Experts’ Consensus Version 1.33” June 25, 2001.
URL:http://www.sans.org/topten.htm

Page 61 of 68

27. Chen, Yen-Ming . “Survey of Log Analysis Tools for Snort” July 2001.
URL:http://www.unixreview.com/documents/s=1233/urm0107f/0107f.htm

28. Bryce, Alexander. “Port 137 Scan” May 10, 2000.
URL:http://www.sans.org/newlook/resources/IDFAQ/port_137.htm

29. Incidents Org. “React”. URL: http://www.incidents.org/react/
30. Incidents Org. “Portinfo”. URL: http://isc.incidents.org/port_details.html?port=xxxx
31. Dshield Org. “IP-info”. URL: http://www.dshield.org/ipinfo.php?ip=aa.bb.cc.dd
32. So, Hee. Practical #0489. “GIAC Intrusion Detection In Depth - v3.0” February 16,

2002 URL: http://www.giac.org/practical/Hee_So_GCIA.doc
33. Beardsley, A. Tod. Practical #525 “Intrusion Detection And Analysis: Theory,

Techniques, and Tools” May 8, 2002.
URL:http://www.giac.org/practical/Tod_Beardsley_GCIA.doc

34. Fiddler, Matthew. Practical #484 “GIAC Intrusion Detection In Depth - v3.0”
http://www.giac.org/practical/Matthew_Fiddler_GCIA.doc

35. Smith, Gary. Practical #0532. “GCIA Intrusion Detection In Depth - v3.1” 2002,
URL: http://www.giac.org/practical/Gary_Smith_GCIA.zip

Page 62 of 68

Appendix A - Overview of all alerts -

Alerts
Total

R
a
n
k

Alerts
Local
(L)

R
a
n
k

Alerts
Out-

bound
(O)

R
a
n
k

Alerts
In-

bound
(I)

Description of the Alert

59224 1 59224 SMB Name Wildcard

52002 2 52002 SNMP public access

46878 7 383 1 43746 4 2749 Spp_http_decode: IIS Unicode attack detected

28111 1 28111 MISC Large UDP Packet

27142 3 27141 20 1 ICMP Echo Request L3retriever Ping

21959 2 21959 INFO Possible IRC Access

8471 3 4154 3 4317 INFO MSN IM Chat data

4906 2 4906 AFS - Off-campus activity

3623 4 3623 ICMP Echo Request Nmap or HPING2

3538 5 2973 10 565 High port 65535 udp - possible Red Worm - traffic

2419 22 1 4 2418 spp_http_decode: CGI Null Byte attack detected

2333 5 2333 WEB-MISC Attempt to execute cmd

2179 6 2179 FTP DoS ftpd globbing

2144 7 2144 Watchlist 000220 IL-ISDNNET-990517

1268 12 13 5 1255 ICMP Fragment Reassembly Time Exceeded

909 6 909 ICMP Router Selection

752 8 752 INFO Inbound GNUTella Connect request

620 9 620 WEB-IIS view source via translate header

528 7 528 INFO Outbound GNUTella Connect request

490 8 468 22 22 Incomplete Packet Fragments Discarded

401 6 401 ICMP Destination Unreachable (Communication Admin. Prohibited)

317 28 1 11 316 Null scan!

260 12 260 IDS552/web-iis_IIS ISAPI Overflow ida nosize

212 8 71 9 141 ICMP Echo Request Windows

209 13 209 SCAN Proxy attempt

95 10 95 ICMP Echo Request CyberKit 2.2 Windows

87 14 87 WEB-IIS _vti_inf access

80 15 80 WEB-FRONTPAGE _vti_rpc access

79 11 79 IRC evil - running XDCC

79 16 79 INFO - Possible Squid Scan

71 17 71 INFO FTP anonymous FTP

65 9 55 18 4 36 6 Possible trojan server activity

53 18 53 WEB-MISC http directory traversal

45 12 45 WEB-MISC 403 Forbidden

39 19 39 WEB-IIS Unicode2.pl script (File permission canonicalization

38 13 38 INFO Napster Client Data

33 10 33 ICMP traceroute

32 11 32 ICMP Destination Unreachable (Protocol Unreachable)

Page 63 of 68

Alerts
Total

R
a
n
k

Alerts
Local
(L)

R
a
n
k

Alerts
Out-

bound
(O)

R
a
n
k

Alerts
In-

bound
(I)

Description of the Alert

32 20 2 21 30 NMAP TCP ping!

