
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

A beginner’s practical in Intrusion
Detection Analysis

GIAC Intrusion Detection In Depth
GCIA Practical Assignment v3.2

SANS Parliament Square 2002, London

Antonia Rana

Part 1: Describe the State of Intrusion Detection

Probing remote services for reconnaissance using
amap

Abtract
Gathering information about a remote host is often the first step in launching an
attack. In order to break into a system exploiting some kind of vulnerability it is
important to find as much information as possible. Port scanning, OS fingerprinting ,
banner grabbing are only some of the techniques that can be used. This paper
summarises briefly the most common intelligence gathering techniques in use today,
describing some of the tools that employ such techniques. Finally, a tool (amap) is
presented which can be used to probe remote systems in the attempt to recognise an
application listening on a non standard port.

Introduction
Gathering information about a remote system is often considered the first step an
“intelligent hacker”1 takes in launching an attack against or gain privileged access to a
target machine. Intelligence gathered in this research can provide useful information
about vulnerabilities or misconfigurations that can be successfully exploited by the
potentail intruder. The more a hacker knows about a particular system (e.g. the OS,
the hardware architecture and services that are running), the greater are his or her
chances of launching a successful attack. By knowing the operating system and
system type, a hacker can do a little research and come up with a list of known
vulnerabilities.
Ofir Arkin describes in [4] a series of steps that an “intelligent hacker” would take in
this intelligence gathering attempt:

• Footprinting: this phase consists in gathering as much information as possible
on the target from authorised source of information (IP address ranges, DNS
servers, mail servers);

• Scanning: this phase consists in determining which hosts in the targeted
network are alive and reachable (through ping sweeps), which services they
offer (through port scanning) and which operating systems they run (OS
fingerprinting);

• Enumeration: this phase consists in extracting valid accounts or exported
resources, system banners, routing tables, SNMP information, etc.

The second phase has an impact particularly strong on all networks since the number
of automated scanners is constantly increasing and so is this type of traffic on the
borders of every network.
Arkin also classifies the scan types according to the protocol used, as follows:

1 The term “intelligent hacker” is used here to designate individuals who have knowledge of the
systems they are dealing with, a deep understanding of the way they work and can program their own
exploit programs, in contrast to “lamers” who simply, mechanically, execute scripts written by others.

 2

PING SWEEPS: consists in querying multiple hosts using ICMP packets. It is an old
approach to mapping and the scan is fairly slow. Automated tools for this scan include
fping and gping on Unix, Pinger on Windows

BROADCAST ICMP: consists in sending echo requests to the network and/or
broadcast address. Some operating system (Unix machines in general) will send back
an ECHO REPLY to the attacker source IP, others will ignore these packets.

NON-ECHO ICMP: consists in sending ICMP messages different from ECHO
REQUEST. This is useful when ECHO REQUESTS (PING) are filtered. Messages
used for this purpose are ICMP type 13 (Timestamp request) and type 17 (address
mask request). Automated tools for this type of scan include icmpush and icmpquery2.

TCP SWEEPS: consists in sending a TCP ACK or SYN. Receiving a RST response
is an indication that there is a host. However, information provided by this type of
scan is not completely reliable if the target is behind a firewall that can reply with an
RST packet on behalf of the targeted host. Tools that can be used for this type of scan
include nmap and hping3.

UDP SWEEPS: consists in sending a UDP packet. This method relies on the ICMP
Port unreachable message as a reply to a UDP packet sent to a closed UDP port. This
type of scan too can be done using nmap and hping.

All the above are used to determine if a host is alive, i.e. those hosts on a targeted
network that are alive.
Port scanning, on the other hand, is used to determine which services are running on a
host.
Port scanning techniques include:

TCP connect() scan:

A SYN is sent to an “interesting” port;
If a SYN/ACK is received, a service is listening and the TCP handshake phase
is concluded by sending an ACK.

TCP half-opening scan:

A SYN is sent to an “interesting” port;
If a SYN/ACK is received, a service is listening, a RST packet is sent to close
the connection.

Stealth scan:

This is a technique that is meant to pass through filtering rules, not to be
logged by system logging mechanisms. It consists in forging non-standard
combination of TCP flags and relies on the fact that some filtering devices do
not log a TCP connection if the three-way handshake is not completed.

2 Available at http://packetstormsecurity.nl/UNIX/scanners/ (October 4th)
3 Available at http://www.insecure.org/nmap and http://www.hping.org respectively (October, 4th)

 3

SYN/ACK:
Packets are sent with SYN and ACK flags set. If a port is open, TCP replies
with a RST because there is no SYN corresponding to the received
SYN/ACK, otherwise the packet is discarded silently.

The techniques that are employed for port scanning are also successfully employed
for identification of the remote operating systems (OS fingerprinting).
Basically, OS fingerprinting is a process for determining the operating system a
remote host computer is running, based on characteristics of the data returned from
the remote host. This can be as simple as connecting to the host and reading a service
banner or as complex as statistical analysis of TCP initial sequence numbers and
flags. OS fingerprinting is based on the fact that there are slight differences in the
implementation of the TCP/IP stack from different vendors. In some cases, these
differences can reveal information as detailed as the version number of the operating
system and the processor architecture.
Tools are available today which that can tell with a high degree of precision which
operating system is on the other side, by examining subtle details in the way TCP/IP
was implemented in that particular system, they can be distinguished, according to the
approach they follow, in passive and active fingerprinting.
The first approach consists in sending particular combinations of TCP flags or options
(or ICMP messages) observing the responses obtained and comparing them to a
database of known “fingerprints”, while the second approach consists in monitoring
(sniffing) incoming traffic and observing certain characteristics of the received
packets.
Active port scanning and OS identification techniques are extensively described in
[1], while [21] describes the basis of passive fingerprinting. More recently another
approach has been described to remote fingerprinting based on the Round Trip Time
(RTT) between a SYN and the SYN/ACK sent by the server. This approach is
described in [16] which also presents a tool (ring) that has been implemented as a
proof of concept for this approach.
An alternative method to TCP/IP stack fingerprinting is identification by using client
application. These methods rely on the behaviour of certain daemons in error
conditions or on the “greeting” information that some applications send as part of the
application level handshaking process. Quite a number of network clients send
revealing information about their host system, either directly or indirectly. Email
clients, for example, often include a lot of information on their systems in the headers,
[12] provides interesting information about the behaviour of the pine mail client in
this respect. Web browsers also send this kind of information.
The different approaches to OS fingerprinting are summarised in the diagram in the
following page (also described in [16]), some of the tools that employ the various
techniques are also indicated.

 4

Active TCP/IP Stack fingerprinting
Several publicly available tools exist that use active fingerprinting techniques. Of
these tools nmap [1] seems to be the popular choice. Version 3.0 of nmap was
released last August. Nmap uses several techniques for attempting to determine the
host operating system from a network level, some of them primitive in their approach
and others more complex, requiring a good understanding of the TCP/IP protocol.
They include testing the response of the remote system to undefined combinations of
TCP flags, TCP Initial Sequence Number (ISN) sampling, determining the default
setting of the DF bit, TCP initial windows size, ToS setting, fragmentation handling,
types and order of TCP options.
Nmap fingerprints a system in three steps: port scanning, which provides as a result a
list of open and closed TCP and UDP ports; “ad-hoc forged” packets sending, analysis
of the responses received and comparison against a database of known OS’s
behaviour (fingerprints).
In version 3, nmap has introduced the following additional features:

• protocol scan, which determines which protocols (TCP, IGMP, GRE, UDP,
ICMP, etc.) are supported by a given host;

• “idlescan” which performs a scan via a “zombie” machine;
• ICMP timestamp and netmask requests;
• detection of host uptime;
• option to specify payload length
• IP Identification Number and TCP Initial Sequence Number predictability

report;
• “random IP” scanning mode is capable of skipping unallocated netblocks;

 5

Another tool that is very popular for use in active scanning is xprobe based on the
work described in [23]. Xprobe introduced the use of ICMP messages for OS
fingerprinting. Its first version was not very flexible as it did not have a signatures
database, and relied on a static decision tree hardcoded in the binary code to produce
the results. Xprobe v2.0 [9] is an evolution of xprobe. It uses a “fuzzy” approach to
analyse the results produced by its various tests on the remote system. In this
approach each fingerprinting test is implemented as a separate module. Upon
initialisation, xprobe2 builds its own vector of possible “test matches” (i.e. builds a
matrix associating a starting value for the various operating system that the software
recognises). When the test is executed, the received packet is examined, the result is
scored and put in the matrix. The “score” can be one of:

• YES(3)
• PROBABLY_YES(2)
• PROBABLY_NO(1)
• NO(0)

Once all tests are run, the scores for each test are summed. The top-score OS is
declared as the final result.
The system is modular, new tests can be implemented and added as additional
modules.
Other tools that deploy similar techniques are hping [3] and iQ [13].

Passive fingerprinting
Passive host fingerprinting is the practice of determining a remote operating system
by measuring the peculiarities of observed traffic without actively sending probes to
the host.
Five parameters are particularly useful in this technique:

• The value of the “Time to Live” field (TTL) in the IP header
• The Initial Window Size in the TCP header
• The value of the “Don’t Fragment” bit (DF) in the IP header
• The value of the “Type of Service” (TOS) field in the IP header
• The types of TCP options used (if any)

No single signature can reliably determine the remote operating system. However, by
looking at several signatures and combining the information, the accuracy of
identifying the remote host increases.
Passive fingerprinting was first described in [21]. Tools based on this technique
include p0f [24] and siphon [12].
Passive fingerprinting has some limitations. If used to analyse incoming traffic, it will
not help in gathering useful information about malicious users since applications that
build their own packets (such as nmap, hping, xprobe, etc.) will not use the same
signatures as the operating system. In addition, it is relatively simple for a remote host
to modify the default values for the TTL, Window Size, DF or TOS settings and,
indeed this is considered one the countermeasures system administrators could and
should take against passive fingerprinting.

Using RTT for TCP/IP Stack fingerprinting
A new approach to remote OS fingerprinting at the TCP/IP stack level is described in
[16]. The technique described here relies on the fact that timeouts and regeneration
cycles between a SYN sent by the client and successive SYN/ACK sent by the server
to complete the TCP handshake are loosely specified in the RFC, which means that

 6

almost each OS uses its own method and set of values. Ring is a tool that has been
implemented to prove how the Round Trip Time can be effectively used to recognise
the remote OS.
A typical ring identification session has the following steps:

1. ring sends a SYN packet to an open port of the target
2. the target enters the state “SYN_RCVD” and sends back a SYN-ACK
3. Ring ignores the SYN-ACK
4. the target remains in the SYN_RCVD state while reinjecting SYN-ACK

segments from time to time. ring measures times between these segments.
Ring is extensively described in Tod Beardsley’s GIAC practical4.

Banner grabbing
One of the oldest techniques used to identify a remote operating system is “banner
grabbing”, which consists in opening a connection to a remote application daemon
and determining the operating system by examining the responses received from
applications like telnet or ftp.
Tools that use this technique span from scanners like Hackbot [10] and ScanSSH[11]
to ad-hoc scripts aimed at particular application services [18] [19]. Hackbot is a
bannergrabber that can scan for ftp, mail, ssh banner and DNS version, can perform
whois lookup and various types of web scanning including Nimda and “path revealing
NT problems” [10]. ScanSSH is a scanner that probes SSH servers and classifies them
according to their advertised version number.
Fingerprinting at the application level is also extensively described in [12].

Defeating Fingerprint
Various techniques have also been described to defeat fingerprinting. Among them,
the simplest and most immediate is the modification of the default values of a TCP/IP
stack implementation, such as the TTL, Window Size or TCP options.
Another interesting approach can be found in [8] which describes the design and
implementation of a TCP/IP stack “fingerprint scrubber”. A “fingerprint scrubber” is
a tool aimed at restricting a remote user’s ability to determine the operating system of
another host on the network. It is a piece of software that is transparently interposed
between the Internet and the network under protection (a typical position would be on
the firewall) and performs a set of kernel modifications to avoid recognition of the
operating system based on the characteristics of IP and TCP implementations. It
works both at the network and transport layers by converting ambiguous traffic from a
heterogeneous group of hosts into sanitized packets that do not reveal clues about the
hosts’ operating systems. For example for all the packets generated by all hosts in the
protected network it normalizes the IP header flags, forces all ICMP error messages to
contain data payloads of only 8 bytes, keeps track of the open TCP connections by
following the three-way handshake, and blocking all TCP packets that do not belong
to a valid three-way handshake sequence, reorders the TCP options within the TCP
header. According to [8] the fingerprint scrubber was tested against nmap which was
completely unable to determine the operating system with the scrubber interposed.

4 GIAC practicals are available at http://www.giac.org/GCIA.php (October 4th)

 7

Probing application level services: amap0.95
In the previous sections various approaches to remote information gathering were
described that allow identification of the remote Operating System or of the version of
a particular application running on a remote host. A further step ahead in gathering
information about a remote host is provided by amap [25]. Amap is a scanning tool
that probes services running on a remote server on a given port to identify the specific
application that is listening on that specific port. Its purpose is to be used to identify
services that are not running on the standard ports. This tool has been released on
March 2002 under the GNU General Public License and can be downloaded from
http://www.thehackerschoice.com/download.php?t=r&d=amap-0.95.tar.gz. . It is also
available as a package in the Debian Linux distribution. Its authors describe it as “a
next-generation scanning tool, it identifies applications and services even if they are
not listening on the default port by creating a bogus-communication. amap has a
growing database of know applications also including non-ASCII based applications
and even enterprise services.”.
The purpose of the following sections is to explain how amap works and to present
the results of its use in a test environment.
Amap probes the target by sending a number of “trigger” packets at the rate of about
one per millisecond. By default it sends 16 such packets, this value can be modified
with the “-T” option, however I counted 11 such packets in my tests, probably
because there are only 11 different triggers defined in the signature files for TCP
based application protocols. These “trigger” packets are typically the initiating packet
of an application protocol handshake (see SSL example in the following section).
Amap has a list of “triggers” which include binary as well as text handshake
messages.
Triggers are defined in the file: appdefs.trig. The triggers currently defined are shown
in the following table:

SUNRPC T/U 0x80 00 00 28 18 72 db 5a 00 00 00 00 00 00 00 02 00

01 86 a0 00 00 00 02 00 00 00 04 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00

SSL T 0x80 80 01 03 01 00 57 00 00 00 20 00 00 16 00 00 13
00 00 0a 07 00 c0 00 00 66 00 00 07 00 00 05 00 00 04
05 00 80 03 00 80 01 00 80 08 00 80 00 00 65 00 00 64
00 00 63 00 00 62 00 00 61 00 00 60 00 00 15 00 00 12
00 00 09 06 00 40 00 00 14 00 00 11 00 00 08 00 00 06
00 00 03 04 00 80 02 00 80 63 b9 b9 19 c0 2b ae 90 74
4c 73 eb 8b cf d8 55 ea d0 69 82 1b ef 23 c3 39 9b 8e
b2 49 3c 5a 79

DNS U 0xb3 65 01 00 00 01 00 00 00 00 00 00 03 31 33 36 02
37 33 03 31 35 39 03 31 39 34 07 69 6e 2d 61 64 64 72
04 61 72 70 61 00 00 0c 00 01

DNS U 0xdd d9 01 00 00 01 00 00 00 00 00 00 02 31 30 01 30
03 31 36 38 03 31 39 32 07 69 6e 2d 61 64 64 72 04 61
72 70 61 00 00 0c 00 01

DNS T 0x00 1e 3b 6f 01 00 00 01 00 00 00 00 00 00 05 68 34
78 30 72 02 6e 6c 00 00 fc 00 01

NETBIOS T/U 0x79 08 00 00 00 01 00 00 00 00 00 00 20 43 4b 41 41
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 41 41 00 00 21 00 01

HTTP T “HEAD / HTTP/1.0\n\n”
LDAP T 0x30 0c 02 01 01 60 07 02 01 02 04 00 80 00
SAP-R3 T 0x00 00 01 06 ff ff ff ff 0a 00 00 00 00 00 00 ff ff

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 3e
00 00 00 00 ff ff ff ff ff ff 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 70 65 6e 74

 8

65 73 74 00 20 20 20 20 20 20 20 20 20 20 20 20 00 00
00 00 00 2d 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 00 00 00 00 00 00 00 00 ff ff ff ff 00
00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 10 00 00 00 00 00 00 10 04 02
00 0c 00 01 87 68 00 00 04 4c 00 00 03 e8 10 04 0b 00
20 ff 7f ca 0d c8 b3 66 00 04 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

RPCS U 0x03 9b 65 42 00 00 00 00 00 00 00 02 00 0f 42 43 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00

MOUNTD T 0x80 00 00 60 77 b7 3b 30 00 00 00 00 00 00 00 02 00
01 86 a5 00 00 00 01 00 00 00 05 00 00 00 01 00 00 00
38 3c 71 4d 94 00 00 00 07 6b 70 6d 67 2d 70 74 00 00
00 00 00 00 00 00 00 00 00 00 07 00 00 00 00 00 00 00
01 00 00 00 0e 00 00 00 0f 00 00 00 10 00 00 00 11 00
00 ff fe 00 00 00 00 00 00 00 00

X_WINDOWS T 0x6c 00 0b 00 00 00 12 00 10 00 00 00 4d 49 54 2d 4d
41 47 49 43 2d 43 4f 4f 4b 49 45 2d 31 00 00 c6 17 34
b7 89 ed 65 c0 93 fd d8 56 66 fa 52 40

SNMP_PUBLIC U 0x30 82 00 2f 02 01 00 04 06 70 75 62 6c 69 63 a0 82
00 20 02 04 4c 33 a7 56 02 01 00 02 01 00 30 82 00 10
30 82 00 0c 06 08 2b 06 01 02 01 01 05 00 05 00

NTP U 0xcb 00 04 fa 00 01 00 00 00 01 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 bf be 70 99 cd b3 40 00

LDAP T 0x30 0c 02 01 01 60 07 02 01 02 04 00 80 00

The hex string in the table (indicated by a 0x before the first octet) is sent as the
payload of the “trigger” packet in the first message sent after the completion of the
TCP handshake or in the UDP datagram (depending on whether the service uses TCP
or UDP as transport). This list can be expanded very easily, provided one knows the
handshake message of the application that one wants to trigger.
Amap defines a format for describing the trigger:

PROTO_ID:<t|u>:<0|1>:<optional trigger data>

Where “:” is the separator and:
PROTO_ID: is the name of the application level protocol (service) for

which a handshake trigger is provided (e.g. SSL, Telnet,
etc.). This value is looked up when the “p” command line
option is used.

“t” or “u” indicates whether TCP or UDP must be used as transport
“0|1” is a flag to mark “dangerous” protocols. These are

applications that might crash if unexpected or long data is
received”. When the “H” command line option is
specified, triggers with a value of 1 in this field will not be
sent.

<optional trigger data> can be an hex string or a ascii string depending on the
application. A hex string is identified by a leading “0x”.
All strings are terminated with a newline character (“\n”).
A trigger string is not defined for application protocols
that provide a banners string upon successful completion
of the TCP handshake (e.g. mail servers, ftp servers, ssh
daemons, etc.). These will be simply recognised with the

 9

same mechanism used by any banner grabbing tool.
After the trigger has been sent, amap then looks up the response in a list, contained in
the file appdefs.resp and prints out any match it finds.
The possible responses are contained in this file with the following format:

PROTO_ID:<response string>

Where “:” is the separator and:
PROTO_ID: is the name of the application level protocol (service) containing

the string <response string> in its response.
<response string> can be an ASCII string or a binary string, like in the triggers and

can be prepended with either a “^”, meaning that the specified
string must be found at the beginning of the response, or by a
“/” meaning that the specified string must be found somewhere
in the received string.

As for the “triggers”, it is very easy to expand the list of “recognised” services by
providing the appropriate description in this file.
Amap supports both tcp and udp protocols, ASCII and binary protocols and provides
a number of options to tune the probe being sent. It can take an nmap machine-
readable output file as its input file and probe the services that are listening on ports
found open by nmap.
The options currently available are described below:

- i <filename> Reads hosts and ports from the specified file. The format of this

file is as obtained by nmap using the option “-m”
- sT Scan only TCP ports
- sU Scan only UDP ports
- d Print the hex dump of the received response. The default is to

print only the responses that are recognised
- b Print ASCII banners if any are received from the probed service
- o <filename> Log results to <filename>
- D <filename> Reads triggers and responses definitions from <filename>,

instead of the defaults appdefs.trig and appdefs.resp
-p <protocol> Indicates that only the trigger associated to <protocol> must be

used
-T n Open “n” parallel connections. The default is indicated as 16 in

the manual pages, however, I counted only 11 in all tests I made.
- t n Wait “n” seconds for a response. Default is 5.
- H Skip potentially harmful triggers. This swill skip triggers that are

marked with the 1 flag in the triggers description file
(appdefs.trig)

The syntax for running amap is:

amap [-sT|-sU] [options] [target port| -I <filename>]

Either –sT or –sU must be specified. “target” is the IP address or fully qualified name
of the probed host and “port” is the probed port number. Target and port must not be
specified if the “-i” option is used.

 10

Testing amap
Amap was downloaded from http://www.thehackerschoice.com/ and compiled on a
machine running RedHat Linux 7.2.
No changes were made to the default configurations.
The test environment included the RedHat 7.2 machine running amap at the address
10.0.0.2 and the “target” host running Debian 3.0 at the address 10.0.0.1, both hosts
on the same subnet. A number of services were activated on the debian host, for most
of them the default port was changed to verify that amap could correctly recognise the
applications listening on the ports probed.
Tcpdump was activated on the RedHat host to record the traffic exchanged between
the two hosts.
Amap was used to probe services listening on TCP ports.
Services were distributed as follows:

389/tcp LDAP (not modified)
80/tcp SSL (HTTPS)
31/tcp FTP
21/tcp SSH
22/tcp TELNET

When amap was started, in each probe, 11 TCP connections were opened, SYN
packets being sent at a few milliseconds one after the other. Amap forks as many
child processes as the number of parallel connections specified with the –T option.
Once the TCP handshake is completed, amap sends the one trigger packet per each
trigger found in the appdefs.trig file for the chosen protocol (TCP in this case). In
addition, it sends a trigger packet containing the string “\rnHELP\r\n”.
Upon reception of the response from the server, amap checks in the appdefs.resp file
for a match with the pre-defined responses. The response form the server can be either
a banner or an error or a response to the handshake initiated by the amap trigger.
Some application would also send error messages back to amap. As soon as a
message is received from the server, the corresponding TCP connection is closed.
Obviously, depending on the level of logging of the application listening on the
probed port, an error will be recorded on the log file for each “wrong” trigger
received. Finding eleven connections open from the same host all of which, except
possibly one, generating errors on the application level protocol, could be a good
indication of a probe from amap.
The next two sections describe the results of running amap against an application that
responds with an ASCII banner (FTP) and an application that requires the successful
completion of a binary handshake.

“Text banner” applications: ftp
The traces provided in this section show an extract of a probe on port 31 (running ftp).
Amap was run on 10.0.0.2 with the following options:

Redhat#./amap –sT –d –b –o amap.result 10.0.0.1 31

For brevity, only some of the connections are shown and the payload is shown only
for data transfer packets (PUSH and ACK bits set).

