
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Intrusion Detection and Analysis:
An Investigation

GCIA Certification
Practical Assignment

v3.3

By Terry MacDonald
(Submitted 21 June 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(page intentionally left blank)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Document Control

04/08/2003 Intrusion Detect ion and Analysis: An Investigation

GCIA Certification Assignment

Change Control and Typographical Conventions

Document
Title: GIAC GCIA Certification Assignment v3.3
Version: 1.0
Date: 21 June 2003
Author: Terry MacDonald
Printed: 04 August 2003

Distribution Restrictions
Name Role(s) Organisation(s)
None N/A N/A

Change Record
Version Date Comments Updated By
0.1 27 April 2003 Initial Draft Terry MacDonald
0.9 9 June 2003 Second Draft Terry MacDonald
1.0 21 June 2003 Initial Release Terry MacDonald

Typographical Conventions
Examples of Typographical Meaning
Normal Text
Output of Commandline Program
Quoted Text from a Webpage
Normal Text in a Table
Text in a Table (for a lot of data)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Document Control

04/08/2003 Intrusion Detect ion and Analysis: An Investigation

GCIA Certification Assignment

(page intentionally left blank)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detect ion and Analysis: An Investigation

 Table of ContentsGCIA Certification Assignment

Table of Contents
Paper Abstract.. 1

Assignment 1. Describe the State of Intrusion Detection..................................... 2

1.1. THE BEST FORM OF DEFE NCE IS OFFENCE - BUT IS IT REALLY OK TO HACK BACK ?..... 2
1.1.1. Introduction ... 2
1.1.2. What is a Hack Back? ... 2
1.1.3. The Problem.. 3
1.1.4. The Argument For ... 3
1.1.5. The Argument Against... 4
1.1.6. The Law .. 5
1.1.7. Conclusion .. 5

1.2. REFERENCES ... 7
1.3. FURTHER READING .. 8

Assignment 2. Network Detects.. 9

2.1. DETECT 1.. 9
2.1.1. Source of Trace... 9
2.1.2. Detect was generated by... 9
2.1.3. Probability the source address was spoofed ... 10
2.1.4. Description of the attack.. 11
2.1.5. Attack mechanism... 12
2.1.6. Correlations... 14
2.1.7. Evidence of active targeting .. 14
2.1.8. Severity ... 14
2.1.9. Defensive recommendations... 15
2.1.10. Multichoice question.. 15
2.1.11. Incidents.Org Email Discussion... 15

2.2. DETECT 2.. 16
2.2.1. Source of Trace... 16
2.2.2. Detect was generated by... 18
2.2.3. Probability the source address was spoofed ... 20
2.2.4. Description of the attack.. 22
2.2.5. Attack mechanism... 22
2.2.6. Correlations... 25
2.2.7. Evidence of active targeting .. 25
2.2.8. Severity ... 25
2.2.9. Defensive recommendations... 26
2.2.10. Multichoice question.. 26

2.3. DETECT 3.. 27
2.3.1. Source of Trace... 27
2.3.2. Detect was generated by... 27
2.3.3. Probability the source address was spoofed ... 29
2.3.4. Description of the attack.. 31
2.3.5. Attack mechanism... 32
2.3.6. Correlations... 33
2.3.7. Evidence of active targeting .. 34
2.3.8. Severity ... 34
2.3.9. Defensive recommendations... 34
2.3.10. Multichoice question.. 35

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detect ion and Analysis: An Investigation

 Table of ContentsGCIA Certification Assignment

Assignment 3. Analyze This .. 36

3.1. EXECUTIVE SUMMARY .. 36
3.2. ANALYZED FILES .. 37
3.3. ANALYSIS METHOD... 37
3.4. SNORT IDS CONFIGURATION .. 37

3.4.1. Sensor location ... 37
3.4.2. Network Speed.. 38
3.4.3. Snort Rulebase ... 38

3.5. DETECTED ALERTS... 38
3.6. ALERTS IN DETAIL (TRIGGERED MORE THAN 5000 TIMES) 40
3.7. OTHER SIGNIFICANT FINDS ... 48
3.8. DETECTED SCANS .. 50
3.9. OUT-OF-SPEC (OOS) DISCUSSION ... 51
3.10. TOP TALKERS .. 51

3.10.1. Alert Top Talkers ... 52
3.10.2. Top 10 Source and Destination Ports ... 52
3.10.3. Scans Top Talkers .. 52
3.10.4. Out-Of-Spec Top 10 Talkers ... 53
3.10.5. Top 5 Overall Talkers .. 53
3.10.6. External Registration Information .. 53

3.11. DEFENSIVE RECOMMENDATIONS ... 54
Appendix A - ICMP Large ICMP Packet ... 56

Appendix B - Logs of packets with a reserved bit set 56
Appendix C - Both SHELLCODE x86 NOOP packets ... 57

Appendix D - Possible Worm Infected Machines ... 59
Appendix E – Possible Peer-to-Peer Clients.. 60

Appendix F – Probable XDCC or SdBot infected Clients.................................... 60
Appendix G – Listing of prepalerts.pl, prespscans.pl and prepoos.pl 61

References for Assignment 2 and 3 ... 64

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Paper AbstractGCIA Certification Assignment

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 1

Paper Abstract

This paper was created in accordance with the guidelines given by the GIAC to fulfil
the GCIA practical assignment criteria. The paper is divided into three sections.

In the first section, I discuss whether it is within our rights to retaliate against those
who are attacking our networks. I show both sides of the argument and give my
opinion on each point of view. Note this section has it own separate list of
references.

The second section discusses three network detects. One network detect was
sourced from a client network, and two were sourced from logs posted on
http://www.incidents.org/logs/Raw. I discuss the logic and methodology used in
arriving at my decisions, and explain my conclusions.

The third section is an analysis of IDS data that was given to me by a U.S.
University. This University wanted a report produced which analysed the data,
prioritised the incidents reported, and recommended any improvements to the
Universities security configuration.

All appendices and references not included in assignment one are listed at the rear
of the document along with all logs and information that is important to have, but
which may have affected the readability of the paper itself.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 2

 State Of Intrusion DetectionGCIA Certification Assignment

Assignment 1. Describe the State of Intrusion Detection

1.1. The best form of defence is offence - but is it really ok to hack
back?

1.1.1. Introduction
You are the Intrusion Analyst for a medium sized company that does a lot of
business over the Internet - and you are stressed. For the past two weeks, your
email systems have been inundated with viruses, al l seeming to have originated from
one single computer. You have tried emailing and phoning the owner, the attackers
ISP and even the Cybercrime unit of your local police force but still no response.
There seems like only one option open to you - to hack back.

But should you? What penalties might you incur if you or your organisation do hack
back?

1.1.2. What is a Hack Back?
First, lets discuss terminology. When an Intrusion Analyst (IA) notices that their
organisation is under attack, they attempt to classify the attack, and react to it. There
tends to be three general types of reaction that IA's take.

Firstly, they can initiate a Passive Response. This is action taken by the IA or the
organisation's ISP that affects only their local network. This type of action is the most
common response. It is often used to combat portscans and other lower level exploit
attempts. Things that come under this category are blocking the dangerous traffic
from that ISP, or getting your mail server to ignore incoming messages from that
email sender. This is the response that most IA's give for general alerts.

Secondly, they can initiate an Active Response. This is where the IA collects packet
traces, and other information about the attacker for evidence, then contacts the
relevant people to get the attacker stopped or apprehended. The relevant people
could be the users ISP, the local authorities in the attackers country or your local
authority if criminal investigations need to be made. Information like the attackers IP
address, the types of packet sent, packet traces, connection times, the types of
information sought. Honeypots can be a great tool for this type of deception, as they
allow a great deal of information to be gathered about the way an attack was made.
This is the level given for attacks that are more persistent and for exploits that are
successful.

The third type of response the IA can initiate is the Invasive Response. This is where
the IA performs some sort of reverse attack on the attackers machine. The IA of the
initial target network actively takes matters into its own hands. It includes everything
from performing a Denial of Service attack on the attackers machine, to sending and
email bomb, to gaining full control of the remote computer. This is a hack back.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 3

 State Of Intrusion DetectionGCIA Certification Assignment

1.1.3. The Problem
Many people have been the victims of hacking. Malicious traffic is so prevalent on
the Internet that computers have been exploited within 15 minutes of connecting to it
[1]. Systems are scanned an average of 17 times a day. There are so many
automated scanners trawling through the Internet looking for vulnerable machines
that it is very likely you will be caught out. Some attackers install zombie programs to
lie in sleep before they are woken by the attacker to be used for nefarious purposes
[2]. Others utilise open proxy servers [3] to hide their real IP addresses to do their
dirty work. Other release viruses, worms and trojans out into the Internet. They do
this for various reasons - to increase their reputations, for political reasons, for
criminal purposes and just for fun.

How do we combat this? Standard practises include installing a firewall, using
boundary router to drop packets, and monitoring using NIDS systems. However,
what if you are attacked persistently by a particular computer and you get no
response to complaints to the attackers ISP? Wouldn't it be good if you could give
the attacker a taste of their own medicine? If all you need to do was a little invasive
response to disable the attack and stop it completely at it’s source….

1.1.4. The Argument For
For some people enough is enough. They have spent too much time fixing problems
caused by attacks and just want to cut down the number of problems that they have
to deal with. What better way than to stop the problem at it’s source. Why repetitively
defend against external attacks, when you can attack them once and be done with
it? It is something many analysts have thought of at one time or another. Even the
U.S. military is attempting to get permission to strike back for attacks on its networks
[4].

Most current discussion about hack backs seems to be about the unauthorised
repairing of infected innocent computers. Sometimes a user’s computer is being
controlled by a third party and is unknowingly being involved in Denial of Service
attacks [2] and other illegal tasks. The attacker would have infected the users
machine through exploiting a known vulnerability, and would have installed a 'bot’∗
and/or a backdoor to gain access to the machine in the future [2]. There have been
cases where some attackers have infected so many computers that they control
networks of bots that number more than 10,000 computers [5]. This could be
avoided if the user had patched their software to fix the vulnerabilities, or if they had
been running firewall or anti-virus software, but most consumers are unaware the
vulnerabilities exist, let alone the fixes. If a user's computer is infected with a bot, and
they are unaware that they are attacking your network, then why not take matters
into your own hands and fix their machines for them?

Jonathan Morton [6] decided to fight back against the Fizzer Virus. He created a
Java IRC bot called FizzerKiller that attacks the Fizzer IRC bot. The Fizzer
virus/trojan/bot installs itself through either email, KaZaA or IRC on to another users
PC. FizzerKiller gains control of the bot, then uninstalls it. This gets rid of the

∗ A bot is a remotely controlled program that is installed by a malicious remote user.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 4

 State Of Intrusion DetectionGCIA Certification Assignment

problem. The user of the infected machine is unaware that anything has happened;
yet the Internet at large is spared from clogged bandwidth.

Another company, Bindview, have released a tool called Zombie Zapper [7] that
connects to the machines that are taking part in a DDoS against you and sends them
a control packet containing commands that tell them to stop the attack. It halts
attacks from the TFN, Stacheldraht, Trinoo and Shaft bots.

FutureVision, RSA, and other companies are also joining the bandwagon [8]. They
all are producing tools that combat Denial of Service attacks.

Suppose an attacker is involved in a series of focused DoS attacks that are
specifically aimed at one or two of your servers. These have been going on for a few
days. You and your ISP have tried to mitigate these attacks but have been unable to.
Would you take offensive action?

That is exactly what Conxion did when a group of hacktivists attempted to take down
the WTO website that Conxion were hosting [8]. It was January 2000 during the
WTO summit in Seattle. The hacktivists were from an online group called the
Electrohippies. They launched a DoS against the WTO website. Instead of filtering
out the attack, as is currently the norm, Conxion returned the mail bomb packets to
the originating server, taking it offline for several hours, and stopping the original
attack.

1.1.5. The Argument Against
The main problem with hack backs is the chance of hitting innocent bystanders. How
do you know that the person who has the computer is really controlling the attack?
The users computer could be infected with a bot, and could be under the control of a
third party, with the user unknowingly being involved in a denial of service attack [2].
Traffic could appear to have been initiated by the user, when in fact it is the third-
party attacker who is responsible.

Traceability is another major issue. The TCP/IP suite of protocols were developed for
ease of connectivity, not security [9]. Consequently, it is easy for an attacker to spoof
their IP address. You cannot be sure that a packet really did originate where it says
it did, as there is no built in tamper-proof way of recording where a packet has been.

This lack of traceability has spawned a lot of research to try to overcome this [8].
Deterministic [10] and probabilistic [11] packet marking, router stamping [12], and
sleepy watermark tracing [13] are all techniques being developed to help with
traceability. If people gain the ability to trace messages, then they gain the ability to
identify the sources of incoming threats. It would mean that the ability of attackers to
hide behind a veil of open web proxies and infected hosts would be removed,
making it easier for law enforcement agencies to catch those responsible, removing
the need for cyber vigilantes and invasive response.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 5

 State Of Intrusion DetectionGCIA Certification Assignment

1.1.6. The Law
So what does the law say? The law is quite clear-cut about this. In the US, the
Computer Fraud and Abuse Act of 1986 [14], the Unlawful Access to Stored
Communications Act [15], and Electronic Communications Privacy Act of 1986 [16]
all make no distinction between the original attacker and any retaliation attacks. This
means that if you retaliated against an initial attack, then you would be accessing the
attackers computer unauthorised with a malicious intent, and you could be
prosecuted under the same laws as the attacker. This includes any attempt to
remove viruses or to patch virus infected machines remotely. It is worth noting that
the three U.S. Acts that pertain to computer misuse and fraud [14][15][16] have been
amended with the enactment of the U.S. Patriot Act of 2001 [17]. It is now illegal to
hack into a foreign computer, any damage is now considered enough to break the
law, and victims of hacking can request law enforcement officers to monitor the
communications of unauthorised users.

In the UK, the law is not so obvious. Some aspects of hacking are covered by the
Computer Misuse Act 1990 [18]. The installation of Trojans/Viruses and backdoor
are covered under the Act, but the actual use of these trojans in DDoS attacks
against other machines does not seem to be covered [19][20]. The government is
currently reviewing the Computer Misuse Act to rectify the DoS loophole [21], but no
more has been heard from the UK government since this was made public in May
2002.

An example of the difficulty the legislation faces is demonstrated by another attempt
to control the Fizzer virus, which was made by the Fizzer Task Force [22]. A
particular analyst noticed that the virus was going to a particu lar website to download
update code for itself. He and a friend developed some code that uninstalled the
virus. They uploaded removal code to the update page in the hope it would trigger
the removal of the virus. In essence, the virus would kill itself. In fact, the code did
not work correctly and the virus did not uninstall itself.

Was this attempted virus kill against the law? The analyst did write code that was
downloaded without the users knowledge and that would have changed things on
the users computer. Yet, it was the users infected computer that initiated the
connection and downloaded the code from the site. There was no 'invasive
response' on the analyst’s part. He did not instruct the machines to get the code and
use it, but the virus did. Was what analyst attempt to do truly illegal?

1.1.7. Conclusion
There is no real place for cyber vigilantism. As the law says, anyone entering a
computer unauthorised is breaking the law, and makes him or herself liable for
prosecution. At present, the current law fails to take all of the different ways that
damage can be done to a computer into account. It also fails to allow for the
challenges that the anonymity of the Internet permits. But it is still the law.

Hacking back is illegal, and attempts to do so should not be made.

We should instead redirect our efforts to lobbying government to improve legislation,
and help guide the government departments into improving the effectiveness of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 6

 State Of Intrusion DetectionGCIA Certification Assignment

controls. If the current structure of computer crime prevention is not working then we
need to improve it - not take matters into our own hands.

Going back to our opening two-week attack scenario, you should react using passive
and active responses – but not an invasive response. You should use all options
available to you but you should not do anything illegal. If you are unsure if you
actions are illegal then stay on the safe side and do not do it. Remember that you or
your organisation could be held accountable for any consequences of your actions.
Ultimately it is the law that sets the ethical standards that govern our actions, and
that society judges us by, and as such, it is the law that should be followed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 7

 State Of Intrusion DetectionGCIA Certification Assignment

1.2. References
[1] WebCentric. "The National Strategy to Secure Cyberspace". Webcentric Computer Services
Website. URL: http://www.web-centric.net/files/cybersecurity2.pdf (9 June 2003)
[2] Anonymous. "All about Bots, Trojans and Worms". Swat -It Website. 2003. URL:
http://swatit.org/bots/index.html (9 June 2003)
[3] Anonymous. "Openproxies FAQ". Openproxies.com Website. URL:
http://www.openproxies.com/about.php (9 June 2003)
[4] Heuston, George. "NIPC Daily Report 13 November 2001". Email posting on NIPC Watc h mailing
list. 13 November 2001. URL: http://lists.jammed.com/crime/2001/11/0114.html (9 June 2003)
[5] Roberts, Paul. "Al -Jazeera hobbled by DDOS attack". ComputerWorld Website. 26 March 20 03.
URL: http://www.computerworld.com/securitytopics/security/story/0,10801,79743,00.html (9 June
2003)
[6] Morton, Johnathan. "FizzerKiller Readme". Chromati x Website. 31 May 2003. URL:
http://www.chromatix.org.uk/antifizzer/README.fizzerkiller (9 June 2003)
[7] Simple Nomad. "Zombie Zapper Overview and Usage Notes". Razor Bindview Web site. 29 March
2000. URL: http://razor.bindview.com/tools/desc/ZombieZapper_readme.html (9 June 2003)
[8] Jayawal, Vikas; Yurcik, William; Doss, David. "Internet Hack Back: Coun ter Defense as Self -
Defense or Vigilantism". SOS Research Website. June 2002. URL:
http://www.sosresearch.org/publications/ISTAS02hackback.PDF (6 June 2003)
[9] Dimitrov, Ivan. "Network Security: Limitations Of The Internet Protocol And The IPSec Protocol
Suite". McMaster University Website.
http://www.cas.mcmaster.ca/~wmfarmer/SE -4C03-01/papers/Dimitrov-IPSec.html (9 June 2003)
[10] Belenky, Andrey; Ansari, Nirwan. “IP Traceback with Deterministic Packet Marking”. New Jersey
Institute of Technology. April 2003. URL: http://web.njit.edu/~ang/papers/COMM_Let03.pdf (9 June
2003)
[11] Park, Kihong; Lee, Heejo. “On the effectiveness of Probabilisti c Packet Marking for IP Traceback
under Denial Of Service Attack”. SecurityFocus Website. April 2001. URL:
http://www.silicondefense.com/research/itrex/archive/tracing -
papers/park01effectiveness_of_marking.pdf (9 June 2003)
[12] Dean, Drew; Franklin, Matt; Stubblefield, Ada m. “An Algebraic Approach to IP Traceback”. Silicon
Defense Website. 6 April 2001. URL: http://www.silicondefense.com/research/itrex/archive/tr acing-
papers/dean01algebraic_approach.pdf (9 June 2003)
[13] Wang, Xinyuan. “Survivability through Active Intrusion Response”. Cert.org Website. 2000. URL:
http://www.cert.org/research/ isw/isw2000/papers/9.pdf (9 June 2003)
[14] Anonymous. "Computer Fraud and Abuse Act of 1986". Cornell Law Website. URL:
http://www4.law.cornell. edu/uscode/18/1030.html (9 June 2003)
[15] Anonymous. "Unlawful Access to Stored Communications Act". Cornell Law Website. URL:
http://www4.law.cornell. edu/uscode/18/2701.html (9 June 2003)
[16] Anonymous. "Electronic Communication s Privacy Act of 1986". Cornell Law Website. URL:
http://www4.law.cornell. edu/uscode/18/1367.html (9 June 2003)
[17] Anonymous. "Patriot Act of 2001". Cybercrime Website. URL:
http://www.cybercrime.gov/PatriotAct.htm (9 June 2003)
[18] Anonymous. "Computer Misuse Act 1990". Her Majesty's Stationery Office Website. 20
September 2000. URL: http://www.hmso.gov.uk/acts/acts1990/Ukpga_19900018_en_1.htm (9 June
2003)
[19] JISC. "New Developments in UK Internet Law". APU Website. URL:
http://www.apu.ac.uk/guideline s/smbp10.pdf (9 June 2003)
[20] Goodwin, Bill. "Call for cyber law review". Computer Weekly Website. 19 December 2002. URL:
http://www.computerweekly.com/a rticles/article.asp?liArticleID=118351&liFlavourID=1 (9 June 2003)
[21] Goodwin, Bill. "Whitehall begins review of UK's cybercrime laws". Computer Weekly Website. 22
May 2002. URL: http://www.cw360.com/Article112682.htm (9 June 2003)
[22] Stewart, Joe. "Re: Fizzer self -destruct". Email posting on the icidents@intrusions.org mailing list.
16 May 2003. URL: http://cert.uni-stuttgart.de/archive/intrusions/2003/05/msg00142.html (9 June
2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 8

 State Of Intrusion DetectionGCIA Certification Assignment

1.3. Further Reading

[23] Radcliff, Deborah. " Can you hack back?". CNN Website. 1 June 2000. URL:
http://www.cnn.com/2000/TECH/computing/06/01/hack.back.idg/#r (8 June 2003)
[24] Kabay, M. E. "Don't hack back". Network World Fusion Website. 6 May 2003. URL:
http://www.nwfusion.com/newsl etters/sec/2003/0505sec1.html (8 June 2003)
[25] Lyman, Jay. "When the Hacked Becomes the Hacker". News Factor Website. 19 November
2001. URL: http://www.newsfactor.com/perl/story/14874.html (7 June 2003)
[26] Yurcik, William. "Inf ormation Warfare: Legal & Ethical Challenges of the nex t Global
Battleground". SOS Research Website. June 1997. URL:
http://www.sosresearch.org/pu blications/ethics97.PDF (8 June 2003)
[27] Smith, Bryan; Yurcik, William; Doss, David. "Ethical Hacking: The Security Justification". SOS
Research Website. 18 October 2001. URL: http://www.sosresearch.org/publicati ons/eei21.pdf (7 June
2003)
[28] Smith, Bryan; Yurcik, William; Doss, David. "Ethical Hacking: The Security Justification Redux".
SOS Research Website. June 2002. URL:
http://www.sosresearch.org/publications/ISTAS02ethicalhack.PDF (7 June 2003)
[29] Yurcik, William. "Inf ormation Warfare Survivability: Is the Best De fense a Good Offense?". SOS
Research Website. July 2000. URL: http://www.sosresearch.org/publications/ethics00.PDF (8 June
2003)
[30] Loomis, Chirstopher. "Def enders or Digilantes: an overview of the appropriate response debate".
Security Focus Website. 19 July 2001. URL: http://www.securityfocus.com/guest/6247 (8 June 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 9

 Network Detect sGCIA Certification Assignment

Assignment 2. Network Detects

2.1. Detect 1

2.1.1. Source of Trace

The raw binary packet log used in for this detect was sourced from a client's network.
The binary files were created on 22nd May 2003 with Windump using the
commandline below:

windump -w 2002-05-22

This recorded all traffic into a raw binary file for use with snort. The original plan was
to sample a full 24 hours of traffic. In the future this will be a service offered to our
clients, but as this was a test situation, only a couple of hour’s traffic was saved.
Windump was selected to capture the binary packet data to provide the highest
fidelity logs if further analysis was needed.

The windump instance sat on a small server outside the corporate network. It was
connected to a mirrored port on the switch that led to the ISP's local router, and
logically sat between the firewall and the ISP. This conf iguration was chosen so that
the windump instance could see all of the traffic from and to the client network, but
could not participate in any communication. To enhance security further the
computer was not given an IP address, and all unnecessary networking protocols
were removed.

2.1.2. Detect was generated by

To find the detect I used Snort Version 1.9.1-ODBC-MySQL-WIN32 (Build 231) [31]
running the current snort rules [32] (as at 25 April 2003). The rules were slightly
modified as I 'turned on' the rules that are normally off in the default installation
(things like shellcode rules, etc.) to make the full range of possible detects available.

Similarly to the raw logs available from incident.org [33], the logs that I generated
had the following features:

• All internal addresses have been changed to MY.SUB.NET.x
• Checksums have been changed as well to stop reverse engineering of IP

Addresses
• External IP Addresses are unchanged from those captured.

Windump Device

External
Network

Internal
Network

MY.SUB.NET.0/28

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 10

 Network Detect sGCIA Certification Assignment

The commandline I used to generate the logs is below:

snort -X -r c:\detect\2003-05-22 -l c:\detect\logs -c c:\snort
\rules\snort.conf -S HOME_NET=MY.SUB.NET.0/28 -S EXTERNAL_NET=!MY.SUB.NET.0/28

These commandline parameters were:

-r = read from file 2003.05.22
-X = dump the raw packet data starting at the link layer
-c = use the snort.conf configuration file
-l = log to the log directory
-S HOME_NET=MY.SUB.NET.0/28 = Set the home network variable to our

MY.SUB.NET.0/28
-S EXTERNAL_NET=!MY.SUB.NET.0/28 = Set the external network variable

to everything not on our internal network

Snort took a minute or so to churn through the binary packet file but returned with 83
alerts logged. I had a look through the alert.ids file that was generated and found one
detect that caught my eye...

[**] [1:499:3] ICMP Large ICMP Packet [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
05/22-12:33:29.516782 194.196.100.59 -> MY.SUB.NET.3
ICMP TTL:245 TOS:0x48 ID:24826 IpLen:20 DgmLen:1492 DF
Type:8 Code:0 ID:50483 Seq:0 ECHO
[Xref => arachnids 246]0

The internal IP address MY.SUB.NET.3 was our clients external facing website so I
expected some alerts on it, but this looked a bit dangerous.

2.1.3. Probability the source address was spoofed

Next step was to see who sent us the large ICMP packet. I searched for the source
address of 194.196.100.59 on DShield's IPInfo tool [34] and got the results below:

DNS Name: blueice1a.uk.ibm.com
inetnum: 194.196.100.0 - 194.196.100.255
netname: GB-AGNS-NET
descr: Network of AGNS
country: GB
status: ASSIGNED PA
remarks: Service: ICS
remarks: Please send SPAM reports to postmaster@ibm.net
remarks: Please send ABUSE reports to abuse@ibm.net
route: 194.196.0.0/16
descr: AT&T GNS Ranges
descr: For routing issues: noc@attglobal.net
descr: For NEW peering issues: peering@attglobal.net
descr: For SPAM: abuse@attglobal.net
descr: For addressing issues: euabsipa@emea.att.com
origin: AS2686
mnt-by: MAINT-AS2686
changed: drueegg@emea.att.com 20021223
source: RIPE
person: Anthony Michalakopoulos

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 11

 Network Detect sGCIA Certification Assignment

address: AGNS Firewal
address: Mailpoint C2E, c/o
address: IBM North Harbour
address: Portsmouth PO6 3AU
address: GB
phone: +44 239 256 5327
nic-hdl: AM6759-RIPE
mnt-by: EU-IBM-NIC-MNT2
changed: minas@nl.i bm.com 19991125
source: RIPE

So, who were AGNS? They seemed to have something to do with IBM so I searched
for both on Google [35] and found some news from AT&T on the subject [36]. It tells
us that in May 2000 over 3,000 IBM staff transferred to AT&T to join the AGNS
(AT&T Global Network Services). It seems they do have something to do with IBM.

Is this source address spoofed? ICMP traffic can be spoofed easily if the attacker
wants to hide their real address. It really depends what this packet is part of. If it is
part of an attempted server crash, then the source IP will likely be bogus. But if the
packet is a load balancing timing packet, or is part of a control connection to a DDoS
bot then the source address is not likely spoofed as the sender wants a reply.

As you will find out in the next sections I believe this to be a valid IP address as there
are completed TCP connections that follow the ICMP echo request packet that
caused the alert.

