
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks

GIAC (GCIA) Gold Certification

Author: TJ OConnor, terrence.oconnor@usma.edu

Advisor: Joel Esler

Accepted: October 13, 2010

Abstract

Attacks against layer two, the 'data link-layer', range from address resolution protocol

(ARP) cache poisoning for wired clients to de-authentication of wireless clients. Fairly

simple to implement, these attacks can often go unnoticed by intrusion analysts since

intrusion detection systems typically look at the network layer and above to detect

attacks. This paper examines how packet manipulation tools such as Scapy can be used to

examine network traffic for data link layer attacks and proactively respond to attacks

against the data link layer. To accompany this paper, I will publish a paper about a light

set of tools to implement the detection mechanisms.

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 2

TJ OConnor, terrence.oconnor@usma.edu

1. Introduction

1.1.Intrusion Detection and Prevention Systems

In this paper, we examine techniques for identifying signatures and anomalies

associated with attacks against the data link layer on both wired and wireless networks.

Methods for signature-based detection and anomaly-based detection are not new.

Intrusion detection systems such as SNORT are quite capable of detecting some of the

known data link layer attacks and include a mechanism for integrating Intrusion

Prevention System (IPS) solutions. This paper does not advocate against the use of these

solutions in organizations. What we present can augment your existing capabilities by

detecting attacks that may be blind to your IDS.

We present methods for the average user who cannot afford either the time or money

to deploy a Wireless Intrusion Detection System (WIDS) or afford to manage IDS

sensors behind every layer two device. Imagine the scenario of a user who plugs his

laptop into a hotel room connection and begins suspecting malicious activity. The ability

to quickly code a script to detect such activity and the presence of a man-in-the-middle

(MITM) tool such as ettercap-NG would be extremely helpful. Writing a tool in under

thirty lines of code that mitigates the threat of a MITM would be even better. We present

both in the following paper.

Before we begin analyzing different coding techniques for identifying and mitigating

threats, we must first analyze how the threats against the data link layer uniquely differ

from threats against the network, transport and application layers.

1.2. How Does the Data Link Layer Differ?

The data link layer differs from other layers of our protocol design because it is a

trusted layer. We can use filtering, access control lists, authentication, and application

controls to limit access at the higher layers of our design. In contrast, the data link layer

lacks the fine-grain controls to prevent data link layer attacks from occurring.

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 3

TJ OConnor, terrence.oconnor@usma.edu

2. Background

2.1.Taxonomy of Data Link Layer Attacks

The following section reviews some of the different methods an attacker may use to

attempt to attack the data link layer. In all cases, an adversary attempts to compromise

confidentiality, authentication, or availability of information. The attacks succeed for the

most part because of the lack of fine-grain controls for the data link layer. While layer 2

is considered a less novel platform for attacks, layer 2 attacks continue to trouble our

networked systems. The implementation of each attack is unique. Yeung, Fung, and

Wong (2008) enumerated several of the different tools used to implement layer 2 attacks.

However, all of the tools rely on the lack of proper authentication during layer 2

communication. For wired data link layer attacks, we examine CAM Table Exhaustion

Attacks, ARP Spoofing, DHCP Exhaustion Attacks, and VLAN Hopping. On the

wireless data link layer, we will examine the hidden node attack, deauth, and fake access-

point attacks against our wireless devices.

2.2.Data Link Layer Attacks on Wired Networks

2.2.1 CAM table exhaustion

 At the second layer of the TCP/IP model, a switch delivers Ethernet frames based

on the physical medium access control (MAC) address. A content address table (CAM)

table maintains a list of the switch ports and the destination MAC addresses by port. This

table enables the switch to uniquely deliver information to the intended physical address.

By delivering frames based on the MAC address, a switch offers considerable security

over a hub. A hub simply broadcasts frames to all ports. An eavesdropper on a hub can

listen to the traffic of anyone else connected to the hub.

 A CAM Table Exhaustion attack essentially turns a switch into a hub. To succeed,

an attacker floods the CAM Table with new MAC-port mappings. When the CAM table

fills up beyond the fixed memory, it no longer knows how to deliver based on MAC-port

bindings. Therefore, it begins broadcasting Ethernet frames to maintain the flow of

traffic. Once the switch begins broadcasting, any connected adversary can hear the traffic

that flows through the switch.