31 20 31 Watchlist 000222 NET-NCFC

28 14 28 WEB-IIS Unauthorized IP Access Attempt

27 14 5 15 22 ICMP Echo Request Delphi-Piette Windows

21 23 21 WEB-CGI scriptalias access

20 19 3 17 7 32 10 High port 65535 tcp - possible Red Worm - traffic

20 24 20 WEB-MISC compaq nsight directory traversal

19 25 19 UDP SRC and DST outside network

14 26 14 EXPLOIT x86 setuid 0

14 27 14 EXPLOIT x86 NOOP

12 13 8 38 4 Back Orifice

11 28 11 SCAN Synscan Portscan ID 19104

11 29 11 SCAN FIN

10 30 10 suspicious host traffic

10 31 10 Queso fingerprint

8 15 5 40 3 Attempted Sun RPC high port access

8 26 1 35 7 SUNRPC highport access!

8 16 8 IFO Inbound GNUTella Connect accept

8 33 8 EXPLOIT x86 setgid 0

8 34 8 EXPLOIT NTPDX buffer overflow

5 37 5 WEB-CGI redirect access

4 16 4 ICMP Destination Unreachable (Host Unreachable)

4 17 3 47 1 Port 55850 udp -Possible myserver activity-ref. 010313-1

3 18 3 Port 55850 tcp -Possible myserver activity- ref. 010313-1

3 39 3 MISC PCAnywhere Startup

2 21 2 ICMP Echo Request BSDtype

2 23 1 43 1 Virus - Possible scr Worm

1 24 1 Virus - Possible pif Worm

1 25 1 Virus - Possible MyRomeo Worm

1 27 1 Probable NMAP fingerprint attempt

1 19 1 NIMDA - Attempt to execute cmd from campus host

1 41 1 X11 outgoing

1 42 1 WEB-CGI formmail access

1 44 1 TFTP - Internal UDP connection to external tftp server

1 45 1 TFTP - External UDP connection to internal tftp server

1 46 1 SCAN XMAS

1 48 1 MISC traceroute

1 49 1 EXPLOIT x86 stealth noop

Page 64 of 68

Appendix B - Commands and scripts used for assignment 3 -

Commands01
Create for all three sets, one concatenated file.
cd $HOME/logs ## Here are all the logfiles gathered.
######### Processing of the oos_* files ###########################
Get rid of the '^M' character and empty lines in the oos_* files:
contents of cmd01:
s/^M//
/^$/d
#
sed -f cmd01 oos_Jun.11.2002 > oos_Jun.11.2002.new
sed -f cmd01 oos_Jun.12.2002 > oos_Jun.12.2002.new
sed -f cmd01 oos_Jun.13.2002 > oos_Jun.13.2002.new
sed -f cmd01 oos_Jun.14.2002 > oos_Jun.14.2002.new
sed -f cmd01 oos_Jun.15.2002 > oos_Jun.15.2002.new
Open the *.new files in vi to check the eof-character.
Concatenate all the oos_* files into one file:
cat oos*.new > work/oos
wc oos*new 57 491 3334 oos_Jun.11.2002.new
 5 27 256 oos_Jun.12.2002.new
 65 384 3471 oos_Jun.13.2002.new
 45 342 2642 oos_Jun.14.2002.new
 15 90 820 oos_Jun.15.2002.new
 187 1334 10523 total
wc work/oos ----> Gives: 187 1334 10523
######### Processing of the scan.* files ##########################
cat scans* >work/scans
wc scans* 389857 2786572 24516007 scans.020611
 288892 2057369 18028165 scans.020612
 426284 3092233 27031631 scans.020613
 420811 3036813 26575222 scans.020614
 282283 2004375 17422461 scans.020615
 321829 2288419 19927071 scans.020616
 2129956 15265781 133500557 total
wc work/scans ----> Gives: 2129956 15265781 133500557
######### Processing of the alert.* files #########################
cat alert* > work/alerts
%wc alert* 141476 1933377 17253046 alert.020611
 108300 1443462 12937967 alert.020612
 167161 2154342 19537545 alert.020613
 164805 2137948 19349046 alert.020614
 88022 1177917 10439117 alert.020615
 110674 1434887 12851421 alert.020616
 780438 10281933 92368142 total
wc work/alerts ----> Gives: 780438 10281933 92368142
###
Checking the concatenated files:
cat work/alerts | ./script01
cat work/oos | ./script01
cat work/scans | ./script01
cat oos | grep '\->' | ./script01
grep -iv 'spp_portscan' work/alerts | ./script01
grep '[^^]06\/1' alerts ## check if there is more than 1 entry in
 ## one line.
###
Extracting the portscan entries out of the alerts file:
grep -iv 'spp_portscan' work/alerts > work/alerts-no-scan
grep -i 'spp_portscan' work/alerts > work/alerts-only-scan