 11

21:07:02.366476 10.0.0.2.1080 > 10.0.0.1.31: S [tcp sum ok] 1462036788:1462036788(0) win 5840 <mss 1460,sackOK,timestamp 118935 0,nop,wscale 0>
(DF) (ttl 64, id 14755, len 60)
21:07:02.366476 10.0.0.1.31 > 10.0.0.2.1080: S [tcp sum ok] 1366211808:1366211808(0) ack 1462036789 win 5792 <mss 1460,sackOK,timestamp 9844055
118935,nop,wscale 0> (DF) (ttl 64, id 0, len 60)
21:07:02.366476 10.0.0.2.1080 > 10.0.0.1.31: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 118935 9844055> (DF) (ttl 64, id 14756, len 52)
21:07:02.366476 10.0.0.2.1080 > 10.0.0.1.31: P [tcp sum ok] 1:49(48) ack 1 win 5840 <nop,nop,timestamp 118935 9844055> (DF) (ttl 64, id 14757,
len 100)
0x0000 4500 0064 39a5 4000 4006 ecec 0a00 0002 E..d9.@.@.......
0x0010 0a00 0001 0438 001f 5724 e935 516e bce18..W$.5Qn..
0x0020 8018 16d0 c6df 0000 0101 080a 0001 d097
0x0030 0096 3557 6c00 0b00 0000 1200 1000 0000 ..5Wl...........
0x0040 4d49 542d 4d41 4749 432d 434f 4f4b 4945 MIT-MAGIC-COOKIE
0x0050 2d31 0000 c617 34b7 89ed 65c0 93fd d856 -1....4...e....V
0x0060 66fa 5240 f.R@
21:07:02.366476 10.0.0.1.31 > 10.0.0.2.1080: . [tcp sum ok] ack 49 win 5792 <nop,nop,timestamp 9844055 118935> (DF) (ttl 64, id 35254, len 52)
21:07:02.366476 10.0.0.2.1081 > 10.0.0.1.31: S [tcp sum ok] 1456381211:1456381211(0) win 5840 <mss 1460,sackOK,timestamp 118935 0,nop,wscale 0>
(DF) (ttl 64, id 19852, len 60)
21:07:02.366476 10.0.0.1.31 > 10.0.0.2.1081: S [tcp sum ok] 1373954753:1373954753(0) ack 1456381212 win 5792 <mss 1460,sackOK,timestamp 9844056
118935,nop,wscale 0> (DF) (ttl 64, id 0, len 60)
21:07:02.366476 10.0.0.2.1081 > 10.0.0.1.31: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 118935 9844056> (DF) (ttl 64, id 19853, len 52)
21:07:02.366476 10.0.0.2.1081 > 10.0.0.1.31: P [tcp sum ok] 1:15(14) ack 1 win 5840 <nop,nop,timestamp 118935 9844056> (DF) (ttl 64, id 19854,
len 66)
0x0000 4500 0042 4d8e 4000 4006 d925 0a00 0002 E..BM.@.@..%....
0x0010 0a00 0001 0439 001f 56ce 9d1c 51e4 e2c29..V...Q...
0x0020 8018 16d0 58f2 0000 0101 080a 0001 d097X...........
0x0030 0096 3558 300c 0201 0160 0702 0102 0400 ..5X0....`......
0x0040 8000 ..
21:07:02.366476 10.0.0.1.31 > 10.0.0.2.1081: . [tcp sum ok] ack 15 win 5792 <nop,nop,timestamp 9844056 118935> (DF) (ttl 64, id 55194, len 52)
21:07:02.396476 10.0.0.1.31 > 10.0.0.2.1081: P [tcp sum ok] 1:69(68) ack 15 win 5792 <nop,nop,timestamp 9844080 118935> (DF) [tos 0x10] (ttl 64,
id 55195, len 120)
0x0000 4510 0078 d79b 4000 4006 4ed2 0a00 0001 E..x..@.@.N.....
0x0010 0a00 0002 001f 0439 51e4 e2c2 56ce 9d2a9Q...V..*
0x0020 8018 16a0 91a1 0000 0101 080a 0096 35705p
0x0030 0001 d097 3232 3020 6465 6269 616e 2046220.debian.F
0x0040 5450 2073 6572 7665 7220 2856 6572 7369 TP.server.(Versi
0x0050 6f6e 2036 2e34 2f4f 7065 6e42 5344 2f4c on.6.4/OpenBSD/L
0x0060 696e 7578 2d66 7470 642d 302e 3137 2920 inux-ftpd-0.17).
0x0070 7265 6164 792e 0d0a ready...
21:07:02.396476 10.0.0.2.1081 > 10.0.0.1.31: . [tcp sum ok] ack 69 win 5840 <nop,nop,timestamp 118938 9844080> (DF) (ttl 64, id 19855, len 52)
21:07:02.396476 10.0.0.1.31 > 10.0.0.2.1081: P [tcp sum ok] 69:113(44) ack 16 win 5792 <nop,nop,timestamp 9844082 118938> (DF) [tos 0x10] (ttl
64, id 55196, len 96)
0x0000 4510 0060 d79c 4000 4006 4ee9 0a00 0001 E..`..@.@.N.....
0x0010 0a00 0002 001f 0439 51e4 e306 56ce 9d2b9Q...V..+
0x0020 8018 16a0 af5a 0000 0101 080a 0096 3572Z........5r
0x0030 0001 d09a 3530 3020 2730 0c02 0101 6007500.’0....`.

 12

0x0040 0201 0204 273a 2063 6f6d 6d61 6e64 206e’:.command.n
0x0050 6f74 2075 6e64 6572 7374 6f6f 642e 0d0a ot.understood...
21:07:02.396476 10.0.0.2.1081 > 10.0.0.1.31: R [tcp sum ok] 1456381227:1456381227(0) win 0 (DF) [tos 0x10] (ttl 255, id 0, len 40)
21:07:02.406476 10.0.0.1.31 > 10.0.0.2.1080: P [tcp sum ok] 1:69(68) ack 49 win 5792 <nop,nop,timestamp 9844096 118935> (DF) [tos 0x10] (ttl 64,
id 35255, len 120)
0x0000 4510 0078 89b7 4000 4006 9cb6 0a00 0001 E..x..@.@.......
0x0010 0a00 0002 001f 0438 516e bce1 5724 e9658Qn..W$.e
0x0020 8018 16a0 6b58 0000 0101 080a 0096 3580kX........5.
0x0030 0001 d097 3232 3020 6465 6269 616e 2046220.debian.F
0x0040 5450 2073 6572 7665 7220 2856 6572 7369 TP.server.(Versi
0x0050 6f6e 2036 2e34 2f4f 7065 6e42 5344 2f4c on.6.4/OpenBSD/L
0x0060 696e 7578 2d66 7470 642d 302e 3137 2920 inux-ftpd-0.17).
0x0070 7265 6164 792e 0d0a ready...
21:07:02.406476 10.0.0.2.1080 > 10.0.0.1.31: . [tcp sum ok] ack 69 win 5840 <nop,nop,timestamp 118939 9844096> (DF) (ttl 64, id 14758, len 52)
21:07:02.406476 10.0.0.2.1080 > 10.0.0.1.31: F [tcp sum ok] 49:49(0) ack 69 win 5840 <nop,nop,timestamp 118939 9844096> (DF) (ttl 64, id 14759,
len 52)
21:07:02.406476 10.0.0.1.31 > 10.0.0.2.1080: P [tcp sum ok] 69:103(34) ack 50 win 5792 <nop,nop,timestamp 9844097 118939> (DF) [tos 0x10] (ttl
64, id 35256, len 86)
0x0000 4510 0056 89b8 4000 4006 9cd7 0a00 0001 E..V..@.@.......
0x0010 0a00 0002 001f 0438 516e bd25 5724 e9668Qn.%W$.f
0x0020 8018 16a0 fa0e 0000 0101 080a 0096 35815.
0x0030 0001 d09b 3530 3020 274c 273a 2063 6f6d500.’L’:.com
0x0040 6d61 6e64 206e 6f74 2075 6e64 6572 7374 mand.not.underst
0x0050 6f6f 642e 0d0a ood...
21:07:02.406476 10.0.0.2.1080 > 10.0.0.1.31: R [tcp sum ok] 1462036838:1462036838(0) win 0 (DF) [tos 0x10] (ttl 255, id 0, len 40)

 13

Amap successfully recognised ftp listening on port 31:

Amap v0.95 started at Fri Sep 27 21:07:02 2002
Ports: 0, triggers 0. Total amount of tasks to perform: 11
Protocol on IP 10.0.0.1 port 31 tcp matches FTP - banner: 220 debian FTP server
(Version 6.4/OpenBSD/Linux-ftpd-0.17) ready.\r\n
Unidentified ports: None.
Amap v0.95 ended at Fri Sep 27 21:07:02 2002

Recognition of the ftp service is based on the banner received from the server. In
particular, the match of the response received from the server with the string:

On the server side, the following error messages are logged in the syslog file. Error
messages are also sent back to the client.

Sep 27 21:05:26 debian ftpd[2905]: <--- 220
Sep 27 21:05:26 debian ftpd[2905]: debian FTP server (Version 6.4/OpenBSD/Linux-ftpd-
0.17) ready.
Sep 27 21:05:26 debian ftpd[2905]: command:
Sep 27 21:05:26 debian ftpd[2905]: <--- 500
Sep 27 21:05:26 debian ftpd[2905]: ‘‘: command not understood.
Sep 27 21:05:26 debian ftpd[2905]: command: HELP
Sep 27 21:05:26 debian ftpd[2905]: lost connection
Sep 27 21:05:26 debian in.ftpd[2906]: connect from 10.0.0.2
Sep 27 21:05:26 debian ftpd[2906]: <--- 220
Sep 27 21:05:26 debian ftpd[2906]: debian FTP server (Version 6.4/OpenBSD/Linux-ftpd-
0.17) ready.

[snip - same log for each attempted connection]

“Binary handshake” application: SSL
The traces provided here show how amap can simulate an SSL connection and
recognise an SSL application running on port 80.
The steps involved in the SSL handshake are as follows:

1. The client sends the CLIENT_HELLO message containing:
o Client’s SSL version number
o Supported ciphering schemes
o Challenge

2. The server sends the SERVER_HELLO message containing:
o Handshake type (server hello)
o Server’s SSL version
o Cipher settings
o Cipher suite
o Session_ID
o Random number
o Timestamp
o Compression method

3. The server then sends its certificate
o Handshake type (certificate)
o Server certificate

Messages 2 and 3 can be combined into a single message like in the trace below.
The trigger that is used for SSL probing is the starting message of the SSL handshake,
i.e. the CLIENT_HELLO message. The binary string contained in the appdefs.trig file
and actually sent by amap is:

 14

0x80 80 01 03 01 00 57 00 00 00 20 00 00 16 00 00 13 00 00 0a 07 00 c0
00 00 66 00 00 07 00 00 05 00 00 04 05 00 80 03 00 80 01 00 80 08 00
80 00 00 65 00 00 64 00 00 63 00 00 62 00 00 61 00 00 60 00 00 15 00
00 12 00 00 09 06 00 40 00 00 14 00 00 11 00 00 08 00 00 06 00 00 03
04 00 80 02 00 80 63 b9 b9 19 c0 2b ae 90 74 4c 73 eb 8b cf d8 55 ea
d0 69 82 1b ef 23 c3 39 9b 8e b2 49 3c 5a 79

The decoded equivalent of this string is (decoding has been obtained using ethereal
[22]:

SSLv2 Record Layer: Client Hello
 Length: 128
 Handshake Message Type: Client Hello (1)
 Version: TLS 1.0 (0x0301)
 Cipher Spec Length: 87
 Session ID Length: 0
 Challenge Length: 32
 Cipher Specs (29 specs)
 Cipher Spec: TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA (0x000016)
 Cipher Spec: TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA (0x000013)
 Cipher Spec: TLS_RSA_WITH_3DES_EDE_CBC_SHA (0x00000a)
 Cipher Spec: SSL2_DES_192_EDE3_CBC_WITH_MD5 (0x0700c0)
 Cipher Spec: TLS_DHE_DSS_WITH_RC4_128_SHA (0x000066)
 Cipher Spec: TLS_RSA_WITH_IDEA_CBC_SHA (0x000007)
 Cipher Spec: TLS_RSA_WITH_RC4_128_SHA (0x000005)
 Cipher Spec: TLS_RSA_WITH_RC4_128_MD5 (0x000004)
 Cipher Spec: SSL2_IDEA_128_CBC_WITH_MD5 (0x050080)
 Cipher Spec: SSL2_RC2_CBC_128_CBC_WITH_MD5 (0x030080)
 Cipher Spec: SSL2_RC4_128_WITH_MD5 (0x010080)
 Cipher Spec: SSL2_RC4_64_WITH_MD5 (0x080080)
 Cipher Spec: TLS_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA (0x000065)
 Cipher Spec: TLS_RSA_EXPORT1024_WITH_RC4_56_SHA (0x000064)
 Cipher Spec: TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA (0x000063)
 Cipher Spec: TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA (0x000062)
 Cipher Spec: TLS_RSA_EXPORT1024_WITH_RC2_CBC_56_MD5 (0x000061)
 Cipher Spec: TLS_RSA_EXPORT1024_WITH_RC4_56_MD5 (0x000060)
 Cipher Spec: TLS_DHE_RSA_WITH_DES_CBC_SHA (0x000015)
 Cipher Spec: TLS_DHE_DSS_WITH_DES_CBC_SHA (0x000012)
 Cipher Spec: TLS_RSA_WITH_DES_CBC_SHA (0x000009)
 Cipher Spec: SSL2_DES_64_CBC_WITH_MD5 (0x060040)
 Cipher Spec: TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA (0x000014)
 Cipher Spec: TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA (0x000011)
 Cipher Spec: TLS_RSA_EXPORT_WITH_DES40_CBC_SHA (0x000008)
 Cipher Spec: TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 (0x000006)
 Cipher Spec: TLS_RSA_EXPORT_WITH_RC4_40_MD5 (0x000003)
 Cipher Spec: SSL2_RC2_CBC_128_CBC_WITH_MD5 (0x040080)
 Cipher Spec: SSL2_RC4_128_EXPORT40_WITH_MD5 (0x020080)
 Challenge (63 b9 b9 19 c0 2b ae 90 74 4c 73 eb 8b cf d8 55 ea d0 69 82 1b ef 23 c3
39 9b 8e b2 49 3c 5a 79)

The response received from the server that allows amap to recognize SSL is (the
decoded format has been obtained using ethereal [22], the content of the certificate is
not shown for brevity, but it can be seen in the trace in the following section)

 TLS Record Layer: Server Hello
 Content Type: Handshake (22)
 Version: TLS 1.0 (0x0301)
 Length: 74
 Handshake Protocol: Server Hello
 Handshake Type: Server Hello (2)
 Length: 70
 Version: TLS 1.0 (0x0301)
 Random.gmt_unix_time: Sep 27, 2002 20:05:00.000000000
 Random.bytes
 Session ID Length: 32
 Session ID (32 bytes)
 Cipher Suite: TLS_RSA_WITH_3DES_EDE_CBC_SHA (0x000a)
 Compression Method: null (0)
 TLS Record Layer: Certificate
 Content Type: Handshake (22)

 15

 Version: TLS 1.0 (0x0301)
 Length: 590
 Handshake Protocol: Certificate
 Handshake Type: Certificate (11)
 Length: 586
 Certificates Length: 583
 Certificates (583 bytes)
 Certificate Length: 580
 Certificate (580 bytes)
 TLS Record Layer: Server Hello Done
 Content Type: Handshake (22)
 Version: TLS 1.0 (0x0301)
 Length: 4
 Handshake Protocol: Server Hello Done
 Handshake Type: Server Hello Done (14)
 Length: 0

Amap was run on 10.0.0.2 with the following options:

Redhat#./amap –sT –d –b –o amap.result 10.0.0.1 80

The following page shows the tcpdump log recorded during the probing on port 80.
Hex dump is shown only for data transfers for brevity. All the connections opened by
amap are shown as well as the all the triggers sent in one run of amap. Payload in red
is the triggers sent by amap (Application protocol probed is indicated beside). Payload
in blue is the response sent by the server. In this case, the probed service replies only
to the correct trigger (i.e. the SSL CLIENT_HELLO handshake message).

 16

The tcpdump record of the amap probes is (hex dump of the packet is shown only for data exchange packets and not for
SYN, SYN/ACK, ACK, FIN, RST packets for brevity)

21:06:36.236476 10.0.0.2.1060 > 10.0.0.1.80: S [tcp sum ok] 1428200370:1428200370(0) win 5840 <mss 1460,sackOK,timestamp 116322 0,nop,wscale 0>
(DF) (ttl 64, id 24016, len 60)
21:06:36.236476 10.0.0.1.80 > 10.0.0.2.1060: S [tcp sum ok] 1345344243:1345344243(0) ack 1428200371 win 5792 <mss 1460,sackOK,timestamp 9817924
21:06:36.236476 10.0.0.2.1060 > 10.0.0.1.80: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 116322 9817924> (DF) (ttl 64, id 24017, len 52)
21:06:36.256476 10.0.0.2.1060 > 10.0.0.1.80: P [tcp sum ok] 1:9(8) ack 1 win 5840 <nop,nop,timestamp 116324 9817924> (DF) (ttl 64, id 24018, len
60)
0x0000 4500 003c 5dd2 4000 4006 c8e7 0a00 0002 E..<].@.@.......
0x0010 0a00 0001 0424 0050 5520 9bb3 5030 52f4$.PU...P0R.
0x0020 8018 16d0 6e85 0000 0101 080a 0001 c664n..........d
0x0030 0095 cf44 0d0a 4845 4c50 0d0a ...D..HELP.. “HELP” GENERIC

 ...n

21:06:36.256476 10.0.0.1.80 > 10.0.0.2.1060: . [tcp sum ok] ack 9 win 5792 <nop,nop,timestamp 9817937 116324> (DF) (ttl 64, id 40369, len 52)
21:06:36.276476 10.0.0.2.1061 > 10.0.0.1.80: S [tcp sum ok] 1428096922:1428096922(0) win 5840 <mss 1460,sackOK,timestamp 116326 0,nop,wscale 0>
(DF) (ttl 64, id 49660, len 60)
21:06:36.276476 10.0.0.1.80 > 10.0.0.2.1061: S [tcp sum ok] 1332924456:1332924456(0) ack 1428096923 win 5792 <mss 1460,sackOK,timestamp 9817966
116326,nop,wscale 0> (DF) (ttl 64, id 0, len 60)
21:06:36.276476 10.0.0.2.1061 > 10.0.0.1.80: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 116326 9817966> (DF) (ttl 64, id 49661, len 52)
21:06:36.286476 10.0.0.2.1061 > 10.0.0.1.80: P [tcp sum ok] 1:45(44) ack 1 win 5840 <nop,nop,timestamp 116327 9817966> (DF) (ttl 64, id 49662,
len 96)
0x0000 4500 0060 c1fe 4000 4006 6497 0a00 0002 E..`..@.@.d.....
0x0010 0a00 0001 0425 0050 551f 079b 4f72 d029%.PU...Or.)
0x0020 8018 16d0 39e0 0000 0101 080a 0001 c6679..........g
0x0030 0095 cf6e 8000 0028 1872 db5a 0000 0000 ...(.r.Z....
0x0040 0000 0002 0001 86a0 0000 0002 0000 0004 SUNRPC
0x0050 0000 0000 0000 0000 0000 0000 0000 0000
21:06:36.286476 10.0.0.1.80 > 10.0.0.2.1061: . [tcp sum ok] ack 45 win 5792 <nop,nop,timestamp 9817968 116327> (DF) (ttl 64, id 8007, len 52)
21:06:36.286476 10.0.0.1.80 > 10.0.0.2.1061: R [tcp sum ok] 1:1(0) ack 45 win 5792 <nop,nop,timestamp 9817968 116327> (DF) (ttl 64, id 8008, len
52)
21:06:36.316476 10.0.0.2.1062 > 10.0.0.1.80: S [tcp sum ok] 1428512848:1428512848(0) win 5840 <mss 1460,sackOK,timestamp 116330 0,nop,wscale 0>
(DF) (ttl 64, id 42554, len 60)
21:06:36.316476 10.0.0.1.80 > 10.0.0.2.1062: S [tcp sum ok] 1345455902:1345455902(0) ack 1428512849 win 5792 <mss 1460,sackOK,timestamp 9818002
116330,nop,wscale 0> (DF) (ttl 64, id 0, len 60)
21:06:36.316476 10.0.0.2.1062 > 10.0.0.1.80: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 116330 9818002> (DF) (ttl 64, id 42555, len 52)
21:06:36.316476 10.0.0.2.1062 > 10.0.0.1.80: P [tcp sum ok] 1:131(130) ack 1 win 5840 <nop,nop,timestamp 116330 9818002> (DF) (ttl 64, id 42556,
len 182)
0x0000 4500 00b6 a63c 4000 4006 8003 0a00 0002 E....<@.@.......
0x0010 0a00 0001 0426 0050 5525 6051 5032 071f&.PU%`QP2..
0x0020 8018 16d0 c598 0000 0101 080a 0001 c66aj
0x0030 0095 cf92 8080 0103 0100 5700 0000 2000W.....
0x0040 0016 0000 1300 000a 0700 c000 0066 0000f..
0x0050 0700 0005 0000 0405 0080 0300 8001 0080 SSL Client Hello
0x0060 0800 8000 0065 0000 6400 0063 0000 6200e..d..c..b.
0x0070 0061 0000 6000 0015 0000 1200 0009 0600 .a..`...........

 17

0x0080 4000 0014 0000 1100 0008 0000 0600 0003 @...............
0x0090 0400 8002 0080 63b9 b919 c02b ae90 744cc....+..tL
0x00a0 73eb 8bcf d855 ead0 6982 1bef 23c3 399b s....U..i...#.9.
0x00b0 8eb2 493c 5a79 ..I<Zy
21:06:36.316476 10.0.0.1.80 > 10.0.0.2.1062: . [tcp sum ok] ack 131 win 6432 <nop,nop,timestamp 9818004 116330> (DF) (ttl 64, id 51341, len 52)
21:06:36.316476 10.0.0.1.80 > 10.0.0.2.1062: P [tcp sum ok] 1:684(683) ack 131 win 6432 <nop,nop,timestamp 9818005 116330> (DF) (ttl 64, id
51342, len 735)
0x0000 4500 02df c88e 4000 4006 5b88 0a00 0001 E.....@.@.[.....
0x0010 0a00 0002 0050 0426 5032 071f 5525 60d3P.&P2..U%`.
0x0020 8018 1920 27e2 0000 0101 080a 0095 cf95’...........
0x0030 0001 c66a 1603 0100 4a02 0000 4603 013d ...j....J...F..=
0x0040 94ab dc96 1264 6a9a bf84 18e8 f9e9 9205dj......... SSL Server Hello + Certificate
0x0050 9c33 c2eb 042a 42f3 bff6 bae5 02b9 e920 .3...*B.........
0x0060 ada7 e88e 0a65 e619 c0fb b421 4fb0 3631e.....!O.61
0x0070 ac69 b1e8 a51a 0e49 f419 1ee4 4ff1 77f2 .i.....I....O.w.
0x0080 000a 0016 0301 024e 0b00 024a 0002 4700N...J..G.
0x0090 0244 3082 0240 3082 01a9 a003 0201 0202 .D0..@0.........
0x00a0 0100 300d 0609 2a86 4886 f70d 0101 0405 ..0...*.H.......
0x00b0 0030 6631 0b30 0906 0355 0406 1302 4742 .0f1.0...U....GB
0x00c0 310f 300d 0603 5504 0813 064c 6f6e 646f 1.0...U....Londo
0x00d0 6e31 0f30 0d06 0355 0407 1306 4c6f 6e64 n1.0...U....Lond
0x00e0 6f6e 310c 300a 0603 5504 0a13 0341 4141 on1.0...U....AAA
0x00f0 310c 300a 0603 5504 0b13 0341 4141 3119 1.0...U....AAA1.
0x0100 3017 0603 5504 0313 1061 6161 6161 612e 0...U....aaaaaa.
0x0110 6262 6262 622e 6363 6330 1e17 0d30 3230 bbbbb.ccc0...020
0x0120 3931 3332 3235 3932 335a 170d 3032 3130 913225923Z..0210
0x0130 3133 3232 3539 3233 5a30 6631 0b30 0906 13225923Z0f1.0..
0x0140 0355 0406 1302 4742 310f 300d 0603 5504 .U....GB1.0...U.
0x0150 0813 064c 6f6e 646f 6e31 0f30 0d06 0355 ...London1.0...U
0x0160 0407 1306 4c6f 6e64 6f6e 310c 300a 0603London1.0...
0x0170 5504 0a13 0341 4141 310c 300a 0603 5504 U....AAA1.0...U.
0x0180 0b13 0341 4141 3119 3017 0603 5504 0313 ...AAA1.0...U...
0x0190 1061 6161 6161 612e 6262 6262 622e 6363 .aaaaaa.bbbbb.cc
0x01a0 6330 819f 300d 0609 2a86 4886 f70d 0101 c0..0...*.H.....
0x01b0 0105 0003 818d 0030 8189 0281 8100 b0630.......c
0x01c0 ad97 cf77 492e 4b9a 4ab9 7b98 5523 376a ...wI.K.J.{.U#7j
0x01d0 2a2d a5c7 e40e 44b3 181d d289 597b 344a *-....D.....Y{4J
0x01e0 3933 df30 56dd 2760 a493 91f0 e658 4846 93.0V.’`.....XHF
0x01f0 5f02 bab2 6c4a d0ce a211 5223 075e 6f2f _...lJ....R#.^o/
0x0200 2782 b01b a5b9 c407 7017 0cd9 d610 9ae5 ‘.......p.......
0x0210 f331 ac8f 011b 9045 7b52 f8ff 4f19 6643 .1.....E{R..O.fC
0x0220 924e f7f1 fce0 065e 5042 e4bc a766 3872 .N.....^PB...f8r
0x0230 178f e414 7d5c 1f34 1fc1 c3c4 ebe3 0203}\.4........
0x0240 0100 0130 0d06 092a 8648 86f7 0d01 0104 ...0...*.H......
0x0250 0500 0381 8100 6a09 56d2 65f3 1930 60dej.V.e..0`.