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 4

TJ OConnor, terrence.oconnor@usma.edu

 The macof tool, depicted in Figure 1, implements a CAM table exhaustion attack

by flooding a switched LAN with random MAC addresses. Dug Song created macof as

part of the dsniff series of tools that attack the data link layer of the TCP/IP model. Doug

Song wrote the entire dsniff package suite, which includes two other active layer 2 attack

tools – arpspoof and and dnspoof and five other passive tools (filesnarf, mailsnarf,

msgsnarf, urlsnarf, and webspy). The entire toolkit is available for download at

http://www.monkey.org/~dugsong/dsniff/.

 Notice in Figure 1 that macof supports setting the IP source and destination

address with the –s and –d flags as well as setting the target hardware destination address

with the –e flag and the source and destination ports with the –x and –y flags. Finally, the

attacker can specify the interface and number of times to send the attack. Dsniff will

generate random values for any unspecified values. In this example, we are attacking a

switch at hardware address AA:DE:AD:BE:EF:00.

root@bt:~# macof -h
Usage: macof [-s src] [-d dst] [-e tha] [-x sport] [-y dport] [-i interface] [-n times]

root@bt:~# macof -s 192.168.1.100 -d 192.168.1.1 -e AA:DE:AD:BE:EF:00

Figure 1: Macof Flooding a Switch With Random MAC Addresses

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 5

TJ OConnor, terrence.oconnor@usma.edu

The CAM Table Exhaustion attack succeeds because there is no authentication when

clients broadcast their physical address. Because of this, any user can essentially pretend

to be anyone else. In a CAM Table Exhaustion attack, an adversary pretends to be

hundreds or thousands of random users. However, an adversary only needs to mimic two

addresses to succeed in the next attack.

2.2.2 ARP spoofing

 The Address Resolution Protocol (ARP) translates logical Layer 3 addresses (IP

Addresses) to layer 2 addresses (physical MAC addresses). On a switched network that

relies on the physical address for delivery, clients must maintain an updated table of

logical-to-physical address bindings. If unsure of a physical address binding, a client may

broadcast an ARP message, asking for the MAC address for a given IP address. Further,

clients may broadcast gratuitous ARP messages.

 When a client or switch receives a gratuitous ARP message, it updates its ARP

table with the new physical-to-logical binding. The next time it has traffic to send, it

sends it based on the new physical address located in its table. An adversary can take full

advantage of this by broadcasting a gratuitous ARP for any of its neighbor’s IP address

with the adversary’s own physical MAC address. All neighbors in the switched

environment will start delivering traffic to the adversary instead of the intended recipient.

Thus, the adversary successfully performs a man-in-the-middle attack as depicted in

Figure 2.

Figure 2: Man-in-The-Middle Attack against a Switched Environment

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 6

TJ OConnor, terrence.oconnor@usma.edu

This attack succeeds until the client under attack realizes it is not receiving any traffic

and offers a gratuitous ARP itself to the network. The adversary counters with another

gratuitous ARP. This tug-of-war between adversary and the client under attack is known

as an ARP storm. The ARP storm that follows can consume the network traffic as the two

clients’ battle back and forth, successfully causing a denial of service to the clients on the

switched network.

2.2.3 DHCP starvation attacks
When a client without an Internet protocol (IP) address enters a network, he may

choose to contact the DHCP server and request an address. If the network supports

DHCP, the server will respond with an address and the lease period of time for the

address. This layer two handshake is usually done in an unauthenticated or unencrypted

mode.

An attacker may wish to take advantage of DHCP by flooding the network with

requests for addresses. Presented at Defcon 16 as a DHCP Starvation Attack, this attack

consumes the leasable IP address space by the DHCP server. After a successful attack,

the DHCP server will not be able to offer addresses to any future clients that join the

network. Robin Wood , DigiNinja, created an auxiliary MetaSploit module to perform

this specific attack. The entire Metasploit framwork, which is used in other attacks in this

paper, is available at http://www.metasploit.com and includes installation instructions at

http://www.metasploit.com/framework/support/. The specific DigiNinja module is

available for download at http://www.digininja.org/metasploit/dns_dhcp.php. Figure 3

shows the DigiNinja DHCP attack exhausting the possible leased addresses from a

server.