Page 65 of 68

Script01
#!/bin/sh
#
Analyze data on default input:
Number of characters in shortest line on input
text of this shortest line in input
Number of characters in longest line on input
text of this longest line in input
Total number of lines on input
#
awk '
BEGIN {
 min = 65535 ; max = 0; tot =0
}
{
Determine the longest line
if (length($0) > max) {
 max = length($0) ;
 lline = $0 ;}
Determine the shortest line
if (length($0) < min) {
 min = length($0) ;
 sline = $0 ;}
tot++ ;
}
END {
 print "Shortest line is: ", min , "characters" ;
 print "\t"sline;
 print "Longest line is: ", max , "characters";
 print "\t"lline;
 print "Number of lines is: ", tot , "lines";
}'

Script02
#!/bin/sh
Analyze Alert files:
Total number of lines
Check min and max number of fields (should always be 3)
- spp_portscan has a trailing ' ' --> 3 fields
when a number is given, that field is printed
otherwise the complete line is printed on stdout
#
sample: script02 1 3 < input prints columns 1 and 3,
seperated by '#'
#
if [$1]
 then fld=\$$1;
 if [$2]
 then fld=\$$1\"#\"\$$2 ;
 if [$3]
 then fld=\$$1\"#\"\$$2\"#\"\$$3 ;
 fi
 fi
else
 fld='$0' ;
fi
awk '
BEGIN { FS="[]+\\[**\\][]+" ;
 min = 65535 ; max = 0; tot =0 ;
}
{
Determine the number of fields (should always be 3)
if (NF > max)

Page 66 of 68

 max = NF ;
if (NF < min)
 min = NF ;
#print $1"+"$2"+"$3 ;
 if ($fld != "") print '$fld';
tot++ ;
}
END {
 if (min != 3) print "ERROR -- There is a line with only " min " field(s)";
 if (max != 3) print "ERROR -- There is a line with " max " fields" ;
else if (fld) print "$fld"; else print $1, $2, $3 ;
 print "Number of lines processed is: ", tot ;
print "max is:"max "min is"min ;
}' -

Perlscript apr - alert port reporter
#!/usr/bin/perl -w
#
Program apr -- Alert Port reporter
#
Input: Snort alert-log (Fast-mode)
only alerts (no spp_portscan)
#
Assumed lay-out:
MM/DD-HH:MM:SS.999999 [**] --- Description --- [**] AAA.BBB.CCC.DDD:PPPPP
-> EEE.FFF.GGG.HHH:PPPPP
#
Purpose: Define filter(s) and report the port usage and destinations
Analyze only udp and tcp connections
#
#
use strict 'vars'; # Declare all variables
use Getopt::Std;
#
#
my %opts;
my %srcip;
#
my $dq='[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}' ; # Dotted-quad repr.
my $pt='\d{1,5}' ; # port repr.
#
my $df=$dq ; # default destiniation filter
my $sf=$dq ; # default source filter
#
if (! getopts("hs:d:nta", \%opts)) { # unknown option
print "run\n";
print "options %opts\n";
 &printhelp;
 exit 1;
}
#
if ($opts{h}) { # Help requested
 &printhelp;
 exit 0;
}
#
if ($opts{s}) { # source filter specified
 $sf = $opts{s} ;
 print "Source filter used is: $sf\n" if (not $opts{t}) ;
}
if ($opts{d}) { # destination filter specified
 $df = $opts{d} ;
 print "Destination filter used is: $df\n" if (not $opts{t}) ;

