
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Author: Johnny Wong Page 1 of 72

GIAC TRAINING AND CERTIFICATION

TRACK 3 – INTRUSION DETECTION IN-DEPTH
GCIA PRACTICAL ASSIGNMENT VERSION 3.3

DOCUMENT VERSION 2.0

SUBMITTED BY

JOHNNY WONG

 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Part 1:Describe the state of Intrusion Detection.. 4
1. Introduction ... 4
2. The GoToMyPC solution .. 5
3. Network Set-up for Analysis ... 7

Installing and running the GoToMyPC software ... 8
Accessing the remote PC ... 8
Analyzing the raw dump.. 9
Assessment of the GoToMyPC Solution .. 12
Other Remote Access Solutions... 14

4. Conclusion .. 14
Part 2: Network detects.. 15
1. Detect #1: Scan Squid and Proxy (8080) attempts .. 15

Source of trace.. 15
Detect was generated by .. 15
Probability the source address was spoofed .. 16
Description of the attack ... 17
Attack mechanism... 17
Correlations... 18
Evidence of active targeting.. 19
Severity ... 19
Defensive recommendations .. 19
Multiple choice question.. 20

Result of post to intrusions@incidents.org ... 20
2. Detect #2: ACK scan attempts ... 22

Source of trace.. 22
Detect was generated by .. 22
Probability the source address was spoofed .. 23
Description of the attack ... 24
Attack mechanism... 25
Correlations... 26
Evidence of active targeting.. 27
Severity ... 27
Defensive recommendations .. 27
Multiple choice question.. 27

3. Detect #3: MS-SQL Worm Propagation Attempt.. 28
Source of trace.. 28
Detect was generated by .. 28
Probability the source address was spoofed .. 31
Description of the attack ... 33
Attack mechanism... 33
Correlations... 34
Evidence of active targeting.. 34
Severity ... 34
Defensive recommendations .. 34
Multiple choice question.. 34

Part 3: Analyze this! ... 35
1. Executive summary: ... 35
2. Log files used in analysis:... 35
3. Pre-processing of alert files and tools used: .. 36
4. Summary of alerts: ... 36
5. Relationships between the various addresses ... 38
6. Link Graphs .. 45
7. List of Detects ... 50
8. Registration information of 5 external addresses... 62
9. Conclusions and recommendations ... 65
Annex A: Pre-Analysis stage for Part 3: Tools used and procedures 67
List of References.. 70
Author: Johnny Wong Page 2 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Abstract

This practical assignment is submitted as part of the GCIA (GIAC Certified Intrusion
Analyst) certification process. This paper consists of 3 parts. The first part discusses
the threat of corporate remote access services. The second part describes and
analyses 3 network detects. The final part analyses five days worth of logs collected
by an unnamed University.

Author: Johnny Wong Page 3 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Part 1:Describe the state of Intrusion Detection

The threat of corporate remote access services

1. Introduction

An article by Kevin Tolly in NetworldWorldFusion titled “Always on programs pose an
always on threat”1 caught my attention while I was looking for a subject to write on for
this practical. For most organizations, the implementation of firewalls for perimeter
defense, VPNs for secure remote access, IDSes, content filters, anti-virus, personal
firewalls etc. would be sufficient to counter the external threat from the Internet. But
as we have heard countless times before, most network compromise stemmed from
employees.

In this paper, without regarding non-business programs like Kazaa, Morpheus, and
Trojans like SubSeven, BackOrifice, I will look at legitimate programs that allow users
to access their office desktops remotely from anywhere in the Internet. Bear in mind
these are legitimate programs, which users can easily download and install the client
because they want the flexibility. One such example, which I shall attempt is study, is
Expertcity’s GoToMyPC.

Traditional corporate remote access was implemented using VPNs, and even tools
like Symantec’s PC Anywhere. However, network managers/administrators were
faced with issues like distribution of client software/updates, inability to scale and
firewall configuration issues. GoToMyPC helps to solve these issues to a certain
extent. One obvious advantage is that no software is required on the user’s PC, just a
Java-enabled Web browser would do. As taken from www.gotomypc.com2,
GoToMyPC resides as an always-on program on the desktop, communicating with
the GoToMyPC server by means of a “heart-beat” communication. A user who
wishes to access his PC would log on to the GoToMyPC service, authenticates
himself, and voila! gains control of his remote desktop. During the process, there
were no incoming connection requests to the desktop, instead the communications
were initiated outwards. Most organizations’ firewalls permit outbound access,
making GoToMyPC easily deployable.

From this scenario, we look at some of the security implications:

a. The GoToMyPC server acted as the broker throughout the session
between the user and the remote desktop. Wouldn’t the server be able to
deduce when the user is in office, the amount of activity on the desktop, the
working habits etc. (as pointed out by Tolly)?

b. With the ease of obtaining the software, how do we detect whether any
user within the enterprise has installed the software? This would require
inspection of the outgoing traffic, which I will attempt to capture later. We
might need to amend the corporate firewall policy to block such traffic, if
possible.

c. How do we trust a third-party (i.e. Expertcity) that all the transactions were

Author: Johnny Wong Page 4 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

not recorded? Since all the traffic has to go through their servers.
d. Although the sessions between the user, remote desktop and the

GoToMyPC server are encrypted using AES, it may still be possible for an
attacker to eavesdrop and look for session keys.

e. When a remote desktop (with GoToMyPC running) is accessed from a PC,
a cookie is created which is used to track traffic patterns and retrieve
registration information. The cookie holds a unique number generated at
the time of registration, but does not contain any personally identifiable
information or passwords. According to Expertcity, the cookie cannot be
used by an attacker to access another user’s account. However, if an
attacker is able to locate the active cookie, can he actually hijack the
session?

f. Lastly, the desktop with the GoToMyPC software loaded would most likely
be located and trusted in the enterprise network. It would have access to all
the network resources available. Wouldn’t it be a scary thought if
somehow, the access codes and passwords were compromised?