We implement this attack by starting the metasploit console (msfconsole) and then

activating the auxiliary dhcp exhaustion module. The next command (show options) will

list the available options, including the interface to perform the attack on and the filter,

snaplen, and timeout for capturing responses. Note, these last three options are a result of

DigiNinja using the pcaprub library to forge packets and therefore these options are not

important for the actual attack we are performing. Finally, to launch the attack at the

metasploit console, we enter exploit. After launching the attack, you will notice that the

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 7

TJ OConnor, terrence.oconnor@usma.edu

module quickly sends several DHCP requests and receives responses until the DHCP

pool is exhausted.

To make matters worse, an adversary can then stand up a rogue DHCP server and

begin answering DHCP requests. This will allow the rogue DHCP server to assign IP

addresses and gateways, allowing the possibility to man-in-the-middle monitoring of all

future traffic.

root@bt:~# msfconsole
…
msf> use auxiliary/digininja/dhcp_exhaustion/exhaust
msf> show options
…
msf> exploit

Figure 3: DigiNinja’s DHCP Exhaustion Attack MetaSploit Module

2.2.4 VLAN hopping attacks

 In VLAN Hopping, an attacker generates traffic with a VLAN ID of an end

system it cannot normal reach and sends the traffic. Further, the attacker may try to

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 8

TJ OConnor, terrence.oconnor@usma.edu

imitate a switch in order to negotiate trunking and send and receive traffic between

VLANs. The MetaSploit framework includes a single module to perform VLAN hopping

against vulnerable firmware switches. Figure 4 shows this module, with the options to

choose the VLAN ID and RMAC for spoofing. Figuerora presented the problems posed

by VLAN layer 2 attacks at Defcon 16 (Figueroa, 2007).

 To implement this attack, we again start the Metasploit framework with the

msfconsole command. Next, we activate the pvstp attack module by enetering the

command use auxiliary/spoof/cisco/pvstp. To see the available options for this attack,

enter show options. Finally, we will set the target VLAN ID as 7 (set VID 7). After

settting any options, we finalize our settings with one final command: set. Following that

we launch our exploit.

root@bt:~# msfconsole
…
msf> use auxiliary/spoof/cisco/pvstp
msf> show options
…
msf>set VID 7
msf>set
msf> exploit

Figure 4: MetaSploit Cisco PVSTP Vlan Hopping Attack Module

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 9

TJ OConnor, terrence.oconnor@usma.edu

2.3.Data Link Layer Attacks on Wireless Networks

 The following section examines some of the attacks unique to Wireless Networks.

Examining wireless attacks and defining signatures is not novel. As early as 2003, Josh

Wright identified the signatures behind several of these attacks and their tool

implementations. However, this paper addresses methods for implementing both

detection and mitigation capabilities in scripting languages. Before examining their

implementation, this section discusses wireless data link layer attacks including MAC

spoofing, the exploitation of the hidden node problem, deauthentication attacks, and the

creation of fake access points.

2.3.1 Hidden node attack

 Wireless clients share a common medium and therefore maintain a schema that

ensures clients share that medium. However, this presents unique challenges on wireless

networks as depicted in Figure 5. Here, two wireless nodes, A and C, both have

information to transmit. Nodes A and C cannot hear each other but they both can hear B.

Before A transmits its data, it broadcasts a Ready-To-Send (RTS) message. Node B, upon

receiving the message, acknowledges that the frequency is free and broadcasts a Clear-

To-Send (CTS). Node C, hearing the CTS from B, backs off from transmitting. Although

Node C did not hear the original CTS from Node A, it knows that Node B is

communicating with the hidden Node A.

Figure 5: CTS/RTS Signaling Solution for the Hidden Node Problem

Thus, the CTS/RTS message scheme helps prevent collisions on the wireless network

medium. However, it also presents a unique opportunity for an attacker. An attacker can

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 10

TJ OConnor, terrence.oconnor@usma.edu

abuse the CTS/RTS scheme by flooding the network with RTS or CTS messages. In the

case of a CTS Flood, all listening neighbors will assume there is a hidden node that is

transmitting and back off. In the case of an RTS flood, neighboring nodes will respond

with a CTS, which forces all of their neighbors to back off as well.