2.1.4. Description of t he attack

The next step was to try and find the rule that that triggered this alert. It was quickly
found in the ICMP rules file and is listed below:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Large ICMP Packet";
dsize: >800; reference:ara chnids,246; classtype:bad -unknown; sid:499; rev:3;)

I investigated the SID 449 that was listed in the rule above by looking it up on
Snort.Org [37]. This rule was fully documented and is listed below:

Summary
A large ICMP packet was sent to one of your systems.

Impact
Denial of service by system crash or bandwidth utilisation.

Detailed Information
Some implementations of the IP stack may result in a system crash or hang when a large ICMP
packet is sent to them. Alternatively a large number of these packets may result in link saturation,
especially on lower bandwidth links.

Affected Systems
Attack Scenarios A malicious individual may send a series of large ICMP packet to a host with the
intention of either crashing or hanging the host, or saturate its available bandwidth.

False Positives A number of load balancing applications use 1500 byte ICM P packets to
determine the most efficent route to a host by measuring the latency of multiple paths. HP -UX

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 12

 Network Detect sGCIA Certification Assignment

systems configured with PMTU discov ery will send echo requests in response to several types of
network connecti ons. PMTU Discovery is enabled in HP -UX 10.30 and 11.0x by default.

References arachnids,246

The snort rule was designed to trigger if the ICMP was larger than 800 bytes. In the
Whitehats Database entry on this subject [38], Mixter says:

" Stateful UDP sessions are normally using small UDP packets, having a payload of not more than 10
bytes. Normal ICMP messages don't exceed 64 to 128 bytes. Packets that are reasonably bigger are
suspicious of containing control traffic, m ostly the encrypted target(s) and other options for the DDOS
server."

Matt Kettler did have a word of caution though, telling of the high rate of false
positives on this rule in his post on the Snort Users mailing list [39] to back up the
similar suggestions made in the snort rules database.

So the attack is either an attempted DoS, control connection, MTU discovery,
network speed checking or possibly just sent from a broken TCP/IP stack. I needed
a closer look.

2.1.5. Attack mechanism

To see if there was any information that I was missing, I decided to recheck the
binary log files. I used windump to produce a list of all traffic sent by 194.196.100.59.
I used the command line below:

windump -r 2003-05-22 "host 194.196.100.59" > icmppkts.txt

I checked the icmppkts.txt file and found things were very strange indeed. The flow
of traffic is listed below:

12:33:29.516782 IP blueice1a.uk.ibm.com > MY.SUB.NET.3: icmp 1472: echo request
seq 0 (DF)

12:33:29.516792 IP blueice1a.uk.ibm.com.52784 > MY.SUB.NET.3.80: S
1513137258:1513137258(0) win 16384 <mss 512>

12:33:29.517426 IP MY.SUB.NET.3.80 > blueice1a.uk.ibm.com.52784: R 0:0(0) ack
1513137259 win 0

12:33:33.888551 IP blueice1a.uk.ibm.com > MY.SUB.NET.3: icmp 1472: e cho request
seq 2 (DF)

12:33:34.212139 IP blueice1a.uk.ibm.com.53491 > MY.SUB.NET.3.80: S
2843312759:2843312759(0) win 16384 <mss 512>

12:33:34.212811 IP MY.SUB.NET.3.80 > blueice1a.uk.ibm.com.53491: R 0:0(0) ack
2843312760 win 0

12:34:14.305776 IP blueice 1a.uk.ibm.com.60114 > MY.SUB.NET.3.80: S
1772090:1772090(0) win 16384 <mss 512>

12:34:14.306213 IP MY.SUB.NET.3.80 > blueice1a.uk.ibm.com.60114: S
3178643162:3178643162(0) ack 1772091 win 8192 <mss 1460> (DF)

Firstly, there is a large ICMP echo request sent to our external webserver from
194.196.100.59 (blueice1a.uk.ibm.com). This is followed closely by a TCP SYN
packet. Our web server replies to the SYN packet with a RST packet to kill the
connection. Four seconds later there is another large ICMP echo request sent,
followed by a TCP SYN packet. Our web server replies again with a RST packet to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 13

 Network Detect sGCIA Certification Assignment

kill the connection. 40 Seconds later the Blueice1a tries again with a SYN packet,
which is responded to by a SYN/ACK packet and a standard set of HTTP web
client/server connections is started. It finishes when Blueice1a finishes downloading
the main page and moves on to our client’s vacancies page.

The ICMP echo request messages are padded with zeroes, so I can exclude the
DDoS bot control message idea. There is more than one connection from
blueice1a.uk.ibm.com, some of them involving a full three-way handshake, so that
shows the IP address is not likely to be spoofed. There are only two large ICMP
packets sent too, so that practically removes the possibility of it being a DoS attempt
on the server.

That leaves MTU discovery, network speed checking or the broken TCP/IP stack.

I decided to have a look for more information about 'Blueice' in case that part of the
hostname had some kind of functional meaning. I found a webpage on IBM's
research site [40] that showed that Blueice was an IBM project with aims to create
next generation software for web caching, efficient distribution of multimedia content,
on-demand secure virtual private networks and massively multiplayer gaming and
application performance monitoring. I found a webpage from a member of the
BlueProject Team, Jim Giles [41], and he states in it that he is currently working on
"web caching of dynamic content".

So it seems the source of the packets could be involved in some sort of load
balancing or network performance monitoring. What could it be for?

One possible scenario is for MTU discovery. If you send an ICMP echo request
packet of a certain size with the 'Don't Fragment' bit set to a target computer, and
you get an ICMP echo response back then you know that your messages will not get
fragmented along the way and you will get a fast throughput. If you get returned an
ICMP "Fragmentation needed with don't fragment bit set" message then you need to
reduce the MTU size. Marc Slemko has written an overview of this process in better
detail [42].

Another scenario is network performance. By sending an ICMP echo request packet
to a target machine and measuring the time taken for the ICMP echo response to be
sent back you can see how well a network is performing.

The third scenario is a broken TCP/IP stack. The fact that there are no OS's that I
know of that 'accidentally' send a 1472 byte sized ICMP echo request, and that there
is quite a high number of successful connections around that same time from the
same source means that this is unlikely.

In my mind, the most likely purpose would be MTU discovery. This could be used to
improve overall Internet connection times as it avoids fragmentation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 14

 Network Detect sGCIA Certification Assignment

2.1.6. Correlations

I could not find any related postings from GCIA Students. Pedro Bueno did give
evidence that IBM machines seem to send large ICMP packets quite often [43].
Andrew Daviel also suggested that these large packets were part of a network
latency test [44]. I also noted during a search of blueice1a on Google that there were
a large number of times blueice1a.uk.ibm.com appeared on peoples website scan
logs. This shows the source host was used in large scale website scanning.

2.1.7. Evidence of active targeting
The ICMP echo requests were definitely targeted specifically at the webserver. They
seem to be part of a larger mapping scan that trawls across the Internet discovering
MTU’s or measuring network performance. The echo requests do not appear to be
created with malicious intent.

2.1.8. Severity

The severity of this attack can be calculated by the following formula:

severity = (criticality + lethality) - (system countermeasures + network countermeasures)

Criticality = 4/5
The packet was targeted at the main external web server. This server is used by a
great number of people to do online transactions and to view important information.

Lethality = 1/5
This is a false alarm. The packet had no real malicious intent. This means this detect
should be given a minimal level of lethality.

System Countermeasures = 5/5
This web server is always patched as soon as the manufacturer releases new
patches. It is part of a ongoing monitoring procedure that has been implemented to
keep our clients servers updated. It also has had a HTTP URL checker/firewall
installed on the host to intercept, check and possibly ignore http traffic. This allows
defence from undiscovered vulnerabilities even before patches are available from
the manufacturer.

Network Countermeasures = 4/5
The system is behind a firewall but is in a DMZ. The firewall is kept up to date with
patches and is installed with a 'block unless expressly allowed' style security policy.
There is packet filtering outside the firewall.

Overall Severity rating = (4 + 1) - (5 + 4) = -4 (scale is from –10 to 10)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 15

 Network Detect sGCIA Certification Assignment

2.1.9. Defensive recommendations

A recommendation would be to restrict ICMP packets to 500 bytes maximum at the
boundary router. This would alleviate the possibility of attacks affecting the operating
systems of internal servers.

I would also recommend the testing of the firewall to see if it can handle large ICMP
packets successfully to see if the firewall manufacturer needs to be informed of any
potential vulnerabilities.

2.1.10. Multichoice question

You notice an 'ICMP Large ICMP packet' alert message in you alert.ids file when you
check you Snort IDS system. There are different reasons why these large ICMP
messages are sent. Which of the following is not a valid reason?

A) It is an attempt to crash the computer's TCP/IP stack.
B) The attacker wants to find your computers open UDP ports.
C) The attacker wants to find the MTU between your network and their network.
D) Your ISP wants to check your network speed.

Answer: B

The attacker wants to find your computers open UDP ports. An attacker cannot
discern your open UDP ports just by sending a large ICMP packet. The other three
answers are valid reasons for sending an ICMP packet.

2.1.11. Incidents.Org Email Discussion

This network detect was posted to intrusions@incidents.org mailing list [45] in order
to gain feedback from the list members. One reply was received stating that the
original posting was good except I needed to clarify two points – the evidence of
active targeting, and the defensive recommendations.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 16

 Network Detect sGCIA Certification Assignment

2.2. Detect 2

2.2.1. Source of Trace

The raw binary packet log used for this detect was sourced from the selection of raw
Incidents.org log files available from http://www.incidents.org/logs/Raw/[33]. I
selected a file from the list at random and decided upon the log from 13th May 2002
(http://www.incidents.org/logs/Raw/2002.5.13)

The Incidents.Org raw logs that are available have the following features as specified
in the readme file [46]:

• Captured by Snort running in binary mode
• Only captured packets that caused an alert
• All internal addresses have been changed
• Checksums have been changed as well to stop reverse engineering of IP

Addresses
• Certain keywords within the packet have been replaced with X's
• All ICMP, DNS, SMTP and Web traffic has been removed
• External IP Addresses are unchanged from those captured.

Once the log to be used had been decided, it was time to do some snooping as to
what the network topology was. A great demonstration of how to do this was shown
by André Cormier in his "Strange Fragmented TCP Packets" analysis post to the
intrusions@incidents.org discussion list (http://cert.uni-
stuttgart.de/archive/intrusions/2003/01/msg00121.html [47]). I will be following a
similar network topology detection process in my detect methodology today.

My first step in network topology deduction was to find out how many different
Ethernet addresses were communicating on the network segment that the snort
instance (as specified in the Incidents.Org README file [46]) resided. To do this I
used Windump v3.8 alpha (Win32 version) [48] to scan and report how many
different Ethernet address it found. I used the commandline below:

 windump -neqr 2002.5.13 > ethcards.txt

These commands were:
 -n = disable hostname resolution
 -e = show Ethernet addresses
 -q = quick mode (prints less protocol information)
 -r 2002.5.13 = read input from file 2002.5.13

More information on windump commands is available from
http://windump.polito.it/docs/manual.htm [49]

Unfortunately, as I was using Windows 2000, I could not use the nice UNIX
commands that André used, so instead I used Microsoft Excel (sorry!) to import and
sort the data in the ethcards.txt file.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 17

 Network Detect sGCIA Certification Assignment

By sorting on source Ethernet address, I found that there were only two Ethernet
addresses used - 0:0:c:4:b2:33 and 0:3:e3:d9:26:c0. I then sorted on the destination
Ethernet addresses, and found only those same two addresses. This meant that the
Snort instance was listening on the link between two network devices.

I then checked the Ethernet addresses against the list of Ethernet address ranges
assigned by the IEEE standards organisation [50] and found that 0:0:c:4:b2:33 and
0:3:e3:d9:26:c0 both came from the address range used by CISCO SYSTEMS, INC.
This meant that the network was at this point similar to this:

The next step was to try to discern which of the devices were attached to the internal
network and which were attached to the external network. To do this we needed to
look at which IP addresses were hidden behind which Ethernet addresses.

By using the ethcards.txt file generated earlier I again used Microsoft Excel to import
and sort the data, and found that only two IP addresses were ever used in packets
with 0:0:c:4:b2:33 source Ethernet address - 46.5.180.133 and 46.5.180.250.
Checking the destination IP addresses sent to 0:3:e3:d9:26:c0 showed that no
packets with IP addresses in the 46.5.x.x address range existed.

This was an initial indication that the Cisco device with MAC address of 0:0:c:4:b2:33
was the internal device. Further checking revealed that all packets generated with
source Ethernet address 0:3:e3:d9:26:c0 had a destination IP address within the
46.5.x.x address range. It was also noted that there were no 46.5.x.x source
addresses in any packets sent from 0:3:e3:d9:26:c0 source Ethernet address, but
this information was less convincing as it is easy to spoof an IP address if wanted by
using a tool such as hping2 [51] or sendip [52].

The 46.5.x.x addresses ranged from 46.5.0.78 to 46.5.253.225 inclusive, which
indicated a netmask of 255.255.0.0 (or /16). Combined with the information
previously discussed, it seemed that the internal network was 46.5.0.0/16. We can
make an assumption about the network topology and draw a diagram:

Cisco Device
0:3:e3:d9:26:c0

Cisco Device
0:0:c:4:b2:33

Snort Device

Snort Device

Cisco Device B
0:3:e3:d9:26:c0

Cisco Device A
0:0:c:4:b2:33

External
Network

Internal
Network
46.5.0.0/16

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 18

 Network Detect sGCIA Certification Assignment

Just as André did, I decided to check if there was any sort of incoming filtering on the
Cisco Device B. I ran the following commandline to check what destination ports
were allowed through:

windump -neqr 2002.5.13 “eth er src 0:3:e3:d9:26:c0” > ethcardports.txt

These commandline parameters were:

 -n = disable hostname resolution
 -e = show Ethernet addresses
 -q = quick mode (prints less protocol information)
 -r 2002.5.13 = read input from file 2002.5.13
“ether src 0:3:e3:d9:26:c0” = only select packets with the Ethernet address of

0:3:e3:d9:26:c0.

The text file was again imported into Excel and sorted to show what destination ports
were being allowed through the boundary routers. They were:

Port Number Common Usage
21 FTP control instructions
53 DNS
80 HTTP
137 NETBIOS Name Service
515 UNIX Print Spooling (LPR)
1024 Reserved by IANA, Common NetSpy Port
1080 SOCKS Proxy
40195 Unassigned by IANA
>6100 RPC, Various

At first glance, it seems that there was some form of packet filtering on the Cisco
Device B, but as the readme file [46] states, only the packets that caused an alert
were recorded. This means that it was more likely that the snort rules were
configured to watch the common well-known ports and those higher dynamic ports
often used for RPC communications.

2.2.2. Detect was generated by

To find the detect I used Snort Version 2.0.0-ODBC-MySQL-WIN32 (Build 72) [31]
running the current snort rules [32] (as at 25 April 2003). I used this version because
this version does not suffer from the stream4 pre-processor vulnerability [53] that
earlier versions have. The commandline I used is below:

snort -d -e -r c:\snort\rawlogs\2002.5.13 -c snort.conf -l c:\snort\log -S

HOME_NET=46.5.0.0/16 -S EXTERNAL_NET=!46.5.0.0/ 16

These commandline parameters were:

-d = dump the application layer
-e = show link-layer information
-r = read from file 2002.5.13
-c = use the snort.conf configuration file
-l = log to the log directory
-S HOME_NET=46.5.0.0/16 = Set the home network variable to our

previously discovered 46.5.0.0/16

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 19

 Network Detect sGCIA Certification Assignment

-S EXTERNAL_NET=!46.5.0.0/16 = Set the external network variable to
everything not on our internal network

The alert.ids file that was generated contained many Nmap scans and DNS Named
version attempts, but one strange thing I noticed was that the timestamps on the
packets was different from the date in the filename. The date of the packet capture
was 13 June 2002, not 13 May 2002 as the log was labelled on the Incident.Org
website. When I had checked some other practicals that used the raw logs from
about this time, I noted that they had reported the same issue. I assumed the date
on the file was wrong (possibly a mistake in the script that manages the daily log file
splitting) and that the date of the snort data as the correct date.

I decided to look at the two "BAD-TRAFFIC ip reserved bit set" alerts listed below
more closely:

[**] [1:523:4] BAD -TRAFFIC ip reserved bit set [**]
[Classification: Misc activity] [Priority: 3]
06/13-17:30:26.004488 0:3:E3:D9 :26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
192.1.1.188 -> 46.5.28.40 TCP TTL:239 TOS:0x0 ID:0 IpLen:20 DgmLen:40 RB
Frag Offset: 0x0864 Frag Size: 0x0014

[**] [1:523:4] BAD -TRAFFIC ip reserved bit set [**]
[Classification: Misc activity] [Priority: 3]
06/13-21:44:51.094488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
192.1.1.188 -> 46.5.39.57 TCP TTL:239 TOS:0x0 ID:0 IpLen:20 DgmLen:40 RB
Frag Offset: 0x0864 Frag Size: 0x0014

This detect was generated by the bad-traffic.rules file by the rule listed below:

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD -TRAFFIC ip reserved bit
set"; fragbits:R; sid:523; classtype:misc -activity; rev:4;)

To understand why this rule triggered, I checked the Snort Rules Database to see if
there was documentation about what this rules' purpose was. I searched using the
SID 523 in the Snort database at Snort.Org [54] and got:

SID: 523
message: BAD-TRAFFIC ip reserved bit set
Signature: alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD -TRAFFIC ip reserved
bit set";
fragbits:R; sid:523; classtype:misc -activity; rev:4;)
Summary: This event is generated when packets on the network have the reserved bit set.
Impact: Possible prelude to system compromise.
Detailed Information: Under normal cir cumstances IP packets do not use the reserved bit. This
may be an indicator of the use of the reserved bit by a malicious user to instigate covert channel
communications. an indicator of unauthorized network use, reconnaissance activity or system
compromise. These rules may also generate an event due to improperly configured network
devices.
Affected Systems: All
Attack Scenarios: The attacker m ay send specially crafted packets with the reserved bit set.
Ease of Attack: Simple
False Positives: None Known
False Negatives: None Known
Corrective Action: Use a packet filtering device to reject packets with this bit set.
Contributors: Original r ule writer unknown. Sourcefire Research Team - Nigel Houghton
<nigel.houghton@sourcefire.com>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 20

 Network Detect sGCIA Certification Assignment

As we can see from the database excerpt above, the alert was raised because the IP
Flags reserved bit was set for that packet. I checked the IP Protocol Specification
(RFC 791) [55] and found that RFC 791 states that the IP Control Flags Bit 0 is "…
reserved, must be zero ...". Which led me to the obvious question - why was it not in
these two packets?

Just to make sure that it was not a false alert I ran Windump over the same
2002.5.13 raw log file using the commandline below:

windump -xvr 2002.5.13 "ip[6] & 0x80 != 0"

These commandline parameters were:

-x = show the Hex as well
-v = show verbose mode
-r 2002.5.13 = read input from the file 2002.5.13

The BPF filter at the end of the commandline was designed to select all the packets
from the 202.5.13 file with the IP reserved bit set (IP offset byte 6). The output from
the command was:

17:30:26.004488 IP (tos 0x0, ttl 239, len 40) 192.1.1.188 > 46.5.28.40: tcp
(frag 0:20@17184)bad cksum 3e88 (->3781)!
 4500 0028 0000 8864 ef06 3e88 c0 01 01bc
 2e05 1c28 0e64 0050 05d0 bef2 05d0 bef2
 0004 0000 62c4 0000 0000 0000 0000

21:44:51.094488 IP (tos 0x0, ttl 239, len 40) 192.1.1.188 > 46.5.39.57: tcp
(frag 0:20@17184)bad cksum 3377 (->2c70)!
 4500 0028 0000 8864 ef06 3377 c001 01bc
 2e05 2739 098f 0050 06b9 ad7e 06b9 ad7e
 0004 0000 7d9e 0000 0000 0000 0000

The reserved flag is found in the sixth byte offset (88). The IP Flag structure in both
these two packets are listed below:

Res DF MF

1 0 0
Where: Res = Reserved bit (Must be Zero)
 DF = Don't Fragment
 MF = More Fragments to follow

As you can see the reserved flag was the only IP flag set, and it's the only flag that
was not supposed to be! Interestingly when I viewed these packets using Ethereal
v0.9.12 on Windows 2000, I saw that although the raw data showed that there was a
Reserved Bit set, the GUI only decoded that the DF and MF flags were not set, and
did not mention the fact the reserved bit was set. This shows the danger of relying on
the logic built into IDS systems, and the benefit of raw packet capture for future
analysis and correlation.

2.2.3. Probability the source address was spoofed

To check if the source address was spoofed, I searched on both InterNIC [56] and
ARIN Whois Searches [57]. The ARIN search provided the following:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 21

 Network Detect sGCIA Certification Assignment

Search results for: 192.1.1.188

BBN Communications BBN-CNETBLK (NET-192-1-0-0-1)
 192.1.0.0 - 192.1.255.255
Bolt Beranek and Newman Inc. BBN -WAN (NET-192-1-1-0-1)
 192.1.1.0 - 192.1.1.255

A lookup on the BBN-WAN networks showed this information:

OrgName: BBN Communications
OrgID: BBNP
Address: 150 CambridgePa rk Drive
City: Cambridge
StateProv: MA
PostalCode: 02140
Country: US

Doing a search using Yahoo Search Engine [58] for BBN Communications brought
up RFC1141 [59], in which T. Mallory and A. Kullberg both work for BBN
Communications and have bbn.com email addresses and work at 50 Moulton Street,
Cambridge MA. The company seemed to have moved. By visiting Bbn.Com, I found
that it was a company that was involved in the original ARPANET construction and
design [60]. I wondered if the 192.1.1.0 addresses were used for testing or for
private networks, as it seemed like their assigned addresses were quite close to the
192.168.x.x private network addresses. I tried to delve a bit deeper.

A search on Yahoo for "192.1.1" found an interesting article by Jon Udell on
Byte.Com [61], which seemed to answer my question. In it he states that use of the
192.1.1.x address for private IP network addressing is like an "internet folk tradition".

"Why isn't 192.1.1 one of the Class C networks that RFC 1597 proposes t o reserve? Well, you
can't always trust folk traditions. As it turns out, 192.1.1 is a registered network. Walter "Doc"
Urbaniak, a network engineer with BBN Corporate Telecommunications, contacted me to set the
record straight.
For years, 192.1.1 has bee n registered to Bolt, Beranek, and Newman. Urbaniak says that
because 192.1.1 is widely but wrongly believed to be available for testing, BBN doesn't even try to
use it anymore. "We even found some instances in which vendors were shipping hardware
preconfigured for the 192.1.1 network," he adds."

To confirm this, I searched the Internet RFC archives and found two articles.
RFC1166 [62] had a listing of the early assigned networks, one of which was the
network that we wanted:

R 192.1.0.rrr-192.1.1.rrr BBN Local Nets [SGC]

This is definitely not a private network range IP address as per RFC1918 [63].
Considering that BBN admits that it does not even use those addresses any more, it
seems unlikely that this packet originated from BBN Communications. As John
Udell’s article was written over 7 years ago, BBN may have changed its personnel
and it’s policy, and could have begun utilising the 192.1.1.x IP address range again.

It is possible that some older routing equipment that had this address shipped as
standard was being used somewhere else on the local private network but this is
unlikely.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 22

 Network Detect sGCIA Certification Assignment

It is also possible that the source IP address of 192.1.1.188 was spoofed. This
choice may have been made so that the chances of being let into a network that
used the same (unofficial) private addressing scheme would be improved. It could be
that the choice of this address would guarantee that no machine at 192.1.1.188
would respond. Alternatively, it could be that this choice was just random. It is nearly
impossible to say.

There are three possibilities:

• The IP address is not spoofed and the packet originates from 192.1.1.188 at
BBN Communications.

• The IP address is not spoofed and it originates from a router that has resorted
back to it’s original default configuration.

• The IP address is spoofed and just has selected the IP address for its
increased likeliness of being overlooked.

It is my belief that the IP address is probably spoofed, as it is unlikely that BBN
Communications is using the IP address range at all anymore. To be fully sure we
would need to contact the system administrators at BBN.

2.2.4. Description of the attack

I believe it is impossible to give a conclusive analysis of what the purpose of this
packet is due to the lack of availability of all the data. As the Incident.Org Raw log
readme states "...only the packets that violate the ruleset will appear in the log." This means we
are missing some of the packets needed for a full analysis.

As you will see in the next section, I have speculated on six possible purposes of
these crafted packets. Firstly, that this could be a tiny fragments attack designed to
evade the NIDS. Secondly, that it might be an OS fingerprinting reconnaissance
scan. Thirdly, that it is a DoS attempt. Fourthly, that it possibly is a control packet for
a Trojan. Fifthly that is it a misconfigured router. Lastly, that it is a response to stimuli
sent from internal networked devices, so didn't originate from the local network. My
feeling though is that it was most likely an OS fingerprinting scan or a trojan control
packet using tiny fragments in an attempt to evade the NIDS.

2.2.5. Attack mechanism

In order to try to establish a purpose for these packets we need to ask some
questions about the design of the packets. What exactly can we find out? Some
questions spring to mind....

Are the packets part of a fragment train?

RFC791 [55] says that "The fragmentation strategy is d esigned so than an unfragmented
datagram has all zero fragmentation information (MF = 0, fragment offset = 0)." Both these
packets have a non-zero fragment offset, so they must be part of a fragment train (or
at least pretending to be).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 23

 Network Detect sGCIA Certification Assignment

Are the packets the initial fragment, part of the middle of a fragment train, or
the last fragment?

• To qualify as an initial fragment according to the IP specification you must have

the More Fragments (MF) bit set, and a fragment offset of zero. This is not the
case in our packets so they cannot be the initial fragments in the fragment train.

• To qualify as a middle fragment it needs to have the MF bit set, and a non-zero
fragment offset. These packets do not have the MF bit set but do have a non-
zero fragment offset. The packets cannot therefore be the middle fragments of
the fragment train.

• To qualify as the last fragments in a fragment train they must have a non-set MF
bit and a non-zero fragment offset. This is exactly what these packets have.

What is the packets’ purpose?

This is difficult to say without a full packet trace but there are some possibilities.

• NIDS evasion attempt.

By sending tiny fragments through the network, it may perhaps bypass the rules
used in the NIDS. McAfee ASaP site discusses some vulnerabilities based on
this [64], of which "12042 IP - fragmentation - tiny fragment with reserved bit set"
most closely matches our case. Further investigation of RFC1858 [65] found that:

"With many IP implementations it is possible to impose an unusually small fragment size on
outgoing packets. If the fragment size is made small enough to force some of a TCP packet's
TCP header fields into the second fragment, filter rules that specify patterns for those fields
will not match. If the filtering i mplementation does not enforce a minimum fragment size, a
disallowed packet might be passed because it didn't hit a match in the filter."

So it could be that this is a tiny fragments attack, specifically designed to avoid
detection. There may have been some other attack code in the previous
fragments in the fragment train that were not logged which were part of the
exploit. To know this for sure we would need to examine all traffic from the hosts
46.5.28.40 and 46.5.39.57 so see if they sent any responses.

• OS fingerprinting scan.

Ofir Arkin posted an email on the bugtraq@securityfocus.org mailing list late
2000 discussing how to use the reserved bit in the IP packet to do OS
fingerprinting. Apparently, if you send an ICMP echo request to a Solaris 8.0 or
HPUX 11.0 computers they would echo the reserved bit back. This information
can then be used with other attempts to send incorrectly formatted packets to
'fingerprint' the Operating System.