 18

0x0260 f78c e403 f95e 0dc4 d12d f3fb eec9 e693^...-......
0x0270 e984 1a29 15be 099d 15f6 c88d ca52 2a2f ...).........R*/
0x0280 8b25 9a1e 0dbf aa49 4925 943a effd 2dba .%.....II%.:..-.
0x0290 454b 47fb 7fa0 8946 31d7 e14b ebf8 4b00 EKG....F1..K..K.
0x02a0 72d8 01cc 63ff da29 659f 335a 88ff bcbd r...c..)e.3Z....
0x02b0 d970 3694 4c58 483e ce18 7e60 b261 fdd0 .p6.LXH>..~`.a..
0x02c0 4722 2792 cbe5 a17b 2001 42e3 4d64 e842 G”‘....{..B.Md.B
0x02d0 322d 352f 9a42 1603 0100 040e 0000 00 2-5/.B.........
21:06:36.316476 10.0.0.2.1062 > 10.0.0.1.80: . [tcp sum ok] ack 684 win 6830 <nop,nop,timestamp 116330 9818005> (DF) (ttl 64, id 42557, len 52)
21:06:36.316476 10.0.0.2.1062 > 10.0.0.1.80: F [tcp sum ok] 131:131(0) ack 684 win 6830 <nop,nop,timestamp 116330 9818005> (DF) (ttl 64, id
42558, len 52)
21:06:36.316476 10.0.0.1.80 > 10.0.0.2.1062: F [tcp sum ok] 684:684(0) ack 132 win 6432 <nop,nop,timestamp 9818006 116330> (DF) (ttl 64, id
51343, len 52)
21:06:36.316476 10.0.0.2.1062 > 10.0.0.1.80: . [tcp sum ok] ack 685 win 6830 <nop,nop,timestamp 116330 9818006> (DF) (ttl 64, id 42559, len 52)
21:06:36.356476 10.0.0.2.1063 > 10.0.0.1.80: S [tcp sum ok] 1429687260:1429687260(0) win 5840 <mss 1460,sackOK,timestamp 116334 0,nop,wscale 0>
(DF) (ttl 64, id 36274, len 60)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1063: S [tcp sum ok] 1332232310:1332232310(0) ack 1429687261 win 5792 <mss 1460,sackOK,timestamp 9818037
116334,nop,wscale 0> (DF) (ttl 64, id 0, len 60)
21:06:36.356476 10.0.0.2.1063 > 10.0.0.1.80: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 116334 9818037> (DF) (ttl 64, id 36275, len 52)
21:06:36.356476 10.0.0.2.1063 > 10.0.0.1.80: P [tcp sum ok] 1:29(28) ack 1 win 5840 <nop,nop,timestamp 116334 9818037> (DF) (ttl 64, id 36276,
len 80)
0x0000 4500 0050 8db4 4000 4006 98f1 0a00 0002 E..P..@.@.......
0x0010 0a00 0001 0427 0050 5537 4bdd 4f68 4077’.PU7K.Oh@w
0x0020 8018 16d0 6955 0000 0101 080a 0001 c66eiU.........n
0x0030 0095 cfb5 001e 3b6f 0100 0001 0000 0000;o........ DNS (TCP)
0x0040 0000 0568 3478 3072 026e 6c00 00fc 0001 ...h4x0r.nl.....
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1063: . [tcp sum ok] ack 29 win 5792 <nop,nop,timestamp 9818037 116334> (DF) (ttl 64, id 36802, len 52)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1063: R [tcp sum ok] 1:1(0) ack 29 win 5792 <nop,nop,timestamp 9818038 116334> (DF) (ttl 64, id 36803, len
52)
21:06:36.356476 10.0.0.2.1064 > 10.0.0.1.80: S [tcp sum ok] 1429508463:1429508463(0) win 5840 <mss 1460,sackOK,timestamp 116334 0,nop,wscale 0>
(DF) (ttl 64, id 22273, len 60)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1064: S [tcp sum ok] 1334138529:1334138529(0) ack 1429508464 win 5792 <mss 1460,sackOK,timestamp 9818040
116334,nop,wscale 0> (DF) (ttl 64, id 0, len 60)
21:06:36.356476 10.0.0.2.1064 > 10.0.0.1.80: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 116334 9818040> (DF) (ttl 64, id 22274, len 52)
21:06:36.356476 10.0.0.2.1064 > 10.0.0.1.80: P [tcp sum ok] 1:51(50) ack 1 win 5840 <nop,nop,timestamp 116334 9818040> (DF) (ttl 64, id 22275,
len 102)
0x0000 4500 0066 5703 4000 4006 cf8c 0a00 0002 E..fW.@.@.......
0x0010 0a00 0001 0428 0050 5534 9170 4f85 56a2(.PU4.pO.V.
0x0020 8018 16d0 6c6d 0000 0101 080a 0001 c66elm.........n
0x0030 0095 cfb8 7908 0000 0001 0000 0000 0000y...........
0x0040 2043 4b41 4141 4141 4141 4141 4141 4141 .CKAAAAAAAAAAAAA NETBIOS
0x0050 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x0060 4100 0021 0001 A..!..
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1064: . [tcp sum ok] ack 51 win 5792 <nop,nop,timestamp 9818040 116334> (DF) (ttl 64, id 39194, len 52)

 19

21:06:36.356476 10.0.0.2.1065 > 10.0.0.1.80: S [tcp sum ok] 1432105165:1432105165(0) win 5840 <mss 1460,sackOK,timestamp 116334 0,nop,wscale 0>
(DF) (ttl 64, id 63139, len 60)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1065: S [tcp sum ok] 1343970302:1343970302(0) ack 1432105166 win 5792 <mss 1460,sackOK,timestamp 9818041
116334,nop,wscale 0> (DF) (ttl 64, id 0, len 60)
21:06:36.356476 10.0.0.2.1065 > 10.0.0.1.80: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 116334 9818041> (DF) (ttl 64, id 63140, len 52)
21:06:36.356476 10.0.0.2.1065 > 10.0.0.1.80: P [tcp sum ok] 1:18(17) ack 1 win 5840 <nop,nop,timestamp 116334 9818041> (DF) (ttl 64, id 63141,
len 69)
0x0000 4500 0045 f6a5 4000 4006 300b 0a00 0002 E..E..@.@.0.....
0x0010 0a00 0001 0429 0050 555c 30ce 501b 5bff).PU\0.P.[.
0x0020 8018 16d0 a498 0000 0101 080a 0001 c66en
0x0030 0095 cfb9 4845 4144 202f 2048 5454 502fHEAD./.HTTP/ HTTP
0x0040 312e 300a 0a 1.0..
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1065: . [tcp sum ok] ack 18 win 5792 <nop,nop,timestamp 9818041 116334> (DF) (ttl 64, id 37958, len 52)
21:06:36.356476 10.0.0.2.1066 > 10.0.0.1.80: S [tcp sum ok] 1428364229:1428364229(0) win 5840 <mss 1460,sackOK,timestamp 116334 0,nop,wscale 0>
(DF) (ttl 64, id 56747, len 60)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1066: S [tcp sum ok] 1341305709:1341305709(0) ack 1428364230 win 5792 <mss 1460,sackOK,timestamp 9818041
116334,nop,wscale 0> (DF) (ttl 64, id 0, len 60)
21:06:36.356476 10.0.0.2.1066 > 10.0.0.1.80: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 116334 9818041> (DF) (ttl 64, id 56748, len 52)
21:06:36.356476 10.0.0.2.1066 > 10.0.0.1.80: P [tcp sum ok] 1:15(14) ack 1 win 5840 <nop,nop,timestamp 116334 9818041> (DF) (ttl 64, id 56749,
len 66)
0x0000 4500 0042 ddad 4000 4006 4906 0a00 0002 E..B..@.@.I.....
0x0010 0a00 0001 042a 0050 5523 1bc6 4ff2 b36e*.PU#..O..n
0x0020 8018 16d0 7ce0 0000 0101 080a 0001 c66e|..........n
0x0030 0095 cfb9 300c 0201 0160 0702 0102 04000....`...... LDAP
0x0040 8000 ..
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1066: . [tcp sum ok] ack 15 win 5792 <nop,nop,timestamp 9818041 116334> (DF) (ttl 64, id 31959, len 52)
21:06:36.356476 10.0.0.2.1067 > 10.0.0.1.80: S [tcp sum ok] 1444452867:1444452867(0) win 5840 <mss 1460,sackOK,timestamp 116334 0,nop,wscale 0>
(DF) (ttl 64, id 23661, len 60)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1067: S [tcp sum ok] 1338699452:1338699452(0) ack 1444452868 win 5792 <mss 1460,sackOK,timestamp 9818042
116334,nop,wscale 0> (DF) (ttl 64, id 0, len 60)
21:06:36.356476 10.0.0.2.1067 > 10.0.0.1.80: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 116334 9818042> (DF) (ttl 64, id 23662, len 52)
21:06:36.356476 10.0.0.2.1067 > 10.0.0.1.80: P [tcp sum ok] 1:267(266) ack 1 win 5840 <nop,nop,timestamp 116334 9818042> (DF) (ttl 64, id 23663,
len 318)
0x0000 4500 013e 5c6f 4000 4006 c948 0a00 0002 E..>\o@.@..H....
0x0010 0a00 0001 042b 0050 5618 9a04 4fca eebd+.PV...O...
0x0020 8018 16d0 9a96 0000 0101 080a 0001 c66en
0x0030 0095 cfba 0000 0106 ffff ffff 0a00 0000
0x0040 0000 00ff ffff ffff ffff ffff ffff ffff
0x0050 ffff ffff ffff 3e00 0000 00ff ffff ffff>.........
0x0060 ff20 2020 2020 2020 2020 2020 2020 2020
0x0070 2020 2020 2020 2020 2020 2020 2020 2020 SAP-R3
0x0080 2020 2020 2020 2020 2070 656e 7465 7374pentest
0x0090 0020 2020 2020 2020 2020 2020 2000 0000
0x00a0 0000 2d20 2020 2020 2020 2020 2020 2020 ..-.............
0x00b0 2020 2020 2020 0000 0000 0000 0000 ffff

 20

0x00c0 ffff 0000 0000 0100 0000 0000 0000 0000
0x00d0 0000 0000 0000 0000 0000 0000 0000 0000
0x00e0 0000 0000 0000 0000 0000 0000 0000 0000
0x00f0 0000 0000 0000 0000 0000 0000 0000 0000
0x0100 0010 0000 0000 0000 1004 0200 0c00 0187
0x0110 6800 0004 4c00 0003 e810 040b 0020 ff7f h...L...........
0x0120 ca0d c8b3 6600 0400 0000 0000 0000 0000f...........
0x0130 0000 0000 0000 0000 0000 0000 0000
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1065: R [tcp sum ok] 1:1(0) ack 18 win 5792 <nop,nop,timestamp 9818042 116334> (DF) (ttl 64, id 37959, len
52)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1067: . [tcp sum ok] ack 267 win 6432 <nop,nop,timestamp 9818042 116334> (DF) (ttl 64, id 8455, len 52)
21:06:36.356476 10.0.0.2.1068 > 10.0.0.1.80: S [tcp sum ok] 1428253576:1428253576(0) win 5840 <mss 1460,sackOK,timestamp 116334 0,nop,wscale 0>
(DF) (ttl 64, id 44518, len 60)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1068: S [tcp sum ok] 1331826576:1331826576(0) ack 1428253577 win 5792 <mss 1460,sackOK,timestamp 9818042
116334,nop,wscale 0> (DF) (ttl 64, id 0, len 60)
21:06:36.356476 10.0.0.2.1068 > 10.0.0.1.80: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 116334 9818042> (DF) (ttl 64, id 44519, len 52)
21:06:36.356476 10.0.0.2.1068 > 10.0.0.1.80: P [tcp sum ok] 1:101(100) ack 1 win 5840 <nop,nop,timestamp 116334 9818042> (DF) (ttl 64, id 44520,
len 152)
0x0000 4500 0098 ade8 4000 4006 7875 0a00 0002 E.....@.@.xu....
0x0010 0a00 0001 042c 0050 5521 6b89 4f62 0f91,.PU!k.Ob..
0x0020 8018 16d0 d1db 0000 0101 080a 0001 c66en
0x0030 0095 cfba 8000 0060 77b7 3b30 0000 0000`w.;0....
0x0040 0000 0002 0001 86a5 0000 0001 0000 0005 MOUNTD
0x0050 0000 0001 0000 0038 3c71 4d94 0000 00078<qM.....
0x0060 6b70 6d67 2d70 7400 0000 0000 0000 0000 kpmg-pt.........
0x0070 0000 0007 0000 0000 0000 0001 0000 000e
0x0080 0000 000f 0000 0010 0000 0011 0000 fffe
0x0090 0000 0000 0000 0000
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1064: R [tcp sum ok] 1:1(0) ack 51 win 5792 <nop,nop,timestamp 9818042 116334> (DF) (ttl 64, id 39195, len
52)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1068: . [tcp sum ok] ack 101 win 5792 <nop,nop,timestamp 9818042 116334> (DF) (ttl 64, id 49195, len 52)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1066: R [tcp sum ok] 1:1(0) ack 15 win 5792 <nop,nop,timestamp 9818042 116334> (DF) (ttl 64, id 31960, len
52)
21:06:36.356476 10.0.0.2.1069 > 10.0.0.1.80: S [tcp sum ok] 1430921132:1430921132(0) win 5840 <mss 1460,sackOK,timestamp 116334 0,nop,wscale 0>
(DF) (ttl 64, id 55746, len 60)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1069: S [tcp sum ok] 1336768757:1336768757(0) ack 1430921133 win 5792 <mss 1460,sackOK,timestamp 9818043
116334,nop,wscale 0> (DF) (ttl 64, id 0, len 60)
21:06:36.356476 10.0.0.2.1069 > 10.0.0.1.80: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 116334 9818043> (DF) (ttl 64, id 55747, len 52)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1067: R [tcp sum ok] 1:1(0) ack 267 win 6432 <nop,nop,timestamp 9818043 116334> (DF) (ttl 64, id 8456, len
52)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1068: R [tcp sum ok] 1:1(0) ack 101 win 5792 <nop,nop,timestamp 9818043 116334> (DF) (ttl 64, id 49196,
len 52)
21:06:36.356476 10.0.0.2.1069 > 10.0.0.1.80: P [tcp sum ok] 1:49(48) ack 1 win 5840 <nop,nop,timestamp 116334 9818043> (DF) (ttl 64, id 55748,
len 100)
0x0000 4500 0064 d9c4 4000 4006 4ccd 0a00 0002 E..d..@.@.L.....

 21

0x0010 0a00 0001 042d 0050 554a 1fad 4fad 78f6-.PUJ..O.x.
0x0020 8018 16d0 478e 0000 0101 080a 0001 c66eG..........n
0x0030 0095 cfbb 6c00 0b00 0000 1200 1000 0000l...........
0x0040 4d49 542d 4d41 4749 432d 434f 4f4b 4945 MIT-MAGIC-COOKIE X-windows
0x0050 2d31 0000 c617 34b7 89ed 65c0 93fd d856 -1....4...e....V
0x0060 66fa 5240 f.R@
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1069: . [tcp sum ok] ack 49 win 5792 <nop,nop,timestamp 9818043 116334> (DF) (ttl 64, id 46925, len 52)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1069: R [tcp sum ok] 1:1(0) ack 49 win 5792 <nop,nop,timestamp 9818043 116334> (DF) (ttl 64, id 46926, len
52)
21:06:36.356476 10.0.0.2.1070 > 10.0.0.1.80: S [tcp sum ok] 1431629210:1431629210(0) win 5840 <mss 1460,sackOK,timestamp 116334 0,nop,wscale 0>
(DF) (ttl 64, id 11252, len 60)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1070: S [tcp sum ok] 1336236285:1336236285(0) ack 1431629211 win 5792 <mss 1460,sackOK,timestamp 9818044
116334,nop,wscale 0> (DF) (ttl 64, id 0, len 60)
21:06:36.356476 10.0.0.2.1070 > 10.0.0.1.80: . [tcp sum ok] ack 1 win 5840 <nop,nop,timestamp 116334 9818044> (DF) (ttl 64, id 11253, len 52)
21:06:36.356476 10.0.0.2.1070 > 10.0.0.1.80: P [tcp sum ok] 1:15(14) ack 1 win 5840 <nop,nop,timestamp 116334 9818044> (DF) (ttl 64, id 11254,
len 66)
0x0000 4500 0042 2bf6 4000 4006 fabd 0a00 0002 E..B+.@.@.......
0x0010 0a00 0001 042e 0050 5554 ed9b 4fa5 58fePUT..O.X.
0x0020 8018 16d0 0590 0000 0101 080a 0001 c66en
0x0030 0095 cfbc 300c 0201 0160 0702 0102 04000....`...... LDAP
0x0040 8000 ..
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1070: . [tcp sum ok] ack 15 win 5792 <nop,nop,timestamp 9818044 116334> (DF) (ttl 64, id 38722, len 52)
21:06:36.356476 10.0.0.1.80 > 10.0.0.2.1070: R [tcp sum ok] 1:1(0) ack 15 win 5792 <nop,nop,timestamp 9818044 116334> (DF) (ttl 64, id 38723, len
52)
21:06:41.256476 10.0.0.2.1060 > 10.0.0.1.80: F [tcp sum ok] 9:9(0) ack 1 win 5840 <nop,nop,timestamp 116824 9817937> (DF) (ttl 64, id 24019, len
52)
21:06:41.256476 10.0.0.1.80 > 10.0.0.2.1060: F [tcp sum ok] 1:1(0) ack 10 win 5792 <nop,nop,timestamp 9822937 116824> (DF) (ttl 64, id 40370, len
52)
21:06:41.256476 10.0.0.2.1060 > 10.0.0.1.80: . [tcp sum ok] ack 2 win 5840 <nop,nop,timestamp 116824 9822937> (DF) (ttl 64, id 24020, len 52)

 22

Amap successfully recognized SSL listening on port 80. Here is the content of the
results file:

Amap v0.95 started at Fri Sep 27 21:06:36 2002
Ports: 0, triggers 0. Total amount of tasks to perform: 11
Protocol on IP 10.0.0.1 port 80 tcp matches SSL - banner: JF=dj3*B
\ne!O61iIOw\nNJGD0@00\r\t*H\r0f10\tUGB10\rULondon10\rULondon10\nU\nAAA10\nUAAA10Uaaaaa
a.bbbbb.ccc0\r020913225923Z\r021013225923Z0f10\tUGB10\rULondon10\rULondon10\nU\nAAA10\
nUAAA10Uaaaaaa.bbbbb.ccc00\r\t*H\r0cwI.KJU#7j*-DY4J930V’`XH
Unidentified ports: None.
Amap v0.95 ended at Fri Sep 27 21:06:41 2002

The “banner” is, in fact, the message sent by the server in response to the handshake
initiated by amap.
The apache-ssl daemon recorded the following error messages in its error log file,
showing that the server received also messages that were not recognized as valid
“client_hello” message. There was one such entry per each of the triggers sent by
amap.

[snip]
[Fri Sep 27 21:05:00 2002] [error] SSL_accept failed
[Fri Sep 27 21:05:00 2002] [error] error:140760FC:SSL
routines:SSL23_GET_CLIENT_HELLO:unknown protocol
[Fri Sep 27 21:05:00 2002] [debug] apache_ssl.c(287): SSL_accept returned 0
[Fri Sep 27 21:05:00 2002] [error] SSL_accept failed
[Fri Sep 27 21:05:00 2002] [error] error:140760FC:SSL
routines:SSL23_GET_CLIENT_HELLO:unknown protocol
[Fri Sep 27 21:05:00 2002] [error] SSL_accept failed
[Fri Sep 27 21:05:00 2002] [error] error:1407609C:SSL
routines:SSL23_GET_CLIENT_HELLO:http request
[Fri Sep 27 21:05:00 2002] [error] SSL_accept failed
[Fri Sep 27 21:05:00 2002] [error] error:140760FC:SSL
routines:SSL23_GET_CLIENT_HELLO:unknown protocol
[snip]

Detecting amap probes
Amap is not very stealthy is run in its default mode. 11 parallel connections each one,
with the exception of one possibly, sending an unexpected message at the application
protocol level are surely recorded in the application log file, provided that the
application maintains a good logging level. In the test that I made, the probes on the
ssh port did not leave any trace at the application level, since no logging was enabled
for this application. On the other hand extensive logging was available for the ftp, http
and http-ssl applications. Therefore the most effective means to detect this probe is to
maintain and check logs at the application level. After all if your mail server receives
a NETBIOS request, something strange must be happening.
Apart from logging at the application level, it is difficult to detect an amap probe
since it uses the OS system calls to the TCP/IP stack and therefore no signature can be
found at the level of the TCP, UDP or IP packet. Nevertheless, it is still possible to
write a snort rule that is able to detect probes from amap when it is run in its default
mode. In fact, we can observe that in all attempts, amap always sends the trigger for
the mount service, specifying a machine name that is hard-wired in the binary string it
sends for this type of trigger. The machine name is “kpmg-pt” and it can be found in
any default probe from this tool.
It is possible to write a rule that looks for this string in the payload for each service
that we possibly want to monitor against this type of probes.
For instance I wrote the following rules for my test environment:

 23

alert tcp $EXTERNAL_NET any -> $HOME_NET 389 (msg:”AMAP probe attempt on the
LDAP server”; flags:A+; content:”kpmg-pt”; classtype:attempted-recon;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 80 (msg:”AMAP probe attempt on the
HTTPS Server”; flags:A+; content:”kpmg-pt”; classtype:attempted-recon;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 31 (msg:”AMAP probe attempt on the
FTP server”; flags:A+; content:”kpmg-pt”; classtype:attempted-recon;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:”AMAP probe attempt on the
HTTP server”; flags:A+; content:”kpmg-pt”; classtype:attempted-recon;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 23 (msg:”AMAP probe attempt on the
ssh server”; flags:A+; content:”kpmg-pt”; classtype:attempted-recon;)

Obviously, $HOME_NET could be substituted with the IP address of the host on
which the specific service is running.

The following alerts were produced by snort, running in NIDS mode with the –dv and
–c <snort-conf> options:

[**] [1:0:0] AMAP probe attempt on the LDAP server [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/27-21:05:01.746476 10.0.0.2:1057 -> 10.0.0.1:389
TCP TTL:64 TOS:0x0 ID:49249 IpLen:20 DgmLen:152 DF
AP Seq: 0x4F7E6127 Ack: 0x4A5394D0 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 106873 9723423

[**] [1:0:0] AMAP probe attempt on the HTTPS Server [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/27-21:06:36.356476 10.0.0.2:1068 -> 10.0.0.1:80
TCP TTL:64 TOS:0x0 ID:44520 IpLen:20 DgmLen:152 DF
AP Seq: 0x55216B89 Ack: 0x4F620F91 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 116334 9818042

[**] [1:0:0] AMAP probe attempt on the FTP server [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/27-21:07:02.366476 10.0.0.2:1079 -> 10.0.0.1:31
TCP TTL:64 TOS:0x0 ID:20302 IpLen:20 DgmLen:152 DF
AP Seq: 0x56F09FDC Ack: 0x5118D111 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 118935 9844055

[**] [1:0:0] AMAP probe attempt on the HTTP server [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/27-21:07:26.436476 10.0.0.2:1090 -> 10.0.0.1:21
TCP TTL:64 TOS:0x0 ID:39814 IpLen:20 DgmLen:152 DF
AP Seq: 0x58F7427B Ack: 0x5293A102 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 121342 9868125

[**] [1:0:0] AMAP probe attempt on the ssh server [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/27-21:07:51.176476 10.0.0.2:1101 -> 10.0.0.1:23
TCP TTL:64 TOS:0x0 ID:36800 IpLen:20 DgmLen:152 DF
AP Seq: 0x59D46C17 Ack: 0x548C9F48 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 123816 9892868

Obviously these rules fail, if one runs amap with the –p <protocol> options
specifying the triggers that should be used and not using the “mount” trigger. But then
again, being a tool that targets the application level, detection is done most
appropriately at the application level by careful monitoring of “strange” messages
sent to the server.

 24

Conclusions
Tools like amap are an additional proof that “security through obscurity” is not the
right approach to secure a network: simply running a service on a different port is not
sufficient to go unnoticed. However, amap can be very useful for system
administrators in finding “hidden” services, in those cases where users run
unauthorised services and try to disguise them using a non-standard port. In this
function it can be usefully used in collaboration with tools like nmap. The list of
signatures (triggers and responses) is customisable and can be easily expanded with
the addition of signatures of proprietary protocols. Like its authors say: “With amap,
you will be able to identify that SSL server running on port 3445 and some oracle
listener on port 23!”.