 Several tools implement this attack. It can be implemented by a programmer in a

couple of lines of C code or Python with Scapy. The latest version of MetaSploit even

includes a CTS_RTS_Flood as an auxiliary module. Figure 6 shows how an attacker can

use MetaSploit to attack neighboring wireless clients. Notice the attacker has the option

of either using a CTS or RTS Flood as both will have a negative impact on the ability for

802.11 devices to communicate. To implement this attack, we will use start with the

Metasploit framework, importing the auxiliary/dos/wifi/cts_rts_flood module and setting

the hardware source address as DE:FA:CE:D0:00 and intended target as

AA:DE:AD:BE:EF. Following that we finalize our options with set and then run the

exploit.

root@bt:~# msfconsole
…
msf> use auxiliary/dos/wifi/cts_rts_flood
msf> show options
…
msf>set ADDR_SRC DE:FA:CE:D0:00
msf>set ADDR_DST AA:DE:AD:BE:EF
msf>set
msf> exploit

Figure 6: CTS/RTS Flood MetaSploit Module

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 11

TJ OConnor, terrence.oconnor@usma.edu

2.3.2 Deauth attacks

 On wireless networks, clients authenticate themselves to the access point (AP).

This authentication process can use security protocols such as RADIUS, EAP, or LDAP

to authenticate the client. After authentication, the client is associated with the AP. To

dissociate from the AP, the client sends a management frame known as a

deauthentication frame. The AP, hearing the deauth frame dissociates the client. The

client must authenticate to the AP if it wishes to associate with the AP. The deauth frame

differs from the authentication process because it requires no security.

 The auxiliary/dos/wifi/deauth module in Metasploit is one method for spoofing

deauth frames. Another options is to use the aircrack-NG suite, which includes a variety

of tools for attacking 802.11 networks. The aircrack-NG suite is available for download

at http://www.aircrack-ng.org/ and includes documentation on usage.

root@bt:~# msfconsole
…
msf> use auxiliary/dos/wifi/deauth
msf> show options
…
msf>set ADDR_BSS AC:CE:55:13:37
msf>set ADDR_SRC AC:CE:55:13:37
msf>set ADDR_DST AA:DE:AD:BE:EF
msf>set
msf> exploit

Figure 7: MetaSploit 802.11 Deauthentication Attack Module

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 12

TJ OConnor, terrence.oconnor@usma.edu

 To implement the Metasploit deauth module, set the BSS address, and source and

destination hardware addresses for the attack. After setting all our variables, set and then

launch the exploit.

 Knowing that a deauth frame lacks security, an attacker can spoof a deauth frame

from a client to the AP. This will disconnect the client at the very least, forcing him to

authenticate again. An attacker can implement a Denial of Service attack against the

client by flooding the network with deauth frames. A MetaSploit Module, depicted in

Figure 7, depicts this attack. However, the adversary may also have an alternative motive

for spoofing the deauth frame. The attacker may wish to obverse the client authentication

process in order to break the shared wireless key. By brute forcing the key out of an

authentication handshake, the attacker can gain access to the network himself.

2.3.3 Fake access point attacks

 A tool such as Black Alchemy’s FakeAP can generate thousands of counterfeit

802.11 access points by spoofing the 802.11 beacon frame that advertises an AP. An

adversary could use such a tool to cause problems with war-driving tools that map

wireless networks, or use it during an infrastructure review in order to find rogue access

points.

 An even more malicious use of a fake AP resides in KaraMetaSploit. This tool

combines both the ability to advertise fake APs by Karma and integration with the

MetaSploit framework of exploits. Once connected to a fake AP, the MetaSploit engine

takes over the launching of an automated attack (autopwn) against the unsuspecting user.

This technique is made even more insidious because it does not wait passively for a user

to connect but, instead, actually answers all 802.11 probe requests. Security experts from

the Hak5 podcast show built a hardware platform the size of a small access point capable

of performing this attack.

2.4.Current Methods for Detection and Prevention

Different vendors provide unique security solutions for their layer 2 products. For

example, Cisco provides several different proprietary configuration settings such as port-

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 13

TJ OConnor, terrence.oconnor@usma.edu

security, secure MAC addressing, and BPDU guards to prevent attacks against the data

link layer. It also offers DAI, which verifies IP-to-MAC address bindings and discards

invalid layer 2 packets. These proprietary mechanisms are effective and proven at

stopping layer 2 attacks. But what happens when you are not behind a proprietary device

with layer 2 security? What about the case of a hotel-wired or wireless network? How

can we prevent layer 2 attacks?