This argument is lent extra weight by the fact that the TTL is set at 239 in both
packets. Based on information in the GCIA course, the Passive Fingerprinting
article on incidents.org [67] and the default TTL list on Nerim.Net [68], this packet
has likely come from an operating system with an initial TTL value of 255. By
comparing the TTL value with the TOS value and even the IP ID value we can
see where this has likely come from [69]. We see that the TTL value is 255. The
TOS is 0. This is probably either a Solaris 2.x machine or a Cisco 12.0. The

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 24

 Network Detect sGCIA Certification Assignment

decisive factor for me though is the Initial IP ID of 0 that we have. This correlates
well with the initial IP ID that Cisco IOS 12.0 uses on an initial connection.

I doubt that the Cisco IOS 12.0 device is really being used for OS Fingerprinting. I
believe the packets are crafted and as such may contain values that just
happened to match the values in the OS fingerprinting article.

• Denial of service attack

This idea was due to an article I found on NetBSD website [70] which explained a
vulnerability in testing with the defragmentation code in the TCP/IP stack. My
thinking was that the attacker could be running a NetBSD machine or another
machine that has a problem with processing fragmented packets and would
consume system resources:

"The code masks out the DF bit and then, if any of the rest of the bits in the structure
are set, the packet is considered a fragment. But this test will pass, and the fr agment
code run, even if the packet is not a fragment and just the "must be zero" reserved
flag is set."

To check I scanned through the logs from the 10 May 2002 to 16 May 2002 (see
Appendix B) and found that the maximum packet captures of this nature in a day
was 14. This of course was way below the levels expected of a DoS attack and
the hypothesis was dismissed immediately.

• Trojan control packet

It could be pretending to be the last fragment in the fragment train, yet really be
the only fragment sent. By sending with the reserved IP flag set it could be
attempting to bypass the NIDS and control the Trojan. I checked some Trojan
port sites [71] and found that it would be nearly impossible to research this further
without the original full packet traces, as we would need to examine all traffic
from the hosts 46.5.28.40 and 46.5.39.57 to see if they sent any suspicious traffic
to other external addresses. It would also be a good idea to check the two
computers involved to see if there were any new software installed on these
machines.

• Misconfigured router on the local network
 As I had learnt earlier, the 192.1.1.x address range had been used in the past
(incorrectly) as a private internal IP addressing range. It was possible that this
addressing schema was still in use in one router within this organisation or that
the router had reverted back to it’s default settings. This is unlikely though, as the
address 192.1.1.188 was only seen coming from 0:3:e3:d9:26:c0, which we had
previously established was the external router. This meant there was only a slim
chance that this was the case so I ruled it out.

It could also be that there was a problem with a Cisco 12.0 router, which was
setting the reserved bit to one and fragmenting all the data. While possible, this is
not plausible, as it would have meant that all traffic sent through that router would
experience the same problem, and each connection would not be established. I
expect this would be detected fairly quickly - be it by the network administrator or
even the users on the other side of the router. I ruled this out as well.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 25

 Network Detect sGCIA Certification Assignment

• Response to stimuli sent from internal hosts
This would mean that the packets would have to be to the RFC specifications,
which we know is not true. Packets that contain a set IP Reserved Flag are not
legal.

My belief is that it is most probably either an OS fingerprinting attempt or a trojan
control packet using a covert communications channel.

2.2.6. Correlations

The closest item I could find on Google was a detect completed previously by GIAC
students. I agreed with the findings by T. Brian Granier [72] that this detect could be
an evasive OS fingerprinting attempt, but I also thought it could be a covert trojan
control communication attempt. A second detect by Brent Wrisley [73] came to the
same conclusion as T Brian Granier. A third detect by Ron Shuck [74] was similar in
nature as it was triggered by a similar rule, and is worth further reading if desired.

2.2.7. Evidence of active targeting

Based on the random nature of the packets that were captured, I believe that these
packets were part of an evasive attack using tiny fragments to evade NIDS
detection. As such, I do not believe that the destination IP addresses were selected
from prior reconnaissance but instead were targeted randomly.

2.2.8. Severity

The severity of this attack can be calculated by the following formula:

severity = (criticality + lethality) - (system countermeasures + network countermeasures)

Criticality = 2/5
It is very hard to say how critical the systems are that were targeted. As such, I will
assume that they were mostly user systems, and rate that accordingly.

Lethality = 3/5
My initial consideration was that this rating should be given a four due to the evasion
techniques employed. If this much work has gone into designing an evasion
technique then it would be sensible to assume the same care went into devising a
system of covert communication or an OS fingerprinting technique. This rating was
deemed too high though because of the untargeted nature of the scan. This is an
attack that is likely to be polling the Internet looking for open systems, and probably
notifies the attacker in some way when the attack succeeds. I arrived at the figure of
three by assuming that what we were viewing the end fragments of a scan or covert
communication fragment train. Although the attacks were not necessarily successful,
they still were tried against some of the computers on the local network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 26

 Network Detect sGCIA Certification Assignment

System Countermeasures = 1/5
This figure takes into account the fact that we do not know what services were being
targeted, and what level of patching was reached on the network devices. I need to
assume a minimal level.

Network Countermeasures = 3/5
This figure takes into consideration the fact that we could not prove ingress filtering.
We have to assume though that adequate protection has been made however, as
the fact we have logs to view is an indication that the system administrator knows the
value of an NIDS. For this reason I gave the figure of 3 for network
countermeasures.

Overall Severity rating = (2 + 3) - (1 + 3) = 1 (Scale is from –10 to 10)

2.2.9. Defensive recommendations

My first defensive recommendation would be to contact the systems administrators
at BBN Communications to ask if they still use the IP address 192.1.1.188. If they do
not, then the IP address is spoofed, and the targeted machine needs to be checked
for possible trojans. If they do still use that address, then it is likely that the IP
address was not spoofed and they need to check if 192.1.1.188 is infected with a
trojan. Next, I would recommend that they put in a firewall if there is not one already.
It would need to be configured to make sure that the complete TCP header was
encapsulated in the first fragment, as per the recommendations in RFC1858 3.2.1
Direct Method [65]. I would also make sure that the firewall could handle other issues
like overlapping fragments as well. I would enlarge the IDS rules to log any traffic to
or from any of the local IP addresses listed in Appendix B. This would give me more
traffic to check, without overloading the NIDS (if it is a high traffic environment). I
would also make sure the computers on the local network were patched to the latest
OS and application patches in case they are attacked with a similar attack.

2.2.10. Multichoice question
17:30:26.004488 IP (tos 0x0, ttl 239, len 40) 192.1.1.188 > 46.5.28.40: tcp
(frag 0:20@17184)bad cksum 3e88 (->3781)!
 4500 0028 0000 8864 ef06 3e88 c001 01bc
 2e05 1c28 0e64 0050 05d0 bef2 05d 0 bef2
 0004 0000 62c4 0000 0000 0000 0000

The above packet has the following characteristics:

A) The IP ID of 0x0028
B) The Don't Fragment bit is set
C) The IP Reserved bit is set
D) It contains a TCP packet that is larger than standard

Answer: C

The IP Reserved bit is set. RFC791 states it should never be set.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 27

 Network Detect sGCIA Certification Assignment

2.3. Detect 3

2.3.1. Source of Trace

The raw binary packet log used in for this detect was sourced from the selection of
raw Incidents.org log files available from http://www.incidents.org/logs/Raw/[33]. I
selected a file from the list that was closer to the end of the 2002 year and decided
upon the log from 10th October 2002 (http://www.incidents.org/logs/Raw/2002.10.10)

The Incidents.Org raw logs that are available have the following features as specified
in the readme file [46]:
• Captured by Snort running in binary mode
• Only captured packets that caused an alert
• All internal addresses have been changed
• Checksums have been changed as well to stop reverse engineering of IP

Addresses
• Certain keywords within the packet have been replaced with X's
• All ICMP, DNS, SMTP and Web traffic has been removed
• External IP Addresses are unchanged from those captured.

Now that I had a log selected, I needed to find a little about the network topology.
Following the same process that I had used in my previous detect #2, I came up with
the following topology:

Just as a side point, the 2002.10.10 and 2002.5.13 files seemed to have the same
network topology used, with the real IP address of the Internal Network obfuscated
with different numbers to protect the real network identity.

Also, note that although the file was called 2002.10.10 they contained the binary logs
from 10 November 2002.

2.3.2. Detect was generated by

To find the detect I used Snort Version 2.0.0-ODBC-MySQL-WIN32 (Build 72) [31]
running the current snort rules [32] (as at 25 April 2003).

The commandline I used is below:

Snort De vice

Cisco Device B
0:3:e3:d9:26:c0

Cisco Device A
0:0:c:4:b2:33

External
Network

Internal
Network
207.166.0.0/16

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 28

 Network Detect sGCIA Certification Assignment

snort -d -e -X -r c:\snort\rawlogs\2002.10.10 -l c:\snort\logs -c
c:\snort\rules\snort.conf -S HOME_NET=207.166.0.0/16 -S
EXTERNAL_NET=!207.166.0.0/16

These commandline parameters were:

-d = dump the application layer
-e = show link-layer information
-r = read from file 2002.10.10
-X = dump the raw packet data starting at the link layer
-c = use the snort.conf configuration file
-l = log to the log directory
-S HOME_NET=207.166.0.0/16 = Set the home network variable to our

previously discovered 46.5.0.0/16
-S EXTERNAL_NET=!207.166.0.0/16 = Set the external network variable to

everything not on our internal network

The output generated was:

Running in IDS mode
Log directory = c: \snort\logs
TCPDUMP file reading mode.
Reading network traffic fr om "c:\snort\rawlogs\2002.10.10" file.
snaplen = 1514

 --== Initializing Snort == --
Initializing Output Plugins!
Initializing Preprocessors!
Initializing Plug -ins!
Parsing Rules file c: \snort\rules\snort.conf

++++++++++++++++++++++++++++++++++++++ +++++++++++++
Initializing rule chains...
---[SNIP]---
 --== Initialization Complete == --

-*> Snort! <*-
Version 2.0.0-ODBC-MySQL-WIN32 (Build 72)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)
1.7-WIN32 Port By Michael Davis (mike@dataner ds.net, www.datanerds.net/~mike)
1.8 - 2.0 WIN32 Port By Chris Reid (chris.reid@codecraftconsultants.com)
Run time for packet processing was 137.404000 seconds

===

Snort processed 12503 packets.
Breakdown by protocol: Action Stats:

 TCP: 12498 (99.960%) ALERTS: 12145
 UDP: 0 (0.000%) LOGGED: 12150
 ICMP: 0 (0 .000%) PASSED: 0
 ARP: 0 (0.000%)
 EAPOL: 0 (0.000%)
 IPv6: 0 (0.000%)
 IPX: 0 (0.000%)
 OTHER: 0 (0.000%)
===
Wireless Stats:
Breakdown by type:
 Management Packets: 0 (0.000%)
 Control Packets: 0 (0.000%)
 Data Packets: 0 (0.000%)
===

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 29

 Network Detect sGCIA Certification Assignment

Fragmentation Stats:
Fragmented IP Packets: 29 (0.232%)
 Rebuilt IP Packets: 0
 Frag elements used: 0
Discarded(incomplete): 0
 Discarded(timeout): 0
===

TCP Stream Reassembly Stats:
 TCP Packets Used: 0 (0.000%)
 Reconstructed Packets: 0 (0.000%)
 Streams Reconstructed: 0
===

Snort exiting

After checking out the alert.ids file there was a pair of detects that caught my eye...

[**] [1:1394:3] SHELLCODE x86 NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/10-17:12:47.636507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x5EA
130.94.22.249:80 -> 207.166.87.157:64741 TCP TTL:52 TOS:0x0 ID:23339 IpLen:20
DgmLen:1500 DF
A* Seq: 0xD454C3BC Ack: 0xAC7EEF02 Win: 0x1920 TcpLen: 20

[**] [1:1394:3] SHELLCODE x86 NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/10-17:13:13.236507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x5EA
130.94.22.249:80 -> 207.166.87.157:64741 TCP TTL:52 TOS:0x0 ID:23403 IpLen:20
DgmLen:1500 DF
A* Seq: 0xD456219D Ack: 0xAC7EF2EC Win: 0x2180 TcpLen: 20

The rule that triggered this alert was found in the shellcode.rules file and is listed
below:

alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS (msg:"SHELLCODE x86
NOOP"; content:"|61
61|"; classtype:shellcode -detect; sid:1394; rev:3;)

A quick lookup on Snort.Org [75] for SID 1394 showed that this was one of the non-
documented rules. So I did a search on Google [35] and found a couple of good
posts from Bryan Burns [76] and Robert David Graham [77] about poss ible false
positives on these rules. Bryan said:

 "The "Shellcode" set of signatures are trying to look for generic attacks that have not been
discovered yet by looking for patterns in network traffic t hat appear to be dangerous or common
CPU instructions used in hax0ring attempts. These signatures are prone to a high false -positive
rate though, and often get triggered by perfectly harmless data."

Just to make sure I was not doing something wrong I viewed these packets using
Ethereal v0.9.12 on Windows 2000. Ethereal decoded the packets as a HTTP
continuation - meaning it thought they were from a http connection already in
process.

2.3.3. Probability the source address was spoofed

To check if the source address was spoofed, I searched on both InterNIC [56] and
ARIN Whois Searches [57]. The ARIN search provided the following:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 30

 Network Detect sGCIA Certification Assignment

Search results for: 130.94.22.249

OrgName: Verio, Inc.
OrgID: VRIO
Address: 8005 South Chester Street
Address: Suite 200
City: Englewood
StateProv: CO
PostalCode: 80112
Country: US
NetRange: 130.94.0.0 - 130.94.255.255
CIDR: 130.94.0 .0/16
NetName: VRIO-130-094
NetHandle: NET -130-94-0-0-1
Parent: NET-130-0-0-0-0
NetType: Direct Allocation
NameServer: NS0.VERIO.NET
NameServer: NS1.VERIO.NET
NameServer: NS2.VERIO.NET
Comment: **
Comment: Reassignment information for this block is
Comment: available at rwhois.verio. net port 4321
Comment: **
RegDate: 2000-07-11
Updated: 2001-09-26

Doing a search using Yahoo Search Engine [58] for "Verio, Inc" gave me a link to a
NTT Communications subsidiary called NTT/Verio [78]. This is an Internet Service
Provider with a worldwide coverage. I checked their Whois Service using the
GEEKTOOLS Whois proxy [79] to see who was using the range that we were
interested in. I got this answer back:

Rwhois server data:
---[SNIP]---
network:IP-Network-Block:130.94.22.248 - 130.94.22.251
network:Org-Name:Drive Savers Data Recover, Inc.
network:Street-Address:400 Bel Marin Keys Boulevard
network:City:Novato
network:State:CA
network:Postal-Code:94949
network:Country-Code:US
---[SNIP]---
network:IP-Network-Block:130.94.16.0 - 130.94.31.255
network:Org-Name:Verio Advanced Hosting - Dulles
network:Street-Address:22451 Shaw Rd
network:City:Sterling
network:State:VA
network:Postal-Code:20166
network:Country-Code:US
network:Tech-Contact;I:IA17312-VRIO.127.0.0.1/32
network:Created:2001-06-15 18:07:22+00
network:Updated:2001-06-15 18:07:22+00

As you can see from the above, the web address range was assigned to Drive
Savers Recover, Inc. They were being hosted on servers run by Verio Advanced
Hosting. To check this I went to InfoBear.Com's NSLookup Webpage [80] and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 31

 Network Detect sGCIA Certification Assignment

queried 130.94.22.249. I got:

Output of:
nslookup -q=A www.drivesavers.com ns1.worldnet.att.net
Server: ns1.worldnet.att.net
Address: 204.127.129.1

Name: www.drivesavers.com
Address: 130.94.22.249

I visited the Drivesavers webpage on port 80 and found a valid webpage.

In summary, I do not believe this IP address was spoofed at all. Both the packets
triggered in the alert had the acknowledgement flag set, which means they had
performed the three-way handshake. Both packets also had a source port of 80
which we later found was confirmed as the 130.94.22.249 address was confirmed as
a website address.

2.3.4. Description of the attack

In an attempt to find out more about these shellcode rules I entered "SHELLCODE
x86 NOOP" into a search on Google [35] and added the page from Dragos Ruiu [81]
to the two pages from Bryan Burns [76] and Robert David Graham [77] about
possible false positives on these rules.

The gist of these three posts are that all these records are searching for are
sequences of hexcodes that match common NOOP (no operation) hexcodes. These
hexcodes are often used in buffer overrun exploits so that the attacker does not need
to worry about exact memory locations when they attempt to change program
execution. By putting a NOOP sled in the packet, the execution jump can be a little
off, and the execution will just 'skip over' the NOOP commands until it reaches the
code the attacker wishes to run.

All posts also make another point very clear. The "SHELLCODE x86 NOOP" rule
has a very high false positive rate. All it requires is a datagram payload that happens
to contain the same content, and the rule will fire. JPG, PNG, GIF, PICT or
Document (MSWord etc.) are commonly affected by this rule. This is one of the
reasons that this rule is commented out by default in the standard snort rule
distribution.

When scanning through the hex display of the packet captured by snort, I noticed the
JFIF marker in the file. I know from past experience that this indicates a JPEG file (or
derivative). I decided to see if I could extract the JPEG from the datagram and view
it.

First step was to find out the JPEG file structure. Using Google I found the official
JPEG specification [82], and an article called "How do I recognize which file format I
have, and what do I do about it?" by Tom Lane [83]. Using these articles, I attempted
to retrieve the data. I was unsuccessful. It looked like only the JPEG header was
captured in both packets, and that the rest of the JPEG file was in following packets

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 32

 Network Detect sGCIA Certification Assignment

that weren't captured by the snort instance that created the 2002.10.10 raw log file.
As you will see in the next section, I managed to decode some parts of the packet,
and concluded that this was indeed a false alarm.

2.3.5. Attack mechanism

A full listing of both packets that match the SHELLCODE x86 NOOP alert rule is
available in Appendix C. I will go through the first packet to decode it:

The Ethernet Header [19]

Destination MAC Address: 00 00 0C 04 B2 33
Source MAC Address: 00 03 E3 D9 26 C0
Ethernet Type Field: 08 00 (IP Protocol)

The IP Packet Header [20]

IP Version: 4
Header Length: 5 words = 20 bytes
Type of Service: 00
IP Total Length: 05 DC
IP Identification: 5B 2B
40 00
Time To Live: 34
Protocol: 06 = TCP
Checksum: 6F A0
Source IP Address: 82 5E 16 F9
Destination IP Address: CF A6 57 9D

The TCP Packet Header [21]

Source Port: 00 50
Destination Port: FC E5
TCP Sequence Number: D4 54 C3 BC
TCP Acknowledgement Number: AC 7E EF 02
Header Length: 5 words = 20 bytes
Reserved: 0
TCP Flags: Acknowledgement Flag
TCP Window Size: 19 20
Checksum: 14 69
TCP Urgent Pointer: 00 00

The Payload

5B AD D5 58 40 00 FF 04 04 00
00 00 00 00 00 00 40 00 FF 04
----[SNIP]----
2E 19 19 2E 61 41 37 41 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61
61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 6 1 61 61 61 61 61 61 61 61 61
61 61 61 61 FF C4 00 1F 00 00 01 05 01 01 01 01 01 01 00
----[SNIP]----

Jpeg File [17,18]

JPEG Marker: FF D8 FF E0
Length: 00 10
JFIF Marker: 4A 46 49 46 00
JPEG Version: 01 01
Units : 00 = Pixels
X density: 00 01
Y density: 00 01
X Thumbnail: 00
Y Thumbnail: 00

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 33

 Network Detect sGCIA Certification Assignment

Section Marker: FF C0
Picture Data: 00 11 08 ---[etc until packet end] ---

As you can see from the above, the first packet contained a JPEG file embedded in
the payload. After an extreme amount of searching, I was unable to find any other
matching parts to fully decode this payload.

So now, for the million-dollar question - Is this an attack?

It is my belief that this not an attack. This is a false alarm generated by the hex 61's
in the jpeg file embedded in the datastream. Several things made me come to this
conclusion. Firstly, the flow of traffic is from port 80 on the source, which is a well
known port used by http. The traffic is going to a high ephemeral destination port
(64741) on 207.166.87.157. This is the action of a response to a connection already
made by 207.166.87.157.

Can we be sure this is a web style connection? We can check host 207.166.87.157's
role by investigating what connections are being made and received by it. I did this
by running the command:

windump38a -vr 2002.10.10 "host 207.166.87.157"

This lists out all the connections made to and from 207.166.87.157. It turned out
there were 288 alerted connections from an ephemeral port to port 80, yet only 8
alerted connects back in the other direction. This makes me sure that host
207.166.87.157 is a http proxy server, and is protecting the internal network
computers from having direct access to the Internet.

So the facts so far:

• The source of 130.94.22.249:80 is a valid web site
• The destination of 207.166.87.157:64741 is a likely http proxy server
• The payload contains a JPEG file
• In the middle of the JPEG is a sequence of NOOP instructions

This therefore is a response to earlier stimuli sent by the http proxy server requesting
some data, possibly a JPG, PNG, PICT or Document with embedded pictures, of
which we are seeing only one datagram. This can be lent extra weight by the fact
that both packets are the maximum Ethernet datagram size of 1514 bytes, which
shows there is probably more data to follow.

2.3.6. Correlations

The closest item I could find from any GCIA Students was a posting by Tyler Hudak
[84]. Apart from the aforementioned Dragos Ruiu [81], Bryan Burns [76] and Robert
David Graham [77] I could not find anything further of note.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 34

 Network Detect sGCIA Certification Assignment

2.3.7. Evidence of active targeting

These packets were definitely targeted at the internal http proxy server by the
external web server, but this is correct behaviour. The detect is a false positive.

2.3.8. Severity
The severity of this attack can be calculated by the following formula:

severity = (criticality + lethality) - (system countermeasures + network countermeasures)

Criticality = 4/5
The packet was targeted at the http web proxy server. This is quite an important
piece of kit, and should be rated as such.

Lethality = 1/5
As this is a false alarm this detect should be given a minimal level of lethality.

System Countermeasures = 1/5
This figure takes into account the fact that I do not know what patches had been
applied on the http web proxy server. I need to assume a minimal level.

Network Countermeasures = 3/5
This figure takes into consideration the fact that we could not prove ingress filtering.
We have to assume though that adequate protection has been made however, as
there is a http web proxy server, and we have NIDS logs to view, is an indication that
the system administrator knows at least a little about network security. For this
reason I gave the figure of three for network countermeasures.

Overall Severity rating = (4 + 1) - (1 + 3) = 1 (Scale is from –10 to 10)

2.3.9. Defensive recommendations

As this detect is a false positive there are not many defensive measures to be taken.
I would make sure that the http proxy server was patched with the latest patches,
and I would investigate the proxy server’s logs to make sure they did not show any
abnormal behaviour.

I would also put in a firewall if there wasn't one already as there needs to be control
over what ports are exposed to the Internet. The less doors to get in, the less work
there is protecting those doors.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 35

 Network Detect sGCIA Certification Assignment

2.3.10. Multichoice question

alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS (msg:"SHELLCODE x86
NOOP"; content:"|61
61|"; classtype:shellcode -detect; sid:1394; rev :3;)

The above snort rule is designed to:

A) Create no false positives
B) Detect as many possible NOOP Sleds as possible
C) Detect the ASCII characters "61" in a document
D) Detect the words "SHELLCODE x86 NOOP" in a document

Answer: B

Detect as many NOOP sleds as possible. This process can cause many false
positives but can detect possible exploits before specialised rules are generated for
them.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 36

 Analyze ThisGCIA Certification Assignment

Assignment 3. Analyze This

3.1. Executive Summary

Figure 1 - Number of Alerts, Scans and Out -of-Spec packets sent between 2 nd May and 6 th May

he computer networks of today are important communication enablers. In some
instances the need of the computer network is as great as the need for electricity

itself. The SANS University network is no different. Being a large and diverse
University, the SANS University network has a large amount of important traffic
flowing through it. Managing something of that size requires good management
practices, and a well-drilled team. Often in today’s world of reduced profits and
smaller budgets mean that an analysts’ time cannot be spared for in -depth analysis
of network traffic. It is for this reason that I was asked to produce this report.

The above graph was provided to give an overview of the trends during the
period of time this author studied the SANS University network. It shows the hourly
rates of three measured Snort metrics - the number of alerts, scans and Out-of-spec
files per hour. The alerts per hour are important as they demonstrate that number of
times per hour that someone has sent a packet that went against the University
‘rules’. The scans per hour show how many times somebody tested to see if the
university was protected, or what computers were in use. And the Out-Of-Specs per
hour show how many times broken packets were sent – sometimes by accident,
sometimes on purpose.

As you can see, late morning on the 3rd of May 2003 had the highest number
of triggered alerts. This was the time that one machine (MY.NET.210.114) sent over
354775 invalid packets to an external address. This is why it is one of the top
machines to be investigated. Investigation of MY.NET.235.110 and MY.NET.203.98
are also recommended as there are some strange things happening involving those
hosts (further information in section 3.5). Some other machines that should be
scanned are listed in Appendix D, E and F. Those machines are possibly
compromised by various exploits and need to be checked to see if they are infected.
If they are compromised, then appropriate action needs to be taken.

Overall though, the SANS University network is in good shape. I will
demonstrate that although there are some compromised machines, in general the

T

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 37

 Analyze ThisGCIA Certification Assignment

situation looks good. There is some work to be done with the detection rulebase
itself, as the rules seem to trigger too easily.

3.2. Analyzed Files
The University IT Department provided me with some log files to analyze from Friday
2nd May 2003 to Tuesday 6th May 2003 consecutively. I was told that the logs were
generated from an instance of Snort (available from http://www.snort.org) using a
fairly standard ruleset. The logs were divided into three types of files – Alerts
(showing events of interest), Scans (detected scans) and Out Of Spec (invalid flag
and TCP option combinations).

Files Analyzed
Alerts.030502 Alerts.030503 Alerts.030504 Alerts.030505
Alerts.030506 Scans.030502 Scans.030503 Scans.030504
Scans.030505 Scans.030506 OOS_Report_2003_05_02_28431.txt
OOS_Report_2003_05_03_7239.txt OOS_Report_2003_05_04_2139 5.txt
OOS_Report_2003_05_05_25821.txt OOS_Report_2003_05_06_7938.txt

3.3. Analysis Method
The first step in analysis of the data supplied by the University was to decide on the
categorisation. I made the decision that I would group the alerts by number for
analysis, as criticality for some of the rules in the snort rule base were difficult to
ascertain due to the many customised rules used. I also wanted to acknowledge that
not all packets contained dangerous exploits but still needed to be investigated as
high rates of noise can ‘drown’ out the real alerts. Often the firewall policies, host
configurations, and the snort rulebase itself can be adjusted to lower the number of
false alerts.

I noted that there was many incorrectly formatted log entries in the alert log
files. I decided to remove all incorrectly formatted entries as I felt it would be unwise
to base any decisions on data that I could not be assured was valid. This meant
unless the data had a date, time, alert name, source and destination IP address and
port number then it was ignored. This process was automated by the perl file I wrote
called prepalerts.pl (based on csv.pl by Tod Beardsley). The program was written to
take multiple alert files and to output them as one CSV file for importing into an SQL
database. Two other programs (prespscans.pl and prepoos.pl) were created to do a
similar job for the scan logs and the OOS logs as well (scripts are available in
Appendix G). The information was then imported into Microsoft Access for analysis.
Various SQL queries (over 30) were written to generate the information I needed.
Some data was exported to Microsoft Excel for use in creating graphs. All generated
information was combined and edited to produce what you are reading now.

3.4. Snort IDS Configuration

3.4.1. Sensor location
This snort sensor is located somewhere between the student access network and
the main connection to the Internet, on the edge of the Universities network. This is
was confirmed by correlating the alert logs with the scan logs and discovering the
real IP addresses of the University network listed within. This discovery lent weight
to the fact that only one alert packet was sent from an internal source to an internal

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 38

 Analyze ThisGCIA Certification Assignment

destination (0.0001% of the total alerts). The discovered student residents’ network
was a class B, and its assigned range of addresses was MY.NET.0.0 -
MY.NET.255.255. It would be fair to say I was surprised to discover the ‘real’ IP
address of this network, as published log files should never contain any real internal
addresses – it is too much of a security risk. I would recommend the SANS
University takes steps to rectify this.

