
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Intrusion Detection in Depth

GCIA Practical Assignment

Version 3.3

James D. Rauser

SANS San Diego, CA

March 7- March 12, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Table of Contents..2
Assignment 1 Describe the State of Intrusion Detection.......4

An Analysis of ARP Spoofing Detection and its
Countermeasures.. 4

Abstract... 4
Introduction ... 4
Functions/Capabilities ... 5
Detection... 5
Attack Scenario 1.. 7
Attack Scenario 2.. 9

Countermeasures.. 14
Host Based ... 14
Network Based.. 23

References ... 27

Assignment 2 Network Detects ...28
1 Network Detect webdav search access 28

1.1 Source of Trace:... 28
1.2 Detect Generated by: ... 29
1.3 Probability the Source Address was Spoofed:.................................. 31
1.4 Description of Attack: ... 31
1.5 Attack Mechanism: ... 32
1.6 Correlations: ... 33
1.7 Evidence of Active Targeting:... 36
1.8 Severity: ... 36
1.9 Defensive Recommendation: ... 36
1.10 Multiple Choice Question.. 37

2 Network Detect BAD TRAFFIC loopback traffic 37
2.1 Source of Trace:... 37
2.2 Detect Generated by: ... 38
2.3 Probability the Source Address was Spoofed:.................................. 40
2.4 Description of Attack: ... 40
2.5 Attack Mechanism: ... 41
2.6 Correlations: ... 43
2.7 Evidence of Active Targeting:... 45
2.8 Severity: ... 45
2.9 Defensive Recommendation: ... 45
2.10 Multiple Choice Question.. 45

3 Network Detect (spp_portscan2) Portscan detected 46
3.1 Source of Trace:... 46
3.2 Detect Generated by: ... 47
3.3 Probability the Source Address was Spoofed:.................................. 50

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.4 Description of Attack: ... 50
3.5 Attack Mechanism: ... 51
3.6 Correlations: ... 51
3.7 Evidence of Active Targeting:... 53
3.8 Severity: ... 53
3.9 Defensive Recommendation: ... 53
3.10 Multiple Choice Question:... 54
Three Questions from Post ... 54

References ... 56

Assignment 3 Analyze This...57
Executive Summary .. 57
List of Files Analyzed .. 58
Analysis Process... 58
List of Detects - Description, Analysis, Correlations, Defensive
Recommendations .. 60
Top Talkers ... 103
External Source Addresses and Registration Info..................................... 105
Link Graph ...Error! Bookmark not defined.

References ... 113

Appendix ...117
logsnorter-0.2 ... 129
process_scanalert.pl... 159

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

4

Assignment 1 Describe the State of Intrusion Detection

An Analysis of ARP Spoofing Detection and its
Countermeasures

Abstract

Given the wide availability of tools for performing ARP spoofing and since
ARP spoofing is the underpinning upon which many other attacks are built upon,
this paper will revisit the technique of using ARP spoofing to redirect traffic on
LAN’s. An assortment of countermeasures will be discussed with the primary
emphasis on detection and prevention. Dug Song’s Arpspoof will be
demonstrated and its functions, capabilities, and limitations will be described.
There are many tools available for ARP spoofing. Some others are arpoison,
THC-parasite, taranis, and arptool. Ettercap, hunt and arpmitm are session
hijacking tools that also use this technique.

Arpspoof http://naughty.monkey.org/~dugsong/dsniff/
Arpwatch http://www.securityfocus.com/tools/142
Snort http://www.snort.org

Introduction

Arpspoof is part of suite of tools associated with Dsniff 1. It is the
foundation, upon which many of the other tools in the suite are built on. It allows
manipulation by an attacker of the Address Resolution Protocol (ARP). ARP is
used to map layer 3 addresses (32-bit IP address) to layer 2 addresses (48-bit
MAC addresses). It is these mapping’s, that allow traffic to be delivered to their
destination. When an Ethernet frame is sent from one host on a LAN to another,
it is the 48-bit MAC address that determines which interface the frame is sent to.
These mappings happen without human intervention, and are usually not a
concern for administrators. By changing these mappings, it is possible for an
attacker to redirect traffic for interception in a switched environment2.

These mappings are typically stored on routers, switches, and hosts in
caches. These caches maintain the recent mappings, from ip address to
hardware address3. Most systems have a timeout and the entry is removed.
Ethernet ARP has four types of messages, of which we will only be concerned
with two.

ARP request–a request for the destination hardware address
ARP reply–tells the requesting host the hardware address of the
destination host

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

5

The weakness in the ARP protocol, on many hosts, is that it will accept
unsolicited ARP replies from any host. Arpspoof can be used to redirect packets,
from a target host and/or router on a LAN intended for another host, by forging
ARP replies. IP Forwarding must be turned on, at the attacking host, or the
attackerbecomes a black hole for the victim’s packets

Functions/Capabilities

The attacking host first sends out forged ARP reply packets to the target
system. These forged packets, tell the victim, that the default gateway has been
changed. The attacker will determine the default gateway, and replace it with
his/her IP address. This assumes that the attacker, and the victim are on the
same subnet with a common gateway.

In other words: the attacker continuously sends the victim computer ARP
replies, containing the IP address of the gateway, and the attacker’s hardware
address. After some time, the victim computer will usually create an incorrect
entry in his ARP cache. The next time the victim wants to send an IP packet, to
the gateway, he/she sends the ethernet frame to the attacker’s hardware
address, so actually he/she receives the IP packet.

Now packets destined for other subnets will be sent to the attacker. To
get the return packets, the attacker will send a forged packet to the gateway,
claiming to be the victim. If IP forwarding has been enabled on the attacking
host, this host has now in essence, become the victims default gateway, most
likely without their knowledge.

Detection

For the detection part two tools were used. Arpwatch and Snort with the
arpspoof preprocessor enabled. In order for Snort to detect ARP spoofing, it
must be started with the–a option. This will display ARP packets. The arpspoof
preprocessor needs to be enabled, in the snort.conf configuration file with the
following command.

preprocessor arpspoof

The detection sensor chugwater, started Snort and Arpwatch with the following
commands:

chugwater:[/}#snort–c /usr/local/snort-1.9.1/etc/snort.conf -i eth0–Dedba -l
/var/log/elxl0
chugwater:[/}#arpwatch–Dn

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

6

Diagram1
Attack Network

Contras t B right

d i g i t a l

Contras t Bright

d i g i t a l

Contras t Bri ght

d i g i t a l

Cont rast Brig ht

d i g i t a l

Cont rast Bright

d i g i t a l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1

2

1

1 2 3 4

2

5 6

3

7 8

4

9 10

5

11 12

6

13 14 15 16 17 18 19 20 21 22 23 24

7 8 9 10 11 12

25 26 27 28 29 30 31 32 33 34 35 36

13 14 15 16 17 18

37 38 39 40 41 42 43 44 45 46 47 48

19 20 21 22 23 24

POWER RPS ACTIVITY

Cisco 2600S ERIES waneta
172.21.35.1
00:09:7c:08:8e:80

dakota
172.21.35.2
00:d0:58:4f:d0:ff

tap
tx

rx

elxl0

elxl1

chugwater-elxl1
172.21.35.7
00:50:da:18:cb:95

sundance
172.21.35.5
00:50:da:18:cb:86

littlehoop
172.21.35.6
00:10:5a:c9:b4:b0

crowsfoot
172.21.35.12
0:8:c7:9:14:8d

jackrabbit
172.21.35.11
00:10:4b:d2:95:f9

vlan 2 vlan 3 vlan 4

to the internet

The following paragraphs describe the snort arpspoof preprocessor.
They are excerpted are from a reply by Jeff Nathan4 to a post to the snort-users
mailing list.

“spp_arpspoof has 4 detection mechanisms.

(The following two methods address the use of 'preprocessor arpspoof' in
snort.conf)

First: If an ARP request is observed, the source hardware address in the ethernet
frame is compared to the sender Ethernet address in the ARP packet. If there is
a mismatch an alert is generated.

Second: If an ARP reply is observed, the source hardware address in the
Ethernet frame is compared to the sender Ethernet address in the ARP packet.
Also, the destination hardware address in the Ethernet frame, is compared to the
target Ethernet address within the ARP packet. If there is a mismatch in either of
the two pairs of fields compared, an alert is generated.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

7

(The following method addresses the use of 'preprocessor arpspoof: -unicast' in
snort.conf)

Third: If an ARP request is observed where the destination Ethernet address in
the Ethernet header is not the broadcast address (FF:FF:FF:FF:FF:FF), an alert
is generated.

(The following method addresses the use of 'arpspoof_detect_host:
192.168.40.1 f0:0f:00:f0:0f:00' in snort.conf)

Fourth: A list of IP address/MAC address pairs is created in memory.

If the sender’s IP address within the ARP frame matches an entry in
snort's list, the MAC address in snort's list is compared to fields within the
Ethernet header and ARP request packet. If either the source Ethernet address
within the Ethernet header or the sender Ethernet address within the ARP packet
does not match the entry in snort's list, an alert is generated. This test is
performed on both ARP requests and replies.”

Attack Scenario 1

The attacking host is sundance, the attacker will attempt to redirect all
outbound traffic from the victim subnet (default gateway waneta) to sundance,
with the following command:

sundance:[/}#arpspoof 172.21.35.1

After the command is issued, the host sends a continuous stream of ARP
replies, to the broadcast address.

sundance:[/]#arpspoof 172.21.35.1
0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp reply 172.21.35.1 is-at
0:50:da:18:cb:86
0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp reply 172.21.35.1 is-at
0:50:da:18:cb:86
0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp reply 172.21.35.1 is-at
0:50:da:18:cb:86
…

This is the snoop output from sundance, showing the spoofed packet.
The Sender’s hardware address is spoofed using sundance’s hardware address
of 0:50:da:18:cb:86. Also the Sender’s protocol address is spoofed, since the
packet comes from sundance.

ETHER: ----- Ether Header -----
ETHER:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

8

ETHER: Packet 1 arrived at 11:08:55.63
ETHER: Packet size = 60 bytes
ETHER: Destination = ff:ff:ff:ff:ff:ff, (broadcast)
ETHER: Source = 0:50:da:18:cb:86,
ETHER: Ethertype = 0806 (ARP)
ETHER:
ARP: ----- ARP/RARP Frame -----
ARP:
ARP: Hardware type = 1
ARP: Protocol type = 0800 (IP)
ARP: Length of hardware address = 6 bytes
ARP: Length of protocol address = 4 bytes
ARP: Opcode 2 (ARP Reply)
ARP: Sender's hardware address = 0:50:da:18:cb:86
ARP: Sender's protocol address = 172.21.35.1, waneta.bepc.net
ARP: Target hardware address = ff:ff:ff:ff:ff:ff
ARP: Target protocol address = 0.0.0.0, OLD-BROADCAST
ARP:

A quick check on a victim machine’s, ARP cache’s shows a successful
attack. All the hosts littlehoop (Solaris 8 x86), crowsfoot (Linux 7.2), and
jackrabbit (Windows 2000) caches were updated to the forged hardware
address. After that, all of littlehoop’s, crowsfoot’s and jackrabbit’s outbound
traffic, was sent to Sundance, before forwarding to waneta (the true default
gateway).

The following excerpts show the forged entries in littlehoop, crowsfoot and
jackrabbit’s ARP cache.

littlehoop:[/]#arp -a
Net to Media Table: IPv4
Device IP Address Mask Flags Phys Addr
------ -------------------- --------------- ----- ---------------
elxl0 waneta.bepc.net 255.255.255.255 00:50:DA:18:CB:86

[root@crowsfoot root]# arp -a
waneta.bepc.net (172.21.35.1) at 00:50:DA:18:CB:86 [ether] on eth0

jackrabbit’s prompt
C:\>arp -a
Interface: 172.21.35.11 on Interface 2

Internet Address Physical Address Type
172.21.35.1 00-50-DA-18-CB-86 dynamic

This is detected by Snort on chugwater, with the following alert.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

9

[**] [112:3:1] (spp_arpspoof) Ethernet/ARP Mismatch request for Destination [**]
04/03-11:08:57.632164

Arpwatch reports it as:

From: arpwatch (Arpwatch)
To: root
Subject: flip flop

hostname: waneta.bepc.net
ip address: 172.21.35.1
ethernet address: 0:50:da:18:cb:86
ethernet vendor: 3COM CORPORATION
old ethernet address: 0:9:7c:8:8e:80
old ethernet vendor: <unknown>
timestamp: Thursday, April 3, 2003 11:09:04 -0600
previous timestamp: Thursday, April 3, 2003 11:09:02 -0600
delta: 2 seconds

Attack Scenario 2

In this attack scenario, the attacker (sundance) will go after one host
(crowsfoot) and attempt to capture traffic in both directions as follows. The
following line was added, to the snort configuration file, snort.conf: This is the
gateways ip and mac address’s.

preprocessor arpspoof_detect_host: 172.21.35.1 00:09:7c:08:8e:80

Snort was killed and restarted. Arpwatch was also.

Tell the victim host that we are the gateway
arpspoof -t victim gateway

Tell the gateway that we are the victim.
arpspoof -t gateway victim

The actual commands are as follows, which sends a continuous stream of ARP
replies.
sundance:[/]#arpspoof -t 172.21.35.1 172.21.35.12
0:50:da:18:cb:86 0:9:7c:8:8e:80 0806 42: arp reply 172.21.35.12 is-at
0:50:da:18:cb:86
0:50:da:18:cb:86 0:9:7c:8:8e:80 0806 42: arp reply 172.21.35.12 is-at
0:50:da:18:cb:86
…
from another shell
sundance:[/]#arpspoof -t 172.21.35.12 172.21.35.1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

10

0:50:da:18:cb:86 0:8:c7:9:14:8d 0806 42: arp reply 172.21.35.1 is-at
0:50:da:18:cb:86
0:50:da:18:cb:86 0:8:c7:9:14:8d 0806 42: arp reply 172.21.35.1 is-at
0:50:da:18:cb:86
…

This is the snoop output from sundance, showing a sample spoofed
packet. The Sender’s hardware address is spoofed using sundance’s hardware
address of 0:50:da:18:cb:8. Also the Sender’s protocol address isspoofed, since
the packet comes from sundance.

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 34 arrived at 18:07:55.39
ETHER: Packet size = 60 bytes
ETHER: Destination = 0:9:7c:8:8e:80,
ETHER: Source = 0:50:da:18:cb:86,
ETHER: Ethertype = 0806 (ARP)
ETHER:
ARP: ----- ARP/RARP Frame -----
ARP:
ARP: Hardware type = 1
ARP: Protocol type = 0800 (IP)
ARP: Length of hardware address = 6 bytes
ARP: Length of protocol address = 4 bytes
ARP: Opcode 2 (ARP Reply)
ARP: Sender's hardware address = 0:50:da:18:cb:86
ARP: Sender's protocol address = 172.21.35.12, crowsfoot.bepc.net
ARP: Target hardware address = 0:9:7c:8:8e:80
ARP: Target protocol address = 172.21.35.1, waneta.bepc.net
ARP:

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 2 arrived at 18:10:21.14
ETHER: Packet size = 60 bytes
ETHER: Destination = 0:8:c7:9:14:8d,
ETHER: Source = 0:50:da:18:cb:86,
ETHER: Ethertype = 0806 (ARP)
ETHER:
ARP: ----- ARP/RARP Frame -----
ARP:
ARP: Hardware type = 1
ARP: Protocol type = 0800 (IP)
ARP: Length of hardware address = 6 bytes
ARP: Length of protocol address = 4 bytes

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

11

ARP: Opcode 2 (ARP Reply)
ARP: Sender's hardware address = 0:50:da:18:cb:86
ARP: Sender's protocol address = 172.21.35.1, waneta.bepc.net
ARP: Target hardware address = 0:8:c7:9:14:8d
ARP: Target protocol address = 172.21.35.12, crowsfoot.bepc.net
ARP:

A quick check on a victim machine’s ARP cache, shows the forged
entry was successful.

[root@crowsfoot root]# arp -a
waneta.bepc.net (172.21.35.1) at 00:50:DA:18:CB:86 [ether] on eth0

The router (waneta) shows a successful attack (crowsfoots ip address with
sundance’s mac address).

waneta#sh arp
Protocol Address Age (min) Hardware Addr Type Interface
Internet 172.21.35.12 0 0050.da18.cb86 ARPA FastEthernet0/13
Internet 172.21.35.2 15 00d0.584f.d0ff ARPA FastEthernet0/13
Internet 172.21.35.1 - 0009.7c08.8e80 ARPA FastEthernet0/13
Internet 172.21.35.6 10 0010.5ac9.b4b0 ARPA FastEthernet0/13
Internet 172.21.35.7 2 0050.da18.cb97 ARPA FastEthernet0/13
Internet 172.21.35.5 8 0050.da18.cb86 ARPA FastEthernet0/13

This is detected by Snort on chugwater, with the following alert.

[**] [112:4:1] (spp_arpspoof) Attempted ARP cache overwrite attack [**]
04/05-18:08:11.648786

Arpwatch reports it as:

From: arpwatch (Arpwatch)
To: root
Subject: flip flop (crowsfoot.bepc.net)

hostname: crowsfoot.bepc.net
ip address: 172.21.35.12
ethernet address: 0:50:da:18:cb:86
ethernet vendor: 3COM CORPORATION
old ethernet address: 0:8:c7:9:14:8d
old ethernet vendor: COMPAQ COMPUTER CORPORATION
timestamp: Saturday, April 5, 2003 18:09:05 -0600
previous timestamp: Saturday, April 5, 2003 14:16:25–0600
delta: 3 hours

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

12

From: arpwatch (Arpwatch)
To: root
Subject: flip flop (waneta.bepc.net)

hostname: waneta.bepc.net
ip address: 172.21.35.1
ethernet address: 0:50:da:18:cb:86
ethernet vendor: 3COM CORPORATION
old ethernet address: 0:9:7c:8:8e:80
old ethernet vendor: <unknown>
timestamp: Saturday, April 5, 2003 18:20:25 -0600
previous timestamp: Saturday, April 5, 2003 18:19:13 -0600
delta: 1 minute

From: arpwatch (Arpwatch)
To: root
Subject: flip flop (waneta.bepc.net)

hostname: waneta.bepc.net
ip address: 172.21.35.1
ethernet address: 0:9:7c:8:8e:80
ethernet vendor: <unknown>
old ethernet address: 0:50:da:18:cb:86
old ethernet vendor: 3COM CORPORATION
timestamp: Saturday, April 5, 2003 18:21:17 -0600
previous timestamp: Saturday, April 5, 2003 18:21:17 -0600
delta: 0 seconds

From: arpwatch (Arpwatch)
To: root
Subject: flip flop (waneta.bepc.net)

hostname: waneta.bepc.net
ip address: 172.21.35.1
ethernet address: 0:50:da:18:cb:86
ethernet vendor: 3COM CORPORATION
old ethernet address: 0:9:7c:8:8e:80
old ethernet vendor: <unknown>
timestamp: Saturday, April 5, 2003 18:21:19 -0600
previous timestamp: Saturday, April 5, 2003 18:21:17 -0600
delta: 2 seconds

From: arpwatch (Arpwatch)
To: root
Subject: flip flop (waneta.bepc.net)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

13

hostname: waneta.bepc.net
ip address: 172.21.35.1
ethernet address: 0:9:7c:8:8e:80
ethernet vendor: <unknown>
old ethernet address: 0:50:da:18:cb:86
old ethernet vendor: 3COM CORPORATION
timestamp: Saturday, April 5, 2003 18:23:29 -0600
previous timestamp: Saturday, April 5, 2003 18:23:29 -0600
delta: 0 seconds

these continue flopping back and forth with delta’s of 0 to 2 seconds until
it finally settles down.

Interestingly enough when a ping is done from crowsfoot , pinging deadhorse
(a host on another subnet) we get redirects from sundance (the attacker).
Obviously the attacker is not that skilled at setting up a stealthy attack.

[root@crowsfoot root]# ping deadhorse
PING deadhorse.bepc.net (172.21.51.174) from 172.21.35.12 : 56(84) bytes of
data.
From sundance.bepc.net (172.21.35.5): Redirect Host(New nexthop:
waneta.bepc.net (172.21.35.1))
64 bytes from deadhorse.bepc.net (172.21.51.174): icmp_seq=0 ttl=252
time=3.395 msec
….

Snort also alerts on this as follows, this could also be another indicator of an
attempted ARP spoofing attack on your LAN. Although, probably by an
unsophisticated attacker. The attacker is on a Solaris host and the following
command would stop the redirects: ndd -set /dev/ip ip_send_redirects 0. The
snort alert is shown below.

[**] [1:472:1] ICMP redirect host [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
04/05-18:29:13.756085 0:50:DA:18:CB:86 -> 0:8:C7:9:14:8D type:0x800
len:0x5A
172.21.35.5 -> 172.21.35.12 ICMP TTL:255 TOS:0x0 ID:9959 IpLen:20
DgmLen:76 DF
Type:5 Code:1 REDIRECT HOST NEW GW: 172.21.35.1
** ORIGINAL DATAGRAM DUMP:
172.21.35.12:22 -> 172.21.27.6:1321 TCP TTL:64 TOS:0x0 ID:0 IpLen:20
DgmLen:48 DF
***A**S* Seq: 0x40C794E Ack: 0x1E9B58C5 Win: 0x16D0 TcpLen: 28
** END OF DUMP
[Xref => cve CVE-1999-0265][Xref => arachnids 135]
Original packet from snort.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

14

04/05-18:29:13.756085 172.21.35.5 -> 172.21.35.12
ICMP TTL:255 TOS:0x0 ID:9959 IpLen:20 DgmLen:76 DF
Type:5 Code:1 REDIRECT HOST NEW GW: 172.21.35.1
** ORIGINAL DATAGRAM DUMP:
172.21.35.12:22 -> 172.21.27.6:1321
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:48 DF
***A**S* Seq: 0x40C794E Ack: 0x1E9B58C5 Win: 0x16D0 TcpLen: 28
** END OF DUMP
AC 15 23 01 45 00 00 30 00 00 40 00 40 06 A4 8B ..#.E..0..@.@...
AC 15 23 0C AC 15 1B 06 00 16 05 29 04 0C 79 4E ..#........)..yN
1E 9B 58 C5 70 12 16 D0 DC 08 00 00 02 04 05 B4 ..X.p...........
01 01 04 02

Countermeasures

Host Based

It is very difficult to defend against ARP attacks due to the underlying
weaknesses in the protocol. Controlling the behavior of the ARP cache may give
some protection. Although, it may be difficult to implement in large environments,
and may cause unintended side effects, one supposed defense against ARP
attacks is to reduce the lifetime of cache entries. However an ARP time-out that
is too short may produce troubles, particularly on large networks. Hosts that are
constantly dumping their ARP caches due to short time-out values will cause
more broadcasting. This will have a direct, negative impact on performance,
since the IP software will not be able to send any data until an ARP broadcast
has been sent and responded to. On the other hand, ARP cache timeouts that
are too high might cause problems. For example, whenever a host is assigned a
different IP address, the other hosts who have an older entry in their caches will
still try to send data to the old (and invalid) hardware address.

Another option could be to create static ARP addresses for some systems.
Static ARP cache entries are permanent and therefore do not expire. These
entries can be deleted using the command arp -d. A third option would be to
disable ARP processing on the system interface(s) altogether and add static ARP
entries.

Windows 2000 Professional

The following commands displays and modifies the IP-to-physical address
translation tables used by the Address Resolution Protocol (ARP).

arp -a [inet_addr] [-N [if_addr]]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

15

arp -d inet_addr [if_addr]

arp -s inet_addr ether_addr [if_addr]

The–s option adds an entry in the ARP cache to associate the IP address
inet_addr with the physical address ether_addr. The physical address is given as
6 hexadecimal bytes separated by hyphens. The IP address is specified using
dotted decimal notation. The entry is permanent, that is, it is not automatically
removed from the cache after the time-out expires. The–a option displays the
current entrys in the cache and the–d option deletes entries from the cache.

To minimize ARP broadcast traffic on your network, Windows 2000
maintains a cache of hardware-to-software address mappings for future use. This
cache contains the following two types of entries, dynamic and static.

Dynamic ARP cache entries are added and deleted automatically during
the normal use of TCP/IP sessions with remote computers. Dynamic entries age
and expire from the cache if not reused within 2 minutes. Windows 2000 adjusts
the size of the ARP cache automatically to meet the needs of the system. If an
entry is not used by any outgoing datagram for two minutes, the entry is removed
from the ARP cache. Entries that are being referenced are given additional time,
in two minute increments, up to a maximum lifetime of 10 minutes. After 10
minutes, the ARP cache entry is removed and must be rediscovered using an
ARP Request frame. To adjust the time an unreferenced entry can remain in the
ARP cache, change the value of the ArpCacheLife and/ or the
ArpCacheMinReferencedLife registry entries.

Static ARP cache entries are added manually by using the ARP command
with the -s option. Static entries remain in the ARP cache until the computer is
restarted5.

The ARP cache is erased upon initialization of the TCP/IP protocol. To
make static ARP cache entries persistent, each time the computer is started,
create a command file with the ARP commands and place a shortcut to the
command file in the Startup folder.

In addition to creating an ARP cache entry through the receipt of an ARP
Reply, ARP cache entries are updated if the mapping is received through an
ARP Request. In other words, if the IP address of the sender of an ARP Request
is in the cache, update the entry with the sender's MAC address. This way,
nodes that have static or dynamic ARP cache entries for the sender are updated
with the ARP Request sender’s current MAC address. For a node whose
interface and MAC address changes, it updates the ARP cache containing an
entry for the node the next time the node sends an ARP Request.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

16

So lets attempt to overwrite the ARP cache as shown below. First,
checking the current contents.

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.
C:\>arp -a
Interface: 172.21.35.11 on Interface 0x1000003

Internet Address Physical Address Type
172.21.35.1 00-09-7c-08-8e-80 dynamic

C:\>

Then start the attack from sundance and attempt to overwrite the entry for the
default gateway on jackrabbit.

sundance:[/]#arpspoof -t 172.21.35.11 172.21.35.1
0:50:da:18:cb:86 0:10:4b:d2:95:f9 0806 42: arp reply 172.21.35.1 is-at
0:50:da:18:cb:86
0:50:da:18:cb:86 0:10:4b:d2:95:f9 0806 42: arp reply 172.21.35.1 is-at
0:50:da:18:cb:86
0:50:da:18:cb:86 0:10:4b:d2:95:f9 0806 42: arp reply 172.21.35.1 is-at
0:50:da:18:cb:86
…

C:\>arp -a
Interface: 172.21.35.11 on Interface 0x1000003

Internet Address Physical Address Type
172.21.35.1 00-50-da-18-cb-86 dynamic
172.21.35.5 00-50-da-18-cb-86 dynamic

it is immediately overwritten and when the attack stops the correct entry is once
again found in the cache

C:\>arp -a
Interface: 172.21.35.11 on Interface 0x1000003

Internet Address Physical Address Type
172.21.35.1 00-09-7c-08-8e-80 dynamic
172.21.35.5 00-50-da-18-cb-86 dynamic

Now lets attempt to stop the attack by adding a static entry for the
gateway to the cache. To change TCP/IP settings, you must be logged on as
a member of the Administrator group. This is by design or we get a message
like the following.

C:\>arp -s 172.21.35.1 00-09-7c-08-8e-80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

17

The ARP entry addition failed: 5

So after switching to an administrator account we attempt this again.

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.
C:\>arp -a
Interface: 172.21.35.11 on Interface 0x1000003

Internet Address Physical Address Type
172.21.35.1 00-09-7c-08-8e-80 dynamic

C:\>arp -s 172.21.35.1 00-09-7c-08-8e-80
C:\>arp -a
Interface: 172.21.35.11 on Interface 0x1000003

Internet Address Physical Address Type
172.21.35.1 00-09-7c-08-8e-80 static

Starting the attack again, and inspecting the ARP cache shows that it is
overwritten once again. So this is not a successful counter measure for this
platform.

C:\>arp -a
Interface: 172.21.35.11 on Interface 0x1000003

Internet Address Physical Address Type
172.21.35.1 00-50-da-18-cb-86 static
172.21.35.5 00-50-da-18-cb-86 dynamic

Now lets turn our attention to the ARP cache timeout parameters.
Windows NT and Windows 2000 adjust the size of the ARP cache
automatically to meet the needs of the system. If an entry is not used by any
outgoing datagram for two minutes, the entry is removed from the ARP cache.
Entries that are being referenced are removed from the ARP cache after ten
minutes. Entries added manually are not removed from the cache
automatically. A new registry parameter, ArpCacheLife, was added in Windows
NT 3.51 Service Pack 4 to allow more administrative control over aging.

All of the TCP/IP parameters are registry values located under the
registry following Registry path:

HKEY_LOCAL_MACHINE
\SYSTEM

\CurrentControlSet
\Services:

\Tcpip
\Parameters

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

18

ArpCacheLife REG_DWORD Number of Seconds

Default: 600 (10 minutes) In the absence of an ArpCacheLife parameter, the
defaults for ARP cache time-outs are a two-minute time-out on unused entries
and a ten-minute time-out on used entries.

Description: Determines the default lifetime for entries in the ARP cache table.
Once an entry is placed in the ARP cache, it is allowed to remain there until its
lifetime expires or until its table entry is reused because it is the oldest entry.
If ArpCacheLife is greater than or equal to ArpCacheMinReferencedLife,
referenced and un-referenced ARP cache entries expire in ArpCacheLife
seconds.
If ArpCacheLife is less than ArpCacheMinReferencedLife, un-referenced
entries expire in ArpCacheLife seconds, and referenced entries expire in
ArpCacheMinReferencedLife seconds.

ArpCacheSize REG_DWORD Number

Default: 62

Determines the maximum number of entries that the ARP cache table can hold.
The ARP cache is allowed to grow dynamically until this size is reached. After
the table reaches this size, new entries can only be added by replacing the
oldest entries that exist.

ArpCacheMinReferencedLife REG_DWORD Number of Seconds

Default: 600 seconds (10 minutes)

Description: ArpCacheMinReferencedLife controls the minimum time until a
referenced ARP cache entry expires. This parameter can be used in
combination with the ArpCacheLife parameter, as follows:
Entries in the ARP cache are referenced each time that an outbound packet
is sent to the IP address in the entry6.

Adapter-specific values are listed under subkeys for each adapter.
Depending on whether the system or adapter is DHCP-configured or static
override values are specified, parameters may have both DHCP and statically
configured values. If any of these parameters are changed using the registry
editor, a reboot of the system is generally required for the change to take
effect. A reboot is usually not required if values are changed using the network
connections interface.

If we now experiment with the ARP cache aging parameters by setting the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

19

arpcache life entry to 10 seconds and rebooting. Once again start an attack and
the ARP cache on the victim is overwritten. So lets set the timer to 0 and reboot.
Now examining the cache we see any entries are immediately timed out and
flushed from the cache.

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.
C:\>arp -a
No ARP Entries Found
C:\>arp -a
No ARP Entries Found
C:\>arp -a
No ARP Entries Found
C:\>arp -a
No ARP Entries Found

Now the host has to send an ARP request for every packet as demonstrated by
pinging a host. This should slow down an attacker. So lets start an attack
from sundance telling jackrabbit we are the default gateway. Then on the victim
(jackrabbit) generate some traffic by pinging a host on another subnet. We will
capture the ARP traffic on chugwater.

C:\>ping deadhorse -t
Pinging deadhorse.bepc.net [172.21.51.174] with 32 bytes of data:
Reply from 172.21.51.174: bytes=32 time<10ms TTL=253
Reply from 172.21.51.174: bytes=32 time<10ms TTL=253
…

which generates constant ARP requests from jackrabbit (for the default gateway).
This is shown on a snoop from chugwater.

jackrabbit.bepc.net -> (broadcast) ARP C Who is 172.21.35.1, waneta.bepc.net
?
waneta.bepc.net -> jackrabbit.bepc.net ARP R 172.21.35.1, waneta.bepc.net is
0:9:7c:8:8e:80
waneta.bepc.net -> jackrabbit.bepc.net ARP R 172.21.35.1, waneta.bepc.net is
0:50:da:18:cb:86
jackrabbit.bepc.net -> (broadcast) ARP C Who is 172.21.35.1, waneta.bepc.net
?
waneta.bepc.net -> jackrabbit.bepc.net ARP R 172.21.35.1, waneta.bepc.net is
0:9:7c:8:8e:80
waneta.bepc.net -> jackrabbit.bepc.net ARP R 172.21.35.1, waneta.bepc.net is
0:50:da:18:cb:86
jackrabbit.bepc.net -> (broadcast) ARP C Who is 172.21.35.1, waneta.bepc.net
?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

20

waneta.bepc.net -> jackrabbit.bepc.net ARP R 172.21.35.1, waneta.bepc.net is
0:9:7c:8:8e:80
waneta.bepc.net -> jackrabbit.bepc.net ARP R 172.21.35.1, waneta.bepc.net is
0:50:da:18:cb:86

The cache is initially empty, until the attack starts then it is overwritten.
Occasionally the cache empties out, but is immediately overwritten. Sometimes
waneta’s true value is in there but not very often. Thecache, is overwritten by
the attacker, most of the time, so most of the packets go to the attacker.

I started a snoop on sundance looking for icmp then started a ping with a
count option on jackrabbit. Almost invariably the attacker (sundance) received
the packet. Only occasionally, it did not. Given that, it is constantly sending
ARP replies, the odds are, the ARP reply from sundance is being received before
waneta’s, so sundance updates the cache most of the time.

Another trace upholds this idea, a constant ping was started on jackrabbit
and another snoop was started on chugwater. In that snoop, sundance is seen
sending approximately six replies to waneta’s one. Adjusting the ARP cache
parameters is not an effective countermeasure on this platform, as it also
increases traffic and degrades performance.

Solaris 8 x86

The cache lifetime is determined by the kernel parameter
arp_cleanup_interval. The IP routing table entry lifetime is controlled by the
kernel parameter ip_ire_arp_interval. On Solaris hosts we can set the ARP
timers to lower values7.

ndd -set /dev/arp arp_cleanup_interval <time>
ndd -set /dev/ip ip_ire_arp_interval <time>

where <time> is in milliseconds. Reducing the ARP cache timeout interval and
the IP-routing table timeout interval will slow down an attacker but not stop them.

The arp_cleanup_interval option determines the period of time the
Address Resolution Protocol (ARP) cache maintains entries. ARP attacks are still
effective with the default interval. Shortening the timeout interval should reduce
the effectiveness of such an attack. The default value is 300000 milliseconds (5
minutes).

The ip_ire_arp_interval option determines the period of time at which a
specific route will be kept, even if currently in use. ARP attacks may be effective
with the default interval. Shortening the time interval may reduce the
effectiveness of attacks. The default interval is 1200000 milliseconds (20
minutes)8.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

21

Get current littlehoop entries and make the following changes, as shown below.

littlehoop:[/] ndd -get /dev/arp arp_cleanup_interval
300000
littlehoop:[/] ndd -get /dev/ip ip_ire_arp_interval
1200000

Discard ARP entries from ARP cache after 1 minute.
littlehoop:[/] ndd -set /dev/arp arp_cleanup_interval 60000

Flush ARP entries from routing table after 1 minute
littlehoop:[/] ndd -set /dev/ip ip_ire_arp_interval 60000

Changing the above timers had little effect. I was able to ARP spoof and have
the entry immediately added to the victims ARP cache. As shown below:

littlehoop:[/]#arp -a
Net to Media Table: IPv4
Device IP Address Mask Flags Phys Addr
------ -------------------- --------------- ----- ---------------
elxl0 waneta.bepc.net 255.255.255.255 00:50:da:18:cb:86
elxl0 littlehoop 255.255.255.255 SP 00:10:5a:c9:b4:b0
elxl0 base-address.mcast.net 240.0.0.0 SM 01:00:5e:00:00:00
littlehoop:[/]#

Next I added a static static entry for router, in littlehoop’s arp cache

littlehoop:[/]#arp–s waneta.bepc.net 00:09:7c:08:8e:80
littlehoop:[/]#arp -a
Net to Media Table: IPv4
Device IP Address Mask Flags Phys Addr
------ -------------------- --------------- ----- ---------------
elxl0 littlehoop 255.255.255.255 SP 00:10:5a:c9:b4:b0
elxl0 waneta.bepc.net 255.255.255.255 S 00:09:7c:08:8e:80
elxl0 base-address.mcast.net 240.0.0.0 SM 01:00:5e:00:00:00

After running the ARP spoof attack the entry was immediately overwritten.

littlehoop:[/]#arp -a
Net to Media Table: IPv4
Device IP Address Mask Flags Phys Addr
------ -------------------- --------------- ----- ---------------
elxl0 waneta.bepc.net 255.255.255.255 S 00:50:da:18:cb:86
elxl0 littlehoop 255.255.255.255 SP 00:10:5a:c9:b4:b0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

22

elxl0 base-address.mcast.net 240.0.0.0 SM 01:00:5e:00:00:00

I must be missing something here! The supposed defenses are having no
effect, whatsoever! They are not stopping the attack or slowing it down. The
cache is being overwritten. Apparently the cache is being cleaned every minute,
but since is being immediately spoofed with forged entries, the supposed
defense is having very little effect.

So now, lets try this, reduce the cache interval some more, lets discard the ARP
entries after ten seconds.

littlehoop:[/] ndd -set /dev/arp arp_cleanup_interval 1000

After rebooting I am unable to overwrite after 5 minutes of trying. I stopped and
started the attack multiple times. I was unable to overwrite the ARP cache any of
the times even though the attacks were allowed to run for minutes. Apparently,
the timers have to be set to a lower value for this to be an effective defense.

Cisco 3550

The router is a Cisco 3550, after setting the router interface ARP timeout,
to 10 seconds, with the following commands. I am still able to spoof the router.

dakota(config)#int vlan 3
dakota(config-if)#arp timeout 10
dakota#sh arp
Protocol Address Age (min) Hardware Addr Type Interface
Internet 172.21.35.11 0 0010.4bd2.95f9 ARPA Vlan3
Internet 172.21.35.8 0 0050.da18.cb86 ARPA Vlan3
Internet 172.21.35.12 0 0008.c709.148d ARPA Vlan3
Internet 172.21.35.2 0 00d0.584f.d0ff ARPA Vlan3
Internet 172.21.35.1 - 0009.7c08.8e80 ARPA Vlan3
Internet 172.21.35.7 0 0050.da18.cb95 ARPA Vlan3
Internet 172.21.35.5 0 0050.da18.cb86 ARPA Vlan3

So then I added added a static entry for littlehoop (the victim).

dakota(config)#arp 172.21.35.8 0010.5ac9.b4b0 arpa
dakota#sh arp
Protocol Address Age (min) Hardware Addr Type Interface
Internet 172.21.35.8 - 0010.5ac9.b4b0 ARPA
Internet 172.21.35.12 0 0008.c709.148d ARPA Vlan3
Internet 172.21.35.2 0 00d0.584f.d0ff ARPA Vlan3
Internet 172.21.35.1 - 0009.7c08.8e80 ARPA Vlan3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

23

Internet 172.21.35.7 0 0050.da18.cb95 ARPA Vlan3
Internet 172.21.35.5 0 0050.da18.cb86 ARPA Vlan3

This put a stop to spoofing the routers ARP cache. This is an effective
countermeasure for small LANs.