A client is fully capable of keeping a list of gratuitous ARP messages it has received

or deauthentication frames it has overhead and using that to make a decision if it is under

attack. By using a set of scripts, a user can examine traffic to discover signatures for layer

2 attacks. This is not a novel idea. Josh Wright wrote a series of Perl scripts to discover

wireless attacks (2003). In one example, he identified the Wellenreiter wireless discovery

toolkit that spoofed MAC Addresses of phony wireless clients. Since the tool used a

specific MAC address range, Josh could detect Wellenreiter and know when there was an

attacker using the toolkit in the vicinity of his machine.

3. Methodology

3.1.Why Roll Your Own Tools?

 Tools already exist to detect Layer 2 attacks. In fact, as early as 2004, Valli

integrated a Wireless Layer 2 detection capability into the SNORT intrusion detection

system. Hsieh, Lo, Lee, and Huang even integrated a response capability to redirect layer

2 attacks and quarantine them to a honeypot (2004). The problem that persists is that a

tool must be up and running and in place prior to the attack. Layer 2 attacks are restricted

to either locality (by signal strength) or network segment (by switching capability).

Therefore, either an intrusion detection system and response capability must be running

on the host or on a network asset in range of responding. Placing a full-intrusion

prevention system on an individual host has challenges.

 This paper and these tools do not attempt to replace capabilities provided by those

tools. Instead, this paper suggests ways to write some quick scripts with the capability to

detect an attack and respond. Essentially, this paper proposes an incident-handling

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 14

TJ OConnor, terrence.oconnor@usma.edu

response to attacks in progress on machines lacking an IDS or IPS capability. To

understand what we propose, we must first set up the environment.

3.2.Setting Up Your Environment.

We will establish our development environment to begin rolling our own tools.

Python, a high-level language with an abundance of libraries and modules, provides a

great starting point. At the time of this article, the Python language has forked with two

major releases, 2.x and 3.x. The 3.x code branch does not offer full backward

compatibility with the 2.x code branch, and therefore, the abundance of external libraries

and modules occasionally do not work with 3.x. Therefore, for this document all the code

examples will support the 2.x syntax. For updated information, see

http://www.python.org/. Since the majority of the code we will write is limited to 25 lines

of a script, we will only use a text editor such as Vim, Notepad++, or Emacs to edit the

code. However, full development suites like Eclipse provide an interface to the Python

Programming Language for larger projects.

One tool built for the particular problem we are examining is Scapy. A powerful

packet-manipulation library, Scapy can analyze several different protocols and display

the exact packet or frame. This can prove rather useful as we start examining different

frames at the data link layer and their malicious deviations from the standard protocol.

With a little effort, Scapy works on a multitude of operating systems, including

Windows, Mac OS X, and Linux. For more information, see the developer’s site at

http://www.secdev.org/projects/scapy/.

3.3.Develop Your Own Tools to Detect Wired Layer 2 Attacks

3.3.1 CAM table exhaustion detection

 Detecting a CAM Table Exhaustion Attack is a logical starting point. As we have

mentioned, a CAM Table Attack attempts to overflow a layer 2 switch’s table of MAC to

IP translations by flooding it with excessive sources. Thus, to detect it, we would need to

be at a logical point to observe it like a span port on the switch or a passive network tap

en route to the switch. Figure 8 shows a small Python script to detect a CAM Table

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 15

TJ OConnor, terrence.oconnor@usma.edu

Exhaustion Attack. Running this script during a MacOf flood will display a detection

message.

import sys
import scapy
import datetime
from scapy.all import *
THRESH = (254/4)
START = 5

def monitorPackets(p):
 if p.haslayer(IP):
 hwSrc = p.getlayer(Ether).src
 if hwSrc not in hwList:
 hwList.append(hwSrc)
 delta = datetime.datetime.now() - start
 if ((delta.seconds > START) and ((len(hwList)/delta.seconds) > THRESH)):
 print "[*] - Detected CAM Table Attack."

interface = sys.argv[1]
hwList = []
start = datetime.datetime.now()

sniff(iface=interface,prn=monitorPackets)

Figure 8: CAM Table Exhaustion Detection Script

 To detect this attack, we simply need to observe some threshold number of

different MAC addresses during a specified period of time we consider excessive. In our

script below, we will use a threshold of 254 addresses in 4 seconds. After sniffing each

packet, we will strip off the Ether layer and add the MAC address to an array. If we get

more than 254 addresses in 4 seconds, we will print a detection message to the screen.