The snort sensor also alerted on a large number of external to external traffic
(22% of total). While some of these packets could really be from an internal address,
but have a spoofed source IP address that happens to be external, it is very unlikely
that this level would reach 22%. A more likely scenario is that the snort sensor is on
a network segment that has ‘External traffic’ (non-MY.NET.x.x traffic) passing
through it, and so is on the very edge of the monitored network.

3.4.2. Network Speed
After investigating the log files it seems that the snort sensor is in a high bandwidth
location. The alert log files display some corruption. I believe this was caused by the
flow of network traffic being higher than the IDS system could consistently record.

After some research using the real IP address of the MY.NET subnet, I found
that the U.S. University was connected to a high-speed Internet backbone of some
kind (possibly the Internet2 network). This was lent weight by the fact that many of
the ‘External’ IP addresses were from U.S Universities (e.g. Kent State University,
MIT, University of Vermont, UMBC etc.), and other large U.S. organisations (AT&T,
US Postal Service, Packard Bell etc.).

3.4.3. Snort Rulebase
The Snort sensor seems to be running a version of Snort approximately v1.8. The
configuration file used is based on the old standard rulebase from about the time that
Snort v1.8 was released, but also has a few custom alerts added. This means that
many rules are not listed in the Snort Rules Database [85], as they have been
deprecated, or their alert name has changed.

3.5. Detected Alerts
The following table is based on the earlier work by Les Gordon in his GCIA practical
[86]. It is an easy way to see the number of unique hosts (both source and
destination) and direction of travel of the alerts found. The slight twist is that the
unique source and destination columns contain two figures; the first number is the
number of unique hosts, and the second item is how many packets those hosts sent.
This allows a comparison to be made as to the ferocity of the attacks.

 # Unique Src > # Pkts # Unique Dest > # Pkts Traffic Flow
Alert Name # Alert Int Ext Int Ext I->I I->E E->I E->E

Incomplete Packet Fragments Discarded 355241 2>354841 107>400 71>401 31> 354840 1 354840 400

TCP SRC and DST outside network 207965 198959>
207965 2228>

207965 207965

SMB Name Wildcard 204324 26337>
204324

41809>
204305 2>19 204305 19

High port 65535 tcp - possible Red Worm - traffic 35622 71>17203 93>18419 78>18419 103>17203 17203 18419

High port 65535 udp - possible Red Worm - traffic 27195 81>15319 176>11876 117>11876 235>15319 15319 11876

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 39

 Analyze ThisGCIA Certification Assignment

 # Unique Src > # Pkts # Unique Dest > # Pkts Traffic Flow
Alert Name # Alert Int Ext Int Ext I->I I->E E->I E->E

CS WEBSERVER – external web traffic 26830 6274>
26830 2>26826 1>4 26826 4

spp_http_decode: IIS Unicode attack detected 24362 558>23457 343>895 201>895 731>23467 23467 895

Tiny Fragments - Possible Hostile Activity 17637 1>13259 25>4378 26>4376 1040>
13261 13259 4376 2

TFTP - Internal TCP connection to external tftp server 9545 13>5163 32>4382 11>4382 34>5163 5163 4382
EXPLOIT x86 NOOP 6044 180>6044 158>6044 6044
spp_http_decode: CGI Null Byte attack detected 5814 139>5675 55>139 5>139 147>5675 5675
connect to 515 from outside 5039 4>5039 4878>5039 5039
SUNRPC highport access! 2802 35>2802 32>2801 1>1 2801 1
Null scan! 2573 124>2573 119>2571 1>2 2571 2
[UMBC NIDS IRC Alert] IRC user /kill detected
possible trojan. 1823 82>1823 67>1823 1823

Queso fingerprint 1717 345>1717 125>1716 1>1 1716 1

MY.NET.30.3 activity 1413 50>1413 1>1413 1413
MY.NET.30.4 activity 1411 318>1411 1>1411 1411
[UMBC NIDS IRC Alert] XDCC client detected
attempting to IRC 1253 12>1253 21>1253 1253

IDS552/web-iis_IIS ISAPI Overflow ida nosize 887 537>887 687>887 887
CS WEBSERVER – external ftp traffic 871 163>871 1>871 871
TFTP - Internal UDP connection to external tftp server 549 31>487 15>62 21>62 37>487 487 62

[UMBC NIDS IRC Alert] Possible sdbot floodnet
detected attempting to IRC 539 2>539 12>539 539

Possible trojan server activity 398 26>127 53>271 185>271 33>127 127 271
[UMBC NIDS IRC Alert] User joining Warez channel
detected. Possible XDCC bot 312 10>312 6>312 312

[UMBC NIDS IRC Alert] Possible Incoming XDCC
Send Request Detected. 203 11>203 12>203 203

IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL
nosize 188 2>188 167>188 188

NMAP TCP ping! 175 52>175 74>175 175

IRC evil - running XDCC 165 14>165 14>165 165
External RPC call 151 4>151 151>151 151
EXPLOIT x86 setuid 0 150 135>150 123>150 150
[UMBC NIDS IRC Alert] User joining XDCC channel
detected. Possible XDCC bot 132 7>132 6>132 132

SNMP public access 122 6>122 8>122 122
EXPLOIT x86 setgid 0 61 58>61 56>61 61
NIMDA - Attempt to execute cmd from campus host 60 2>60 58>60 60
EXPLOIT x86 stealth noop 48 12>48 6>48 48
TCP SMTP Source Port traffic 38 4>38 14>38 38
Notify Brian B. 3.56 tcp 29 27> 29 1>29 29
Notify Brian B. 3.54 tcp 27 23>27 1>27 27
Back Orifice 26 2>26 26>26 26

SMB C access 17 14>17 11>17 17
Probable NMAP fingerprint attempt 12 8>12 9>12 12
Attempted Sun RPC high port access 11 4>11 4>11 11
RFB - Possible WinVNC - 010708-1 9 5>5 4>4 4>4 5>5 5 4
TFTP - External UDP connection to internal tftp server 7 1>1 5>6 5>6 1>1 1 6
FTP passwd attempt 7 3>7 2>7 7
[UMBC NIDS IRC Alert] K\:line'd user detected
possible trojan. 6 6>6 5>6 6

DDOS shaft client to handler 4 2>4 1>4 4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 40

 Analyze ThisGCIA Certification Assignment

 # Unique Src > # Pkts # Unique Dest > # Pkts Traffic Flow
Alert Name # Alert Int Ext Int Ext I->I I->E E->I E->E
TFTP - External TCP connection to internal tftp server 3 1>1 2>2 2>2 1>1 1 2
NIMDA - Attempt to execute root from campus host 3 1>3 3>3 3
EXPLOIT x86 NOPS 2 1>2 1>2 2
SYN-FIN scan! 2 2>2 2>2 2
DDOS TFN Probe 1 1>1 1>1 1

Site exec - Possible wu-ftpd exploit - GIAC000623 1 1>1 1>1 1
[UMBC NIDS IRC Alert] Possible trojaned machine
detected

1 1>1 1>1 1

Bugbear@MM virus in SMTP 1 1>1 1>1 1

TOTALS 943828 962>
437756

234713>
506072

49129>
298079

4907>
645749 1 437755 298078 207994

3.6. Alerts In Detail (triggered more than 5000 times)

Alert 1: Incomplete Packet Fragments Discarded Priority: Medium Triggered: 355241
Traffic Flow Int->Int: 1 Int->Ext: 354840 Ext->Int: 400 Ext->Ext: 0
Snort ID: Old Uniq Int Src: 2 Uniq Ext Src: 107 Uniq Int Dst: 71 Uniq Ext Dst: 31
Background: This is a built in error message generated by snorts deprecated ‘D efrag’ preprocessor.
This preprocessor was dropped in favour of the ‘Frag2’ preprocessor in Snort v1.9 and upwards [87].
This alert is raised when an incomplete set of fragments are detected. Fragments can be lost in
transit, corrupted or craft ed so that they have overlapping boundaries, or non -consecutive boundaries
to attempt to bypass the protection on the t arget computer or avoid the IDS system.

05/03-13:02:49.646122 [**] Incomplete Packet Fragments Discarded [**]
MY.NET.210.114:0 -> 213.97.198.23:0

05/03-12:26:14.532096 [**] Incomplete Packet Fragments Discarded [**]
MY.NET.210.114:0 -> 213.97.198.23:0

In the University log files we found there were only 2 internal sources of these incomplete

packet fragments. The first IP address, MY.NET.210.114 sent only to 213.97.198.23 (213 -97-198-
23.uc.nombres.ttd.es). There were 354775 alerted packets sent between 11:45am 3 rd May 2003 and
4:53pm 4th May 2003. After 4:53pm there were no further alert s produced by this host. On average
MY.NET.210.114 sent almost 203 fragmented packets per minute. Checking the scan logs revealed
that a large amount of UDP scans were sent from MY.NET.210.114 to 213.97.198.23 (64602
packets).

May 3 11:53:33 MY.NET.210.114:0 -> 213.97.198.23:0 UDP
May 3 11:53:30 MY.NET.210.114:2769 -> 213.97.198.23:64542 UDP
May 3 11:53:30 MY.NET.210.114:3092 -> 213.97.198.23:11661 UDP
May 3 11:53:30 MY.NET.210.114:3109 -> 213.97.198.23:48581 UDP
May 3 11:53:30 MY.NET.210.114:3124 -> 213.97.198.23:27101 UDP

The ports used by the UDP scans are a combination of null scans and various other source

and destination UDP ports. This traffic seem s to be produced by some sort of automated program, as
the ports scanned seem random, but over time most ports seem to be scanned 5 -13 times in a
pseudo random fashion. I attempted to see if there was a control packet sent to the internal host but
there was no such thing in the logs. The control packet may not have been recorded, or may not have
been sent at all. I believe that the host MY.NET.210.114 has either been compromised and is being
used in a DDoS attack on 213.97.198.23, or has a fault with it’s n etwork card or software (and was
switched off at 4:53pm 4 th May 2003). Either way this host deserves a visit to see if there is some
attacking software present or a faulty network card.

The second host, MY.NET.203.98, sent 5 incomplete fragmented packets to the Null port on
different addresses in the 192.168. x.x address ranges as shown below.

05/06-06:51:45.980065 [**] Incomplete Packet Fragments Discarded [**]

MY.NET.203.98:0 -> 192.168.1.102:0
05/06-07:00:33.581418 [**] Incomplete Packet Fragments Di scarded [**]

MY.NET.203.98:0 -> 192.168.1.2:0
05/06-12:28:31.664508 [**] Incomplete Packet Fragments Discarded [**]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 41

 Analyze ThisGCIA Certification Assignment

MY.NET.203.98:0 -> 192.168.1.12:0
05/06-20:05:27.704195 [**] Incomplete Packet Fragments Discarded [**]

MY.NET.203.98:0 -> 192.168.1.102:0
05/06-22:41:37.744149 [**] Incomplete Packet Fragments Discarded [**]

MY.NET.203.98:0 -> 192.168.1.12:0

This was very suspicious. The 192.168.x.x block of addresses are reserved by the IANA [63]
for use as private IP addresses and are supposed to be blo cked from entering the internet by any
border routers. As the snort insta nce does not seem to be behind a NAT dev ice (as the NAT device
would have converted the private IP address to a real IP address) I can only speculate that this
address must be being g enerated by the MY.NET.203.98 host. A check f or other communication with
this host found that there were 5 external computers that had attempted to connect to port 137
(cannot tell if that was TCP or UDP). I could not t ell if any of these connections had been successful
with the level of data that I had available. Whitehats.ca [94] li sted only one signature corresponding to
port 137 - "NETBIOS-NAME-QUERY". It stated that “ NetBIOS name traffic is considered background
noise on the network and should only be considered when combined with other forensic evidence that
points to a problem/suspicion ”. The strange fragmented packets to 192.168.x.x were unusual enough
to qualify. Each of the port 137 connections were at least 2 hours earlier than the fragmented pack ets
so I ruled out them being control connections for a ‘bot‘ of some kind. The MY.NET.203.98 host was
also SYN scanned by 4 different external computers for the ports 235, 445 and 80.

The rest of the traffic for other 71 external sources of ‘Incomplete P acket Fragments’ alerts
come from varying locations, but none seem to specifically target a particular host. One external host,
64.12.56.35 (demand4-nm03.stream.aol.com), sent 42 i ncomplete fragment packets to
MY.NET.224.138 in a four minute period. But th is activity seems to be randomly spread across many
different internal destinations from many different sources.
Correlations: Confirmation that the “Incomplete Packet Fragments Discarded” error message was
part of the Defrag snort preprocessor was found during a discussion involving Martin Roesch on the
snort users list [90]. The Whitehats.ca database [94] listed only one port 137 event which it said was
used for NetBIOS name reconnaissance, but triggered often due to many processes using NetBIOS
in their day-to-day operations.
Recommendations:
• Snort should be upgraded to v2.0.0 as the earlier versions contain a snort vulnerability [53]. The

use of the ‘Defrag’ preprocessor has been deprecated. This would allow the newer ‘Frag2’
preprocessor to be used w hich is more memory efficient, and has added functionality to detect
other evasion techniques like fragroute [87].

• Investigate MY.NET.210.114 and MY.NET.203.98 for signs of mis -use, or compromise. Also
check for possible faulty network card or TCP/IP stack on MY.NET.210.114 if a compromise
cannot be found as the number of incomplete packets generated was extremely high.

• Make sure that the border firewall can detect and drop invalid fragmented packets correctly.
• I would suggest installing another NIDS on the internal side of the firewall as well to make sure

that there are no invalid fragments sneaking past unnoticed.

Alert 2: TCP SRC and DST outside network Priority: Noise Triggered: 207965
Traffic Flow Int->Int: 0 Int->Ext: 0 Ext->Int: 0 Ext->Ext: 207965
Snort ID: Cust. Uniq Int Src: 0 Uniq Ext Src: 198959 Uniq Int Dst: 0 Uniq Ext Dst: 2228
Background: This custom rule seems to only generate an alert if the source and destination are both
external IP addresses. It is difficult to understand why this rul e is being used, as all it seems to do is
generate a lot of alerts. A possible scenario explaining the use of this rule could be that this snort
instance had in the past been protected from seeing traffic external to MY.NET, and this rule had
been inserted to alert on possible internal IP address spoofing. In it’s current locati on all it seems to
do is to create noise.
Correlations: I was unable to fi nd any correlations for this message. Most other GCIA practicals
listed this alert in their tables but di dn’t discuss it any further.
Recommendations:

• Remove this rule from the rulebase.
• If this is not acceptable then tweak the rule slightly to specifically exclude the external

networks close to MY.NET.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 42

 Analyze ThisGCIA Certification Assignment

Alert 3: SMB Name Wildcard Priority: Low Triggered: 204324
Traffic Flow Int->Int: 0 Int->Ext: 0 Ext->Int: 204305 Ext->Ext: 19
Snort ID: Old Uniq Int Src: 0 Uniq Ext Src: 26337 Uniq Int Dst: 91809 Uniq Ext Dst: 2
Background: The SMB Name Wildcard is used by Windows hosts when they are attempting to fin d
the name of a server that they cannot find using DNS. It i s very common in a Windows network. The
Whitehats.ca port database [94] menti ons that external probes on this port can often be
reconnaissance probes used to discover hosts in the internal network . They recommend blocking
UDP port 137 at the boundary router.
Correlations: Judy Novak sent a good analysis of this rule to Stephen Northcutt [91]. It explains the
detect in a good level of detail. J Sage [92] provides an overview a few other explanation s of NetBIOS
name table probes. ArachNIDS [89] also provide signatures to detect this kind of probe using snort.
Recommendations:

• Unless specifically needed external NetBIOS name service traffic should be blocked at the
boundary router.

Alert 4: High port 65535 tcp - possible Red Worm - traffic Priority: Low Triggered: 35622
Traffic Flow Int->Int: 0 Int->Ext: 17203 Ext->Int: 18419 Ext->Ext: 19
Snort ID: Old Uniq Int Src: 71 Uniq Ext Src: 93 Uniq Int Dst: 78 Uniq Ext Dst: 103
Background: This custom alert is designed to trigger w hen a TCP packet is sent to port 65535. This
is suggested by the alert rule title to be a possible Adore/Red Worm which is designed to install a
backdoor on a Linux machine [93]. A query on the Whitehats.ca Port Database [94] reveals that the
Adore/Red Worm can use TCP for transmission as well as UDP. Investigation of the transmissions
between MY.NET.207.150 (a large alerter) and external sources I found this sequence:

05/03-05:03:49.150400 [**] IDS552/web -iis_IIS ISAPI Overf low ida nosize [**]
218.78.248.145:1357 -> MY.NET.207.150:80

05/03-20:14:28.629061 [**] SMB Name Wildcard [**] 4.46.132.229:1027 ->
MY.NET.207.150:137

05/04-11:42:49.750816 [**] spp_http_decode: IIS Unicode attack detected [**]
69.0.94.145:1644 -> MY.NET.207.150:80

05/04-14:32:24.841689 [**] SMB Name Wildcard [**] 81.82.104.163:1029 ->
MY.NET.207.150:137

05/05-16:32:38.030434 [**] High port 65535 tcp - possible Red Worm - traffic
[**] MY.NET.207.150:3879 -> 65.70.111.122:65535

05/05-16:40:36.136217 [**] High port 65535 tcp - possible Red Worm - traffic
[**] 65.70.111.122:65535 -> MY.NET.207.150:4014
05/05-16:40:40.869697 [**] High port 65535 tcp - possible Red Worm - traffic
[**] 65.70.111.122:65535 -> MY.NET.207.150:4014

As you can see, the initial p acket is a ‘.ida’ buffer overflow attempt [95] similar to the type used by
CodeRed and Nimda, and is then followed by an IIS Unicode attack. These are then foll owed by the
high port TCP access. At first glance it appears one of the first four packets could be a control pac ket
which caused the high port TCP access but I don’t believe this to be the case. Firstly there is too
much time that has elapsed between the receipt of the first packets and the high port TCP access.
Secondly the source IP addresses of t he first few packets are completely unrelated to the destination
IP addresses in the high port TCP access packets. This makes the spoofing of the three way
handshake and TCP data stream very difficult indeed. I believe that the above packet trace shows the
two attempted exploits sent to MY.NET.207.150 are unrelated to the High Port false alerts that follow
them.

Another possibility is that the use of the high ports are a natural occurrence caused by the
wrapping around of ephemeral ports due to a high numbe r of connections. I doubt this is the case as
in the trace above there is only about 4.5 -14 seconds between the uses of port 65535. This is too
short a duration for the wrap around to occur.

It could be that the repeated use of port 65535 is actuall y one retried connection. This I also
doubt as the duration between the retries is not standard or exponential, and there are a lot more than
3 attempts at it (over in the full logs).

A more likely scenario is that this access is just a normal connection that h appens to use TCP
port 65535. Many of the ports used from 65535 accessed connections in the range of 4200 -4299. The
IANA lists this range as being used for VRML Multi User Systems. These are 3D virtual worlds across
the network. A check of Google didn’t fi nd port 65535 mentioned in relation to VRML. I did find some
reported activity

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 43

 Analyze ThisGCIA Certification Assignment

05/06-03:46:49.705422 [**] High port 65535 tcp - possible Red Worm - traffic

[**] MY.NET.202.206:2327 -> 12.231.84.153:65535
05/06-03:46:50.218380 [**] High port 65535 tcp - possible Red Worm - traffic

[**] 12.231.84.153:65535 -> MY.NET.202.206:2327
05/06-03:46:50.221084 [**] High port 65535 tcp - possible Red Worm - traffic

[**] MY.NET.202.206:2327 -> 12.231.84.153:65535
05/06-03:46:53.254034 [**] High port 65535 tcp - possible Red Worm - traffic

[**] 12.231.84.153:65535 -> MY.NET.202.206:2327

There were some packets found that had an initial source port of 2327 (listed above). A
lookup on IANA had this port indicated as being used by XingCSM. Google found a page originall y
written by Xing Technologies [96] discussing their StreamWorks Streaming Media Server. This has
since been discontinued by Xing Technologies (they have been bought by Real Player) but it could
still be in use on the network.

It is, of course, also possib le (as GlockSoft [97] and others show) that if the target machine is
a Windows machine it could be the RC1 Trojan. Without further information we just don’t know.
Correlations: Les Gordon [86] discussed how Web browsing and KaZaA seem to make up most of
his false alerts for this rule.
Recommendations:

• If the purpose of this rule is to detect the Adore/Red Worm then it should be more specific and
possibly do some extra content matching.

• If the purpose is to catch all port 65535 traffic the rule should b e removed as the high rate of
false positives is restricting it’s usefulness.

Alert 5: High port 65535 udp - possible Red Worm - traffic Priority: Low Triggered: 27195
Traffic Flow Int->Int: 0 Int->Ext: 15319 Ext->Int: 11876 Ext->Ext: 0
Snort ID: None Uniq Int Src: 81 Uniq Ext Src: 176 Uniq Int Dst: 117 Uniq Ext Dst: 235
Background: This alert is very similar to the “High port 65535 udp - possible Red Worm – traffic” rule
above. The Adobe/Red Worm is more commonly associated with the port 69/udp than p ort 69/tcp.
Most of this traffic seems to be completely innocuous. But without more information, or a more
specific rule, it is impossible to separate false alert from real positive.
Correlations: Les Gordon [86] discussed how this rule’s fal se alerts seemed to be mainly aimed at
his detected AFS servers. After some investigatio n [98] I found that AFS servers listen on ports 7000-
7032 and 2106. The only connections listed in the alert logs that delivered to the AFS ports were by
IRC bots. I believe this d iscrepancy can be explained by assuming that the snort instance has been
moved further to the edge of the MY.NET network, if not outside of it. In all previous practicals I have
read there has been far less external to external and more internal to interna l traffic. The change in
both indicates the snort instance is likely to have been moved, and explains why Les Gordon’s
detected AFS Servers were not found by me.
Recommendations:

• If possible the rule should be turned off, but if it is needed to detect th e Adore Worm, it should
be tuned to reduce the noise it generates.

Alert 6: CS WEBSERVER - external web traffic Priority: Low Triggered: 26830
Traffic Flow Int->Int: 0 Int->Ext: 0 Ext->Int: 25826 Ext->Ext: 4
Snort ID: Cust. Uniq Int Src: 0 Uniq Ext Src: 6274 Uniq Int Dst: 1 Uniq Ext Dst: 1
Background: This is an alert generated by a custom alert. This rule is designed to record each
access to the Universities Department of Computer Science and Electrical Engineering Webserver.
An interesting feature o f the logs is the trace shown below:

05/04-11:00:43.069382 [**] CS WEBSERVER - external web traffic [**]
216.39.48.127:47244 -> MY.NET.100.165:80

05/04-11:00:43.448596 [**] CS WEBSERVER - external web traffic [**]
216.39.48.127:47248 -> MY.NET.100.165:8 0

05/04-11:00:43.739398 [**] CS WEBSERVER - external web traffic [**]
216.39.48.127:47250 -> MY.NET.100.165:80

As you can see there are a lot of connections from 216.39.48.127 to the webserver.

MY.NET.100.165. The host 216.39.48.127 has a DNS name of bui ldrack52.sv.av.com (part of
Altavista.com). I believe that this sequence of packets is the result of the Altavista Search Engines
Web Spider trawling the Internet for web pages.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 44

 Analyze ThisGCIA Certification Assignment

As this is a public facing webserver we would expect the number of times this rule triggered to
be very high. This rule seems to record every connection to the website. This information would only
be useful if it was used as a metric for t he number of web visitors. It is possible that this rule was put
in as a temporary measure to m onitor suspicious activity to the CS Web Server and in this context it is
fine. But for normal everyday use it would be better to put in narrower more focused rules targeting
specific exploits.
Correlations: I could not find any correlations for this rule , as all of the GCIA practicals I looked at did
not view the CS Webserver alert rule in any detail.
Recommendations:

• This rule should be removed as it appears to do nothing more than take web server statistics.
• If statistics are required then a we b server log parser (such as Websense Log Analyser)

should be purchased to continue this monitoring.

Alert 7: spp_http_decode: IIS Unicode attack detected Priority: High Triggered: 24362
Traffic Flow Int->Int: 0 Int->Ext: 23467 Ext->Int: 895 Ext->Ext: 0
Snort ID: None Uniq Int Src: 558 Uniq Ext Src: 343 Uniq Int Dst: 201 Uniq Ext Dst: 731
Background: This spp_http_decode snort preprocessor generated alert tells of the use of Unicode
encoded “.”, “/” and “ \” characters in packet s sent to various common HTTP por ts. Unpatched versions
of Microsoft IIS are vulnerable to Unicode -encoded URL and directory traversal attacks [99][100][101]
from various worms, such as CodeRed II [102], Nimda [103] and Sadmind/IIS [104]. This allows the
attacker to gain access to various files via directory traversal, and to perform various commands on
the web server through IIS.

This alert can generate some false positives as it alerts on all Unicode encoded traffic. This
means it could alert on foreign language sites using Korean, Chin ese and other asian language
character sets, or on SSL traffic. I believe that the use of this rule for monitoring internal sources of
this IIS Unicode alert is entirely justified as it only seems to alert on port 80 traffic (SSL traffic normally
uses port 443). The fact that this is a U.S. University also lends this weight, as there should be a small
percentage of websites that use a foreign character set. This means that an internal source that
triggers this alert is hig hly likely to have been compromised .

05/04-16:44:02.681153 [**] spp_http_decode: IIS Unicode attack detected [**]

61.179.12.120:22231 -> MY.NET.201.218:80
05/04-16:44:10.068342 [**] spp_http_decode: IIS Unicode attack detected [**]

218.91.41.22:1233 -> MY.NET.253.5:80
05/04-17:12:06.766615 [**] spp_http_decode: IIS Unicode attack detected [**]

MY.NET.144.51:3311 -> 202.106.182.195:80

The Universities MY.NET has 558 unique sources of this IIS Unicode attack. An excerpt of
the traffic logged is shown above. They are listed below in Append ix D. Each of t he machines listed in
Appendix D should be scanned for signs of an exploit, as they are very likely infected computers
actively seeking new hosts to infect.
Correlations: A good overview of the IIS Uni code attack was written by Les Gordon [86]. He
discusses why this alert is prone to false positives. A diff ering view is supported by Tod Beardsley
[105]. Cert.Org provided a description of the IIS Vulnerabilit y in [100]. An excellent explanation of the
Sadmin/IIS vulnerability is the GCIA pra ctical written by Ben Wilson. [106]. James Crossma n [107]
discusses how this alert corresponds with t he Sadmind/IIS Worm.
Recommendations:

• Utilise ingress and egress control by configuring the firewall and boundary routers to mitigate
the threat. Cisco have a good whitepaper on defense against Nimda [108]

• Investigate the machine listed in Appendix D for signs of a compromise.
• Make sure all IIS web servers are patched using the latest cumulative patch f rom Microsoft

[99] so that they are not exploited.
• If there is no boundary virus checking of email attachments then implement an email content

virus checker as a matter of urgency.
• Ensure the machines all have a virus checker installed with up -to-date virus definition files.

This can be accomplished using so me centrally managed enterprise level anti -virus software.
• Review the Universiti es Network Acceptable Use Policy and make s ure it states that

computers will only be allowed to be connected to the universities network only if they have a
virus checker insta lled with up-to-date virus definition files.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 45

 Analyze ThisGCIA Certification Assignment

Alert 8: Tiny Fragments - Possible Hostile Activity Priority: Medium Triggered: 17637
Traffic Flow Int->Int: 0 Int->Ext: 13259 Ext->Int: 4376 Ext->Ext: 2
Snort ID: None Uniq Int Src: 1 Uniq Ext Src: 25 Uniq Int Dst: 26 Uniq Ext Dst: 1040
Background: Tiny Fragments are often used in attempts to evade detection by a NIDS. By making
the fragments smaller than the encapsulated packet’s header length, the attacker hopes the NIDS will
not be able to interpret the packets and will drop them. The hope is also that the target host will not
drop the packets, but will reassemble the packets, thereby effecting a successful evasion.