Redhat 7.2

After adding the static entry for the gateway, when I try to ARP spoof
crowsfoot from sundance I cannot overwrite the ARP cache. Without the static
entry I can overwrite it immediately. This countermeasure works.

[root@crowsfoot root]# arp -s waneta.bepc.net 00:09:7c:08:8e:80
[root@crowsfoot root]# arp -a
waneta.bepc.net (172.21.35.1) at 00:09:7C:08:8E:80 [ether] PERM on eth0
[root@crowsfoot root]#

Network Based

VLANS

Virtual LANs offer some level of protection, for hosts that are not on the
same VLAN as an attacker. If we attempt to ARP spoof, crowsfoot on VLAN 4,
from sundance on VLAN 3 using the following commands. Arpspoof needs
crowsfoots mac address so it sends an ARP request, and can’t get it across the
vlan. Similarly if we try to tell crowsfoot we are the default gateway it sends an
ARP request for crowsfoot, which it can’t find.

sundance:[/]#arpspoof -t 172.21.35.33 172.21.35.40
0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp who-has 172.21.35.33 tell 172.21.35.5
0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp who-has 172.21.35.33 tell 172.21.35.5
0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp who-has 172.21.35.33 tell 172.21.35.5
0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp who-has 172.21.35.33 tell 172.21.35.5
couldn't arp for host 172.21.35.33
sundance:[/]#

or the other way

sundance:[/]#arpspoof -t 172.21.35.40 172.21.35.33
0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp who-has 172.21.35.40 tell 172.21.35.5
0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp who-has 172.21.35.40 tell 172.21.35.5
0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp who-has 172.21.35.40 tell 172.21.35.5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

24

0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp who-has 172.21.35.40 tell 172.21.35.5
couldn't arp for host 172.21.35.40
sundance:[/]#

If we try to redirect all traffic on the subnet, we are able to send the forged ARP
replies, this is because all VLANs use the same mac address as shown below.

sundance:[/]#arpspoof 172.21.35.33
0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp reply 172.21.35.33 is-at
0:50:da:18:cb:86
0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp reply 172.21.35.33 is-at
0:50:da:18:cb:86
0:50:da:18:cb:86 ff:ff:ff:ff:ff:ff 0806 42: arp reply 172.21.35.33 is-at
0:50:da:18:cb:86
0:50:da:18

However no entry is made in the routers ARP cache, so VLANs do protect
against ARP spoofing.

waneta#sh arp
Protocol Address Age (min) Hardware Addr Type Interface
Internet 172.21.35.249 - 0009.7c08.8e80 ARPA Vlan2
Internet 172.21.35.1 - 0009.7c08.8e80 ARPA Vlan3
Internet 172.21.35.7 0 0050.da18.cb95 ARPA Vlan3
Internet 172.21.35.5 2 0050.da18.cb86 ARPA Vlan3
Internet 172.21.35.43 7 0010.5ac9.b4b0 ARPA Vlan4
Internet 172.21.35.40 9 0008.c709.148d ARPA Vlan4
Internet 172.21.35.41 110 0010.4bd2.95f9 ARPA Vlan4
Internet 172.21.35.33 - 0009.7c08.8e80 ARPA Vlan4

Port Based Security

Richard Duffy stated in his paper9 that he was unable to keep arpspoof
from spoofing the router. With the newer security features in switches this is now
possible. Assuming a switched environment, switches may be locked down by
MAC address.

Securing ports can be tedious work. Unused ports should be disabled. Other
methods involve MAC address hardcoding. Key devices such as routers and
firewalls can be secured by hardcoding their MAC address into the switch
configuration. For the Cisco CatOS the following command on a Catalyst 4000
series

dakota> (enable) set port security 2/32 disable age 0 maximum 1 shutdown 10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

25

violation shutdown

has the following effect. The age time specifies how long the address will be
secure. Setting it to 0 disables aging. The maximum indicates the number of
MAC addresses allowed. The security violation action can be specified as either
shutdown or restrict. Shutdown shuts down the port permanently for a specified
time in minutes. The valid range is 10 to 1440 minutes. If it is set to zero the
shutdown is disabled for that port. When the shutdown timeout expires, the port
is re-enabled and all port security configurations are maintained. Restrict drops
all packets from insecure hosts but remains enabled.

For the example, on our switch dakota, if we attempt to set port based
security of the router port with the following command.

dakota> (enable) set port security 2/3 enable violation restrict
Feature not allowed on trunking port.
dakota> (enable)

We can’t use this command on a trunk port. So if we set the host port as follows,
setting the port to 1 MAC address with a violation action to shutdown for 10
minutes.

dakota> (enable) set port security 2/14 enable violation shutdown maximum 1
age 10
Port 2/14 security enabled, maximum address 1, age time 10, violation mode
shutdown.
Trunking disabled for Port 2/14 due to Security Mode.
dakota> (enable)

If we now start an ARP spoofing attack telling littlehoop we are the default
gateway.

sundance:[/]#arpspoof -t 172.21.35.8 172.21.35.1
0:50:da:18:cb:86 0:10:5a:c9:b4:b0 0806 42: arp reply 172.21.35.1 is-at
0:50:da:18:cb:86
0:50:da:18:cb:86 0:10:5a:c9:b4:b0 0806 42: arp reply 172.21.35.1 is-at
0:50:da:18:cb:86

The switch sees the spoofed packets and generates a warning.

dakota> (enable) 2003 Apr 13 21:12:44 cst -05:00 %SYS-4-P2_WARN: 1/Traffic
from permanent host 00:10:5a:c9:b4:b0 but seen on incorrect port 2/14

When the arpspoof command is stopped, the switch issues the following warning.
Since it is seeing ARP replies for the same host from different sources.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

26

2003 Apr 13 21:14:26 cst -05:00 %SYS-4-P2_WARN: 1/Host 00:09:7c:08:8e:80
is flapping between port 2/14 and port 2/3

Start it again and let it run this time.

sundance:[/]#arpspoof -t 172.21.35.8 172.21.35.1
0:50:da:18:cb:86 0:10:5a:c9:b4:b0 0806 42: arp reply 172.21.35.1 is-at
0:50:da:18:cb:86
0:50:da:18:cb:86 0:10:5a:c9:b4:b0 0806 42: arp reply 172.21.35.1 is-at
0:50:da:18:cb:86
0:50:da:18:cb:86 0:10:5a:c9:b4:b0 0806 42: arp reply 172.21.35.1 is-at
0:50:da:18:cb:86

It takes a couple of minutes for the switch to respond with the following.

dakota> (enable) 2003 Apr 13 21:29:18 cst -05:00 %SECURITY-1-
PORTSHUTDOWN:Port 2/14 shutdown due to security violation

Looking at the port status we see the last source address to be that of the router.

dakota> (enable) sh port 2/14
Port Name Status Vlan Level Duplex Speed Type
----- ------------------ ---------- ---------- ------ ------ ----- ------------
2/14 shutdown 3 normal full 100 10/100BaseTX

Port Security Violation Shutdown-Time Age-Time Max-Addr Trap IfIndex
----- -------- --------- ------------- -------- -------- -------- -------
2/14 enabled shutdown 0 10 1 disabled 70

Port Num-Addr Secure-Src-Addr Age-Left Last-Src-Addr Shutdown/Time-Left
----- -------- ----------------- -------- ----------------- ------------------
2/14 0 - - 00-09-7c-08-8e-80 yes -

Other port security settings for Cisco switches include the fairly new LEAP or
layer two authentication defensive mechanisms.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 1–Describe the State of Intrusion Detection

27

References

1Song, Dug. “dsniff.”
URL: http://naughty.monkey.org/~dugsong/dsniff

2 Skoudis, Ed. Counter Hack: A Step-by-Step Guide to Computer Attacks and
Effective Defenses. 2002 Prentice Hall. Pages 58-60

3 Stevens, Richard W. TCP/IP Illustrated, Volume 1 The Protocols. 1994
Addison-Wesley. Pages 54-57

4 Nathan, Jeff. http://www.geocrawler.com/archives/3/4890/2002/6/0/9056309/

5 Microsoft Corporation. “Microsoft Windows 2000 Server Documentation.”
February 28, 2000. Microsoft Corporation.
URL:http://www.microsoft.com/windows2000/en/server/help/default.asp?url=/win
dows2000/en/server/help/sag_TCPIP_pro_ArpCache.htm

6 MacDonald, Dave and Barkley, Warren. “Microsoft Windows 2000 TCP/IP
Implementation Details.” January 6, 2000. Microsoft Corporation
URL:http://www.microsoft.com/windows2000/techinfo/howitworks/communication
s/networkbasics/tcpip_implement.asp

7 Dubrawsky, Ido. “Solaris Kernel Tuning for Security.” December 20, 2000
URL: http://www.securityfocus.com/infocus/1385

8 Watson, Keith. “Nddconfig script.” 1991 Sun Microsystems, Inc.
URL: http://www.fish.com/titan/arch/sol2sun4/lib/nddconfig

9 Duffy, Richard. “Finding dsniff on your Network.” November 28, 2001
URL: http://www.sans.org/rr/penetration/dsniff.php

Russel, Christopher R. “Penetration Testing with dsniff.” February 18, 2001
URL: http://www.sans.org/rr/threats/dsniff.php

Loeb, Larry. “On the lookout for dsniff” Part 1. January 2001
URL: http://www-106.ibm.com/developerworks/library/s-sniff.html

Wagner, Robert. “Address Resolution Protocol Spoofing and Man-in-the-Middle
Attacks”. September 27, 2001.
URL: http://www.sans.org/rr/threats/address.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

28

Assignment 2 Network Detects

1 Network Detect webdav search access

1.1 Source of Trace:

This alert was captured on a friend’s network using Snort 1.9.0 with the
ruleset ($Id: sid,v 1.92.2.1 2003/02/09 03:27:29 cazz) and is displayed below
with SnortSnarf1. The Snort sensor sniffs traffic from a tap on a screened subnet,
and watches traffic bound for various application web servers. The firewall has
port 80 open to the target host. The firewall is an application level proxy and
does not allow URLs greater than 2048. The web server is IIS 5.0 and has
WebDAV enabled and is running URL scan.

SnortSnarf signature page
WEB-MISC webdav search access

SnortSnarf v021024.1

6 alerts with this signature using input module SnortFileInput, with sources:

 /var/log/snort-elxl0/05-13-03/alert
 /var/log/snort-elxl0/05-13-03/portscan.log

Earliest such alert at 00:03:01.953533 on 05/13/2003
Latest such alert at 00:05:19.297191 on 05/13/2003

WEB-MISC webdav search
access 1 sources 1 destinations

Priority: 2 Classification: access to a potentially vulnerable web
application

[sid:1070] [arachNIDS:474]

Rules with message "WEB-MISC webdav search access":

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-MISC webdav
search access"; flow:to_server,established; content: "SEARCH "; depth: 8; nocase;reference:arachnids,474;
classtype:web-application-activity; sid:1070; rev:5;) (from web-misc.rules)

Sources triggering this attack signature

Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

202.109.114.237 6 6 1 1

Destinations receiving this attack signature

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

29

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

xxx.xxx.xxx.xxx 6 11 1 4

SnortSnarf brought to you courtesy of Silicon Defense
Authors: Jim Hoagland and Stuart Staniford

See also the Snort Page by Marty Roesch
Page generated at Wed May 14 13:02:24 2003

1.2 Detect Generated by:

The alert was generated by Snort 1.9.0 and is displayed below by
SnortSnarf. The destination port is 80. The flow to server established portion of
the signature indicates the three-way handshake has taken place and this is an
ACK packet. The signature is looking for the content SEARCH, which is not case
sensitive. It expects this value in the 1st 8 bytes of the data (offset=0).

SnortSnarf alert page
Source: 202.109.114.237

SnortSnarf v021024.1

6 such alerts found using input module SnortFileInput, with sources:

 /var/log/snort-elxl0/05-13-03/alert
 /var/log/snort-elxl0/05-13-03/portscan.log

Earliest: 00:03:01.953533 on 05/13/2003
Latest: 00:05:19.297191 on 05/13/2003

1 different signatures are present for 202.109.114.237 as a source

 6 instances of WEB-MISC webdav search access

There are 1 distinct destination IPs in the alerts of the type on this page.

Whois lookup at: ARIN RIPE APNIC Geektools

DNS lookup at: Amenesi TRIUMF Princeton202.109.114.237

More lookup links: Dshield Sam Spade

[**] [1:1070:5] WEB-MISC webdav search access [**]
[Classification: access to a potentially vulnerable web application]
[Priority: 2]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

30

05/13-00:03:01.953533 202.109.114.237:58404 -> xxx.xxx.xxx.xxx:80
TCP TTL:47 TOS:0x0 ID:4206 IpLen:20 DgmLen:1500 DF
A* Seq: 0xF84ABFB5 Ack: 0xC8D2A95E Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 60862466 0
[Xref => arachnids 474]

[**] [1:1070:5] WEB-MISC webdav search access [**]
[Classification: access to a potentially vulnerable web application]
[Priority: 2]
05/13-00:03:30.643177 202.109.114.237:58602 -> xxx.xxx.xxx.xxx:80
TCP TTL:47 TOS:0x0 ID:54025 IpLen:20 DgmLen:1500 DF
A* Seq: 0xF976680F Ack: 0xC9371E7D Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 60865333 0
[Xref => arachnids 474]

[**] [1:1070:5] WEB-MISC webdav search access [**]
[Classification: access to a potentially vulnerable web application]
[Priority: 2]
05/13-00:03:55.643378 202.109.114.237:58760 -> xxx.xxx.xxx.xxx:80
TCP TTL:47 TOS:0x0 ID:23736 IpLen:20 DgmLen:1500 DF
A* Seq: 0xFC6A9880 Ack: 0xC98F43C6 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 60867831 0
[Xref => arachnids 474]

[**] [1:1070:5] WEB-MISC webdav search access [**]
[Classification: access to a potentially vulnerable web application]
[Priority: 2]
05/13-00:04:22.116061 202.109.114.237:59134 -> xxx.xxx.xxx.xxx:80
TCP TTL:47 TOS:0x0 ID:23201 IpLen:20 DgmLen:1500 DF
A* Seq: 0xFE0795BD Ack: 0xC9EC73CE Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 60870479 0
[Xref => arachnids 474]

[**] [1:1070:5] WEB-MISC webdav search access [**]
[Classification: access to a potentially vulnerable web application]
[Priority: 2]
05/13-00:04:47.676269 202.109.114.237:59458 -> xxx.xxx.xxx.xxx:80
TCP TTL:47 TOS:0x0 ID:64652 IpLen:20 DgmLen:1500 DF
A* Seq: 0xFF8B244C Ack: 0xCA436F17 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 60873035 133602390
[Xref => arachnids 474]

[**] [1:1070:5] WEB-MISC webdav search access [**]
[Classification: access to a potentially vulnerable web application]
[Priority: 2]
05/13-00:05:19.297191 202.109.114.237:60156 -> xxx.xxx.xxx.xxx:80
TCP TTL:47 TOS:0x0 ID:7381 IpLen:20 DgmLen:1500 DF
A* Seq: 0x107F9A7 Ack: 0xCAB55558 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 60876197 0
[Xref => arachnids 474]

SnortSnarf brought to you courtesy of Silicon Defense
Authors: Jim Hoagland and Stuart Staniford

See also the Snort Page by Marty Roesch
Page generated at Wed May 14 13:02:25 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

31

1.3 Probability the Source Address was Spoofed:

The probability that the source address was spoofed is low. The attacker
is looking for a response. The TTL of the packets match their source. For
example given the alert’s TTL of 47 and assuming the attacker is a host that uses
64 for its initial TTL. Now if we do a traceroute back to the host we see it could be
17 hops away, lending support for the idea that it is not spoofed or that the
spoofed source is also 17 hops away. Also, the packet is part of an established
TCP connection, so it is most likely the packet is not spoofed.

C:\>tracert 202.109.114.237

Tracing route to 202.109.114.237 over a maximum of 30 hops

1 * * * Request timed out.
2 * * * Request timed out.
3 171 ms 220 ms 361 ms 12.126.235.233
4 10 ms 10 ms 10 ms gbr1-a31s4.cgcil.ip.att.net [12.123.4.78]
5 20 ms 20 ms 20 ms tbr2-p013502.cgcil.ip.att.net [12.122.11.49]
6 20 ms 30 ms 30 ms tbr2-p012501.sl9mo.ip.att.net [12.122.10.10]
7 60 ms 70 ms 70 ms tbr2-p013701.la2ca.ip.att.net [12.122.10.14]
8 60 ms 70 ms 70 ms gar1-p370.lsrca.ip.att.net [12.123.199.242]
9 * * * Request timed out.
10 411 ms 411 ms 400 ms 202.97.49.66
11 * 551 ms * 202.97.51.141
12 571 ms * 601 ms 202.97.33.89
13 591 ms 581 ms 591 ms 202.101.63.233
14 580 ms 571 ms 581 ms 218.1.1.141
15 551 ms * 541 ms 218.1.1.206
16 * 581 ms * 218.1.71.210
17 * * * Request timed out.
18 * * * Request timed out.
19 * * * Request timed out.
20 ^C
C:\>

1.4 Description of Attack:

When the Alert was generated (May 13, 2003) Snort was using an out of
date rule set (February 9, 2003). There were exploits released in March of the
same year. The packet dump is shown below.

05/13-00:03:01.953533 202.109.114.237:58404 -> xxx.xxx.xxx.xxx:80
TCP TTL:47 TOS:0x0 ID:4206 IpLen:20 DgmLen:1500 DF
A* Seq: 0xF84ABFB5 Ack: 0xC8D2A95E Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 60862466 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

32

53 45 41 52 43 48 20 2F 90 04 CC 04 CC 04 CC 04 SEARCH /........
CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04
CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04
CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04
CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04
CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04
CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04
CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04
CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04
CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04
CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04
CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04 CC 04

The packet dump output is abbreviated. All six packets do not contain
same payload. They all look alike the only difference is the repeated portion of
the datagram, which contains repetitions of CC 04, CE 04, CA 04, CB 04, CF 04,
D1 04. It appears from the packets that the attacker is trying to exploit the
WebDAV vulnerability.

The packets are all ACK’s,so the three-way handshake has been
established. The IP id’s and the sequence numbers are all incrementing. The
packets are all bound for port 80 and are 1500 bytes long. The packets have
time intervals between them of 25 to 30 seconds. All the packets have TCP
Options of: NOP NOP TS.

1.5 Attack Mechanism:

Microsoft Security Bulletin MS03-007, in the technical details section
states, “WebDAV uses IIS to pass requests to and from Windows 2000. When
IIS receives a WebDAV request, it typically processes the request and then
acts on it. However, if the request is formed in a particular way, a buffer
overrun can result because one of the Windows components called by
WebDAV does not correctly check parameters.”2 This can lead to the attacker
being able to execute code or crashing the IIS server.

In this detect there are 6 attempts approximately 25 seconds apart. I
believe this is a stimulus because there are services (IIS Web Server 5.0) that
communicate with this targeted port. This is a service that has known
vulnerabilities as described above. This traffic is not legitimate.

The following text was excerpted from the CERT advisories3.
http://www.cert.org/advisories/CA-2003-09.html

“A buffer overflow vulnerability exists in the Win32 API libraries shipped
with all versions of Microsoft Windows 2000 and Microsoft Windows NT 4.0. This

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

33

vulnerability, which is being actively exploited on WebDAV-enabled IIS 5.0
servers, will allow a remote attacker to execute arbitrary code on unpatched
systems. Sites running Microsoft Windows 2000 and Microsoft Windows NT 4.0
should apply a patch or disable WebDAV services as soon as possible.

Microsoft Windows 2000 (and possibly prior versions of Windows)
contains a dynamic link library (DLL) named ntdll.dll. This DLL is a core operating
system component used to interact with the Windows kernel. A buffer overflow
vulnerability exists in ntdll.dll, which is utilized by many different components in
the Windows operating system.

The WebDAV (RFC2518) component of Microsoft IIS 5.0 is an example
of one Windows component that uses ntdll.dll. The IIS WebDAV component
utilizes ntdll.dll when processing incoming WebDAV requests. By sending a
specially crafted WebDAV request to an IIS 5.0 server, an attacker may be
able to execute arbitrary code in the Local System security context, essentially
giving the attacker complete control of the system.”

1.6 Correlations:

The following is the CVE number for the alert generated by Snort.

From Common Vulnerabilities and Exposures4

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0109

Name CAN-2003-0109 (under review)

Description
Buffer overflow in ntdll.dll, as used by WebDAV on Windows 2000,
allows remote attackers to execute arbitrary code via a long request
to IIS 5.0.

Arachnids Intrusion Event Database describes this as, an information-
gathering attempt, “This event indicates that a remote user has attempted to
use the SEARCH directive to retrieve a list of directories on the web server.
This may allow an attacker to gain knowledge about the web server that could
be useful in an attack.”5

The packets received do not quite match, since there is no HTTP/1.1 or
Host: or Select directives, as shown in the packet from Arachnids below.

01/22-04:02:33.707726 xxx.xxx.xxx.xxx:2543 -> xxx.xxx.xxx.xxx:80
TCP TTL:64 TOS:0x10 ID:60018 IpLen:20 DgmLen:262 DF
AP Seq: 0x6E0098 Ack: 0x4D92C091 Win: 0x7FB8 TcpLen: 20
53 45 41 52 43 48 20 2F 20 48 54 54 50 2F 31 2E SEARCH / HTTP/1.
31 0D 0A 48 6F 73 74 3A 20 77 68 69 74 65 68 61 1..Host: whiteha

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

34

74 73 2E 63 6F 6D 0D 0A 43 6F 6E 74 65 6E 74 2D ts.com..Content-
54 79 70 65 3A 20 74 65 78 74 2F 78 6D 6C 0D 0A Type: text/xml..
43 6F 6E 74 65 6E 74 2D 4C 65 6E 67 74 68 3A 20 Content-Length:
31 33 33 0D 0A 0D 0A 3C 3F 78 6D 6C 20 76 65 72 133........
3C 67 3A 73 71 6C 3E 0D 0A 53 65 6C 65 63 74 20 ..Select
22 44 41 56 3A 64 69 73 70 6C 61 79 6E 61 6D 65 "DAV:displayname
22 20 66 72 6F 6D 20 73 63 6F 70 65 28 29 0D 0A " from scope()..
3C 2F 67 3A 73 71 6C 3E 0D 0A 3C 2F 67 3A 73 65

The following paragraphs are excerpted from the Snort Intrusion
Database6. http://www.snort.org/snort-db/sid.html?id=1070

Impact If the target is IIS 5.0, then an attacker may have gotten a
complete directory listing from within the web root, which can
be useful information for attackers (could be a prelude to a more
serious attack). IIS 5.0's WebDAV implementation is also
vulnerable to a Denial of Service vulnerability if the search
string is too long.

Detailed
Information

IIS 5.0 includes an implementation of WebDAV for purposes of
web publishing. As shipped, it contains two vulnerabilities that
can allow an attacker to get a complete directory listing from the
web root and to DoS the web server.

Attack
Scenarios

Attacker gets a listing by sending something like: SEARCH /
HTTP/1.1 Attacker DoSes the web server using pre-existing
tools.

The attack is probably not doing reconnaissance by trying to get a
directory listing as described by SID 1070, since the search string does not fit.
The attack does however have a long string (the IP header is 20 bytes, the
TCP header is 32 bytes leaving 1448 bytes of data), but there is no shellcode.
The packets are not fragments since the DF bit is set. Without any apparent
shellcode it is unlikely to be a buffer overflow. Looks like the only possibility
left is a DOS attempt. SID 1070 mentions the attacker DOSes the web server
using pre-existing tools, nothing else is said about these tools.

Joe Stewart7 describes several attack tools and signatures, Webdavin
1.0.1, Davkit, Webdavin 1.1, to name a few. A couple, are said to successfully
exploit the vulnerable hosts most of the time. The signatures given do not match
this attack.

A Whois using the Geektools Whois proxy provides the following
information.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

35

Final results obtained from whois.apnic.net.
Results:
% [whois.apnic.net node-1]
% How to use this server http://www.apnic.net/db/
% Whois data copyright terms http://www.apnic.net/db/dbcopyright.html

inetnum: 202.109.0.0 - 202.109.127.255
netname: CHINANET-SH
descr: CHINANET Shanghai province network
descr: Data Communication Division
descr: China Telecom
country: CN
admin-c: CH93-AP
tech-c: XI5-AP
mnt-by: MAINT-CHINANET
mnt-lower: MAINT-CHINANET-SH
changed: hostmaster@ns.chinanet.cn.net 20000101
status: ALLOCATED PORTABLE
source: APNIC

person: Chinanet Hostmaster
address: No.31 ,jingrong street,beijing
address: 100032
country: CN
phone: +86-10-66027112
fax-no: +86-10-66027334
e-mail: hostmaster@ns.chinanet.cn.net
e-mail: anti-spam@ns.chinanet.cn.net
nic-hdl: CH93-AP
mnt-by: MAINT-CHINANET
changed: hostmaster@ns.chinanet.cn.net 20021016
source: APNIC

person: Wu Xiao Li
address: Room 805,61 North Si Chuan Road,Shanghai,200085,PRC
country: CN
phone: +86-21-63630562
fax-no: +86-21-63630566
e-mail: ip-admin@mail.online.sh.cn
nic-hdl: XI5-AP
mnt-by: MAINT-CHINANET-SH
changed: ip-admin@mail.online.sh.cn 20010510
source: APNIC

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

36

Dshield.org returned no hits. Mynetwatchman reported activity from this
address for the same time frame as this detect. Most of the activity was reported
as a target port of 80 and a probable CodeRed/Nimda. So there is probably no
correlation with this activity (from Mynetwatchman).

1.7 Evidence of Active Targeting:

There is quite a bit of evidence of active targeting. The attacker is
attacking a specific host with a DOS/exploit that is particular for that application.
The attacker probably already has reconnaissance information. It is not a
general scan nor is it a wrong number.

1.8 Severity:

Criticality: 4. The host is a web-server, not a critical target. It is hosting an
application from which more information could be leveraged, if compromised.

Lethality: 4. The exploit for this has been released. Since this appears to be
a DOS, the IIS server did not crash.

System Countermeasures: 3 URL scan is running but no patch applied. If
URL scan had not been running this attack could have succeeded.

Network Countermeasures: 2. Firewalled, but traffic allowed to target.
There is an IDS running and the firewall is an application level proxy.

(4 + 4)–(3 + 2) = 3

1.9 Defensive Recommendation:

Since the attacker probably already has reconnaissance information the
attacking subnet should be blocked. As new exploits are released, this attacker
will not be able to access the target. The Snort rule set should be updated.
Implementing SnortSAM might also be considered for these hosts, as there was
no advanced warning for these exploits. SnortSAM might also catch new
exploits and block connections from new attackers. The patch provided by
Microsoft should be applied. There is a discussion of this in Microsoft Knowledge
Base Article 8169308. This article describes workarounds that explain:

 How to lock down or disable IIS if your computer does not require it.
 How to disable WebDAV if you do not require it.
 How to use the URL Buffer Size Registry tool.
 How to manually change the MaxClientRequestBuffer registry value if you

require WebDAV.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

37

 How to manually create a MaxClientRequestBuffer registry file for a single
computer if you require WebDAV.

 How to deploy the MaxClientRequestBuffer registry file through Active
Directory by using a Group Policy object.

1.10 Multiple Choice Question

For hosts, actively targeted by an attacker, which of the following is most
likely true?

A. Reconnaissance has not been performed.
B. Reconnaissance has been performed.
C. The attack is a general scan of the entire network.
D. The attack is a wrong number.

Answer B. Reconnaissance has been performed.

2 Network Detect BAD TRAFFIC loopback traffic

2.1 Source of Trace:

This trace was captured on my network using Snort 1.9.1 with the ruleset

(C) Copyright 2001,2002, Martin Roesch, Brian Caswell, et al.
All rights reserved.
$Id: bad-traffic.rules,v 1.18.2.2 2003/02/07 22:04:40 cazz Exp $
#------------------
BAD TRAFFIC RULES
#------------------

The signature page is displayed below with SnortSnarf. The Snort sensor
was sniffing traffic on an internal LAN, when a coworker plugged the
management port of a Cisco 4006 supervisor engine into the LAN and booted the
device.

SnortSnarf signature page
BAD TRAFFIC loopback traffic

SnortSnarf v021024.1

1 alerts with this signature using input module SnortFileInput, with sources:

 /var/log/gcia/cisco/07-8-03/alert

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

38

Earliest such alert at 09:42:36.148128 on 07/08/2003
Latest such alert at 09:42:36.148128 on 07/08/2003

BAD TRAFFIC loopback traffic 1 sources 1 destinations

Priority: 2 Classification: Potentially Bad Traffic

[url:rr.sans.org/firewall/egress.php] [sid:528]

Rules with message "BAD TRAFFIC loopback traffic":

alert ip any any <> 127.0.0.0/8 any (msg:"BAD TRAFFIC loopback traffic"; classtype:bad-unknown;
reference:url,rr.sans.org/firewall/egress.php; sid:528; rev:3;) (from bad-traffic.rules)

Sources triggering this attack signature

Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

127.39.68.188 1 1 1 1

Destinations receiving this attack signature

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

51.76.232.210 1 1 1 1

SnortSnarf brought to you courtesy of Silicon Defense
Authors: Jim Hoagland and Stuart Staniford

See also the Snort Page by Marty Roesch
Page generated at Thu Jul 10 09:39:53 2003

2.2 Detect Generated by:

The alert was generated by Snort 1.9.1 and is displayed below with
SnortSnarf. The device generating the alert was a Cisco Catalyst 4006 with the
following software and hardware versions.

Console> (enable) sh flash
-#- ED --type-- --crc--- -seek-- nlen -length- -----date/time------ name

1 .. ffffffff 40cb7582 47b45c 17 4436956 May 27 2003 22:55:03 cat4000.6-4-
3.bin

Console> (enable) sh ver
WS-C4006 Software, Version NmpSW: 6.4(3)
Copyright (c) 1995-2003 by Cisco Systems, Inc.
NMP S/W compiled on Apr 10 2003, 18:23:41
GSP S/W compiled on Apr 10 2003, 16:06:32

System Bootstrap Version: 6.1(4)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

39

Hardware Version: 1.2 Model: WS-C4006 Serial #: FOX04477089

Mod Port Model Serial # Versions
--- ---- ---------- -------------------- ---------------------------------
1 2 WS-X4013 JAB0419077Y Hw : 1.2

Gsp: 6.4(3.0)
Nmp: 6.4(3)

The packet has a source address that is in the loopback range. It is IP
proto 125, which is TCP Data Flow Control. The packet has a TTL of 235 the
TOS is 0x64. It is a fragment with an offset of 8084 bytes (not an 8-bit
boundary) and a size of 55568 bytes. The RB, DF and MF bits are set.

SnortSnarf alert page
Source: 127.39.68.188

SnortSnarf v021024.1

1 such alerts found using input module SnortFileInput, with sources:

 /var/log/gcia/cisco/07-8-03/alert

Earliest: 09:42:36.148128 on 07/08/2003
Latest: 09:42:36.148128 on 07/08/2003

1 different signatures are present for 127.39.68.188 as a source

 1 instances of BAD TRAFFIC loopback traffic

There are 1 distinct destination IPs in the alerts of the type on this page.

Whois lookup at: ARIN RIPE APNIC Geektools

DNS lookup at: Amenesi TRIUMF Princeton127.39.68.188

More lookup links: Dshield Sam Spade

[**] [1:528:3] BAD TRAFFIC loopback traffic [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
07/08-09:42:36.148128 FE:ED:FA:CE:FE:ED -> DE:AD:BE:EF:DE:AD type:0x800
len:0x3C
127.39.68.188 -> 51.76.232.210 PROTO125 TTL:235 TOS:0x64 ID:8225
IpLen:20 DgmLen:55588 RB DF MF
Frag Offset: 0x1F94 Frag Size: 0xB97C

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

40

SnortSnarf brought to you courtesy of Silicon Defense
Authors: Jim Hoagland and Stuart Staniford

See also the Snort Page by Marty Roesch
Page generated at Thu Jul 10 09:39:53 2003

2.3 Probability the Source Address was Spoofed:

The source address is spoofed as is the source MAC address
FE:ED:FA:CE:FE:ED, and the destination MAC address DE:AD:BE:EF:DE:AD.

2.4 Description of Attack:

On bootup of the switch the following packets are sent from the switch’s
management port. The following packets were caught by Snort’s syslog output-
plugin on the host chugwater.

Jul 8 09:42:36 chugwater snort: [ID 702911 local5.alert] [1:528:3] BAD
TRAFFIC loopback traffic [Classification: Potentially Bad Traffic]
[Priority: 2]: {PROTO125} 127.39.68.188 -> 51.76.232.210

Jul 8 09:42:37 chugwater snort: [ID 702911 local5.alert] [116:1:1]
(snort_decoder) WARNING: Not IPv4 datagram! {IPV6-NONXT}
214.120.143.109 -> 190.143.120.120

Jul 8 09:42:39 chugwater snort: [ID 702911 local5.alert] [116:1:1]
(snort_decoder) WARNING: Not IPv4 datagram! {IPV6-FRAG}
81.15.2.100 -> 173.35.104.78

Jul 8 09:42:40 chugwater snort: [ID 702911 local5.alert] [116:1:1]
(snort_decoder) WARNING: Not IPv4 datagram! {PROTO048}
22.29.68.11 -> 235.45.97.93

Jul 8 09:42:41 chugwater snort: [ID 702911 local5.alert] [116:1:1]
(snort_decoder) WARNING: Not IPv4 datagram! {EGP}
62.8.123.217 -> 28.121.167.39

I originally seen this activity in October of 2001, I never saved those
packets but I recall that at that time 5 packets were looped back and all were
IPv4, so it appears the activity has change. A new switch was recently
purchased and I wanted to see if it did the same thing, the result is this detect.

For the original detect a TAC case was opened.

Cisco Case# B921653
Title Strange Packets at Boot Up.

At first they were unable to reproduce it, but finally came back with the response

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

41

“These packets are probably generated by the power-on self-test routines which
loopback a packet at the management port during testing. This is done to insure
the interface is operational and should be harmless.”

There reply seems probable enough but it did not really satisfy me at the time
Particularly the way it was phrased,”probably generated” and “should be
harmless”. It also did not seem to be a very good practice to be sending packets
onto the LAN to complete a POST test.

On the new switch I only received one detect so I extracted the packets from the
binary log with the following command.

chugwater:/var/log/gcia/cisco/07-8-03#snort -r snort.log.1057667471 > test
Log directory = /var/log/snort
TCPDUMP file reading mode.
Reading network traffic from "snort.log.1057667471" file.
snaplen = 1514

--== Initializing Snort ==--
Initializing Output Plugins!

--== Initialization Complete ==--

-*> Snort! <*-
Version 1.9.1 (Build 231)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)
[!] WARNING: Not IPv4 datagram! ([ver: 0x0][len: 0x260c])
[!] WARNING: Not IPv4 datagram! ([ver: 0x6][len: 0xb043])
[!] WARNING: Not IPv4 datagram! ([ver: 0xa][len: 0x56d5])
[!] WARNING: Not IPv4 datagram! ([ver: 0x6][len: 0x306a])
Snort received signal 3, exiting
chugwater:/var/log/gcia/cisco/07-8-03#

According to Northcutt9, the IP version field must be validated by the
receiving host, and if not valid the datagram will be discarded and no error
messages will be sent to the sending host. If a packet arrives at a router with an
invalid IP version it should be discarded as well.

2.5 Attack Mechanism:

The packet dumps are shown below.

[**] [1:528:3] BAD TRAFFIC loopback traffic [**]
[Classification: Potentially Bad Traffic] [Priority: 2]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

42

07/08-09:42:36.148128 FE:ED:FA:CE:FE:ED -> DE:AD:BE:EF:DE:AD type:0x800
len:0x3C
127.39.68.188 -> 51.76.232.210 PROTO125 TTL:235 TOS:0x64 ID:8225
IpLen:20 DgmLen:55588 RB DF MF
Frag Offset: 0x1F94 Frag Size: 0xB97C

[**] [116:1:1] (snort_decoder) WARNING: Not IPv4 datagram! [**]
07/08-09:42:37.381283 FE:ED:FA:CE:FE:ED -> DE:AD:BE:EF:DE:AD type:0x800
len:0x3C
214.120.143.109 -> 190.143.120.120 IPV6-NONXT TTL:171 TOS:0x39 ID:13846
IpLen:24 DgmLen:3110 DF

[**] [116:1:1] (snort_decoder) WARNING: Not IPv4 datagram! [**]
07/08-09:42:38.614449 FE:ED:FA:CE:FE:ED -> DE:AD:BE:EF:DE:AD type:0x800
len:0x3C
81.15.2.100 -> 173.35.104.78 IPV6-FRAG TTL:85 TOS:0x32 ID:28569
IpLen:60 DgmLen:17328

[**] [116:1:1] (snort_decoder) WARNING: Not IPv4 datagram! [**]
07/08-09:42:39.850600 FE:ED:FA:CE:FE:ED -> DE:AD:BE:EF:DE:AD type:0x800
len:0x3C
22.29.68.11 -> 235.45.97.93 PROTO048 TTL:79 TOS:0x7A ID:36451 IpLen:32
DgmLen:54614 MF

[**] [116:1:1] (snort_decoder) WARNING: Not IPv4 datagram! [**]
07/08-09:42:41.083761 FE:ED:FA:CE:FE:ED -> DE:AD:BE:EF:DE:AD type:0x800
len:0x3C
62.8.123.217 -> 28.121.167.39 EGP TTL:16 TOS:0x7A ID:13271 IpLen:4
DgmLen:27184 DF

=+=
07/08-09:42:36.148128 127.39.68.188 -> 51.76.232.210
PROTO125 TTL:235 TOS:0x64 ID:8225 IpLen:20 DgmLen:55588 RB DF MF
Frag Offset: 0x1F94 Frag Size: 0xB97C
34 4D EA 64 FF 1B 31 31 CD 71 65 02 FA 26 FF 01 4M.d..11.qe..&..
00 13 70 24 DE 2B 38 81 56 31 ..p$.+8.V1

This is quite the assortment of packets. What do we have here, varying
TTL’s, TOS, Fragments, IPV6, spoofed MAC addresses, spoofed IP addresses.

For the source and destination IP addresses of the packets we have:

2nd Packet
Src OrgName: DoD Network Information Center
Dst OrgName: Internet Assigned Numbers Authority

3rd Packet
Src netname: IS-LINANET-200208

address: 110 Reykjavik
address: Iceland

Dst OrgName: Internet Assigned Numbers Authority

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

43

4th Packet
Src OrgName: DoD Network Information Center
Dst OrgName: Internet Assigned Numbers Authority

NetName: MCAST-NET

5th Packet
Src inetnum: 62.8.123.0 - 62.8.124.255

netname: HIWAY
descr: Network Interconnects
country: GB

Dst OrgName: DoD Network Information Center
Comment: ARPA DSI JPO

This is an interesting choice of addresses to use for interface testing. This
is not an attack but a false positive. Due to the destination MAC address the
packets will go to all ports on the switch, but no host or router will pick them up.