 Certainly there are other methods for detecting this attack. For example, we could

maintain a list of hardware addresses that should be associated with this switch and then

display detection messages when physical addresses outside of our preapproved list show

up on the MAC table.

3.3.2 ARP Spoofing Detection

 Next, we will examine a script to detect spoofing of the address resolution

protocol (ARP). In ARP Spoofing, an attacker broadcasts gratuitous messages redirecting

the logical-to-physical bindings for address tables. As a result, messages get (at least

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 16

TJ OConnor, terrence.oconnor@usma.edu

temporarily) redirected to the attacker instead of the victim. Eventually, the victim

rebroadcasts his logical-to-physical binding.

 We will use this ping-pong effect to detect the ARP binding. If we see an IP

address that is now associated with a new MAC address, we will display a detection

message to the screen. In this scenario, a user can detect both himself as a victim or

another target as a victim.

 If the user sees a destination under attack that he communicates with, he can

respond by setting a static-ARP binding for that address. Running this tool both detects

and negates tools like arpspoof. Figure 9 shows a detection script for ARP spoofing in

fewer than thirty lines of Python code.

import sys
import scapy
from scapy.all import *
import datetime

global hwTable
global conCnt
hwTable = {}

def monitorPackets(p):
 global hwTable
 if (p.getlayer(ARP).op==2):
 hwSrc=p.getlayer(ARP).hwsrc
 ipSrc=p.getlayer(ARP).psrc
 if ipSrc in hwTable:
 if (hwSrc != hwTable[ipSrc]):
 print "[*] - Detected ARP Conflict for IP: "+ipSrc
 print "[*] - New: "+hwSrc+" Old: "+hwTable[ipSrc]
 hwTable[ipSrc]=hwSrc

interface=sys.argv[1]
sniff(iface=interface,filter="arp",prn=monitorPackets)

Figure 9: ARP Spoofing Detection Script

3.3.3 DHCP Exhaustion Detection

 Detecting a tool like DigiNinja’s DHCP Exhaustion Module is relatively easy and

similar to detecting a CAM Table Exhaustion Flood. Essentially, we want to count how

many DHCP Requests occur within a specific period of time. If that ratio exceeds our

threshold, we consider it an attack against the leasable address space.

 To detect a DHCP request message, we must understand the layout of a BOOTP

frame as depicted in Figure 10. Notice the packet has a 1-Byte Operations Code that

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 17

TJ OConnor, terrence.oconnor@usma.edu

defines the BootP operation. During a request, the client sets the OPCODE to 01. A

DHCP server replies with a DHCP offer and OPCODE value of 00.

Figure 10: Layout of BootP Frame and Operation Codes

Therefore, we can write a small script to detect DHCP requests by looking for frames

containing the BOOTP layer. Figure 11 shows our detection script for excessive DHCP

request. If the Requests exceed our threshold count, we can display a detection message.

Further, we could respond by attempting to detect the MAC address scheme used by the

attacker and blacklist it at the server. Notice this is a very common attack performed in

hotel-area-networks by hackers to restrict access to limited bandwidth access points.

import sys
import scapy
from scapy.all import *

global reqCnt
global ofrCnt
reqCnt = 0
ofrCnt = 0

def monitorPackets(p):
 if p.haslayer(BOOTP):
 global reqCnt
 global ofrCnt
 opCode = p.getlayer(BOOTP).op
 if opCode == 1:
 reqCnt=reqCnt+1
 elif opCode == 2:
 ofrCnt=ofrCnt+1
 print "[*] - "+str(reqCnt)+" Requests, "+str(ofrCnt)+" Offers."

interface=sys.argv[1]
sniff(iface=interface,prn=monitorPackets)

Figure 11: DHCP Exhaustion Attack Detection Script

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 18

TJ OConnor, terrence.oconnor@usma.edu

3.4. Develop Your Own Tools to Detect Wireless Layer 2

Attacks

 To detect wireless layer 2 attacks, we must first examine the frame control

contents depicted in Figure 12. For each 802.11 Frame, the Frame Control contains a

Type (Management, Control, and Data) and a Subtype. For the Management Type, these

Subtypes include Beacons, Disassociation, or Deauth Subtypes. For Control Subtypes,

this includes CTS and RTS Subtypes. We will use these types and subtypes to filter

frames and detect attacks in the following examples.