This alert is generated when the Minifrag snort pre -processor detects a fragment which is
smaller that the threshold configured in the snort configuration file. The Snort users manual for v1.9
states “Generally speaking, there is no piece of com mercial networking equipment that fragments in
sizes smaller than 512 bytes…”. So by specifying the upper limit near to 512 bytes, we would be able
to catch most of the traffic designed to evade detection by using tiny frag ments. Unfortunately we are
not made aware of the threshold limit in this instance.

The generation of tiny fragments can be attribut ed to a faulty network card or network driver,
but more often than not it is due to an attempted evasion attack. These attacks are mainly designed to
slow down the destination network – essentially a Denial of Service (DoS).

There was only one internal hos t that sent tiny fragments. MY.NET.235.110 sent over 13266
tiny fragments during the monitored period. The sending rate of MY.NET.235.110 never went above
about 3 packets per second, so this was definitely not a DoS attack in itself. There is however a rea l
possibility that this computer was taking part in a Distributed Denial of Serv ice attack.

05/02-00:30:02.184659 [**] Tiny Fragments - Possible Hostile Activity [**]

MY.NET.235.110 -> 200.77.81.95
05/02-00:30:02.271481 [**] Tiny Fragments - Possible H ostile Activity [**]

MY.NET.235.110 -> 200.77.81.95
05/02-00:30:03.605148 [**] Tiny Fragments - Possible Hostile Activity [**]

MY.NET.235.110 -> 200.77.81.95

I investigated this by listing all traffic to and fr om MY.NET.235.110. Some interesting scans came to
my attention:

May 2 00:11:15 130.85.235.110:0 -> 200.77.81.95:0 UNKNOWN 1*UA***F RESERVEDBITS
May 2 00:11:15 130.85.235.110:18503 -> 200.77.81.95:1208 VECNA *2**P**F

RESERVEDBITS
May 2 00:11:17 130.85.235.110:0 -> 200.77.81.95:0 NOACK **U**RSF
May 2 00:11:20 130.85.235.110:0 -> 63.227.65.64:0 INVALIDACK 1*UAP*SF

RESERVEDBITS
May 2 00:11:24 130.85.235.110:0 -> 200.77.81.95:0 INVALIDACK ***APRS*

This set of scans is unusual. Either there is some scripted scans and attacks being used from
MY.NET.235.110, or the network card is sending out corrupted packets. Although there seems to be a
pseudo randomness of the TCP ports and flags in the scans, the overall repeated numbers listed
leads me to believe this host is likely infected with a bot or backdo or, and needs to be investigated as
a matter of urgency.
Correlations: An overview of what this alert does was provided in Martin Roesch’s explanation on the
Snort users mailing list [109]. Mark Enbrich also researched this alert rule and came to a simila r
conclusion, but his Internal Source IP was different [110].
Recommendations:

• Visit MY.NET.235.110 and scan it for sign s of compromise.

Alert 9: TFTP - Internal TCP connection to external tftp
 server

Priority: Noise Triggered: 9545

Traffic Flow Int->Int: 0 Int->Ext: 5163 Ext->Int: 4382 Ext->Ext: 0
Snort ID: Cust. Uniq Int Src: 13 Uniq Ext Src: 32 Uniq Int Dst: 11 Uniq Ext Dst: 34
Background: This alert appears to be generated when an internal machine sends TCP packets to an
external destination using a destination port of 69, or when an external machine replies back using
the same connection.

Port 69 is used by Trivial FTP – a type of file t ransfer protocol which doesn’t worry about
authentication and security, but which is just concerned with get ting the file from point A to point B. I
knew that port 69 was also the port used by the Nimda virus [111], but after some research it seemed
that only 69/udp was used by Nimda – not 69/tcp. Just to check if there was a different variant of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 46

 Analyze ThisGCIA Certification Assignment

Nimda that I was unaware of I checked to see if any of the hosts that used port 69/udp had used any
of the other common Nimda ports (25, 69, 80, 137 -139,445). I found something. MY.NET.189.41 was
sending the following traffic:

05/04-14:39:53.921262 [**] TFTP - Internal TCP connection to external tftp

server [**] 160.75.92.13:69 -> MY.NET.189.41:3585
05/04-14:39:53.921315 [**] TFTP - Internal TCP connection to external tftp

server [**] MY.NET.189.41:3585 -> 160.75.92.13:69
05/04-14:48:08.992616 [**] TFTP - Internal UDP connection to external tftp

server [**] MY.NET.189.41:1331 -> 217.234.140.155:69
05/04-14:52:19.746897 [**] spp_http_decode: IIS Unicode attack detected [**]

MY.NET.189.41:2793 -> 217.187.78.118:80
05/04-14:54:54.657150 [**] TFTP - Internal TCP connecti on to external tftp

server [**] MY.NET.189.41:4228 -> 160.75.92.13:69

MY.NET.189.41 has alerts for both TCP and UDP connections on port 69, one of which is an IIS
Unicode alert. The IIS alert could just be a coincidence, as 217.187.78.118 belongs to a Ger man
company and it is attempting connection to a web port that could be running Unicode characters. But I
believe it is more likely to indicate that the cli ent is infected with Nimda, as there was no webserver
available on 217.187.78.118:80. In any case MY .NET.189.41 needs further investigation. The other
port 69/tcp connections seem to be valid TFTP sessions.
Correlations: I could not find any correlations for this rule, as all of the GCIA practicals I looked at did
not view the “TFTP - Internal TCP conne ction to external tftp server” alert rule in any detail.
Recommendations:

• Block port 69 for TCP and UDP access for both ingress and egress.
• Investigate MY.NET.189.41 f or signs of a compromise.
• Make sure all IIS web servers are patched using the latest cumulative patch f rom Microsoft

[99] so that they are not exploited.
• If there is no boundary virus checking of email attachments then implement an email content

virus checker as a matter of urgency.
• Ensure the machines all have a virus checker installed wi th up-to-date virus definition files.

This can be accomplished using some centrally managed enterprise level anti -virus software.
• Review the Universiti es Network Acceptable Use Policy and make s ure it states that

computers will only be allowed to be connec ted to the universities network only if they have a
virus checker installed with up -to-date virus definition files.

Alert 10: EXPLOIT x86 NOOP Priority: Noise Triggered: 6044
Traffic Flow Int->Int: 0 Int->Ext: 0 Ext->Int: 6044 Ext->Ext: 0
Snort ID: Old Uniq Int Src: 0 Uniq Ext Src: 180 Uniq Int Dst: 158 Uniq Ext Dst: 0
Background: This rule is triggered when snort detects a sequence of hex -codes which match
assembler no-operation commands [112]. These noop’s are often used in buffer overrun exploits.
They allow the exploit coder to be less specific as to where their exploit code should ju mp to, and start
processing. Robert Graham explains this quite well in his post on the securityfocus -ids mailing list
[77]. An important point to note is that this rule can have an extremely high rate of false positives.
Many image files just happen to contain the right sort of hexcodes in them to trigger this rule. And that
means often they will trigger when users are accessing websites, or just transferring files betwe en
computers.

A possible better noop detector would be the spp_fnord snort preprocessor by Dragos Ruiu
[113]. This pre-processor is supposed to have fewer false positives and a better detection rate of new
noop sleds than the equivalent snort rules [114]. Although it was due for inclusion into Snort v1.9, I
could find no mention if this was indeed included on Snort’s website.

There are no internal sources of this alert. The latest version of Snort by default does not look
for shellcode on port 80, but it se ems the version used by the University looks for x86 noop exploits
on all ports as the following non -related packet traces show:

05/04-02:48:52.077465 [**] EXPLOIT x86 NOOP [**] 142.169.60.119:27005 ->

MY.NET.197.6:27015
05/04-10:46:26.034652 [**] EXPLO IT x86 NOOP [**] 12.16.131.99:4944 ->

MY.NET.5.45:80
05/04-10:46:26.058680 [**] EXPLOIT x86 NOOP [**] 12.16.131.99:4944 ->

MY.NET.5.45:80
05/04-19:04:54.890415 [**] EXPLOIT x86 NOOP [**] 207.44.194.27:80 ->

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 47

 Analyze ThisGCIA Certification Assignment

MY.NET.225.206:3149
05/05-16:46:14.608603 [**] EXPLOIT x86 NOOP [**] 213.140.8.171:36001 ->

MY.NET.190.93:139

I noticed that there were some strange ports being used in some of the packets that this alert
detected. Port 27015 is a common port used for Sierra Online/Valve Games like Halflife, or
CounterStrike [115]. MY.NET.197.6 looks as though it’s being used to host games. Something that
needs addressing rather quickly.

05/04-14:37:40.457765 [**] EXPLOIT x86 NOOP [**] 200.218.177.59:54775 ->
MY.NET.197.6:27015

Unfortunately any other information is hidden deep within the f alse alerts. There really needs to be
some snort rule changes to cut down on false triggering for there to be any use for this rule.
Correlations: HD Moore [116] does give a similar explanation to Robert Graham [76] in his post to
the Snort users list. He mentions that an FTP transfer is false alerting due to the traffic content sent.
Recommendations:

• Replace this rule with the spp_fnord snort preprocessor to reduce the number of false alerts
• Upgrade Snort to a later version, o r install a newer snort rulebase
• Do not monitor for shellcode on port 80 traffic t o reduce the performance drain on the snort

instance.
• Investigate the use of MY.NET.197.6 as a online games hostin g server.

Alert 11: spp_http_decode: CGI Null Byte attack detected Priority: Low Triggered: 5814
Traffic Flow Int->Int: 0 Int->Ext: 5675 Ext->Int: 0 Ext->Ext: 0
Snort ID: None Uniq Int Src: 139 Uniq Ext Src: 55 Uniq Int Dst: 5 Uniq Ext Dst: 147
Background: This alert is generated by the spp_http_decode Snort p reprocessor. It is tri ggered when
the http preprocessor encounters a %00 in the packet payload [117]. The null byte is often used to
shorten a URL, to bypass the CGI security mechanisms and gain access to files in the operating
systems file system [118]. I t does have a tendency to false positive on SSL encrypted traffic and
content that includes cookies.

05/05-22:50:37.484156 [**] spp_http_decode: CGI Null Byte attack detected [**]
MY.NET.98.15:3111 -> 80.247.32.141:80

05/05-22:13:20.643638 [**] spp_http _decode: CGI Null Byte attack detected [**]
MY.NET.98.96:49251 -> 207.171.183.16:80

05/05-22:50:37.484156 [**] spp_http_decode: CGI Null Byte attack detected [**]
MY.NET.98.15:3111 -> 80.247.32.141:80

As expected, most of the alerted traffic is on egress traffic with a destination port 80. Some may be
true CGI null byte exploit traffic, others could be cookie traffic but it is difficult to know. There are
some other interesting ports

05/04-17:05:10.370320 [**] spp_http_decode: CGI Null Byte attack detec ted [**]

MY.NET.234.154:1848 -> 207.44.232.38:8080

One unusual style of CGI null byte connection stood out. The packet shown above is one of about
from 144 logged. A lookup of Dshield.Org found that this resolved to moya.scarywater.net. A check of
Google gave me the answer I needed. Moya.scarywater.net is a BitTorrent download site [119].
BitTorrent is a peer to peer downloading client [120] that uses a tit -for-tat ration style downloading
algorithm. As it uses ‘unused’ bandwidth f or it’s downloading and uploading I expect it is something
that the University would like to eradicate from its network.

Overall this rule is generating too many alerts for us to be able to investigate them properly. It
should be tuned to reduce this number to a manageable level.
Correlations: I could not find any extra correlations for this rule other that those discussed in the
background informati on above.
Recommendations:

• Change the CGI Null Byte rule to only alert on incoming traffic to the webservers on the
common web ports.

• If internal sources of CGI null byte traffic needs to be monitored then put in another rule which
check only egress traffic on common web ports.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 48

 Analyze ThisGCIA Certification Assignment

• Visit the computer MY.NET.234.154 and investigate for any Peer-to-Peer software. Remove
the software if found and instruct the user as to the dangers of its use (possible virus infection
source).

Alert 12: connect to 515 from outside Priority: Medium Triggered: 5039
Traffic Flow Int->Int: 0 Int->Ext: 0 Ext->Int: 5039 Ext->Ext: 0
Snort ID: Cust. Uniq Int Src: 0 Uniq Ext Src: 4 Uniq Int Dst: 4878 Uniq Ext Dst: 0
Background: This alert triggers when an external source attempts to connect to an internal machine
using port 515 – a port commonly used by the UNIX li ne printer daemon (LPR). Both HP -UX [121]
and Solaris [122] have buffer overflow vulnerabilities and these connections could be exploits of
those. It is unlikely that t here is a need for external access to LPR printing, so port 515 should be
blocked by the boundary routers.

The alert traffic that was log ged showed that only 4 external sources attempted to connect to
an internal 515 Line Printer Daemon (LPD). 128.46.117.76 (civl1240pc2.ecn.purdue.edu),
141.157.67.253 (pool -141-157-67-253.balt.east.verizon.net), 68.49.94.97
(pcp02267324pcs.longhl01.md.comca st.net) and 152.1.193.6 (chjlpc4.chem.ncsu.edu) were the
external sources that caused these alerts to be triggered. ci vl1240pc2.ecn.purdue.edu was especially
vociferous, sending 4873 packets in 3 minutes an 13 seconds.

There are no indications that any of the internal hosts were compromised in any of these
attacks
Correlations: Jasmir Beciragic [123] discusses a vulnerability CVE -2000-0917 in LPRng 3.6.24
which allows remote attackers to execute arbitrary commands on the exploited computer.
Recommendatio ns:

• Block port 515 at the boundary routers
• Keep all servers patched with the latest patches. Remove all unnecessary services from the

servers as well. This minimizes the ways attackers have of compromising systems.

3.7. Other Significant Finds
Any unusual or important information found during alert research is listed below:

• MY.NET.97.181 and MY.NET.97.48 are both infected with a Nimda like virus
that is looking for external sites to infect. Both alerted on “IDS552/web-iis_IIS
ISAPI Overflow ida INTERNAL nosize” [124], “NIMDA - Attempt to execute
cmd from campus host” [125] [126], and “NIMDA - Attempt to execute root
from campus host” [127][128]. MY.NET.97.181 SYN-scanned over 10636
different addresses looking for an open port 80 to infect. Both machines need
to be checked urgently for viruses and disinfected.

MY.NET.97.181 Virus Traffic

05/03-22:59:13.326341 [**] IDS552/web -iis_IIS ISAPI Overflow ida INTERNAL
nosize [**] MY.NET.97.181:1618 -> 130.149.203.234:80

05/03-22:59:24.260939 [**] NIMDA - Attempt to execute cmd from campus host
[**] MY.NET.97.181:1618 -> 130.149.203.234:80

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 49

 Analyze ThisGCIA Certification Assignment

Figure 2 - Link Diagram showing Traffic Flow from MY.NET.97.48

• There seem to be many peer-to-peer file-sharing programs in use on the

Universities network. Many seem to have been picked up by alerts with high
false alert ratings – such as “High port 65535 udp - possible Red Worm -
traffic “ and “Queso fingerprint “. I detected about 490 possible KaZaA , 161
possible Gnutella, 1554 possible WinMX and 8 possible Peer-to-peer file-
sharing connections from the log files (67 distinct internal sources listed in
Appendix E). Peer-to-peer (P2P) file-sharing programs are a well-known file
infection ‘backdoor’ as they often bypass the main http proxy and anti-virus
protection systems.

Possible KaZaA Traffic
05/02-07:49:19.670538 [**] High port 65535 tcp - possible Red Worm -

traffic [**] 4.46.158.139:65535 -> MY.NET.207.34:1214
05/02-07:49:19.672953 [**] High port 65535 tcp - possible Red Worm -

traffic [**] MY.NET.2 07.34:1214 -> 4.46.158.139:65535
05/02-07:49:19.675526 [**] High port 65535 tcp - possible Red Worm -

traffic [**] 4.46.158.139:65535 -> MY.NET.207.34:1214

While it is possible that this could be a Adore/Red virus, the sheer number of
consistent connections in both directions makes it more likely that these are
actually packets from communication between KaZaA P2P clients.

Possible Gnutella Traffic

05/06-10:56:00.814179 [**] Queso fingerprint [**] 130.136.4.226:3369 ->
MY.NET.217.54:6346

05/06-10:56:46.877562 [**] Queso fingerprint [**] 130.136.4.226:3637 ->
MY.NET.217.54:6346

At first glance this looks like the it could be a Queso fingerprint attempt, but I
believe it’s alerted because the traffic has come from behind an ECN aware
router. This Queso fingerprint rule (which seems to have been removed from
the current default snort signatures file) alerts on both the Reserved flags and
the SYN flag set [129]. Toby Miller showed the difficulty that ECN would
cause for Queso and Nmap traffic detection in his paper “ECN and it's impact
on Intrusion Detection” back in January 2001 [130]. I believe these packets
are actually part of a Gnutella P2P connection. There may be some actual
Queso and Nmap scanning attempts in amongst these false alerts but they
are difficult to find with the present rulebase.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 50

 Analyze ThisGCIA Certification Assignment

I would recommend adding specific rules to the snort signatures to
detect the peer-to-peer clients more accurately. Snort v2.0.0 has some P2P
detection routines available for use in its default configuration. If the University
does not want to allow P2P at all, then the commonly used P2P ports (1214,
6346, 6257, 6699, 5555, 6666 and 7777) need to be blocked (Note port 6666
is sometimes used for IRC traffic). Another option is to force all users to go
through a proxy server that has P2P proxy controlling capabilities. It would be
prudent to remind all users at this point that if they are found to have illegal
software and files on their machines then disciplinary measures could be
taken against them.

• There are a few IRC users on the campus who seem to be infected with the
XDCC bot or the sdbot. The XDCC bot allows file-sharing through IRC chat
channels. TonkinGin has an excellent paper on the perils of XDCC available
[131]. The sdbot is a DDoS flooding tool controlled from IRC. Cert have
released an advisory about the GT-bot and sdbot [132]. They have received
reports of sdbot networks as large as 7000 systems. It is important to visit the
machines listed in Appendix F and to investigate them for compromise.

• MY.NET.150.86 may have been remote controlled by 68.55.34.178
(pcp255450pcs.howard01.md.comcast.net) using WinVNC. There was an
alert that showed that MY.NET.150.86 responded to 68.55.34.178 on a port
commonly used for WinVNC remote control. The machine needs to be
checked that it does have WinVNC, as it could be a security risk if the user is
not authorised, or if the data is being transported across the Internet
unencrypted. There needs to be a policy on remote desktop access. If
external access needs to be had, then the traffic should be encrypted to
secure it.

3.8. Detected Scans
As mentioned earlier the scan logs contained the ‘real’ IP addresses of the
University. This had to be rectified before the log files could be used for input. The
prepscans.pl perl script (see Appendix G) was created to obfuscate the ‘real’ IP
address and allow the analysis to continue. The results are listed below.

 Uniq Src > # Pkts Uniq Dest > # Pkts Traffic Flow

Scan Type #
Scans Int Ext Int Ext I->I I->E E->I E->E

UDP 616764 407509 >
615538 1060 > 1226 1060 > 1226 407509 >

615538 0 615538 1226 0
SYN 352647 66727 >

70517 267051 > 282130 267051 > 282130 66727 >
70517 0 70517 282130 0

NULL 3059 448> 1162 343 > 1897 343 > 1897 448 > 1162 0 1162 1897 0
FIN 1818 571 > 571 1245 > 1247 1245 > 1247 571 > 571 0 571 1247 0

NOACK 1045 365 > 574 295 > 471 471 365 > 574 0 574 471 0
INVALIDACK 581 160 > 199 341 > 382 341 > 382 160 > 199 0 199 382 0

VECNA 435 97 > 136 174 > 299 174 > 299 97 > 136 0 136 299 0
UNKNOWN 262 71 > 74 183 > 188 183 > 188 71 > 74 0 74 188 0

XMAS 88 47 > 57 26 > 31 26 > 31 47 > 57 0 57 31 0
NMAPID 51 21 > 32 16 > 19 16 > 19 21 > 32 0 32 19 0

FULLXMAS 43 21 > 22 17 > 21 17 > 21 21 > 22 0 22 21 0
SPAU 16 8 > 9 3 > 7 3 > 7 8 > 9 0 9 7 0

SYNFIN 10 6 > 7 4 > 4 4 > 4 6 > 7 0 6 4 0
TOTAL 976819 476051 >

688897 270758 > 287922 270758 > 287922 476051 >
688897 0 688897 287922 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 51

 Analyze ThisGCIA Certification Assignment

3.9. Out-of-Spec (OOS) Discussion
These files contained output from the snort instance which was out-of-spec – i.e. it
didn’t meet the required standard for a valid packet structure. By far the most
common packet type was the ECN-setup SYN packet (91.1% of OOS)

05/03-00:05:24.337895 81.218.96.254:47004 -> MY.NET.227.150:1214
TCP TTL:49 TOS:0x0 ID:12710 IpLen:20 DgmLen:60 DF
12****S* Seq: 0xAF68B6A9 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 327190287 0 NOP WS: 0

This packet is defined in RFC3168 [133] as the initial connection packet of an ECN
aware machine. These can safely be ignored in most instances. But could this
packet be anything else? Queso and Nmap scans often set the two ‘Reserved’ bits
to see how the OS will react, which allows them to detect what OS is replying to
them. ECN traffic uses those same two bits, which limits the effectiveness of using
the reserved bits as a Queso or Nmap indicator. Toby Miller explains this well in his
paper “ECN and it's impact on Intrusion Detection” [130].
The next most often detected OOS packet (5.4%) had only the Push flags set. Push
should never be set by itself, but is always used in conjunction with an Ack flag. The
culprit seems to be KaZaA. If you look through the ASCII conversion of the hex
dump below you will see the typical KaZaA content header “UserAgent:
KazaaClient”. It looks like the KaZaA client built on November 3 2002 has a coding
error built into it.

5/03-07:59:44.086128 148.63.130.64:1183 -> MY.NET.218.62:2373
TCP TTL:109 TOS:0x0 ID:1591 IpLen:20 DgmLen:443 DF
****P*** Seq: 0x8185B00A Ack: 0x0 Win: 0x2000 TcpLen: 20
47 45 54 20 2F 2E 68 61 73 68 3D 38 64 63 38 62 GET /.hash=8dc8b
66 37 36 35 35 38 64 38 32 62 37 33 64 62 37 35 f76558d82b73db75
35 31 31 35 39 62 61 35 65 30 66 31 33 63 32 39 51159ba5e0f13c29
38 61 31 20 48 54 54 50 2F 31 2E 31 0D 0A 48 6F 8a1 HTTP/1.1..Ho
73 74 3A 20 31 33 30 2E 38 35 2E 32 31 38 2E 36 st: MY.NET.218.6
32 3A 32 33 37 33 0D 0A 55 73 65 72 41 67 65 6E 2:2373..UserAgen
74 3A 20 4B 61 7A 61 61 43 6C 69 65 6E 74 20 4E t: KazaaClient N
6F 76 20 20 33 20 32 30 30 32 20 32 30 3A 32 39 ov 3 2002 20:29

The next strange packet is below. This has no TCP flags set at all. Also notice the
Windows Size and TCP Length are both set to 0. It is possible that this is an OS
fingerprinting scan, or a corrupted TCP/IP stack, which is not sending what it should
be sending.

05/03-06:09:52.614670 212.202.193.243:63899 -> MY.NET.233.146:1382
TCP TTL:114 TOS:0x0 ID:9258 IpLen:20 DgmLen:40 DF
******** Seq: 0x2FEEF85B Ack: 0xDD74D5FE Win: 0x0 TcpLen: 0

The rest of the anomalous packets (2.2%) seem to be either OS fingerprint scans or
corrupted TCP/IP stacks.

3.10. Top Talkers
These four sections discuss the top talkers in each of the three categories (Alerts,
Scans and Out-of-spec packets) and the overall rating. Each of the first three
sections have two tables, which each list the internal and external top talkers
respectively. The table formats used are based on Les Gordon’s design for his GCIA
practical.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 52

 Analyze ThisGCIA Certification Assignment

I wanted to produce top talkers for alerts, scans, and OOS files to try to categorise
what sort of traffic was being produce by which hosts. I figured that as the
spp_portscan data from within the alert files was not being analysed, I would be able
to see who was the top scanner, the top attacker, and the top corrupt packet
generator respectively. Only then would I find out who was the most vociferous
sender.

3.10.1. Alert Top Talkers
(Top 10 source IP’s generating alerts)

Internal Source Top
Talkers External Source Top Talkers

Int Src # Pkts Ext Src # Pkts DNS Name Resolved As
MY.NET.210.114 354845 216.39.48.127 13959 buildrack52.sv.av.com
MY.NET.201.58 13311 133.82.241.150 8412 cuapfs0.imit.chiba-u.ac.jp
MY.NET.235.110 13259 12.231.84.153 6008 12-231-84-153.client.attbi.com
MY.NET.202.206 4997 12.207.10.226 4966 12-207-10-226.client.attbi.com
MY.NET.201.38 4033 128.46.117.76 4873 civl1240pc2.ecn.purdue.edu
MY.NET.226.250 3460 67.161.246.193 3294 c-67-161-246-193.client.comcast.net
MY.NET.97.213 2200 24.45.157.41 2966 ool-182d9d29.dyn.optonline.net
MY.NET.201.42 2007 216.78.180.128 2639 adsl-78-180-128.lft.bellsouth.net
MY.NET.226.206 1442 218.141.54.99 2552 YahooBB218141054099.bbtec.net
MY.NET.153.149 1321 152.2.210.81 2403 metalab.unc.edu

Top 10 Internal Source IP’s
by Quantity Top 10 External Source IP’s by Quantity

3.10.2. Top 10 Source and Destination Ports
Top 10 Source Ports Top 10 Destination Ports
Src Port # Pkts Dest Port # Pkts

0 357579 0 357536
65535 33583 6667 206759
1026 23304 137 204293
1025 22408 80 64064
137 20412 65535 29245

1027 20204 None 17635
None 17634 5121 13031
1028 17496 2327 6008
1029 13637 69 5659
5121 10045 515 5039

Top 10 Source Ports Top 10 Destination Ports

3.10.3. Scans Top Talkers
(The top 10 scan generating source IP addresses)

Internal Source Top Talkers External Source Top Talkers
Int Src # Pkts Ext Src # Pkts DNS Name Resolved As
MY.NET.210.114 354845 152.1.193.6 15962 chjlpc4.chem.ncsu.edu
MY.NET.132.24 50444 217.88.231.137 13949 pD958E789.dip.t -dialin.net
MY.NET.240.62 40411 217.84.122.16 11688 pD9547A10.dip.t -dialin.net
MY.NET.87.50 32605 198.144.65.56 9160 nt-001-00055.greenapple.com
MY.NET.250.98 29571 64.212.144.139 8313 No DNS - Frontier Communications

MY.NET.1.3 28663 80.161.34.13 8244 0x50a1220d.kd4nxx15.adsl -
dhcp.tele.dk

MY.NET.97.190 26833 66.130.208.97 7663 modemcable097.208-130-
66.que.mc.videotron.ca

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 53

 Analyze ThisGCIA Certification Assignment

MY.NET.234.158 20852 213.204.66.141 7040 No DNS - Yimpasnet Internet Iletisim
Teknoloji As.