Page 67 of 68

}
#
if ($#ARGV+1 <1) {
 &printhelp;
 exit 1;
}
#
my $infile = $ARGV[0];
#
main();
#
sub main {
 open (I, $infile) || die "*** can not open $infile $!";
#
 while (<I>) {
 # Fill all the hashes
 /(^.*\b)\s+\[**\]\s+(.*)\s+\[**\]\s+($sf):($pt) -> ($df):($pt)/;
##or this one for scan files## /(^.*\b)\s+(.*)\s+($sf):($pt) -> $df):($pt).*/;
 # $1 = Time/Date $2 = Description $3 = Src-ip
 # $4 = srcport $5 = dest-ip $6 = dstport
 next if (!defined $6) ;
 if ($srcip{$3}) { # src-ip already processed
 if ($srcip{$3}->{"$5"}) { # and with this dest-ip
 $srcip{$3}->{"$5"}->[0]++ ; # Total connects ;
 if ($srcip{$3}->{"$5"}->[2]->{"$6"}) { # add 1 to the port
 $srcip{$3}->{"$5"}->[2]->{"$6"}++
 }
 else {
 $srcip{$3}->{"$5"}->[1]++ ; # add to # of ports
 $srcip{$3}->{"$5"}->[2]->{"$6"} = 1 ;
 }
 }
 else { # create entry for dst-ip to this src ip
 my $rdp = {} ; # Create empty referenced hash for the dstport
 $rdp->{"$6"}=1 ;
 my $a =[] ; # create empty referenced array
 $a->[0] = 1 ; # connects to this IP
 $a->[1] = 1 ; # Count the different ports
 $a->[2] = $rdp ; # Placeholder for the ports
 $srcip{$3}->{"$5"}=$a ;
 }
 }
 else { # create a new entry for this source ip
 my $rdp = {} ; # Create empty referenced hash for the dstport
 $rdp->{"$6"}=1 ;
 my $a = [] ; # create empty referenced array
 $a->[0] = 1 ; # connects to this IP
 $a->[1] = 1 ; # Count the different ports
 $a->[2] = $rdp ; # Placeholder for the ports
 my $rd = {} ; # Create empty referenced hash for the dst ip's
 $rd->{"$5"}=$a ; # assign the array withinfo
 $srcip{$3}=$rd ; # add this src-ip to the hash
 }
 } #eow
 close I ;
 &printheader() if (not $opts{t});
 &printsourceip() ;
}
#
sub printhelp {
 print "Usage: apr [-h][-n][-t][-s 'IP'][-d 'IP'] <filename> \n\n";
 print "\t<filename> is te name of the snort portscan log-file\n\n";
 print "\tFlags:\n";
 print "\t-h\tshow this help message\n";

Page 68 of 68

 print "\t-a\tDo not display details\n";
 print "\t-n\tDisplay totals for each destination-ip\n";
 print "\t-t\tDisplay the totals for each destination-ip\n\n";
 print "\t-s\t'IP' report on source-ip only\n";
 print "\t-d\t'IP' report on destination-ip only\n";
 print "\t\t'IP' can be a perl regular expression\n" ;
}
#
sub printheader {
 print "\tOverview of file $infile:\n" ;
 print "\t=========================\n\n" ;
}
#
sub printsourceip {
 my $t0 = 0 ; # Number of processed source-ip's
 my $t1 = 0 ; # Number of destination ip's
 my $t2 = 0 ; # Number of different port
 my $t3 = 0 ; # Number of probes
 # Sorted on Source IP
 my @sortkeys = sort {ip2fullip($a) cmp ip2fullip($b)} keys %srcip ;
 foreach (@sortkeys) {
 $t0++ ;
 my $c1 = $_ ; # Column 1
 my $r = $srcip{$_} ;
 my @sortkeys2 = sort keys %{$r} ;
 $t1 = 0 ; # Count the number of source-ip's
 $t2 = 0 ; # Number of ports
 $t3 = 0 ; # Number of probes
 my %prtcnt ; # Create empty named hash
 foreach (@sortkeys2) {
 $t1++; # Count the destination ip's
 my $c2 = $_ ; # Column 2
 my $rp = $r->{$_}->[2] ; # Reference to the port hash
 my @sortkeys3 = sort keys %{$rp};
 foreach (@sortkeys3) {
 my $p=$_ ;
 if (not $opts{a}) {
 print "From $c1 to $c2 on port $p ($rp->{$_} times)\n";
 }
 if (not exists($prtcnt{"$p"})) {
 $prtcnt{"$p"}=0 ;
 $t2++ ;
 }
 $t3 = $t3 + $rp->{$_} ;
 }
 if ($opts{t}) { # Subtotals per dst-ip
 print " $c1 to $c2 are $r->{$_}->[0] connections on" ;
 print " $r->{$_}->[1] port(s)\n";
 }
 }
 if ($opts{n}) { # Subtotals per source-ip
 print "IP $c1 probed $t1 destination(s), $t2 distinct port(s) ($t3
alerts)\n";
 }
 }
 print "\n";
}
#
sub ip2fullip() { # Needed for sorting the source-ip
 my ($ip) = @_ ; my @a = split (/\./, $ip) ;
 for (my $i = 0; $i < 4 ; $i++) {
 while (length($a[$i]) < 3) { $a[$i] = '0'.$a[$i] ;}
 }
 my $fullip = join('.', @a) ; return $fullip ;