Figure 12: 802.11 Frame Control Contents

Figure 13: Layout of 802.11 Frame Structure

3.4.1 Hidden node attack detection

 In detecting hidden node attack, we will set a threshold number of CTS or RTS

frames that should occur in a given period of time. If we count more CTS frames than

should occur, we can display a detection message. Because the CTS/RTS solution to the

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 19

TJ OConnor, terrence.oconnor@usma.edu

hidden node problem should use an exponential back-off scheme, even a saturated

network should not have excessive CTS/RTS frames.

 In the script, depicted in Figure 14, we parse out frames containing the 802.11

header information and control type. Then frames containing the CTS (11) and RTS (12)

control subtypes are counted. If we exceed the threshold number for either, the script

prints a detection message. Unfortunately, a response capability to this attack is limited

because an attacker could easily spoof a legitimate MAC address from the network and

use it to broadcast CTS/RTS. Some wireless access points employ anti-CTS/RTS

Flooding technology by increasing signal strength. A response to the CTS/RTS most

likely will involve physically removing the attacker from the range of the victims.

import sys, scapy, datetime
from scapy.all import *
THRESH =(25/5)
START = 5
global rtsCNT
global ctsCNT

def monitorPackets(p):
 global rtsCNT
 global ctsCNT
 if p.haslayer(Dot11):
 delta=datetime.datetime.now()-start
 if (p.getlayer(Dot11).subtype) == 11:
 rtsCNT = rtsCNT +1
 if ((delta.seconds > START) \\
 and ((rtsCNT/delta.seconds) > THRESH)):
 print "[*] - Detected RTS Flood.”
 elif (p.getlayer(Dot11).subtype) == 12:
 ctsCNT = ctsCNT + 1
 if ((delta.seconds > START) \\
 and ((ctsCNT/delta.seconds) > THRESH)):
 print "[*] - Detected CTS Flood.”

ctsCNT = 0
rtsCNT = 0
interface=sys.argv[1]
start = datetime.datetime.now()
sniff(iface=interface,prn=monitorPackets)

Figure 14: CTS/RTS Flood Detection Script

3.4.2 Deauth flood detection

 Robin Wood, DigiNinja, presented a script to detect deauth attacks against

wireless networks on the Hak5 podcast in May 2010. Developed separately, our script is

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 20

TJ OConnor, terrence.oconnor@usma.edu

very similar since detecting a death attack simply entails observing the Management

Type (0) and Deauth Subtype (12). In figure 15, we show our script that detects wireless

deauth attacks.

 Again, we can specify a threshold of deauth frames that we consider to be a flood.

Another options is to list hardware addresses of our machines and watch for deauth

messages against them specifically. Detection of a significant deauth attack to disrupt

service might suggest that we should consider replacing our wireless infrastructure with a

RADIUS compliant solution that could use a management frame protection mechanism

such as a shared secret to prevent spoofing management frames such as the deauth frame.

import sys, scapy, datetime
from scapy.all import *
THRESH =(25/5)
START = 5
global deauthCNT

def monitorPackets(p):
 global deauthCNT
 if p.haslayer(Dot11):
 type = p.getlayer(Dot11).type
 subtype = p.getlayer(Dot11).subtype
 if ((type==0) and (subtype==12)):
 deauthCNT = deauthCNT + 1
 delta = datetime.datetime.now()-start
 if ((delta.seconds > START) and ((deauthCNT/delta.seconds) > THRESH)):
 print "[*] - Detected Death Attack: "+str(deauthCNT)+" Dauth Frames."

deauthCNT = 0
interface=sys.argv[1]
start = datetime.datetime.now()
sniff(iface=interface,prn=monitorPackets)

Figure 15: 802.11 Deauth Attack Detection Script

3.4.3 Fake access point detection

 Various methods exist to detect fake access points. For example, Josh Wright

wrote a series of Perl scripts to lookup the OUI offset of the MAC address in a database

to ensure it was a registered OUI and not a spoofed MAC. Additionally, commercial

wireless intrusion detection systems look at the signal strength. We propose one method

for detecting the fake access tool included with MetaSploit.