MY.NET.205.150 17296 208.163.46.185 6939 port0185-cvx-pmbk.cwjamaica.com
MY.NET.153.152 15298 12.16.131.99 6932 No DNS – Jackson Marketing

Top 10 Internal So urce IP’s
by Quantity Top 10 External Source IP’s by Quantity

3.10.4. Out-Of-Spec Top 10 Talkers
(Top 10 Out-of-Spec packet generating source IP Addresses)
Internal Source Top

Talkers External Source Top Talkers

Int Src # Pkts Ext Src #
Pkts DNS Name Resolved As

MY.NET.12.4 26 209.123.49.137 1638 No DNS – (Net Access)
MY.NET.12.2 5 68.54.93.181 1049 pcp01781292pcs.howard01.md.comcast.net
MY.NET.194.179 5 213.197.10.95 370 010.095.dsl.concepts.nl
MY.NET.241.82 4 81.218.114.59 340 bzq-218-114-59.red.bezeqint.net
MY.NET.252.14 3 81.218.109.79 313 bzq-218-109-79.red.bezeqint.net
MY.NET.17.30 1 210.253.214.11 254 nttfis2-011.246.ne.jp
MY.NET.104.113 1 66.140.25.157 248 proxyscan.freenode.net
MY.NET.40.11 1 151.42.126.19 129 adsl-ull-19-126.42-151.net24.it

 148.63.152.228 110 vsat-148-63-152-
228.c189.t7.mrt.starband.net

 193.233.7.104 105 light.inr.ac.ru All Internal Source IP’s

 Top 10 External Source IP’s by Quantity

3.10.5. Top 5 Overall Talkers
(Top 5 senders overall)

Internal Source Top Talkers External Source Top Talkers
Int Src # Pkts Ext Src # Pkts DNS Name Resolved As
MY.NET.210.114 419777 152.1.193.6 15966 chjlpc4.chem.ncsu.edu
MY.NET.132.24 50444 216.39.48.127 13959 buildrack52.sv.av.com
MY.NET.240.62 40411 217.88.231.137 13951 pD958E789.dip.t-dialin.net
MY.NET.87.50 32605 217.84.122.16 11689 pD9547A10.dip.t -dialin.net
MY.NET.250.98 29571 198.144.65.56 10253 nt-001-00055.greenapple.com

Top 5 Internal Source IP’s Top 5 External Source IP’s

3.10.6. External Registration Information
#1 External Top Talker IP Address: 152.1.193.6
OrgName: North Carolina State

University
OrgID: NCSU
Address: NCSU - Computing Center Box

7109
City: Raleigh
StateProv: NC
PostalCode: 27695
Country: US

NetRange: 152.1.0.0 - 152.1.255.255
CIDR: 152.1.0.0/16
NetName: NCSU
TechName: Host, Master
TechPhone: +1-919-515-7571
TechEmail: Hostmaster@ncsu.edu

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 54

 Analyze ThisGCIA Certification Assignment

#2 External Top Talker IP Address: 216.39.48.127
OrgName: AltaVista Company
OrgID: ALTAVI-1
Address: 1070 Arastradero Rd
City: Palo Alto
StateProv: CA
PostalCode: 94304
Country: US
NetRange: 216.39.48.0 -
216.39.63.255
CIDR: 216.39.48.0/20
NetName: NETBLK-INTERNET-BLK-1-AV

TechName: ALtaVista, Operations
TechPhone: +1-650-320-7700
TechEmail: netops@av.com
OrgAbuseName: Abuse
OrgAbusePhone: +1-650-320-7700
OrgAbuseEmail: abuse@av.com
OrgTechName: ALtaVista, Operations
OrgTechPhone: +1-650-320-7700
OrgTechEmail: netops@av.com

#3 External Top Talker and
#4 External Top Talk er

IP Address: 217.88.231.137 and
IP Address: 217.84.122.16

descr: Deutsche Telekom AG,
Internet service provider
address: Deutsche Telekom AG
address: D-90449 Nuernberg
address: Germany
country: DE
phone: +49 180 5334332
fax-no: +49 180 5334252
e-mail: ripe.dtip@telekom.de

inetnum: 217.80.0.0 -
217.89.31.255
person: Security Team
address: Deutsche Telekom AG
address: Germany
phone: +49 180 5334332
fax-no: +49 180 5334252
e-mail: abuse@t-ipnet.de

#5 External Top Talker IP Address: 198.144.65.56
OrgName: Green Apple, Inc.
OrgID: GRNA
Address: 127 W Sixth Ave
Address: Suite D
City: Lancaster
StateProv: OH
PostalCode: 43130
Country: US

NetRange: 198.144.64.0 -
198.144.95.255
CIDR: 198.144.64.0/19
NetName: GREENAPPLE
OrgTechHandle: SUPPO33-ARIN
OrgTechName: Hostmaster
OrgTechPhone: +1-740-653-9890
OrgTechEmail:
hostmaster@greenapple.com@av.com

Sender of BugBear Virus IP Address: 160.94.128.49
OrgName: University of Minnesota
OrgID: UNIVER-234
Address: Networking Services
Address: Computer and Information
Services
Address: University of Minnesota
Address: 130 Lind Hall
Address: 207 Church St SE
Address: Minneapolis MN 55455-
0134
Country: US

NetRange: 160.94.0.0 -
160.94.255.255
CIDR: 160.94.0.0/16
AbuseName: UofM OIT Security and
Assurance
AbusePhone: +1-612-626-8639
AbuseEmail: abuse@umn.edu
TechName: NTS - Technical
Assistance Center
TechPhone: +1-612-625-0006
TechEmail: nts@nts.umn.edu @av.com

3.11. Defensive Recommendations
Overall, the Universities network seems reasonably well protected. There are not
any major issues to deal with apart from the large amount of false alerts generated
by the snort sensor. There needs to be a balance between too many alerts to
overwhelm, and not enough to detect when designing a rulebase. Unfortunately, I
believe the University has erred on the side of too broadly specified rules. Some
valid alerts are being buried under the weight of the false alerts (IIS Unicode, CGI
Null, Exploit x86 NOOP, etc.). At present, their rules are specified too broadly and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 55

 Analyze ThisGCIA Certification Assignment

need to be narrowed in their scope. This of course should be balanced against the
need for low-level information for in-depth analysis.

The version of Snort currently being used by the University needs to be
upgraded. From investigations of the error messages given by some of the Snort
pre-processors it seems obvious that this version of Snort is v1.8 or earlier. The
University should upgrade to v2.0.0, as it includes many bug fixes and performance
enhancements. One of the big improvements in the newer versions are the Snort
pre-processors, which generally are more efficient in their operation. This may go
someway towards alleviating the problem the University is experiencing with log file
corruption.

There is a need for a centrally managed enterprise level anti-virus solution.
This would have a centrally managed structure, with automated virus updating
feature to keep the protection current. This would enable an automated protection
against infection, reducing the issues that the incident response team would need to
deal with in person. Many anti-virus vendors’ products detect known trojans and
worms as well as viruses. This would help mitigate the vulnerability the University
has with Nimda, and other viruses. This should be used in conjunction with policy
and procedure control to force users who connect to the Universities network to have
adequate anti-virus protection. While this may be too difficult to fully implement in a
university environment with all its diversity, at least some control is needed to
mitigate the virus threat.

All machines specifically noted as needing further investigations in the
preceeding sections need to be checked for signs of compromise. It is important that
these checks are made as the lack of full packet traces mean that we need to err on
the side of caution. While it may take Incident response Staff a while to visit each of
the machines in question, it would be less time than that needed to clear the
organisations network if the security exploits spread.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 56

 AppendicesGCIA Certification Assignment

Appendix A - ICMP Large ICMP Packet

12:33:29.516782 IP (tos 0x48, ttl 245, id 2 4826, len 1492) blueice1a.uk.ibm.com
> MY.SUB.NET.3: icmp 1472: echo request seq 0 (DF)
0x0000 4548 05d4 60fa 4000 f501 445d c2c4 643b EH..`.@...C;..d;
0x0010 XXXX XX03 0800 32cc c533 0000 0000 0000 3......
0x0020 0000 0000 0000 0000 0000 0000 0000 0000
--[repetitive 0000’s]--
0x05c0 0000 0000 0000 0000 0000 0000 0000 0000
0x05d0 0000 0000

Appendix B - Logs of packets with a reserved bit set

10 May 2002
14:41:19.544488 IP 218.2.129.171 > 46.5.188.185: tcp (frag 0:20@36744)

11 May 2002
None

12 May 2002
None

13 May 2002
17:30:26.004488 IP 192.1.1.188 > 46.5.28.40: tcp (frag 0:20@17184)
21:44:51.094488 IP 192.1.1.188 > 46.5.39.57: tcp (frag 0:20@17184)

14 May 2002
05:52:57.814488 IP 192.1.1.188 > 46.5.170.11: tcp (frag 0:20@17184)
06:11:35.444488 IP 192.1.1.188 > 46.5.114.247: tcp (frag 0:20@17184)
10:49:42.254488 IP 192.1.1.188 > 46.5.15.28: tcp (frag 0:20@17184)
14:16:50.074488 IP 192.1.1.188 > 46.5.192.0: tcp (frag 0:20@17184)
15:17:51.374488 IP 192.1.1.188 > 46.5.73.71: tcp (frag 0:20@17184)
16:52:05.274488 IP 192.1.1.188 > 46.5.248.213: tcp (frag 0:20@17184)
17:10:46.974488 IP 192.1.1.188 > 46.5.157.208: tcp (frag 0:20@17184)
17:10:51.194488 IP 192.1.1.188 > 46.5.108.147: tcp (frag 0:20@17184)
17:54:43.974488 IP 192.1.1.188 > 46.5.69.163: tcp (frag 0:20@17184)
19:52:28.674488 IP 192.1.1.188 > 46.5.69.44: tcp (frag 0:20@17184)
20:45:32.674488 IP 192.1.1.188 > 46.5.174.220: tcp (frag 0:20@17184)
00:02:18.584488 IP 192.1.1.188 > 46.5.76.179: tcp (frag 0:20@17184)
00:59:09.394488 IP 192.1.1.188 > 46.5.136.29: tcp (frag 0:20@17184)

15 May 2002
01:38:45.764488 IP 192.1.1.188 > 46.5.230.126: tcp (frag 0:20@17184)
02:25:08.784488 IP 192.1.1.188 > 46.5.30.15: tcp (frag 0:20@17184)
07:54:52.984488 IP 192.1.1.188 > 46.5.144.147: tcp (frag 0:20@17184)
08:13:50.314488 IP 192.1.1.188 > 46.5.195.197: tcp (frag 0:20@17184)
09:38:31.684488 IP 192.1.1.188 > 46.5.88.21: tcp (frag 0:20@17184)
11:07:00.824488 IP 192.1.1.188 > 46.5.216.1: tcp (frag 0:20@17184)
11:37:15.474488 IP 192.1.1.188 > 46.5.56.12: tcp (frag 0:20@17184)
15:20:11.054488 IP 192.1.1.188 > 46.5.200.108: tcp (frag 0:20@17184)
16:00:01.464488 IP 192.1.1.188 > 46.5.211.185: tcp (frag 0:20@17184)
18:26:44.724488 IP 192.1.1.188 > 46.5.169.175: tcp (frag 0:20@17184)
19:09:38.764488 IP 192.1.1.188 > 46.5.136.117: tcp (frag 0:20@17184)
19:44:41.644488 IP 192.1.1.188 > 46.5.168.246: tcp (frag 0:20@17184)
22:22:24.834488 IP 192.1.1.188 > 46.5.20.2: tcp (frag 0:20@17184)

16 May 2002
04:25:49.004488 IP 192.1.1.188 > 46.5.226.187: tcp (frag 0:20@17184)
04:32:20.144488 IP 192.1.1.188 > 46.5.20.200: tcp (frag 0:20@17184)
09:11:01.594488 IP 192.1.1.188 > 46.5.132.21: tcp (frag 0:20@17184)
12:10:30.204488 IP 192.1.1.188 > 46.5.72.213: tcp (frag 0:20@17184)
14:14:48.704488 IP 192.1.1.188 > 46.5.130.136: tcp (frag 0:20@17184)
21:12:37.084488 IP 192.1.1.188 > 46.5.94.235: tcp (frag 0:20@17184)
21:43:14.304488 IP 192.1.1.188 > 46.5.178.85: tcp (frag 0:20@17184)
22:44:30.484488 IP 192.1.1.188 > 46.5.51.201: tcp (frag 0:20@17184)
00:36:39.194488 IP 192.1.1.188 > 46.5.109.103: tcp (frag 0:20@17184)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 57

 AppendicesGCIA Certification Assignment

Appendix C - Both SHELLCODE x86 NOOP packets
Packet 1:
[**] SHELLCODE x86 NOOP [**]
11/10-17:12:47.636507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x5EA
130.94.22.249:80 -> 207.166.87.157:64741 TCP TTL:52 TOS:0x0 ID:23339 IpLen:20 DgmLen:1500
DF
A* Seq: 0xD454C3BC Ack: 0xAC7EEF02 Win: 0x1920 TcpLen: 20
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 00 3....&...E.
0x0010: 05 DC 5B 2B 40 00 34 06 6F A0 82 5E 16 F9 CF A6 ..[+@.4.o..^....
0x0020: 57 9D 00 50 FC E5 D4 54 C3 BC AC 7E EF 02 50 10 W..P...T...~..P.
0x0030: 19 20 14 69 00 00 5B AD D5 58 40 00 FF 04 04 00 . .i..[..X@.....
0x0040: 00 00 00 00 00 00 40 00 FF 04 D4 00 00 00 80 04 @.........
0x0050: 31 02 FF E3 20 C0 CB 1D EA 9E 97 EC DB 46 B5 C7 1...F..
0x0060: 63 28 A9 86 0F 2A 0B 08 90 58 AE 54 75 63 2B 2A c(...*...X.Tuc+*
0x0070: 22 CD 6F FF A9 9C 54 48 6B 95 0E 38 D3 00 00 01 ".o...THk..8....
0x0080: 6F FF FF 33 E4 C0 3C 58 A5 4E 4D 75 BA DA D0 CA o..3..<X.NMu....
0x0090: C4 5D 2A C8 FD 3B 55 C8 EB AC 41 52 CD 88 0E 84 .]*..;U...AR....
0x00A0: A2 96 F5 AD 59 59 0F F4 AF 54 F9 3D 64 95 F6 BF YY...T.=d...
0x00B0: F5 EB 7B 1B 54 37 25 B1 C1 B3 FF E3 20 C0 AE 1C ..{.T7%..... ...
0x00C0: 4B 7A AF F8 C1 4A D9 8A 2A 0C B9 CF 24 38 F8 05 Kz...J..*...$8..
0x00D0: E0 69 A2 2E 3C EC D7 B4 7A 9A B1 56 B6 84 AE 48 .i..<...z..V...H
0x00E0: 00 00 19 6A AA 26 65 B1 9E 01 B7 2B 0D EB 48 61 ...j.&e....+..Ha
0x00F0: F4 0F AC F2 9D 03 F2 42 BA B2 79 79 9A E8 EA F7 B..yy....
0x0100: 9D 47 3A 71 83 CF 7E D4 91 5B DF F6 57 B2 AA 16 .G:q..~..[..W...
0x0110: 9E EF 94 19 66 DD 7A 65 3B 5D 75 B1 B9 D7 31 15 f.ze;]u...1.
0x0120: EE B0 40 00 FF 04 04 00 00 00 00 00 00 00 40 00 ..@...........@.
0x0130: FF 04 D4 00 00 00 80 04 49 01 FF E3 20 C0 97 15 I... ...
0x0140: 32 3E CF F8 69 44 B6 8C 47 7B 58 F0 C8 E1 33 43 2>..iD..G{X...3C
0x0150: F5 47 35 37 99 6E FE 69 25 6B 73 E8 B9 20 00 00 .G57.n.i%ks.. ..
0x0160: 5A BF FF 25 4C 0A E0 0E 3C 6F 3A 32 64 AB 73 B9 Z..%L...<o:2d.s.
0x0170: FA B2 7B F0 7D 76 E4 A3 93 7B A9 1F 69 F6 77 47 ..{.}v...{..i.wG
0x0180: D7 F6 91 6B CD B3 F5 76 75 2B 77 57 46 4D CF 95 ...k...vu+wWFM..
0x0190: 59 D5 E2 2C AD 7F A3 11 5D EA E4 21 DB 46 BC 96 Y..,....].. !.F..
0x01A0: 5C 87 FF E3 20 C0 9D 16 1A 7A BB F8 91 44 B6 49 \...z...D.I
0x01B0: 1B 21 11 13 6B 2A EE EC D4 BD B5 FE 89 90 B4 A6 .!..k*..........
0x01C0: 73 9C 70 00 11 5A FF FF 28 96 1E 02 A9 E2 52 B9 s.p..Z..(.....R.
0x01D0: 99 EB 2C F4 D2 8F 11 4D 93 DB 91 D2 B5 DE 7E 77 ..,....M......~w
0x01E0: 57 46 29 3B C4 32 31 68 94 95 76 A7 8E B9 F6 FD WF);.21h..v.....
0x01F0: AC D3 A1 59 26 EC 85 7A D9 DE 87 65 A6 CE DA 2A ...Y&..z...e...*
0x0200: EE 76 5A B5 0E 8B DB 57 B6 89 40 00 BF 00 1A 00 .vZ....W..@.....
0x0210: 00 00 11 00 6A F5 97 D4 38 E2 4A 80 00 01 14 00 j...8.J.....
0x0220: 00 00 00 01 25 AB E0 1C C7 75 E6 00 86 06 06 5D %....u.....]
0x0230: 00 11 00 00 FF 04 04 00 00 00 00 00 00 00 40 00 @.
0x0240: BF 00 1A 00 00 00 12 00 6A F5 97 D4 38 E3 5B 00 j...8.[.
0x0250: 00 01 14 00 00 00 00 01 25 AB E0 1C C7 95 8A 00 %.......
0x0260: 85 06 03 5D 00 12 00 FF 04 6C 00 00 00 40 02 61 ...].....l...@.a
0x0270: 00 FF E3 20 C0 9F 15 E3 86 CB F8 50 84 DA 2B C9 P..+.
0x0280: 44 79 0B 67 DD 9D 57 BB A4 F7 76 5C 88 F5 D7 61 Dy.g..W...v \...a
0x0290: 2A 56 18 00 01 A2 AA AA 28 44 4C 03 E3 7E 56 B5 *V......(DL..~V.
0x02A0: 6B 5F BE 48 BD 72 FF CA 7F F2 52 E7 FC 0B FF 9B k_.H.r....R.....
0x02B0: FF FF F9 DF 6C 8A FD 9B 10 61 A3 6F 4E D0 39 92 l....a.oN.9.
0x02C0: 01 00 9A 6C 4A 2D 36 32 2F 20 C1 D8 7C 10 04 82 ...lJ-62/ ..|...
0x02D0: 91 DF 7F 6C 96 4B F6 7C DF 40 00 BF 00 1A 00 00 ...l.K.|.@......
0x02E0: 00 13 00 6A F5 97 D4 38 E3 F0 80 00 01 14 00 00 ...j...8........
0x02F0: 00 00 01 25 AB E0 1C C7 A5 0F C0 85 06 03 5D 00 ...%..........].
0x0300: 13 00 FF 04 04 00 00 00 00 00 00 00 40 00 3F 02 @.?.
0x0310: 3E 02 00 00 FF D8 FF DB 00 43 00 10 0B 0C 0E 0C >........C......
0x0320: 0A 10 0E 0D 0E 12 11 10 13 18 27 19 18 16 16 18 '.....
0x0330: 30 22 24 1C 27 39 32 3C 3B 38 32 37 36 3F 47 5A 0"$.'92<;8276?GZ
0x0340: 4C 3F 43 55 44 36 37 4E 6B 4F 55 5D 60 65 66 65 L?CUD67NkOU]`efe
0x0350: 3D 4B 6F 77 6E 62 76 5A 63 65 61 FF DB 00 43 01 =KownbvZcea...C.
0x0360: 11 12 12 18 15 18 2E 19 19 2E 61 41 37 41 61 61 aA7Aaa
0x0370: 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 aaaaaaaaaaaaaaaa
0x0380: 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 aaaaaaaaaaaaaaaa
0x0390: 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 aaaaaaaaaaaaaaaa
0x03A0: FF C4 00 1F 00 00 01 05 01 01 01 01 01 01 00 00
0x03B0: 00 00 00 00 00 00 01 02 03 04 05 06 07 08 09 0A
0x03C0: 0B FF C4 00 B5 10 00 02 01 03 03 02 04 03 05 05
0x03D0: 04 04 00 00 01 7D 01 02 03 00 04 11 05 12 21 31 }........!1
0x03E0: 41 06 13 51 61 07 22 71 14 32 81 91 A1 08 23 42 A..Qa."q.2....#B
0x03F0: B1 C1 15 52 D1 F0 24 33 62 72 82 09 0A 16 17 18 ...R..$3br......
0x0400: 19 1A 25 26 27 28 29 2A 34 35 36 37 38 39 3A 43 ..%&'()*456789:C
0x0410: 44 45 46 47 48 49 4A 53 54 55 56 57 58 59 5A 63 DEFGHIJSTUVWXYZc
0x0420: 64 65 66 67 68 69 6A 73 74 75 76 77 78 79 7A 83 defghijstuvwxyz.
0x0430: 84 85 86 87 88 89 8A 92 93 94 95 96 97 98 99 9A

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 58

 AppendicesGCIA Certification Assignment

0x0440: A2 A3 A4 A5 A6 A7 A8 A9 AA B2 B3 B4 B5 B6 B7 B8
0x0450: B9 BA C2 C3 C4 C5 C6 C7 C8 C9 CA D2 D3 D4 D5 D6
0x0460: D7 D8 D9 DA E1 E2 E3 E4 E5 E6 E7 E8 E9 EA F1 F2
0x0470: F3 F4 F5 F6 F7 F8 F9 FA FF C4 00 1F 01 00 03 01
0x0480: 01 01 01 01 01 01 01 01 00 00 00 00 00 00 01 02
0x0490: 03 04 05 06 07 08 09 0A 0B FF C4 00 B5 11 00 02
0x04A0: 01 02 04 04 03 04 07 05 04 04 00 01 02 77 00 01 w..
0x04B0: 02 03 11 04 05 21 31 06 12 41 51 07 61 71 13 22 !1..AQ.aq."
0x04C0: 32 81 08 14 42 91 A1 B1 C1 09 23 33 52 F0 15 62 2...B.....#3R..b
0x04D0: 72 D1 0A 16 24 34 E1 25 F1 17 18 19 1A 26 27 28 r...$4.%.....&'(
0x04E0: 29 2A 35 36 37 38 39 3A 43 44 45 46 47 48 49 4A)*56789:CDEFGHIJ
0x04F0: 53 54 55 56 57 58 59 5A 63 64 65 66 67 68 69 6A STUVWXYZcdefghij
0x0500: 73 74 75 76 77 78 79 7A 82 83 84 85 86 87 88 89 stuvwxyz........
0x0510: 8A 92 93 94 95 96 97 98 99 9A A2 A3 A4 A5 A6 A7
0x0520: A8 A9 AA B2 B3 B4 B5 B6 B7 B8 B9 BA C2 C3 C4 C5
0x0530: C6 C7 C8 C9 CA D2 D3 D4 D5 D6 D7 D8 D9 DA E2 E3
0x0540: E4 E5 E6 E7 E8 E9 EA F2 F3 F4 F5 F6 F7 F8 F9 FA
0x0550: FF D9 BF 01 63 16 00 00 14 00 FF D8 FF E0 00 10 c...........
0x0560: 4A 46 49 46 00 01 01 00 00 01 00 01 00 00 FF C0 JFIF............
0x0570: 00 11 08 00 D2 01 0E 03 01 22 00 02 11 01 03 11 "......
0x0580: 01 FF DA 00 0C 03 01 00 02 11 03 11 00 3F 00 F4 ?..
0x0590: 0A 28 A2 80 0A 28 A2 80 0A 28 A2 80 0A 28 A2 80 .(...(...(...(..
0x05A0: 0A 28 A2 80 0A 28 A2 80 0A 28 A2 80 0A 28 A2 80 .(...(...(...(..
0x05B0: 0A 29 AC EA 83 2E C1 47 A9 38 AA 93 6A D6 10 E7 .).....G.8..j...
0x05C0: 7D CA 13 E8 A7 77 F2 A0 0B B4 56 1C DE 29 B1 8F }....w....V..)..
0x05D0: EE 2C 92 1F A0 15 46 7F 15 4F B3 7C 56 81 53 38 .,....F..O.|V.S8
0x05E0: DE F9 22 95 C0 EA A9 2B 85 9B .."....+..
=+
Packet 2:
[**] SHELLCODE x86 NOOP [**]
11/10-17:13:13.236507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x5EA
130.94.22.249:80 -> 207.166.87.157:64741 TCP TTL:52 TOS:0x0 ID:23403 IpLen:20 DgmLen:1500
DF
A* Seq: 0xD456219D Ack: 0xAC7EF2EC Win: 0x2180 TcpLen: 20
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 00 3....&...E.
0x0010: 05 DC 5B 6B 40 00 34 06 6F 60 82 5E 16 F9 CF A6 ..[k@.4.o`.^....
0x0020: 57 9D 00 50 FC E5 D4 56 21 9D AC 7E F2 EC 50 10 W..P...V!..~..P.
0x0030: 21 80 A5 D2 00 00 75 AB 97 7E 7E 6D 8F 47 65 A3 !.....u..~~m.Ge.
0x0040: 88 95 75 57 43 AE 69 AB 6A B3 A5 EA 66 B8 E5 55 ..uWC.i.j...f..U
0x0050: 42 A4 88 72 0B A8 D1 ED 51 53 1E 14 FF 4F C3 71 B..r....QS...O.q
0x0060: CA C5 1E 4F 37 BA 9D C9 4D ED 7B 59 4E 3B DB D0 ...O7...M.{YN;..
0x0070: 06 A9 8C 58 D3 8A BD 87 C3 D5 AD 13 A7 D6 4C A0 ...X..........L.
0x0080: 84 0A 04 40 B8 FF E3 20 C0 D7 16 C2 66 B7 F2 C1 ...@...f...
0x0090: 44 B7 4B 55 90 53 D3 0D 40 25 D2 2B 48 40 27 5C D.KU.S..@%.+H@'\
0x00A0: E1 60 D0 2D 54 EA 4E F2 E3 9D 98 3D A9 CD ED 33 .`.-T.N....=...3
0x00B0: 73 73 79 77 11 A6 C7 AC 2C BE 2D 91 B9 82 6E 67 ssyw....,.-...ng
0x00C0: 44 77 FA 53 39 96 BB F3 23 85 C5 28 BE B2 53 CB Dw.S9...#..(..S.
0x00D0: 45 96 6E 64 A6 E6 41 DB D4 18 93 A1 4A 58 45 71 E.nd..A.....JXEq
0x00E0: 9F 53 96 CE 42 C8 27 B4 E6 6F EF FD FC 40 00 BF .S..B.'..o...@..
0x00F0: 00 1A 00 00 00 11 00 6A 85 14 50 38 E3 5B 00 00 j..P8.[..
0x0100: 01 14 00 00 00 00 01 25 AA 1E 1C C7 95 8A 00 85 %........
0x0110: 06 03 5D 00 11 00 FF 04 04 00 00 00 00 00 00 00 ..].............
0x0120: 40 00 BF 00 1A 00 00 00 12 00 6A 85 14 50 38 E3 @.........j..P8.
0x0130: F0 80 00 01 14 00 00 00 00 01 25 AA 1E 1C C7 A5 %.....
0x0140: 0F C0 85 06 03 5D 00 12 00 FF 04 6C 00 00 00 40 ].....l...@
0x0150: 02 D9 00 FF E3 20 C0 D7 19 AA 8E C7 F8 79 CA B7 y..
0x0160: BE 7D C8 50 39 05 D9 D0 00 00 0F FF EF 3E 82 14 .}.P9........>..
0x0170: 9F A0 04 52 BA BA 8E 62 ED CE C1 BD A1 A2 E5 EA ...R...b........
0x0180: EE 37 6A 40 EC 95 61 8A 9B F3 46 CC 3E D2 46 9C .7j@..a...F.>.F.
0x0190: F2 B1 05 AB 74 15 89 DB F6 BA 12 E8 5F DB A5 7E t......._..~
0x01A0: A8 E5 FB 5B 7F FE 8B 49 4C A5 56 34 71 95 4C C6 ...[...IL.V4q.L.
0x01B0: 29 05 83 A1 21 A4 64 5B AD D5 58 40 00 3F 02 3E)...!.d[..X@.?.>
0x01C0: 02 00 00 FF D8 FF DB 00 43 00 10 0B 0C 0E 0C 0A C.......
0x01D0: 10 0E 0D 0E 12 11 10 13 18 27 19 18 16 16 18 30 '.....0
0x01E0: 22 24 1C 27 39 32 3C 3B 38 32 37 36 3F 47 5A 4C "$.'92<;8276?GZL
0x01F0: 3F 43 55 44 36 37 4E 6B 4F 55 5D 60 65 66 65 3D ?CUD67NkOU]`efe=
0x0200: 4B 6F 77 6E 62 76 5A 63 65 61 FF DB 00 43 01 11 KownbvZcea...C..
0x0210: 12 12 18 15 18 2E 19 19 2E 61 41 37 41 61 61 61 aA7Aaaa
0x0220: 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 aaaaaaaaaaaaaaaa
0x0230: 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 aaaaaaaaaaaaaaaa
0x0240: 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 FF aaaaaaaaaaaaaaa.
0x0250: C4 00 1F 00 00 01 05 01 01 01 01 01 01 00 00 00
0x0260: 00 00 00 00 00 01 02 03 04 05 06 07 08 09 0A 0B
0x0270: FF C4 00 B5 10 00 02 01 03 03 02 04 03 05 05 04
0x0280: 04 00 00 01 7D 01 02 03 00 04 11 05 12 21 31 41 }........!1A
0x0290: 06 13 51 61 07 22 71 14 32 81 91 A1 08 23 42 B1 ..Qa."q.2....#B.
0x02A0: C1 15 52 D1 F0 24 33 62 72 82 09 0A 16 17 18 19 ..R..$3br.......