References
[1] Fyodor, Remote OS detection via TCP/IP stack fingerprinting

URL: http://www.insecure.org/nmap/nmap-fingerprinting-article.html (October,
4th)

[2] List of fingerprints for passive fingerprint monitoring
URL: http://project.honeynet.org/papers/finger/traces.txt (October, 4th)

[3] Hping man page, URL: http://www.hping.org/manpage.html (October, 4th)
[4] Arkin, Orfin, Network scanning techniques: Understanding how it is done

URL: http://www.sys-
security.com/archive/papers/Network_Scanning_Techniques.pdf (October, 4th)

[5] Identifying ICMP Hackery Tools Used In The Wild Today
URL: http://www.sys-security.com/archive/securityfocus/icmptools.html
(October, 4th)

[6] Preventing remote OS Detection
URL: http://www.pgci.ca/common/p_fingerprint.htm (October, 4th)

[7] Beck, Rob, Passive-Aggressive Resistance: OS Fingerprint Evasion, Linux
Journal
URL: http://www.linuxjournal.com/article.php?sid=4750 (October, 4th)

[8] Malan, G. Robert, Jahanian Farnam, Smart, Matthew, Defeating TCP/IP Stack
Fingerprint, Proc. 9th Usenix Symposium, Denver, CO, August 14-17, 2000

[9] Arkin, Orfin, Yarochkin, Fyodor Xprobe v2.0: A fuzzy approach to remote active
operating system fingerprinting, August 2002
URL: http://www.sys-security.com/archive/papers/Xprobe2.pdf (October, 4th)

[10] HACKBOT 2.11 URL: http://ws.obit.nl/hackbot/documentation.txt (October,
4th)

[11] Provos, Niels, Honeyman, Peter, ScanSSH - Scanning the Internet for SSH
servers, URL: www.citi.umich.edu/techreports/reports/citi-tr-01-13.pdf (October,
4th)

[12] Nazario, Jose Passive Fingerprinting using Network Client Applications, Nov.
2000 URL: http://www.crimelabs.net/docs/passive.html (October, 4th)

[13] Bursztein, Lupin iQ Overview,
URL: www.bursztein.net/secu/iQ/iQ-fr.pdf (October, 4th)

[14] OS Identification, Unix Insider 12/8/00
URL: http://www.itworld.com/Comp/2124/swol-1208-buildingblocks/ (October,
4th)

 25

[15] Glaser, Thomas TCP/IP Stack Fingerprinting Principles, , SANS Intrusion
Detection FAQ, October 2000
URL: http://www.sans.org/newlook/resources/IDFAQ/TCP_fingerprinting.htm
(October, 4th)

[16] Veysset, Franck, Courtay, Olivier, and Heen, Olivier, New tool and technique
for remote operating system fingerprinting
URL: http://www.intranode.com/pdf/techno/ring-full-paper.pdf (October, 4th)

[17] Vision, Max, Passive Host Fingerprinting,
URL: http://www.whitehats.com/library/passive (October, 4th)

[18] Advanced Remote OS Detection Methods/Concepts using Perl
URL: http://cert.uni-stuttgart.de/archive/bugtraq/2001/02/msg00195.html
(October, 4th)

[19] Examining Remote OS Detection using LPD querying, Feb 2001
URL: http://old.lwn.net/2001/0222/a/sec-lpddetect.php3 (October, 4th)

[20] Fernando Martins, IDS: passive mapping: an offensive use of IDS,
URL: http://www.shmoo.com/mail/ids/apr00/msg00014.shtml (October, 4th)

[21] Know Your Enemy:Passive Fingerprinting, Honeynet project
URL: http://project.honeynet.org/papers/finger/ (October, 4th)

[22] Ethereal, URL: http://www.ethereal.com (October, 4th)
[23] Arkin, Orfin, ICMP usage in scanning

URL:http://www.sys-security.com/html/projects/icmp.html (October, 4th)
[24] P0f README, URL: http://www.stearns.org/p0f/README (October, 4th)
[25] Amap README URL:

http://www.thehackerschoice.com/download.php?t=r&d=amap-0.95.tar.gz
(October, 4th)

 26

Part 2 – Network Detects

Detect #1: Looking for ssh servers

Trace Log

[snip - first address is x.y.z.67]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/05-17:23:40.059051 217.195.194.105:20 -> x.y.z.128:22
 TCP TTL:236 TOS:0x0 ID:12859 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0x905D891C Ack: 0x0 Win: 0x3FFF TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS06]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/05-17:25:03.903557 217.195.194.105:20 -> x.y.z.129:22
 TCP TTL:236 TOS:0x0 ID:31083 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0x489D34B0 Ack: 0x0 Win: 0x3FFF TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS06]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/05-17:26:39.277130 217.195.194.105:20 -> x.y.z.130:22
 TCP TTL:236 TOS:0x0 ID:60917 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0x76017BFE Ack: 0x0 Win: 0x3FFF TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS06]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/05-17:27:09.031427 217.195.194.105:20 -> x.y.z.131:22
 TCP TTL:236 TOS:0x0 ID:25151 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0xBB41833B Ack: 0x0 Win: 0x3FFF TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS06]

[snip - destination IP increment by one]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/05-23:59:41.655592 217.195.194.105:20 -> x.y.w.250:22
 TCP TTL:236 TOS:0x0 ID:49447 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0x9B009A3D Ack: 0x0 Win: 0x3FFF TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS06]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/06-00:00:25.830168 217.195.194.105:20 -> x.y.w.251:22
 TCP TTL:236 TOS:0x0 ID:28091 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0x617761F6 Ack: 0x0 Win: 0x3FFF TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS06]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/06-00:01:23.642390 217.195.194.105:20 -> x.y.w.252:22
 TCP TTL:236 TOS:0x0 ID:20365 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0xAC8CB38E Ack: 0x0 Win: 0x3FFF TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS06]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/06-00:02:59.168129 217.195.194.105:20 -> x.y.w.253:22
 TCP TTL:236 TOS:0x0 ID:50349 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0x9E845F7E Ack: 0x0 Win: 0x3FFF TcpLen: 20

 27

 [Xref => http://www.whitehats.com/info/IDS06]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/06-00:03:28.787919 217.195.194.105:20 -> x.y.w.254:22
 TCP TTL:236 TOS:0x0 ID:14393 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0xA958E0FF Ack: 0x0 Win: 0x3FFF TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS06]

[scan starts again the following day to complete the first 255-addresses
netblock]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/07-17:12:03.138461 217.195.194.105:20 -> x.y.z.1:22
 TCP TTL:236 TOS:0x0 ID:9173 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0xAF643E15 Ack: 0x0 Win: 0x3FFF TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS06]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/07-17:13:29.351675 217.195.194.105:20 -> x.y.z.2:22
 TCP TTL:236 TOS:0x0 ID:29847 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0x5BB0B713 Ack: 0x0 Win: 0x3FFF TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS06]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/07-17:15:14.552546 217.195.194.105:20 -> x.y.z.3:22
 TCP TTL:236 TOS:0x0 ID:3825 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0xB24A8B8A Ack: 0x0 Win: 0x3FFF TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS06]

[snip]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/07-18:14:17.310046 217.195.194.105:20 -> x.y.z.65:22
 TCP TTL:236 TOS:0x0 ID:7631 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0x637DF372 Ack: 0x0 Win: 0x3FFF TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS06]

 [**] [1:503:2] MISC Source Port 20 to <1024 [**]
 [Classification: Potentially Bad Traffic] [Priority: 2]
 07/07-18:15:54.563805 217.195.194.105:20 -> x.y.z.66:22
 TCP TTL:236 TOS:0x0 ID:39345 IpLen:20 DgmLen:40 DF
 ******S* Seq: 0x553FF4FF Ack: 0x0 Win: 0x3FFF TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS06]

1. Source of Trace
NIDS sensor located on a network that I manage.

2. Detect was generated by
This detect was generated by snort 1.8.7 build 128 in full alert mode with the standard
ruleset.

Each alert contains the following information:
1st line:

[**] ... [**] = snort-signature,
2nd line:

[Classification:] = classification of the alert
[Priority: ...] = priority assigned to the alert (indicates the severity of the alert),

 28

3rd line:
MM/DD-hh:mm:ss.cccccc = timestamp,
A.B.C.D:X = source address and source port
-> = traffic direction
E.F.G.H:Y = destination address and destination port
Protocol (TCP, UDP, etc.)

4th line:
Time to live (TTL) - as specified in the IP header
Type of Service (TOS) - as specified in the IP header
IP Identification number - as specified in the IP header
Length of the IP header
Length of the IP datagram
Don’t fragment bit (DF)

5th line:
List of TCP flags in the TCP header (“*” indicates that the flag corresponding
to the option in that position is not set)
TCP Sequence number
TCP Acknowledge number
TCP Window size
Length of the TCP header

6th line:
[...] references

The destination addresses have been sanitized, and represented as x.y.z.N, and
x.y.w.N (N is a number that ranges in the trace from 1 to 255) to indicate two
different 255-addresses net blocks.

The rule that triggered the alert is:

alert tcp $EXTERNAL_NET 20 -> $HOME_NET 0:1023 (msg: “MISC Source
Port 20 to<1024”; flags: S; classtype: bad-unknown; reference:
arachnids,6;)

Basically these alerts were generated because TCP connections were attempted using
a source port outside the range of the ephemeral source ports (usually above 1024).
The scan was not detected by the portscan preprocessor as this is activated with the
default threshold which detects a portscan when there are UDP or TCP SYN packets
from the same source to four different destinations in less than three seconds. In this
scan we have a packet about every minute which is far above the threshold of the
portscan preprocessor.

3. Probability the source address was spoofed
The probability that the source address is spoofed is low. The “attacking” host is
trying to determine if the ssh service is running on all hosts of two 255-addresses net
blocks, probably in an information gathering attempt for a possible future exploit. For
this attempt to succeed, the remote system needs to receive replies to its probes, for
this reason, unless it is positioned between the possibly spoofed address and the target
and is able to capture traffic in transit, the probability that the originating address is
spoofed is very low.

 29

A whois query at RIPE (Réseaux IP Européens) on the remote host gave the following
result:
217.195.192.0 -
217.195.198.31

allocated to Teklan Internet Erisim Hizmetleri
Komunikasyon Elektronik San Ve Tic. A.S., Turkey

An nslookup query on the remote IP address (217.195.194.105) did not produce a
hostname in return, while a query on the DShield database indicated that probes
coming from this host had been reported in July 2002, ports targeted are not indicated.

4. Description of attack
The remote host is scanning two 255-addresses net blocks in an attempt to find hosts
running the ssh service. The packets are an attempt to establish a TCP connection
(SYN flag set). The first packet is received at 16:19:22 05 July, while the last packet
of the first scan is received at 00:03:28, 06 July. The scan is resumed the next day (7
July) after 17 hours. This is a slow scan not detected by the portscan preprocessor
with a packet received at the rate of about one packet every minute.
The packet show evident signs of crafting: the IP ID is changing in a random fashion,
going from as low as 695 to as high as 61000. According to [1]: “The identification
field uniquely identifies each datagram sent by a host. It normally increments by one
each time a datagram is sent”. Assuming that this host is generating other packets
between one scan packet and the next, we should see the IP increment and wrap
around when the maximum value allowed by the IP ID field (65535) is reached.
Instead we see values incrementing and decrementing randomly. Another sign of
packet crafting is the initial window size whose value is 0x3fff (decimal 16383)
which does not seem to be used by any common operating system. According to [2]
the closest value for the initial window size is used by AIX (16000-16100), however
for AIX the initial TTL would be 60, while in these packets we have a TTL of 236
which makes us suppose that the initial TTL was 255 and that the remote host is 19
hops away from our network. 255 is a TTL value used by Solaris or Cisco 12.0. In
conclusion, either the packets are crafted or the TCP/IP stack of the remote host has
been modified against remote passive fingerprinting. Another sign of packet crafting
is the source port, source ports have usually values greater than 1024. The use of port
20 as a source port is probably meant at bypassing some poorly configured firewall.
Port 20 is used by ftp data connections. Ftp servers open a connection from source
port 20 to a destination port specified by the ftp client to transfer data (active ftp).
The slow speed of the scan can also be an attempt at making the scan go unnoticed.

5. Attack mechanism
The trace shown in this detect is an attempt at finding hosts running the ssh daemon.
SSH is a widely used client-server application for authentication and encryption of
network communications. It is normally used to substitute telnet for remote access,
because it works on an encrypted channel. There are two main versions of the SSH
protocol, v1 and v2. In 1998 Ariel Futoransky and Emiliano Kargieman [4]
discovered a design flaw in the SSH1 protocol (protocol 1.5) that could lead an
attacker to inject malicious packets into an SSH encrypted stream. The malicious
traffic would allow execution of arbitrary commands on either client or server. They
showed that this problem could not be fixed without breaking the semantic of the ssh
protocol v1.5. A patch was devised that would detect an attack that exploited the
vulnerability found. Unfortunately some time later, a vulnerability was found in the
attack detection code that could lead to the execution of arbitrary code in SSH servers

 30

and clients that incorporated this patch with the privileges of the SSH daemon, usually
root. Non only SSH1 implementations are vulnerable, but also SSH2 implementations
that implement also the SSH1 protocol for compatibility and can switch to SSH1
whenever requested by the client. However, for this vulnerability to be exploited it is
necessary that server and attacking host successfully complete the key exchange
negotiation and therefore that no access control restrictions are implemented on hosts
allowed to connect to the ssh server (i.e. no “AllowHost” or “DenyHosts” set). In
other words, sites that implement access control restrictions based on the incoming IP
are not vulnerable.
Some tools have been made available, like scanSSH [9], that automatically scan for
SSH servers and, based on the banner received, check whether the version running is
vulnerable or not. As usual with vulnerability scanners, this information can be
precious for system administrators to patch the system as well as for malicious users.
However this tool does not allow for modification of the source port, which cannot be
forced to 20 using this tool.
Based on the information obtained as a result of this scan, the scanner can launch a
remote attack to exploit this vulnerability.
Examination of the tcpdump data shows that none of these reconnaissance attempt
was successful, i.e. no TCP handshake was completed and therefore no useful data
was gathered by the attacker.

Excerpt of tcpdump data:

18:40:02.294938 217.195.194.105.20 > x.y.z.191.22: S [tcp sum ok]
2767936284:2767936284(0) win 16383 (DF) (ttl 236, id 7389, len 40)
18:40:43.395290 217.195.194.105.20 > x.y.z.192.22: S [tcp sum ok]
1161287002:1161287002(0) win 16383 (DF) (ttl 236, id 48489, len 40)
18:41:42.187020 217.195.194.105.20 > x.y.z.193.22: S [tcp sum ok]
2451269476:2451269476(0) win 16383 (DF) (ttl 236, id 41743, len 40)
18:43:09.527843 217.195.194.105.20 > x.y.z.194.22: S [tcp sum ok]
1238813056:1238813056(0) win 16383 (DF) (ttl 236, id 63547, len 40)
18:45:05.384122 217.195.194.105.20 > x.y.z.195.22: S [tcp sum ok]
2182132973:2182132973(0) win 16383 (DF) (ttl 236, id 48325, len 40)

[snip - note how the ID changes greater than 30000 to 295 and back to nearly
30000]
20:00:10.174120 217.195.194.105.20 > x.y.w.14.22: S [tcp sum ok]
2365684774:2365684774(0) win 16383 (DF) (ttl 236, id 30951, len 40)
20:00:45.064262 217.195.194.105.20 > x.y.w.15.22: S [tcp sum ok]
3214464349:3214464349(0) win 16383 (DF) (ttl 236, id 295, len 40)
20:03:25.166863 217.195.194.105.20 > x.y.w.18.22: S [tcp sum ok]
1945027150:1945027150(0) win 16383 (DF) (ttl 236, id 29123, len 40)
20:04:54.174154 217.195.194.105.20 > x.y.w.20.22: S [tcp sum ok]
1697431168:1697431168(0) win 16383 (DF) (ttl 241, id 52857, len 40)

6. Correlations
The alert raised by snort is related to the usage of port 20 as source port associated to
a destination port number less than 1024, and is described in ARACHNIDS5,
“IDS6/MISC_SOURCEPORTTRAFFIC-20-TCP”: “This event indicates that an
attacker is making a connection to a privileged port using the source port 20 (ftp-
data). This should not normally occur. Old or misconfigured packetfilters may allow
the connection if they allow all ftp response traffic.”

5 ARACHNIDS is available at http://www.whitehats.com

 31

Attacks aimed at exploiting the SSH CRC32 vulnerability are described in [3], [5] and
[6]. According to [3] in October 2001 intruders originating from network blocks in the
Netherlands exploited this vulnerability to compromise a Red Hat linux box running
OpenSSH 2.1.1 on the Washington University network. Having gained control of the
system, they replaced a series of system commands with trojaned versions and
introduced backdoors. The ssh server was also replaced and run on a different port
(tcp 39999). The system was then used to scan other systems (a total of 47067 hosts
were scanned) for the same vulnerability, 1244 of which were successfully exploited.
Log files left behind by these tools indicate that they operate by looking for the
banner displayed upon connection to the sshd service.

According to [10], vulnerable systems are:

Systems Affected Vendor Status Date Updated
Cisco Not Vulnerable 13-Dec-2001
CORE SDI Vulnerable 13-Dec-2001
Debian Vulnerable 13-Dec-2001
FreeBSD Vulnerable 13-Dec-2001
OpenSSH Vulnerable 10-Dec-2001
SmoothWall Vulnerable 14-Dec-2001
SSH Communications Security Vulnerable 6-Nov-2001
SuSE Vulnerable 13-Dec-2001

A lot of scans on ssh have also been reported to various security related mailing lists.
Among them the one reported via snortsnarf at
http://hvdkooij.xs4all.nl/snort/217/195/194/src217.195.194.105.html6 is worth noting
in this report as the scan is coming from the same remote host, with the same pattern,
indicating that the remote host has actively scanned several networks for this
vulnerability.

7. Evidence of active targeting
This is a scan directed at complete 255-addresses netblocks. No address is targeted in
particular. It is likely that this network was included as part of a wider scan. Similar
scans from the same address have been noticed on other networks.

8. Severity
The following formula is used to calculate the severity of the attack:

Severity = (criticality + lethality) - (system countermeasures + network
countermeasures)

Each aspect is ranked with a value from 1 to 5, 1 being the lowest and 5 being the
highest.

Criticality: there are critical services among those probed, 4
Lethality: this is a reconnaissance attempt, 3
System Countermeasures: ssh is not enabled, 5

6 This link seems to be not valid anymore at the date of the final version of this report (October 4th). I
found this information early September.

 32

Network Countermeasures: the firewall dropped all connections attempts, 5

Severity = (4+3) - (5+5) = -3

9. Defensive recommendation
Continue monitoring this type of traffic. If ssh is enabled, ensure, in addition to
applying all necessary system patches, that IP based access control is enforced.

10. Multiple choice test question
18:40:02.294938 217.195.194.105.20 > x.y.z.191.22: S [tcp sum ok]
2767936284:2767936284(0) win 16383 (DF) (ttl 236, id 7389, len 40)
18:40:43.395290 217.195.194.105.20 > x.y.z.192.22: S [tcp sum ok]
1161287002:1161287002(0) win 16383 (DF) (ttl 236, id 48489, len 40)
18:41:42.187020 217.195.194.105.20 > x.y.z.193.22: S [tcp sum ok]
2451269476:2451269476(0) win 16383 (DF) (ttl 236, id 41743, len 40)
18:43:09.527843 217.195.194.105.20 > x.y.z.194.22: S [tcp sum ok]
1238813056:1238813056(0) win 16383 (DF) (ttl 236, id 63547, len 40)

The above trace indicates:
a) a normal ftp data transfer
b) a fast stealth scan for ssh service
c) an attempt to evade packet filtering using ftp data source port
d) a slow port scan

Correct answer is c)

References
[1] Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Reading: Addison Wesley

Inc, 1994
[2] List of fingerprints for passive fingerprint monitoring, URL:

http://project.honeynet.org/papers/finger/traces.txt (Oct. 4th)
[3] Dittrich, David A. “Analysis of SSH crc32 compensation attack detector exploit”,

15 Nov 2001
URL: http://staff.washington.edu/dittrich/misc/ssh-analysis.txt (Oct. 4th)

[4] Kargieman, Emiliano, Pacetti, Ariel and Futoransky, Ariel. “An attack on CRC-32
integrity checks on encrypted channels using CBC and CFB modes”,
URL: http://www.core-
sdi.com/common/showdoc.php?idx=115&idxseccion=11&CORE-
ST=02aabbca5aa0b0c831ab51c1d7b310c5 (Oct. 4th)

[5] Sander, Rebecca. “One incident of remediating the CRC32 sshd1 vulnerability”,
January 12, 2002
URL: http://rr.sans.org/incident/CRC32.php (Oct. 4th)

[6] CERT. Advisory CA-2001-35 Recent Activity Against Secure Shell Daemons,
Dec. 14 2001
URL: http://www.cert.org/advisories/CA-2001-35.html (Oct. 4th)

[7] CERT. Incident Note IN-2001-12 - Exploitation of vulnerability in SSH1 CRC-32
compensation attack detector, Nov 15 2001
URL: http://www.cert.org/incident_notes/IN-2001-12.html (Oct. 4th)

[8] Irwin, Vicki. “Handler’s Diary 11/04/01, SSH CRC32 Vulnerability Exploitation
Update”,
URL: http://www.incidents.org/archives/intrusions/msg01631.html (Oct. 4th)

 33

[9] Provos, Niels, Honeyman, Peter. “ScanSSH - Scanning the Internet for SSH
servers”
URL: http://www.citi.umich.edu/techreports/reports/citi-tr-01-13.pdf (Oct. 4th)

[10] CERT Vulnerability Note VU#945216: SSH CRC32 attack detection code
contains remote integer overflow
URL: http://www.kb.cert.org/vuls/id/945216 (Oct. 4th)

Detect #2: HTTP Metadata information gathering
This detect was posted to the incidents.org mailing list on Monday 23 September.
No comments/questions were received from the list.
I received some comments/suggestions from one person. They were addressed to my
address directly and not to the list. I did not receive any comment on the list and I
noticed very little activity on the list during this week and no activity at all since
Thursday 26. I do not know whether any comment was sent in that period. Basically
The comments I received to my address directly suggested that I reviewed the
references, add a fourth question to the multiple-choice question and that I check
whether other sites were targeted by the same individuals. I modified my detect taking
into account his suggestions. However I could not find evidence of other hosts being
targeted by the same hosts in my detect.

Trace log

[**] [1:1171:6] WEB-MISC whisker HEAD with large datagram [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/18-05:23:06.944488 198.144.198.170:14304 -> 46.5.180.133:80
TCP TTL:47 TOS:0x0 ID:45757 IpLen:20 DgmLen:579 DF
AP Seq: 0x299D6282 Ack: 0x2E758A6E Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 7852100 8378965
[Xref => http://www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html]

[**] [1:1171:6] WEB-MISC whisker HEAD with large datagram [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/18-05:42:00.464488 198.144.198.170:14310 -> 46.5.180.133:80
TCP TTL:47 TOS:0x0 ID:51168 IpLen:20 DgmLen:579 DF
AP Seq: 0x71994D29 Ack: 0x773D695A Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 7965440 8492307
[Xref => http://www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html]

[**] [1:1171:6] WEB-MISC whisker HEAD with large datagram [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/18-14:16:36.714488 202.214.44.44:1677 -> 46.5.180.133:80
TCP TTL:46 TOS:0x0 ID:60402 IpLen:20 DgmLen:570 DF
AP Seq: 0x8A1E6C65 Ack: 0xDCAE637 Win: 0x4470 TcpLen: 20
[Xref => http://www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html]

[**] [1:1171:6] WEB-MISC whisker HEAD with large datagram [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/18-14:31:24.894488 202.214.44.44:1693 -> 46.5.180.133:80
TCP TTL:46 TOS:0x0 ID:61360 IpLen:20 DgmLen:569 DF
AP Seq: 0x98033C83 Ack: 0x45EB5987 Win: 0x4470 TcpLen: 20
[Xref => http://www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html]

1. Source of Trace
The detect used for this trace is http://www.incidents.org/logs/Raw/2002.6.18.

 34

Although we have no information about the network layout, by looking at the traffic
contained in the raw data files and assuming that they were obtained using snort in
binary logging mode we can observe some http and ftp traffic directed at the host
involved in the traces (46.5.180.133). I assume only traffic that triggered an alert is
logged (snort in binary mode) since no TCP session negotiation traffic is shown (for
example, only ftp traffic where user is anonymous is logged).
The net block 46.0.0.0-46.255.255.255 is IANA reserved. Addresses in this block
have probably been used to mask out the original addresses. This is the reason for the
BAD checksum messages (the checksum field in the packet contains the value of the
checksum computed using the original IP addresses).

2. Detect was generated by
The detect shown here was generated by snort 1.8.7 build 128 with the standard
ruleset on the above mentioned file, using the -d option to dump the application layer
payload. The format of the alert is the same as described in the previous detect.
The rule that triggered the alert is:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:”WEB-
MISC whisker HEAD with large datagram”; content:”HEAD”; offset: 0;
depth: 4; nocase; dsize:>512; flags:A+; classtype:attempted-recon;
reference:url,www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html;
sid:1171; rev:7;)

Basically this alert was generated because in a packet sent to one of the web servers
on the monitored net on one of the HTTP ports, the following conditions occurred:

• the HTTP method used was “HEAD”;
• the length of the application layer data content (i.e. the length of the HTTP

request message) was greater than 512 bytes;
• the ack flag and possibly additional flags were set (actually in our case the ack

and the push flags were set)

3. Probability the source address was spoofed
The packets logged by snort during this day and the previous ones show that there are
replies from the 46.5.180.133 server on port 80, which means that a web server is
really running on this host. This in turn suggests that, even though we do not see
packets related to the connection establishment (TCP handshake: SYN - SYN/ACK -
ACK) between this host and the two “attacking” hosts, the handshake has been
completed and that the packets that we see in the trace are sent on an established TCP
connection, which in turn suggests that the senders’ addresses are not spoofed (unless
the targeted web server is vulnerable to sequence number prediction attacks),
otherwise the handshake phase could not have been completed.
A DNS query on the two “attacking” hosts gives the following results:

198.144.198.170: m198-170.dsl.rawbw.com
202.214.44.44: proxy2.sanritz.co.jp

A WHOIS query on the two addresses reveals that the first one belongs to the net
block:

198.144.192.0 - 198.144.223.255 allocated to Raw Bandwidth

 35

Communications, Inc., US

While the second one belongs to the net block:

202.214.44.40 - 202.214.44.47 allocated to Sanritz Automation Co., Ltd.,

Japan.