 The FakeAP module in MetaSploit broadcasts phony wireless access points. To

do this, it creates an 802.11 Management frame with a subtype of 8 (Beacon). This frame

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 21

TJ OConnor, terrence.oconnor@usma.edu

subtype includes a timestamp for clients to sync with the access point. Logically, this

timestamp should grow incrementally. However, the fakeAP tool spoofs random

timestamp information. Therefore, it is easy to detect.

 The script depicted in Figure 16 removes the BSSID from each beacon along with

the timestamp. It creates an array of timestamps for each BSSID and ensures they are

growing. If the timestamps are out of order past a certain threshold, it displays a message

indicating that the FakeAP tool has been detected.

Import sys, scapy, datetime
from scapy.all import *
from sets import Set

THRESH = 5
global ssidDict
global ssidCnt

def monitorPackets(p):
 global ssidDict
 global ssidCnt
 if p.haslayer(Dot11):
 if (p.getlayer(Dot11).subtype==8):
 ssid = p.getlayer(Dot11).info
 bssid = p.getlayer(Dot11).addr2
 stamp = str(p.getlayer(Dot11).timestamp)
 if bssid not in ssidDict:
 ssidDict[bssid] = []
 ssidCnt[bssid]=0
 elif (long(stamp) < long(ssidDict[bssid][len(ssidDict[bssid])-1])):
 ssidCnt[bssid]=ssidCnt[bssid]+1
 if (ssidCnt[bssid] > THRESH):
 print "[*] - Detected fakeAP for: "+ssid
 ssidDict[bssid].append(stamp)

interface=sys.argv[1]
ssidDict = {}
ssidCnt = {}
start = datetime.datetime.now()
sniff(iface=interface,prn=monitorPackets)

Figure 16: Fake Access Point Detection Script

4. Conclusions

In this paper, we examined techniques for identifying signatures and anomalies

associated with attacks against the data link layer on both wired and wireless networks.

We presented methods and scripts for the average user who can afford neither the time

nor the money to deploy a Wireless Intrusion Detection System (WIDS) or afford to

manage IDS sensors behind every layer two device. The idea of using scripts to detect

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 22

TJ OConnor, terrence.oconnor@usma.edu

attacks solves the problem of a user with degraded service at a hotel area network or a

professor visiting a conference overseas that wants to determine if he is being arpspoofed.

However, we do not advocate using scripts as a long-term solution to intrusion detection

needs or intrusion prevention solutions. Certainly, it does not scale to enterprise. Writing

scripts solves the off-by-one problem and can assist with users detecting novel attacks or

identifying existing attacks against their layer 2 infrastructure.

We have demonstrated that these scripts, typically less than 30 lines, can easily

detect wireless and wired attacks. This includes detecting attacks such as arpspoofing,

dhcp exhaustion, cam table exhaustion, deauth attacks, fake access points, and hidden

node attacks. The responses to these attacks can be integrated into scripts as well,

including setting static ARP tables, counter-broadcasting gratuitous ARP and notifying

users of fake access points.

5. References

Figueroa, M. (2007). VLAN layer 2 attacks: their Relevance and their kryptonite.

 Poster session presented at Defcon 16, Las Vegas, NV.

Hsieh, W., Lo C., Lee J., & Huang, L. (2004). The implementation of a proactive

wireless intrusion detection system. Computer and Information Technology, 581-

586.

Valli, Crag. (2004, November). Wireless SNORT – A WIDS in progress. Proceedings of

the 2nd Australian Computer, Network and Information Forensics Conference,

 Perth, Western Australia.

Wright, J. (2003). Detecting wireless LAN MAC address spoofing. Retrieved June 29,

2010, from http://www.ecsl.cs.sunysb.edu/~fanglu/wlan_spoof_detection.htm

!

© 2010 The SANS Institute Author retains full rights.!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$!%&'(#)*)&'+!,!-./0!.-12!1.03!0045!.567!5895!.467!:;83!-/;0!383;!

Detecting and Responding to Data Link Layer Attacks 23

TJ OConnor, terrence.oconnor@usma.edu

Yeung, K., Fung, D., & Wong, K. (2008). Tools for attacking layer 2 network

 infrastructure. Proceedings of the International MultiConference of Engineers

 and Computer Scientists 2008, II.