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 59

 AppendicesGCIA Certification Assignment

0x02B0: 1A 25 26 27 28 29 2A 34 35 36 37 38 39 3A 43 44 .%&'()*456789:CD
0x02C0: 45 46 47 48 49 4A 53 54 55 56 57 58 59 5A 63 64 EFGHIJSTUVWXYZcd
0x02D0: 65 66 67 68 69 6A 73 74 75 76 77 78 79 7A 83 84 efghijstuvwxyz..
0x02E0: 85 86 87 88 89 8A 92 93 94 95 96 97 98 99 9A A2
0x02F0: A3 A4 A5 A6 A7 A8 A9 AA B2 B3 B4 B5 B6 B7 B8 B9
0x0300: BA C2 C3 C4 C5 C6 C7 C8 C9 CA D2 D3 D4 D5 D6 D7
0x0310: D8 D9 DA E1 E2 E3 E4 E5 E6 E7 E8 E9 EA F1 F2 F3
0x0320: F4 F5 F6 F7 F8 F9 FA FF C4 00 1F 01 00 03 01 01
0x0330: 01 01 01 01 01 01 01 00 00 00 00 00 00 01 02 03
0x0340: 04 05 06 07 08 09 0A 0B FF C4 00 B5 11 00 02 01
0x0350: 02 04 04 03 04 07 05 04 04 00 01 02 77 00 01 02 w...
0x0360: 03 11 04 05 21 31 06 12 41 51 07 61 71 13 22 32 !1..AQ.aq."2
0x0370: 81 08 14 42 91 A1 B1 C1 09 23 33 52 F0 15 62 72 ...B.....#3R..br
0x0380: D1 0A 16 24 34 E1 25 F1 17 18 19 1A 26 27 28 29 ...$4.%.....&'()
0x0390: 2A 35 36 37 38 39 3A 43 44 45 46 47 48 49 4A 53 *56789:CDEFGHIJS
0x03A0: 54 55 56 57 58 59 5A 63 64 65 66 67 68 69 6A 73 TUVWXYZcdefghijs
0x03B0: 74 75 76 77 78 79 7A 82 83 84 85 86 87 88 89 8A tuvwxyz.........
0x03C0: 92 93 94 95 96 97 98 99 9A A2 A3 A4 A5 A6 A7 A8
0x03D0: A9 AA B2 B3 B4 B5 B6 B7 B8 B9 BA C2 C3 C4 C5 C6
0x03E0: C7 C8 C9 CA D2 D3 D4 D5 D6 D7 D8 D9 DA E2 E3 E4
0x03F0: E5 E6 E7 E8 E9 EA F2 F3 F4 F5 F6 F7 F8 F9 FA FF
0x0400: D9 BF 01 50 2E 00 00 13 00 FF D8 FF E0 00 10 4A ...P...........J
0x0410: 46 49 46 00 01 01 00 00 01 00 01 00 00 FF C0 00 FIF.............
0x0420: 11 08 00 E7 01 0E 03 01 22 00 02 11 01 03 11 01 ".......
0x0430: FF DA 00 0C 03 01 00 02 11 03 11 00 3F 00 F4 0A ?...
0x0440: 28 A4 A0 05 A2 92 90 9A 00 75 25 26 69 BB C5 00 (........u%&i...
0x0450: 3E 8A 6E EA 37 71 9A 00 75 14 DD DC 51 BB 34 00 >.n.7q..u...Q.4.
0x0460: EA 29 9B F0 79 A5 DD 40 0E A2 98 5C 51 BE 80 1F .)..y..@... \Q...
0x0470: 45 37 77 14 6E 18 CD 00 3A 8A 6E EE 29 0C 80 0C E7w.n...:.n.)...
0x0480: 93 40 0F A2 A0 6B B8 95 B0 5C 66 95 2E 63 71 94 .@...k...\f..cq.
0x0490: 60 47 A8 A0 09 A8 A6 EF 14 9B C5 00 3E 8A 6E FA `G..........>.n.
0x04A0: 37 50 03 A8 A6 96 A4 DE 28 01 F4 53 77 51 BA 80 7P......(..SwQ..
0x04B0: 1D 45 37 75 1B A8 01 F4 53 73 4B 40 0B 45 25 2D .E7u....SsK@.E%-
0x04C0: 00 14 94 B4 86 80 1A 4D 44 EF 8E A6 96 46 C6 7E MD....F.~
0x04D0: 95 52 57 3E 60 00 FC BD 4F B5 20 27 92 60 8B 82 .RW>`...O. '.`..
0x04E0: 6A B9 BB 0B D4 D5 1B DB B5 0E 50 BE D6 54 CE 33 j.........P..T.3
0x04F0: 8C D6 5A 6A 00 B6 D0 57 2D 91 96 F5 ED 42 D5 5C ..Zj...W-....B.\
0x0500: 0E A1 27 0D C0 3C 9E 94 91 CE 1F 70 15 CF E9 F7 ..'..<.....p....
0x0510: E1 EE 04 33 65 0F BF 06 AD 2C AF 0D F9 0E 40 12 ...3e....,....@.
0x0520: A9 65 CF 7C 1E 6B 3E 6B 3B 30 35 3E D0 07 DE 3C .e.|.k>k;05>...<
0x0530: 1C 7E 14 EF 3B 1E D8 15 85 75 75 E5 99 11 9B E5 .~..;....uu.....
0x0540: 19 19 F4 CF 43 45 BE A4 B2 16 5C 9C A6 08 27 8E CE....\...'.
0x0550: BD A8 E6 D2 E8 46 BB DC 8E 46 46 40 CF D6 A4 4B F...FF@...K
0x0560: 90 D1 82 3B 62 B9 8B AD 40 09 5D 77 1D CB 82 30 ...;b...@.]w...0
0x0570: 32 4A F7 E3 D4 53 ED 2E EE DE 2D 8D 0B AE 25 20 2J...S....-...%
0x0580: B3 70 31 D8 8F 63 54 A4 9A 19 D1 A5 C0 7D C3 F8 .p1..cT......}..
0x0590: 97 A8 A8 DA ED 15 58 B3 8F 97 9A E5 AF B5 26 D3 X.......&.
0x05A0: AE 1E 79 A7 8D D9 87 16 F1 36 E7 1E E7 B0 15 99 ..y......6......
0x05B0: 16 BC 93 5C 93 2D AC 85 5B 24 05 97 E6 5F 6F 70 ...\.-..[$..._op
0x05C0: 69 DD DF 40 3B A8 F5 48 37 F9 6D 20 C9 E7 AD 55 i..@;..H7.m ...U
0x05D0: 7D 76 24 69 E3 45 67 68 CE 3E 50 4E 7D 2B 92 7B }v$i.Egh.>PN}+.{
0x05E0: EB AF 35 7E C3 A5 B4 64 0C B7 ..5~...d..

Appendix D - Possible Worm Infected Machines
Probable Worm Inf ected Machines
MY.NET.101.44 MY.NET.153.127 MY.NET.198.217 MY.NET.226.86 MY.NET.53.49 MY.NET.97.100 MY.NET.97.48
MY.NET.104.119 MY.NET.153.135 MY.NET.198.254 MY.NET.226.98 MY.NET.53.53 MY.NET.97.102 MY.NET.97.49
MY.NET.104.155 MY.NET.153.136 MY.NET.201.102 MY.NET.227.106 MY.NET.53.54 MY.NET.97.103 MY.NET.97.50
MY.NET.105.140 MY.NET.153.137 MY.NET.201.250 MY.NET.227.142 MY.NET.53.55 MY.NET.97.104 MY.NET.97.51
MY.NET.105.22 MY.NET.153.143 MY.NET.202.118 MY.NET.227.2 MY.NET.53.56 MY.NET.97.105 MY.NET.97.52
MY.NET.106.102 MY.NET.153.144 MY.NET.202.134 MY.NET.227.94 MY.NET.53.57 MY.NET.97.107 MY.NET.97.53
MY.NET.106.103 MY.NET.153.146 MY.NET.202.158 MY.NET.228.158 MY.NET.53.58 MY.NET.97.141 MY.NET.97.54
MY.NET.106.106 MY.NET.153.147 MY.NET.203.106 MY.NET.229.54 MY.NET.53.60 MY.NET.97.143 MY.NET.97.55
MY.NET.106.176 MY.NET.153.149 MY.NET.203.150 MY.NET.233.18 MY.NET.53.72 MY.NET.97.145 MY.NET.97.56
MY.NET.106.24 MY.NET.153.150 MY.NET.203.174 MY.NET.234.110 MY.NET.53.76 MY.NET.97.147 MY.NET.97.57
MY.NET.106.89 MY.NET.153.152 MY.NET.203.206 MY.NET.234.118 MY.NET.53.92 MY.NET.97.15 MY.NET.97.62
MY.NET.107.74 MY.NET.153.153 MY.NET.203.6 MY.NET.234.154 MY.NET.54.207 MY.NET.97.150 MY.NET.97.63
MY.NET.107.76 MY.NET.153.154 MY.NET.203.82 MY.NET.234.70 MY.NET.54.23 MY.NET.97.154 MY.NET.97.64
MY.NET.109.101 MY.NET.153.157 MY.NET.204.210 MY.NET.235.202 MY.NET.54.28 MY.NET.97.155 MY.NET.97.66
MY.NET.110.211 MY.NET.153.159 MY.NET.204.26 MY.NET.235.206 MY.NET.54.33 MY.NET.97.16 MY.NET.97.67
MY.NET.110.234 MY.NET.153.163 MY.NET.204.58 MY.NET.235.22 MY.NET.60.170 MY.NET.97.160 MY.NET.97.69
MY.NET.111.30 MY.NET.153.164 MY.NET.204.6 MY.NET.235.6 MY.NET.60.89 MY.NET.97.161 MY.NET.97.70
MY.NET.112.165 MY.NET.153.165 MY.NET.204.74 MY.NET.235.74 MY.NET.65.11 MY.NET.97.162 MY.NET.97.71
MY.NET.112.187 MY.NET.153.168 MY.NET.205.10 MY.NET.236.106 MY.NET.70.16 MY.NET.97.163 MY.NET.97.72
MY.NET.112.193 MY.NET.153.170 MY.NET.205.118 MY.NET.236.142 MY.NET.71.164 MY.NET.97.164 MY.NET.97.73
MY.NET.112.204 MY.NET.153.172 MY.NET.205.130 MY.NET.236.170 MY.NET.75.107 MY.NET.97.165 MY.NET.97.74

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 60

 AppendicesGCIA Certification Assignment

Probable Worm Inf ected Machines
MY.NET.112.220 MY.NET.153.173 MY.NET.205.146 MY.NET.236.202 MY.NET.75.133 MY.NET.97.167 MY.NET.97.75
MY.NET.112.32 MY.NET.153.176 MY.NET.205.186 MY.NET.236.238 MY.NET.75.148 MY.NET.97.168 MY.NET.97.77
MY.NET.112.38 MY.NET.153.182 MY.NET.205.190 MY.NET.236.26 MY.NET.75.6 MY.NET.97.171 MY.NET.97.78
MY.NET.115.167 MY.NET.153.185 MY.NET.206.170 MY.NET.236.54 MY.NET.83.171 MY.NET.97.173 MY.NET.97.79
MY.NET.115.175 MY.NET.153.198 MY.NET.206.186 MY.NET.236.74 MY.NET.83.217 MY.NET.97.174 MY.NET.97.80
MY.NET.116.75 MY.NET.153.201 MY.NET.207.190 MY.NET.236.90 MY.NET.83.248 MY.NET.97.176 MY.NET.97.81
MY.NET.116.84 MY.NET.153.202 MY.NET.207.214 MY.NET.237.170 MY.NET.83.93 MY.NET.97.179 MY.NET.97.83
MY.NET.118.6 MY.NET.153.208 MY.NET.207.46 MY.NET.237.186 MY.NET.84.141 MY.NET.97.18 MY.NET.97.84
MY.NET.130.150 MY.NET.153.209 MY.NET.207.86 MY.NET.237.98 MY.NET.84.146 MY.NET.97.180 MY.NET.97.85
MY.NET.130.60 MY.NET.153.210 MY.NET.208.122 MY.NET.239.222 MY.NET.84.147 MY.NET.97.182 MY.NET.97.87
MY.NET.130.73 MY.NET.153.213 MY.NET.208.38 MY.NET.239.42 MY.NET.84.16 MY.NET.97.188 MY.NET.97.89
MY.NET.138.15 MY.NET.153.46 MY.NET.209.226 MY.NET.240.154 MY.NET.84.216 MY.NET.97.195 MY.NET.97.90
MY.NET.138.16 MY.NET.157.49 MY.NET.209.242 MY.NET.240.86 MY.NET.84.218 MY.NET.97.196 MY.NET.97.91
MY.NET.138.24 MY.NET.162.194 MY.NET.210.158 MY.NET.240.94 MY.NET.85.52 MY.NET.97.197 MY.NET.97.93
MY.NET.138.46 MY.NET.163.233 MY.NET.210.50 MY.NET.241.162 MY.NET.85.87 MY.NET.97.198 MY.NET.97.94
MY.NET.141.102 MY.NET.168.115 MY.NET.210.62 MY.NET.242.10 MY.NET.86.110 MY.NET.97.20 MY.NET.97.95
MY.NET.143.107 MY.NET.168.125 MY.NET.211.158 MY.NET.242.250 MY.NET.86.71 MY.NET.97.200 MY.NET.97.96
MY.NET.144.51 MY.NET.168.139 MY.NET.212.110 MY.NET.242.30 MY.NET.87.100 MY.NET.97.202 MY.NET.97.97
MY.NET.145.197 MY.NET.168.154 MY.NET.212.174 MY.NET.242.58 MY.NET.87.107 MY.NET.97.203 MY.NET.97.99
MY.NET.145.199 MY.NET.168.161 MY.NET.212.30 MY.NET.249.114 MY.NET.87.121 MY.NET.97.207 MY.NET.98.100
MY.NET.145.27 MY.NET.168.165 MY.NET.217.194 MY.NET.249.138 MY.NET.87.126 MY.NET.97.209 MY.NET.98.102
MY.NET.149.16 MY.NET.168.166 MY.NET.217.234 MY.NET.249.222 MY.NET.87.148 MY.NET.97.213 MY.NET.98.104
MY.NET.15.212 MY.NET.168.170 MY.NET.217.42 MY.NET.250.122 MY.NET.87.193 MY.NET.97.215 MY.NET.98.105
MY.NET.15.222 MY.NET.168.179 MY.NET.217.6 MY.NET.250.206 MY.NET.87.70 MY.NET.97.216 MY.NET.98.11
MY.NET.150.121 MY.NET.168.183 MY.NET.218.158 MY.NET.250.230 MY.NET.87.89 MY.NET.97.218 MY.NET.98.128
MY.NET.150.137 MY.NET.168.205 MY.NET.218.182 MY.NET.251.102 MY.NET.88.101 MY.NET.97.219 MY.NET.98.139
MY.NET.150.203 MY.NET.168.214 MY.NET.218.2 MY.NET.251.162 MY.NET.88.130 MY.NET.97.22 MY.NET.98.14
MY.NET.150.210 MY.NET.168.219 MY.NET.218.22 MY.NET.251.206 MY.NET.88.131 MY.NET.97.226 MY.NET.98.15
MY.NET.151.120 MY.NET.168.234 MY.NET.219.214 MY.NET.251.70 MY.NET.88.143 MY.NET.97.227 MY.NET.98.152
MY.NET.151.124 MY.NET.168.56 MY.NET.220.134 MY.NET.252.150 MY.NET.88.148 MY.NET.97.228 MY.NET.98.153
MY.NET.151.85 MY.NET.17.54 MY.NET.220.18 MY.NET.252.182 MY.NET.88.149 MY.NET.97.229 MY.NET.98.156
MY.NET.152.12 MY.NET.178.140 MY.NET.220.26 MY.NET.252.202 MY.NET.88.150 MY.NET.97.23 MY.NET.98.172
MY.NET.152.126 MY.NET.178.23 MY.NET.220.34 MY.NET.253.130 MY.NET.88.167 MY.NET.97.230 MY.NET.98.18
MY.NET.152.15 MY.NET.18.30 MY.NET.221.154 MY.NET.253.170 MY.NET.88.171 MY.NET.97.233 MY.NET.98.28
MY.NET.152.160 MY.NET.183.25 MY.NET.221.162 MY.NET.53.101 MY.NET.88.182 MY.NET.97.234 MY.NET.98.30
MY.NET.152.163 MY.NET.188.19 MY.NET.221.38 MY.NET.53.105 MY.NET.88.199 MY.NET.97.237 MY.NET.98.36
MY.NET.152.165 MY.NET.189.41 MY.NET.221.42 MY.NET.53.120 MY.NET.88.210 MY.NET.97.238 MY.NET.98.38
MY.NET.152.167 MY.NET.189.54 MY.NET.222.146 MY.NET.53.128 MY.NET.88.225 MY.NET.97.239 MY.NET.98.44
MY.NET.152.173 MY.NET.193.161 MY.NET.222.166 MY.NET.53.133 MY.NET.88.254 MY.NET.97.24 MY.NET.98.45
MY.NET.152.183 MY.NET.193.217 MY.NET.222.170 MY.NET.53.143 MY.NET.88.75 MY.NET.97.241 MY.NET.98.47
MY.NET.152.22 MY.NET.194.227 MY.NET.222.214 MY.NET.53.158 MY.NET.91.100 MY.NET.97.243 MY.NET.98.48
MY.NET.152.248 MY.NET.194.31 MY.NET.222.246 MY.NET.53.160 MY.NET.91.101 MY.NET.97.245 MY.NET.98.49
MY.NET.153.105 MY.NET.194.5 MY.NET.222.74 MY.NET.53.180 MY.NET.91.104 MY.NET.97.247 MY.NET.98.52
MY.NET.153.107 MY.NET.194.91 MY.NET.223.146 MY.NET.53.184 MY.NET.91.109 MY.NET.97.249 MY.NET.98.55
MY.NET.153.110 MY.NET.195.143 MY.NET.223.170 MY.NET.53.185 MY.NET.91.119 MY.NET.97.25 MY.NET.98.62
MY.NET.153.111 MY.NET.195.31 MY.NET.224.106 MY.NET.53.214 MY.NET.91.120 MY.NET.97.26 MY.NET.98.66
MY.NET.153.112 MY.NET.195.83 MY.NET.224.126 MY.NET.53.222 MY.NET.91.139 MY.NET.97.27 MY.NET.98.69
MY.NET.153.113 MY.NET.195.89 MY.NET.224.54 MY.NET.53.30 MY.NET.91.147 MY.NET.97.29 MY.NET.98.75
MY.NET.153.114 MY.NET.196.123 MY.NET.225.170 MY.NET.53.32 MY.NET.91.2 MY.NET.97.35 MY.NET.98.77
MY.NET.153.115 MY.NET.196.181 MY.NET.225.34 MY.NET.53.35 MY.NET.91.8 MY.NET.97.38 MY.NET.98.82
MY.NET.153.117 MY.NET.196.7 MY.NET.226.106 MY.NET.53.37 MY.NET.91.85 MY.NET.97.40 MY.NET.98.85
MY.NET.153.118 MY.NET.197.2 MY.NET.226.110 MY.NET.53.38 MY.NET.91.92 MY.NET.97.41 MY.NET.98.86
MY.NET.153.120 MY.NET.197.42 MY.NET.226.174 MY.NET.53.39 MY.NET.91.93 MY.NET.97.42 MY.NET.98.98
MY.NET.153.123 MY.NET.197.70 MY.NET.226.198 MY.NET.53.41 MY.NET.91.95 MY.NET.97.43 MY.NET.99.165
MY.NET.153.124 MY.NET.198.101 MY.NET.226.206 MY.NET.53.44 MY.NET.91.96 MY.NET.97.44
MY.NET.153.125 MY.NET.198.175 MY.NET.226.78 MY.NET.53.47 MY.NET.97.10 MY.NET.97.46

Appendix E – Possible Peer-to-Peer Clients
Possible Peer-to-Peer Clients
MY.NET.240.62 MY.NET.218.222 MY.NET.233.250 MY.NET.205.178 MY.NET.249.13

MY.NET.219.18

MY.NET.238.23
 MY.NET.207.230 MY.NET.217.170 MY.NET.223.250 MY.NET.225.70 MY.NET.210.94 MY.NET.249.12

MY.NET.227.70

MY.NET.233.10 MY.NET.242.42 MY.NET.242.94 MY.NET.240.130 MY.NET.226.25

MY.NET.239.17

MY.NET.207.10
MY.NET.206.70 MY.NET.250.78 MY.NET.202.234 MY.NET.209.206 MY.NET.205.21

MY.NET.223.94 MY.NET.98.36

MY.NET.70.176 MY.NET.226.178 MY.NET.207.34 MY.NET.210.122 MY.NET.208.22

MY.NET.97.44 MY.NET.113.4
MY.NET.206.130 MY.NET.211.154 MY.NET.223.106 MY.NET.53.43 MY.NET.193.13

MY.NET.252.19

MY.NET.221.2
MY.NET.201.38 MY.NET.201.234 MY.NET.203.42 MY.NET.253.106 MY.NET.224.11

MY.NET.237.22

MY.NET.240.11
 MY.NET.241.118 MY.NET.244.182 MY.NET.194.13 MY.NET.201.186 MY.NET.168.17

MY.NET.242.15

MY.NET.238.23
 MY.NET.233.134 MY.NET.240.2 MY.NET.195.209 MY.NET.220.54 MY.NET.84.216 MY.NET.242.13

MY.NET.227.70

MY.NET.253.102 MY.NET.211.198 MY.NET.217.54 MY.NET.228.62 MY.NET.253.15

MY.NET.225.62 MY.NET.207.10

Appendix F – Probable XDCC or SdBot infected Clients
Probable XDCC or SdBot infected Clients
MY.NET.83.100 MY.NET.132.27 MY.NET.84.250 MY.NET.194.125 MY.NET.112.19

MY.NET.80.149 MY.NET.223.78

MY.NET.97.128 MY.NET.101.42 MY.NET.195.99 MY.NET.105.48 MY.NET.105.20

MY.NET.226.25

MY.NET.198.22

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 61

 AppendicesGCIA Certification Assignment

Appendix G – Listing of prepalerts.pl, prespscans.pl and
prepoos.pl

Prepalerts.pl
#!/cygdrive/c/Perl/bin/perl.exe
Name: prepalerts.pl
By Terry MacDonald
Based on csv.pl by Tod Beardsley
Usage: prepalerts.pl infile [infile2] [infile3]
unless ($ARGV[0]) {
 print "You didn't specify the snort file to be used as input...\n\n";
}
$outfile = "$ARGV[0]_alerts.csv";
open(OUTFILE,">$outfile") || die "Can't open $outfile for writing!\n";
$maxlength = $#ARGV;
for (0 .. $maxlength) {
 if (-e "$ARGV[0]") {
 open(INFILE,"$ARGV[0]") || die "Can't open ${ARGV[0]} for reading! Skipping...\n";
 print "\nUsing $ARGV[0] as Input\nSeparating into $outfile.\n";
 print "This may take a while... .\n";
 @calendar=qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);
 while (<INFILE>) {
 if (/^:[0-9]+/) {
 #it is neither a portscan or an alert - so ignore it

 } elsif (/spp_portscan\:/) { # Ignore spp_portscan notifications.
 } elsif (/ \[**\] /) { # Alert report.
 #get data
 ($date_and_time,$alert,$src_and_dst) = split /\s+\[**\]\s/;
 ($date,$time) = split /-/,$date_and_time ;
 ($month_number,$day) = split(/\//,$date);
 $month = $calendar[$month_number-1];
 ($src,$dst) = split(/\s-\>\s/,$src_and_dst);
 ($src_host,$src_port) = split(/:/,$src);
 ($dst_host,$dst_port) = split(/:/,$dst);
 $alert =~ s/,//g;
 $snort_entry="ALERT" ;
 #check everything is there

 if ((!defined ($month)) or (!defined ($day)) or (!defined ($time)) or (!defined ($alert)) or (!defined
($src_host)) or (!defined ($dst_host))) {

 next;
 }
 print OUTFILE "$snort_entry,";
 chomp $month; chomp $day; chomp $time; chomp $alert; chomp $src_host;chomp $dst_host;
 print OUTFILE "$month,$day,$time,$alert,$src_host,";
 if (defined($src_port)) {
 chomp $src_port; print OUTFILE "$src_port,";
 } else {
 print OUTFILE "None,";
 }
 print OUTFILE "$dst_host,";
 if (defined($dst_port)) {
 chomp $dst_port; print OUTFILE "$dst_port";
 } else {
 print OUTFILE "None";
 }
 print OUTFILE "\n";
 } else {
 #it is neither a portscan or an alert - so ignore it
 }
 $numberdone++;
 print "*" if $numberdone % 1000 == 0;
 }
 print "\n\n";
 close(INFILE) || die "\nCan't close ${ARGV[0]} after finishing!\n";
 } else {
 print "\nCan't find ${ARGV[0]}! Skipping...\n\n";
 }
 shift (@ARGV);
}

close(OUTFILE) || die "\nCan't close $outfile after finishing!\n";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 62