2.6 Correlations:

Since the alerts are originating from the management interface of a Cisco
switch probably not going to be much in the way of correlations since most
people don’t use this interface anyway. For the IPv4 packet that generated the
original alert a Whois on the destination address using the Geektools Whois
proxy provides the following information.

Final results obtained from whois.arin.net.
Results:
OrgName: Department of Social Security of UK
OrgID: DSSU
Address: Naming and Addressing Authority c/o DITA
Address: Government Buildings - GZI
Address: Moorland Road
Address: Lytham St. Annes, Lancashire FY8 3ZZ
City:
StateProv:
PostalCode:
Country: GB

NetRange: 51.0.0.0 - 51.255.255.255
CIDR: 51.0.0.0/8
NetName: ITSANET
NetHandle: NET-51-0-0-0-1
Parent:
NetType: Direct Assignment
Comment:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

44

RegDate: 1991-09-16
Updated: 1999-04-13

For the source IP address of 127.39.68.188 Mynetwatchman reported
no incidents for this IP. Dshield also had no info. A Google search on
FE:ED:FA:CE:FE:ED produced the following.

http://www.mcabee.org/lists/snort-users/Oct-01/msg00255.html

Snort-users] MISC loopback traffic

 Date: Tue, 9 Oct 2001 09:36:55 -0500
 From: Jim Rauser <jrauser@xxxxxxxx>
 To: snort-users@xxxxxxxxxxxxxxxxxxxxx
 Subject: [Snort-users] MISC loopback traffic

has anyone seen this before
these are coming off a catalyst 4006 ME1 interface
I get five of these on boot
strange mac addresses

[**] [1:528:1] MISC loopback traffic [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
10/08-13:48:36.629261 FE:ED:FA:CE:FE:ED -> DE:AD:BE:EF:DE:AD type:0x800
len:0x3C
127.39.68.188 <../../../127/39/68/src127.39.68.188.html> ->
51.76.232.210
<../../../51/76/232/dest51.76.232.210.html> FIRE TTL:235 TOS:0x64
ID:8225
IpLen:20 DgmLen:55588 RB DF MF
Frag Offset: 0x1F94 Frag Size: 0x1A [**] [1:528:1] MISC loopback
traffic
[**]
[Classification: Potentially Bad Traffic] [Priority: 2]
10/09-08:27:14.759261 FE:ED:FA:CE:FE:ED -> DE:AD:BE:EF:DE:AD type:0x800
len:0x3C
127.39.68.188 <../../../127/39/68/src127.39.68.188.html> ->
51.76.232.210
<../../../51/76/232/dest51.76.232.210.html> FIRE TTL:235 TOS:0x64
ID:8225
IpLen:20 DgmLen:55588 RB DF MF

jim

Snort-users mailing list
Snort-users@lists.sourceforge.net
Go to this URL to change user options or unsubscribe:
https://lists.sourceforge.net/lists/listinfo/snort-users
Snort-users list archive:
http://www.geocrawler.com/redir-sf.php3?list=snort-users

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

45

2.7 Evidence of Active Targeting:

The attacks are originating from an internal switch. Hard to tell what the
intent is. The evidence for active targeting is low. Cisco says they are testing
the interface. But is it necessary to inject packets onto the LAN in order to do
this? Particularly, with destination addresses that are on the Internet? It makes
a person wonder what else it might be doing, or what other coding it has.

2.8 Severity:

Criticality: 3 The device is network infrastructure.

Lethality: 0 This is benign a false positive.

System Countermeasures: 1 The management interface is not used.

Network Countermeasures: 3 Firewall in place. There is an IDS. Egress filters on
internal routers.

(3 + 0)–(1 + 3) = -1

2.9 Defensive Recommendation:

This is a false positive, however a person may want to still use egress
filters. Don’t use the management interface on the Catalyst 4006.

2.10 Multiple Choice Question

What happens to an Ethernet frame with an incorrect destination MAC
address (not the default router) when it is put on the LAN and is not destined for
this subnet?

A. The frame is broadcast to all devices on the switch, the default router
processes it by stripping off the frame, encapsulating it for the proper
media and routing it to the next hop router.

B. The switch drops the packet since it does not recognize the MAC address.
C. The frame is broadcast to all devices on the switch, but none of them

process the frame, since they are not the destination.
D. The switch ARP’s for the destination IP and rewrites the layer 2 header

with the received MAC address of the default router.

Answer C.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

46

3 Network Detect (spp_portscan2) Portscan detected

3.1 Source of Trace:

The trace was taken from the raw TCPdump logs at
http://www.incidents.org/logs/RAW. The file used (2002.9.11) was created using
an instance of Snort running in binary mode. All of the non-local addresses have
been munged. The SnortSnarf signature page is shown below. The snort.conf
file was modified to turn on the Snort preprocessor for port scanning. From the
layer 2 addresses it appears that the Snort sensor is between two Cisco routers.

SnortSnarf signature page
(spp_portscan2) Portscan detected

SnortSnarf v021024.1

1 alerts with this signature using input module SnortFileInput, with sources:

 /var/log/gcia/syn-ack/alert

Earliest such alert at 11:40:16.496507 on 10/11/2002
Latest such alert at 11:40:16.496507 on 10/11/2002

(spp_portscan2) Portscan detected 1 sources 1 destinations

Priority: N/A Classification: N/A

Sources triggering this attack signature

Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

129.186.23.70 1 1 1 1

Destinations receiving this attack signature

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

32.245.196.182 1 1 1 1

SnortSnarf brought to you courtesy of Silicon Defense
Authors: Jim Hoagland and Stuart Staniford

See also the Snort Page by Marty Roesch
Page generated at Fri Jun 6 13:49:48 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

47

SnortSnarf signature page
spp_portscan2: TCP ***A**S* scan

SnortSnarf v021024.1

2 alerts with this signature using input module SnortFileInput, with sources:

 /var/log/gcia/syn-ack/alert
 /var/log/gcia/syn-ack/scan.log

Earliest such alert at 11:40:16.496507 on 10/11/2002
Latest such alert at 11:40:35.166507 on 10/11/2002

spp_portscan2: TCP ***A**S* scan 1 sources 2 destinations

Priority: N/A Classification: N/A

Sources triggering this attack signature

Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)

129.186.23.70 2 3 2 2

Destinations receiving this attack signature

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig) # Srcs (total)

32.245.114.180 1 1 1 1

32.245.196.182 1 2 1 1

SnortSnarf brought to you courtesy of Silicon Defense
Authors: Jim Hoagland and Stuart Staniford

See also the Snort Page by Marty Roesch
Page generated at Tue Jun 17 20:52:14 2003

3.2 Detect Generated by:

The file was extracted using the following Snort 1.9.1 command:
snort -r 2002.9.11 -c snort.conf -l /var/log/gcia/2002.9.11–de. The SnortSnarf
alert page is shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

48

SnortSnarf alert page
Source: 129.186.23.70

SnortSnarf v021024.1

3 such alerts found using input module SnortFileInput, with sources:

 /var/log/gcia/syn-ack/alert
 /var/log/gcia/syn-ack/scan.log

Earliest: 11:40:16.496507 on 10/11/2002
Latest: 11:40:35.166507 on 10/11/2002

2 different signatures are present for 129.186.23.70 as a source

 1 instances of (spp_portscan2) Portscan detected
 2 instances of spp_portscan2: TCP ***A**S* scan

There are 2 distinct destination IPs in the alerts of the type on this page.

Whois lookup at: ARIN RIPE APNIC Geektools

DNS lookup at: Amenesi TRIUMF Princeton129.186.23.70

More lookup links: Dshield Sam Spade

[**] [117:1:1] (spp_portscan2) Portscan detected from 129.186.23.70: 6
targets 6 ports in 2582 seconds [**]
10/11-11:40:16.496507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800
len:0x3C
129.186.23.70:6000 -> 32.245.196.182:3072 TCP TTL:45 TOS:0x0 ID:0
IpLen:20 DgmLen:44 DF
***A**S* Seq: 0x11D2EAE6 Ack: 0x895C0042 Win: 0x16D0 TcpLen: 24
TCP Options (1) => MSS: 1460

10/11-11:40:16.496507 TCP 129.186.23.70:6000 -> 32.245.196.182:3072
tgts: 6 ports: 6 flags: ***A**S* event_id: 0

10/11-11:40:35.166507 TCP 129.186.23.70:6000 -> 32.245.114.180:1024
tgts: 7 ports: 7 flags: ***A**S* event_id: 2

SnortSnarf brought to you courtesy of Silicon Defense
Authors: Jim Hoagland and Stuart Staniford

See also the Snort Page by Marty Roesch
Page generated at Tue Jun 17 20:52:14 2003

I was also able to extract the following packets using the command:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

49

snort -r 2002.9.11 -c snort-1.9.1/rules/snort.conf -l /var/log/gcia/syn-ack -
de tcp[13]=18.

This was done to get all the packets with both the SYN and ACK bits set

-*> Snort! <*-
Version 1.9.1 (Build 231)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)

10/11-10:57:14.466507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
129.186.23.70:6000 -> 32.245.242.221:3072 TCP TTL:43 TOS:0x0 ID:0
IpLen:20 DgmLen:44 DF
***A**S* Seq: 0xD428F7DA Ack: 0x6C266A3B Win: 0x16D0 TcpLen: 24
TCP Options (1) => MSS: 1460

=+=

10/11-11:17:03.816507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
129.186.23.70:6000 -> 32.245.104.220:3072 TCP TTL:45 TOS:0x0 ID:0
IpLen:20 DgmLen:44 DF
***A**S* Seq: 0x5120FD9A Ack: 0xFD62B301 Win: 0x16D0 TcpLen: 24
TCP Options (1) => MSS: 1460

=+=

10/11-11:39:27.626507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
129.186.23.70:6000 -> 32.245.62.155:1024 TCP TTL:43 TOS:0x0 ID:0 IpLen:20
DgmLen:44 DF
***A**S* Seq: 0xA4192643 Ack: 0x11466C07 Win: 0x16D0 TcpLen: 24
TCP Options (1) => MSS: 1460

=+=

10/11-11:39:32.736507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
129.186.23.70:6000 -> 32.245.104.125:1024 TCP TTL:43 TOS:0x0 ID:0
IpLen:20 DgmLen:44 DF
***A**S* Seq: 0xC5510CF2 Ack: 0xDBE28E02 Win: 0x16D0 TcpLen: 24
TCP Options (1) => MSS: 1460

=+=
10/11-11:39:50.656507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
129.186.23.70:6000 -> 32.245.36.167:3072 TCP TTL:43 TOS:0x0 ID:0 IpLen:20
DgmLen:44 DF

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

50

***A**S* Seq: 0x38668325 Ack: 0x8A099C6C Win: 0x16D0 TcpLen: 24

TCP Options (1) => MSS: 1460

=+=

10/11-11:40:16.496507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
129.186.23.70:6000 -> 32.245.196.182:3072 TCP TTL:45 TOS:0x0 ID:0
IpLen:20 DgmLen:44 DF
***A**S* Seq: 0x11D2EAE6 Ack: 0x895C0042 Win: 0x16D0 TcpLen: 24
TCP Options (1) => MSS: 1460

=+=

10/11-11:40:35.166507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
129.186.23.70:6000 -> 32.245.114.180:1024 TCP TTL:45 TOS:0x0 ID:0
IpLen:20 DgmLen:44 DF
***A**S* Seq: 0xB6A94587 Ack: 0x6844F345 Win: 0x16D0 TcpLen: 24
TCP Options (1) => MSS: 1460

=+=

3.3 Probability the Source Address was Spoofed:

The initial packet that started this was most likely spoofed. But the packet
that we received was, in all likelihood a reply to the initial spoof. The probability
that the packet we received is spoofed, is low, unless it is some kind of
reconnaissance. Checking the TTL to see if it matches the source would provide
us additional insight.

3.4 Description of Attack:

This is third party effect picked up initially by the port scan detector. The
attack is a SYN-ACK to ports 1024 and 3072. The SYN-ACK flags, in normal
operation, indicate that this is a reply. Each packet has a source port of 6000, an
IP Id of zero, and one TCP option of: MSS 1460. The time interval is interesting.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

51

There is one packet, followed by another one in twenty minutes. The next 5
packets were received within a 60 second timeframe.

It appears that an attacker is sending SYN packets to129.186.23.70, with
spoofed sources, of 32.245.242.221, 32.245.104.220, 32.245.62.155,
32.245.62.155, 32.245.104.125, etc. (our network space). We are receiving the
SYN-ACK’s, from 129.186.23.70 in response to this.

3.5 Attack Mechanism:

Even without knowing what services are running on the target hosts we
can say this is response, and it is not legitimate traffic. From Northcutt119, “a SYN
packet sent to a open port results in a SYN-ACK packet being sent to the
spoofed IP address. If it exists, the spoofed IP address responds to this
unexpected SYN-ACK with a RST back to the victim machine.” Even though we
don’t have the RST packet, this is most likely what happened.

One thing that points to this is as follows, if it was legitimate traffic, it is
very unlikely that 5 of our hosts sent a SYN packet to the same server on the
same source port and are awaiting a SYN-ACK all within a time window of 60
seconds. Another odd thing is, would all the IP ID’s be zero if the traffic were
legitimate? The range for valid IP ID’s is 1-65535. For each datgram sent a host
sends, it must generate a unique ID number that is typically incremented by one
for each new datagram10. Zero is not a typical value, indicating some kind of
packet crafting is being done. Of course the attacker could be doing recon by just
sending us SYN-ACKS since 1024 is a known Trojan port, but I’ll stick with the
third party effect given the limited evidence.

This is probably a reflection from a DOS/recon attack against
129.186.23.70, using our hosts as spoofed addresses. So it appears to the victim
that the attack is originating from us. It seems that the attacker could have
knowledge of hosts on our subnets as witnessed by the large gaps in between
the hosts. This is benign or possibly reconnaissance. No attack tools with this
signature were found.

3.6 Correlations:

A Google search produced the following correlation from GIAC:

(Curt Wilson)1112

INTERNET SUSPICIOUS ACTIVITY - Dec 26 - Jan 31, 2000

Detect 1: Scanning attempt from what appears to be an IRC server (astro.ga.us.dal.net,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

52

port 6667) to TCP port 1024 for every IP in our external range; which alternates with
destination port 3072. An IRC server does exist on 64.154.61.232. This activity
continued at various intervals throughout the day. Research through securityfocus.com's
incident list has shown that there is a coordinated attack of IRC servers taking place with
spoofed IP addresses or decoys. Attacker has picked our IP addresses to appear as the
attacking systems. This does not damage our systems, but makes it appear to the
receiving end that we are attacking them. There is no way to stop this behavior short of
applying egress filtering to the attackers network, and since the attacker can't be tracked
from our logs, there is nothing we can do. Risk: low

Dec 26 11:25:24 [firewall.ip.address] %PIX-7-106011: Deny inbound (No
xlate) tcp src outside:64.154.61.232/6667 dst outside:cidr.net.addr.107/1024

Dec 26 11:34:29 [firewall.ip.address] %PIX-7-106011: Deny inbound (No
xlate) tcp src outside:64.154.61.232/6667 dst outside:cidr.net.addr.106/3072

Dec 26 11:34:29 [firewall.ip.address] %PIX-7-106011: Deny inbound (No
xlate) tcp src outside:64.154.61.232/6667 dst outside:cidr.net.addr.106/3072

Dec 26 13:34:55 [firewall.ip.address] %PIX-7-106011: Deny inbound (No
xlate) tcp src outside:64.154.61.232/6667 dst outside:cidr.net.addr.105/1024

Dec 26 13:34:55 [firewall.ip.address] %PIX-7-106011: Deny inbound (No
xlate) tcp src outside:64.154.61.232/6667 dst outside:cidr.net.addr.105/1024

A Whois using the Geektools Whois proxy provides the following
information about the source.

Final results obtained from whois.arin.net.
Results:

OrgName: Iowa State University
OrgID: IAST
Address: Academic Information Technologies
Address: 291 Durham Hall
City: Ames
StateProv: IA
PostalCode: 50011
Country: US

NetRange: 129.186.0.0 - 129.186.255.255
CIDR: 129.186.0.0/16
NetName: CYCLONENET
NetHandle: NET-129-186-0-0-1
Parent: NET-129-0-0-0-0
NetType: Direct Assignment
NameServer: NS-3.IASTATE.EDU
NameServer: NS-2.IASTATE.EDU

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

53

NameServer: NS-1.IASTATE.EDU
NameServer: SCSDS.AMESLAB.GOV
Comment:
RegDate: 1988-03-17
Updated: 1998-04-10

TechHandle: TC42-ARIN
TechName: Contact, Technical
TechPhone: +1-515-294-2256
TechEmail: tech-contact@iastate.edu

OrgAbuseHandle: ABUSE110-ARIN
OrgAbuseName: Abuse Contact
OrgAbusePhone: +1-515-294-2256
OrgAbuseEmail: abuse@iastate.edu

OrgTechHandle: TC42-ARIN
OrgTechName: Contact, Technical
OrgTechPhone: +1-515-294-2256
OrgTechEmail: tech-contact@iastate.edu

ARIN WHOIS database, last updated 2003-06-08 21:05
Enter ? for additional hints on searching ARIN's WHOIS database.

It seems reasonable that a university would have a host with ports 1024
and 3072 open. It also seems reasonable that this host would be the victim of an
attack. That and with the above correlation it would appear that an attack is
underway against 129.186.23.70 using our spoofed addresses.

3.7 Evidence of Active Targeting:

The evidence for active targeting is low. Even though we don’t know the
services that are running. We have determined that this is not traffic destined for
these hosts.

3.8 Severity:

Criticality: 0 We don’t know what services the hosts are running. But we have
determined the traffic is not destined for them.

Lethality: 1 This is probably benign, at the worst reconnaissance.

System Countermeasures: 2 Little known here. Is the service running?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

54

Network Countermeasures: 2 Is there a firewall? Are these ports blocked?

(0 + 1)–(2 + 2) = -3

3.9 Defensive Recommendation:

If a firewall is in place the ports should be closed. Blocking the source IP is
probably not necessary since this is most likely a third party effect. Implementing
a TCPdump audit trail would give additional information in the future, such as the
RST packets and/or any ICMP generated. Participating in a distributed intrusion
detection such as Dshield would help stop this activity sooner rather than later.

Checking the destination hosts to see what services are running would
also be helpful.

3.10 Multiple Choice Question:

For a given three-way handshake and that has a SYN packet with a
different TTL than the RST packet, what is the most likely situation that caused
this?

a. The port is open on the destination host.
b. The network path changed.
c. The address is spoofed.
d. The port is closed on the destination host.

Answer C. The address is spoofed.

Three Questions from Post

Only received one reply from my post on 6/16/03. http://cert.uni-
stuttgart.de/archive/intrusions/2003/06/msg00175.html. After, the post I redid my
Source of Trace and Detect Generated sections. When SnortSnarf generated
the html I had it include the scans.log, this file was missed inadvertently. This did
not affect the analysis just displayed the data a little differently.

-----Original Message-----
From: Oliver Viitamaki [mailto:ov@mdsi.bc.ca]
Sent: Monday, June 16, 2003 10:33 AM
To: Jim Rauser; intrusions@incidents.org
Subject: jrauser@bepc.com - Email found in subject - Re: LOGS: GIAC
GCIA
Version 3.3 Practical Detect(s)jrauser

At 09:13 AM 6/16/2003 -0500, you wrote:
>Network Detect (spp_portscan2) Portscan detected

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

55

[**] [117:1:1] (spp_portscan2) Portscan detected from 129.186.23.70: 6
targets 6 ports in 2582 seconds [**]
10/11-11:40:16.496507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800
len:0x3C
129.186.23.70:6000 -> 32.245.196.182:3072 TCP TTL:45 TOS:0x0 ID:0
IpLen:20
DgmLen:44 DF
***A**S* Seq: 0x11D2EAE6 Ack: 0x895C0042 Win: 0x16D0 TcpLen: 24
TCP Options (1) => MSS: 1460

1.4 Description of Attack:

This is third party effect picked up initially by the port scan
detector.
The attack is a SYN-ACK to ports 1024 and 3072. The SYN-ACK flags, in
normal operation, indicate that this is a reply. Each packet has an IP
Id of
zero and one TCP option of: MSS 1460. The time interval is interesting.
There is one packet, followed by another one in twenty minutes. The
next 5
packets were received within a 60 second timeframe.

It appears that an attacker is sending SYN packets to129.186.23.70,
with
spoofed sources, of 32.245.242.221, 32.245.104.220, 32.245.62.155,
32.245.62.155, 32.245.104.125, etc. (our network space). We are
receiving
the SYN-ACK's, from 129.186.23.70 in response to this.

Question. What additional evidence do you have available that
you
may not have drawn out or included to indicate that this traffic is not
"normal" XWindows? How is this not a false positive?

Ov

I believe I cover this in the Attack Mechanism section in the original
analysis with the following paragraph.

One thing that points to this is as follows, if it was legitimate traffic, it is
very unlikely that 5 of our hosts sent a SYN packet to the same server on the
same source port and are awaiting a SYN-ACK all within a time window of 60
seconds. Another odd thing is, would all the IP id’s be zero if the traffic were
legitimate? Of course the attacker could be doing recon on our hosts, by just
sending us SYN-ACKS since 1024 is a known Trojan port, but I’ll stick with the
third party effect given the limited evidence.

This alert could possibly also be a false positive, but since we have very
little information about the destination hosts, third party effect still seems likely.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

56

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 2–Network Detects

57

References

1 Hoagland, Jim and Staniford Stuart. “SnortSnarf.”
URL: http://www.silicondefense.com/software/snortsnarf/

2 Microsoft Corporation. “Microsoft Security Bulletin MS03-007”
URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bu
lletin/ms03-007.asp

3 Carnegie Mellon Software Engineering Institute. “CERT Coordination Center.”
URL: http://www.cert.org/advisories/CA-2003-09.html

4 The MITRE Corporation.“Common Vulnerabilities and Exposures (CVE)”
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0109

5 Vision, Max. “Arachnids Intrusion Event Database.”
URL: http://www.whitehats.com/info/IDS474

6 Roesch, Martin. “The Snort Signature Database.”
URL: http://www.snort.org/snort-db/sid.html?id=1070

7 Stewart, Joe. Webdav Exploits Exposed.
URL: http://www.lurhq.com/webdav.html

8 Microsoft Corporation. “MS03-007: How to Work Around the Vulnerability
That Is Discussed in Microsoft Knowledge Base Article 815021.”
URL:http://support.microsoft.com/default.aspx?scid=kb;en-us;816930

9 10 Northcutt, Stephen. Track 3 Intrusion Detection In-Depth. 2003 SANS
Institute

11 Northcutt, Stephen et. al. Intrusion Signature Analysis. 2001 New Riders
Publishing.

12 Wilson, Curt. Posts to GIAC. Report Date: January 9, 2001
URL: http://www.sans.org/y2k/010901-1300.htm
URLL

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

58

Assignment 3 Analyze This

Executive Summary
Introduction

Analyze this is a review of 5 days of Snort1 logs from a major university as
a part of a Security Audit. Snort is a packet logger and intrusion detection
system. The way Snort works is; it captures packets off a network and compares
the packets to known signatures of various suspect or malicious activity. When it
finds a match an alert or detect is generated that includes the type, source,
destination and other identifying characteristics of the underlying transport
protocol TCP/IP.

Attackers typically take advantages of weaknesses in TCP/IP to
accomplish several things: Reconnaissance, identifying live hosts and Operating
System fingerprinting, which is identifying the host OS. This is invaluable
information to an attacker as it allows them to actively target or pinpoint known
vulnerabilities in the OS. For the attacker it is either about gaining access or
preventing others from access (Denial of Service), either using application/OS
attacks or network attacks. Once access is gained the attacker attempts to
maintain access through: Trojans, Backdoors and Rootkits.

An Intrusion Detection System such as Snort aids in thwarting these
events. It does not stop them but alerts to the presence of them. The system is
not perfect and requires an experienced analyst to tune and review the alerts
generated. One of the problems with Snort and any othjer IDS for that matter, is
false positives. These are alerts that are not suspect or malicious they are
normal traffic that just happens to match the signature. This is where the
experience analyst comes in. It is there job to recognize these and/or tune Snort
so it does not produce these, as they can become excessive. This can be a
problem as it is distracting from the genuine alerts.

The sensors appear to be running a version of Snort about 1.9.0 or before.
There are probably quite a few of them. Some are generating a high number of
false positives and need to be tuned. Others are being used in packet logging
mode and need to be removed from the IDS. They could be set up as part of a
TCPdump audit trail.

Current state of the network

At the start of the analysis little is known about the network from which the
logs came from. But working through the analysis of the logs provides clues
about the topology of the network. It is a very large network with with 100+
subnets and 1000+ hosts. To provide services to so many hosts quite a large
amount of networking gear is required. It is a very open network, in that, here

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

59

does not appear to be many if any filtering devices or the filters are very relaxed.
The usual infrastructure is present DNS, Mail, Web Services, FTP, Dial-up, and
Internet Access.

In the course of the analysis logs from 7/5 to 7/9 were analyzed. The
alerts logs contained 61 unique alerts with a total of 27614 alerts. There were
18679 source addresses and 4337 destination addresses. A timeline was done
over the five days. The average number of alerts per hour was between1000 to
3000. With peaks of 10,000 to 13000 per hour on 7/7.

Evidence of host compromise was found in abundance. There appears to
be a Code Red infection. Trojan and/or remote control activity was also found.
Reconnaissaince is being performed and is ongoing. Active targeting of hosts for
specific known vulnerabities is also being performed. There is some evidence
that could point to poor network design; from the presence of traffic not
originating or bound to these networks.

It is evident that some type of packet filtering needs to be done, to block
access to these LAN’s from external connections. It also seems a review of the
present policys and procedures concerning access and known vulnerabilities
needs to be initiated. It appears that systems with known vulnerabities are not
being patched in a timely manner. Also the level of access to internal hosts (IRC
activity for example) needs to be reviewed and restricted. These two actions
alone would put a stop to a majority of this activity from external sources.

List of Files Analyzed

The Out of Spec files were off by a day.

Alerts Scans OOS
Alert.030705 Scans.030705 OOS_Report_2003_07_06_23454.txt
Alert.030706 Scans.030706 OOS_Report_2003_07_07_25549.txt
Alert.030707 Scans.030707 OOS_Report_2003_07_08_5584.txt
Alert.030708 Scans.030708 OOS_Report_2003_07_09_2126.txt
Alert.030709 Scans.030709 OOS_Report_2003_07_10_4402.txt

Analysis Process

To analyze the log files I chose to use a database. To prepare for this I
installed MySQL, an Open Source RBMS. I modified logsnorter-0.22 to include a
subroutine for processing the logs from http://www.incidents.org/logs. Logsnorter
parses through log files and generates MySQL statements to insert the logs into
the database. An Apache web server was installed along with PHP (Web
scripting language) the implementation language of ACID. ADODB the PHP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

60

database abstraction library and PHPlot were installed. Various graphing libraries
were also installed and finally ACID3.

I also installed Webmin, to make it easier to manipulate the MySQL
databases, such as adding db’s, host and user permissions and executing SQL
statements in order to import the schema. I created a database for each of the
alerts, scans, and OOS.

The OOS and alert files all had their addresses obfuscated. Before further
processing, I replaced the MY.NET using the following script.

cat alert.030705 | ./replace > alert.030705

#!/usr/bin/perl
while (my $line = <STDIN>) {

if ($line =~ s/MY.NET/my.net/g) {
print $line;

} else {
print $line;

}
}

The databases were then populated using the following sets of commands
one for each file:

tensleep:[/var/log/gcia]#cat logs/alert/alert.030705 | ./logsnorter-0.2 -t–u shotgun
-d alert -p password -s localhost -L 16

tensleep:[/var/log/gcia]#cat logs/oos/OOS_Report_2003_07_06_23454.txtr |
./logsnorter-0.2 -t–u shotgun -d oos -p password -s localhost–L 16

tensleep:[/var/log/gcia]#cat logs/scans/scans.030705 | ./logsnorter-0.2 -t -u
shotgun -d scans -p password -s localhost–L 16

The–t option uses the logs timestamps, the–u is the mysql user, -d the
database to insert into, -p the mysql password, -s the host the database resides
on, and–L the type of logfile to process.

The alerts files have little means for distinguishing udp from tcp traffic so udp was
tagged as tcp in the SQL database.

Each of the unique alerts was analyzed looking for false positives,
compromised hosts, correlations and any defensive recommendations.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

61

List of Detects - Description, Analysis, Correlations, Defensive
Recommendations

Analysis Console for Intrusion Databases

Queried on : Thu July 24, 2003 10:14:00
Database: snort@localhost (schema version: 106)
Time window: [2003-07-05 00:12:47] - [2003-07-09 23:46:55]

Sensors: 1
Unique Alerts: 61 (1 categories)
Total Number of Alerts: 276141

 Source IP addresses: 18679
 Dest. IP addresses: 4337
 Unique IP links 62365
 Source Ports: 46532

o TCP (46532) UDP (0)
 est. Ports: 1258

o TCP (1258) UDP (0)

Traffic Profile by Protocol

TCP (100%)

UDP (0%)

ICMP (< 1%)

Portscan Traffic (0%)

Note: Most of the descriptions are the work of others and are properly referenced.

Signature Total # Src.
Addr.

Dest.
Addr.

CS WEBSERVER - external web traffic 96180
(35%)

15438 6

Description: A custom rule to detect traffic on port 80.
Analysis:

The majority of detects from this rule will probably be false positives, unless external
traffic is not allowed to the server. This does not appear to be the case. A better place for
this would be part of a TCPdump audit trail. It will be difficult to weed out normal traffic
from malicious using this rule alone. Well let’s see what we can do with these “alerts”
anyway. There are 42862 unique source ports. Ports 137, 213 and 721 stick out. The six
destination hosts are:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

62

The broadcast address is interesting:

< Signature > < Timestamp
>

< Source
Address >

< Dest.
Address >

< Layer
4

Proto >
CS WEBSERVER -

external web traffic
2003-07-08
08:40:17

66.196.72.106 255.255.255.255 ICMP

CS WEBSERVER -
external web traffic

2003-07-09
15:47:18

65.128.184.16 255.255.255.255 ICMP

CS WEBSERVER -
external web traffic

2003-07-09
23:34:46 152.163.252.65 255.255.255.255

ICMP

CS WEBSERVER -
external web traffic

2003-07-09
23:38:40 66.196.72.67 255.255.255.255

ICMP

CS WEBSERVER -
external web traffic

2003-07-07
04:43:04 132.185.240.13 255.255.255.255

ICMP

CS WEBSERVER -
external web traffic

2003-07-06
15:16:29 64.68.82.50

255.255.255.255 ICMP

CS WEBSERVER -
external web traffic

2003-07-06
16:41:44 66.196.72.73

255.255.255.255 ICMP

This is interesting that this rule picks this up. Broadcast traffic from external hosts can
indicate a problem with the network design. This needs to be corrected; the routers
should not be forwarding broadcast packets. Or these could be spoofed sources
originating from this network in this case egress filters should drop them.

There is just not enough information here to make a determination as to whether or not
the hosts have been compromised.
Correlations:
Defensive Recommendations: This rule appears to be used for logging connections.
This rule will detect on all normal traffic to the web server, greatly increasing the number
of detects which are false positives. This in effect, detracts from the effectiveness of the
IDS by producing a large amount of false positives that an analyst must wade through.
This rule is producing almost a third of the alerts. The host web server logs all this
activity, so this is redundant. Snort is a great packet logger, but the output should
probably not be included with the other IDS detects. Use the snort rule set for detecting
malicious traffic and setup another sensor for a TCPdump audit trail for capturing all
packets in a connection. To be used to reconstruct what happened in the event of an
actual attack. There are other rules that this applies to also.

< Dest IP address > < Total
>

< Src.
Addr. >

my.net.30.4 1 1

my.net.60.14 1 1

my.net.100.165 96169 15437

my.net.132.57 1 1

my.net.133.206 1 1

255.255.255.255 7 7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

63

spp_http_decode: IIS Unicode attack detected 4 62987
(23%)

535 838

Description: Use the above hyperlink.
Analysis:

Wow, this is a lot of alerts. Lets just focus on the ones to internal hosts. The external
destinations are probably false positives generated by surfing activity. So search on this
signature where the destination is my.net.0.0/16 and the source is not. This narrows it
down to 2748 alerts, to 127 destinations. Still quite a few to analyze. If we had some
payload we could search on that also. So without any content or knowledge of the hosts
it is hard to say anymore. Need to match up the lists of hosts with the known vulnerability
to these 127 destinations and go from there.

< Dest IP
address >

< Total
>

< Src.
Addr. >

my.net.5.15 87 2

my.net.5.20 84 1

my.net.5.44 83 1

my.net.5.45 74 1

my.net.5.46 111 8

my.net.5.55 82 1

my.net.5.67 84 2

my.net.5.92 83 1

my.net.5.95 84 1

my.net.6.7 52 10

my.net.6.14 1 1

my.net.7.98 2 1

my.net.7.103 7 1

my.net.9.5 2 1

my.net.17.2 7 1

my.net.17.4 3 1

my.net.17.45 1 1

my.net.18.45 1 1

my.net.18.47 2 1

my.net.21.2 7 1

my.net.21.4 7 1

my.net.21.6 5 1

my.net.21.7 10 2

my.net.21.15 1 1

my.net.21.16 6 1

my.net.21.23 1 1

my.net.21.25 7 1

my.net.21.26 4 1

my.net.21.27 23 5

my.net.21.29 4 1

my.net.21.43 35 7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

64

my.net.21.44 3 1

my.net.21.47 2 1

my.net.21.48 6 1

my.net.21.51 25 4

my.net.21.54 1 1

my.net.21.60 4 3

my.net.21.64 6 1

my.net.21.71 6 1

my.net.21.72 7 1

my.net.21.81 6 1

my.net.21.101 6 1

my.net.22.36 2 1

my.net.22.82 5 1

my.net.24.34 55 11

my.net.24.37 7 1

my.net.24.44 68 29

my.net.24.46 7 1

my.net.29.8 74 1

my.net.29.12 82 1

my.net.29.18 83 1

my.net.29.66 8 1

my.net.31.7 7 1

my.net.32.133 7 1

my.net.32.139 7 1

my.net.32.141 1 1

my.net.32.143 3 1

my.net.32.144 4 1

my.net.32.149 3 1

my.net.32.153 1 1

my.net.32.155 5 2

my.net.32.157 7 1

my.net.32.160 8 1

my.net.32.166 6 1

my.net.32.169 6 1

my.net.32.170 7 1

my.net.32.175 1 1

my.net.32.183 4 1

my.net.32.184 5 1

my.net.60.14 26 13

my.net.60.17 5 1

my.net.62.17 3 1

my.net.65.20 4 1

my.net.69.145 41 2

my.net.69.243 7 1

my.net.70.118 5 1

my.net.70.135 8 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

65

my.net.80.144 3 1

my.net.80.161 5 1

my.net.86.19 87 7

my.net.86.26 6 1

my.net.98.99 10 1

my.net.99.37 7 1

my.net.100.69 1 1

my.net.100.165 82 15

my.net.108.52 17 3

my.net.109.9 2 2

my.net.109.73 6 1

my.net.110.47 7 1

my.net.110.80 2 1

my.net.110.224 91 1

my.net.111.15 14 2

my.net.111.21 84 1

my.net.111.42 4 1

my.net.111.140 140 23

my.net.111.184 5 1

my.net.112.216 82 1

my.net.113.208 65 1

my.net.114.31 1 1

my.net.115.12 1 1

my.net.115.44 6 1

my.net.115.55 6 1

my.net.115.130 5 1

my.net.135.148 1 1

my.net.137.18 80 1

my.net.141.31 3 1

my.net.150.83 1 1

my.net.150.228 74 2

my.net.151.16 7 1

my.net.153.105 1 1

my.net.153.219 1 1

my.net.153.221 1 1

my.net.154.30 7 1

my.net.154.31 5 1

my.net.157.11 4 1

my.net.157.24 6 1

my.net.158.254 5 1

my.net.162.37 1 1

my.net.163.142 2 1

my.net.177.65 6 1

my.net.180.25 3 1

my.net.180.28 6 1

my.net.180.29 6 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

66

my.net.184.25 84 1

my.net.184.47 84 1

my.net.184.251 7 1

my.net.198.214 10 1

Correlations:
Defensive Recommendations: Check hosts that have the vulnerability with the list of
127 destinations. Any matches should be checked for signs of compromise. If
compromised rebuild and patch. User access should be restricted to an assigned web
root directory and subdirectories when interacting with a web server. Attackers who
attempt to perform directory traversals outside the web root should be denied
access. Use a BPF filter to ignore outbound web traffic: snort <options> not port 80 and
not net my.net (or whatever your network is), or tell the snort preprocessor not to process
this alert. preprocessor http_decode: 80 -unicode -cginull

SMB Name Wildcard 5 46452
(17%)

675 1759

Description: Use above hyperlink.
Analysis:

This type of query, when originating from an external network, is usually a pre-attack
probe to gather netbios name table information such as workstation name, domain, and a
list of currently logged in users. There are a lot of external connections here, some of the
top ones are:

Total Dest. Addr.
61.219.26.178 121 121

61.220.40.43 122 122

61.220.40.44 175 175

24.117.55.43 871 1

61.221.251.65 216 216

64.208.118.94 170 170

61.163.141.229 234 234

61.183.33.100 147 147

61.230.53.152 76 76

61.230.168.235 219 219

62.29.114.120 157 157

61.231.52.231 174 174

61.231.97.217 58 58

64.38.91.92 241 241

65.43.167.180 166 166

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

67

64.76.2.207 182 182

62.7.132.222 84 84

62.29.64.7 123 123

62.29.76.209 111 111

The 12.0.0.0/8 network had a lot of addresses with 2 or 3 detects.
Correlations:
Defensive Recommendations: Block external connections.

my.net.30.4 activity 22107
(8%)

413 3

Description: A custom rule that detected traffic to ports 21, 22, 80, 82, 443, 524, 3372,
3389, 3410, 4899, 45000, and 51433.
Analysis:

From the unique TCP destination ports table, we can see that most of the traffic is to
ports 80 and port 524. Pot 524 is ncp. Probably false positives.