None of these addresses is contained in the Dshield database, indicating that no report
were sent about attacks from these hosts.

4. Description of attack
snort detected an attempt at gathering information about a web server using the
HEAD HTTP method from two different IP addresses. Each of the two “attacking” IP
addresses sent two packets specifying a different URL. The “decoded” payload for the
received messages is shown below:

From 198.144.198.170
HEAD /main/tools/discontinued/47u322.pdf HTTP/1.1\r\n
Host: www.XXXX.com\r\n
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.0.0)
Gecko/20020529\r\n
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=
0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,text/css,*/*;q=0.1\r\n
Accept-Language: en-us, en;q=0.50\r\n
Accept-Encoding: gzip, deflate, compress;q=0.9\r\n
Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66\r\n
Keep-Alive: 300\r\n
Connection: keep-alive\r\n
Pragma: no-cache\r\n
Cache-Control: no-cache\r\n\r\n

HEAD /main/tools/discontinued/47u33x.pdf HTTP/1.1\r\n
Host: www.XXXX.com\r\n
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.0.0)
Gecko/20020529\r\n
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=
0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,text/css,*/*;q=0.1\r\n
Accept-Language: en-us, en;q=0.50\r\n
Accept-Encoding: gzip, deflate, compress;q=0.9\r\n
Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66\r\n
Keep-Alive: 300\r\n
Connection: keep-alive\r\n
Pragma: no-cache\r\n
Cache-Control: no-cache\r\n\r\n

From 202.214.44.44
HEAD /main/datasheets/37c67x.pdf HTTP/1.1\r\n
Via: 1.1 - (DeleGate/7.5.3)\r\n
Host: www.XXXX.com\r\n
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; ja-JP; rv:1.0rc2)
Gecko/20020512 Netscape/7.0b1\r\n
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=
0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,text/css,*/*;q=0.1\r\n
Accept-Language: ja_JP, ja;q=0.50\r\n
Accept-Encoding: gzip, deflate, compress;q=0.9\r\n
Accept-Charset: Shift_JIS, utf-8;q=0.66, *;q=0.66\r\n
Pragma: no-cache\r\n

 36

Cache-Control: no-cache\r\n\r\n

HEAD /main/tools/io-sch/67x.pdf HTTP/1.1\r\n
Via: 1.1 - (DeleGate/7.5.3)\r\n
Host: www.XXXX.com\r\n
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; ja-JP; rv:1.0rc2)
Gecko/20020512 Netscape/7.0b1\r\n
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=
0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,text/css,*/*;q=0.1\r\n
Accept-Language: ja_JP, ja;q=0.50\r\n
Accept-Encoding: gzip, deflate, compress;q=0.9\r\n
Accept-Charset: Shift_JIS, utf-8;q=0.66, *;q=0.66\r\n
Pragma: no-cache\r\n
Cache-Control: no-cache\r\n\r\n

Google search for the files requested with the HEAD method in these http requests
gave the following results:

www.smsc.com/main/tools/discontinued/47u322.pdf
www.smsc.com/main/datasheets/37c67x.pdf
www.smsc.com/main/tools/io-sch/67x.pdf
www.smsc.com/main/tools/discontinued/47u33x.pdf

Suggesting that the requested files exist.
The alert was triggered because the payload of the HTTP protocol data unit was
longer than 512 bytes. The payload contains, as per the HTTP specification [2]

Method SP Request-URI SP HTTP-version CRLF <Request-header>

Where:

Method = HEAD
Request-URI = /main/tools/discontinued/47u322.pdf,
/main/tools/discontinued/47u33x.pdf,
/main/datasheets/37c67x.pdf, /main/tools/io-sch/67x.pdf
HTTP-version = HTTP/1.1
SP indicates the “space” character and CRLF the “carriage
return” and “linefeed characters”.

And

Request-headers = Via, Host, User-Agent, Accept, Accept-
Language, Accept-Encoding, Accept-Charset, Pragma, Cache-
Control

The data in the HEAD message indicates that the OS of the two hosts are Linux and
Windows 5.1 respectively. By observing the characteristics of the TCP packet
(Window size, TTL, and TCP options) and comparing them to the fingerprints file of
p0f [3], we can see that they are fairly consistent, indicating that there is no attempt at
the “attacking” side to obfuscate information about the OS.

5. Attack mechanism
The snort rule that triggered the alert suggests usage of the whisker tool to evade IDS
detection of information gathering activities against a web server.
Whisker is a tool that implements a series of “anti-IDS” tactics described in [1]. As
described in this paper: “The goal of any anti-IDS tactic is to mutate a request so
much that the ID systems will get confused, but the web server will still be able to
understand it.” The idea behind whisker is to modify the request in such a way that

 37

the request is still syntactically correct for the web server, but does not match the
signatures specified in the intrusion detection system. These tactics are especially
effective against IDS which use a simple pattern matching method to examine
incoming traffic. Examples of the modifications used by whisker include evasion of
scans detection by using the HEAD method instead of the more common GET
method (HEAD does not allow transfer of the resource, but nevertheless gives
information about its availability and this information can be used later to actually
exploit the target vulnerability), URL encoding, i.e. encode a URI with its escaped
equivalent which is obtained by substituting a character with its hex value, use of
double slashes or directory traversal, etc.
The HEAD method is used usually by links checking software and proxies and, in
general, when actual retrieval of the resource is not needed. As it does not transfer the
actual content but also the metadata, it is faster and less bandwidth consuming than
the GET method. Quoting the HTTP specifications [2]: “The HEAD method is
identical to GET except that the server MUST NOT return a message-body in the
response. The metainformation contained in the HTTP headers in response to a
HEAD request SHOULD be identical to the information sent in response to a GET
request. This method can be used for obtaining metainformation about the entity
implied by the request without transferring the entity-body itself. This method is often
used for testing hypertext links for validity, accessibility, and recent modification.”
The HEAD method is generally used by proxy servers to test URIs, either to see
whether an updated version is available or to ensure that the URI is available at all.
Proxy servers are special server configurations that collect Web pages from standard
servers, as though they were a Web client, and serve it back to Web clients, as though
they were a conventional server. The second “attacker” has indeed a name that
suggests it is in fact a proxy server.
The packets that triggered the alert are too few to be a scan for a vulnerable CGI using
the HEAD method in an attempt to evade the IDS. In addition they are not targeted at
any known vulnerable CGI script. This suggests that these packets are a false positive,
being legitimate HTTP requests.

6. Correlations
CAN-2000-0899 describes a vulnerability of Small HTTP Server 2.01, which allows
remote attackers to cause a denial of service by connecting to the server and sending
out multiple GET, HEAD, or POST requests and closing the connection before the
server responds to the requests.
The vulnerability is also described in:
BUGTRAQ:20001114 Vulnerabilites in SmallHTTP Server,
URL:http://marc.theaimsgroup.com/?l=bugtraq&m=97421834001092&w=2

BID:1942, URL:http://www.securityfocus.com/bid/1942

However, this is not the case here, since we do not see multiple GET, HEAD and
POST request. No attempts from these hosts were observed in the previous days
either.

7. Evidence of active targeting
The web server at 46.5.180.133 is evidently targeted as the repository of the
documents specified in the URI contained in the HTTP HEAD request. However this

 38

seems to be related to verifications of the availability of the documents specified in
the URI rather than an attack on the web server.

8. Severity
The following formula is used to calculate the severity of the attack:
Severity = (criticality + lethality) - (system countermeasures + network
countermeasures)
Each aspect is ranked with a value from 1 to 5, 1 being the lowest and 5 being the
highest.

Criticality: We do not have any information about this web server. Since, normally a
web server is not a critical element of a network infrastructure (although it could be
critical for a particular business), we will give it a 3
Lethality: this is not really an attack, so we will give it a 1
System Countermeasures: Again, we do not have any information about the
countermeasures adopted on this particular server, assuming that all security patches
have been applied both at the OS level and at the level of the web server (but not
being sure about it...), we will give it a 4
Network Countermeasures: Again, we do not have any information about the
countermeasures adopted on the network on which this server resides, since this
network has at least an IDS system, we assume that it also has implemented some
perimeter filtering system, we will give it a 4

Severity = (3+1)-(4+4) = -4

9. Defensive recommendation
Keep the system and the web server software up to date with patches, monitor
constantly the IDS and web server logs and correlated the information contained
therein.

10. Multiple choice test question
The HTTP HEAD method can be used
a) by proxies to retrieve and cache documents locally,
b) by IDS evasion tools to scan silently for known vulnerable CGI,
c) by web browsers to send user input data
d) by web browsers to maintain information about the status of the connection

The correct answer is b)

References
[1] Rain Forest Puppy, “A look at whisker’s anti-IDS tactics”,

URL: http://www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html (October,
4th)

[2] “Hypertext Transfer Protocol -- HTTP/1.1”, RFC 2616
URL: http://www.w3c.org/Protocols/rfc2616/rfc2616.html (October, 4th)

[3] P0f, URL: http://www.stearns.org/ (October, 4th)

 39

Detect #3: Nmap TCP ping or load balancing device?

Trace log

 [**] [1:628:1] SCAN nmap TCP [**]
 [Classification: Attempted Information Leak] [Priority: 2]
 07/18-02:23:16.794488 163.23.190.2:80 -> 46.5.102.27:80
 TCP TTL:46 TOS:0x0 ID:37237 IpLen:20 DgmLen:40
 A* Seq: 0x2EA Ack: 0x0 Win: 0x578 TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS28]

[snip]

 [**] [1:628:1] SCAN nmap TCP [**]
 [Classification: Attempted Information Leak] [Priority: 2]
 07/18-09:27:28.804488 12.164.64.41:80 -> 46.5.131.128:80
 TCP TTL:47 TOS:0x0 ID:61042 IpLen:20 DgmLen:40
 A* Seq: 0xB4 Ack: 0x0 Win: 0x400 TcpLen: 20
 [Xref => http://www.whitehats.com/info/IDS28]

[snip]

 40

tcpdump trace log (ordered by source IP address)

02:23:16.794488 163.23.190.2.80 > 46.5.102.27.80: . [bad tcp cksum f8f8!] ack 0 win 1400 (ttl 46, id 37237, len 40, bad cksum d28!)
03:06:56.734488 163.23.190.2.80 > 46.5.147.201.80: . [bad tcp cksum f9f9!] ack 0 win 1400 (ttl 46, id 15503, len 40, bad cksum 335f!)
03:08:14.424488 163.23.190.2.80 > 46.5.151.93.80: . [bad tcp cksum faf7!] ack 0 win 1400 (ttl 46, id 32675, len 40, bad cksum ebb8!)
03:08:17.424488 163.23.190.2.80 > 46.5.151.93.80: . [bad tcp cksum faf7!] ack 1 win 1400 (ttl 46, id 33296, len 40, bad cksum e94b!)
03:08:20.404488 163.23.190.34.80 > 46.5.151.93.80: . [bad tcp cksum faf7!] ack 0 win 1400 (ttl 46, id 33913, len 40, bad cksum e6c2!)
04:34:03.584488 163.23.190.2.80 > 46.5.35.191.80: . [bad tcp cksum f7fa!] ack 0 win 1400 (ttl 46, id 62064, len 40, bad cksum ef86!)
04:34:06.604488 163.23.190.2.80 > 46.5.35.191.80: . [bad tcp cksum f7fa!] ack 1 win 1400 (ttl 46, id 62438, len 40, bad cksum ee10!)
07:26:19.984488 163.23.190.2.80 > 46.5.39.76.80: . [bad tcp cksum f8f8!] ack 0 win 1400 (ttl 46, id 18533, len 40, bad cksum 9507!)
09:05:28.474488 163.23.190.2.80 > 46.5.80.52.80: . [bad tcp cksum f8f8!] ack 0 win 1400 (ttl 46, id 55443, len 40, bad cksum dbf0!)
09:05:31.474488 163.23.190.2.80 > 46.5.80.52.80: . [bad tcp cksum f8f8!] ack 1 win 1400 (ttl 46, id 55953, len 40, bad cksum d9f2!)
09:05:34.694488 163.23.190.34.80 > 46.5.80.52.80: . [bad tcp cksum f8f8!] ack 0 win 1400 (ttl 46, id 56415, len 40, bad cksum d804!)
09:05:37.594488 163.23.190.34.80 > 46.5.80.52.80: . [bad tcp cksum f8f8!] ack 1 win 1400 (ttl 46, id 56895, len 40, bad cksum d624!)
09:05:54.034488 163.23.190.130.80 > 46.5.80.52.80: . [bad tcp cksum f8f8!] ack 0 win 1400 (ttl 46, id 59335, len 40, bad cksum cc3c!)
09:05:57.544488 163.23.190.130.80 > 46.5.80.52.80: . [bad tcp cksum f8f8!] ack 1 win 1400 (ttl 46, id 59786, len 40, bad cksum ca79!)
09:06:42.254488 163.23.190.2.80 > 46.5.130.235.80: . [bad tcp cksum f7fa!] ack 0 win 1400 (ttl 46, id 1532, len 40, bad cksum 7ccf!)
09:06:45.264488 163.23.190.2.80 > 46.5.130.235.80: . [bad tcp cksum f7fa!] ack 1 win 1400 (ttl 46, id 1943, len 40, bad cksum 7b34!)
09:06:48.494488 163.23.190.34.80 > 46.5.130.235.80: . [bad tcp cksum f7fa!] ack 0 win 1400 (ttl 46, id 2389, len 40, bad cksum 7956!)
09:06:51.534488 163.23.190.34.80 > 46.5.130.235.80: . [bad tcp cksum f7fa!] ack 1 win 1400 (ttl 46, id 2872, len 40, bad cksum 7773!)
11:14:34.504488 163.23.190.2.80 > 46.5.248.197.80: . [bad tcp cksum f9f9!] ack 0 win 1400 (ttl 46, id 19304, len 40, bad cksum bf89!)
12:20:05.034488 163.23.190.2.80 > 46.5.251.28.80: . [bad tcp cksum faf7!] ack 0 win 1400 (ttl 46, id 61150, len 40, bad cksum 18be!)
12:20:08.034488 163.23.190.2.80 > 46.5.251.28.80: . [bad tcp cksum faf7!] ack 1 win 1400 (ttl 46, id 61689, len 40, bad cksum 16a3!)
12:20:11.474488 163.23.190.34.80 > 46.5.251.28.80: . [bad tcp cksum faf7!] ack 0 win 1400 (ttl 46, id 62209, len 40, bad cksum 147b!)
15:07:18.184488 163.23.190.2.80 > 46.5.246.140.80: . [bad tcp cksum f9f9!] ack 0 win 1400 (ttl 46, id 35962, len 40, bad cksum 80b0!)

13:17:25.374488 199.197.130.21.80 > 46.5.180.133.80: . [bad tcp cksum f9f9!] ack 0 win 1400 (ttl 55, id 59474, len 40, bad cksum 751e!)
13:17:25.394488 199.197.135.21.80 > 46.5.180.133.80: . [bad tcp cksum f9f9!] ack 0 win 1400 (ttl 50, id 59477, len 40, bad cksum 751b!)

04:53:01.394488 218.96.62.2.80 > 46.5.183.70.80: . [bad tcp cksum faf7!] ack 0 win 1400 (ttl 44, id 13908, len 40, bad cksum 5fd6!)
04:53:06.424488 218.96.62.2.80 > 46.5.183.70.80: . [bad tcp cksum faf7!] ack 1 win 1400 (ttl 44, id 14350, len 40, bad cksum 5e1c!)
09:03:57.304488 218.96.62.2.80 > 46.5.252.204.80: . [bad tcp cksum f9f9!] ack 0 win 1400 (ttl 44, id 57700, len 40, bad cksum 703d!)
09:04:02.364488 218.96.62.2.80 > 46.5.252.204.80: . [bad tcp cksum f9f9!] ack 1 win 1400 (ttl 44, id 58126, len 40, bad cksum 6e93!)

04:52:51.294488 202.96.52.99.80 > 46.5.183.70.80: . [bad tcp cksum faf7!] ack 0 win 1400 (ttl 47, id 13062, len 40, bad cksum 79c3!)
04:52:56.364488 202.96.52.99.80 > 46.5.183.70.80: . [bad tcp cksum faf7!] ack 1 win 1400 (ttl 47, id 13484, len 40, bad cksum 781d!)
09:03:47.244488 202.96.52.99.80 > 46.5.252.204.80: . [bad tcp cksum f9f9!] ack 0 win 1400 (ttl 47, id 56790, len 40, bad cksum 8a6a!)
09:03:52.274488 202.96.52.99.80 > 46.5.252.204.80: . [bad tcp cksum f9f9!] ack 1 win 1400 (ttl 47, id 57240, len 40, bad cksum 88a8!)

02:52:56.114488 194.52.177.9.80 > 46.5.78.7.80: . [bad tcp cksum f8f8!] ack 0 win 1400 (ttl 38, id 47112, len 40, bad cksum f484!)

 41

02:53:01.104488 194.52.177.9.80 > 46.5.78.7.80: . [bad tcp cksum f8f8!] ack 1 win 1400 (ttl 38, id 47406, len 40, bad cksum f35e!)
04:56:01.254488 194.52.177.9.80 > 46.5.57.85.80: . [bad tcp cksum f8f8!] ack 0 win 1400 (ttl 38, id 41810, len 40, bad cksum 1ded!)
04:56:06.234488 194.52.177.9.80 > 46.5.57.85.80: . [bad tcp cksum f8f8!] ack 1 win 1400 (ttl 38, id 42166, len 40, bad cksum 1c89!)

14:48:55.544488 64.152.70.68.53 > 46.5.180.250.53: . [bad tcp cksum f9f9!] ack 0 win 1400 (ttl 49, id 38105, len 40, bad cksum 9121!)
14:48:55.544488 64.152.70.68.80 > 46.5.180.250.53: . [bad tcp cksum f9f9!] ack 0 win 1400 (ttl 49, id 38104, len 40, bad cksum 9122!)
14:48:55.604488 63.211.17.228.80 > 46.5.180.250.61424: . [bad tcp cksum f9f9!] ack 0 win 1400 (ttl 49, id 62213, len 40, bad cksum 681a!)

09:27:28.804488 12.164.64.41.80 > 46.5.131.128.80: . [bad tcp cksum faf7!] ack 0 win 1024 (ttl 47, id 61042, len 40, bad cksum a413!)
09:27:33.884488 12.164.64.41.80 > 46.5.131.128.80: . [bad tcp cksum faf7!] ack 1 win 1024 (ttl 47, id 61606, len 40, bad cksum a1df!)
09:27:38.904488 38.164.64.41.80 > 46.5.131.128.80: . [bad tcp cksum faf7!] ack 0 win 1024 (ttl 48, id 62198, len 40, bad cksum 848f!)
09:27:43.944488 38.164.64.41.80 > 46.5.131.128.80: . [bad tcp cksum faf7!] ack 1 win 1024 (ttl 48, id 62680, len 40, bad cksum 82ad!)
09:27:48.964488 207.106.237.41.80 > 46.5.131.128.80: . [bad tcp cksum faf7!] ack 0 win 1024 (ttl 51, id 63276, len 40, bad cksum 2792!)
09:27:53.994488 207.106.237.41.80 > 46.5.131.128.80: . [bad tcp cksum faf7!] ack 1 win 1024 (ttl 51, id 63852, len 40, bad cksum 2552!)

 42

1. Source of Trace
The detect used for this trace is http://www.incidents.org/logs/Raw/2002.6.18.
We do not have any information about the structure of this network, the services that
are provided or the perimeter defences in place. A look at the binary logs of the
previous days on the hosts targeted by this attack did not provide any useful
information, i.e. no evidence was found that publicly accessible services are run on
these hosts (e.g. DNS, http, ftp, ssh, etc.) apart from 46.5.180.133.80 for which data
transfers on port 80 and 21 were found, suggesting this host is running http and ftp
services.
The net block 46.5.0.0-46.255.255.255 is IANA reserved. Addresses in this block
have probably been used to mask out the original addresses. This is the reason for the
BAD checksum messages (the checksum field in the packet contains the value of the
checksum computed using the original IP addresses).

2. Detect was generated by
There are two types of logs shown in this detect: the first part is an excerpt of the
alerts generated by snort 1.8.7 build 128 with the standard ruleset on the above
mentioned file, using the -d option to dump the application layer payload.
The rule that triggered the alert is:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg: “SCAN nmap TCP”;
flags:A,Ack:0; reference:arachnids,28; classtype:attempted-recon;
sid:628; rev:1;)

Basically this alert was generated on TCP packets with the ACK bit set and with a
value 0 in the acknowledge field.
Snort associates this signature to the use of nmap to scan remote hosts using TCP.
The snort alert log contained 13 different source IP’s generating this alert, the
information dumped by snort for all these packets was very similar except for the
window size for which there were two different values (1400 and 1024). Snort alerts
are shown only for two packets, while the rest of the traffic is shown as tcpdump
output obtained by filtering on the IP addresses that triggered the alert.

3. Probability the source address was spoofed
This is a reconnaissance attempt where the attacker is interested in receiving results
from his probes. The probability that source IP is spoofed is low, unless the attacker
can capture return traffic from the target to the spoofed address.
There are 13 hosts involved in this probe.
A DNS query on the “attacking” hosts gives the following results:

IP address Fully qualified domain name
163.23.190.2 -
163.23.190.34 -
163.23.190.130 -
218.96.62.2 -
202.96.52.99 -
194.52.177.9 lp.adept.se
64.152.70.68 proximitycheck2.allmusic.com
63.211.17.228 proximitycheck1.allmusic.com

 43

12.164.64.41 -
207.106.237.41 41-237-106-207.thompcomp.net
38.164.64.41 -
199.197.130.21 -
199.197.135.21 -

A whois query on ARIN7 (American Registry for Internet Numbers) shows that the
first three addresses (163.23.190.2, 163.23.190.34, 163.23.190.130) belong to
163.13.0.0 - 163.32.255.255 assigned to Ministry of Education Computer Center,
Changhua Country Education Network. None of them resolves to a name and scans
from all of them have been reported to Dshield (respectively 673, 734 and 620
targets)

A whois query on APNIC (Asia Pacific Network Information Center)8 shows that
218.96.62.2, belongs to 218.96.0.0 - 218.97.127.255, assigned to China Enterprise
Network Communication Technology Co. Ltd. The address is present in the Dshield
database with 263 targets.

Analogously it shows that 202.96.52.99 belongs to 202.96.52.0 - 202.96.52.127,
assigned to National Economic Trade Institute, China. This host too is present in the
Dshield database with 369 targets.

A whois query on RIPE (Réseaux IP Européens)9 shows that 194.52.177.9 belongs to
194.52.177.0 - 194.52.177.255, assigned to Adept AB, Sweden. This host too is
present in the Dshield database with 240 targets.

A whois query on ARIN shows that 64.152.70.68 belongs to 64.152.0.0 -
64.159.255.255, assigned to Level 3 Communications, Inc. This host is present in the
Dshield database with 740 targets. 63.211.17.228 too belongs to a network range
(63.208.0.0 - 63.215.255.255) allocated to Level 3 Communications, Inc. and is
present in the Dshield database with 775 targets.

The whois query for 12.164.64.41 shows that it belongs to 12.164.64.0 -
12.164.64.255, assigned to EARTHSTATION NETAXS. Attacks from this host too
have been reported to Dshield (50 targets).
207.106.237.41 too belongs to a network range (207.106.0.0 - 207.106.255.255)
assigned to Netaxs. This host too is in the Dshield database (4 targets)

38.164.64.41 belongs to the net-range 38.0.0.0 - 38.255.255.255, assigned to
Performance Systems International Inc. This host is in the Dshield database with 9
targets.

199.197.130.21 and 199.197.135.21 belong to the network range 199.197.128.0 -
199.197.255.255, assigned to Corning Incorporated, US and both are present in the
Dshield database respectively with 252 and 7 targets.

7 http://www.arin.net
8 http://www.apnic.org
9 http://www.ripe.net

 44

Therefore we can group the attackers, according to the organization to which they are
assigned, as follows:

IP address Organization associated to the Netblock of the IP address
163.23.190.2
163.23.190.34
163.23.190.130

Ministry of Education Computer Center, Changhua Country
Education Network

64.152.70.68
63.211.17.228

Level 3 Communications

199.197.130.21
199.197.135.21

Corning Inc.