 AppendicesGCIA Certification Assignment

Prepscans.pl
#!/cygdrive/c/Perl/bin/perl.exe
Name: prepscans.pl
By Terry MacDonald
Based on csv.pl by Tod Beardsley
Reads in a Snort scan log
Usage: prepscans.pl infile [infile2] [infile3] ...
unless ($ARGV[0]) {
 print "You didn't specify the snort scan file to be used as input...\n\n";
}
$outfile = "scan_ss.csv";
open(OUTFILE,">$outfile") || die "Can't open $outfile for writing!\n";
$maxlength = $#ARGV;
for (0 .. $maxlength) {
 if (-e "$ARGV[0]") {
 open(INFILE,"$ARGV[0]") || die "Can't open ${ARGV[0]} for reading! Skipping...\n";
 print "\nUsing $ARGV[0] as Input\nSeparating into $outfile.\n";
 print "This may take a while... .\n";
 while (<INFILE>) {
 $_ =~ s/130.85./MY.NET./g ;
 if (/\s\-\>\s/) { # Scans
 if (/\sUDP\s/) { #UDP scan
 ($month,$day,$time,$src,$arrow,$dst,$scantype) = split /\s+/;
 chomp $month; chomp $day; chomp $time; chomp $src_host;
 chomp $src_port; chomp $dst_host; chomp $dst_port; chomp $scan_type;
 ($src_host,$src_port)=split (/\:/,$src);
 ($dst_host,$dst_port)=split (/\:/,$dst);
 print OUTFILE "$src_host\n";
 } else { #TCP scan
 ($month,$day,$time,$src,$arrow,$dst,$scantype,$flags,$reserved) = split /\s+/;
 chomp $month; chomp $day; chomp $time; chomp $src_host;
 chomp $src_port; chomp $dst_host; chomp $dst_port; chomp $scan_type;
 chomp $flags; chomp $reserved;
 ($src_host,$src_port)=split (/\:/,$src);
 ($dst_host,$dst_port)=split (/\:/,$dst);
 ($f1,$f2,$f3,$f4,$f5,$f6,$f7,$f8)=split (//,$flags);
 if (defined ($reserved)){
 print OUTFILE "$src_host\n";
 } else {
 print OUTFILE "$src_host\n";
 }
 }
 } else {
 #it is not a portscan so ignore it
 }
 $numberdone++;
 print "*" if $numberdone % 1000 == 0;
 }
 print "\n\n";
 close(INFILE) || die "\nCan't close ${ARGV[0]} after finishing!\n";
 } else {
 print "\nCan't find ${ARGV[0]}! Skipping...\n\n";
 }
 shift (@ARGV);
}
close(OUTFILE) || die "\nCan't close $outfile after finishing!\n";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 63

 AppendicesGCIA Certification Assignment

Prepoos.pl
#!/cygdrive/c/Perl/bin/perl.exe
Name: prepoos.pl
By Terry MacDonald
Based on csv.pl by Tod Beardsley
Usage: prepoos.pl infile [infile2] [infile3]

unless ($ARGV[0]) {
 print "You didn't specify the snort file to be used as input...\n\n";
}

$outfile = "oos_report.csv";

open(OUTFILE,">$outfile") || die "Can't open $outfile for writing!\n";

$maxlength = $#ARGV;
for (0 .. $maxlength) {
 if (-e "$ARGV[0]") {
 open(INFILE,"$ARGV[0]") || die "Can't open ${ARGV[0]} for reading! Skipping...\n";
 print "\nUsing $ARGV[0] as Input\nProducing into $outfile.\n";
 print "This may take a while... .\n";
 while (<INFILE>) {
 if ((/ \-\> /) and (/^[0-9][0-9]\//)) { # on the first line of an OOS record
 ($date_and_time,$src,$arrow,$dst) = split /\s+/;
 ($date,$time) = split /-/,$date_and_time ;
 ($month_number,$day) = split(/\//,$date);
 $month = $calendar[$month_number-1];
 ($src_host,$src_port) = split(/:/,$src);
 ($dst_host,$dst_port) = split(/:/,$dst);
 $snort_entry="OOS" ;
 #check everything is there
 if ((!defined ($month)) or (!defined ($day)) or (!defined ($time)) or (!defined ($src_host)) or (!defined ($dst_host))) {
 next;
 }
 print OUTFILE "$snort_entry,";
 chomp $month; chomp $day; chomp $time; chomp $src_host; chomp $dst_host;
 print OUTFILE "$month,$day,$time,$src_host,";
 if (defined($src_port)) {
 chomp $src_port;
 print OUTFILE "$src_port,";
 } else {
 print OUTFILE "None,";
 }
 print OUTFILE "$dst_host,";
 if (defined($dst_port)) {
 chomp $dst_port;
 print OUTFILE "$dst_port";
 } else {
 print OUTFILE "None";
 }
 print OUTFILE "\n";
 } else {
 #it is not a OOS line - so ignore it
 }
 $numberdone++;
 print "*" if $numberdone % 1000 == 0;
 }
 print "\n\n";
 close(INFILE) || die "\nCan't close ${ARGV[0]} after finishing!\n";
 } else {
 print "\nCan't find ${ARGV[0]}! Skipping...\n\n";
 }
 shift (@ARGV);
}
close(OUTFILE) || die "\nCan't close $outfile after finishing!\n";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 64

 BibliographyGCIA Certification Assignment

References for Assignment 2 and 3

[31] Roesch, Martin et al. "S nort Program". Snort.Org Website. 25 April 2003. URL:
http://www.snort.org (25 April 2003).
[32] Anonymous. "Snort Rules Download Page". Snort.Org Website. 25 April 2003. URL:
http://www.snort.org/dl/rules (25 April 2003).
[33] Anonymous. "GIAC Certification Practical Logs", Incidents.Org Website. URL:
http://www.incidents.org/logs/Raw (14 April 2003).
[34] Anonymous. "IP I nfo". DShield.Org Website. URL: http://www.dshield.org/ipinfo.php (5 June
2003)
[35] Anonymous. "Google UK". Google Website. URL: http://www.google.co.uk (10 May 2003)
[36] Stinson, Nancy. "AT&T Now - April 2000". AT&T Website. April 2000. URL:
http://www.att.com/retirees/attnow/0400/a0004 -11.html (6 June 2003)
[37] Anonymous. "Snort Signature D atabase". Snort.Org Website. 03 May 2003.URL:
http://www.snort.org/snort -db/sid.html?sid=499 (03 May 2003)
[38] Mixter. "IDS246 "DOS -LARGE-ICMP"". Whitehats.ca Website. URL:
http://www.whitehats.com/info/IDS246 (6 June 2003)
[39] Kettler, Matt. "Re: [Snort -users] Common false positives". Email posting on Snort -users mailing
list. 25 February 2003. URL: http://www.pantek.com/library/general/lists/snort.org/snort -
users/msg00422.html (6 June 2003)
[40] Anonymous. "BlueIce: Intelligent Computing & Communications ". IBM's Research Website. URL:
http://www.research.ibm.com/compsci/communications/projects/infrastructure/blueice.html (6 June
2003)
[41] Giles, Jim. "Jim Giles - Research". IBM Research We bsite. URL:
http://www.research.ibm.com/people/g/gilesjam/research.htm (6 June 2003)
[42] Slemko, Marc. "Path MTU Discovery and Filtering ICMP". 18 January 1998. URL:
http://boyan.ludost.net/clueless -faq/pmtu.html (6 June 2003)
[43] Bueno, Pedro. "RES: Large ICMP ping packets". Email posting on incidents@intrusions.org
mailing list. 4 April 2002. URL: http://www.incidents.org/archives/intrusions/msg04528.html (6 June
2003)
[44] Daviel, Andrew. Re: Large ICMP ping packets" Email posting on incidents@intrusions.org mailing
list. 4 April 2002. URL: http://www.incidents.org/archives/intrusions/msg04521.html (6 June 2003)
[45] MacDonald, Terry. "LOGS: GIAC GCIA Version 3.3 Practical Detect(s)". Email post on
intrusions@incidents.org list. 8 May 2003. URL: http://cert.uni-
stuttgart.de/archive/intr usions/2003/05/msg00063.html (9 May 2003)
[46] Anonymous. "GIAC Certification Practical Logs Readme ". Incidents.Org Website. URL:
http://www.incidents.org/logs/Raw/README (14 April 2003).
[47] Cormier, André. "LOGS: GIAC GCIA Version 3.3 Practical Detect(s)". Email post on
intrusions@incidents.org list. 16 January 2003. URL:
http://cert.uni -stuttgart.de/archive/intrusions/2003/01/msg00121.html (22 April 2003).
[48] Anonymous. "WinDump". WinDump: tcpdump for Wi ndows Website
. 8 August 2002. URL: http://windump.polito.it/ (03 May 2003).
[49] Anonymous. "WinDump Manual". WinDump: tcpdump for Windows Website. 8 August 2002.
URL: http://windump.polito.it/docs/manual.htm (03 May 2003).
[50] Anonymous. "Public OUI Listing". IEEE.Org Website. 03 May 2003.
URL: http://standards.ieee.org/regauth/oui/oui.txt (03 May 2003).
[51] Sanfilippo, Salvatore (Antirez). "Hping Homepage". Hping Website. URL: http://www.hping.org
(03 May 2003).
[52] Ricketts, Mike. "SendIp". Project Purpl e Website. 21 April 2003. URL:
http://www.earth.li/projectpurple/progs/sendip.html (03 May 2003).
[53] Anonymous. "CERT® Advisory CA -2003-13 Multiple Vulnerabilities in Snort Preprocessors".
CERT® Coordination Center Website. 23 April 2003. URL:
http://www.cert.org/advisories/CA -2003-13.html (24 April 2003).
[54] Houghton, Nigel. "Snort Signature Database". Snort.Org Website. 03 May 2003.URL:
http://www.snort.org/snort -db/sid.html?sid=523 (03 May 2003)
[55] Anonymous. "RFC791 Internet Protocol DARPA Internet Program Protocol Specification".
Internet RFC/STD/FYI/BCP Archives. September 1981. URL: http://www.faqs.org/rfcs/rfc791.html (03
May 2003)
[56] Anonymous. "InterNic WHOIS Database Search". InterNIC Website. 27 October 2001. URL:
http://www.internic.net/w hois.html (03 May 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 65

 BibliographyGCIA Certification Assignment

[57] Anonymous. "ARIN WHOIS Database Search". ARIN Website. 02 May 2003. URL:
http://ws.arin.net/cgi -bin/whois.pl (03 May 2003)
[58] Anonymous. "Yahoo Search Engine". Yahoo Websi te. URL: http://www.yahoo.com (04 May
2003)
[59] Network Working Group. "RFC1141 Incremental Updating of the Internet Checksum". Internet
RFC/STD/FYI/BCP Archives. January 1990. URL:http://www.faqs.org/rfcs/rfc1141.html (04 May 2003)
[60] Anonymous. "Who we are". BBN Technologies Website. URL:
http://www.bbn.com/about/index.html (04 May 2003)
[61] Udell, Jon. "RFC 1597 Revisited". Byte.Com Website. November 1995. URL:
http://www.byte.com/art/9511/sec8/art2.htm (04 May 2003)
[62] Network Working Group. "RFC1166 Internet Numbers". Internet RFC/STD/FYI/ BCP Archives.
July 1990. URL: http://www.faqs.org/rfcs/rfc1166.html (04 May 2003)
[63] Network Working Group. "RFC1918 Address Allocation for Private Internets". Internet
RFC/STD/FYI/BCP Archives. Febr uary 1996. URL: http://www.faqs.org/rfcs/rfc1918.html (04 May
2003)
[64] Anonymous. "12000 Packet Filter Verification Tests". McAfee ASap Website.
http://hq.mcafeeasap.com/vulnerabilities/vuln_data/12000.asp (05 May 2003)
[65] Network Working Group. "RFC1858 Security Considerations for IP Fragment Filtering". Internet
RFC/STD/FYI/BCP Archives. October 1995. URL: http://www.faqs.org/rfcs/rfc1858.html (05 May
2003)
[66] Arkin, Ofir. "[Corrected Post] - Using the Unused (Identifying Sun Solaris & HPUX 11.0 OSs)".
Email post on bugtraq@securityfocus.org mailing list. 13 August 2000. URL:
http://www.sys-security.com/archive/bugtraq/ofirarki n2000-08.txt (05 May 2003)
[67] Miller, Toby. "Passive OS Fin gerprinting: Details and Techniques". Incident.Org Website. URL:
http://www.incidents.org/papers/OSfingerprinting.php (05 May 2003)
[68] SWITCH ISP Staff. "Default TTL Values in TCP/IP". URL:
http://secfr.nerim.net/docs/fingerprint/en/ttl_default.html (05 May 2003)
[69] Spitzner, Lance. "Lists of fingerprints for passive fingerprint monitoring". 23 May 2000.
http://project.honeynet.org/papers/finger/traces.txt (05 May 2003)
[70] Kernel Bug People. "minor mistake in ip -input.c". NetBSD Website. 20 September 1996. URL:
http://mail-index.netbsd.org/netbsd -bugs/1996/09/20/0002.html (04 May 2003)
[71] Arkin, Ofir. "Trojan Horse Port List". Sys -Security Group Website.
URL:http://www.sys-security.com/html/papers/trojan_list.html (05 May 2003)
[72] Granier, T. Brian. "LOGS: GIAC GCIA Version 3.3 Practical Detect(s)". Email post on
intrusions@incidents.org list. 27 Nov 2002. URL:http://cert.uni -
stuttgart.de/archive/intr usions/2002/11/msg00256.html (05 May 2003)
[73] Wrisley, Brent. "LOGS: GIAC GCIA Version 3.2 Practical Detect". Email post on
intrusions@inciden ts.org list. 4 October 2002. http://cert.uni-
stuttgart.de/archive/intr usions/2002/10/msg00079.html (5 May 2003)
[74] Shuck, Ron. "LOGS: GIAC GCIA Version 3.3 Practical D etect(s)". Email post on
intrusions@incidents.org list. 10 February 2003.
http://cert.uni -stuttgart.de/archive/intrusions/2003/02/msg00088.html (05 May 2003)
[75] Houghton, Nigel. "Snort Signature Database". Snort.Org Website. 03 May 2003.URL:
http://www.snort.org/snort -db/sid.html?sid=1394 (03 May 2003)
[76] Burns, Brian. "RE: snort: SHELLCODE x86 NOOP". E mail post on focus-ids@securityfocus.org
mailing list. 8 April 2002. http://www.derkeiler.com/Mailing -Lists/securityfocus/focus-ids/2002-
04/0038.html (9 May 2003)
[77] Graham, Robert David. "RE: snort: SHELLCODE x86 NOOP". Email post on focus -
ids@securityfocus.org mailing list. 8 April 2002. http://www.derkeiler.com/Mailing-
Lists/securityfocus/focus -ids/2002-04/0046.html (9 May 2003)
[78] Anonymous. "NTT/Verio Homepage". NTT/Verio Homepage. URL: http://www.verio.net (9 May
2003)
[79] CenterGate Research Group. "GEEKTOOLS: Whois Proxy". GeekTools Website.
http://www.geektools.com/cgi -bin/proxy.cgi (9 May 2003)
[80] Infobear. "Infobear's web interface to nslookup". Infobear's Lair. URL:
http://www.infobear.com/cgi -bin/nslookup.cgi (9 May 2003)
[81] Ruiu, Dragos. "Re: [Snort -users] SHELLCODE x86 unicode NOOP". Email post on Snort-
users@lists.sourceforge.net mailing list. 22 April 2002. URL:
http://www.mcabee.org/lists/snort -users/Apr-02/msg00763.html (9 May 2003)
[82] Hamilton, Eric. "JPEG File Int erchange Format". W3C Website. 1 September 2003. URL:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 66

 BibliographyGCIA Certification Assignment

http://www.w3.org/Graphic s/JPEG/jfif.txt (10 May 2003)
[83] Lane, Tom. "How do I recognize which file format I have, and what do I do about it?". JPEG
Image Compression FAQ. 7 May 2003. URL: http://www.faqs.org/faqs/jpeg -faq/part1/section-15.html
(9 May 2003)
[84] Hudak, Tyler. "LOGS: GIAC GCIA Version 3.3 Practical Detect(s)". Email post on
intrusions@incidents.org list. 8 March 2003. URL: http://cert.uni-
stuttgart.de/archive/intr usions/2003/03/msg00105.html (10 May 2003)
[85] Anonymous. “Snort Rules Database”. Snort.Org Website. URL: http://www.snort.org/snort -db/ (31
May 2003)
[86] Gordon, Les. “Intrusion Analysis - The Director's Cut!”. GCIA Website. 22 November 2002. URL:
http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc (30 May 2003)
[87] Roesch, Martin. Green, Chris. “Snort Users Manual Snort Release: 2.0.0”. Snort.Org website.
URL: http://www.snort.org/docs/writing_rules/chap2.html - tth_sEc2.4.4 (27 May 2003)
[88] Network Working Group. "RFC1918 Address Allocation for Private Internets". Internet
RFC/STD/FYI/BCP Archives. February 1996. URL: http://www.faqs.org/rfcs/rfc1918.html (04 May
2003)
[89] Whitehats.ca. “arachNIDS database”. Whitehats.ca Website. URL: http://www.whitehats.com/ids/
(15 June 2003)
[90] Roesch, Martin. " Re: [Snort -users] Weird fragmentation plugin error". MCABEE Website. 19 April
2001. URL: http://www.mcabee.org/lists/snort -users/Apr-01/msg00540.html (26 May 2003)
[91] Novak, Judy; Northcutt, Stephen. “ Detects Analyzed 6/15/00 ”. 15 June 2000. URL:
http://www.sans.org/y2k/061500.htm (29 May 2003)
[92] Sage, J. “Two examples of udp:137 netBIOS name table probes ”. Finchhaven.Com website. 2
March 2002. URL: http://www.finchhaven.com/pages/incidents/030102_udp_137.html (27 May 2003)
[93] Anonymous. “Linux.Adore.Worm” . 15 April 2002. URL:
http://securityresponse.symantec.com/avcenter/venc/data/linux.adore.worm.html (29 May 2003)
[94] Anonymous. “Whitehats.ca – Port Query”. Whitehats.ca Security We bsite. 2003. URL:
http://www.whitehats.ca/main/tools/portquery2/portquery2.html (29 May 2003)
[95] Anonymous. “Symantec Enterprise Security Solutions protect against the Microso ft Windows IIS
Index Server ISAPI System -level Remote Access Buffer Overflow”. Symantec Website. 20 June 2001.
URL: http://securityresponse.symantec.com/avcente r/security/Content/2001_06_20a.html (29 May
2003)
[96] Anonymous. “StreamWorks Server & Player FAQs:”. Real Networks Website. URL:
http://docs.real.c om/docs/xingtech/StreamWorks%20_Server_FAQs.pdf
(30 May 2003)
[97] Anonymous. “RC1 trojan”. http://www.glocksoft.com/trojan_list/RC1_trojan.htm (29 May 2003)
[98] Anonymous. “UDP Ports Used by AFS”. University of Hohenhiem Website. URL:
http://www.rz.uni -hohenheim.de/netzwerkbetriebssysteme/afs36/debug/admin/UDP.html (3 June
2003)
[99] Anonymous. “Patch Available for 'Web Server Folder Traversal' Vulnerability ”. 17
October 2000. URL:
http://www.microsoft.com/technet/tre eview/default.asp?url=/technet/security/bulletin/MS00-078.asp
(29 May 2003)
[100] Anonymous. “CERT ® Advisory CA-2001-12 Superfluous Decoding Vulnerability in IIS”. Cert/CC
Website. 15 May 2001. URL: http://www.cert.org/advisor ies/CA-2001-12.html (30 May 2003)
[101] Anonymous. “ Microsoft IIS 4.0 / 5.0 vulnerable to directory traversal via extended unicode in url
(MS00-078)”. CERT/CC. 18 September 2001. URL: http://www.kb.cert.org/vuls/id/111677 (31 May
2003).
[102] Anonymous. “ "Code Red II:" Another Worm Exploiting Buffer Overflow In IIS Indexing Service
DLL”. Cert/CC Website. 6 August 2001. URL: http://www.cert.org/incident_notes/IN-2001-09.html (29
May 2003)
[103] Anonymous. “ CERT® Advisory CA-2001-26 Nimda Worm”. Cert/CC Website. 25 September
2001. URL: http://www.cert.org/advisories/CA -2001-26.html (31 May 2003)
[104] Anonymous. “CERT® Advisory CA -2001-11 sadmind/I IS Worm”. Cert/CC Website. 10 May
2001. URL: http://www.cert.org/advisories/CA -2001-11.html (30 May 2003)
[105] Beardsley, Tod. “Intrusion Detection and Analysis: Theory, Techniques, and Tools”. GCIA.org
Website. 8 May 2002. URL: http://www.giac.org/practical/Tod_Beardsley_GCIA.doc (30 May 2003)
[106] Wilson, Ben. “CGI Script Vulnerability in Microsoft II S 4.0 and 5.0”. GCIA Website. 14 March
2001. URL: http://www.giac.org/practical/gsec/Ben_Wilson_GSEC.pdf (29 May 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 67

 BibliographyGCIA Certification Assignment

[107] Crossman, James. “Re: Think It’s Netscape”. Intrusions@incidents.org Mailing List. 31 May
2001. URL: http://www.incidents.org/archives/intrusions/msg03817.html (29 May 2003)
[108] Anonymous. “SAFE Nimda Attack Mitigation”. Cisco Website. 20 September 2001. URL:
http://www.cisco.com/warp/public/cc/so/cuso/epso/sqfr/snam_wp.htm (31 May 2003)
[109] Roesch, Martin. “Re: [snort] Tiny Fragments ”. Posted to the Snort Users Mailing list. 14 May
2000. URL: http://archives.neohapsis.com/archives/snort/2000 -05/0103.html (31 May 2003)
[110] Embrich, Mark. “Intrusion Detection In Depth”. GIAC Website. 14 February 2002. URL:
http://www.giac.org/practical/Mark_Embrich_GCIA.htm (3 June 2003)
[111] Anonymous. W32.Nimda.A@mm. Symantec Security Response Website. 7 February 2003.
URL: http://securityresponse.symantec.com/avcenter/venc/data/w32.nim da.a@mm.html
(31 May 2003)
[112] Moore, H.D. “Re: x86 NOPS”. Posting on the SecurityFocus -IDS mailing list. 23 May 2001. URL:
http://archives.neohapsis.com/archives/sf/ids/200 1-q2/0398.html (31 May 2003)
[113] Ruiu, Dragos. “Spp_fnord.c”. CanSecWest website. URL:
http://www.cansecwest.com/spp_fnord.c (31 May 2003)
[114] Ruiu Dragos, “mutants! - spp_fnord.c (It can see the FNORDs! :-)”. Posting on the
SecurityFocus-IDS mailing list . 1 March 2002. URL: http://cert.uni-
stuttgart.de/archive/bugtraq/2002/03/msg00088.html (31 May 2003)
[115] Godin, Jeff. “Re: Probes on UDP port 27015 “. Email Post on intrusions@incidents.org mailing
list. 26 December 2000. URL: http://cert.uni-stuttgart.de/archive/incidents/2000/12/msg00134.html (31
May 2003)
[116] Moore, H.D. “Re: X86 NOPS”. Email post on the SecurityFocus IDS mailing list. 23 May 2001.
URL: http://archives.neohapsis.com/archives/sf/ids/2001 -q2/0398.html (9 June 2003)
[117] Stuart, Joe. “Re: [Snort-users] CGI Null Byte Attack ”. Email Post on Snort users mailing list. 20
November 2000. URL: http://archives.neohapsis.com/archives/snort/2000-11/0244.html (31 May
2003)
[118] Birznieks, Gunther. “Web Application Security – Tying the past and present together”. eXtr opia
Website. URL: http://www.extropia.com/presentations/birznieks/pdf/cgi_security_history.pdf (1 June
2003)
[119] Quazimodorulez. “BitTorrent Websites”. Chello Members Webpages. URL:
http://members.chello.nl/p.wiersema/list.html (1 June 2003)
[120] Anonymous. “BitTorrent FAQ”. BitTorrent Website. http://bitconjurer.org/BitTorrent/FAQ.html (1
June 2003)
[121] Kohlrausch, Jan. “[Advisory] Buffer Overflow in HP -UX Line Printer Daemon - CA-2001-32”.
Email posting on win -sec-ssc mailing list. 22 November 2001. URL: http://cert.uni -
stuttgart.de/archive/win-sec-ssc/2001/11/msg00037.html (1 June 2003)
[122] Havrilla, Jeffrey S. “CERT® Advisory CA-2001-15 Buffer Overflow In Sun Solaris in.lpd Print
Daemon”. CERT/CC Website. 31 August 2001. URL: http://www.cert.org/advisories/CA -2001-15.html
(1 June 2003)
[123] Beriragic, Jamir. “GCIA Certification Practical”. GIAC Website. February 2001. URL:
http://www.giac.org/practic al/Jasmir_Beciragic_GCIA.doc (9 June 2003)
[124] Anonymous. “ IDS552 "IIS ISAPI OVERFLOW IDA"”. Whitehats.ca Website. URL:
http://www.whitehats.com/info/IDS552 (2 June 2003)
[125] Anonymous. “Patch Available for 'Web Server Folder Traversal' Vulnerability”. Microsoft
Website. 17 October 2000. URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/ms00 -078.asp (2
June 2003)
[126] Caswell, Brian; Houghton, Nigel. “WEB -IIS cmd.exe access”. URL: http://www.snort.org/snort -
db/sid.html?sid=1002 (2 June 2003)
[127] Hart, Jon. “WEB -IIS CodeRed v2 root.exe access”. URL: http://www.snort.org/snort -
db/sid.html?sid=1256 (2 June 2003)
[128] Danyliw, Roman; Householder, Alan. “CERT® Advisory CA -2001-19 "Code Red" Worm
Exploiting Buffer Overflow In IIS Indexing Service DLL”. 17 January 2002. URL:
http://www.cert.org/advisories/CA -2001-19.html (2 June 2003)
[129] Rayford, Joe. “Intrusion Detects and Analysis GCIA Practical Assignment”. Giac Website. 2001.
URL: http://www.giac.org/practical/Joe_Rayford_GCIA.doc (3 June 2003)
[130] Miller, Toby. “ECN and it's impact on Intrusion Detection”. SANS Website. January 2001. URL:
http://www.sans.org/y2k/ecn.htm (3 June 2003)
[131] TonkinGin. “XDCC – An .EDU Admin’s Nightmare”. Russonline Website. 11 September 2002.
URL: http://www.russonline.net/tonikgin/EduHacking.html (3 June 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

04/08/2003 Intrusion Detection and Analysis: An Investigation Page 68

 BibliographyGCIA Certification Assignment

[132] Danyliw, Roman; Householder, Allen. “ CERT® Advisory CA -2003-08 Increased Activity
Targeting Windows Shares”. Cert Websit e. 11 March 2003. URL: http://www.cert.org/advisories/CA -
2003-08.html (3 June 2003)
[133] Ramakrishnan, K.; F loyd, S. “The Addition of Explicit Congestion Notification (ECN) to IP”.
RFCIndex Website. September 2001. http://rfc-3168.rfc-index.com/rfc-3168.htm (3 June 2003)
[134] Hava, Kristina et. al. "In itial Tool For Monitoring Performance of Websites". Dublin City
University Website. URL: http://www.eeng.dcu.ie/~murphyj/publ/c15.pdf (6 June 2003)
[135] Network Working Group. "RFC793 Transmis sion Control Protocol
". Internet RFC/STD/FYI/BCP Archives. September 1981. URL: http://www.faqs.org/rfcs/rfc793.html
(04 May 2003)
[136] Anonymous. "Sample Ping Packet Decode". PCAUSA Website. 5 Februa ry 2003. URL:
http://www.pcausa.com/resources/ndispacket_decode.htm (9 May 2003)
[137] Anonymous. “ Snort(TM) Advisory: Integer Overflow in Stream4 ”. Snort.Org Website. 16 April
2003. URL: http://www.snort.org/advisories/snort -2003-04-16-1.txt (27 May 2003)