< Port > < Occurrence
s >

< Source
IP >

< Dest.
IP > < First > < Last >

21 / tcp 1 1 1 2003-07-09 00:57:19 2003-07-09 00:57:19

22 / tcp 2 2 1 2003-07-06 00:59:42 2003-07-06 02:09:29

80 / tcp 16922 390 1 2003-07-05 00:14:58 2003-07-09 23:37:19

82 / tcp 2 2 1 2003-07-08 05:16:57 2003-07-08 05:16:59

443 / tcp 2 1 1 2003-07-07 12:35:49 2003-07-07 12:35:50

524 / tcp 682 12 1 2003-07-06 03:59:20 2003-07-09 22:23:31

3372 / tcp 1 1 1 2003-07-08 21:52:38 2003-07-08 21:52:38

3389 / tcp 2 1 1 2003-07-08 21:55:56 2003-07-08 21:55:57

3410 / tcp 1 1 1 2003-07-09 00:05:46 2003-07-09 00:05:46

4899 / tcp 1 1 1 2003-07-09 16:18:27 2003-07-09 16:18:27

34287 / tcp 1 1 1 2003-07-06 14:44:04 2003-07-06 14:44:04

45000 / tcp 3 1 1 2003-07-09 00:48:54 2003-07-09 00:48:55

51443 / tcp 4486 3 1 2003-07-05 23:23:44 2003-07-08 21:16:55

The other activity on the high ports needs more investigation.
195.223.97.170:1497 my.net.30.4:3372
217.120.249.241:1965 my.net.30.4:4899

65.165.88.1:40137 my.net.30.4:51443

All this external activity is very suspicious. Check host for compromise.
Correlations:
Defensive Recommendations: Check hosts for compromise. Rebuild confirmed
compromised hosts. Turn off unused services. Block external connections. This rule
appears to be used for logging connections. Snort is a great packet logger, but the output
should probably not be included with the other IDS detects.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

68

Queso fingerprint 6474
(2%)

284 78

Description: Queso is a simple program to find out what OS your host is using. By
sending obscure and/or bogus TCP flags combinations such as 1 and 2, with a SYN, the
attacker attempts to identify the TCP/IP stack from the responses.
Analysis:

The attackers are doing reconnaissance. Scanned hosts may in the future be the
recipients of attacks from the scanners.
Correlations:
Defensive Recommendations: Block external connections.

[UMBC NIDS IRC Alert] XDCC client detected attempting
to IRC6

5864
(2%)

2 2

Description: Use above hyperlink.

Analysis:
my.net.198.221 --> 205.188.149.12 undernet.irc.aol.com
my.net.74.216 --> 212.161.35.251 beethoven.kewl.org

All but one of the alerts comes from my.net.198.221. Using well-known Trojan ports.
Possible compromise.
Correlations:
Defensive Recommendations: Check for signs of compromise. Rebuild confirmed
compromised hosts. Block access to external connections. Set rules for each computer
attacked to the network, that each must log into their machine with a password and not a
default Administrator account. Also, disable file sharing on all machines.

High port 65535 tcp - possible Red Worm–traffic 7 5387
(2%)

97 151

Description: Use above hyperlink. A custom rule that appears to look for a destination
of port 65535, as a result there may be quite a few false positives from this rule. Don’t
know if this is a protocol rule or also includes content.
Analysis:

We have alerts with both source and destination from this network. Lets look at the
destinations first. We have 2315 alerts to 91 destinations. Some of this appears to be
mail traffic which could be false positives. Lets filter that out also. So here are the
destinations reporting this alert. Possible compromised hosts.

< Dest IP address > < Total# > < Src.
Addr. >

my.net.4.80 1 1

my.net.5.20 5 1

my.net.5.239 1 1

my.net.6.63 11 1

my.net.9.31 1 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

69

my.net.14.52 1 1

my.net.24.33 6 1

my.net.24.34 26 6

my.net.24.44 5 1

my.net.24.132 1 1

my.net.24.217 1 1

my.net.25.12 1 1

my.net.25.71 1 1

my.net.25.72 2 2

my.net.27.236 1 1

my.net.29.3 1 1

my.net.29.11 5 1

my.net.41.104 1 1

my.net.41.114 1 1

my.net.42.91 1 1

my.net.53.73 1 1

my.net.60.38 1 1

my.net.60.39 1 1

my.net.65.8 1 1

my.net.68.13 2 1

my.net.69.160 68 1

my.net.69.217 3 1

my.net.70.99 2 1

my.net.71.210 1 1

my.net.72.175 1 1

my.net.74.160 1 1

my.net.74.221 89 1

my.net.76.12 1 1

my.net.82.68 1 1

my.net.84.151 4 2

my.net.87.232 10 3

my.net.94.121 1 1

my.net.97.19 4 1

my.net.97.23 1 1

my.net.97.51 21 1

my.net.97.61 5 1

my.net.97.69 3 1

my.net.97.91 1 1

my.net.97.93 93 1

my.net.97.97 2 1

my.net.97.128 31 1

my.net.97.179 9 1

my.net.98.21 21 1

my.net.98.86 1 1

my.net.101.173 1 1

my.net.107.152 1 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

70

my.net.110.204 1 1

my.net.111.9 2 1

my.net.111.34 1576 1

my.net.111.78 1 1

my.net.111.197 62 1

my.net.112.141 1 1

my.net.112.195 2 1

my.net.112.196 3 1

my.net.112.226 1 1

my.net.113.4 5 1

my.net.120.220 1 1

my.net.121.37 1 1

my.net.130.16 1 1

my.net.130.143 1 1

my.net.141.21 74 1

my.net.141.176 1 1

my.net.143.66 1 1

my.net.147.150 1 1

my.net.150.83 4 1

my.net.152.173 1 1

my.net.153.187 1 1

my.net.159.101 1 1

my.net.162.53 1 1

my.net.162.191 1 1

my.net.177.204 1 1

my.net.178.69 1 1

my.net.182.104 1 1

my.net.182.158 1 1

my.net.183.50 1 1

my.net.190.99 2 1

my.net.190.201 1 1

Now for the sources that are generating this alert, since we have no content or access to
the rule. These could be attempting to propagate the worm or false positives, but we
need to check. There is really not enough here to absolutely rule them out as false
positives. Possible compromised hosts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

71

< Src IP address >
< Total

>
< Dest.

Addr. >
my.net.97.19 5 1

my.net.97.23 1 1

my.net.97.51 22 1

my.net.97.61 6 1

my.net.97.69 1 1

my.net.97.91 1 1

my.net.97.93 131 1

my.net.97.97 3 1

my.net.97.128 33 1

my.net.97.179 13 1

my.net.98.21 17 1

my.net.98.86 2 1

my.net.100.165 6 1

my.net.100.230 18 4

my.net.110.204 1 1

my.net.111.34 2330 1

my.net.111.197 55 1

my.net.113.4 4 1

my.net.141.21 57 1

my.net.150.83 3 1

my.net.5.20 4 1

my.net.6.15 1 1

my.net.6.55 18 2

my.net.6.63 10 1

my.net.12.4 15 2

my.net.24.20 8 2

my.net.24.33 13 1

my.net.24.34 26 6

my.net.24.44 5 1

my.net.29.3 1 1

my.net.29.11 5 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

72

Correlations:
Defensive Recommendations: Check hosts that are known to have the vulnerability
with the list of destinations and sources. Any matches should be checked for signs of
compromise. If compromised rebuild and patch.

my.net.53.73 1 1

my.net.60.17 4 1

my.net.60.38 1 1

my.net.69.160 99 1

my.net.69.217 2 1

my.net.70.99 2 1

my.net.74.221 78 1

my.net.84.151 2 1

my.net.87.232 8 3

spp_http_decode: CGI Null Byte attack detected 8 5170
(2%)

68 91

Analysis:
Traffic to hosts that are not running web servers can be ruled out as false positives. A

lot of the alerts are also being generated by the dialup traffic going outbound. These are
also false positives. After further review it appears that practically all of the alerts are
being generated by outbound traffic. They are all false positives and can probably be
tuned out.
The only traffic that is inbound:

67.249.232.199 my.net.24.34

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

73

67.243.133.85 my.net.24.34
65.214.36.116 my.net.24.34
68.54.94.58 my.net.24.34

The destination my.net.24.34 is a web server. The content of these packets should be
checked. Possible host compromise.
Correlations:
Defensive Recommendations: Rebuild confirmed compromised hosts. Block traffic
from above four hosts. To reduce the amount of traffic to look through when analyzing
alerts turn off the http_decode preprocessor for the sensors on outbound traffic.

CS WEBSERVER - external ftp traffic 3693
(1%)

148 1

Description: A custom rule to detect port 21 traffic to the CS web server.
Analysis:

This rule appears to be used for logging ftp connections. These alerts are pretty
meaningless in the context of intrusion detection without further information as to who is,
and, who is not allowed access. Snort is a great packet logger, but the output should
probably not be included with the other IDS detects. These are probably all legitimate
connections, which should not be part of an Intrusion Detection System.
Correlations:
Defensive Recommendations: Split the web server from the ftp server to be able to
segregate the traffic.

my.net.30.3 activity 3584
(1%)

44 1

Description: A custom rule that detected traffic to ports 21, 22, 80, 524, 3372, 3389,
3410, 4899, 45000 and 51443.
Analysis:

From the unique TCP destination ports table, we can see that most of the traffic is to
ports 80 and 524. 524 is ncp. Probably false positives. The other activity needs more
investigation.

2003-07-09 00:57:19 212.252.91.20:54608 my.net.30.3:21

< Port > < Occurren
ces >

< Sourc
e

IP >

< Dest.
IP > < First > < Last >

21 / tcp 1 1 1 2003-07-09 00:57:19 2003-07-09 00:57:19

22 / tcp 2 2 1 2003-07-06 00:59:42 2003-07-06 02:09:29

80 / tcp 82 19 1 2003-07-06 01:15:39 2003-07-09 16:18:14

524 / tcp 3491 17 1 2003-07-05 00:27:43 2003-07-09 22:58:34

3372 / tcp 1 1 1 2003-07-08 21:52:39 2003-07-08 21:52:39

3389 / tcp 3 1 1 2003-07-08 21:55:56 2003-07-08 21:55:57

3410 / tcp 1 1 1 2003-07-09 00:05:46 2003-07-09 00:05:46

4899 / tcp 2 1 1 2003-07-09 16:18:27 2003-07-09 16:18:28

45000 / tcp 1 1 1 2003-07-09 00:48:55 2003-07-09 00:48:55

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

74

2003-07-06 00:59:42 80.55.196.26:58054 my.net.30.3:22
2003-07-06 02:09:29 213.35.200.178:1592 my.net.30.3:22
2003-07-08 21:52:39 195.223.97.170:1496 my.net.30.3:3372
2003-07-08 21:55:56 62.194.170.250:4510 my.net.30.3:3389
2003-07-08 21:55:57 62.194.170.250:4510 my.net.30.3:3389
2003-07-08 21:55:57 62.194.170.250:4510 my.net.30.3:3389
2003-07-09 00:05:46 67.74.154.85:4377 my.net.30.3:3410
2003-07-09 16:18:27 217.120.249.241:1964 my.net.30.3:4899
2003-07-09 16:18:27 217.120.249.241:1965 my.net.30.4:4899
2003-07-09 00:48:55 68.68.249.101:2788 my.net.30.3:45000

All this external activity is very suspicious. Check host for compromise.
Correlations: cc150743-a.assen1.dr.home.nl (217.120.249.241) also appears in alerts
my.net.30.4 activity, Notify Brian B. 3.54 tcp , and Notify Brian B. 3.56 tcp.
Defensive Recommendations: Check hosts for compromise. Rebuild confirmed
compromised hosts. Turn off unused services. Block external connections. This rule
appears to be used for logging connections. Snort is a great packet logger, but the output
should probably not be included with the other IDS detects.

EXPLOIT x86 NOOP 9 3370
(1%)

42 92

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

75

Description: Use above hyperlink. The x86 NOP can frequently be found in day-to-day
traffic, particularly when transferring large files.
Analysis:

This alert is known to generate a lot of false positives. Examining the alerts, we find that
it is hard to distinguish this from normal web traffic. One of the alerts is to and from news
servers, probably a false positive. Not a lot of clues here since we don’t have the content.
So I used a link graph on the time profile of the alerts. Then a query during the time of
highest activity. This search produced 1552 alerts from 1:00 to 12:00 on 07-09-03. A
closer look at some of the traffic revealed some odd behaviors that might not be just
simple web browsing. A couple of the external hosts (from foreign countries) seemed to
stay on a long time (all night) and there source ports and connections appeared different

then most of the
other traffic.

Source 217.106.116.202 post.comch.ru
< Dest IP

address >
< Total

>
< Unique

Alerts >
< Src.

Addr. >
my.net.5.15 8 1 1
my.net.5.44 81 1 1
my.net.5.55 12 1 1
my.net.5.67 116 1 1
my.net.5.92 158 1 1
my.net.5.95 146 1 1

07/9/2003 1:00:00 -
1:59:59 32

07/9/2003 2:00:00 -
2:59:59 191

07/9/2003 3:00:00 -
3:59:59 1

07/9/2003 4:00:00 -
4:59:59 181

07/9/2003 5:00:00 -
5:59:59 1

07/9/2003 6:00:00 -
6:59:59 325

07/9/2003 7:00:00 -
7:59:59 101

07/9/2003 8:00:00 -
8:59:59 248

07/9/2003 9:00:00 -
9:59:59 0

07/9/2003 10:00:00 -
10:59:59 444

07/9/2003 11:00:00 -
11:59:59 28

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

76

my.net.29.12 155 1 1
my.net.86.19 158 1 1
my.net.163.84 128 1 1
my.net.184.47 127 1 1

Source 213.92.206.11 c206011.adsl.hansenet.de
< Dest IP

address >
< Total

>
< Unique

Alerts >
< Src.

Addr. >
my.net.5.15 10 1 1
my.net.5.20 17 1 1
my.net.5.44 13 1 1
my.net.5.46 16 1 1
my.net.5.55 8 1 1
my.net.5.67 16 1 1
my.net.5.92 20 1 1
my.net.5.95 25 1 1
my.net.29.8 19 1 1
my.net.29.12 17 1 1
my.net.29.18 15 1 1
my.net.29.19 12 1 1
my.net.86.19 103 1 1

my.net.111.21 19 1 1
my.net.184.25 19 1 1
my.net.184.47 19 1 1

Check the above hosts for signs of compromise.
Correlations:
Defensive Recommendations: Check for signs of compromise. Rebuild confirmed
compromised host. Block external connections.

connect to 515 from inside 3057
(1%)

1 1

Description: A custom rule that detected traffic from a laptop (my.net.162.42) on port
721 to a (tektronics printer?) (tek924.gsfc.nasa.gov) on port 515.
Analysis:

There are a lot of connections here. It could be printing, all of the activity occurs during
the day or early evening. For example, the following link graph shows a timeline on
07/07/03.

07/7/2003 9:00:00 - 9:59:59 2

07/7/2003 10:00:00 -
10:59:59 54

07/7/2003 11:00:00 -
11:59:59 81

07/7/2003 12:00:00 -
12:59:59 47

07/7/2003 13:00:00 -
13:59:59 21

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

77

07/7/2003 14:00:00 -
14:59:59 0

07/7/2003 15:00:00 -
15:59:59 92

07/7/2003 16:00:00 -
16:59:59 136

07/7/2003 17:00:00 -
17:59:59 91

07/7/2003 18:00:00 -
18:59:59 88

07/7/2003 19:00:00 -
19:59:59 145

It is a possible false positive. Need more information. Is this host running Linux? If so,
check host for signs of compromise.

Correlations:
Defensive Recommendations: Check for signs of compromise. Rebuild confirmed
promised host. Block external connections.

External RPC call 10 2539
(1%)

4 1138

Description: Use above hyperlink.
Analysis:
66.198.148.9 is scanning the my.net.133.0/24 134, 135, 137, 190 subnets with source
and destination port of 110. Probably using a script to automate it. Information gained
from these scans could be used for more active targeting later.

Total Dest. Addr.
66.198.148.9 863 849
195.13.253.73 193 188
211.114.9.211 1096 1044
211.168.183.66 387 376

2003-07-06 22:45:39 211.114.9.211:4354 my.net.135.44:111
2003-07-06 22:45:39 211.114.9.211:4355 my.net.135.45:111
2003-07-06 22:45:39 211.114.9.211:4356 my.net.135.46:111
2003-07-06 22:45:39 211.114.9.211:4358 my.net.135.48:111
2003-07-06 22:45:39 211.114.9.211:4357 my.net.135.47:111
2003-07-06 22:45:39 211.114.9.211:4359 my.net.135.49:111

In this part of the scan you can see the incrementing source ports. 211.114.9.211 is
scanning, the 132, 133, 134, 135 subnets. I don’t believe this is worm activity, but you
never know. It might be prudent to check some of the vulnerable hosts for signs of
compromise.

A self-propagating Linux worm called Ramen has been reported. 11 This worm is known
to infect Red Hat 6.2 and 7.0 machines. It infects the machines with vulnerabilities in wu-
ftp, rpc.statd, and LPRng services. This worm has the ability to infect other Linux and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

78

Unix machines via a vulnerable wu-ftp version, rpc.statd and LPRng. This worm can also
be easily modified since it leaves the source code on the machine. GIAC has received
several reports of this worm infecting machines, and the network traffic that it creates.

The worm uses a tool called synscan which has been modified to fit its needs. Using
this tool, the worm contacts a randomly generated IP address and checks the FTP
banner to determine if the machine is running Red Hat Linux 6.2 or Red Hat Linux 7.0.
For machines running Red Hat 6.2, the worm will attempt to exploit a vulnerable rpc.statd
or wuftpd service. For Red Hat 7.0, the worm tries to exploit an LPRng bug to gain access
to the system.
Correlations:
Defensive Recommendations: Limit remote access to RPC services. Filter RPC ports at
the firewall to ensure access is denied to RPC-enabled machines. Disable unneeded
RPC services.

High port 65535 udp - possible Red Worm–traffic 12 1527
(1%)

75 73

Description:
Code Red supposedly opens a backdoor on this port. This is accomplished by copying

the standard Windows NT/2000 command interpreter "cmd.exe" into web server's
"scripts" directory. The worm drops a trojan program to '\explorer.exe' that modifies
different some IIS settings to allow a remote attack of the infected host. The standard
command interpreter 'cmd.exe' is copied to '\inetpub\scripts\root.exe' and to
'\progra~1\common~1\system\MSADC\root.exe'. The worm creates these files to both 'C:'
and 'D:' drives if they exist. These copies of the 'cmd.exe' will allow any attacker to
execute commands on the remote system really easily.

Analysis: Appears to be a custom rule that alerts on UDP traffic with a source or
destination port of 65535. It is not known if this rule is just a protocol rule, or whether it
involves content also. Once again there is not enough information to weed out the false
positives. So we need to check all the source and destination hosts that set this rule off.
We need to check each source or destination against the list of known hosts with the
vulnerability. The following are possible compromised hosts.

Sources

< Src IP address > < Total# > < Dest.Addr. >
my.net.70.164 2 2
my.net.72.249 12 1
my.net.84.151 2 1
my.net.84.178 28 2
my.net.86.110 263 12
my.net.97.23 1 1
my.net.97.69 1 1
my.net.97.102 5 1
my.net.97.134 1 1
my.net.111.34 12 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

79

my.net.150.242 56 5
my.net.153.113 1 1
my.net.153.223 327 13

Destinations

< Dest IP address > < Total# > < Src.Addr. >
my.net.53.35 1 1
my.net.69.136 2 1
my.net.69.217 89 2
my.net.69.249 7 1
my.net.70.164 2 2
my.net.72.249 4 1
my.net.74.247 1 1
my.net.80.15 2 1
my.net.81.112 2 1
my.net.84.150 1 1
my.net.84.178 52 10
my.net.84.198 1 1
my.net.86.110 260 12
my.net.97.23 1 1
my.net.97.69 1 1
my.net.97.102 5 1
my.net.97.110 1 1
my.net.97.134 1 1
my.net.98.103 1 1
my.net.108.34 1 1
my.net.111.34 8 1
my.net.111.139 2 1
my.net.114.110 3 3
my.net.117.10 1 1
my.net.150.121 18 1
my.net.150.203 5 1
my.net.150.242 24 11
my.net.151.115 4 1
my.net.152.14 1 1
my.net.152.162 3 1
my.net.152.163 11 1
my.net.153.105 1 1
my.net.153.113 4 2
my.net.153.185 1 1
my.net.153.223 283 11
my.net.198.244 2 1

Correlations:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

80

Defensive ecommendations: Check hosts that are known to have the vulnerability with
the list of sources and destinations. Any matches should be checked for signs of
compromise. If compromised rebuild and patch.

TCP SRC and DST outside network 1192
(0%)

90 326

Description: A custom rule that detected traffic that is not bound for or did not
originated on this network, 90 source addresses with 326 destination addresses.
Analysis:

The sources are mostly from aol.com. What is this doing here? If these addresses are
not spoofed, there is a major problem in that external traffic is traversing the internal
LANs, needs to be investigated. Could indicate spoofing on the internal network or poor
network design.
Correlations:
Defensive Recommendations: Implement egress filtering, if traffic that is leaving the
LAN does not have a source address of that LAN it is dropped. If external traffic is
allowed to cross the internal LAN, the source should be found and eliminated.

IDS552/web-iis_IIS ISAPI Overflow ida nosize 890 (0%) 619 374

Description: Use above hyperlink.
Analysis:

Supposedly there are no known false positives with this alert. Given that assumption we
will assume all the alerts are genuine and this is the worm attempting to replicate. Given
the number of alerts and the fact that there is no active targeting go on, we won’t attempt
to analyze each but instead, we should compile a list of internal hosts with the
vulnerability. Once we have the list then we can see if an alert was generated for it and
proceed from there. Given that, it looks like we have possible compromised hosts.
Correlations:
Defensive Recommendations: If a vulnerable host has a detect generated, check for
signs of compromise. Rebuild compromised hosts. Patch all vulnerable hosts. Block
external connections.

Null scan! 13 775
(0%)

32 38

Description: This is a TCP probe with no flags set. If sent to an open port a RST/ACK
is received, for a closed port nothing is received. It can also be used for OS
fingerprinting. If a NULL scan shows all ports closed while a SYN scan shows open
ports, the host is one of the following: Windows, CISO, BSDI, HP/UX, MVS, IRIX. As part
of information gathering leading up to another (more directed) attack, an attacker may
attempt to figure out what ports are open/closed on a remote machine.
Analysis:
Top four scanners

Total Dest Addr
213.176.8.2 364 4

my.net.25.69

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

81

my.net.25.71
my.net.25.72
my.net.25.73

67.119.233.217 268 5
my.net.12.4:110
my.net.25.21:110
my.net.25.22:110
my.net.25.23:110
my.net.25.24:110

These are mail servers looking to see if pop-3 is running
141.156.139.19 54 3

my.net.12.2
my.net.25.10
my.net.25.12

63.251.52.75 36 4
my.net.153.114:0
my.net.150.68:0
my.net.178.66:0
my.net.114.115:0

Supposedly there are no known false positives for this signature, so these hosts are the
victims of network reconnaissance, probably will be actively targeted in the future.
Correlations: 63.251.52.75 Probable NMAP fingerprint attempt.
Defensive Recommendations: Determine if this particular port would have responded
as being open or closed. If open, watch for more attacks on this particular service or from
the remote machine that sent the packet. If closed, simply watch for more traffic from this
host. 14 Block external connections.

IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
.

685
(0%)

2 473

Description: See above.
Analysis:

Total Dest Addr.
my.net.69.145 539 378

Time #Alerts
07/5/2003 0:00:00 - 0:59:59 380
07/5/2003 1:00:00 - 1:59:59 159

my.net.97.61 146 95
Time #Alerts

07/5/2003 1:00:00 - 1:59:59 146
This looks like the activity of a host infected by a worm.

Correlations: my.net.97.61 513 occurrences as src 9 as dest
my.net.69.145 960 occurrences as src 41 as dest
Defensive Recommendations: Apply the patch. Block access from external
connections. Check for signs of compromise. Rebuild confirmed compromised hosts.

NMAP TCP ping! 15 595 155 61

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

82

(0%)
Description: Sometimes you may merely want to check the availability of a system
without sending ICMP echo requests, which may be blocked by some sites. In this case,
a TCP "ping" sweep can be used to scan a target's network.
Analysis:
155 sources to 61 destinations. The top three destinations (name servers) are shown
below

Total Src Addr.
my.net.1.3 171 67
my.net.1.4 50 26
my.net.1.5 16 14

Top sources Total Dest. Addr.
63.211.17.228 77 17
64.152.70.68 67 14

193.41.181.254 76 1
This is most likely network reconnaissance in preparation for future attacks.
Correlations:
Defensive Recommendations: Block external connections.

connect to 515 from outside 518
(0%)

1 1

Description: The alerts are triggering on a source port of 721 and a destination port of
515. This is the UNIX printer daemon. A known vulnerability exists:
CVE-2000-091716

Format string vulnerability in use_syslog() function in LPRng 3.6.24 allows remote
attackers to execute arbitrary commands.
tcp any 515
Redhat/Mandrake uses LPRng. The Code Red worm scans for this as well as the Ramen
worm.
Analysis:
2003-07-08 09:05:50 131.118.229.7:721 my.net.24.15:515

518 alerts to newprinter, false positive.
Correlations:
Defensive Recommendations: Tune IDS. Verify host is a printer. Block external
connections.

[UMBC NIDS IRC Alert] IRC user /kill detected, possible
trojan. 17

464
(0%)

72 62

Description: Custom rule that detects the kill command. The kill command causes the
specified client-server connection to be closed by the server that has the actual
connection. The comment parameter reflects the reason the connection was killed. This
command can only be executed by an IRC operator. The Console window displays the
results of this command. The syntax for the KILL command is as follows:
/KILL <nickname><comment>
Analysis:

Unique TCP Source ports

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

83

< Port > < Occurrences
>

< Sourc
e

IP >

< Dest
.

IP >
< First > < Last >

6660 /
tcp

16 1 1 2003-07-
09 11:02:23

2003-07-09
23:28:09

6661 /
tcp

28 6 1 2003-07-
09 10:31:45

2003-07-09
23:11:50

6662 /
tcp

1 1 1 2003-07-
09 01:04:04

2003-07-09
01:04:04

6663 /
tcp

18 5 1 2003-07-
09 10:29:12

2003-07-09
23:46:28

6665 /
tcp

32 8 3 2003-07-
07 08:00:57

2003-07-09
23:35:23

6666 /
tcp

17 7 4 2003-07-
07 07:59:51

2003-07-09
16:50:48

6667 /
tcp

291 60 50 2003-07-
05 00:26:13

2003-07-09
23:24:18

6668 /
tcp

13 2 2 2003-07-
09 09:58:55

2003-07-09
23:37:29

6669 /
tcp

36 4 2 2003-07-
08 16:27:37

2003-07-09
23:36:26

6670 /
tcp

1 1 1 2003-07-
08 20:10:14

2003-07-08
20:10:14

7000 /
tcp

11 6 11 2003-07-
06 00:26:16

2003-07-09
00:59:23

From the query we can see that all of the alerts are using well-known Trojan ports.
There are 72 source hosts and 62 destination hosts. There does not appear to be any
traffic to well-known ports, which could be false positives. We don’t have the rule so we
can’t evaluate the possibilities of false positives. However a rule that detects this traffic if
it involves content should be fairly easy to write, so that the incidence of false positives
would be minimum. Probably no false positives. Possible Trojans controlled from IRC.
All internal hosts should be checked for compromise.
Correlations:.
Defensive Recommendations: Check for signs of compromise. Rebuild confirmed
compromised hosts. Block access to external connections.

Possible trojan server activity 18 445
(0%)

44 55

Description: All detects are triggering on port 27374. Detects to recognizable ports
may be false positives. The following Trojans use this port: Sub Seven 2.1 (UDP), Bad
Blood, Ramen, Seeker, Sub Seven 2.14, Sub Seven, Muie, DefCon 8, Ttfloader.
Port 1214 Kaaza
Analysis:

Traffic on ports 22,25,80,110,143,443 is most likely false positives.
2003-07-08 18:51:07 my.net.113.4:1214 62.202.2.3:27374
2003-07-08 18:51:08 my.net.113.4:1214 62.202.2.3:27374
2003-07-06 11:04:28 my.net.113.4:1214 208.180.101.103:27374

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

84

Using Kaaza ports needs further investigation.
2003-07-08 04:46:48 my.net.84.235:27374 80.218.101.63:4662
2003-07-08 04:46:54 my.net.84.235:27374 80.218.101.63:4662
2003-07-09 00:53:05 my.net.84.235:27374 213.93.208.223:4662
2003-07-09 00:53:08 my.net.84.235:27374 213.93.208.223:4662
2003-07-09 00:53:14 my.net.84.235:27374 213.93.208.223:4662

Using well known Trojan ports. Possible compromise.
Correlations: Host my.net.84.235 also appears in the following alerts: spp_http_decode:
IIS Unicode attack detected, spp_http_decode: CGI Null Byte attack detected, DDOS
shaft client to handler. Host my.net.113.4 also appears in the following alerts: High port
65535 tcp - possible Red Worm–traffic, Queso fingerprint , Incomplete Packet
Fragments Discarded and SMB Name Wildcard.
Defensive Recommendations: Check for signs of compromise. Rebuild confirmed
compromised hosts. Block access to external connections.

NIMDA - Attempt to execute cmd from campus host19 409
(0%)

8 397

Description: Unlike the Code Red II Worm, the Nimbda worm requests for a "cmd.exe"
file in various subdirectories of your server, and affects more than just Microsoft's IIS web
servers: it also exploits holes in Microsoft Outlook, Outlook Express and Internet Explorer.

Sends itself by email. Searches for open network shares. Attempts to copy itself to
unpatched or already vulnerable Microsoft IIS web servers. Is a virus infecting both local
files and files on remote network shares. The worm uses the Unicode Web Traversal
exploit.
Analysis:

Total Dest Addr
my.net.10.177 1 1
my.net.30.86 1 1
my.net.69.145 318 316
my.net.97.40 1 1
my.net.97.61 85 79
my.net.97.176 1 1
my.net.132.45 1 1
my.net.191.67 1 1

Two of the external hosts are exhibiting worm like behavior. Need to check these 8
hosts to determine if they have the vulnerability. Possible compromised hosts.
Correlations:
Defensive Recommendations: Clean or rebuild confirmed compromised hosts. Apply
the patch. Block access from external connections.

SUNRPC highport access! 343
(0%)

15 15

Description: See above External RPC call or below Attempted Sun RPC high port
access. Custom rule that alerted on internal destinations using port 32771.
Analysis: The traffic between the mail servers, the web traffic to google.com, cnn.com,
real.com, kernel.org, terraplex.com, and naver.com the ssl traffic to redhat network are

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

85

most likely all probably a false positives. The traffic to xserve.blender.org is probably a
false positive also.
2003-07-06 12:11:46 64.12.161.153:5190 my.net.97.89:32771
2003-07-06 12:11:47 64.12.161.153:5190 my.net.97.89:32771
and with 106 alerts (only two shown)
2003-07-08 12:15:13 205.188.7.200:5190 my.net.69.254:32771
2003-07-08 12:15:39 205.188.7.200:5190 my.net.69.254:32771

These two hosts are probably using AOL instant messenger, false postive.
2003-07-09 17:40:41 205.188.234.3:8030 my.net.70.234:32771
2003-07-09 17:40:41 205.188.234.3:8030 my.net.70.234:32771

The last host my.net.70.234 deserves further attention.
Correlations:
Defensive Recommendations: Check for signs of compromise. Rebuild confirmed
compromised hosts. Block access to external connections.

SMB C access 20 310
(0%)

65 104

Description: A remote user has attempted to access the C$ default administrative
share of a Windows host. Analysis:

A very large number of detects for this signature. The number of source and destination
addresses is very disturbing. Since this attack can lead to administrator access on the
local host. On second look maybe not so bad. We have a scan from
67.35.116.205:21103 my.net.152.183:139 this accounts for 179 of the alerts. So this
source could be doing reconnaissance. Targeting the my.net.152.0/24 and
my.net.153.0/24 subnet hosts for future attacks.

Unique destination addresses for this scan
Total Src Addr

my.net.132.45 35 14
my.net.137.34 23 14
my.net.137.36 9 9
my.net.137.37 7 7
my.net.137.46 11 11
my.net.190.19 4 4
my.net.190.100 20 20
my.net.190.102 22 22

The above eight hosts should be checked for possible compromise
Correlations: 67.35.116.205 has 607 occurrences of which 428 are SMB Name
Wildcard.
Defensive Recommendations: Check for signs of compromise. Rebuild confirmed
compromised hosts. Disallow Netbios access from external networks (tcp port 139).

SNMP public access 21 119
(0%)

1 1

Description: This means that snort saw a SNMP packet (used to administer devices

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

86

such as switches) accessing (or attempting to access) the "public" SNMP community, a
common default setting in devices. (Actually, it triggers on any snmp packet containing
the word "public".)

Based on what you show of IP addresses, this is traffic within your network, and is
probably normal. I'd be concerned if either machine wasn't one I controlled. I'd also
consider changing my SNMP community strings to something other than public.

SNMP (Simple Network Management Protocol) v1 uses communities and IP
addresses to authenticate communication between the SNMP client and SNMP
daemon. Many SNMP implementations come pre-configured with 'public' and 'private'
communities. If these are not disabled, the attacker can gather a great deal of information
about the device running the SNMP daemon. An attacker scans a range of IPs for
SNMP servers having the 'public' community set and gathers information about the hosts.
22

Analysis:
2003-07-08 07:51:59 134.192.86.65:1047 my.net.190.13:161

It looks like the host 134.192.86.65 has walked the snmp tree for my.net.190.13. This is
an information leak.
Correlations:
Defensive Recommendations: Disable the 'public' and 'private' communities before
connecting the device with SNMP on the Internet or block access to SNMP ports using a
packet filtering firewall for unauthorized addresses.

NIMDA - Attempt to execute root from campus host 117
(0%)

2 116

Description: See above.
Analysis:

The activity proceeds as follows
My.net.69.145 start 2003-07-05 01:00:46 stop 2003-07-05 01:12:05
103 destination addresses are almost exclusively from the 130.223.0.0/16 subnets.
My.net.97.61 start 2003-07-05 01:15:10 stop 2003-07-05 01:20:29
13 destination addresses mostly to 130.223.0.0/16 subnets. Looks like worm activity.
Check these two hosts for compromise.
Correlations:
Defensive Recommendations: Check for signs of compromise. Rebuild compromised
hosts. Apply the patch. Block access from external connections.

Incomplete Packet Fragments Discarded 23 114
(0%)

41 29

Description: This message is given by the defragmentation preprocessor when
packets bigger than 8k that are more than half empty when the last
fragment is received are discarded.

This can be caused by:
- transmission errors

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

87

- broken stacks
- and fragmentation attacks
Analysis:
Probably not fragmentation attacks. Most of the source and destination addresses are
dialup and DSL. Transmission errors, seems a good bet, since these types of
connections tend to be noisier and more error prone. Dip.t-dialin.net in particular has the
majority of alerts. Most are probably false positives.

Some other interesting traffic is:
61-25-140-151.home.ne.jp 61.25.140.151 --> my.net.112.196
xdsl-195-14-219-161.netcologne.de 195.14.219.161 --> my.net.97.114
p50854a7f.dip0.t-ipconnect.de 80.133.74.127 --> my.net.100.165
afontenayssb-111-1-1-247.w80-13.abo.wanadoo.fr 80.13.0.247 -->
my.net.112.196
afontenayssb-110-1-4-88.w81-48.abo.wanadoo.fr 81.48.183.88 -->
my.net.111.34
r200-40-184-73.adsl.anteldata.net.uy 200.40.184.73 --> my.net.150.220
Correlations:
Defensive Recommendations: Block external connections.

TFTP - Internal TCP connection to external tftp server 114
(0%)

7 65

Description: Custom rule that alerts on TCP traffic to a source or destination port of 69
and an external address.
Analysis:

Unique TCP Source Addresses

< Src IP address >
< Total

>
< Unique
Alerts >

< Dest.
Addr. >

my.net.18.47 2 1 2
my.net.97.181 12 1 1
my.net.162.67 1 1 1
140.239.42.26 1 1 1
198.64.149.228 60 1 51

198.173.255.237 34 1 30
216.17.103.14 4 1 1

This traffic needs to be looked at closely. It could be compromised hosts attempting to
download Trojans, rootkits and other tools. supershe.tempdomainname.com
198.173.255.237 has 8 other occurrences as a destination (TCP SRC and DST outside
network). They are telnets and ssh from 172.137.152.210. This is very suspicious.Can’t
really rule out any of the internal hosts as not possible sources of unauthorized activity.
Check all internal hosts involved in this rule for signs of possible compromise.

Correlations: my.net.97.81 also appears in spp_http_decode: IIS Unicode attack
detected. my.net.162.67 also appears as a destination in IDS552/web-iis_IIS ISAPI
Overflow ida nosize. my.net.18.47 also appears in spp_http_decode: IIS Unicode attack
detected.
Defensive Recommendations: Rebuild confirmed compromised hosts. Turn off and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

88

remove unneeded services. Block external connections.

IRC evil - running XDCC 79
(0%)

3 3

Description: Custom rule to detect XDCC bots. All alerts have a destination port of 6667
or 6669, the source ports are 1026,1036, and 1986. See description below (User joining
XDCC channel detected. Possible XDCC bot 24 and Possible Incoming XDCC Send
Request Detected).
Analysis:
my.net.80.209 --> 66.207.164.23
my.net.74.216 --> 212.161.35.251
my.net.198.221 --> 205.188.149.12

Possible compromised hosts running XDCC. Possible Trojans. Known Trojans ports.
Correlations: 212.161.35.251 has 10 occurrences as source and 47 occurrences as a
destination). It appears in the alerts below, [UMBC NIDS IRC Alert] Possible Incoming
XDCC Send Request Detected and [UMBC NIDS IRC Alert] XDCC client detected
attempting to IRC.
Defensive Recommendations: Rebuild confirmed compromised hosts. Turn off and
remove unneeded services. Enforce a password policy. Block external connections.