12.164.64.41
207.106.237.41

Netaxs

38.164.64.41 Performance Systems International Inc.
218.96.62.2 China Enterprise Network Communication Technology
202.96.52.99 National Economic Trade Institute, China
194.52.177.9 Adept AB, Sweden

4. Description of attack
TCP packets with the ACK flag set and acknowledge number value 0 are received by
various hosts in our network (46.5.0.0/16). Some of these packets appear to be
generated on networks belonging to the same organization, in most cases each source
address is sending two such packets to each destination and the time delta between
two packets to a destination IP from the same IP address and sometimes from
different IP addresses in the same organization is very similar (3 seconds for the
source addresses in the 163.23.190.x block, 5 seconds for 218.96.62.2, 202.96.52.99,
194.52.177.9, 12.164.64.41, 38.164.64.41, 207.106.237.41) with a few exceptions.
Most such packets are addressed at port 80 and have port 80 also as source port, with
the exception of packets from Level 3 communication, which are addressed to port 53
and port 61424 and originate from ports 53 and 80.

5. Attack mechanism
This attack is described by snort as a portscan using the nmap scanning tool [2].
Nmap has a number of varied options for scanning remote hosts. One of these options
(-sA) allows sending a TCP packet with the ACK bit set to a specified port. This
option is useful in determining whether the remote port is filtered by a stateful
firewall or by a packet filter that blocks only incoming SYN packets. However, this
option sets the value of acknowledgement number to a random-looking value. Nmap
has also another option that allows sending a TCP packet with the ACK bit set to
determine if a host is up and running, instead of using an ICMP echo request (-PT).
The default destination port used in this type of probing is 80, while the source port
can be set to any value using the “-g Port_number” option. So, it is possible that these
two options were used to forge these packets. Usage of port 80 as the source port
would mask traffic as “return” traffic from a web site. After a test with nmap, with the
following options:

#nmap -sP -PT -g 80 <destination_address>

 45

I discovered that, while the ACK value is set, the acknowledgement number is not 0
as in the packets in the trace. Apparently only old versions of nmap had this “0 value
problem”, newer version set a random-looking value just like the -sA option (I was
using nmap-v3.00).
Another tool which could have been used in this type of reconnaissance probing is
hping2 [4]. Hping is a tool that can send “custom TCP/IP packets” and can also be
used to transfer files under supported protocols. It can perform traceroute-like
functions using different protocols, remote OS fingerprinting, TCP/IP stack auditing,
and other similar functions.
Hping2 with the following options gives exactly the same packets as the ones in the
trace examined in this detect:

#hping -c 2 -I 5 -s 80 -p 80 --keep -A -L 0 -w 1400 <destination_address>

The “c” option stops after sending the specified number of packets
The “i” option sets the interval, in seconds, between each packet sent
The “s” option sets the source port
The “p” option sets the destination port
The “A” option sets the ACK bit
The “L” option sets the value of the acknowledgement number
The “w” option sets the TCP window size
The “--keep” option keeps the source port constant

Here is the trace of the hping2 tool executed with the options above:

13:06:59.256030 10.0.0.1.80 > 10.0.0.2.80: . [tcp sum ok] ack 0 win 1400
(ttl 64, id 53614, len 40)
13:07:04.256030 10.0.0.1.80 > 10.0.0.2.80: . [tcp sum ok] ack 1 win 1400
(ttl 64, id 21565, len 40)

In conclusion, we can rule out nmap, but hping2 could have been used in these scans.
However, there is another interesting possibility. According to [5], which shows a
trace similar to what presented in this detect, these packets could be part of the traffic
generated by a load balancing device (LinkProof by Radware). This device tries to
calculate the best route in terms of load and response time to a target server. It
chooses the target server based on an internal table which is updated regularly. In [5],
they describe the activity of a LinkProof device against their name server which
includes a UDP packet, followed by an ICMP Echo Request, a TCP ACK, TCP SYN,
TCP RST. They also provide a trace that is very similar to what presented in this trace
(same window size, two TCP ACK packets. A similar activity is also mentioned in
[6], [7] and [8]. Apparently, the LinkProof device can be recognized by the fact that it
sends a UPD packet to port 37852. However for the detect in this practical we do not
have all the traffic and therefore are unable to verify that such packets have been
received.
An additional piece of information that we can use in analysing this detect is the
information that we got with the name resolution. At least in two of these addresses
(proximitycheck2.allmusic.com, proximitycheck1.allmusic.com) we get two names
that would make us think that this is a reconnaissance probe aimed at load balancing
or finding the optimum route.

 46

6. Correlations
The nmap TCP scan is described in Arachnids10:
IDS28/SCAN_PROBE-NMAP_TCP_PING
“This event indicates that a remote user has used the NMAP portscanning tool to
probe the server. An NMAP TCP ping was sent to determine if a host is reachable.
This event is specific to a particular exploit, but the packet payload is not considered
as part of the signature to detect the attack.”
This attack has also a CVE number: CVE: CAN-1999-0523
Attacks triggered by the same snort rule, related to the nmap TCP scan, were
described in the GCIA practicals by James Conz, Vernon Stark, and Roderick
Campbell11. However all of them reached the conclusion that the packets were
effectively generated by nmap.
Similar activity related to the use of the LinkProof Radware load-balancing device is
described in [5], [6], [7] and in the GCIA practical of William Stearns.

7. Evidence of active targeting
Some hosts in the 46.5.0.0/16 network are directly targeted. This is not a scan
involving the whole network. In absence of information about the services running on
the targeted hosts (no useful information was found looking at the logs from previous
days, which seem to be the binary generated by snort and hence contain only packets
that generated some alerts and no logs are available with all the traffic), we can only
make an assumption that these hosts were targeted because they run services useful
for the load balancing measures of the remote host.

8. Severity
The following formula is used to calculate the severity of the attack:
Severity = (criticality + lethality) - (system countermeasures + network
countermeasures)
Each aspect is ranked with a value from 1 to 5, 1 being the lowest and 5 being the
highest.

Criticality: We assumed the targeted systems include systems that run services that
might be critical (web sites, DNS), 4
Lethality: this is a reconnaissance, apparently only aimed at gaining timing
information, 2
System Countermeasures: We assume all critical systems have been patched and
secured, but we are not sure, 4
Network Countermeasures: Since this network has an IDS system in place, we
assume it also has in place efficient security countermeasures at the network level, but
we are not sure, 4

Severity = (4+2) - (4+4) = -2

9. Defensive recommendation
If the assumptions about the countermeasures at the system level are wrong (i.e.
systems not up to date with patches, etc.) we recommend checking the vulnerability

10 ARACHNIDS is available at http://www.whitehats.com
11 GIAC practicals are available at http://www.giac.org/cert.php

 47

status of these servers with a vulnerability scanner, applying the necessary patches
and run all services in chroot environment.

10. Multiple choice test question
09:27:28.804488 12.164.64.41.80 > 46.5.131.128.80: . [bad tcp cksum faf7!] ack 0
win 1024 (ttl 47, id 61042, len 40, bad cksum a413!)
09:27:38.904488 38.164.64.41.80 > 46.5.131.128.80: . [bad tcp cksum faf7!] ack 0
win 1024 (ttl 48, id 62198, len 40, bad cksum 848f!)
09:27:48.964488 207.106.237.41.80 > 46.5.131.128.80: . [bad tcp cksum faf7!] ack 0
win 1024 (ttl 51, id 63276, len 40, bad cksum 2792!)

The above trace shows clear signs of packet crafting because
a) the TTL value is changing
b) the checksum value does not match
c) the ACK bit is set and the value of the acknowledgement field is 0
d) the length of the packet is 40

Correct answer is c)

References
[1] Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Reading: Addison Wesley

Inc, 1994
[2] Fyodor. “Remote OS detection via TCP/IP stack fingerprinting”

URL: http://www.insecure.org/nmap/nmap-fingerprinting-article.html (October,
4th)

[3] “List of fingerprints for passive fingerprint monitoring”
URL: http://project.honeynet.org/papers/finger/traces.txt (October, 4th)

[4] Hping man page, URL: http://www.hping.org/manpage.html (October, 4th)
[5] Global Incidents Analysis Center, Report Date: March 14, 2001,

URL: http://www.sans.org/y2k/031401.htm (October, 4th)
[6] Posting at incidents.org,

URL: http://www.incidents.org/archives/intrusions/msg03560.html (October, 4th)
[7] Posting on incidents.org,

URL: http://www.incidents.org/archives/intrusions/msg08110.html (October, 4th)
[8] William Stearns, GIAC Practical,

URL: http://www.sans.org/y2k/practical/william_stearns_gcia.html

Detect #4: A fast scan for ftp servers

Trace log

[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:48.095592 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.z.2:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x2FA49E87 Ack: 0x27D62430 Win: 0x404 TcpLen: 20

[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:48.118323 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.z.3:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x2FA49E87 Ack: 0x27D62430 Win: 0x404 TcpLen: 20

 48

[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:48.158553 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.z.5:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x2FA49E87 Ack: 0x27D62430 Win: 0x404 TcpLen: 20

[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:48.161564 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.z.1:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x2FA49E87 Ack: 0x27D62430 Win: 0x404 TcpLen: 20

[snip 31 pkts deleted]
[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:48.661811 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.z.30:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x5CF1C357 Ack: 0x5BFC2F01 Win: 0x404 TcpLen: 20

[snip 49 pkts deleted]
[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:49.661168 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.z.80:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0xB2F93F1 Ack: 0x1121BE91 Win: 0x404 TcpLen: 20

[snip 49 pkts deleted]
[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:50.658178 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.z.130:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x38BA7B73 Ack: 0x5DA6EB0 Win: 0x404 TcpLen: 20

[snip 49 pkts deleted]
[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:51.660152 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.z.180:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x671DC684 Ack: 0x7B3E9782 Win: 0x404 TcpLen: 20

[snip 49 pkts deleted]
[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:52.655895 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.z.230:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x1496D5A8 Ack: 0x2FBF6190 Win: 0x404 TcpLen: 20

[snip 35 pkts deleted]
[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:53.964456 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.w.40:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x42D11EA4 Ack: 0x64FB32B8 Win: 0x404 TcpLen: 20

[snip 34 pkts deleted]
[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:54.657947 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.w.75:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x30AC65F6 Ack: 0x19F297CF Win: 0x404 TcpLen: 20

[snip 49 pkts deleted]
[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:55.655847 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.w.125:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x5E0B3807 Ack: 0x4E64AC3C Win: 0x404 TcpLen: 20

[snip 49 pkts deleted]
[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:56.665207 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.w.175:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x4C1CE29B Ack: 0x33564D9 Win: 0x404 TcpLen: 20

[snip 49 pkts deleted]
[**] [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection [**]
08/19-14:00:57.657172 aa:bb:cc:dd:ee:ff -> gg:hh:ii:jj:kk:ll type:0x800 len:0x3C
211.57.212.220:21 -> x.y.w.225:21 TCP TTL:21 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x3A4D2EE8 Ack: 0x785A64D2 Win: 0x404 TcpLen: 20

[snip 29 pkts deleted]

Excerpts from tcpdump log file

14:00:48.095616 211.57.212.220.21 > x.y.z.2.21: SF [tcp sum ok] 799317639:799317639(0)
win 1028 (ttl 21, id 39426, len 40)

 49

14:00:48.118341 211.57.212.220.21 > x.y.z.3.21: SF [tcp sum ok] 799317639:799317639(0)
win 1028 (ttl 21, id 39426, len 40)
14:00:48.158576 211.57.212.220.21 > x.y.z.5.21: SF [tcp sum ok] 799317639:799317639(0)
win 1028 (ttl 21, id 39426, len 40)
14:00:48.161582 211.57.212.220.21 > x.y.z.1.21: SF [tcp sum ok] 799317639:799317639(0)
win 1028 (ttl 21, id 39426, len 40)
14:00:48.163073 211.57.212.220.21 > x.y.z.4.21: SF [tcp sum ok] 799317639:799317639(0)
win 1028 (ttl 21, id 39426, len 40)
14:00:48.178565 211.57.212.220.21 > x.y.z.6.21: SF [tcp sum ok] 799317639:799317639(0)
win 1028 (ttl 21, id 39426, len 40)
14:00:48.198737 211.57.212.220.21 > x.y.z.7.21: SF [tcp sum ok] 799317639:799317639(0)
win 1028 (ttl 21, id 39426, len 40)
14:00:48.218567 211.57.212.220.21 > x.y.z.8.21: SF [tcp sum ok] 799317639:799317639(0)
win 1028 (ttl 21, id 39426, len 40)
14:00:48.247278 211.57.212.220.21 > x.y.z.9.21: SF [tcp sum ok] 799317639:799317639(0)
win 1028 (ttl 21, id 39426, len 40)
14:00:48.259037 211.57.212.220.21 > x.y.z.10.21: SF [tcp sum ok]
799317639:799317639(0) win 1028 (ttl 21, id 39426, len 40)
14:00:48.280628 211.57.212.220.21 > x.y.z.11.21: SF [tcp sum ok]
799317639:799317639(0) win 1028 (ttl 21, id 39426, len 40)
14:00:48.296346 211.57.212.220.21 > x.y.z.12.21: SF [tcp sum ok]
799317639:799317639(0) win 1028 (ttl 21, id 39426, len 40)
14:00:48.318428 211.57.212.220.21 > x.y.z.13.21: SF [tcp sum ok]
799317639:799317639(0) win 1028 (ttl 21, id 39426, len 40)
14:00:48.336140 211.57.212.220.21 > x.y.z.14.21: SF [tcp sum ok]
799317639:799317639(0) win 1028 (ttl 21, id 39426, len 40)
[snip]

1. Source of Trace
NIDS sensor on a network that I manage.

2. Detect was generated by
This detect was generated by snort 1.8.7 build 128 in full alert mode with the standard
ruleset.
Each alert generated by snort contains the following information:
1st line:

[**] ... [**] = snort-signature,
2nd line:

MM/DD-hh:mm:ss.cccccc = timestamp,
aa:bb:cc:dd:ee = data link source address
-> = traffic direction
gg:hh:ii:jj:kk:ll = data link destination address
Data link type
Length of the data link frame

3rd line:
A.B.C.D:X = IP source address and source port
-> = traffic direction
E.F.G.H:Y = IP destination address and destination port
Protocol (TCP, UDP, etc.)
Time to live (TTL) - as specified in the IP header
Type of Service (TOS) - as specified in the IP header
IP Identification number - as specified in the IP header
Length of the IP header
Length of the IP datagram

4th line:
List of TCP flags in the TCP header (“*” indicates that the flag corresponding
to the option in that position is not set)
TCP Sequence number
TCP Acknowledge number

 50

TCP Window size
Length of the TCP header

The destination addresses have been sanitized, and represented as x.y.z.N, and
x.y.w.N (N is a number that ranges in the trace from 1 to 255) to indicate two
different 255-addresses blocks.
The alert was generated by snort’s stream4 preprocessor with the option detect_scans.
This preprocessor detects statefully (taking into account the phases of a TCP
connection) various port scans. In this case it detected a fast portscan (about 50
packets per second) each packet of which contained both the SYN and FIN flags set.
This should never occur in any phase of a TCP connection, as SYN indicated the
intention to establish a new connection (transition from the CLOSED state to the
SYN_SENT state) while FIN indicates the intention to close a connection already
established (transition from the ESTABLISHED to the FIN_WAIT_1 state) [1].

3. Probability the source address was spoofed
The probability that the source address is spoofed is low. The “attacking” host is
trying to determine if the ftp service is running on any host or simply mapping the
network, scanning almost completely two 255-addresses netblocks, probably in an
information gathering attempt for a possible future exploit. For this attempt to
succeed, the remote system needs to receive replies to its probes, for this reason,
unless it is positioned between the possibly spoofed address and the target and is able
to capture traffic in transit, the probability that the originating address is spoofed is
very low.
A whois query at APNIC (Asia Pacific Network Information Center) on the remote
host gave the following result:

211.57.212.0 - 211.57.213.127 allocated to OFFICE OF EDUCATION

KYONGNAM KEOCHANG, 1303-4 Daepyong-
ri Keochang-eup Keochang-gun, KYONGNAM,
Korea

An nslookup query on the remote IP address (211.57.212.220) did not produce a
hostname in return, while a query on the DShield database indicated that probes
coming from this host had been reported against 72581 hosts, ports targeted are not
indicated.

4. Description of attack
The remote host is scanning two 255-addresses netblocks in an attempt to find hosts
running the ftp service or to simply to map the network for alive hosts. The packets
are an attempt to go undetected by firewalls and/or packet filtering devices relying on
the fact that connection attempts with an out of spec flags combination set are not
logged by some perimeter defence devices. The first packet is received at 14:00:48 19
August, while the last packet of the first scan is received at 14:00:58, 19 August. 479
packets are received in 10 seconds. This is really a fast scan.
The packet show evident signs of crafting: the same Sequence Number is repeated for
50 times before changing to a different value. The same happens with the
acknowledge number, while, strangely enough there is no attempt at rendering the IP
Identification number “apparently” random, as its value is the same for all packets

 51

(39426), a sure sign that the packets are crafted. Other interesting values in the
packets received are the TTL (21) which suggests that the initial TTL could have been
64 and that the attacking host is 43 hops away (in effect a traceroute to the attacking
address stops after 23 hops at an address on the same subnet but different from the
attacker, 211.57.212.217) and the window size (0x404) which, according to [2] does
not correspond to any common operating system.
An additional sign of crafting is the fact that both source and destination port are the
same (reflexive scan).

5. Attack mechanism
This is a fast scan that is targeted at finding hosts running the ftp service. Information
gathered via this type of probing activities can be used in subsequent attacks. The
attacking host scans for hosts listening on port 21, which is associated to ftp (file
transfer protocol) using an illegal combination of TCP flags (SYN and FIN,
respectively used to open and to close a connection, they should never be found in the
same packet). In the past, the SYN-FIN flags combination was considered stealth
because some packet-filtering devices did not use to log illegal connection attempts.
However, nowadays this is a known and detected combination, it is surprising that it
is still used. In fact, the IP ID value of 39426 and windows size of 1028 (0x404) are
clear signs that the tool used for the scanning is synscan. [3] provides also an
explanation of the fact that sequence numbers (SeqNo) and acknowledge numbers
(AckNo) change after approximately 50 packets. The random function called to obtain
random values for SeqNo and AckNo is seeded with UNIX time function which,
under Linux returns a value rounded to the nearest second. As a consequence, in the
timeframe of one second this function and hence the random function will return the
same value, or, in other words, the SeqNo and AckNo will change after one second.
In one seconds about 50 packets are sent, each of them will have the same AckNo and
SeqNo values. Synscan is also used by the Ramen Linux worm to scan for vulnerable
versions of wu-ftpd [4], if it finds target systems responsive to its SYN-FIN probe
(some OS would reply with a SYN/ACK to a SYN/FIN!), it connects to the system to
grab the ftp banner. So we cannot exclude that the attacking host is infected with the
Ramen worm or a possible modification, since, according to [4], Ramen probes
random class B address space.

6. Correlations
The alert raised by snort is related to the fast 21/TCP scan with SYN and FIN bits
both set. This is described in ARACHNIDS12, “IDS441/SCAN_PROBE-SYNSCAN-
PORTSCAN”, which also relates this types of scan to synscan.
Synscan probes have been recently reported in the following posts:

http://cert.uni-stuttgart.de/archive/incidents/2001/01/msg00189.html:
http://cert.uni-stuttgart.de/archive/incidents/2001/06/msg00161.html:

Synscan is also described in GIAC practical13 by Donald J. Smith, while GIAC
practical by Wade Walker describes a similar scan but targeted at port 111 (portmap).
Information about ftp vulnerabilities can be found in [5], [6] and [7] among the others.
In particular, [6] is related to any system running wu-ftpd 2.6.0 or earlier. wu-ftpd is a

12 ARACHNIDS is available at http://www.whitehats.com
13 GIAC practicals are available at http://www.giac.org/cert.php

 52

common package used to provide file transfer protocol (ftp) services and is the one
targeted by Ramen.

7. Evidence of active targeting
This is a scan directed at complete 255-addresses netblocks. No address is targeted in
particular. It is likely that this network was included as part of a wider scan. Similar
scans from the same address have been noticed on other networks.

8. Severity
The following formula is used to calculate the severity of the attack:
Severity = (criticality + lethality) - (system countermeasures + network
countermeasures)
Each aspect is ranked with a value from 1 to 5, 1 being the lowest and 5 being the
highest.

Criticality: there are critical services among those probed, 4
Lethality: reconnaissance stealth scan, 3
System Countermeasures: ftp is not enabled, 5
Network Countermeasures: the firewall dropped all connections attempts, 5

Severity = (4+3) - (5+5) = -3

9. Defensive recommendation
Continue monitoring this type of traffic. If ftp is enabled, ensure, in addition to
applying all necessary system patches, that vulnerabilities bulletins are checked
regularly.

10. Multiple choice test question
14:00:48.095616 211.57.212.220.21 > x.y.z.2.21: SF [tcp sum ok]
799317639:799317639(0) win 1028 (ttl 21, id 39426, len 40)
14:00:48.118341 211.57.212.220.21 > x.y.z.3.21: SF [tcp sum ok]
799317639:799317639(0) win 1028 (ttl 21, id 39426, len 40)
14:00:48.158576 211.57.212.220.21 > x.y.z.5.21: SF [tcp sum ok]
799317639:799317639(0) win 1028 (ttl 21, id 39426, len 40)
14:00:48.161582 211.57.212.220.21 > x.y.z.1.21: SF [tcp sum ok]
799317639:799317639(0) win 1028 (ttl 21, id 39426, len 40)
14:00:48.163073 211.57.212.220.21 > x.y.z.4.21: SF [tcp sum ok]
799317639:799317639(0) win 1028 (ttl 21, id 39426, len 40)

The above trace indicates:
a) a slow scan
b) a noisy port scan
c) normal TCP connection establishment attempts
d) a synscan scan

The correct answer is d)

References
[1] Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Reading: Addison Wesley

Inc, 1994

 53

[2] “List of fingerprints for passive fingerprint monitoring”
URL: http://project.honeynet.org/papers/finger/traces.txt (October, 4th)

[3] Smith, Donald. “Mscan, Sscan and Synscan - the evolution of worm - enabling
vulnerability scanners that span two millenniums” URL:
http://www.whitehats.ca/main/publications/external_pubs/scanner_fingerprints/sc
anner_fingerprints.html (October, 4th)

[4] Vision, Max. Ramen Internet Worm Analysis,
URL: http://www.whitehats.com/library/worms/ramen/index.html

[5] CIAC Information Bulletin, E-17: FTP Daemon Vulnerabilities, April 14, 1994
URL: http://ciac.llnl.gov/ciac/bulletins/e-17.shtml (October, 4th)

[6] CERT Advisory CA-2000-13: Two input validation Problems in FTPD, July 7,
2000 URL: http://www.cert.org/advisories/CA-2000-13.html (October, 4th)

[7] CERT Advisory CA-1999-03 FTP Buffer Overflows, February 11, 1999
URL: http://www.cert.org/advisories/CA-1999-03.html (October, 4th)

 54

Part 3 – Analyze This

Executive Summary
This section contains the analysis of the anomalous traffic logs generated by a
University during five consecutive days. Scan reports, alert logs and out-of-spec logs
were analysed. The network topology and the ruleset used to generate the alerts were
not available.
The amount of data collected was quite large over 500 MB uncompressed data
including alerts, scans and oos). The analysis focused on the events and hosts that
generated the largest number of alerts or scans.
The two graphs presented here show an overview of the events registered in the files
examined for this report. They show the number of alerts and scans received on the
network MY.NET.0.0/16 during the days from the first to the fifth of August 2002.
The second graph is obtained by limiting the number of alerts to 80000 to eliminate
the peaks and view the trend more clearly.

Alerts and scans per hour

0

100000

200000

300000

400000

500000

600000

08
/01

-00

08
/01

-09

08
/01

-23

08
/02

-08

08
/02

-17

08
/03

-02

08
/03

-11

08
/03

-20

08
/04

-05

08
/04

-14

08
/04

-23

08
/05

-08

08
/05

-17

Alerts
Scans

The graph shows a burst of activity related to NIMDA and CodeRed on the fourth and
fifth days of the analysis. No particular trend can be associated to the day of the week
(the two peaks occur on a Sunday and on a Monday).
Analysis of the alert files showed that some hosts have been compromised by
CodeRed and NIMDA while there are some hosts with suspicious trojan activity.
University hosts are very active in scanning outside hosts. Most of this activity is
aimed at finding peer-to-peer servers (Gnutella, WinMx, AudioGalaxy, etc.) and at
finding servers for online games (HalfLife, Starsiege Tribes, etc.).
We do not know where in the University network the sensor was located. There are
quite extensive logs, but, in fact we do not know if all the inbound attempts (scans)
have been successful or have been blocked by perimeter defenses. However, there are
signs that little attention is paid to security at the hosts level (e.g. web servers
compromise and trojan activity). Apparently little attention has been paid to securing

 55

web servers against the vulnerabilities exploited by NIMDA and CodeRed (one year

old).

Alerts and scans per hour

0

10000

20000

30000

40000

50000

60000

70000

80000
08

/0
1-

00
08

/0
1-

08
08

/0
1-

21
08

/0
2-

05
08

/0
2-

13
08

/0
2-

21
08

/0
3-

05
08

/0
3-

13
08

/0
3-

21
08

/0
4-

05
08

/0
4-

13
08

/0
4-

21
08

/0
5-

05
08

/0
5-

13
08

/0
5-

21

Alerts
Scans

The following sections present the detailed analysis for the most recurring events.
Analysis of the compromised machines and recommendations are given in each
paragraph in relation to the alert or scan being analysed.

Data files used for analysis
The files used for this analysis were downloaded from http://www.incidents.org/logs :

Alert Files Scans Files OOS Files
Filename Size Filename Size Filename Size
alert.020801.gz 844,437 scans.020801.gz 1,344,265 oos_Aug.1.2002.gz 544
alert.020802.gz 1,069,475 scans.020802.gz 4,391,619 oos_Aug.2.2002.gz 35,863
alert.020803.gz 1,150,676 scans.020803.gz 6,595,155 oos_Aug.3.2002.gz 17,080
alert.020804.gz 9,358,581 scans.020804.gz 12,577,283 oos_Aug.4.2002.gz 205
alert.020805.gz 13,769,129 scans.020805.gz 4,940,845 oos_Aug.5.2002.gz 194

These log files contain alerts, scans and out of spec packets data for the days from the
first to the fifth of August and represent a five day period including working days and
the week-end. They were chosen because oos data were available for these days only
at the time of starting this analysis.
These logs were generated by snort. The version, build and rulesets used to generate
these logs are not known.

Total number of alerts (excluding the port scans entries) 2236962
Total number of scans 410204
Total number of OOS packets received 1637

 56

The alerts files contained some spurious entries where more than one alert were
“joined” together. Some information was duplicated in these lines (usually the
description of the alert) while some information was missing (usually the last
characters, and hence part of the destination address and port numbers).
As these entries could not be automatically processed like the others (duplicate alert
descriptions, ports missing, etc.) they were deleted from the file processed for the
analysis and saved into a separate file.

Total number of entries in the processed file (without the spurious entries) 2230007
Total number of entries in the “spurious entries file” 6955

Subsequently, the alert description of the spurious entries was examined in order to
see whether they had an impact on the overall percentage of the various alerts counted
in the processed alert file. None of the lines in the spurious entries file contained more
than two alerts descriptions, on a theoretical maximum number or alerts equal to
13910, 4674 entries were related to the first most recurring alert, 2896 to the second,
1317 to the third, 986 to the fourth and 78 to the fifth. As a consequence, the data
eliminated with this file does not impact the analysis on the “correct” data.

Analysis of the Alerts files
The following alerts were triggered by the activity on the University network during
the 5 days examined:
Number of occurrences Alert Description
 874199 NIMDA - Attempt to execute cmd from campus host
 492452 spp_http_decode: IIS Unicode attack detected
 481125 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
 122835 NIMDA - Attempt to execute root from campus host
 106847 UDP SRC and DST outside network
 53560 spp_http_decode: CGI Null Byte attack detected
 30074 SMB Name Wildcard
 24212 TFTP - External UDP connection to internal tftp server
 14576 External RPC call
 11916 Watchlist 000220 IL-ISDNNET-990517
 4113 Possible trojan server activity
 2543 SUNRPC highport access!
 2053 IRC evil - running XDCC
 1305 Watchlist 000222 NET-NCFC
 1293 EXPLOIT x86 NOOP
 1120 Queso fingerprint
 927 SNMP public access
 788 connect to 515 from outside
 730 Attempted Sun RPC high port access
 679 Samba client access
 628 High port 65535 udp - possible Red Worm - traffic
 314 IDS552/web-iis_IIS ISAPI Overflow ida nosize
 260 ICMP SRC and DST outside network
 236 SMB C access
 173 TFTP - Internal UDP connection to external tftp server
 166 beetle.ucs
 147 Port 55850 tcp - Possible myserver activity - ref. 010313-1
 136 Incomplete Packet Fragments Discarded
 106 Null scan!
 88 NMAP TCP ping!
 58 EXPLOIT x86 setuid 0
 53 Tiny Fragments - Possible Hostile Activity

 57

 48 EXPLOIT x86 stealth noop
 44 High port 65535 tcp - possible Red Worm - traffic
 42 STATDX UDP attack
 38 EXPLOIT x86 setgid 0
 18 Port 55850 udp - Possible myserver activity - ref. 010313-1
 13 TCP SRC and DST outside network
 13 SMB CD...
 11 HelpDesk MY.NET.70.50 to External FTP
 11 External FTP to HelpDesk MY.NET.70.50
 11 MY.NET.30.4 activity
 9 HelpDesk MY.NET.70.49 to External FTP
 8 External FTP to HelpDesk MY.NET.70.49
 6 TFTP - External TCP connection to internal tftp server
 5 EXPLOIT NTPDX buffer overflow
 4 HelpDesk MY.NET.83.197 to External FTP
 3 RFB - Possible WinVNC - 010708-1
 3 DDOS shaft client to handler
 3 Back Orifice
 2 Traffic from port 53 to port 123
 2 SYN-FIN scan!
 1 MY.NET.30.3 activity

Top 10 most occurring attacks
The most frequent attacks counting more than 10000 events recorded in the alerts file
are indicated in the following table:

Attack Description Number of

occurrences
Percentage

on total
NIMDA - Attempt to execute cmd from campus host 874199 39.2%
spp_http_decode: IIS Unicode attack detected 492452 22.0%
IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize 481125 21.5%
NIMDA - Attempt to execute root from campus host 122835 5.5%
UDP SRC and DST outside network 106847 4.8%
spp_http_decode: CGI Null Byte attack detected 53560 2.4%
SMB Name Wildcard 30074 1.3%
TFTP - External UDP connection to internal tftp server 24212 1.1%
External RPC call 14576 0.6%
Watchlist 000220 IL-ISDNNET-990517 11916 0.5%
Total percentage for the top 10 attacks 98.9

Top 10 most active hosts
The following table shows the list of hosts that generated the highest number of alerts.
In this table and in the following ones, the fully qualified domain name was not
available where not shown.

IP address Fully Qualified

Domain name
Alerts generated by this host Number

of alerts
generated

by the
address

Percentage
on the total
number of

alerts

MY.NET.100.208 1. NIMDA - Attempt to execute
cmd from campus host
2. spp_http_decode: IIS Unicode
attack detected
3. NIMDA - Attempt to execute
root from campus host
4. TFTP - Internal UDP
connection to external tftp server

1433246 64.3%

 58

MY.NET.84.234 1. IDS552/web-iis_IIS ISAPI
Overflow ida INTERNAL nosize
2. Possible trojan server activity

481130 21.5%

3.0.0.99 UDP SRC and DST outside
network

51359 2.3%

63.250.213.12 dal-
qcwm213012.bro

adcast.com

UDP SRC and DST outside
network

32115 1.4%

MY.NET.81.37 1. spp_http_decode: CGI Null
Byte attack detected
2. spp_http_decode: IIS Unicode
attack detected

27085 1.2%

194.98.189.139 1. External RPC Call
2. STATDX UPD attack

8375 0.4%

MY.NET.85.74 1. spp_http_decode: IIS Unicode
attack detected
2. Possible trojan server activity

6990 0.3%

80.137.90.34 p50895A2B.dip.t-
dialin.net

1. spp_http_decode: IIS Unicode
attack detected
2. beetle.ucs

6898 0.3%

MY.NET.111.230 TFTP - External UDP connection
to internal tftp server

6089 0.3%

MY.NET.111.231 TFTP - External UDP connection
to internal tftp server

6059 0.3%

Total percentage of attacks from the
top ten most active hosts

 92.3%

Top 10 most targeted hosts
The following table shows the list of hosts against which the highest number of alerts
was recorded. Interestingly enough, the most targeted hosts are outside the University
network, indicating that most of alerts are generated by activity initiated on the
University network or some network device misconfiguration. (10.0.0.1 is a private
address and events involving this address are generated by 3.0.0.9, an address outside
the University IP addresses range).

IP address Fully Qualified
Domain name

Alerts generated by
activity addressed to this
host

Number of
alerting packets

sent to this
address

Percentage
on the total
number of

alerts
10.0.0.1 UDP SRC and DST

outside network
51359 2.3%

216.241.219.28 spp_http_decode: CGI Null
Byte attack detected

39484 1.8%

233.28.65.148 UDP SRC and DST
outside network

32115 1.4%

192.168.0.216 1. TFTP - External UDP
connection to internal tftp
server
2. spp_http_decode: IIS
Unicode attack detected

24208 1.1%

233.2.171.1 UDP SRC and DST
outside network

17945 0.8%

152.163.210.84 1. spp_http_decode: CGI
Null Byte attack detected
2. spp_http_decode: IIS
Unicode attack detected

6457 0.3%

233.28.65.173 UDP SRC and DST
outside network

4975 0.2%

207.200.86.97 myns-
v1.websys.aol.com

spp_http_decode: IIS
Unicode attack detected

4758 0.2%

MY.NET.104.204 1. SMB Name Wildcard
2. Watchlist 000220 IL-

4492 0.2%

 59

ISDNNET-990517
3. NMAP TCP ping!
4. Null scan!
5. EXPLOIT x86 setuid 0
6. Incomplete Packet
Fragments Discarded
7. High port 65535 udp -
possible Red Worm –
traffic
8. EXPLOIT x86 setgid 0
9. Queso fingerprint

209.10.239.135 spp_http_decode: CGI Null
Byte attack detected

3631 0.2%

Total percentage of attacks on the top
ten most attacked hosts

 8.9

233.28.65.173, 233.2.171.1 and 233.28.65.148 are multicast addresses. It is very
likely that the traffic generated towards these hosts is due to the fact that the
University is part of a multicast group.

Details on the most frequent alerts
The top 5 alerts account for more than 93% of the total alerts logged for the five days
examined. All of them were reported more than 100000 times are analysed in this
section. As we can see from the summary graph in the first section of this report, most
of these alerts were generated on the 4th and 5th of August.

“NIMDA - Attempt to execute cmd from campus host”
This alert is not generated by a standard snort rule. The rule was probably defined by
the University using the “content” rule option to specify the content of the payload as
one of the strings reported below for the NIMDA worm containing the “cmd.exe”.
This event was reported 874199 times, all but 5 occurring on one single day (August
5th).
A sample of the event logged is provided below:

08/02-17:44:33.001172 [**] NIMDA - Attempt to execute cmd from campus host [**]
MY.NET.70.16:2142 -> 65.54.250.121:80
08/03-19:55:53.607645 [**] NIMDA - Attempt to execute cmd from campus host [**]
MY.NET.83.176:1345 -> 207.68.132.9:80
08/04-14:23:02.748399 [**] NIMDA - Attempt to execute cmd from campus host [**]
MY.NET.111.30:1092 -> 207.46.235.150:80
08/04-14:45:06.913040 [**] NIMDA - Attempt to execute cmd from campus host [**]
MY.NET.165.19:1085 -> 65.54.250.120:80
08/05-09:14:50.113555 [**] NIMDA - Attempt to execute cmd from campus host [**]
MY.NET.70.169:1103 -> 65.54.250.121:80
08/05-13:22:36.967751 [**] NIMDA - Attempt to execute cmd from campus host [**]
MY.NET.70.144:1116 -> 207.46.235.150:80

These alerts are coming from 10 hosts only, all of them in the University’s network.
In fact almost all of them are coming from one host only, the other 9 generating only
one alert each:

Number of alerts Source IP address in the alert
874190 MY.NET.100.208

1 MY.NET.105.10
1 MY.NET.111.30
1 MY.NET.130.20
1 MY.NET.165.19
1 MY.NET.70.144

 60

1 MY.NET.70.16
1 MY.NET.70.169
1 MY.NET.82.87
1 MY.NET.83.176

This alert is a known signature of the NIMDA worm.
NIMDA is a worm that started spreading last September 2001. It propagates via four
distinct mechanisms and infects hosts running any version of the Windows Operating
System. According to [2], NIMDA scans the Internet looking for web services and
attempts to exploit a number of vulnerabilities of the Windows IIS software. Network
attacks include exploitation of the “IIS/PWS Extended Unicode Directory Traversal
Vulnerability” and of the “IIS/PWS Escaped Character Decoding Command
Execution Vulnerability”. NIMDA also exploits backdoors left behind by previous
Code Red and sadmind infections (root.exe and mapping of C: and D: drives to virtual
IIS folders which allow the execution of cmd.exe).
The following signatures are only some of those which indicate a NIMDA attack:

GET /scripts/root.exe?/c+dir
GET /MSADC/root.exe?/c+dir
GET /c/winnt/system32/cmd.exe?/c+dir
GET /d/winnt/system32/cmd.exe?/c+dir
GET /scripts/..%255c../winnt/system32/cmd.exe?/c+dir
GET /_vti_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir
GET /_mem_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir
GET /msadc/..%255c../..%255c../..%255c/..%c1%1c../..%c1%1c../..%c1%1c../
winnt/system32/cmd.exe?/c+dir
GET /scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir
GET /scripts/..%c0%2f../winnt/system32/cmd.exe?/c+dir
GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir
GET /scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir

Clearly the alerts reported here have been triggered by packets containing this data in
the payload. [2] also indicates that NIMDA targets IP classes with the same first octet
with 25% probability. In the data examined for this report, over 100000 hosts have
been attacked by host MY.NET.100.208. Once the worm gains access to a vulnerable
IIS web server, it uses TFTP to download a copy of a file called Admin.dll from the
infecting host to the vulnerable host. So, if this host is infected with NIMDA and is
scanning for vulnerable hosts we could also see some TFTP connections from this
host when the worm finds a vulnerable IIS server and attempts to install a copy of
Admin.dll. The alert files contain a log of all attempt at connecting from the outside to
internal tftp servers and from internal hosts to external tftp servers. If
MY.NET.100.208, succeeded in infecting other hosts with NIMDA, we should see
some alerts indicating a connection from external hosts to this host. However tftp
connections between hosts in the University network seem not to be logged, so we
don’t know whether this host succeeded in infecting other hosts in the campus.
A detailed analysis about the spread of the worm from this host can be performed
with the web server data. Host MY.NET.100.208 is clearly infected with the NIMDA
worm, it should be disconnected from the network and “cleaned”.

“spp_http_decode: IIS Unicode attack detected”
This alert is generated by the http_decode snort preprocessor. This preprocessor
normalises HTTP requests by converting any Unicode character (denoted by %xx)
into their ASCII equivalent. These alerts indicate that a request has been received by a
web server which contained Unicode escaped characters in the URL. The Unicode

 61

exploit uses malformed URLs, with a Unicode representation of the directory
delimiter, to traverse directories and execute arbitrary commands on vulnerable web
servers. This vulnerability is a variation of the ‘dot dot’ directory traversal attack. It
affects unpatched Microsoft IIS 4.0 and 5.0 web servers. This vulnerability can be
exploited by typing the malformed URL in the address bar of the web browser,
however automated scripts exist that scan for vulnerable servers. The Unicode exploit
is described in [1].
This alert is reported 492452 times of which 459102 are recorded on the 5th of
August.
A sample of the events logged for this alert is provided below:

08/01-00:10:57.452228 [**] spp_http_decode: IIS Unicode attack detected [**]
64.86.155.118:2672 -> MY.NET.109.87:80
08/01-00:10:59.910726 [**] spp_http_decode: IIS Unicode attack detected [**]
64.86.155.118:2710 -> MY.NET.109.87:80
08/01-00:21:07.087017 [**] spp_http_decode: IIS Unicode attack detected [**]
211.91.255.154:51337 -> MY.NET.53.84:80
08/01-00:21:08.346841 [**] spp_http_decode: IIS Unicode attack detected [**]
211.91.255.154:51343 -> MY.NET.53.84:80
08/01-00:22:55.947869 [**] spp_http_decode: IIS Unicode attack detected [**]
MY.NET.183.25:4413 -> 64.12.42.116:80
08/01-00:22:55.947869 [**] spp_http_decode: IIS Unicode attack detected [**]
MY.NET.183.25:4413 -> 64.12.42.116:80

This event is reported most often as being generated by activity on these hosts:

Number of alerts Source IP address in the alert
436058 MY.NET.100.208
6982 MY.NET.85.74
6888 80.137.90.34
2885 MY.NET.152.19
2826 MY.NET.153.145
2475 151.203.178.36
2003 MY.NET.153.168
1855 MY.NET.153.143
1642 MY.NET.91.103
1592 MY.NET.91.105

By examining closer the alerts with this description for the host most active, we
discover that packets are addressed at more than 85000 different hosts, each of them
receiving from 15 to 1 offending packets, they are in fact different fast scans. By
examining the scans file, we discover that host MY.NET.100.208 accounts for more
than 10% of the total number of scans.
This alert is a well-known signature of CodeRed (and its variants) and NIMDA.
However, according to the snort FAQ, this alert can also be generated by “normal
surfing” by some web browsers [3]. Combining this result with the observation for the
previous alert we have further indications about the fact that host MY.NET.100.208 is
infected with the NIMDA worm. This type of alert, generated by packets sent from
this host, is also triggered by the NIMDA scan.
Rick Yuen and Joe Ellis also report this alert in their practicals and attribute it to
CodeRed and Nimda.14.

“IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize”
This alert is generated by a snort rule that is a slight modification of the following
standard snort rule

14 GIAC practicals are available at www.giac.org

 62

alert TCP $EXTERNAL any -> $INTERNAL 80 (msg: "IDS552/web-iis_IIS ISAPI
Overflow ida"; dsize: >239; flags: A+; uricontent: ".ida?"; classtype:
system-or-info-attempt; reference: arachnids,552;)

available from whitehats.com at the URL:
http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids552&view=signatures, the
modification being on the source of the offending packet (the internal network) which
is reflected in the word “INTERNAL” added to the alert description. This alert is
related to an unchecked buffer vulnerability in Microsoft IIS Index Server ISAPI
Extension which could enable a remote intruder to gain SYSTEM access to the web
server.
This event is reported as being generated by activity on one host only in the
University network, all of them on the 4th of August.

Number of alerts Source IP address in the alert
481125 MY.NET.84.234

A sample of the events logged for this alert is provided below:

08/04-17:30:00.336917 [**] IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize [**]
MY.NET.84.234:4736 -> 62.58.155.117:80
08/04-17:30:00.344443 [**] IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize [**]
MY.NET.84.234:4737 -> 160.193.184.87:80
08/04-17:30:00.369439 [**] IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize [**]
MY.NET.84.234:4740 -> 188.146.27.103:80
08/04-17:30:00.374757 [**] IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize [**]
MY.NET.84.234:4741 -> 80.119.211.169:80
08/04-17:30:00.381321 [**] IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize [**]
MY.NET.84.234:4742 -> 148.27.15.207:80

This alert is a signature for CodeRed. CodeRed exploits the Index Server (.ida) buffer
overflow vulnerability reported in CIAC Bulletin L-098 [5]. The buffer overflow
allows the worm to execute code within the IIS server to deface the server’s home
page, to compromise other vulnerable hosts and to run a denial of service attack on
www.whitehouse.gov. The worm arrives at the web server as a GET /default.ida
request. This request exploits the .ida vulnerability and starts the execution of the
worm code. Hosts infected by these worms scan port 80, looking for other web
servers with the same vulnerability to infect. Like MY.NET.100.208, this host too
should be disconnected from the network and “cleaned”. Joe Ellis reports this alert in
his practical and attributes it to CodeRed and Nimda.

“NIMDA - Attempt to execute root from campus host”
This alert is not generated by a standard snort rule. The rule was probably defined by
the University using the “content” rule option to specify the content of the payload as
one of the strings reported above for the NIMDA worm containing the “root.exe”
(discussion on alert “NIMDA - Attempt to execute cmd from campus host”).
This event was reported 122835 times all occurring on the same day (August 5th).
A sample of the event logged is provided below:

08/05-21:21:55.661920 [**] NIMDA - Attempt to execute root from campus host [**]
MY.NET.100.208:2008 -> 130.95.40.191:80
08/05-21:21:55.664339 [**] NIMDA - Attempt to execute root from campus host [**]
MY.NET.100.208:2010 -> 130.7.64.55:80
08/05-21:21:55.670339 [**] NIMDA - Attempt to execute root from campus host [**]
MY.NET.100.208:2009 -> 130.178.180.123:80

 63

08/05-21:21:55.670567 [**] NIMDA - Attempt to execute root from campus host [**]
MY.NET.100.208:2011 -> 130.91.203.243:80
08/05-21:21:55.677068 [**] NIMDA - Attempt to execute root from campus host [**]
MY.NET.100.208:2015 -> 130.62.62.95:80

This event is reported by activity generated by a unique host:

Number of alerts Source IP address in the alert
122835 MY.NET.100.208

This is the same host that generated alert “NIMDA - Attempt to execute cmd from
campus host” and is part of the same scanning.

“UDP SRC and DST outside network”
This alert is reported 106847 more or less evenly distributed in all the five days
examined.
A sample of the events logged for this alert is provided below:

08/01-00:00:05.732948 [**] UDP SRC and DST outside network [**] 3.0.0.99:137 ->
10.0.0.1:137
08/01-00:00:08.733589 [**] UDP SRC and DST outside network [**] 3.0.0.99:137 ->
10.0.0.1:137
08/01-00:00:11.738004 [**] UDP SRC and DST outside network [**] 3.0.0.99:137 ->
10.0.0.1:137
08/01-00:00:13.240134 [**] UDP SRC and DST outside network [**] 3.0.0.99:137 ->
10.0.0.1:137
08/01-00:00:14.742414 [**] UDP SRC and DST outside network [**] 3.0.0.99:137 ->
10.0.0.1:137

This alert is generated because UDP traffic is logged with both source IP and
destination IP address outside the network. This kind of traffic could be generated by
a mis-configured network device or by a mis-configured snort that does not include
all local networks in HOME_NET.
Ports in these alerts are mostly 137 (Windows Netbios Name Service). Most of this
traffic is addressed to a private address (10.0.0.1). The other port in the traffic that
raised this alert that is also worth noting is port 54646. All traffic having 54646 as
destination port was addressed to the same address 233.2.171.1 which is a multicast
address. UDP port 54646 and IP address 233.2.171.1 are associated to the Multicast
Beacon, an active measurement software that monitors the performance of a multicast
session. [4]. 233.28.65.148 and 233.28.65.173 are also multicast addresses. According
to the Internet Multicast Addresses list published by IANA [7], the address block
233.0.0.0-233.255.255.255 is assigned to GLOP block.
The configuration of snort should be revised to verify that all local subnets are
included. Egress filtering should be applied at the perimeter of the University
network, incoming traffic with the same addresses as local addresses should be
denied, as well as outgoing traffic with source address different from local addresses.
Local area network services, like Netbios Name Service should not be allowed into
the University network from the outside.
Similar activity was noted in the practical from Andrew Windsor, however, his case,
all traffic that triggered this alert was addressed to a multicast address and the port
number was associated to a multicast service, both different from the multicast
address and port noted here.

 64

Analysis of the scans files
The scan activity is more “regular” than the alert activity during the examined days, in
that there are no peaks like those reported in the alerts.
Most of the scan activity is SYN and UDP scans. Examination of the scan files was
useful to understand some of the activity going on in the university network. In
particular, scans for ports associated to peer-to-peer services and to online games
indicate that this type of activity is allowed and frequent.

Type of scan Occurrences
UDP Scans 3112461
SYN Scans 996371
SYN Scans with the reserved bits set 1151
Other types of scans 198
Scans initiated from internal addresses towards external addresses 1023378
Scans initiated from external addresses towards internal addresses 200560

As a general comment we can notice that scans initiated from the University network
to external hosts are more numerous than scans on the University network, indicating
that University users are quite active in scanning. Surprisingly enough, no scans are
logged from University hosts to other hosts in the same net.
Not only the most active port scanner is an internal address (MY.NET.70.200 with
2437159 scans) but also the ten most active scanners are all internal hosts.
The table below shows the most active scanners and the most scanned ports by them.