EXPLOIT x86 setuid 0 25 58
(0%)

40 26

Description: Use above hyperlink.
Analysis:
2003-07-08 00:18:47 144.118.198.20:1901 my.net.111.51:3297
2003-07-08 00:31:10 144.118.198.20:1915 my.net.111.51:3299
2003-07-08 00:48:50 144.118.198.20:1936 my.net.111.51:3303
2003-07-08 00:48:58 172.153.29.188:6699 my.net.97.56:2253
2003-07-08 01:04:50 209.214.160.100:6699 my.net.97.56:2144
2003-07-08 01:09:36 144.118.198.20:1950 my.net.111.51:3304
2003-07-08 01:53:58 63.240.202.73:4000 my.net.97.64:1303
2003-07-08 02:10:34 66.229.65.137:6699 my.net.97.56:2474
2003-07-08 02:11:50 63.240.202.38:4000 my.net.97.64:1305
2003-07-08 02:18:09 63.240.202.59:4000 my.net.97.64:1307
2003-07-08 02:19:33 63.240.202.59:4000 my.net.97.64:1307
2003-07-08 02:20:29 63.240.202.59:4000 my.net.97.64:1307
2003-07-08 02:29:40 63.240.202.161:4000 my.net.97.64:1309
2003-07-08 03:04:09 63.240.202.92:4000 my.net.97.64:1336
2003-07-08 03:04:18 63.240.202.92:4000 my.net.97.64:1336
2003-07-08 03:04:26 63.240.202.92:4000 my.net.97.64:1336
2003-07-08 03:07:04 63.240.202.92:4000 my.net.97.64:1336
2003-07-08 03:07:07 63.240.202.92:4000 my.net.97.64:1336
2003-07-08 03:07:42 63.240.202.92:4000 my.net.97.64:1336
2003-07-08 03:53:48 63.240.202.37:4000 my.net.97.64:1352
2003-07-08 03:53:52 63.240.202.37:4000 my.net.97.64:1352
2003-07-08 03:54:00 63.240.202.37:4000 my.net.97.64:1352
2003-07-08 04:00:11 63.240.202.174:4000 my.net.97.64:1354
2003-07-08 04:09:21 63.240.202.168:4000 my.net.97.64:1360
2003-07-08 05:46:11 198.118.229.166:58577 my.net.163.97:22
2003-07-08 07:08:42 209.217.135.199:80 my.net.17.48:1920
2003-07-08 08:22:05 64.4.25.188:80 my.net.97.101:1107

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

89

2003-07-08 08:27:59 64.4.25.188:80 my.net.97.101:1189
2003-07-08 09:32:42 63.240.202.70:4000 my.net.97.170:1402
2003-07-08 16:08:00 66.230.135.50:80 my.net.190.101:1702
2003-07-08 20:07:01 64.250.215.245:4388 my.net.69.160:3108
2003-07-09 00:09:45 131.118.254.130:1547 my.net.24.8:119
2003-07-09 03:14:54 131.118.254.130:1591 my.net.24.8:119
2003-07-09 07:57:34 64.246.37.28:80 my.net.83.88:1349
2003-07-09 12:47:58 219.133.7.40:60121 my.net.69.148:6882
2003-07-09 13:02:32 216.169.198.9:15372 my.net.150.133:6881
2003-07-09 13:08:03 131.118.254.130:1749 my.net.24.8:119
2003-07-09 15:10:15 130.94.25.53:49791 my.net.82.101:1611
2003-07-09 15:14:32 64.236.34.141:80 my.net.115.145:50645
2003-07-09 19:29:54 63.250.195.10:0 my.net.153.113:0
2003-07-07 09:59:27 66.118.165.60:80 my.net.153.146:2651
2003-07-07 13:07:10 12.238.126.94:2418 my.net.97.35:1745
2003-07-07 13:07:24 12.238.126.94:2418 my.net.97.35:1745
2003-07-07 13:07:37 12.221.190.60:2308 my.net.97.35:1740
2003-07-07 15:30:50 66.250.223.36:80 my.net.162.188:4200
2003-07-07 15:48:27 141.150.121.159:21096 my.net.153.152:1914
2003-07-07 16:02:59 61.133.84.149:3317 my.net.112.195:3682
2003-07-07 16:10:00 12.239.251.46:1271 my.net.153.152:3082
2003-07-07 17:10:30 64.132.47.105:11158 my.net.152.19:6970
2003-07-06 02:28:10 131.118.254.130:2795 my.net.24.8:119
2003-07-06 10:55:30 140.254.73.38:2843 my.net.84.22:1804
2003-07-06 11:04:44 24.126.115.181:3303 my.net.97.164:2927
2003-07-06 13:42:24 63.240.202.73:4000 my.net.97.187:1407
2003-07-06 14:45:09 63.240.202.77:4000 my.net.97.27:1482
2003-07-06 16:00:05 63.240.202.164:4000 my.net.97.27:1535
2003-07-06 16:39:45 63.240.202.65:4000 my.net.97.27:1549
2003-07-06 17:04:43 63.240.202.166:4000 my.net.97.27:1559
2003-07-06 17:15:59 63.240.202.43:4000 my.net.97.27:1561

 Since we don’t have the content of the packets we will have to use other clues to
determine which detects are false positives and which might be actual attacks. All 58 of
the alerts above are shown with 48 sources and 256 destinations. A majority of the
destinations are dialup. The port 80 and 119 traffic are most likely false positives. The 24
alerts with port 4000 all come from the same subnet. Port 4000 is a known Trojan port so
this traffic is suspect. The port 0 traffic is anomalous and comes from a source we have
seen in many other alerts. The rest of the traffic uses odd combinations of
source/destination ports and is anomalous. These hosts also should be checked for
compromise.
Correlations:
l8.cache.vip.dal.yahoo.com 63.250.195.10 it has 80 other occurrences as source.
Defensive Recommendations: Possible compromised hosts. Rebuild confirmed
compromised hosts. Block external connections.

EXPLOIT x86 stealth noop 26 52
(0%)

4 4

Description: Use above hyperlink.
Analysis:
news.ums.edu 131.118.254.130 --> my.net.24.8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

90

haven.net.umd.edu 128.8.5.30 --> my.net.24.8
This is most likely normal news traffic that is triggering the pattern, false positive.

n218103242103.netvigator.com 218.103.242.103 --> my.net.69.148

2003-07-08 12:57:53 218.103.242.103:1569 my.net.69.148:3434
2003-07-08 13:04:37 218.103.242.103:1615 my.net.69.148:3872
2003-07-08 13:06:41 218.103.242.103:1625 my.net.69.148:3969
2003-07-08 13:11:15 218.103.242.103:1651 my.net.69.148:4177
2003-07-07 19:02:48 218.103.242.103:2304 my.net.69.148:2031
2003-07-07 19:31:11 218.103.242.103:2461 my.net.69.148:2627
2003-07-07 19:57:11 218.103.242.103:2600 my.net.69.148:4055
2003-07-07 20:39:54 218.103.242.103:2790 my.net.69.148:2494
2003-07-07 20:39:56 218.103.242.103:2790 my.net.69.148:2494
2003-07-07 20:41:43 218.103.242.103:2796 my.net.69.148:2516
2003-07-07 21:24:07 218.103.242.103:2995 my.net.69.148:3558

This traffic appears to be a genuine attack the source and destination ports are odd.
The timing appears right to. The attacker tries an exploit, waits for results, tunes and tries
again. There is even a 6-hour break taken. My.net.69.148 is possibly a compromised
host.

2003-07-09 10:58:04 199.89.199.30:80 my.net.53.93:2391
2003-07-09 20:43:23 199.89.199.30:80 my.net.152.159:2707

Most likely normal web traffic, false positive.
Correlations:
Defensive Recommendations: Possible compromised host Rebuild confirmed
compromised host. Block external connections.

FTP passwd attempt 27 52
(0%)

28 2

Description: Use above hyperlink.
Analysis:

All alerts are to one host my.net.24.47 with some external sources setting of multiple
detects. Probably a lot of false positives, with a few actual attempts. Possible
compromised host.
Correlations:
Defensive Recommendations: Identify, the downloaded file and confirm that it indeed
is a valid system password file. Change the user passwords on the system and notify the
users. Check for other activity indicative of system compromise. Rebuild if compromised.
Ensure that FTP access to sensitive system files is not allowed.

Tiny Fragments - Possible Hostile Activity 28 44
(0%)

7 8

Description: Use above hyperlink
Analysis:
Unable to resolve address 211.196.113.222 --> my.net.97.154

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

91

Unable to resolve address 24.197.158.136 --> my.net.84.178
adsl-141-156-52-91.ba-dsg.net 141.156.52.91 --> my.net.24.58
adsl-141-156-52-91.ba-dsg.net 141.156.52.91 --> my.net.29.11
YahooBB219173044051.bbtec.net 219.173.44.51 -->
router2.fdi1-unet.ocn.ne.jp 219.166.32.226 --> my.net.25.73
61.171.249.46 --> my.net.25.70
ucommons-114-120.pooled.umbc.edu my.net.114.120 --> 217.224.247.198

Traffic to my.net.25.70 (the mail server) has the most fragments with a count of 29.
One of the internal hosts my.net.114.120 is also doing this. These hosts all need to be
checked since this type of fragmentation is not typically seen in the wild. The dialups and
DSL connection might experience some fragmentation but not packets that are less than
25 bytes. And these are not the last fragments, either. It is most likely being used to
evade an, IDS or firewall.
Correlations:
Defensive Recommendations: Possible compromised hosts. Rebuild confirmed
compromised hosts.

TFTP - Internal UDP connection to external tftp server 44
(0%)

4 9

Description: Custom rule that alerts on UDP traffic to a source or destination port of 69
and an external address.
Analysis:
Unable to resolve address 208.153.50.192 --> my.net.151.115
corp-gw.viva.yellowbrix.net 64.125.197.7 --> my.net.1.3
l8.cache.vip.dal.yahoo.com 63.250.195.10 --> my.net.150.121

my.net.5.92 --> 12.211.236.2
l8.cache.vip.dal.yahoo.com 63.250.195.10 --> my.net.153.113
l8.cache.vip.dal.yahoo.com 63.250.195.10 --> my.net.152.250
l8.cache.vip.dal.yahoo.com 63.250.195.10 --> my.net.153.105

my.net.5.92 --> 81.171.2.192
l8.cache.vip.dal.yahoo.com 63.250.195.10 --> my.net.150.203

Transferring files is very suspicious activity. Possible compromised hosts.
Correlations: 63.250.195.10 appears in many alerts.
Defensive Recommendations: Check hosts for compromise. Rebuild confirmed
compromised hosts. Block external connections.

EXPLOIT x86 setgid 0 29 40
(0%)

28 33

Description: Use above hyperlink.
Analysis:
2003-07-08 00:44:36 69.27.66.247:19328 my.net.70.207:12203
2003-07-09 07:42:39 202.177.192.68:14676 my.net.75.108:6970
2003-07-09 10:02:27 140.254.73.38:4832 my.net.84.22:1804
2003-07-09 13:03:20 216.169.198.9:15372 my.net.150.133:6881
2003-07-09 14:35:53 130.94.25.53:49649 my.net.82.101:1294

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

92

2003-07-09 16:17:21 24.65.26.168:60140 my.net.69.148:1139
2003-07-07 18:39:05 66.222.141.62:12203 my.net.70.207:12203
2003-07-07 20:54:38 202.102.188.45:2993 my.net.163.78:1837
2003-07-07 21:36:19 131.118.254.130:1084 my.net.24.8:119
2003-07-07 23:36:38 24.208.236.11:64946 my.net.69.160:3108
2003-07-06 09:41:11 131.118.254.130:2929 my.net.24.8:119
2003-07-06 18:25:14 194.47.165.108:50704 my.net.17.70:5059

Traffic to web servers is probably legitimate and is probably a false positive. The traffic
on the high-ports is suspicious and needs further investigation. Possible compromised
hosts.
Correlations:
Defensive Recommendations: Check if hosts have the vulnerability, confirm
compromise, and rebuild as necessary. Block external connections. Funnel outbound
web traffic through an application-level proxy firewall and perform network address
translation on it.

ICMP SRC and DST outside network 35
(0%)

9 21

Description: A custom rule that detects ICMP not bound for or originating from this
network.
Analysis:
20 of the alerts come from one source (68.48.32.16), bound for dsl on aol.com,
verizon.net, comcast.net, ameritech.net. Could indicate spoofing on the internal network
or poor network design.
Correlations:
Defensive Recommendations: Implement egress filtering, if traffic that is leaving the
LAN does not have a source address of that LAN it is dropped. If external traffic is
allowed to cross the internal LAN, the source should be found and eliminated.

Notify Brian B. 3.56 tcp 33
(0%)

20 1

Description: A custom rule that detected traffic to my.net.3.56 on ports 21, 53, 80, 666,
3372, 4898 and 4899.

pd95177c7.dip.t-dialin.net 217.81.119.199 --> my.net.3.56

Analysis:
2003-07-08 03:40:31 195.224.126.6:4435 my.net.3.56:53
2003-07-08 06:50:15 217.81.119.199:26550 my.net.3.56:666
2003-07-09 00:45:14 212.252.91.20:35538 my.net.3.56:21
2003-07-09 00:44:53 212.252.91.20:35538 my.net.3.56:21
2003-07-09 00:44:56 212.252.91.20:35538 my.net.3.56:21
2003-07-08 06:50:15 217.81.119.199:21158 my.net.3.56:4898
2003-07-08 21:41:48 195.223.97.170:1994 my.net.3.56:3372
2003-07-09 16:14:03 217.120.249.241:2039 my.net.3.56:4899
2003-07-09 16:14:12 217.120.249.241:2039 my.net.3.56:4899

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

93

The majority of the alerts are on port 80,probably normal traffic. Areas of concern are
external traffic to port 666, 53, 21,4898-99 and 3372. Port 666 has numerous Trojans
associated with it: Attack FTP, Back Construction, Cain & Abel, Satanz Backdoor,
ServeU, Shadow Phyre, NokNok, BLA Trojan, Th3r1pp3rz [The Rippers]. The other ports
are not what you would expect to see external traffic to, unless its part of a scan.
Correlations:
Defensive Recommendations: Check host for compromise. Turn off unused services.
Block external connections. This rule appears to be used for logging connections. Snort
is a great packet logger, but the output should probably not be included with the other IDS
detects.

DDOS shaft client to handler 30 31
(0%)

7 5

Description: Use above hyperlink. This event indicates possible control traffic from the
Shaft master to the Shaft handlers.
Analysis:

Traffic to my.net.24.27, my.net.110.80, my.net.108.19 and my.net.6.55 appear to be
false positives. The host my.net.my.net appears to be compromised with traffic to it from
four external sources.
Correlations:
Defensive Recommendations: Check for compromised host. Block access to external
connections.

RFB - Possible WinVNC - 010708-1 30
(0%)

15 20

Description: This is software available from AT&T Labs Cambridge that allows a user
to remote control a desktop. Custom rule that appears to alert on a source or destination
port of 5900 or 5901.
Analysis:
2003-07-08 14:36:38 68.55.35.44:5900 my.net.114.21:4498
2003-07-08 14:36:38 my.net.114.21:4498 68.55.35.44:5900
2003-07-08 16:49:11 my.net.53.128:1229 68.55.35.44:5900 
2003-07-08 16:49:32 68.55.35.44:5900 my.net.53.128:1232
2003-07-08 16:49:32 my.net.53.128:1232 68.55.35.44:5900
2003-07-08 22:21:48 68.55.196.211:20645 my.net.111.51:5900
2003-07-09 00:31:19 my.net.178.31:5900 151.196.49.115:1207 
2003-07-09 00:44:38 my.net.111.51:5900 68.55.196.211:26018
2003-07-09 00:44:38 68.55.196.211:26018 my.net.111.51:5900
2003-07-09 08:11:36 my.net.111.188:5901 68.55.200.138:18763
2003-07-09 08:11:36 68.55.200.138:18763 my.net.1 11.188:5901
2003-07-09 10:34:24 209.240.190.63:5900 my.net.97.10:1292
2003-07-09 10:34:24 my.net.97.10:1292 209.240.190.63:5900
2003-07-09 18:40:52 my.net.111.51:5900 68.55.196.211:33841
2003-07-09 18:40:52 68.55.196.211:33841 my.net.1 11.51:5900
2003-07-09 22:25:09 209.240.190.63:5900 my.net.97.54:1213 
2003-07-07 15:32:59 209.240.190.63:5900 my.net.97.94:3334

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

94

2003-07-07 15:32:59 my.net.97.94:3334 209.240.190.63:5900
2003-07-07 20:47:06 209.240.190.63:5900 my.net.98.24:1148 
2003-07-07 21:36:01 209.240.190.63:5900 my.net.150.203:4534 
2003-07-06 15:52:56 209.240.190.63:5900 my.net.97.12:1140 
2003-07-06 22:40:54 209.240.190.63:5900 my.net.98.86:1272 
2003-07-05 01:20:29 my.net.111.188:5901 68.55.200.138:18613
2003-07-05 01:20:29 68.55.200.138:18613 my.net.111.188:5901
2003-07-05 20:48:01 141.156.18.91:5900 my.net.97.46:1123
2003-07-05 20:48:02 my.net.97.46:1123 141.156.18.91:5900
2003-07-05 21:39:03 141.156.18.91:5900 my.net.97.46:1198
2003-07-05 21:39:03 my.net.97.46:1198 141.156.18.91:5900
2003-07-05 21:42:55 my.net.70.225:5900 68.55.61.117:3647
2003-07-05 21:42:55 68.55.61.117:3647 my.net.70.225:5900

A pairing probably indicates a connection between the two hosts. Some traffic was only
alerted one way, could indicate an unsuccessful connecti on attempt? Theses hosts
should be further investigated for authorized use of WinVNC and/or compromise.
Correlations:
Defensive Recommendations: Check for compromised hosts. Block external access.

Notify Brian B. 3.54 tcp 30
(0%)

19 1

Description: A custom rule that detected traffic to my.net.3.54 on ports 21, 53, 80,
3372, 4898 and 4899.
Analysis:

The alerts on port 80 appear to be genuine traffic and are probably false positives. The
alerts below were interesting.
2003-07-09 16:14:03 217.120.249.241:2037 my.net.3.54:4899
2003-07-09 16:14:12 217.120.249.241:2037 my.net.3.54:4899

This is the same source as the other Brian rule (cc150743-a.assen1.dr.home.nl)

2003-07-08 21:41:45 195.223.97.170:1992 my.net.3.54:3372
2003-07-08 21:41:48 195.223.97.170:1992 my.net.3.54:3372

This source (consumer.ta.isynet.it.97.223.195.in-addr.arpa) is also from a foreign
country. Not much more can be determined without looking at the packet contents, but
given the ports and addresses it is suspicious traffic.
Correlations:
Defensive Recommendations: Check hosts for compromise. Turn off unused
services. Block external connections. This rule appears to be used for logging
connections. Snort is a great packet logger, but the output should probably not be
included with the other IDS detects. Add another Snort box in intrusion detection mode
for logging alerts only.

[UMBC NIDS IRC Alert] Possible Incoming XDCC Send
Request Detected.

18
(0%)

3 3

Description DCC transfer, Basically this means "Direct Client to Client". Like many other
services, IRC allows you to send files to others who are connected. Some channels are

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

95

devoted entirely to DCC.

Analysis:
2003-07-08 00:21:32 66.207.164.23:6667 my.net.80.209:1036
2003-07-08 00:47:52 212.161.35.251:6667 my.net.74.216:1026
2003-07-08 11:47:44 66.207.164.23:6667 my.net.80.209:1036
2003-07-08 12:30:29 212.161.35.251:6667 my.net.74.216:1026
2003-07-08 12:24:07 212.161.35.251:6667 my.net.74.216:1026
2003-07-08 12:29:31 212.161.35.251:6667 my.net.74.216:1026
2003-07-08 18:00:44 66.207.164.23:6667 my.net.80.209:1036
2003-07-08 20:09:16 66.207.164.23:6667 my.net.80.209:1036
2003-07-08 21:10:01 66.207.164.23:6667 my.net.80.209:1036
2003-07-09 08:35:01 66.207.164.23:6669 my.net.80.209:1986
2003-07-09 17:58:16 216.194.70.11:7000 my.net.82.36:4514
2003-07-09 20:47:11 212.161.35.251:6667 my.net.74.216:1026
2003-07-07 11:41:53 212.161.35.251:6667 my.net.74.216:1026
2003-07-07 16:19:40 212.161.35.251:6667 my.net.74.216:1026
2003-07-07 16:30:15 212.161.35.251:6667 my.net.74.216:1026
2003-07-07 16:20:06 212.161.35.251:6667 my.net.74.216:1026
2003-07-07 16:31:50 212.161.35.251:6667 my.net.74.216:1026
2003-07-07 18:10:00 66.207.164.23:6667 my.net.80.209:1036

IRC clients downloading files from an IRC server.

Correlations:
Defensive Recommendations: Check for compromise. Rebuild a confirmed
compromised host. Block external connections. Use good passwords. Turn off file
sharing.

TCP SMTP Source Port traffic 31 22
(0%)

2 3

Description: Detects source port of 25. This event is generated when possible non-
legitimate traffic is detected that should not be allowed through a firewall. This can be
used to pass through a poorly configured firewall.
Analysis:
2003-07-09 16:54:28 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:54:28 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:54:28 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:54:49 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:54:49 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:54:49 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:54:49 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:55:09 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:55:09 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:55:09 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:55:09 64.179.52.39:25 my.net.25.73:25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

96

2003-07-09 16:55:09 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:55:09 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:55:49 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:56:05 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:56:05 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:56:05 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:56:05 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:56:07 64.179.52.39:25 my.net.25.73:25
2003-07-09 16:56:07 64.179.52.39:25 my.net.25.73:25
2003-07-07 04:08:52 218.20.215.98:25 my.net.188.147:97
2003-07-06 05:15:57 218.20.215.98:25 my.net.94.5:701

20 of the alerts are from mail.ezinemanager.net 64.179.52.39 to mx8in (my.net.25.73).
It is interesting that the source and destination ports are both 25. Need the content of the
packets to say anymore otherwise, these are probably normal mail traffic and are false
positives. The other two are from the same source to two internal destinations. They
need further investigation.
Correlations:
Defensive Recommendations: Check two hosts for possible compromise. Rebuild
confirmed compromised hosts. Block external connections. Connections from port 25
should only be allowed to ports >=1024.

[UMBC NIDS IRC Alert] Possible sdbot floodnet detected
attempting to IRC 32

13
(0%)

8 1

Description: Backdoor.Sdbot is a Backdoor Trojan Horse that allows the Trojan's
creator to control a computer by using Internet Relay Chat (IRC). Backdoor.Sdbot can
update itself by checking for newer versions over the Internet. A family of backdoor
Trojans which allow a remote intruder to access and control the computer via IRC
channels.

When run, the Trojan tries to connect to an IRC server and join a specific channel. The
Trojan then runs continuously in the background as a server process, listening on the IRC
channel for specific commands and carrying out the appropriate actions. When first run,
the Trojan may copy itself to the Windows or Windows System folder and create an entry
in the registry to run itself on start-up.

Also known as: IRC-Sdbot [McAfee], Backdoor.IRC.SdBot [KAV], BKDR_SDBOT.B
[Trend], Troj/Sdbot-B [Sophos], Win32.SdBot.14176 [CA]
Analysis:
2003-07-08 15:31:18 my.net.97.98:2746 213.186.35.9:6667
2003-07-09 05:14:52 my.net.97.74:1313 213.186.35.9:6667
2003-07-09 17:16:40 my.net.153.111:4319 213.186.35.9:6667
2003-07-09 18:09:44 my.net.153.111:4683 213.186.35.9:6667
2003-07-09 21:31:05 my.net.98.15:1328 213.186.35.9:6667

2003-07-07 04:55:32 my.net.97.220:3296 213.186.35.9:6667
2003-07-07 06:47:10 my.net.97.220:3558 213.186.35.9:6667

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

97

2003-07-07 11:15:44 my.net.97.65:1580 213.186.35.9:6667
2003-07-07 11:07:27 my.net.97.65:1441 213.186.35.9:6667
2003-07-06 00:32:20 my.net.97.84:1124 213.186.35.9:6667
2003-07-06 07:04:08 my.net.97.84:2124 213.186.35.9:6667
2003-07-06 12:53:49 my.net.97.202:2376 213.186.35.9:6667
2003-07-05 23:48:18 my.net.97.84:1841 213.186.35.9:6667

The affected hosts are attempting to connect to an IRC server. They appear to be
compromised. Most are dialup hosts. They are all connecting to ns336.ovh.net (528
occurrences for this as source) a host in a foreign country.
Correlations:
Defensive Recommendations: Rebuild confirmed compromised hosts. Turn off and
remove unneeded services. Enforce a password policy. Configure your email server to
block or remove email that contains file attachments that are commonly used to spread
viruses, such as .vbs, .bat, .exe, .pif and .scr files. Block external connections.

Traffic from port 53 to port 123 33 11
(0%)

1 1

Description: One of the things it detects is source port of 53. This event is generated
when possible non-legitimate traffic is detected that should not be allowed through a
firewall. Traffic from TCP port 53, is used by DNS servers for zone transfers. Normal
DNS traffic uses the UDP protocol. An attacker could use a TCP source port of 53 to
pass through a poorly configured firewall. DNS traffic from port 53 using either UDP or
TCP should be to a port above 1023. Ports 1023 and below are privileged.
Analysis:
2003-07-08 20:40:20 64.125.197.7:53 my.net.1.3:123
2003-07-08 23:14:04 64.125.197.7:53 my.net.1.3:123
2003-07-09 10:41:13 64.125.197.7:53 my.net.1.3:123
2003-07-07 03:02:58 64.125.197.7:53 my.net.1.3:123
2003-07-07 04:54:03 64.125.197.7:53 my.net.1.3:123
2003-07-07 17:34:05 64.125.197.7:53 my.net.1.3:123
2003-07-06 03:42:29 64.125.197.7:53 my.net.1.3:123
2003-07-06 12:39:59 64.125.197.7:53 my.net.1.3:123
2003-07-06 21:29:20 64.125.197.7:53 my.net.1.3:123
2003-07-06 23:21:01 64.125.197.7:53 my.net.1.3:123
2003-07-05 22:09:38 64.125.197.7:53 my.net.1.3:123

Possible DNS traffic to the nameserver. False Positive.
Correlations:
Defensive Recommendations: Incoming connections from TCP port 53 should only be
allowed to machines that need the ability to do zone transfers. Connections from TCP
port 53 should only be allowed to ports >=1024 on these machines

Attempted Sun RPC high port access 34 11
(0%)

3 6

Description: This event is generated when an attempt is made dump entries from the
portmapper on a Solaris host. This request can discover what Remote Procedure Call
(RPC) services are offered and on which ports they listen. The portmapper service

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

98

registers all RPC services on UNIX hosts. It can be queried for all RPC services running,
the RPC program name and version, the protocol (TCP or UDP), and the port where the
service listens. This can provide an attacker with valuable information about what RPC
services are offered and on which ports. Execute 'rpcinfo -p hostname/IP'.
Analysis:
2003-07-09 05:10:01 63.250.195.10:49155 my.net.150.121:32771
2003-07-07 18:26:32 63.250.195.10:42051 my.net.152.14:32771
2003-07-07 23:46:20 63.250.195.10:8301 my.net.150.121:32771
2003-07-05 20:56:02 63.250.195.10:21878 my.net.150.203:32771

The dialups are accessing a dns. These are false positives. The detects with
63.250.195.10 as a source are most likely genuine.
Correlations: 63.250.195.10 has appeared in many other alerts.
Defensive Recommendations: Check hosts for running service. If running determine if
any vulnerabilities on RPC services. Rebuild confirmed compromised hosts. Limit remote
access to RPC services. Disable unneeded RPC service.

EXPLOIT NTPDX buffer overflow 35 8
(0%)

4 7

Description: This event is generated when an attempt to exploit a buffer overflow
condition in ntpd is made. Some versions of the Network Time Protocol Daemon (ntpd)
are vulnerable to a buffer overflow, which can present the attacker with a root shell. Ntp is
used to synchronize system time with a time-server. This may also be used on various
network devices. Exploit scripts are available
Affected Versions:

ntpd versions prior to and including 4.0.99k
xntpd and xntp3

Analysis:
2003-07-08 11:50:43 63.250.205.30:123 my.net.114.110:123
2003-07-08 14:51:55 63.250.195.10:19740 my.net.53.49:123
2003-07-09 04:01:19 63.250.195.10:123 my.net.150.121:123
2003-07-09 14:38:33 64.94.235.108:123 my.net.111.139:123
2003-07-09 15:05:52 63.250.195.10:53820 my.net.153.120:123
2003-07-09 15:05:52 63.250.195.10:53820 my.net.153.120:123
2003-07-07 00:36:21 63.250.195.10:47217 my.net.69.249:123
2003-07-06 23:24:23 12.129.72.165:1300 my.net.97.22:123

63.250.195.10 appears in numerous other alerts. Possible exploited hosts. The
systems are being actively targeted. As this signature is specific to an exploit
reconnaissance has probably already been done.
Correlations:
Defensive Recommendations: Check hosts to see if service is running. If so check for
compromise and rebuild. Upgrade to the latest non-affected version of the software.
Apply vendor supplied patches. Block external connections.

NETBIOS NT NULL session 36 8
(0%)

2 5

Description: This event is generated when an attacker sends a blank username and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

99

blank password in an attempt to connect to the IPC$ (Inter-process Communication) pipe.
Information gathering. This attack can permit the disclosure of sensitive information about
the target host.

Null sessions allow browsing of Windows hosts by the "Network Neighborhood" and
other functions. A Null session permits access to a host using a blank user name and
password. At attacker may attempt to perform a Null session connection, disclosing
sensitive information about the target host such as available shares and user names.

An attacker can send a blank username and blank password to try to connect to the IPC$
hidden share on the target computer. Null sessions, may be used by legitimate
processes in the same Windows domain.
Analysis:
2003-07-08 15:58:50 200.39.107.90:4460 my.net.137.37:139
2003-07-08 15:58:50 200.39.107.90:4461 my.net.137.34:139
2003-07-08 16:14:30 200.39.107.90:1803 my.net.137.36:139
2003-07-06 05:47:46 212.240.60.65:2378 my.net.132.45:139
2003-07-06 05:52:49 212.240.60.65:3621 my.net.137.34:139
2003-07-06 05:52:51 212.240.60.65:3654 my.net.137.46:139
2003-07-06 05:52:52 212.240.60.65:3634 my.net.137.37:139
2003-07-06 05:53:10 212.240.60.65:3625 my.net.137.36:139

Traffic from two external hosts in foreign countries connecting to some of the same
hosts, check destinations for possible compromise.
Correlations:
Defensive Recommendations: On Windows NT, 2000, XP set the registry key
/System/CurrentControlSet/Control/LSA/RestrictAnonymous value to 1. Block external
connections. Rebuild confirmed compromised hosts.

DDOS mstream handler to client 37 7
(0%)

1 4

Description: This event is generated when an mstream DDoS handler responds to an
mstream client. The mstream DDoS uses a tiered structure of compromised hosts to
coordinate and participate in a distributed denial of service attack. At the highest level,
clients communicate with handlers to inform them to launch attacks. A client may
communicate with a handler using a TCP packet to destination port 12754 with a string of
">" in the payload. A handler responds to this with a TCP source port of 12754 and a
string of ">" in the payload.

In late April 2000, we began receiving reports of sites finding a new distributed denial of
service (DDOS) tool that is being called "mstream". The purpose of the tool is to enable
intruders to utilize multiple Internet connected systems to launch packet-flooding denial of
service attacks against one or more target systems. 38

It is important to note that, any of these socket numbers can easily be altered to any
value at compile-time by an intruder.
Analysis:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

100

2003-07-08 00:53:43 my.net.6.55:12754 207.69.200.93:25
2003-07-08 00:53:43 my.net.6.55:12754 207.69.200.93:25
2003-07-08 21:54:59 my.net.6.55:12754 207.69.200.159:25
2003-07-09 20:50:49 my.net.6.55:15104 207.69.200.104:25
2003-07-09 20:50:49 my.net.6.55:15104 207.69.200.104:25
2003-07-06 03:03:04 my.net.6.55:15104 207.69.200.154:25
2003-07-06 03:03:04 my.net.6.55:15104 207.69.200.154:25

Mail traffic from my.net.6.55 mail server to cave.mail.atl.earthlink.net,
james.mail.atl.earthlink.net, carlin.mail.atl.earthlink.net, watson.mail.atl.earthlink.net.
Appears to be a false positive.
Correlations:
Defensive Recommendations: Tune IDS.

External FTP to HelpDesk my.net.70.50 6
(0%)

2 1

Description: Custom rule that detects traffic to port 21.
Analysis:
2003-07-07 20:22:41 195.191.148.212:1716 my.net.70.50:21
2003-07-07 20:22:41 195.191.148.212:1716 my.net.70.50:21
2003-07-07 20:22:42 195.191.148.212:1716 my.net.70.50:21
2003-07-05 00:59:03 62.195.218.52:3414 my.net.70.50:21
2003-07-05 00:59:04 62.195.218.52:3414 my.net.70.50:21
2003-07-05 00:59:05 62.195.218.52:3414 my.net.70.50:21

Two external addresses: node-d-da34.a2000.nl 62.195.218.52 and 195.191.148.212
Appears to be a port scan.
Correlations: See below rule.
Defensive Recommendations: Check to see if host is running ftp service. Block
external connections.

External FTP to HelpDesk my.net.70.49 5
(0%)

2 1

Description: Custom rule that detects traffic to port 21.
Analysis:
2003-07-07 20:22:41 195.191.148.212:1730 my.net.70.49:21
2003-07-07 20:22:41 195.191.148.212:1730 my.net.70.49:21
2003-07-05 00:59:03 62.195.218.52:3413 my.net.70.49:21
2003-07-05 00:59:04 62.195.218.52:3413 my.net.70.49:21
2003-07-05 00:59:05 62.195.218.52:3413 my.net.70.49:21

Two external addresses: The same as the above External FTP to HelpDesk rule.
Occurred at about the same time, with very close source ports. Appears to be a port
scan.
Correlations: See above rule
Defensive Recommendations: Check to see if host is running the ftp service. Block
external connections.

Probable NMAP fingerprint attempt 39 5 2 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

101

(0%)
Description: This event is generated when the nmap port scanner and reconnaissance
tool is used against a host. When run with the '-O' option, it attempts to identify the
remote operating system. Can provide useful reconnaissance information to an
attacker. Has been known to cause a denial of service on some older hosts.
Analysis:
2003-07-08 14:51:23 141.157.107.131:0 my.net.12.2:0
2003-07-08 14:51:23 141.157.107.131:0 my.net.25.11:0
2003-07-09 14:42:09 63.251.52.75:51200 my.net.114.115:53
2003-07-09 14:42:09 63.251.52.75:51200 my.net.114.115:53
2003-07-09 15:36:26 63.251.52.75:19389 my.net.178.66:54501

Usually an attacker doing reconnaissance. 63.251.52.75 looks like a false positive.
Correlations:
Defensive Recommendations: Block external connections.

[UMBC NIDS IRC Alert] User joining Warez channel
detected. Possible XDCC bot

4
(0%)

2 3

Description: Use above hyperlink.
Analysis:
2003-07-08 23:30:57 198.163.214.2:6663 my.net.97.154:2621
2003-07-09 00:34:06 198.163.214.2:6662 my.net.97.43:3415
2003-07-09 01:07:29 198.163.214.2:6666 my.net.97.43:3805
2003-07-09 08:38:39 209.221.59.11:6667 my.net.17.48:2341

Connections on known server ports. One host makes three connections that are about
30 minutes apart. Probable compromised hosts.
Correlations:
IP Address: 198.163.214.2
HostName: irc.mpls.ca
DShield Profile: Country: CA
Contact E-mail: pparrott@PPARROTT.COM
AS Number: 0
Total Records against IP: 1826
Number of targets: 810
Date Range: 2003-07-23 to 2003-08-04
Defensive Recommendations: Check for compromise. Rebuild a confirmed
compromised host. Block access. Use good passwords. Turn off file sharing.

[UMBC NIDS IRC Alert] User joining XDCC channel
detected. Possible XDCC bot 40 3

(0%)
3 3

Description: Use above hyperlink.
Analysis:
2003-07-08 11:31:44 81.19.252.10:6667 my.net.17.48:3615
2003-07-07 12:44:44 216.194.70.9:7000 my.net.82.41:1388
2003-07-06 08:06:44 24.94.220.84:7000 my.net.97.61:2108

Three hosts connecting to three different destinations. Probably not spoofed. Using

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

102

known Trojan ports. Most likely hosts are compromised and are controlled by IRC.
Correlations:
IP Address: 81.19.252.10
HostName: ns2.nmnet.dk
DShield Profile: Country:
Contact E-mail:
AS Number: 16095
Total Records against IP: 244
Number of targets: 11
Date Range: 2003-07-23 to 2003-08-16
Defensive Recommendations: Check hosts for compromise. Rebuild a confirmed
compromised host. Block external connections.

TFTP - External UDP connection to internal tftp server 3
(0%)

1 2

Description: Custom rule that detects traffic on destination port 69 to internal tftp
servers.
Analysis:
2003-07-08 07:39:55 63.250.195.10:50212 my.net.150.121:69
2003-07-08 13:59:55 63.250.195.10:64434 my.net.150.121:69
2003-07-09 18:26:34 63.250.195.10:17760 my.net.152.163:69

Same external source (l8.cache.vip.dal.yahoo.com) to two internal tftp servers.
Probably not spoofed nor a scan. Compromised host and attacker could be downloading
tools. Same source host as Back Orifice detect.
Correlations:
IP Address: 63.250.195.10
HostName: l8.cache.vip.dal.yahoo.com
DShield Profile: Country: US
Contact E-mail: netops@broadcast.com
AS Number: 5779
Total Records against IP: 2758
Number of targets: 202
Date Range: 2003-07-23 to 2003-08-16
Defensive Recommendations: Possible compromised hosts. Rebuild a confirmed
compromised host. Block access from external sources.

[UMBC NIDS IRC Alert] K\:line'd user detected, possible
trojan.

2
(0%)

2 2

Description: Detects a user being K\:lined (see description above for IRC user /kill
detected, possible trojan.) possible trojan controlled from IRC.
Analysis:
2003-07-08 15:00:22 209.221.59.11:6667 -> my.net.17.48:2754
2003-07-08 15:18:15 208.178.231.190:6667 -> my.net.60.16:46190

Known Trojan port source 6667 Pretty Park, DarkFTP, ScheduleAgent, SubSeven,
Subseven 2.14, DefCon 8, Trinity, WinSatan. External traffic to internal hosts on known

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

103

Trojan ports. Probably not spoofed.
Correlations: 209.221.59.11 (11 occurrences as source) 208.178.231.190 (10
occurrences as source)
Dshield reports:
IP Address: 208.178.231.190
HostName: irc.Prison.NET
DShield Profile: Country: US
Contact E-mail: ipadmin@gblx.net
AS Number: 3549
Total Records against IP: 86
Number of targets: 31
Date Range: 2003-07-23 to 2003-08-11
Defensive Recommendations: Possible compromised hosts. Rebuild a confirmed
compromised host. Check for Trojans. Block access to hosts from external networks.

DDOS mstream client to handler 41 2
(0%)

2 1

Description: The event is generated when a DDoS mstream client makes contact with
an mstream handler. The mstream DDoS uses a tiered structure of compromised hosts to
coordinate and participate in a distributed denial of service attack. At the highest level,
clients communicate with handlers to inform them to launch attacks. A client may contact
a handler using a TCP SYN packet to destination port 15104. After a host becomes an
mstream handler, the client will attempt to communicate with the handler
Analysis:
2003-07-08 00:53:43 207.69.200.93:25 my.net.6.55:12754
2003-07-08 21:54:59 207.69.200.159:25 my.net.6.55:12754
Appears to be two mail servers (cave.mail.atl.earthlink.net and
james.mail.atl.earthlink.net) contacting the internal mail server my.net.6.55. False
positive.
Correlations:
Defensive Recommendations: Tune IDS.

EXPLOIT FTP passwd retrieval retr path 42 1
(0%)

1 1

Description: This event is generated when an attempt to retrieve a specific file, in this
case the systems user database from an FTP server is made. The attacker may obtain a
valid list of user names and/or encrypted passwords from the server.
Analysis: One source: ip68-104-181-99.ph.ph.cox.net 68.104.181.99. Six
occurrences of this source. Probably not spoofed.
Correlations: 5 other password attempts against my.net.60.11 in 60 seconds, about 72
minutes after this alert.
Defensive Recommendations: Block access from external hosts. Shutdown
unnecessary services. Check for compromise.

External FTP to HelpDesk my.net.53.29 1
(0%)

1 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

104

Description: Custom rule that detects traffic to port 21.

Analysis: One external address: asy20.as91.sol.superonline.com 212.252.91.20.
Probably not spoofed. This appears as traffic from a foreign country, trying to transfer
files to this host. There are 7 occurrences from this host to internal addresses. They all
go to port 21. Judging from the times and source ports it appears to be a scan. Check
scans.
Correlations: Dshield reports:
Country: TR
Contact E-mail: solip@superonline.net
AS Number: 6822
Total Records against IP: 3143
Number of targets: 1501
Date Range: 2003-07-08 to 2003-07-08
Defensive Recommendations: Block access from external hosts. Shutdown
unnecessary services.

Back Orifice 43 1
(0%)

1 1

Description: BackOrifice is a Trojan Horse consisting of two main pieces, a client
application and a server application. The client application, running on one machine, can
be used to monitor and control a second machine running the server application.
Analysis: Although this rule could have a high incident of false positives, this looks like
actual BO activity, the source port is a high port and the destination port is 31337. The
source IP of this activity has 80 other occurrences. Probably not spoofed.
Correlations: One source: l8.cache.vip.dal.yahoo.com 63.250.195.10 There are 81
occurrences of various activity from this source. MyNetWatchman reports 10011 events,
from 23 agents for this source.
Defensive Recommendations: Possible compromised host. Check host for listening
port 31337. Check host for startup of BO server application. Rebuild a confirmed
compromised host. Block access from external hosts.

CS WEBSERVER - external ssh traffic 1
(0%)

1 1

Description: A custom rule to detect traffic to port 22.
Analysis: One external address: 213.35.200.178 213-35-200-178-dsl.kvm.estpak.ee.
This traffic is probably not spoofed.
Correlations: Dshield reports 4 records against this IP. There are two other occurrences
with this source. Ssh to my.net.30.3 and my.net.30.4.
Appears to be a scan judging by the timestamps and source ports.
Defensive Recommendations: Block external ssh to these internal hosts.

Top Talkers
Alert Log Analyses

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

105

ACID

Unique Source Address(es):
15 Most Frequent IP
addresses

Home

Search | AG
Maintenance

Queried DB on : Fri July 25, 2003 09:12:42

Displaying 15 Most Frequent IP addresses

< Src IP address > Sensor
#

< Total
>

< Unique
Alerts >

< Dest.
Addr. >

my.net.153.185 1 19413 1 39

65.214.36.116 1 11715 3 3

my.net.198.221 1 5864 2 1

169.254.45.176 1 4587 2 108

24.35.42.249 1 3499 1 1

my.net.97.168 1 3469 1 1

my.net.97.38 1 3172 2 6

my.net.162.41 1 3057 1 1

my.net.111.34 1 2353 3 4

63.164.243.132 1 1576 1 1

68.55.226.150 1 1561 2 2

my.net.97.29 1 1316 1 6

my.net.97.243 1 1251 1 24

213.204.59.157 1 1202 1 1

211.114.9.211 1 1096 1 1044

[Loaded in 9 seconds]

ACID v0.9.6b23 (by Roman Danyliw as part of the AirCERT project)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

106

Out of Spec Analyses

ACID

Unique Source Address(es):
15 Most Frequent IP
addresses

Home

Search | AG
Maintenance

Queried DB on : Thu July 24, 2003 12:10:04

Displaying 15 Most Frequent IP addresses

< Src IP address > Sensor
#

< Total
>

< Unique
Alerts >

< Dest.
Addr. >

142.26.120.7 1 24758 1 24758

194.238.50.12 1 1317 1 6

213.186.35.9 1 780 1 14

67.119.233.217 1 579 1 5

80.143.95.179 1 418 1 1

80.143.121.205 1 415 1 2

216.95.201.21 1 371 1 11

216.95.201.29 1 365 1 7

168.226.117.108 1 331 1 1

216.95.201.25 1 331 1 10

216.95.201.22 1 329 1 10

216.95.201.28 1 303 1 10

216.95.201.24 1 284 1 8

216.95.201.27 1 282 1 8

216.95.201.23 1 275 1 8

[Loaded in 1 seconds]

ACID v0.9.6b23 (by Roman Danyliw as part of the AirCERT project)

External Source Addresses and Registration Information

For registration info I chose the top out-of-spec talker 142.26.120.7, probably
doing a lot of reconnaissance. The top attacker IP address of 63.250.195.10.
The my.net.30.4 activity source IP address of 217.120.249.241 . Possible
Trojan activity source IP address of 80.218.101.63. Exploit x86 NOOP source IP
address of 217.106.116.202.

Top out-of-spec talker 142.26.120.7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

107

OrgName: British Columbia Systems Corporation
OrgID: BCSC
Address: 400 Seymour Place
City: Victoria
StateProv: BC
PostalCode: V8X-4S8
Country: CA

NetRange: 142.26.0.0 - 142.26.255.255
CIDR: 142.26.0.0/16
NetName: BCSYSTEMS5
NetHandle: NET-142-26-0-0-1
Parent: NET-142-0-0-0-0
NetType: Direct Assignment
NameServer: DNS.GOV.BC.CA
NameServer: DNS1.GOV.BC.CA
NameServer: DNS2.GOV.BC.CA
NameServer: DNS3.GOV.BC.CA
Comment:
RegDate: 1991-05-13
Updated: 1998-09-16

TechHandle: AT110-ARIN
TechName: Teasdale, Alan
TechPhone: +1-250-387-5577
TechEmail: al.teasdale@gems2.gov.bc.ca

OrgAbuseHandle: CSC28-ARIN
OrgAbuseName: Customer Service Centre
OrgAbusePhone: +1-250-952-6000
OrgAbuseEmail: cschelp@gems3.gov.bc.ca

OrgNOCHandle: CSC28-ARIN
OrgNOCName: Customer Service Centre
OrgNOCPhone: +1-250-952-6000
OrgNOCEmail: cschelp@gems3.gov.bc.ca

OrgTechHandle: AT110-ARIN
OrgTechName: Teasdale, Alan
OrgTechPhone: +1-250-387-5577
OrgTechEmail: al.teasdale@gems2.gov.bc.ca

Top attacker IP address of 63.250.195.10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

108

OrgName: Yahoo! Broadcast Services, Inc.
OrgID: YAHO
Address: 701 First Avenue
City: Sunnyvale
StateProv: CA
PostalCode: 94089
Country: US

NetRange: 63.250.192.0 - 63.250.223.255
CIDR: 63.250.192.0/19
NetName: NETBLK2-YAHOOBS
NetHandle: NET-63-250-192-0-1
Parent: NET-63-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.YAHOO.COM
NameServer: NS2.YAHOO.COM
NameServer: NS3.YAHOO.COM
NameServer: NS4.YAHOO.COM
NameServer: NS5.YAHOO.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 1999-11-24
Updated: 2003-05-06

TechHandle: NA258-ARIN
TechName: Netblock Admin, Netblock
TechPhone: +1-408-349-7183
TechEmail: netblockadmin@yahoo-inc.com

The my.net.30.4 activity source IP address of 217.120.249.241 .

Final results obtained from whois.ripe.net.
Results:
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 217.120.248.0 - 217.120.249.255
netname: ATHOME-BENELUX-ASSEN-8
descr: @Home Benelux Assen Headend block
country: NL

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

109

admin-c: ABNO1-RIPE
tech-c: HOME2-RIPE
remarks: Please report abuse by email to abuse@home.nl
remarks: INFRA-AW
status: ASSIGNED PA
mnt-by: BENELUX-MNT
mnt-lower: BENELUX-MNT
changed: ahulsebos@corp.home.nl 20030321
source: RIPE

route: 217.120.0.0/14
descr: @Home Benelux
origin: AS9143
remarks: --
remarks: E-mail is the preferred contact method!
remarks: --
remarks: Please use one of the following addresses:
remarks: abuse@home.nl - for abuse notifications
remarks: ripe-athome@corp.home.nl - for technical questions
remarks: --
mnt-by: IPMGMT-RIPE
changed: andre@corp.home.nl 20020920
source: RIPE

role: AtHome Benelux Network Operations Centre
address: Gyroscoopweg 90-92
address: 1042 AX Amsterdam
phone: +31 20 885 5544
fax-no: +31 20 885 5525
e-mail: noc@corp.home.nl
trouble: Please report abuse by e-mail to abuse@home.nl
admin-c: AVL52-RIPE
tech-c: HOME2-RIPE
nic-hdl: ABNO1-RIPE
notify: ripe-athome@corp.home.nl
mnt-by: IPMGMT-RIPE
changed: andre@corp.home.nl 20020920
source: RIPE

role: AtHome Benelux IP Management
address: Gyroscoopweg 90-92
address: 1042 AX Amsterdam
address: The Netherlands
phone: +31 20 885 5588
fax-no: +31 20 885 5525
e-mail: ripe-athome@corp.home.nl

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

110

trouble: Report abuse by e-mail to abuse@home.nl
admin-c: AVL52-RIPE
tech-c: AVL52-RIPE
tech-c: AH218-RIPE
tech-c: JVV19-RIPE
tech-c: BOR7-RIPE
tech-c: HI62-RIPE
tech-c: KM754-RIPE
nic-hdl: HOME2-RIPE
notify: ripe-athome@corp.home.nl
changed: andre@corp.home.nl 20030329
source: RIPE

Possible Trojan activity source IP address of 80.218.101.63

Final results obtained from whois.ripe.net.
Results:
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 80.218.0.0 - 80.218.107.255
netname: CABLECOM-MAIN-NET
descr: Cablecom GmbH
descr: Zuerich
country: CH
remarks: **
remarks: For spam/abuse, please contact abuse@cablecom.ch
remarks: E-mails to the persons below will be IGNORED!!
remarks: **
remarks: INFRA-AW
admin-c: WM5132-RIPE
tech-c: CAN6-RIPE
status: ASSIGNED PA
notify: lir-mnt@cablecom.ch
mnt-by: AS8404-MNT
changed: wilson.mehringer@cablecom.ch 20021212
source: RIPE

route: 80.218.0.0/15
descr: Cablecom GmbH

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

111

descr: Zollstrasse42
descr: CH-8021 Zuerich
descr: SWITZERLAND
origin: AS8404
remarks: ***
remarks: For Spam/Abuse, please contact abuse@cablecom.ch
remarks: E-mails to the persons below will be IGNORED!!
remarks: ***
notify: lir-mnt@cablecom.ch
mnt-by: AS8404-MNT
changed: felix.giger@cablecom.ch 20020524
changed: wilson.mehringer@cablecom.ch 20020530
source: RIPE

role: Cablecom GmbH NOC
address: Zollstrasse 42
address: CH-8021 Zuerich
remarks: **
remarks: For spam/abuse, please contact abuse@cablecom.ch
remarks: E-mails to the persons below will be IGNORED!!
remarks: **
fax-no: +41 1 277 93 22
e-mail: wilson.mehringer@cablecom.ch
admin-c: WM5132-RIPE
tech-c: PG4227-RIPE
nic-hdl: CAN6-RIPE
notify: lir-mnt@cablecom.ch
mnt-by: AS8404-MNT
changed: pascal.gruenig@cablecom.ch 20000814
changed: wilson.mehringer@cablecom.ch 20011129
changed: wilson.mehringer@cablecom.ch 20020124
source: RIPE

person: Wilson Mehringer
address: Cablecom GmbH
address: Zollstrasse 42
address: CH-8021 Zurich
address: Switzerland
phone: +41 1 277 90 72
remarks: ***
remarks: For Spam/Abuse, please contact abuse@cablecom.ch
remarks: E-mails to the persons below will be IGNORED!!
remarks: ***
e-mail: wilson.mehringer@cablecom.ch
nic-hdl: WM5132-RIPE
notify: wilson.mehringer@cablecom.ch

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

112

mnt-by: AS8404-MNT
changed: wilson.mehringer@cablecom.ch 20020130
changed: wilson.mehringer@cablecom.ch 20020808
changed: wilson.mehringer@cablecom.ch 20021107
source: RIPE

Exploit x86 NOOP source IP address of 217.106.116.202.

Final results obtained from whois.ripe.net.
Results:
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 217.106.116.0 - 217.106.117.255
netname: VORONEJ-RU1
descr: Comincom-Voronej
country: RU
admin-c: SY252-RIPE
admin-c: OS251-RIPE
tech-c: SY252-RIPE
tech-c: OS251-RIPE
status: ASSIGNED PA
notify: sow@comch.ru
notify: registry@rt.ru
mnt-by: AS8342-MNT
changed: rus@rt.ru 20030121
source: RIPE

route: 217.106.0.0/15
descr: ROSTELECOM-NET
origin: AS8342
notify: ncc@rt.ru
mnt-by: AS8342-MNT
changed: rus@rt.ru 20001221
source: RIPE

person: Sergey Yakimenko
address: Comincom Chernozemiye Joint Stock Company
address: Lenina sq.12
address: 394000 Voronezh

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

113

address: Russia
phone: +7 0732 521233
phone: +7 0732 776828
phone: +7 502 2002008
fax-no: +7 0732 521233
e-mail: ysu@comch.ru
nic-hdl: SY252-RIPE
changed: sow@comch.ru 19971006
source: RIPE

person: Oleg Semenihin
address: Comincom Chernozemiye Joint Stock Company
address:
address: 394000 Voronezh
address: Russia
phone: +7 0732 552679
fax-no: +7 0732 521233
e-mail: sow@comch.ru
nic-hdl: OS251-RIPE
mnt-by: DENIC-P
changed: sow@comch.ru 19971006
changed: hostmaster@denic.de 20000621
source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

114

References

1 Martin Roesch. “Snort: Packet Logger Intrusion Detection System”
URL: http://www.snort.org/

2 Jason Haar. Logsnorter-0.2.
URL: http://www.snort.org/dl/contrib/other_logs/ logsnorter-0.2.tar.gz

3 Roman Danyliw. The Analysis Console for Intrusion Databases.
URL: http://www.andrew.cmu.edu/~rdanyliw/snort/snortacid.html

4 C0ldPhaTe. “Microsoft IIS Unicode Exploit Explained.”URL:
http://www.astalavista.com/library/os/iis/

5 Jim Forster. Subject: Re: [snort] 'SMB Name Wildcard' Date: Mon Jan 17
2000 - 09:26:14 CST URL: http://archives.neohapsis.com/archives/snort/2000-
01/0222.html

6 TonikGin. “XDCC – An .EDU Admin’s Nightmare. Sept. 11 2002.”
URL: http://www.russonline.net/tonikgin/eduhacking.html

7 Carnegie Mellon Software Engineering Institute. “CERT Coordination Center.”
“Advisory CA-2001-23 Continued Threat of the "Code Red" Worm.
URL: http://www.cert.org/advisories/CA-2001-23.html

8 Gunther Birznieks. “Web Application Security.”
URL:
http://www.extropia.com/presentations/birznieks/pdf/cgi_security_history.pdf

9 Jon Hart. Snort Signature Database. “Documentation for rule SHELLCODE x86
NOOP.”
URL: http://www.snort.org/snort-db/sid.html?sid=648

10 Carnegie Mellon Software Engineering Institute. “CERT Coordination Center.”
“CERT® Advisory CA-2003-10 Integer overflow in Sun RPC XDR library
routines.”
URL: http://www.cert.org/advisories/CA-2003-10.html

11 Global Incident Analysis Center. Description of Ramen Worm.
URL: http://www.sans.org/y2k/ramen.htm

12 F-Secure Security Information Center. “Virus descriptions Code Red.”
URL: http://www.europe.f-secure.com/v-descs/bady.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

115

13 Vivek Sharma. “Scan of the Month Challenge - Scan 23.”
URL: http://honeynet.hackers.nl/scans/scan23/sol/Vivek.html

14 Jon Hart. Snort Signature Database. “Documentation for rule SCAN NULL.”
URL: http://www.snort.org/snort-db/sid.html?sid=623

15 LinuxSecurity.com Features.“Scanning and Defending Networks with Nmap.”
URL: http://www.linuxsecurity.com/feature_stories/feature_story-4.html

16 The MITRE Corporation.“Common Vulnerabilities and Exposures (CVE).”
CVE-2000-0917. Jan. 2001. URL: http://www.cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=lprng

17 Netscape Chat. “Supported IRC User-based Query Commands.”
URL: http://wp.netscape.com/eng/chat/2.0/handbook/00000106.htm

18 ONCtek Ltd. “List of known Trojan/Backdoors.”
URL: http://www.onctek.com/trojanports.html

19 Christopher Heng. “Nimbda Worm / Virus: What Are Cmd.Exe, Readme.Eml,
Readme.Exe, Root.Exe ?.” 26 September 2001.
URL: http://www.thesitewizard.com/news/nimbdaworm.shtml

20 Nigel Houghton. Josh Sakofsky. Snort Signature Database. “Documentation
for rule NETBIOS SMB C$ access.” URL: http://www.snort.org/snort-
db/sid.html?sid=533

21 Matt Kettler. Mar 19 2003. “Re: [Snort-users] SNMP public access udp.”
URL: http://archives.neohapsis.com/archives/snort/2003-03/0792.html

22 Brian Caswell. Nigel Houghton. Chaos. Snort Signature Database.
“Documentation for rule SNMP public access udp.”
URL: http://www.snort.org/snort-db/sid.html?sid=1411

23Dragos Ruiu. Feb 12 2001. “In reply to Graham Bevan.”
URL: http://archives.neohapsis.com/archives/snort/2001-02/0320.html

24 Duke University. “OIT Security.” May 2002
URL: http://www.oit.duke.edu/security/cleaning/xdcc.html

25 Jon Hart. Snort Signature Database. “Documentation for rule SHELLCODE
x86 setuid 0.” URL: http://www.snort.org/snort-db/sid.html?sid=650

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

116

26 Matt Kettler. Snort Signature Database. “Documentation for rule SHELLCODE
x86 stealth NOOP.” URL: http://www.snort.org/snort-db/sid.html?sid=651

27 Max Vision. Anton Chuvakin. Nigel Houghton. Snort Signature Database.
“Documentation for rule FTP passwd retrieval attempt.” URL:
http://www.snort.org/snort-db/sid.html?sid=356

28 Nigel Houghton. Nick Black. Snort Signature Database. “Documentation for
rule MISC Tiny Fragments.” URL: http://www.snort.org/snort-db/sid.html?sid=522

29 Arachnids - The Intrusion Event Database. “Documentation for rule
IDS284/SHELLCODE_SHELLCODE-X86-SETGID0.”
URL: http://www.digitaltrust.it/arachnids/IDS284/event.html

30 Arachnids The Intrusion Event Database.“Documentation for rule
IDS254/DDOS_DDOS-SHAFT-CLIENT-TO-HANDLER.” URL:
http://www.digitaltrust.it/arachnids/IDS254/event.html

31 Nigel Houghton. Steven Alexander. Snort Signature Database.
“Documentation for rule MISC Source Port 20 to <1024.” URL:
http://www.snort.org/snort-db/sid.html?sid=503

32 Symantec Security Response. Backdoor SDbot
URL:
http://securityresponse.symantec.com/avcenter/venc/data/backdoor.sdbot.html

33 Nigel Houghton. Steven Alexander. Snort Signature Database.
“Documentation for rule MISC source port 53 to <1024.” URL:
http://www.snort.org/snort-db/sid.html?sid=504

34 Max Vision. Brian Caswell. Judy Novak. Snort Signature Database.
“Documentation for rule RPC portmap listing TCP 32771.” URL:
http://www.snort.org/snort-db/sid.html?sid=599

35 Nigel Houghton. Snort Signature Database. “Documentation for rule EXPLOIT
ntpdxoverflow attempt.” URL: http://www.snort.org/snort-db/sid.html?sid=312

36 Steven Alexander. Nawapong Nakjang. Judy Novak. Snort Signature
Database. “Documentation for rule NETBIOS NT NULL session.” URL:
http://www.snort.org/snort-db/sid.html?sid=530

37 Judy Novak. Snort Signature Database. “Documentation for rule DDOS
mstream handler to client .” URL: http://www.snort.org/snort-db/sid.html?sid=248

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Assignment 3–Analyze This!

117

38 Carnegie Mellon Software Engineering Institute. “CERT Coordination Center.”
Incident Note IN-2000-05. "mstream Distributed Denial of Service Tool.” May
2000. URL: http://www.cert.org/incident_notes/IN-2000-05.html

39 Nigel Houghton. Steven Alexander. Snort Signature Database.
“Documentation for rule SCAN nmap fingerprint attempt.” URL:
http://www.snort.org/snort-db/sid.html?sid=629

40 Duke University. “OIT Security.” May 2002
URL: http://www.oit.duke.edu/security/cleaning/xdcc.html

41 Judy Novak. Snort Signature Database. “Documentation for rule DDOS
mstream client to handler.” URL: http://www.snort.org/snort-db/sid.html?sid=249

42 Max Vision. Anton Chuvakin. Nigel Houghton. Snort Signature Database.
“Documentation for rule FTP passwd retrieval attempt.”
URL: http://www.snort.org/snort-db/sid.html?sid=356

43 Symantec Security Updates. Information on Back Orifice and NetBus
URL: http://www.symantec.com/avcenter/warn/backorifice.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Appendix

Alert Descriptions

spp_http_decode: IIS Unicode attack detected 1

Microsoft Internet Information Server (IIS) versions 4.0 and 5.0 which usually
runs on Windows NT4 and Windows 2k all have the Unicode extensions installed
by default. Unicode allows characters that are not used in the English language
to be recognized by Web Servers. The Unicode IIS Exploit allows users to run
arbitrary commands on the target web servers. The Unicode extensions loaded
on IIS Servers are known to be vulnerable unless they are running the current
patches within the server. The Unicode exploit uses Unicode representation of a
directory delimiter (/) to fool IIS.

CVE-2000-08842 IIS 4.0 and 5.0 allows remote attackers to read documents
outside of the web root, and possibly execute arbitrary commands, via malformed
URLs that contain UNICODE encoded characters, aka the "Web Server Folder
Traversal" vulnerability.

User access should be restricted to an assigned web root directory and
subdirectories when interacting with a web server. Attackers who attempt to
perform directory traversals outside the web root should be denied access. A
vulnerability exists in IIS web servers that allows directory traversal outside the
web root directory when Micorosoft double encoding of specific characters is
used. This particular attack uses the double encoding of the "/" to escape the
web root. This may permit an attacker to execute commands on the vulnerable
server.3

SMB Name Wildcard 4

SMB Wildcard a generic search (wildcard) to query a host for its NetBIOS table.
This signature was created and can be reproduced by using the unix samba
command "nmblookup -A ". By accessing system name table information,
individuals can obtain information which can be used to launch an attack.
Information available includes: 1. The NetBIOS name of the server. 2. The
Windows NT workgroup domain name. 3. Login names of users who are logged
into the server. 4. The name of the administrator account if they are logged into
the server. It is considered best practice to ensure that
users outside of your network are not permitted to access the NetBIOS name
service. This is usually accomplished by configuring packet filters to drop UDP
traffic to port 137.
PACKET TRACES 12/30-02:28:32.282973 source:1057 -> target:137
UDP TTL:64 TOS:0x0 ID:62089

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

Len: 58
24 C0 00 00 00 01 00 00 00 00 00 00 20 43 4B 41 $........... CKA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 00 00 21 AAAAAAAAAAAAA..!
00 01

[UMBC NIDS IRC Alert] XDCC client detected attempting to IRC5

Intro to IRC
IRC is a worldwide network of computers all setup for one purpose,

communication. People can come to IRC to chat with friends or meet new
people, discuss hot topics such as politics, religion, or breaking news. Over the
recent years it has gained much fame, much due to popularity in the warez
scene. Warez, simply defined, is the illegal downloading of copyrighted material.
Groups which have access to pre-released games, are willing to sneak a camera
into a theatre, or happened to beta test the newest Microsoft OS, are eagerly
willing to digitize these formats, and make them readily available on the internet
for the masses. How does IRC fit into this? IRC is one meeting place people
(deemed leechers) can come to congregate and download these files.

B) Intro to File Sharing
Ahhh.. the wonders of connecting to a server, finding a file, and downloading

it. Sure is easier than going to Best Buy and buying the game (and usually
quicker). So, what is exactly file sharing? Simply… sharing files. Large amounts
of people connect to servers, where they are all ‘connected’ to each other, to
download files off others hard drives. IRC has a file server feature, where people
can connect, view files on your machine, and download whatever you give them
access too. But there are also services such as Kazza, BearShare, Napster,
LimeWire, and many more which when you search for a file, your looking through
everyones computer at once. That is what it is all about. How is file sharing
related to this article? Read on…

C) Intro to XDCC
Pay attention, this is where things pick up. XDCC revolutionized IRC. Many

people now use IRC because of this new ‘XDCC’ feature. What is it? Like a file
server, yet automated. It will periodically list the files (usually 1-5 large files) in
the channel (chat room) which it is hosting, for people to download. There is a
program called Iroffer (1) which makes this even easier. It will (using the
definitions in a configuration file you setup), connect to an IRC server, join a
channel, and automatically list files.

High port 65535 tcp - possible Red Worm–traffic 6

CERT® Advisory CA-2001-23 Continued Threat of the "Code Red" Worm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

The "Code Red" worm is malicious self-propagating code that exploits
Microsoft Internet Information Server (IIS)-enabled systems susceptible to the
vulnerability described in CA-2001-13 Buffer Overflow In IIS Indexing Service
DLL. Its activity on a compromised machine is time sensitive; different activity
occurs based on the date (day of the month) of the system clock. The CERT/CC
is aware of at least two major variants of the worm, each of which exhibits the
following pattern of behavior:

Propagation mode (from the 1st - 19th of the month): The infected host will
attempt to connect to TCP port 80 of randomly chosen IP addresses in order to
further propagate the worm. Depending on the configuration of the host that
receives this request, there are varied consequences. Unpatched, IIS 4.0 and
5.0 servers with Indexing service installed will almost certainly be compromised
by the "Code Red" worm. In the earlier variant of the worm, victim hosts with a
default language of English experienced a defacement on all pages requested
from the web server. Hosts infected with the later variant did not experience any
change in the served content.

spp_http_decode: CGI Null Byte attack detected 7

 Perl’s open command passes the filename to the OS. The problem is that the
OS system calls treat null bytes (\0) as ending the string. But Perl does not. So
if we have a url like: http://x.com/cgi-in/vulnerable.cgi?file=/etc/passwd%00.dat
the file passes the Perl regex because it does end in .dat but the system call to
open the file ends in /etc/passwd allowing the user access.

In Snort it's (newly) part of the http preprocessor. Basically, if the http decoding
routine finds a %00 in an http request, it will alert with this message. Sometimes
you may see false positives with sites that use cookies with URL encoded binary
data, or if you're scanning port 443 and picking up SSL encrypted traffic. If you're
logging alerted packets you can check the actual string that caused the alert.
Also, the Unicode alert is subject to the same false positives with cookies and
SSL. Having the packet dumps is the only way to tell for sure if you have a real
attack on your hands, but this is true for any content-based alert.
-Joe 8

These messages are produced by the http_decode preprocessor. If you wish
to turn these checks off, add -unicode or -cginull to your http_decode
preprocessor line respectively. preprocessor http_decode: 80 8080 -unicode–
cginull

EXPLOIT x86 NOOP 9

A series of NOP instructions for Intel's x86 architecure was detected. As part of
an attack on a remote service, an attacker may attempt to take advantage of
insecure coding practices in hopes of executing arbitrary code. This procedure

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

generally makes use of NOPs. The NOP allows an attacker to fill an address
space with a large number of NOPs followed by his or her code of choice. This
allows "sledding" into the attackers shellcode.

If a particular service was written using unsafe functions without bounds
checking (strcpy(), strcat(), sprintf() etc...), it is possible to write arbitrary data to
the address space of the service. Normally, this may just cause the program to
die a horrible death. However, if you can get the return address to point to the
beginning of the newly written data, it is possible to execute code of your
choice. This requires that the newly written data is actual executable
data. Since calculating exactly where the return address
may point to, is no small task, a popular technique is to pad the space leading up
to your shellcode with NOPs. This way, if the return address, points anywhere in
the series of NOPS, execution will slide down into your shellcode.

External RPC call 10

Sun RPC commonly has a portmapper listening on port 111, and RPC services
of various sorts listening on ports from 32771-34000. These services are often
exploitable.

XDR (external data representation) libraries are used to provide platform-
independent methods for sending data from one system process to another,
typically over a network connection. Such routines are commonly used in remote
procedure call (RPC) implementations to provide transparency to application
programmers who need to use common interfaces to interact with many different
types of systems.

The xdrmem_getbytes() function in the XDR library provided by Sun
Microsystems contains an integer overflow that can lead to improperly sized
dynamic memory allocation. Depending on how and where the vulnerable
xdrmem_getbytes() function is used, subsequent problems like buffer overflows
may result.

By calling the portmapper an attacker can determine which services are running
and what ports they are listening on.11 Execute 'rpcinfo -p hostname/IP'.

IDS552/web-iis_IIS ISAPI Overflow ida nosize

L-098: Microsoft Index Server ISAPI Extension Buffer Overflow 12

As part of its installation process, IIS installs several ISAPI extensions -- .dlls
that provide extended functionality. Among these is idq.dll, which is a component
of Index Server (known in Windows 2000 as Indexing Service) and provides
support for administrative scripts (.ida files) and Internet Data Queries (.idq files).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

A security vulnerability results because idq.dll contains an unchecked buffer in
a section of code that handles input URLs. An attacker who could establish a
web session with a server on which idq.dll is installed could conduct a buffer
overrun attack and execute code on the web server. Idq.dll runs in the System
context, so exploiting the vulnerability would give the attacker complete control of
the server and allow him to take any desired action on it.

The worm exploits the Index Server (.ida) buffer overflow vulnerability reported
in CIAC Bulletin L-098, Microsoft Index Server ISAPI Extension Buffer Overflow
and Microsoft Security Bulletin MS01-033, Unchecked Buffer in Index Server
ISAPI Extension Could Enable Web Server Compromise. The buffer overflow
allows the worm to execute code within the IIS server to spread itself, to deface
the server's home page, and to run a denial of service attack on
www.whitehouse.gov.

The worm arrives at the web server as a Get /default.ida request. That request
exploits the .ida vulnerability and starts the worm code executing. The worm
code executes only in memory so no residue of the worm will be found by
examining the disk.

NMAP TCP ping! 13

A TCP "ping" will send an ACK to each machine on a target network. Machines
that are up should respond with a TCP RST. To use the TCP "ping" option with a
ping scan, include the "-PT" flag to target a specific port on the network you're
probing. In our example, we'll use port 80 (http), which is the default, and it will
probably be allowed through the target's border routers and possibly even its
firewall. Note that the targeted port does not need to be open on the hosts that
are being probed to determine if the machine is up or not. Launch this type of
scan as follows:

nmap -sP -PT80 192.168.7.0/24
TCP probe port is 80

Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
Host (192.168.7.11) appears to be up.
Host (192.168.7.12) appears to be up.
Host (192.168.7.76) appears to be up.
Nmap run completed -- 256 IP addresses (3 hosts up) scanned in 1 second

The signature is usually an ACK with a sequence number of zero.

SMB C access 14

Windows hosts have a default administrative share of the local hard drives.
Using the format %DRIVE_LETTER% + $. Anybody with administrative rights

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

can remotely access the share. An attacker may be attempting to access files
located on the C drive of the host.

Intruders are actively exploiting Windows networking shares that are made
available for remote connections across the Internet. This is not a new problem,
but the potential impact on the overall security of the Internet is increasing. 15

Unprotected, Windows networking shares can be exploited by intruders in an
automated way to place tools on large numbers of Windows-based computers
attached to the Internet. Because site security on the Internet is interdependent,
a compromised system not only creates problems for the system's owner, but it is
also threat to other sites on the Internet. The greater immediate risk to the
Internet community is the potentially large number of systems attached to the
Internet with unprotected Windows networking shares combined with distributed
attack tools.

EXPLOIT x86 setuid 0 16

Shellcode to set the user identity to 0 (root) was detected. If this code is
executed successfully, it is possible for the current process to inherit root
privileges. However, setuid (2) requires root privileges to be executed in the first
place, if the current UID is attempting to get a higher privilege level.

As part of an attack on a remote service, an attacker may attempt to take
advantage of insecure coding practices and execute code of his or her choosing
through techniques known as 'buffer-overflows', 'format-strings' and others. Such
attacks may contain code to change the identity of the current user to that of the
root account (setuid0).

Large binary transfers, certain web traffic, and even mail traffic can trigger this
rule, but are not necessarily indicative of actually setuid code. Determine what
stream of traffic generated this particular alert. If you only have the alert but not
the entire packet, examine system for pecularities. If you are smart and have the
entire packet (or better yet, all your traffic for the past n hours), attempt to
determine if this particular sequence of characters was part of an innocent
stream of data (large binary transfers, for example) or part of a malicious act
against your machine. In either case, check for other activity from the host in
question -- both currently collected traffic and traffic in the future.

EXPLOIT x86 stealth noop 17

Binary data in the packet matched one kind of byte sequence used as filler in
buffer overflow attacks. It is possible someone was attempting a buffer overflow
to gain unauthorized access to one of your servers. This rule triggers when a
binary pattern appears in the packet contents, which matches one form of filler-

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

bytes used in buffer overflow attacks. Buffer overflows allow execution of
arbitrary code with the privilege level of the affected server process.

A very detailed discussion of how basic buffer overflows work can be found in
the text of, "Smashing the stack for fun and profit", by Aleph One in Phrack #49.
If the attacker suspects you have a server, which is vulnerable to buffer overflow,
they will attempt to exploit this vulnerability to gain access. Tools that use buffer
overflows with stealth nop are widely available.

This byte pattern can naturally occur in almost any binary data, so file
downloads, streaming media, etc can cause this to false positive. If this traffic
appears to be coming from a web or ftp server outside your network to one of
your client machines, it is likely a false alert caused by someone downloading a
binary file. If this was directed at a port on one of your machines, which is
running a server process, you may want to check to
see if it has been exploited.

FTP passwd attempt 18

This event is generated when an attempt to retrieve a specific file, in this case
the systems user database from an FTP server is made. The attacker may
obtain a valid list of user names and/or encrypted passwords from the server.
This event is generated when an attempt to download a copy of the "passwd" file
from the server is made. The UNIX "passwd" file (typically located in "/etc/"
directory) is used to hold the authentication information for system logins. This
file needs to be readable by all system users.

Where shadow passwords are used, the actual encrypted passwords are stored
in a separate file, only readable by root. It is possible to use password-cracking
tools, to obtain unencrypted passwords, either by trying random character
combinations, a predefined word list or a combination of public user information.
The attacker may use the information contained in the passwd file to launch a
dictionary attack against the victim host or other hosts the same users may have
access to.

The attacker downloads a "passwd" file from a machine that does not use
shadowed passwords and uses a tool like John-the-Ripper to crack the
passwords used for several accounts. He then proceeds to login to the system
remotely and possibly gain escalated privileges via a local exploit on the system.

The attack usually requires FTP access to the /etc/ directory either by system
mis-configuration or via a directory traversal technique. Also, in the rare
circumstances the system administrator may have accidentally left a copy of a
"passwd" file in a directory accessible for anonymous or other FTP users, which
presents a high security risk and simplifies the attack. If the string "passwd" is
contained within an otherwise innocuous filename being retrieved from a server,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

the rule will generate an event.

Also, the anonymous FTP account often has a separate password file within
the chrooted anonymous FTP directory (e.g. /var/ftp/etc/passwd). This file does
not usually contain valid system usernames and passwords. While technically not
a false positive, this may be considered a false alarm.

Tiny Fragments - Possible Hostile Activity 19

. This event is generated when an IPv4 fragment of dubiously small nature was
detected. Many IDS's are known to have issues regarding the reassembly of IP
fragments, and could miss an attack carried over such means. Firewalls suffer
from the same issues, and can be tricked into allowing packets through that
should normally be rejected. Furthermore, there is a small history of OS issues
related to unorthodox fragmentation.

IPv4 manages to adapt to various link layer protocols on a route via the
fragmentation mechanism outlined in its RFC. A router connecting two carrying
media of varying MTU (Maximum Transmission Unit) can fragment packets of
size too large to transmit on one wire before dispatch. When datagrams stay
within one MTU, the maximum packet sizes possible can be used without
fragmentation, thus pairing flexibility with efficiency.

Historically, handling of fragmentation has been less than stellar in both IP
stacks and the IDS systems designed to protect them. While the, number of
attacks based on fragmentation are easily picked up by anomaly or signature-
based system, IDS's which fail to properly reassemble fragments can miss any
attack which is so fragmented. Firewalls have often proved susceptible to
fragmented TCP or UDP headers, allowing traffic that should have been filtered
to pass through. Tools have been written to trivially fragment traffic; Dug Song's
fragrouter program is a well-known example.

It is unlikely that such a fragment would be seen in standard use of IPv4; while
the last fragment in a series is typically smaller than the others, this signature
explicitly matches the More Fragments bit. Nonetheless, a pedantic reading of
the IPv4 RFC allows this, so long as the data length is a multiple of 8.

EXPLOIT x86 setgid 0 20

This event may indicate an exploit attempt where the attacker sent the setgid(0)
system call for the x86 platform. This event is specific to a vulnerability, but may
have been caused by any of several possible exploits. Signatures used to detect
this event are specific and consider the packet payload.

The packet that caused this event is normally a part of an established TCP
session, indicating that the source IP address has not been spoofed. If you are

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

using a firewall that supports state-full inspection, and are not vulnerable to
sequence number prediction attacks, then you can be fairly certain that the
source IP address of the event is accurate.

There are reported incidents where legitimate traffic may cause an intrusion
detection system to raise "false positive" alerts for this event. The following
details have been reported: This signature is very short and does not contain
context clues to reduce false positives. Therefore, there may be many cases of
false alarms where binary data is transferred from outside the network - for
example an internal user downloading binary files from an external web server.

DDOS shaft client to handler 21

If you must verify that this event represents control traffic, your host may be
compromised. Shaft is a distributed denial of service (DDoS) tool. This event is
specific to a particular exploit, but the packet payload is not considered as part of
the signature to detect the attack.

The packet that caused this event is normally a part of an established TCP
session, indicating that the source IP address has not been spoofed. If you are
using a firewall that supports statefull inspection, and are not vulnerable to
sequence number prediction attacks, then you can be fairly certain that the
source IP address of the event is accurate. It has been noted that the intruder is
likely to expect or desire a response to their packets, so it may be likely that the
source IP address is not spoofed.