Internal “scanner” IP
address

Number of scans
from this address

Ports scanned by this address

MY.NET.70.200 2439514 80/tcp (HTTP)and ports in the range 41000-
41300 (audiogalaxy satellite MP3 sharing
application)

MY.NET.84.234 478408 80/tcp (HTTP), (this is the host that raised the
“web-iis_IIS ISAPI Overflow ida” alert)

MY.NET.100.208 170345 80/tcp (HTTP), 3722/udp, 3269/udp (IBM Dial
Out), 3267/udp (Microsoft Global Catalog with
LDAP/SSL)

MY.NET.70.207 137226 11492 different UDP ports
MY.NET.82.2 127725 12528 different UDP ports
MY.NET.165.24 104553 Various UDP ports, mainly 6257/udp

16257/udp and 6699/udp (WinMX peer-to-
peer)

MY.NET.83.150 90049 Various UDP ports, mainly 6257/udp
16257/udp and 6699/udp (WinMX peer-to-
peer)

MY.NET.137.7 49208 Various UDP ports, 80/tcp (HTTP), 25/tcp
(SMTP), 53/udp (DNS)

MY.NET.70.133 42744 22/tcp (SSH), 53/udp (DNS),
7000,7001,7002,7003,7004/udp (AFS)

MY.NET.81.27 31926 Various UDP ports, 28800/udp (On line game
Starsiege tribes)

If we exclude hosts MY.NET.84.234 and MY.NET.100.208, whose scanning activity
is mostly related to the NIMDA and CodeRed worms, and MY.NET.70.200,
MY.NET.165.24, MY.NET.83.150, MY.NET.81.27 whose scanning activity is mostly
related to the search for peer-to-peer hosts for file sharing or online games servers, the
remaining hosts whose activity is worth commenting are MY.NET.137.7 and
MY.NET.70.133. The activity of MY.NET.137.7 is mostly related to 25/tcp and

 65

53/udp, which indicates that this host might be a mail server opening many frequent
25/tcp connections and 53/udp connections to send messages. In fact, analysing the
53/udp connections we discover that they are addressed to DNS servers (among them
192.5.6.30-a.gtld-servers.net, 192.52.178.30 - k.gtld-servers.net, 198.133.199.100-
arrowroot.arin.net) while 25/tcp connections were addressed to mail servers (among
them 208.45.133.107-xmxpita.excite.com, 65.54.254.129- mc1.law16.hotmail.com,
64.157.4.89-mta580.mail.yahoo.com, 204.127.134.23- mtiwgwc14.worldnet.att.net,
etc.).15
The scanning activity of external hosts towards the University network is much lower
compared to the scans generated from internal hosts:

External “scanner”
IP address

Number of scans
from this address

Ports scanned by this address

216.228.171.81 25940 445/tcp, 139/tcp, 137/tcp (Netbios and
Windows DS)

24.138.61.171 21019 80/tcp (HTTP)
161.132.205.100 20330 80/tcp (HTTP)
211.232.192.153 17730 1433/tcp (MS SQLServer)
67.104.84.142 16264 1433/tcp (MS SQLServer)
219.96.171.20 15741 80/tcp (HTTP)
80.137.90.34 15693 80/tcp (HTTP)
24.101.152.5 12593 21/tcp (FTP)
202.98.223.86 10739 80/tcp (HTTP)
66.224.37.26 10139 80/tcp (HTTP)

A part from the 80/tcp scans that can be related most frequently to NIMDA and
CodeRed worms, which have already been discussed in the previous sections, it is
worth noting that most of the scans are addressed to 1433/tcp and 21/ftp. Ftp
vulnerabilities, the search for which can be the cause for the ftp scans have already
been discussed in part 2 of this practical. Port 1433/tcp is used by Microsoft SQL
Server. Some serious vulnerabilities were discovered in this product which allow
remote attackers to compromise the database server, to alter the database content and
in some cases to compromise the server host too. SQL Server’s vulnerabilities are
third in the list of MS Windows related vulnerabilities in [6] and, according to [6]
these vulnerabilities are well publicized and actively under attack.

Most scanned ports by University hosts Most scanned ports on University hosts
Number of
occurrences

Port and service Number of
occurrences

Port and service

581292 80/tcp, http 94382 80/tcp, http
133651 41170/udp Audiogalaxy 44910 1433/tcp, MS SQLserver
78959 6257/udp WinMx Peer-to-peer

tool
22980 21/tcp

2894 6346/udp|tcp Gnutella 9428 111/tcp SUN Remote
Procedure Call

2756 53/udp DNS – host receiving
most of these requests is a
DNS server (192.5.6.30-a.gtld-
servers.net). This might be
legitimate activity

5261 139/tcp Netbios Session
Service

1173 139/tcp Netbios 5204 445/tcp Microsoft DS
1028 25/tcp SMTP, host receiving 5199 23/tcp Telnet

15 DNS servers were verified by using nslookup and setting the host addressed by these scans on port
53 as the server. SMTP servers were verified by connecting on TCP port 25 using telnet.

 66

most of these requests is a mail
server (see discussion above)

931 28800/udp On line game
Starsiege tribes

2225 13000/tcp SennaSpy Trojan
Generator (on udp!)

885 12300/udp MOHAA GameSpy
Monitoring Port

2172 6112/tcp and udp
Starcraft/Blizzard Battlenet
(udp)

870 27020/udp Halflife 643 137/udp Netbios Name
Service

In addition to 1433/tcp and 21/tcp a frequently scanned port is 111/ucp-tcp (RPC).
Remote Procedure Call (RPC) is the first in the SANS [5] list of the top
vulnerabilities for Unix systems. RPCs allow a program on one host to run a
procedure on another host, they are used in many distributed network services, such
as network file sharing or remote administration. Recently many vulnerabilities have
been found in many RPC services (e.g. rpc.mountd, rpc.statd, sadmind, cachefsd,
etc.).
Scans types other than SYN and UDP are reported in the table below. They are
invalid combinations of the TCP flags meant at being stealthy:

Number of
occurrences

“name” and flag
combination

Description found in the scans file

61 VECNA ****P*** Series of stealth scans, coded in nmap by vecna
(http://online.securityfocus.com/archive/1/42136)

59 NULL ******** Null scan: none of the TCP flags is set.
26 INVALIDACK ***A*R*F Ack, Reset and Fin flags are set, Ack is invalid
7 NOACK *****RS* Reset and Syn flags are set
6 INVALIDACK ***A*RS* Ack, Reset and Syn flags are set Ack is invalid
5 NOACK **U**RS* Urgent, Reset and Syn flags are set
4 XMAS **U*P**F Subset of the Christmas scan, abbreviated in

Snort as XMAS
4 VECNA **U*P*** Urgent and Push flags are set
3 NOACK **U**R*F Urgent, Reset and Fin flags are ser
3 INVALIDACK **UA*RS* Urgent, Ack, Reset and Syn flags are set
3 FIN *******F Fin flag is set
2 NOACK **U**R** Urgent, and Reset flags are set
2 INVALIDACK ***AP*S* Ack, push and Syn flags are set
2 FULLXMAS **UAPRSF The combination of all TCP flags set is known as

"Christmas Tree", abbreviated in Snort as
FULLXMAS:

1 VECNA **U****F Urgent and Fin flags are set
1 VECNA **U***** Urgent flag is set
1 NOACK ****PRS* Push, Reset and Syn flags are set
1 NOACK ****PR*F Push, Reset and Fin flags are set
1 NOACK *****R*F Reset and Fin flags are set
1 INVALIDACK **UAPRS* Urgent, Ack, Push, Reset and Syn flags are set
1 INVALIDACK **UAPR*F Urgent, Ack, Push, Reset and Fin flags are set
1 INVALIDACK **UA*RSF Urgent, Ack, Reset, Syn and Fin flags are set
1 INVALIDACK **UA*R** Urgent, Ack and Reset flags are set
1 INVALIDACK ***APRSF Ack, Push, Reset, Syn and Fin flags are set
1 INVALIDACK ***A**SF Ack, Syn and Fin flags are set

Scans for 1433, 139, 111 and 21 are clearly meant at finding vulnerabilities in these
services. Disable access to these services from outside whenever this service is not
meant for public access. If SQL servers and ftp servers must be accessed from the
outside, check that all patches have been applied. Netbios services and RPC should

 67

not be accessed from the outside. Although not malicious in nature, scans for peer-to-
peer sites and online games servers should be investigated (copyright issues for
exchanged material and misuse of the network bandwidth).

Analysis of the OOS files
There were 1537 out of spec packets in the oos files. All these packets are generated
from external sources only.
The following table indicates the most active hosts in sending out of spec packets:

IP address Fully qualified domain name Number

of OOS
packets

Destination
address and

port
68.32.126.64 pcp01823532pcs.howard01.md.comcast.net 652 MY.NET.6.7,

110/tcp
62.76.241.129 clamas.uni.udm.ru 345 MY.NET.97.217,

MY.NET.96.238,
113/tcp

209.116.70.75 vger.kernel.org 214 Mostly
MY.NET.100.217,

25/tcp
212.35.180.17 83 MY.NET.253.20,

21/tcp
65.210.154.210 48 MY.NET.111.198,

4662/tcp
(edonkey, file

sharing program).

Interestingly enough, all packets received from these hosts have only the two reserved
bits set, and the same window size 0x16d0.
Packets from 209.116.70.75 were addressed to several hosts, but MY.NET.100.217
was the most recurring one (95 occurrences). The packets have the same
characteristics as the others and were sent on 1st and 2nd of August. This host is also
logged in the scans and in the alert file as the source address in the packets that raised
the queso alert, probing port 25. These packets too are addressed at port 25.

An excerpt of the packets logged in the oos file, related to this host, is provided
below:
=+
08/01-01:51:09.333121 209.116.70.75:46541 -> MY.NET.100.217:25
TCP TTL:51 TOS:0x0 ID:40167 DF
21S***** Seq: 0xA7D51545 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 770738594 0 EOL EOL EOL EOL
=+
08/01-01:59:25.542188 209.116.70.75:49223 -> MY.NET.100.217:25
TCP TTL:51 TOS:0x0 ID:38528 DF
21S***** Seq: 0xC766DDF6 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 770788214 0 EOL EOL EOL EOL
=+
08/01-02:09:21.062675 209.116.70.75:55608 -> MY.NET.100.217:25
TCP TTL:51 TOS:0x0 ID:9764 DF
21S***** Seq: 0xEDA21233 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 770847767 0 EOL EOL EOL EOL
=+

Using the p0f fingerprint database, and assuming that the host is 13 hops away (it is a
likely figure) we can see that this host is most likely a Linux 2.4.2 or 2.4.1-14 box
(Window size=5840, initial TTL=64, SackOK, MSS=1460, DF bit set). There are no
clear sign of packet crafting. A SYN packet with both the last two reserved bits set

 68

(CWR and ECN-echo flags) is a signature for the queso port scanner. In fact this
address is also present in the alerts file under the description related to queso
fingerprinting. However, it is still possible that these two bits have been set by the
sending host to indicate congestion. According to [8], in order to distinguish between
a queso SYN packets with both reserved bits set from a legitimate use of the ECN
fields, we should have a look at the following packets and check whether the TOS
field in the IP header is set, which would indicate that the SYN packet with the
reserved bits set was a legitimate packet. Unfortunately we do not have here the
following packets for further analysis.

Moving on from the “top talkers” in terms of OOS packets, we can have a look at the
other types of OOS packets received, which are summarised in the table below:

Number of
occurrences

TCP flags
combination

Number of
occurrences

TCP flags
combination

1604 21S***** 1 21S**P**
 2 21S*R*** 1 21S***AU
 2 21S***A* 1 21*F****
 2 21*FRPAU 1 21**RPAU
 2 21*FR*** 1 2*SFRPA*
 2 2*SFR**U 1 2*SFR*A*
 2 2*SF**** 1 2*SF**A*
 1 21SFRPAU 1 *1SFR***
 1 21SFR*AU 1 *1SF*P*U
 1 21SFR*A* 1 *1SF**AU
 1 21SFR**U 1 *1SF**A*
 1 21SF*P*U 1 **SFRPAU
 1 21S*R*AU 1 **SFR*A*
 1 21S**PAU 1 **SF***U

A part from the illegal combination of TCP flags, it is difficult to make further
analysis on these packets (for instance on the variation of the sequence number or the
IP ID), since in most cases there is only one packet per each combination. So each of
these packets would deserve the same right to be examined carefully.
An excerpt of some of these packets is shown below:

07/31-19:44:50.801909 209.163.19.41:43028 -> MY.NET.88.162:51450
TCP TTL:106 TOS:0x0 ID:55554 DF
21S*R*** Seq: 0xD09E0BD9 Ack: 0xE04ABC0A Win: 0xC50A
TCP Options => EOL EOL EOL EOL EOL EOL SackOK
+=+
08/01-06:13:00.731738 211.154.85.159:1893 -> MY.NET.111.140:80
TCP TTL:107 TOS:0x0 ID:59605 DF
21S*R*** Seq: 0x20DB060 Ack: 0x94F7 Win: 0x5010
TCP Options => EOL EOL EOL EOL EOL EOL

EOL means “End of Options List” it is used to indicate where the receiving end
should stop processing the options list. What is strange in these packets, a part from
the weird combination of SYN and RST flags (SYN=“I want to initiate a connection”,
RST=”I want to terminate abruptly this connection”), is that a number of EOL are
specified (isn’t one sufficient?). Moreover, in the second packet EOL is useless since
there are no options, while in the first packet the only option (sackOK) would not be
processed by a correct TCP implementation (which is to ignore options specified after
EOL).

 69

External source addresses information
Scanning and more importantly stealth scanning are often the first step in launching
an attack. Therefore it is useful to keep an eye on those hosts that are attempting to
scan the University network more often or extensively.

Whois query for: 209.116.70.75 (queso scanning and OOS packets-possibly a
false positive) – This IP appears 57 times in the Dshield database
CustName: Red Hat, Inc.
Address: 4518 South Miami Blvd. Suite #100 Durham NC 27703
Country: US
RegDate: 2002-09-23
Updated: 2002-09-23

NetRange: 209.116.70.64 - 209.116.70.95
CIDR: 209.116.70.64/27
NetName: INFLOW-18773-5591
NetHandle: NET-209-116-70-64-1
Parent: NET-209-116-68-0-1
NetType: Reassigned
Comment:
RegDate: 2002-09-23
Updated: 2002-09-23

Whois query for 148.64.21.23 (This host is scanning hosts in the University
network using the VECNA combination of TCP flags) – This IP does not appear
in the Dshield database
OrgName: Spacenet, Inc.
OrgID: SPAN
NetRange: 148.62.0.0 - 148.78.255.255
CIDR: 148.62.0.0/15, 148.64.0.0/13, 148.72.0.0/14, 148.76.0.0/15,
148.78.0.0/16
NetName: SPACENET-SPAN
NetHandle: NET-148-62-0-0-1
Parent: NET-148-0-0-0-0
NetType: Direct Allocation
NameServer: NS1-MCL.STARBAND.COM
NameServer: NS2-MCL.STARBAND.COM
NameServer: NS1-MAR.STARBAND.COM
NameServer: NS2-MAR.STARBAND.COM
Comment:
RegDate: 2000-05-31
Updated: 2001-07-26

TechHandle: FM173-ARIN
TechName: Miller, Fred
TechPhone: +1-703-848-1108
TechEmail: fred.miller@spacenet.com

Whois query for 218.47.166.219 (This host is scanning hosts in the University
network using NULL Scan) - This IP does not appear in the Dshield database
inetnum: 218.40.0.0 -
218.47.255.255

inetnum: 218.47.164.0 -
218.47.255.255

netname: JPNIC-NET-JP netname: PLALA
descr: Japan Network Information
Center

descr: Plala Networks Inc.

country: JP country: JP
admin-c: JNIC1-AP admin-c: MN2905JP
tech-c: JNIC1-AP tech-c: HS3694JP
rev-srv: ns0.nic.ad.jp remarks: This information has been

partially mirrored by APNIC from
rev-srv: ns.wide.ad.jp remarks: JPNIC. To obtain more

specific information, please use the

 70

rev-srv: ns0.iij.ad.jp remarks: JPNIC whois server at
whois.nic.ad.jp. (This defaults to

rev-srv: dns0.spin.ad.jp remarks: Japanese output, use the
/e switch for English output)

rev-srv: ns-jp.sinet.ad.jp changed: apnic-ftp@nic.ad.jp
20020129

rev-srv: ns-jp.ntt.net remarks: This information has been
partially mirrored by APNIC from

mnt-by: APNIC-HM remarks: JPNIC. To obtain more
specific information, please use the

mnt-lower: MAINT-JPNIC remarks: JPNIC whois server at
whois.nic.ad.jp. (This defaults to

changed: hostmaster@apnic.net
20010531

remarks: Japanese output, use the
/e switch for English output)

status: ALLOCATED PORTABLE changed: apnic-ftp@nic.ad.jp
20020925

source: APNIC source: JPNIC

Whois query for 3.0.0.9 (this host is generating quite a number of alerts due to
the attempted UDP communications with host 10.0.0.1-an address in the private
range) - This IP does not appear in the Dshield database
OrgName: General Electric Company
OrgID: GENERA-9
NetRange: 3.0.0.0 - 3.255.255.255
CIDR: 3.0.0.0/8
NetName: GE-INTERNET
NetHandle: NET-3-0-0-0-1
Parent:
NetType: Direct Assignment
NameServer: ns.ge.com
NameServer: ns1.ge.com
NameServer: ns2.ge.com
Comment:
RegDate: 1988-02-23
Updated: 2002-09-26

TechHandle: GET2-ORG-ARIN
TechName: General Electric Company
TechPhone: +1-518-612-6672
TechEmail: genictech@ge.com

Whois query for 211.232.192.153 (this host is looking for vulnerable MS
SQLServers) – This IP appears 2001 times in the Dshield database
inetnum: 211.232.192.0 -
211.232.192.255

country: KR

netname: CABLELINE-CATV-KR phone: +82-63-900-9000
descr: BANDOCABLELINE fax-no: +82-63-900-9000
descr: 906-3 Inhu1dong Dukjin-ku e-mail: catv@catvnet.co.kr
descr: CHONBUK nic-hdl: JJ2128-KR
descr: 561-230 mnt-by: MNT-KRNIC-AP
country: KR changed: hostmaster@nic.or.kr

20020923
admin-c: JJ2128-KR source: KRNIC
tech-c: BK1504-KR
remarks: This IP address space has
been allocated to KRNIC.

remarks: For more information,
using KRNIC Whois Database

person: Byungduk Kim

remarks: whois -h whois.nic.or.kr descr: BANDOCABLELINE
mnt-by: MNT-KRNIC-AP descr: 906-3 Inhu1dong Dukjin-ku
remarks: This information has been
partially mirrored by APNIC from

descr: CHONBUK

remarks: KRNIC. To obtain more
specific information, please use the

descr: 561-230

remarks: KRNIC whois server at country: KR

 71

whois.krnic.net.
changed: hostmaster@nic.or.kr
20020923

phone: +82-63-900-9000

source: KRNIC fax-no: +82-63-900-9000
 e-mail: ip@cableline.com
person: Jehong Jung nic-hdl: BK1504-KR
descr: BANDOCABLELINE mnt-by: MNT-KRNIC-AP
descr: 906-3 Inhu1dong Dukjin-ku
descr: CHONBUK
descr: 561-230

Link graph
The alerts file indicates that there is some suspicious activity that would suggest that
some hosts are running Trojan servers. We do not know exactly what the rule that
records the alert checks but we can see packets from an ephemeral port to port 27374
and back. If we identify a connection with the quadruple: (source IP, source port,
destination IP, destination port), where the destination port is always 27374 we can
build a diagram which shows these connections. 27374 is a port associated with
SubSeven and its variants, to the Ramen worm and to a number of other different
trojans.
The diagram indicates the originating hosts on the left side and the hosts that “listen”
on port 27347 on the other side. “listening” hosts are concentrated on a number of
subnets of the campus net, in some cases the number of hosts involved in this activity
is quite high. The arrows in the diagram indicate the direction of the connection (the
initiator) and the numbers (a x b) indicate the number of connections (“a”) towards
hosts in the subnet. For each of these connections (a connection is the quadruple
defined above) the transit of “b” packets is logged in the alerts file (colors are used to
differentiate packets and connections coming from different hosts).
External hosts that initiate these connections are:

66.21.144.203 adsl-21-144-203.mia.bellsouth.net
138.88.40.155 pool-138-88-40-155.res.east.verizon.net
217.136.63.141 141.63-136-217.adsl.skynet.be
218.154.202.148 none found
61.102.149.115 none found
63.196.247.234 adsl-63-196-247-234.dsl.lsan03.pacbell.net
66.76.134.169 cdm-66-134-169-newp.cox-internet.com
80.62.155.240 0x503e9bf0.odnxx4.adsl-dhcp.tele.dk
61.98.176.61 none fount

All of them come from dial-up/ADSL lines. In some cases the activity (1 packet to
many different hosts) looks like a scan, in other cases, the record of up to 8 packets on
the same connection indicates that some activity worth more investigations on the
involved hosts is going on.
The link graph in the following page was obtained by identifying the connections in
the alert file and eliminating all those connections that, even though logged as
suspicious trojan activity, were related to other activities involving use of the port
27374 as source port. What is interesting in this graph is the clustering around subnets
MY.NET.83.x, MY.NET.84.x and MY.NET.85.x, which seem to be targeted by many
different hosts located worldwide. It would be interesting to investigate whether in the
past days there has been any scanning activity aimed at port 27374 from any of this

 72

host which could have taken advantage of a trojan previously installed. Definitely
these hosts should be removed from the network and investigated.

 73

MY.NET.56.5 1x8

1x8
MY.NET.56.9

61.98.176.61

8x6, 9x4, 8x2

11x6, 3x5, 2x4, 3x3, 14x2, 3x1

2x8, 1x6, 1x3, 1x2

80.62.155.240

217.136.63.141

63.196.247.234

66.76.134.169

MY.NET.83.x

MY.NET.84.x

61.102.149.115

MY.NET.85.x

18x6, 3x5, 21x4, 6x3, 22x2, 2x1

2x6, 1x5, 6x4, 3x3, 6x2, 3x1

2x6, 1x3, 1x4

7x6, 10x4, 1x3, 22x2, 13x1

25x6, 3x5, 65x4, 4x3, 56x2, 43x1

15x6, 3x5, 33x4, 3x3, 39x2, 19x1

9x6, 1x4

57x6, 1x5, 1x4, 5x3

19x6, 3x5, 8x4, 5x3, 1x2

46x6, 4x5, 11x4, 6x3, 3x2
8x6, 2x4

28x6, 1x4, 2x3

66.21.144.203

138.88.40.155

MY.NET.167.x

MY.NET.169.x

MY.NET.168.x

MY.NET.152.x

MY.NET.154.x
60x4

36x8, 1x6

14x8, 3x4

2x6, 1x4, 2x1

3x4, 2x3, 4x2, 5x15x6, 4x5, 13x4, 3x3, 11x2

1x2

2x7, 2x6, 2x5, 2x4, 3x2,5x1

MY.NET.153.x
218.154.202.148

 74

Defensive recommendations
In addition to the recommendation given in the previous sections, as general
recommendations:

• Remove the infected hosts (worms and trojans) from the network, investigate
the incidents analysing the logs and reinstall;

• Develop a procedure (for each operating system used) to automatically install
“hardened” version of the OS on all hosts in the campus network;

• Use egress filtering to filter outbound packets; ensure antispoofing is enabled
on all network devices;

• Develop a policy to determine whether or not peer-to-peer sharing application
and online gaming should be allowed;

• Filter traffic that should be allowed only on a LAN/campus network basis
(netbios, lpd, NFS, RPC);

• Do not install any service unless needed (ftp, http should not be allowed on all
machines, many hosts showed signs of being compromised via various web
exploits; use of tftp should be investigated);

• Monitor security bulletins and keep up to date with patches and fixes;
• Update regularly the snort (or any other IDS) rule base;

Analysis Process
Initially I intended to process the alert files using SnortSnarf to get an overall picture
of the alerts triggered by the activity on the University network on the five days I
examined. However, the amount of data was so huge that SnortSnarf was not able to
process it. So I used only Unix (Solaris 8 and Linux) commands to process the data.
Firstly, I joined all the alert files, the scans files and the oos files into one file only
using cat. Then, I processed the data using sed to obtain a file in a “;” delimited
fields format. This was done for the alerts file, for the scans file and for the oos file.
Subsequently I did all the searches and processing using nawk, sort, cut, uniq and
egrep.
The graphs showing trends in the number of alerts and scans were made using MS
excel.

References
[1] “Microsoft IIS Unicode exploit”,

URL: www.lucent.com/livelink/197020_Whitepaper.pdf (Oct 4th)
[2] “NIMDA Worm/Virus Report – Final”, October 3, 2001, URL:

http://www.incidents.org/react/nimda.pdf (Oct 4th)
[3] “Snort FAQ”, URL: http://www.snort.org/docs/faq.html (Oct 4th)
[4] Multicast Beacon Server v0.8.X (Perl), URL:

http://dast.nlanr.net/Projects/Beacon/ (Oct 4th)
[5] “CIAC Bulletin L-098, Microsoft Index Server ISAPI Extension Buffer

Overflow”, URL: http://www.ciac.org/ciac/bulletins/l-098.shtml (Oct 4th)
[6] “The Twenty Most Critical Internet Security Vulnerabilities (Updated) ~ The

Experts’ Consensus”, October 1, 2002, http://www.sans.org/top20/ (Oct 4th)
[7] “Internet Multicast Addresses – Last updated 2002-05-02”. URL:

http://www.iana.org/assignments/multicast-addresses (Oct 4th)
[8] Miller, Toby. “ECN and it's impact on Intrusion Detection” URL:

http://www.sans.org/y2k/ecn.htm (Oct 5th)

 75