There are reported incidents where legitimate traffic may cause an intrusion
detection system to raise "false positive" alerts for this event. The following
details have been reported: A legitimate server port of 20432 will cause this rule
to fire. It may also create a false positive if port 20432 is selected as an FTP
data port.

[UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected.

XDCC
Some servers make it so you do not need to connect to them to view their
contents. These are XDCC servers. SPHTML's IRC server has one, a bot (non-
human) with the nick "EpisodeMaster". If no one is hosting, or no one has what
you want, type "xdcc list" and you should get a list like the one below:
[01:58:57] <plague> xdcc list
...
[01:58:58] -EpisodeMaster- ** To request a file type: "/msg EpisodeMaster xdcc
send #x" **
[01:58:58] -EpisodeMaster- #1 19x [37M] South Park Episode 101
[01:58:59] -EpisodeMaster- #2 37x [36M] South Park Episode 612

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

[01:59:00] -EpisodeMaster- #3 7x [36M] South Park Episode 613
...
To get an episode from an XDCC server, simply type '/msg EpisodeMaster xdcc
send #x', as it says, without the quotes. For instance, if you wanted to download
Episode 612, you'd type '/msg EpisodeMaster xdcc send #2'. Replace #x with the
of the file.

Probable NMAP fingerprint attempt 22

Nmap attempts to identify the remote operating system by looking for different
services that are common or specific to particular operating systems. It also
sends a variety of abnormal packets that are often handled differently by
different operating systems so that it can differentiate between them based on
the responses. The signature may be produced by other scanners but is unlikely
to be used for legitimate activity.

Block any TCP packets that have the SYN, FIN, PUSH and URGENT flags set
using a firewall. Block only packets that have all four of the flags set as they are
individually and in other combinations necessary for normal TCP traffic. If you
block them individually or in other combinations your network will not function
correctly.

[UMBC NIDS IRC Alert] User joining Warez channel detected. Possible
XDCC bot

XDCC IRC Bot–This bot client is difficult to detect via remote scans
because the bot does not use standardized ports in communication with
IRC servers. Rather, it comes with a configuration script that allows the
hacker to specify (1) which IRC servers to provide service to, (2) what
specific channels to join & advertise its availability, (3) the range of ports it
should utilize in communication with IRC servers. Furthermore, it uses
randomization techniques to bring up a different type of connections of all
three described above. A rather poor detection method is via IDS tool
such as snort to attempt matching of distinct “signature” string that seems
to occur in file sharing transactions between the Bot and the IRC Server.
This bot provides file distribution services through the IRC interface, you
need to be connected to an IRC Server & associated with a particular
channel (or known channel) before you may access the resources that the
XDCC bot advertises for availability. Some common access commands
are as follows:

To view the list of files available: ‘/msg [hacked bot] xdcc list’

To request a file package: ‘/msg [hacked bot] xdcc send #x’ (X refers to the
package number)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

[UMBC NIDS IRC Alert] User joining XDCC channel detected. Possible
XDCC bot 23

This IRC bot makes use of the IRC facility to distribute files including movies &
software. Computers running XDCC may also be remotely controlled by people
in the IRC channels. Also, there were cases in which the hacked machines were
found to be running a backdoor remote access service, also called XDCC, in
addition to the IRC Bot Client described above. This additional backdoor allows
the intruder to access the machine as an administrator from a remote computer.
Because such access permits ANY commands to be executed on the target
machine, the entire data structure, of the victim's machines are at the mercy of
the attacker.

Affected Systems - Windows NT/2000, (XP?)

Propagation Mechanism - From the looks of it, currently this exploit is not
transmitted via virus, nor worm, but rather a result of directed attack. (however, in
no way do we assume that it will stay this way) To our knowledge, the targeted
systems were exploited due to the presence of no/weak passwords on the
system's administrative accounts.

When it finds a windows machine with file sharing enabled (port 139), it will get
a netbios table list of all usernames on that machine. This can be acquired
manually also using the following commands in DOS: C:\winnt\system32\>
nbtstat–A 127.0.0.1
Where 127.0.0.1 is any given IP with file sharing or netbios. Once it gets a list of
all usernames for an IP, it will then check for weak passwords, or no passwords
at all. Many people, when installing windows 2000, NT, or XP will forget the true
essence of a password. This is highly critical that you set an Administrator
password. For people that do not type in a password, this is where it will take
advantage of you. It will send back to the attacker the following response:
[127.0.0.1]: Found NT-Server-Password: Administrator/[Blank password]
[127.0.0.1]: "NT-Server-Password" scan complete, Found 1.
Once they have this information, and you have file sharing enabled, consider
yourself fully rooted.24

EXPLOIT FTP passwd retrieval retr path 25

The attacker downloads a "passwd" file from a machine that does not use
shadowed passwords and uses a tool like John-the-Ripper to crack the
passwords used for several accounts. He then proceeds to login to the system
remote

The attack usually requires FTP access to the /etc/ directory either by system
misconfiguration or via a directory traversal technique. Also, in the rare
circumstances the system administrator may have accidentally left a copy of a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

"passwd" file in a directory accessible for anonymous or other FTP users, which
presents a high security risk and simplifies the attack. If the string "passwd" is
contained within ly and possibly gain escalated privileges via a local exploit on
the system. an otherwise innocuous filename being retrieved from a server, the
rule will generate an event.

Back Orifice 26

The operations that the client application can perform on the target machine
(e.g., the machine running the server application) include the following:

Execute any application on the target machine.
Log keystrokes from the target machine.
Restart the target machine.
Lockup the target machine.
View the contents of any file on the target machine.
Transfer files to and from the target machine.
Display the screen saver password of the current user of the target machine.

In order for Back Orifice to work, the server application must be installed on the
target machine. This involves executing the server application on the target
machine. The server application is a single executable file with a size just over
122 kilobytes.

The specific registry value, which points to the server application is
configurable. By doing so, the server application always starts whenever
Windows starts, and thus is always active. The application will not appear in the
Windows task list. The target machine must be running either Windows 95 or
Windows 98. The server application will not run on Windows NT. The target
machine must have TCP/IP network capabilities. The client application
communicates with the server application using TCP with encrypted UDP
packets.

By default, if the server application has not been otherwise configured, the
installed filename is ".exe" (e.g., that's a space followed by ".exe"), the
communication port is 31337, the registry value name is empty (e.g., the default
registry value entry is used), and no password is used (although the
communication is still encrypted).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

logsnorter-0.2

#!/usr/bin/perl
#

$|=1;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$DEBUG=0;

use Getopt::Std;
use Sys::Syslog;
use DBI;
use Socket;
use Sys::Hostname;
use Net::hostent;

$VERSION='0.2';

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst)=localtime(time);
$year += 1900;

$db_server = 'localhost';
$db_database = 'snort';
$db_usercode = 'snort';
$db_password = 'xxx';

$DB_TYPE="mysql";

getopts('thVvu:p:s:d:T:L:');

if ($opt_h) {
print "logsnorter [-u db_usercode] [-p db_password] [-s

db_server]\n";
print "logsnorter [-d db_database]\n";
print "logsnorter [-T /var/log/syslog] - to continually 'tail' syslog

files\n";
print "logsnorter [-v] - to show every line (use with \"-T\" and pipe

back into swatch)\n";
print "logsnorter [-L bitmask] - restrict search to known log formats

(\"-L -h\" for help)\n";
print "logsnorter -t <use timestamp of syslog msg instead of current

time>\n\n";
print "System-specific perl code should be put into

/etc/logsnorter.conf
(e.g. the cisco_interface[] arrays)\n\n";

exit ;
}

if ($opt_V) {
print "logsnorter: Version $VERSION\n";
exit;

}

if ($opt_L && $opt_L !~ /^[0-9]+$/) {
print "

logformats:
1 = cisco format
2 = ipfwadm format
4 = ipchains format
8 = iptables format
16 = SANS log format

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

32 = BSD ipf format

e.g. To get logsnorter to scan for cisco and iptables only, choose

\"-L 9\" #that's 1 + 8

Not choosing the \"-L\" option is equivalent to asking for *all*
formats
to be scanned for.

";
exit;

}

if (-f "/etc/logsnorter.conf") {
require ("/etc/logsnorter.conf") ;

}

#Command-line options override the config file...

$db_usercode = $opt_u if ($opt_u);
$db_password = $opt_p if ($opt_p);
$db_server = $opt_s if ($opt_s);
$db_database = $opt_d if ($opt_d);

$ip_ver=4;

$ip_hlen=$ip_tos=$ip_len=$ip_id=$ip_flags=$ip_off=$ip_ttl=$ip_proto=$ip
_csum=0;
$tcp_seq=$tcp_ack=$tcp_off=$tcp_res=$tcp_flags=$tcp_win=$tcp_csum=$tcp_
urp=0;
$udp_len=$udp_csum=0;
$icmp_csum=$icmp_id=$icmp_seq=0;

$hex=0;
$base64=1;
$ascii=2;

$cid=0;

%month_array = ('Jan' => 1,
'Feb' => 2,
'Mar' => 3,
'Apr' => 4,
'May' => 5,
'Jun' => 6,
'Jul' => 7,
'Aug' => 8,
'Sep' => 9,
'Oct' => 10,
'Nov' => 11,
'Dec' => 12);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$dbh = DBI-
>connect("DBI:$DB_TYPE:database=$db_database;host=$db_server",$db_userc
ode,$db_password) || die "\nCannot access DB server!\n";

if ($opt_T) {
open(STDIN,"tail -f $opt_T|")||die "cannot tail $opt_T - $!";

}
while (<STDIN>) {

print if ($opt_v);
$line++;
if (/ logsnorter: /) {

next;
}
chomp;
#Get rid of ratty old swatch escape chars if present
s/\033\[0m//g;
&initialize_vars;

&parse_cisco_logs if (!$opt_L || $opt_L & 1);
&parse_ipfwadm_logs if (!$opt_L || $opt_L & 2);
&parse_ipchains_logs if (!$opt_L || $opt_L & 4);
&parse_iptables_logs if (!$opt_L || $opt_L & 8);
#&parse_bastille_logs if (!$opt_L || $opt_L & 16);
#&parse_ipf_logs if (!$opt_L || $opt_L & 32);
&parse_sans_logs if (!$opt_L || $opt_L & 16);

}

#added by jrjr
sub parse_sans_logs {

$logtype='snort';
$interface_prepend="tensleep_ids_";

$line=$_;

if the line is blank, go to the next one
next if $line eq "";

get Date and time variables if alerts or oos file

if ($line =~ m/^(\d+)\/(\d+)\-(\d+)\:(\d+)\:(\d+)\.(\d+)\s/o) {
$month = $1; $day = $2; $hour = $3; $min = $4; $sec = $5;
if ($month == 1) {

$month = 'Jan';
} elsif ($month == 2) {

$month = 'Feb';
} elsif ($month == 3) {

$month = 'Mar';
} elsif ($month == 4) {

$month = 'Apr';
} elsif ($month == 5) {

$month = 'May';
} elsif ($month == 6) {

$month = 'Jun';
} elsif ($month == 7) {

$month = 'Jul';
} elsif ($month == 8) {

$month = 'Aug';

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

} elsif ($month == 9) {
$month = 'Sep';

} elsif ($month == 10) {
$month = 'Oct';

} elsif ($month == 11) {
$month = 'Nov';

} else {
$month = 'Dec';

}
}

get Date and time variables if scans file

if ($line =~ m/^(\w+)\s+(\d+)\s(\d+)\:(\d+)\:(\d+)\s/o) {
$month = $1; $day = $2; $hour = $3; $min = $4; $sec = $5;

}

is this line an alert message like the folowing example?
06/11-00:00:10.930818 [**] CS WEBSERVER - external web

traffic [**] 65.65.192.18:3745 -> 10.10.100.165:80

if ($line =~ m/^(\d+)\/(\d+)\-(\d+)\:(\d+)\:(\d+)\.(\d+)\s+
\[**\]\s*(.*)\s*\[**\]\s+
([\d\.]+)[\:]*([\d]*)\s[\-\>]+\s([\d\.]+)[\:]*([\d]*)/ox) {
$ruleset = $7; $src_addr = $8;
$src_port = $9; $dst_addr = $10; $dst_port = $11;

$src_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_src_addr[0]=$1;
$array_src_addr[1]=$2;
$array_src_addr[2]=$3;
$array_src_addr[3]=$4;

$dst_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_dst_addr[0]=$1;
$array_dst_addr[1]=$2;
$array_dst_addr[2]=$3;
$array_dst_addr[3]=$4;

should check for protocol here (??? udp alerts)
if ($src_port =~ /\d+/ && $dst_port =~ /\d+/) {

$ip_proto = 6;
} else {

#give the type, code and seq a value since there is none in the
data

$ip_proto = 1;
$icmp_type = 8;
$icmp_code = 0;
$icmp_seq = 0;

}

$sensor_ip=10.10.10.10;
$interface=eth0;
&find_sensor($sensor_ip,$interface);
&insert_event;
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

are these lines line from an oos file like the following

#06/26-00:06:04.625435 209.47.197.12:47819 -> MY.NET.25.73:25
#TCP TTL:48 TOS:0x0 ID:4702 IpLen:20 DgmLen:60 DF
#12****S* Seq: 0xE7C95BFA Ack: 0x0 Win: 0x16D0 TcpLen: 40
#TCP Options (5) => MSS: 1380 SackOK TS: 919440288 0 NOP WS: 0

#=+
=+=+

#06/26-00:06:27.567671 195.14.205.250:21515 ->
MY.NET.69.217:3456

#TCP TTL:45 TOS:0x0 ID:48072 IpLen:20 DgmLen:64 DF
#12****S* Seq: 0x9A6E3E79 Ack: 0x0 Win: 0x4000 TcpLen: 44
#TCP Options (9) => MSS: 1414 NOP NOP SackOK NOP WS: 0 NOP NOP

TS: 1113621671 0

elsif ($line =~ m/^(\d+)\/(\d+)\-(\d+)\:(\d+)\:(\d+)\.(\d+)\s+
([\d\.]+)[\:]([\d]*)\s[\-\>]+\s([\d\.]+)[\:]*([\d]*)/ox)
{

$src_addr = $7; $src_port = $8; $dst_addr = $9; $dst_port =
$10;

}
elsif ($line =~

m/^(\w+)\sTTL:(\d+)\sTOS:0x(\w+)\sID:(\d+)\sIpLen:(\d+)\sDgmLen:(\d+)\s
(\w+)/ox)

{
$ip_sym = $1; $ip_ttl = $2; $ip_tos = $3; $ip_id = $4;
$ip_hlen = $5; $ip_len = $6; $ip_flags = $7;

}
elsif ($line =~

m/^([1|*][2|*][U|*][A|*][P|*][R|*][S|*][F|*])\sSeq:\s0x(\w+)\s+
Ack:\s+0x(\w+)\s+

Win:\s+0x(\w+)\s+TcpLen:\s(\d+)/ox)
{

$tcp_flags = $1; $tcp_seq = $2; $tcp_ack = $3; $tcp_win = $4;
$tcplen = $5;

$ruleset = 'out_of_spec';

#print $month,"/",$day,"-",$hour,":",$min,":",$sec," ";
#print $src_addr, ":", $src_port, " -> ", $dst_addr, ":",

$dst_port, "\n";
#print $ip_sym, " TTL:", $ip_ttl, " TOS:0x", $ip_tos, " ID:",

$ip_id, " IpLen:", $ip_hlen,
"DgmLen:", $ip_len, " ", $ip_flags, "\n";

#print $tcp_flags, " Seq: 0x", $tcp_seq, " Ack: 0x",
$tcp_ack, " Win: 0x", $tcp_win, " TcpLen: ",

$tcplen,"\n\n";

tcp options and data needs to be implemented

if ($ip_sym =~ /UDP/) {
$ip_proto = 17;}

elsif ($ip_sym =~ /TCP/) {
$tcp_off,$tcp_res,$tcp_csum,$tcp_urp=0;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$tcp_seq = hex($tcp_seq);
$tcp_win = hex($tcp_win);
$tcp_ack = hex($tcp_ack);
$ip_proto = 6;}

else { $ip_proto = 1;}

$flags = 0;
$flags +=1 if $tcp_flags =~ /F/;
$flags +=2 if $tcp_flags =~ /S/;
$flags +=4 if $tcp_flags =~ /R/;
$flags +=8 if $tcp_flags =~ /P/;
$flags +=16 if $tcp_flags =~ /A/;
$flags +=32 if $tcp_flags =~ /U/;
$flags +=64 if $tcp_flags =~ /2/;
$flags +=128 if $tcp_flags =~ /1/;
$tcp_flags=$flags;

$src_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_src_addr[0]=$1;
$array_src_addr[1]=$2;
$array_src_addr[2]=$3;
$array_src_addr[3]=$4;

$dst_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_dst_addr[0]=$1;
$array_dst_addr[1]=$2;
$array_dst_addr[2]=$3;
$array_dst_addr[3]=$4;

$sensor_ip=10.10.10.10;
$interface=eth0;
&find_sensor($sensor_ip,$interface);
&insert_event;

}

or does this line come from a scan file with lines that have
the following format

#Jun 27 00:00:02 my.net.97.169:1029 -> 58.139.93.241:137 UDP
#Jun 27 00:00:02 my.net.97.169:1414 -> 218.30.13.142:80 SYN

******S*
#Jun 27 00:00:12 217.39.62.204:44391 -> my.net.112.196:80 SYN

12****S* RESERVEDBITS
#Jun 27 00:00:13 my.net.97.169:1028 -> 192.253.227.47:137 UDP

else { if($line =~ m/^(\w+)\s+(\d+)\s(\d+)\:(\d+)\:(\d+)\s+
([\d\.]+)[\:]*([\d]*)\s[\-\>]+\s([\d\.]+)[\:]*([\d]*)\s(\w+)\s?
([1|*][2|*][U|*][A|*][P|*][R|*][S|*][F|*])*/ox) {
$src_addr = $6; $src_port = $7; $dst_addr = $8; $dst_port = $9;

$ip_proto = $10;
$ruleset = 'scans'; $tcp_flags = $11;

$src_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_src_addr[0]=$1;
$array_src_addr[1]=$2;
$array_src_addr[2]=$3;
$array_src_addr[3]=$4;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$dst_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_dst_addr[0]=$1;
$array_dst_addr[1]=$2;
$array_dst_addr[2]=$3;
$array_dst_addr[3]=$4;

if ($ip_proto =~ /UDP/) {
$ip_proto = 17;

} elsif ($ip_proto =~
/SYN|UNKNOWN|INVALIDACK|NOACK|NULL|VECNA|SYNFIN|XMAS|FULLXMAS|FIN|SPAU|
NMAPID/) {

$ip_proto = 6;
$flags = 0;
$flags +=1 if $tcp_flags =~ /F/;
$flags +=2 if $tcp_flags =~ /S/;
$flags +=4 if $tcp_flags =~ /R/;
$flags +=8 if $tcp_flags =~ /P/;
$flags +=16 if $tcp_flags =~ /A/;
$flags +=32 if $tcp_flags =~ /U/;
$flags +=64 if $tcp_flags =~ /2/;
$flags +=128 if $tcp_flags =~ /1/;
$tcp_flags=$flags;

} else { $ip_proto = 1;}

$sensor_ip=10.10.10.10;
$interface=eth0;
&find_sensor($sensor_ip,$interface);
&insert_event;

}
}

}

sub parse_ipchains_logs {
my $i,$num_packets;
&debug("parse_ipchains_logs...");
$logtype='ipchains';
$interface_prepend="syslog_";

$data=$_;
if (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) kernel:

Packet log:/) {
/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) kernel:

Packet log: ([^\s]+) (\w+) (\w+) PROTO=([0-9]+) ([0-9\.]+):([0-9]+)
([0-9\.]+):([0-9]+) L=([0-9]+) S=(\w+) I=([0-9]+) F=(\w+) T=([0-9]+)
(.*)$/i;

$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=$7;
$auth=$8;
$interface=$9;
$ip_proto=$10;
$src_addr=$11;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$src_port=$12;
$dst_addr=$13;
$dst_port=$14;
$ip_len=$15;
$ip_tos=$16;
$ip_id=$17;
$frag_off=$18;
$ip_ttl=$19;
$therest=$20;
next if ($auth !~ /REJECT|DENY/);
if ($linux eq "") {

&crash("Cannot interpret ipchains line (proto=$ip_proto): $_\n");
}
$linux=~s/\'/\'/g;

if ($ip_proto == 6) {
$therest =~ /\s\(\#(.*)\)$/;
$num_packets=$1;
$syn="SYN" if ($therest =~ / SYN /);

}
if ($ip_proto == 1) {

$icmp_type=$src_port;
$icmp_code=0;

}

$hstip=&getaddr($linux);
if ($hstip ne $sensor_ip) {

$sensor_ip=$hstip;
&find_sensor($sensor_ip,$interface);

}

if (!$src_addr || !$dst_addr || !$ip_proto) {
&crash("IPChains Error line $line: insuffient info - broken

syslog entry!");
}

$src_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_src_addr[0]=$1;
$array_src_addr[1]=$2;
$array_src_addr[2]=$3;
$array_src_addr[3]=$4;

$dst_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_dst_addr[0]=$1;
$array_dst_addr[1]=$2;
$array_dst_addr[2]=$3;
$array_dst_addr[3]=$4;

#IPChains doesn't count packets - i.e. one syslog == 1 packet
$num_packets=1 if (!$num_packets);
for ($i=0;$i<$num_packets;$i++) {

&debug("i=$i,num_packets=$num_packets");
&insert_event;
next;

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

}
}

sub parse_ipfwadm_logs {
&debug("parse_ipfwadm_logs");
$logtype='ipfwadm';
$interface_prepend="syslog_";
$num_packets=1;

$data=$_;
if (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) kernel: IP

fw/) {
$ip_ver=4;

$ip_hlen=$ip_tos=$ip_len=$ip_id=$ip_flags=$ip_off=$ip_ttl=$ip_proto=$ip
_csum=0;

$tcp_seq=$tcp_ack=$tcp_off=$tcp_res=$tcp_flags=$tcp_win=$tcp_csum=$tcp_
urp=0;

$udp_len=$udp_csum=0;
$icmp_csum=$icmp_id=$icmp_seq=0;

if (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) kernel:
IP fw-(\w+) (\w+) ([:\w]+) ([\w\/]+) ([0-9\.]+):([0-9]+) ([0-
9\.]+):([0-9]+) L=([0-9]+) S=(\w+) I=([0-9]+) F=(\w+) T=([0-9]+)/i) {

$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=$7;
$auth=$8;
$interface=$9;
$proto=$10;
$src_addr=$11;
$src_port=$12;
$dst_addr=$13;
$dst_port=$14;
$ip_len=$15;
$ip_tos=$16;
$ip_id=$17;
$frag_off=$18;
$ip_ttl=$19;
$therest=$20;
next if ($auth ne "rej");

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
kernel: IP fw-(\w+) (\w+) ([:\w]+) ([\w\/]+) ([0-9\.]+) ([0-9\.]+)
L=([0-9]+) S=(\w+) I=([0-9]+) F=(\w+) T=([0-9]+)/i) {

$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=$7;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$auth=$8;
$interface=$9;
$proto=$10;
$src_addr=$11;
$dst_addr=$12;
$ip_len=$13;
$ip_tos=$14;
$ip_id=$15;
$frag_off=$16;
$ip_ttl=$17;
$therest=$18;
next if ($auth ne "rej");

} else {
&crash("Unknown ipfw match on line $line: $_");

}
if ($proto =~ /^(.*)\/(.*)$/) {

$proto=$1;
$type=$2;

}
&get_ip_proto($proto);
if ($linux eq "") {

&crash("Cannot interpret ipfw line (proto=$ip_proto): $_\n");
} else {
}
$linux=~s/\'/\'/g;

if ($ip_proto == 6) {
$therest =~ /\s\(\#(.*)\)$/;

}
if ($ip_proto == 1) {

$icmp_type=$type;
$icmp_code=0;

}

$hstip=&getaddr($linux);
if ($hstip ne $sensor_ip) {

$sensor_ip=$hstip;
&find_sensor($sensor_ip,$interface);

}

if (!$src_addr || !$dst_addr || !$ip_proto) {
&crash("IPFwadm Error line $line: insuffient info - broken syslog

entry!");
}

$src_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_src_addr[0]=$1;
$array_src_addr[1]=$2;
$array_src_addr[2]=$3;
$array_src_addr[3]=$4;

$dst_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_dst_addr[0]=$1;
$array_dst_addr[1]=$2;
$array_dst_addr[2]=$3;
$array_dst_addr[3]=$4;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

for ($i=0;$i<=$num_packets;$i++) {
&insert_event;
next;

}
}

}

sub parse_cisco_logs {
&debug("parse_cisco_logs");
$logtype='ciscoacl';
$interface_prepend="syslog_";

$data=$_;

if (/IPACCESSLOG/i) {
$ip_ver=4;

$ip_hlen=$ip_tos=$ip_len=$ip_id=$ip_flags=$ip_off=$ip_ttl=$ip_proto=$ip
_csum=0;

$tcp_seq=$tcp_ack=$tcp_off=$tcp_res=$tcp_flags=$tcp_win=$tcp_csum=$tcp_
urp=0;

$udp_len=$udp_csum=0;
$icmp_csum=$icmp_id=$icmp_seq=0;

if (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) ([0-
9]+): ([^\s]+) .*IPACCESSLOGP: list .* (udp|tcp)/) {

/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) ([0-9]+):
([^\s]+) ([^\s]+): list ([0-9]+) (\w+) (\w+) ([0-9\.]+)\(([0-9]+)\)
(.*) ([0-9\.]+)\(([0-9]+)\), ([0-9]+) packet/i;

$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$cisco=$6;
$junk=$7;
$junk1=$8;
$tag=$9;
$ruleset=$10;
$auth=$11;
$proto=$12;
$src_addr=$13;
$src_port=$14;
$interface=$15;
$dst_addr=$16;
$dst_port=$17;
$num_packets=$18;
next if ($auth ne "denied");
if ($cisco eq "") {
&crash("Cannot interpret Cisco line (proto=$proto): $_\n");
}
$cisco=~s/\'/\'/g;
$hstip=&getaddr($cisco);
if ($interface =~ /^\(([^\s]+)[^\)]+\) [^\s]+$/) {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$interface = $1;
} else {
if (!$cisco_interface[$cisco,$ruleset]) {

#&crash("Cannot interpret Cisco line as no interface
found.\nDefine array \$cisco_interface[$cisco,$ruleset] =
'FastEthernet0/0' or whatever in $0, then re-run.\n$_");

$cisco_interface[$cisco,$ruleset]="logsnorter";
}
$interface=$cisco_interface[$cisco,$ruleset];
}
if ($hstip ne $sensor_ip) {
$sensor_ip=$hstip;
&find_sensor($sensor_ip,$interface);
}

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
([0-9]+): ([^\s]+) .*IPACCESSLOGDP: list .* icmp/) {

/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) ([0-9]+):
([^\s]+) ([^\s]+): list ([0-9]+) (\w+) (\w+) ([0-9\.]+) \(([^\)]+)\)
[^\s]+ ([0-9\.]+) \(([0-9]+)\/([0-9]+)\), ([0-9]+) packet/i;

$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$cisco=$6;
$cisco=~s/\'/\'/g;
$junk=$7;
$junk1=$8;
$tag=$9;
$ruleset=$10;
$auth=$11;
$proto=$12;
$src_addr=$13;
$interface=$14;
$dst_addr=$15;
$icmp_type=$16;
$icmp_code=$17;
$num_packets=$18;
next if ($auth ne "denied");
if ($cisco eq "") {
&crash("Cannot interpret icmp Cisco line (proto=$proto): $_\n");
}
$cisco=~s/\'/\'/g;
$hstip=&getaddr($cisco);
if ($hstip ne $sensor_ip) {
$sensor_ip=$hstip;
&find_sensor($sensor_ip,$interface);
}

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
([0-9]+): ([^\s]+) ([^\s]+)IPACCESSLOGS: list ([0-9]+) (\w+) ([0-9\.]+)
([0-9]+) packet/i) {

/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) ([0-9]+):
([^\s]+) ([^\s]+): list ([0-9]+) (\w+) ([0-9\.]+) ([0-9]+) packet/i;

$month=$1;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$cisco=$6;
$cisco=~s/\'/\'/g;
$junk=$7;
$junk1=$8;
$tag=$9;
$ruleset=$10;
$auth=$11;
$src_addr=$12;
$num_packets=$13;
next if ($auth ne "denied");
if ($cisco eq "") {
&crash("Cannot interpret icmp Cisco line (proto=$proto): $_\n");
}
$cisco=~s/\'/\'/g;
$hstip=&getaddr($cisco);
$dst_addr=$hstip;
$ip_proto="0";
if ($hstip ne $sensor_ip) {
$sensor_ip=$hstip;
&find_sensor($sensor_ip,$interface);
}

} else {
&crash("Cisco error line $line: doesn't match known type: $_\n");

}

#Convert proto back to number
&get_ip_proto($proto);

if (!$src_addr || !$dst_addr || $ip_proto eq "" || ($ip_proto == 1
&& $icmp_type eq "") || !$ruleset) {

&crash("Cisco Error line $line: insuffient info - broken syslog
entry!
(src_addr=$src_addr,dst_addr=$dst_addr,ip_proto=$ip_proto,icmp_type=$ic
mp_type,acl=$ruleset)");

}

$src_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_src_addr[0]=$1;
$array_src_addr[1]=$2;
$array_src_addr[2]=$3;
$array_src_addr[3]=$4;

$dst_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_dst_addr[0]=$1;
$array_dst_addr[1]=$2;
$array_dst_addr[2]=$3;
$array_dst_addr[3]=$4;

if ($num_packets == 0) {
&crash("Cisco Whaa! No number of packets for line $line -

duh...");
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

&insert_event;
next;

}
}

#function added by siafu
sub parse_iptables_logs {

&debug("parse_iptables_logs");
$logtype='iptables';
$interface_prepend="syslog_";

$data=$_;
if (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) kernel:

IN=/) {
$ip_ver=4;

$ip_hlen=$ip_tos=$ip_len=$ip_id=$ip_flags=$ip_off=$ip_ttl=$ip_proto=$ip
_csum=0;

$tcp_seq=$tcp_ack=$tcp_off=$tcp_res=$tcp_flags=$tcp_win=$tcp_csum=$tcp_
urp=0;

$udp_len=$udp_csum=0;
$icmp_csum=$icmp_id=$icmp_seq=0;
if (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) kernel:

IN=(\w+[0-9]+) OUT= SRC=([0-9\.]+) DST=([0-9\.]+) LEN=([0-9]+)
TOS=(\w+) PREC=(\w+) TTL=([0-9]+) ID=([0-9]+) PROTO=(\w+) SPT=([0-9]+)
DPT=([0-9]+) WINDOW=([0-9]+) RES=(\w+) ([\w+\s]+)URGP=([1-9]+)/) {

#If we audited an incoming TCP packet
$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=IN;
$auth=audit;
$interface=$7;
$src_addr=$8;
$dst_addr=$9;
$ip_len=$10;
$ip_tos=$11;
PREC=$12
$ip_ttl=$13;
$ip_id=$14;
$proto=$15;
$src_port=$16;
$dst_port=$17;
WINDOW=$18;
RES=$19;
FLAGS=$20
URGP=$21
$therest=$22;
$frag_off=$;

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
kernel: IN= OUT=(\w+[0-9]+) SRC=([0-9\.]+) DST=([0-9\.]+) LEN=([0-9]+)
TOS=(\w+) PREC=(\w+) TTL=([0-9]+) ID=([0-9]+) PROTO=(\w+) SPT=([0-9]+)
DPT=([0-9]+) WINDOW=([0-9]+) RES=(\w+) ([\w+\s]+)URGP=([0-9]+)/) {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

#If we audited an outgoing TCP packet
$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=OUT;
$auth=audit;
$interface=$7;
$src_addr=$8;
$dst_addr=$9;
$ip_len=$10;
$ip_tos=$11;
PREC=$12
$ip_ttl=$13;
$ip_id=$14;
$proto=$15;
$src_port=$16;
$dst_port=$17;
WINDOW=$18;
RES=$19;
FLAGS=$20
URGP=$21
$therest=$22;
$frag_off=$;

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
kernel: IN=(\w+[0-9]+) OUT= SRC=([0-9\.]+) DST=([0-9\.]+) LEN=([0-9]+)
TOS=(\w+) PREC=(\w+) TTL=([0-9]+) ID=([0-9]+) DF PROTO=(\w+) SPT=([0-
9]+) DPT=([0-9]+) LEN=([0-9]+)/) {

#If we audited an incoming UDP packet
$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=OUT;
$auth=audit;
$interface=$7;
$src_addr=$8;
$dst_addr=$9;
$ip_len=$10;
$ip_tos=$11;
PREC=$12
$ip_ttl=$13;
$ip_id=$14;
$proto=$15;
$src_port=$16;
$dst_port=$17;
LEN=$18;
$therest=$18;
$frag_off=$;

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
kernel: IN= OUT=(\w+[0-9]+) SRC=([0-9\.]+) DST=([0-9\.]+) LEN=([0-9]+)
TOS=(\w+) PREC=(\w+) TTL=([0-9]+) ID=([0-9]+) DF PROTO=(\w+) SPT=([0-
9]+) DPT=([0-9]+) LEN=([0-9]+)/) {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

#If we audited an outgoing UDP packet
$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=OUT;
$auth=audit;
$interface=$7;
$src_addr=$8;
$dst_addr=$9;
$ip_len=$10;
$ip_tos=$11;
PREC=$12
$ip_ttl=$13;
$ip_id=$14;
$proto=$15;
$src_port=$16;
$dst_port=$17;
LEN=$18;
$therest=$18;
$frag_off=$;

#Jun 20 14:24:13 fw kernel: IN=eth0 OUT=eth1 SRC=xxx.xxx.xxx.xxx
DST=xxx.xxx.xxx.xxx LEN=40 TOS=0x00 PREC=0x00 TTL=127 ID=186 DF
PROTO=TCP SPT=3021 DPT=80 WINDOW=5840 RES=0x00 ACK URGP=0

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
kernel: IN=(\w+[0-9]+) OUT=(\w+[0-9]+) SRC=([0-9\.]+) DST=([0-9\.]+)
LEN=([0-9]+) TOS=(\w+) PREC=(\w+) TTL=([0-9]+) ID=([0-9]+) DF
PROTO=(\w+) SPT=([0-9]+) DPT=([0-9]+) WINDOW=([0-9]+) RES=(\w+)
([\w+\s]+)URGP=([0-9]+)/) {

#If we audited a FORWARD TCP packet
$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=FORWARD;
$auth=audit;
#Interface-IN=$7
#Interface-OUT=$8
$interface=$8;
$src_addr=$9;
$dst_addr=$10;
$ip_len=$11;
$ip_tos=$12;
PREC=$13
$ip_ttl=$14;
$ip_id=$15;
$proto=$16;
$src_port=$17;
$dst_port=$18;
WINDOW=$19;
RES=$20;
FLAGS=$21
URGP=$22

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$therest=$23;
$frag_off=$;

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
kernel: IN=(\w+[0-9]+) OUT=(\w+[0-9]+) SRC=([0-9\.]+) DST=([0-9\.]+)
LEN=([0-9]+) TOS=(\w+) PREC=(\w+) TTL=([0-9]+) ID=([0-9]+) DF
PROTO=(\w+) SPT=([0-9]+) DPT=([0-9]+) LEN=([0-9]+)/) {

#If we audited a FORWARD UDP packet
$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=FORWARD;
$auth=audit;
#Interface-IN=$7
#Interface-OUT=$8
$interface=$8;
$src_addr=$9;
$dst_addr=$10;
$ip_len=$11;
$ip_tos=$12;
PREC=$13
$ip_ttl=$14;
$ip_id=$15;
$proto=$16;
$src_port=$17;
$dst_port=$18;
LEN=$19;
$therest=$19

} else {
&crash("Unknown iptables match on line $line: $_");

}
&parse_iptables_vars;

}
}

sub parse_iptables_vars {
&debug("parse_iptables_vars");
if ($proto =~ /^(.*)\/(.*)$/) {

$proto=$1;
$type=$2;

}
&get_ip_proto($proto);
if ($linux eq "") {

&crash("Cannot interpret iptables line (proto=$ip_proto): $_\n");
}
$linux=~s/\'/\'/g;

if ($ip_proto == 6) {
$therest =~ /\s\(\#(.*)\)$/;

}
if ($ip_proto == 1) {

$icmp_type=$type;
$icmp_code=0;

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$hstip=&getaddr($linux);
if ($hstip ne $sensor_ip) {

$sensor_ip=$hstip;
&find_sensor($sensor_ip,$interface);

}

if (!$src_addr || !$dst_addr || !$ip_proto) {
&crash("IPTables Error line $line: insuffient info - broken syslog

entry!");
}

$src_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_src_addr[0]=$1;
$array_src_addr[1]=$2;
$array_src_addr[2]=$3;
$array_src_addr[3]=$4;

$dst_addr=~/^([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)$/;
$array_dst_addr[0]=$1;
$array_dst_addr[1]=$2;
$array_dst_addr[2]=$3;
$array_dst_addr[3]=$4;

#IPTables doesn't count packets - i.e. one syslog == 1 packet
&insert_event;
next;

}

#function added by siafu
#Bastille Firewall prepends 'audit' to the syslog message when logging
specific ports
sub parse_bastille_auditlogs {

&debug("parse_bastille_auditlogs");
$logtype='bastille';
$interface_prepend="syslog_";

$data=$_;
Bastille regular audit logs
if (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) kernel:

audit/) {
$ip_ver=4;

$ip_hlen=$ip_tos=$ip_len=$ip_id=$ip_flags=$ip_off=$ip_ttl=$ip_proto=$ip
_csum=0;

$tcp_seq=$tcp_ack=$tcp_off=$tcp_res=$tcp_flags=$tcp_win=$tcp_csum=$tcp_
urp=0;

$udp_len=$udp_csum=0;
$icmp_csum=$icmp_id=$icmp_seq=0;

if (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) kernel:
auditIN=(\w+[0-9]+) OUT= MAC=([a-f,0-9,:]+) SRC=([0-9\.]+) DST=([0-
9\.]+) LEN=([0-9]+) TOS=(\w+) PREC=(\w+) TTL=([0-9]+) ID=([0-9]+) DF
PROTO=(\w+) SPT=([0-9]+) DPT=([0-9]+) WINDOW=([0-9]+) RES=(\w+) SYN
URGP=([0-9]+)/) {

#If we audited an incoming TCP packet
$month=$1;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=IN;
$auth=audit;
$interface=$7;
$mac=$8;
$src_addr=$9;
$dst_addr=$10;
$ip_len=$11;
$ip_tos=$12;
PREC=$13
$ip_ttl=$14;
$ip_id=$15;
$proto=$16;
$src_port=$17;
$dst_port=$18;
WINDOW=$19;
RES=$20;
SYN URGP=$21
$therest=$22;
$frag_off=$;

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
kernel: auditIN= OUT=(\w+[0-9]+) MAC=([a-f,0-9,:]+) SRC=([0-9\.]+)
DST=([0-9\.]+) LEN=([0-9]+) TOS=(\w+) PREC=(\w+) TTL=([0-9]+) ID=([0-
9]+) DF PROTO=(\w+) SPT=([0-9]+) DPT=([0-9]+) WINDOW=([0-9]+) RES=(\w+)
SYN URGP=([0-9]+)/) {

#If we audited an outgoing TCP packet
$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=OUT;
$auth=audit;
$interface=$7;
$mac=$8;
$src_addr=$9;
$dst_addr=$10;
$ip_len=$11;
$ip_tos=$12;
PREC=$13
$ip_ttl=$14;
$ip_id=$15;
$proto=$16;
$src_port=$17;
$dst_port=$18;
WINDOW=$19;
RES=$20;
SYN URGP=$21
$therest=$22;
$frag_off=$;

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
kernel: auditIN=(\w+[0-9]+) OUT= MAC=([a-f,0-9,:]+) SRC=([0-9\.]+)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

DST=([0-9\.]+) LEN=([0-9]+) TOS=(\w+) PREC=(\w+) TTL=([0-9]+) ID=([0-
9]+) PROTO=(\w+) SPT=([0-9]+) DPT=([0-9]+) LEN=([0-9]+)/) {

#If we audited an incoming UDP packet
$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=IN;
$auth=audit;
$interface=$7;
$mac=$8;
$src_addr=$9;
$dst_addr=$10;
$ip_len=$11;
$ip_tos=$12;
PREC=$13
$ip_ttl=$14;
$ip_id=$15;
$proto=$16;
$src_port=$17;
$dst_port=$18;
LEN=$19;
$therest=$20;
$frag_off=$;

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
kernel: auditIN= OUT=(\w+[0-9]+) MAC=([a-f,0-9,:]+) SRC=([0-9\.]+)
DST=([0-9\.]+) LEN=([0-9]+) TOS=(\w+) PREC=(\w+) TTL=([0-9]+) ID=([0-
9]+) PROTO=(\w+) SPT=([0-9]+) DPT=([0-9]+) LEN=([0-9]+)/) {

#If we audited an outgoing UDP packet
$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=OUT;
$auth=audit;
$interface=$7;
$mac=$8;
$src_addr=$9;
$dst_addr=$10;
$ip_len=$11;
$ip_tos=$12;
PREC=$13
$ip_ttl=$14;
$ip_id=$15;
$proto=$16;
$src_port=$17;
$dst_port=$18;
LEN=$19;
$therest=$20;
$frag_off=$;

} else {
&crash("Unknown iptables match on line $line: $_");

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

&parse_iptables_vars;
}

}

function added by siafu
Bastille Firewall prepends 'PUB_IN','PUB_OUT','INT_IN', 'INPUT' to
syslogs when
logging all packets that are denied or rejected.
sub parse_bastille_denylogs {

&debug("parse_bastille_denylogs");
$logtype='bastille';
$interface_prepend="syslog_";

$data=$_;
if ((/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) kernel:

PUB_(\w+)/) || (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
kernel: INT_(\w+)/) || (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+)
([^\s]+) kernel: INPUT (\w+)/)) {

$ip_ver=4;

$ip_hlen=$ip_tos=$ip_len=$ip_id=$ip_flags=$ip_off=$ip_ttl=$ip_proto=$ip
_csum=0;

$tcp_seq=$tcp_ack=$tcp_off=$tcp_res=$tcp_flags=$tcp_win=$tcp_csum=$tcp_
urp=0;

$udp_len=$udp_csum=0;
$icmp_csum=$icmp_id=$icmp_seq=0;
if (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+) kernel:

(\w+) (\w+) ([0-9]+) IN=(\w+[0-9]+) OUT= MAC=([a-f,0-9,:]+) SRC=([0-
9\.]+) DST=([0-9\.]+) LEN=([0-9]+) TOS=(\w+) PREC=(\w+) TTL=([0-9]+)
ID=([0-9]+) DF PROTO=(\w+) SPT=([0-9]+) DPT=([0-9]+) WINDOW=([0-9]+)
RES=(\w+) SYN URGP=([0-9]+)/) {

If we denied (and logged) an incoming TCP packet
$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=$7;
$auth=$8;
unknown=$9
$interface=$10;
$mac=$11;
$src_addr=$12;
$dst_addr=$13;
$ip_len=$14;
$ip_tos=$15;
PREC=$16
$ip_ttl=$17;
$ip_id=$18;
$proto=$19;
$src_port=$20;
$dst_port=$21;
WINDOW=$22;
RES=$23;
SYN URGP=$24

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$therest=$25;
$frag_off=$;

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
kernel: (\w+) (\w+) ([0-9]+) IN= OUT=(\w+[0-9]+) MAC=([a-f,0-9,:]+)
SRC=([0-9\.]+) DST=([0-9\.]+) LEN=([0-9]+) TOS=(\w+) PREC=(\w+)
TTL=([0-9]+) ID=([0-9]+) DF PROTO=(\w+) SPT=([0-9]+) DPT=([0-9]+)
WINDOW=([0-9]+) RES=(\w+) SYN URGP=([0-9]+)/) {

If we denied (and logged) an outgoing TCP packet
$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=$7;
$auth=$8;
unknown=$9
$interface=$10;
$mac=$11;
$src_addr=$12;
$dst_addr=$13;
$ip_len=$14;
$ip_tos=$15;
PREC=$16
$ip_ttl=$17;
$ip_id=$18;
$proto=$19;
$src_port=$20;
$dst_port=$21;
WINDOW=$22;
RES=$23;
SYN URGP=$24
$therest=$25;
$frag_off=$;

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
kernel: (\w+) (\w+) ([0-9]+) IN=(\w+[0-9]+) OUT= MAC=([a-f,0-9,:]+)
SRC=([0-9\.]+) DST=([0-9\.]+) LEN=([0-9]+) TOS=(\w+) PREC=(\w+)
TTL=([0-9]+) ID=([0-9]+) PROTO=(\w+) SPT=([0-9]+) DPT=([0-9]+) LEN=([0-
9]+)/) {

If we denied (and logged) an incoming UDP packet
$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=$7;
$auth=$8;
unknown=$9
$interface=$10;
$mac=$11;
$src_addr=$12;
$dst_addr=$13;
$ip_len=$14;
$ip_tos=$15;
PREC=$16
$ip_ttl=$17;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$ip_id=$18;
$proto=$19;
$src_port=$20;
$dst_port=$21;
LEN=$22;
$therest=$23;

} elsif (/^(\w+)\s+([0-9]+) ([0-9]+):([0-9]+):([0-9]+) ([^\s]+)
kernel: (\w+) (\w+) ([0-9]+) IN= OUT=(\w+[0-9]+) MAC=([a-f,0-9,:]+)
SRC=([0-9\.]+) DST=([0-9\.]+) LEN=([0-9]+) TOS=(\w+) PREC=(\w+)
TTL=([0-9]+) ID=([0-9]+) PROTO=(\w+) SPT=([0-9]+) DPT=([0-9]+) LEN=([0-
9]+)/) {

If we denied (and logged) an outgoing UDP packet
$month=$1;
$day=$2;
$hour=$3;
$min=$4;
$sec=$5;
$linux=$6;
$ruleset=$7;
$auth=$8;
unknown=$9
$interface=$10;
$mac=$11;
$src_addr=$12;
$dst_addr=$13;
$ip_len=$14;
$ip_tos=$15;
PREC=$16
$ip_ttl=$17;
$ip_id=$18;
$proto=$19;
$src_port=$20;
$dst_port=$21;
LEN=$22;
$therest=$23;

} else {
&crash("Unknown iptables match on line $line: $_");

}
&parse_iptables_vars;

}
}

sub find_sensor {
my ($hst,$int) = @_;

#Glean the interface from $interface
if ($int =~ /\s/) {

$int =~ /^([^\s]+)\s/;
$int = $1;

}
if (!$int) {

&crash("Error line $line: no interface found\n");
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$sth = $dbh->prepare(q{select sid from sensor where hostname = ? and
interface = ?});

$rc = $sth->execute($hst,"$interface_prepend$int") || &crash("DB
Error on line $line: \"select sid from sensor where hostname = '$hst'\"
failed - $!");

($sid) = $sth->fetchrow_array;
if (!$sid) {

#It's a new one!
$sth = $dbh->prepare(q{InSeRt INTO sensor (hostname, interface,

detail, encoding) VALUES (?,?,'1',?)});
$rc = $sth->execute($hst,"$interface_prepend$int",$ascii) ||

&crash("DB Error on line $line: \"insert into sensor hostname=$hst\"
failed - $!");

$sth = $dbh->prepare(q{select sid from sensor where hostname = ?
and interface = ?});

$rc = $sth->execute($hst,"$interface_prepend$int") || &crash("DB
Error on line $line: \"select sid from sensor where hostname = '$hst'\"
failed - $!");

($sid) = $sth->fetchrow_array;
$cid = 0;

} else {
#It's an existing sensor - find current max cid
&find_max_cid($sid);

}
}

sub find_signature {
my ($sig)=@_;
$sth = $dbh->prepare(q{SELECT sig_id FROM signature WHERE sig_name =

?});
$rc = $sth->execute($sig)|| &crash("DB Error on line $line: \"SELECT

sig_id FROM signature WHERE sig_name = '$sig'\" failed - $!");
($sig_num) = $sth->fetchrow_array;

print "find_sig[$rec_count]: sig_num=$sig_num,sig_name=$sig\n";
if (!$sig_num) {

print "find_sig[$rec_count]: insert into signature (sig_name)
Values $sig\n";

$sth = $dbh->prepare(q{InSeRt INTO signature (sig_name) VALUES
(?)});

$rc = $sth->execute($sig)|| &crash("DB Error on line $line:
\"InSeRt INTO signature (sig_name) VALUES ('$sig')\" failed - $!");

#Recurse - but check count!
$rec_count++;
if ($rec_count > 2) {die "Infinite loop forming in find_signature

call! Dying..."};
&find_signature($sig);

}
$rec_count=0;
return($sig_num);

}

sub get_ip_proto {
my ($proto)=@_;
if ($proto =~ /^[0-9]+$/) {

$ip_proto=$proto
} else {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

my $ip_proto_name,$ip_proto_alias,$ip_proto_num;

($ip_proto_name,$ip_proto_alias,$ip_proto_num)=getprotobyname($proto);
$ip_proto=$ip_proto_num;

}
}

sub find_max_cid {
my ($id) = @_;
$sth = $dbh->prepare(q{select max(cid) from event where sid = ?});
$rc = $sth->execute($id) || &crash("DB Error on line $line: \"select

max(cid) from event where sid = '$id'\" failed - $!");
($cid) = $sth->fetchrow_array;

}

sub insert_event {
my $i=0;
&debug("insert_event called...");
$cid++;
my $logevent, $src_type,$dst_type,$src_port_name, $dst_port_name ;

&crash("Broken record - sid not defined!") if (!$sid);
&crash ("Bogus interface definition on line $line") if ($interface =~

/\-\>|\<\-|\(/);

if ($ip_proto != 1) {
$src_port_name=&getservice($src_port,$ip_proto);
if ($src_port > 1023) {

if ($src_port eq $src_port_name) {
$src_type='high';
} else {
$src_type=$src_port_name;
}

} else {
$src_type=$src_port_name;

}
$dst_port_name=&getservice($dst_port,$ip_proto);
if ($dst_port > 1023) {

if ($dst_port_name eq $dst_port) {
$dst_type="high";
} else {
$dst_type=$dst_port_name;
}

} else {
$dst_type = $dst_port_name;

}
} else {

$src_type=$dst_type='icmp';
}

$logevent="$logtype-$ruleset/$src_type->$dst_type"; (too long)
if ((length $ruleset) > 255) {

$tmp=truncate $ruleset, 255;
$logevent=$tmp;

} else { $logevent="$ruleset"; }

next if ($logevent =~ /$ignore_stupid_matches/);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$signature=&find_signature($logevent);
if ($opt_t) {

$sth = $dbh->prepare(q{InSeRt INTO event
(sid,cid,signature,timestamp) VALUES (?,?,?,?)});

$rc = $sth->execute($sid,$cid,$signature, "$year-
".$month_array{$month}."-$day $hour:$min:$sec") || &crash("DB Error on
line $line: \"InSeRt INTO event (sid,cid,signature,timestamp) VALUES
($sid,$cid,'$signature', '$year-".$month_array{$month}."-$day
$hour:$min:$sec')\" failed - $!");

} else {
$sth = $dbh->prepare(q{InSeRt INTO event

(sid,cid,signature,timestamp) VALUES (?,?,?,NOW())});
$rc = $sth->execute($sid,$cid,"$signature") || &crash("DB Error on

line $line: \"InSeRt INTO event (sid,cid,signature,timestamp) VALUES
($sid,$cid,'$signature',NOW())\" failed - $!");

}
#Generate int32 versions of ip addresses...
$src_int32=$dst_int32='0x';
for ($z=0;$z<4;$z++) {

$src_int32 .= sprintf "%2x",$array_src_addr[$z];
$dst_int32 .= sprintf "%2x",$array_dst_addr[$z];

}
$src_int32=~ s/\s/0/g;
$dst_int32=~ s/\s/0/g;
$ip_src= hex($src_int32);
$ip_dst= hex($dst_int32);
$sth = $dbh->prepare(q{InSeRt InTO iphdr (sid, cid, ip_src,

ip_dst,ip_ver,ip_hlen, ip_tos, ip_len, ip_id, ip_flags, ip_off,ip_ttl,
ip_proto, ip_csum) VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?,?)});

$rc = $sth->execute($sid,$cid,$ip_src, $ip_dst, $ip_ver,$ip_hlen,
$ip_tos, $ip_len, $ip_id, $ip_flags, $ip_off, $ip_ttl, $ip_proto,
$ip_csum) || &crash("DB Error on line $line: \"InSeRt INTO iphdr with
sid=$sid, cid=$cid\" failed - $!");

if ($ip_proto == 6) {
$sth = $dbh->prepare(q{InSeRt INTO tcphdr (sid, cid, tcp_sport,

tcp_dport, tcp_seq, tcp_ack, tcp_off, tcp_res, tcp_flags, tcp_win,
tcp_csum, tcp_urp) VALUES (?,?,?,?,?,?,?,?,?,?,?,?)});

$rc = $sth->execute($sid,$cid,$src_port, $dst_port,$tcp_seq,
$tcp_ack, $tcp_off, $tcp_res, $tcp_flags, $tcp_win, $tcp_csum,
$tcp_urp) || &crash("DB Error on line $line: \"InSeRt INTO tcphdr with
sid=$sid, cid=$cid\" failed - $!");

}
if ($ip_proto == 17) {

$sth = $dbh->prepare(q{InSeRt INTO udphdr (sid, cid, udp_sport,
udp_dport, udp_len, udp_csum) VALUES (?,?,?,?,?,?)});

$rc = $sth->execute($sid,$cid,$src_port, $dst_port,$udp_len,
$udp_csum) || &crash("DB Error on line $line: \"InSeRt INTO udphdr with
sid=$sid,cid=$cid\" failed - $!");

}
if ($ip_proto == 1) {

$sth = $dbh->prepare(q{InSeRt INTO icmphdr (sid, cid, icmp_type,
icmp_code, icmp_csum, icmp_id, icmp_seq) VALUES (?,?,?,?,?,?,?)});

$rc = $sth->execute($sid,$cid,$icmp_type,$icmp_code,$icmp_csum,
$icmp_id, $icmp_seq) || &crash("DB Error on line $line: \"InSeRt INTO
icmphdr with sid=$sid,cid=$cid\" failed - $!");

}
$data =~ s/\n/ /g;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$data =~ s/\'/\'/g;
$sth = $dbh->prepare(q{InSeRt INTO data (sid,cid,data_payload) VALUES

(?,?,?)});
$rc = $sth->execute($sid,$cid,$data) || &crash("DB Error on line

$line: \"InSeRt INTO data with sid=$sid,cid=$cid,data=$data\" failed -
$!");

}

sub crash {
my ($entry) = @_;
$entry="$entry\n" if ($entry !~ /\n$/);
syslog('info', "logsnorter: $entry");
print "logsnorter: Error line $line. $entry";
if (!$opt_T) {

exit;
} else {

next;
}

}

sub initialize_vars {
$ip_ver=4;
$src_port=$dst_port='';

$proto=$ip_hlen=$ip_tos=$ip_len=$ip_id=$ip_flags=$ip_off=$ip_ttl=$ip_pr
oto=$ip_csum=0;

$tcp_seq=$tcp_ack=$tcp_off=$tcp_res=$tcp_flags=$tcp_win=$tcp_csum=$tcp_
urp=0;

$udp_len=$udp_csum=$i=$z=0;
$icmp_csum=$icmp_id=$icmp_seq=0;

}

sub getaddr {
my($hn)=@_;
my $h,$ip;
$h = gethostbyname($hn)||&crash("getaddr: Cannot resolve $hn to IP

address! Cannot run logsnorter on a host with different DNS or
/etc/hosts entries than the host that generated this syslog message!");

$ip=inet_ntoa($h->addr);
return($ip);

}

sub getservice {
my ($a,$b)=@_;
my $h;
my($proto,$alias,$num);
($proto,$alias,$num)=getprotobynumber($b);
$h = getservbyport($a,$proto);
if ($h) {

return($h);
} else {

return($a);
}

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

sub debug {
if ($DEBUG) {
print @_,"\n";

}
}

__END__

=head1 NAME

I<logsnorter> - scans syslog messages for HIDS messages and pumps them
into a SQL snort database

=head2 SYNOPSIS

logsnorter [-vVt] -T /var/log/syslog -u user \
-p passwd -s dbserver -d database

=head1 DESCRIPTION

This perl script scans syslog messages looking for reports of packets
denied by router/firewall/HIDS systems (such as Cisco routers),
translates them into snort format and injects them into the same SQL
database system B<snort> is running on.

Currently the following systems are supported:

=over 2

=item o Cisco acess-lists

=item o Linux 2.0 ipfw

=item o Linux 2.2 ipchains

=item o Linux 2.4 iptables

=back
=back

Merging information like perimeter router data into the central
B<snort>
NIDS system allows you to gain a more comprehensive report of what
attacks and scans are being done against your network. If your
perimeter router is blocking all packets besides port 25 and port 80,
B<snort> (sitting behind that router) will not even know that there are
full-blown port scans being run against your network. Using
I<logsnorter>
to merge those messages back into the B<snort> database allows such
events to be seen.

The wonderous PHP-based B<snort> analysis package - I<ACID> - is
invaluable

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

in this regard. See B<http://www.cert.org/kb/acid/> for details.

=head1 OPTIONS

=over 2

=item -u DB username

=item -p DB password

=item -d DB database

=item -s DB server

=item -v

Verbose: print every syslog line to STDOUT as it is scanned for
matches. This option can be used to "chain" logsnorter in front of
swatch (i.e. swatch calls "logsnorter -T /var/log/syslog" instead of
"tail -f /var/log/syslog").

=item -t

Use the timestamps assosiated with the syslog message instead of the
current time. This must be used when post-processing syslog files (e.g.
running logsnorter once per day over yesterdays syslog messages)
otherwise all the entries going into the snort database will have the
current time! Also be sure all your systems are using NTP or the like
so that their timestamps are in sync.

=item -T

"tail" the filename that follows - typically /var/log/syslog. This is
the most used form for logsnorter, where it is permanently left
running, continually scanning incoming syslog messages and pumping them
back into the snort database in real-time.

=back
=back

=head1 CONFIGURATION

As there are quite a few command-line options, these are better placed
in the config file /etc/logsnorter.conf. This file is simply merged
back into the actual logsnorter script. i.e. it must contain valid perl
commands:

=head2 Example Configuration File

#This is /etc/logsnorter.conf

$db_server='localhost';

$db_usercode='snort';

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

$db_database='snort';

$db_password='9f54b53j954';

#Cisco access-list syslog messages don't report the interface

#which generated the message. You must therefore provide logsnorter

#with this information (indexed to the ACL number) so that it can

#correctly inject these into the snort database

$cisco_interface['rtr01',107]="Serial0.1";

$cisco_interface['rtr01',108]="Serial0.1";

$cisco_interface['rtr11',105]="FastEthernet0";

$cisco_interface['rtr11',106]="FastEthernet0";

=head1 TODO

=over 2

=item o Support for PostGreSQL? It may already work - someone tell me!

=item o Support for non-Linux packet filters - e.g. BSD ipfilter.
Someone else will have to do it. Code welcome!

=back
=back

=head1 AUTHOR

Jason Haar <jhaar@users.sourceforge.net>

=cut

process_scanalert.pl
#!/usr/local/bin/perl -ws
#
use: process_scanalert.pl -v -l=1 samplescan.data > analysis.output
#
unless
(defined($c)||defined($d)||defined($o)||defined($p)||defined($s)||defin
ed($t)||defined($u)||defined($v)){

print "use the following action flags\n";
print "\t-c \tprint the communicating hosts\n";

print "\t-d \tprint the target hosts\n";
print "\t-f \twatch for fingerprinting attempts\n";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

print "\t-o \tprint the attacked/scanned ports\n";
print "\t-p \tprint the attacker/target pair\n";
print "\t-s \tprint the attacking hosts\n";
print "\t-t \tprint the attack type\n";

print "\t-u \tprint summary from spp_portscan\n";
print "\t-v \tbe verbose and print everything\n";

print "----";
print "\t-l=n\tconnection threshold before printing\n";
exit 1;
}

if(defined($l)){$thresh=$l;}else{$thresh=0;}
$vv=0; #set $vv=1 for very verbose output for script debugging

#############################
Data parsing and analysis
#############################
while (<>){

#format of scan.YYMMDD
if($_ =~ /^([a-zA-Z]{3}\s+\d{1,2})\s([0-9\:]{8})\s([0-9\.]+)\:([0-

9\w]+)\s\-\>\s([0-9\.]+)\:([0-9\w]+)\s(\w+[\w\s*]*)/){
chomp;
$date=$1;$time=$2;$src_addr=$3;$src_port=$4;
$dst_addr=$5;$dst_port=$6;$scantype=$7;
$pkey = "$src_addr-$dst_addr";
$pkeyl = "$src_addr:src_port-dst_addr:$dst_port";
++$asrc{$src_addr}; #count the same source address
++$adst{$dst_addr}; #count the same dest address
if($scantype =~ /UDP/){

++$pdst_udp{$dst_port};} #count the same dest port
else{++$pdst_tcp{$dst_port};}
++$type{$scantype}; #count the same scan type
++$pair{$pkey}; #count the same connection direction (IP only)
++$pairl{$pkeyl}; #count the same connection direction (IP:port)
#look for OS fingerprint scans
unless (($scantype =~ /SYN\s******S*/)||($scantype =~

/UDP/)||($scantype =~ /FIN\s*******F/)){
++$fsrc{$src_addr};
++$fdst{$dst_addr};
if($scantype !~ /UDP/){++$fpdst_tcp{$dst_port};}
++$fpr{$pkey};
++$ftyp{$scantype};}

}
#format of alert.YYMMDD
elsif($_ =~ /^[0-9\/]{5}\-[0-9\:\.]{15}\s+\[**\]/){

#look for portscans
if($_ =~ /portscan/i){

#we investigate only the summary of the portscans
if($_ =~ /^([0-9\/]{5})\-([0-

9\:\.]{15})\s+\[**\]\s+spp_portscan\:\sEnd\sof\sportscan\sfrom\s([0-
9\.]+)\s+\(TOTAL\sHOSTS\:([0-9]*)\s+TCP\:([0-9]*)\s+UDP\:([0-
9]*)\)\s+\[**\]/){

$date=$1;$time=$2;$portscan_dst=$3;
$nmb_portscanners=$4;$nmb_scanTCPpacks=$5;$nmb_scanUDPpacks=$6;
++$type{"Spp_portscan detect"};
$nmb_portscan{$portscan_dst}+=$nmb_portscanners;
if($nmb_scanTCPpacks != 0){

$portscan_tcp{$portscan_dst}+=$nmb_scanTCPpacks;}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

if($nmb_scanUDPpacks != 0){
$portscan_udp{$portscan_dst}+=$nmb_scanUDPpacks;}

}
else{if($vv){print"Ignore intermediate output from spp_portscan

$_ \n";}}
}
#parse 'normal' alerts
else{ #need (.*?) stingy instead of greedy matching here...

if($_ =~ /^([0-9\/]{5})\-([0-
9\:\.]{15})\s+\[**\]\s+(.*?)\s+\[**\]\s([0-9\.]+)\:([0-9\w]+)\s\-
\>\s([0-9\.]+)\:([0-9\w]+)/){

$date=$1;$time=$2;$attacktype=$3;$src_addr=$4;$src_port=$5;
$dst_addr=$6;$dst_port=$7;
$pkey = "$src_addr-$dst_addr";
$pkeyl = "$src_addr:src_port-dst_addr:$dst_port";
++$asrc{$src_addr};
++$adst{$dst_addr};
++$pdst{$dst_port}; #cannot distinguish udp/tcp here easily
if((! defined($portlist{$attacktype}))||

($portlist{$attacktype} !~ /$dst_port/)){
$portlist{$attacktype} .= " $dst_port";}

++$type{$attacktype};
++$pair{$pkey}; #count the same connection direction (IP

only)
++$pairl{$pkeyl};} #count the same connection direction

(IP:port)
elsif($_ =~ /^([0-9\/]{5})\-([0-

9\:\.]{15})\s+\[**\]\s+(.*?)\s+\[**\]\s([0-9\.]+)\s+\-\>\s([0-
9\.]+)/){

#signatures that don't involve ports, e.g. ICMP traffic
$date=$1;$time=$2;$attacktype=$3;$src_addr=$4;$dst_addr=$5;
$pkey = "$src_addr-$dst_addr";
++$asrc{$src_addr};
++$adst{$dst_addr};
++$type{$attacktype};
++$pair{$pkey};
}
else{
if($v){

print"Ignore line $_ \n";}}
}

}
else{print "!!! Ignore unknown data: $_ \n";}

}

############################
Print various statistics
############################
#Print different scan signatures
if (($t)||($v)&&(defined(%type))){

print "\n\Attack/Scan Types\n=================\n\n" if ($v) ;
foreach $key (sort { $type{$b} <=> $type{$a} }keys(%type)){

if($v){ if ($key =~ /\s*(.*?)\s+/){ $totaltype{$1}+=$type{$key};}}
if((($f)||($v))&&defined($ftyp{$key})){ $fp="\t\($ftyp{$key}

fps\)";}
else{ $fp=""; }
print "$type{$key} \t$key $fp\n" if($type{$key} >= $thresh);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

}
print "\n\Total Scan Types\n================\n\n" if ($v) ;
foreach $key (sort { $totaltype{$b} <=> $totaltype{$a}

}keys(%totaltype)){
print "$totaltype{$key} \t$key \n" if($totaltype{$key} >= $thresh);

}
}
#Print target hosts
if (($d)||($v)&&(defined(%adst))){

print "\n\nTargets\n=======\n\n" if ($v) ;
foreach $key (sort { $adst{$b} <=> $adst{$a} } keys(%adst)){

if((($f)||($v))&&($fdst{$key})){$fp="\t($fdst{$key}
fps)";}else{$fp="";}

if(($key =~/\.255\s*$/)||($key =~/\.0\s*$/)){ $BCAST=" BCAST
";}else{ $BCAST="";}

if($key
=~/^\s*(224|225|226|227|228|229|230|231|232|233|234|235|236|237|238|239
)\./){ $MCAST=" MCAST ";}else{ $MCAST="";}

print "$adst{$key} \t$key $fp $MCAST $BCAST\n" if($adst{$key} >=
$thresh);

}
}
if (($f)||($v)&&(defined(%fdst))){

print "\n\nFingerprinted targets\n=====================\n\n" if ($v)
;

foreach $key (sort { $fdst{$b} <=> $fdst{$a} } keys(%fdst)){
$fp="fps";
if(($key =~/\.255\s*$/)||($key =~/\.0\s*$/)){ $BCAST=" BCAST

";}else{ $BCAST="";}
if($key

=~/^\s*(224|225|226|227|228|229|230|231|232|233|234|235|236|237|238|239
)\./){ $MCAST=" MCAST ";}else{ $MCAST="";}

print "$fdst{$key} \t$key $fp $MCAST $BCAST\n" if($adst{$key} >=
$thresh);

}
}
#Print attacking hosts
if (($s)||($v)&&(defined(%asrc))){

print "\n\nAttackers by frequency\n======================\n\n" if
($v) ;

foreach $key (sort {$asrc{$b} <=> $asrc{$a}} keys(%asrc)){
if((($f)||($v))&&($fsrc{$key})){$fp="\t($fsrc{$key}

fps)";}else{$fp="";}
if(($key =~/^\s*10\./)||($key

=~/^\s*172\.(16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31)\./)||($ke
y =~/^\s*192\.168\./)){ $SPOOFED=" SPOOF ";}else{ $SPOOFED="";}

print "$asrc{$key} \t $key $fp $SPOOFED\n" if($asrc{$key} >=
$thresh);}

if($vv){print "\n\nAttackers by IP\n======================\n\n" if
($v) ;

foreach $key (sort {$a cmp $b }keys(%asrc)){
if((($f)||($v))&&($fsrc{$key})){$fp="\t($fsrc{$key}

fps)";}else{$fp="";}
print "$asrc{$key} \t$key $fp\n" if($asrc{$key} >= $thresh);}}

}
if (($f)||($v)&&(defined(%fdst))){

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

print "\n\nFingerprinting attackers\n========================\n\n" if
($v) ;

foreach $key (sort { $fsrc{$b} <=> $fsrc{$a} } keys(%fsrc)){
$fp="fps";
if(($key =~/^\s*10\./)||($key

=~/^\s*172\.(16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31)\./)||($ke
y =~/^\s*192\.168\./)){ $SPOOFED=" SPOOF ";}else{ $SPOOFED="";}

print "$fsrc{$key} \t $key $fp $SPOOFED\n" if($fsrc{$key} >=
$thresh);

}
}
#Print summary from spp_portscan
if (($u)||($v)&&(defined(%nmb_portscan))){

print "\n\nspp_portscan statistics\n=======================\n\n" if
($v) ;

print "* Nmb. of portscans\n";
foreach $key (sort { $nmb_portscan{$b} <=> $nmb_portscan{$a} }

keys(%nmb_portscan)){
print"$nmb_portscan{$key} \t$key \n" if($nmb_portscan{$key} >=

$thresh);}
if(defined(%portscan_tcp)){

print "* Nmb. of tcp packets\n";
foreach $key (sort { $portscan_tcp{$b} <=> $portscan_tcp{$a} }

keys(%portscan_tcp)){
print"$portscan_tcp{$key} \t$key \n" if($portscan_tcp{$key} >=

$thresh);}
}
if(defined(%portscan_udp)){

print "* Nmb. of udp packets\n";
foreach $key (sort { $portscan_udp{$b} <=> $portscan_udp{$a} }

keys(%portscan_udp)){
print"$portscan_udp{$key} \t$key \n" if($portscan_udp{$key} >=

$thresh);}
}

}
#Print attacked/scanned ports
if (($o)||($v)&&(defined(%pdst_tcp))){

print "\n\nScanned TCP ports\n=================\n\n" if ($v) ;
foreach $key (sort { $pdst_tcp{$b} <=> $pdst_tcp{$a} }

keys(%pdst_tcp)){
if((($f)||($v))&&($fpdst_tcp{$key})){$fp="\t($fpdst_tcp{$key}

fps)";}else{$fp="";}
print "$pdst_tcp{$key} \t$key $fp\n" if($pdst_tcp{$key} >=

$thresh);
}

}
if (($o)||($v)&&(defined(%pdst_udp))){

print "\n\nScanned UDP ports\n=================\n\n" if ($v) ;
foreach $key (sort { $pdst_udp{$b} <=> $pdst_udp{$a} }

keys(%pdst_udp)){
print "$pdst_udp{$key} \t$key \n" if($pdst_udp{$key} >= $thresh);}

}
if (($o)||($v)&&(defined(%pdst))){

print "\n\nPorts in alert files\n====================\n\n" if ($v) ;
foreach $key (sort { $pdst{$b} <=> $pdst{$a} } keys(%pdst)){

print "$pdst{$key} \t$key \n" if($pdst{$key} >= $thresh);}
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

if (($o)||($v)&&(defined(%portlist))){
print "\n\nPorts by attack\n===============\n\n" if ($v) ;
foreach $key (sort keys(%portlist)){

print "$key \t $portlist{$key} \n";}
}
#Attacker-Target pairs
if (($p)||($v)&&(defined(%pair))){

print "\n\nAttacks/Targets\n===============\n\n" if ($v) ;
foreach $key (sort { $pair{$b} <=> $pair{$a} } keys(%pair)){

if((($f)||($v))&&($fpr{$key})){$fp="\t($fpr{$key}
fps)";}else{$fp="";}

print "$pair{$key} \t$key $fp\n" if($pair{$key}>= $thresh);
}

}
#Communicating parties
if (($c)||($v)&&(defined(%pair))){

print "\n\nCommunicating parties\n=====================\n\n" if ($v)
;

foreach $key (sort { $pair{$b} <=> $pair{$a} } keys(%pair)){
if($key =~ /([0-9\.]+)\-([0-9\.]+)/){

$src=$1;$dst=$2;
$revkey="$dst-$src";
if(defined($pair{$revkey})){
if($src le $dst) {$commkey="$src-$dst";}
else {$commkey="$dst-$src";}
if((($f)||($v))&&($fpr{$key})){$fp="\t(fp)";}else{$fp="";}
if($key eq $commkey)

{$commpair{$commkey} .= " -> $pair{$key} $fp *** ";}
else

{$commpair{$commkey} .= " <- $pair{$key} $fp *** ";}
}

}
}
foreach $commkey (sort keys(%commpair)){

print "$commkey *** $commpair{$commkey} \n";
}

}

1 C0ldPhaTe. “Microsoft IIS Unicode Exploit Explained.”URL:
http://www.astalavista.com/library/os/iis/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

2Tiffany Bergeron. “Post to OVAL-DISCUSSION-LIST. Open Vulnerability
Assessment Language.” Jan 2003. URL:
http://oval.mitre.org/community/forum/archives/2003-01/msg00010.html

3 Brian Caswell. Judy Novak. Snort Signature Database. “Documentation for
rule WEB-IIS unicode directory traversal attempt.” URL:
http://www.snort.org/snort-db/sid.html?sid=1945

4 Jim Forster. Subject: Re: [snort] 'SMB Name Wildcard' Date: Mon Jan 17
2000 - 09:26:14 CST URL: http://archives.neohapsis.com/archives/snort/2000-
01/0222.html

5 TonikGin. “XDCC – An .EDU Admin’s Nightmare. Sept. 11 2002.”
URL: http://www.russonline.net/tonikgin/eduhacking.html

6 Carnegie Mellon Software Engineering Institute. “CERT Coordination Center.”
“Advisory CA-2001-23 Continued Threat of the "Code Red" Worm.
URL: http://www.cert.org/advisories/CA-2001-23.html

7 Gunther Birznieks. “Web Application Security.”
URL:
http://www.extropia.com/presentations/birznieks/pdf/cgi_security_history.pdf

8 Joe Stewart. In reply to: Len Burns: "[Snort-users] CGI Null Byte Attack" Nov.
2000.
URL: http://archives.neohapsis.com/archives/snort/2000-11/0244.html

9 Jon Hart. Snort Signature Database. “Documentation for rule SHELLCODE x86
NOOP.”
URL: http://www.snort.org/snort-db/sid.html?sid=648

10 Carnegie Mellon Software Engineering Institute. “CERT Coordination Center.”
“CERT® Advisory CA-2003-10 Integer overflow in Sun RPC XDR library
routines.”
URL: http://www.cert.org/advisories/CA-2003-10.html

11 Max Vision. Brian Caswell. Judy Novak. Snort Signature Database.
“Documentation for rule RPC portmap listing TCP 111.”
URL: http://www.snort.org/snort-db/sid.html?sid=598

12 Microsoft Corporation. Microsoft Security Bulletin MS01-033L-098 “Microsoft
Index Server ISAPI Extension Buffer Overflow”. June 2001. URL:
http://www.ciac.org/ciac/bulletins/l-098.shtml

13 LinuxSecurity.com Features. “Scanning and Defending Networks with Nmap.”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

URL: http://www.linuxsecurity.com/feature_stories/feature_story-4.html

14 Nigel Houghton. Josh Sakofsky.Snort Signature Database. “Documentation
for rule NETBIOS SMB C$ access.” URL: http://www.snort.org/snort-
db/sid.html?sid=533

15 Carnegie Mellon Software Engineering Institute. “CERT Coordination Center.”
“CERT® Incident Note IN-2000-02 Exploitation of Unprotected Windows
Networking Shares.” URL: http://www.cert.org/incident_notes/IN-2000-02.html

16 Jon Hart. Snort SignatureDatabase. “Documentation for rule SHELLCODE
x86 setuid 0.” URL: http://www.snort.org/snort-db/sid.html?sid=650

17 Matt Kettler. Snort Signature Database. “Documentation for rule SHELLCODE
x86 stealth NOOP.” URL: http://www.snort.org/snort-db/sid.html?sid=651

18 Max Vision. Anton Chuvakin. Nigel Houghton. Snort Signature Database.
“Documentation for rule FTP passwd retrieval attempt.” URL:
http://www.snort.org/snort-db/sid.html?sid=356

19 Nigel Houghton. Nick Black. Snort Signature Database. “Documentation for
rule MISC Tiny Fragments.” URL: http://www.snort.org/snort-db/sid.html?sid=522

20 Arachnids - The Intrusion Event Database. “Documentation for rule
IDS284/SHELLCODE_SHELLCODE-X86-SETGID0.”
URL: http://www.digitaltrust.it/arachnids/IDS284/event.html

21 Arachnids The Intrusion Event Database.“Documentation for rule
IDS254/DDOS_DDOS-SHAFT-CLIENT-TO-HANDLER.” URL:
http://www.digitaltrust.it/arachnids/IDS254/event.html

22 Nigel Houghton. Steven Alexander. Snort Signature Database.
“Documentation for rule SCAN nmap fingerprint attempt.” URL:
http://www.snort.org/snort-db/sid.html?sid=629

23 Duke University. “OIT Security.” May 2002
URL: http://www.oit.duke.edu/security/cleaning/xdcc.html

24 TonikGin. XDCC– An .EDU Admin’s Nightmare. Sept. 11 2002.
URL: http://www.russonline.net/tonikgin/eduhacking.html

25 Max Vision. Anton Chuvakin. Nigel Houghton. Snort Signature Database.
“Documentation for rule FTP passwd retrieval attempt.”
URL: http://www.snort.org/snort-db/sid.html?sid=356

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

James D. Rauser
GIAC Certified Intrusion Analyst (GCIA)–Practical Assignment–v 3.3

26 Symantec Security Updates. Information on Back Orifice and NetBus
URL: http://www.symantec.com/avcenter/warn/backorifice.html