My deepest concern would be the ease of obtaining and running this software
without the knowledge of the organization. Imagine an ignorant employee accessing
his office desktop from shared public PC (e.g. Internet café) and failing to disconnect
at the end of a session. The risk is too great to ignore. In order to understand the
implications, we need to examine the software, what it does, how it does it and if
possible, are there any loopholes in the program?

2. The GoToMyPC solution

The GoToMyPC system is a hosted service comprising of four components:

Computer (Client): A small footprint server (Servlet) is installed on the computer to
be accessed. Typically, this is a home or office PC with always-on Internet
connectivity. This server registers and authenticates itself with the GoToMyPC broker
server.

Browser (User): The remote or mobile user launches a Web browser, visits the
secure GoToMyPC website, enters a username/password and clicks a “Connect”
button for the desired computer, sending an SSL-authenticated and encrypted
request to the broker.

Broker (Server): The broker is a matchmaker that listens for connection requests
and maps them to registered computers. When a match occurs, the broker assigns
the session a communication server. Next, the client viewer – a tiny session-specific
executable – is automatically loaded by the browser’s Java Virtual Machine. The
GoToMyPC viewer runs on any computer with a Java-enabled browser, including
wireless devices.

Communication Servers: The communication server is an intermediate system that
relays an opaque and highly compressed encrypted stream from client to server for
the duration of each GoToMyPC session.

Author: Johnny Wong Page 5 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

The following diagram was extracted from the GoToMyPC’s technical document on
security.

Figure 1 GoToMyPC’s Security Architecture

Expertcity has put in place a few security measures3 to gain customers’ confidence in
the GoToMyPC solution. For instance, all GoToMyPC web, application,
communication and database servers are hosted in a highly secured data center.
Physical access to the servers is restricted. The entire site sits in a locked cage that
is monitored by cameras. Expertcity’s network operations center (NOC) in Santa
Barbara, California, is similarly protected with strict security measures.

Expertcity’s access routers are configured to watch for denial of service (DoS) attacks
and log-denied connections. Multi-layer perimeter security is provided by a pair of
firewalls: one between the Internet and web servers, another between the
GoToMyPC broker and back-end databases. The security of this architecture has
been independently confirmed by penetration tests and vulnerability assessments
conducted by TruSecure Corporation4. Expertcity has achieved TruSecure
SiteSecure Certification5. Quarterly perimeter tests ensure that Expertcity continues
to meet all SiteSecure Certification requirements.

GoToMyPC is supposedly firewall-friendly. A PC loaded with the GoToMyPC
software generates only outgoing HTTP/TCP traffic to ports 80, 443 and/or 8200.
Most corporate firewalls are already configured to permit outgoing traffic, hence, no
specific configuration is required to be carried out on the firewalls. Based on the
same argument, GoToMyPC is compatible with remote desktops using dynamic IP
addresses or NAT or PAT. I will also determine in a later section whether the traffic is
legitimate HTTP, hence compatibility with application proxy firewalls.

All traffic between GoToMyPC browser client and remote PC is protected with 128-bit
Author: Johnny Wong Page 6 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

AES6 encryption. Specifically, AES in CFB7 mode.

The GoToMyPC site also contained technical documents comparing itself to other
technologies, most notably VPN and Symantec’s PC Anywhere®. I summarized the
comparison into the following table:

 GoToMyPC VPN PC Anywhere®
Software
installation

Only required on the PC
to be accessed. At the
other end, a Java-
enabled web browser
would do.

Software must be
installed on VPN clients.

Software must be
installed on the client as
well as the remote PC
(host).

Configuration Self-configuring. VPN client must be
configured.

PC Anywhere® must be
configured.

Firewalls No changes required. Requires opening of
special ports like
IPSEC.

Requires opening of
special ports (incoming).

NAT Compatible. Depends on product.
Some may not work well
with NAT.

Unlikely to work.

IP reliance Non-protocol specific. IP-centric. Non-protocol specific.
Management of
remote clients

Since no software
required on client PCs,
just a web browser.

Sometimes, corporate
policies and software
updates have to be
pushed down to the
VPN clients.

Managing a corporate
roll-out of PC Anywhere
is complex and it
involves license
management.

3. Network Set-up for Analysis

The following network was set up to capture and study the GoToMyPC network
traffic. In my home network, I used a spare Windows 98 SE PC to install the
GoToMyPC software. The Windows PC was loaded with Tiny Personal Firewall and
Norton Anti-virus. A NAT/Firewall router dished out dynamic IP addresses to the
internal PC clients. The NAT/Firewall router has a 4-port integrated 10/100Mbps
Ethernet switch. The WAN interface of the router is connected to a 10/100Mbps
Ethernet hub, which in turn connects to the cable modem. A Slackware Linux box
(kernel 2.4.20) with 2 NICs sits with 1 NIC listening promiscuously on the external
segment, the other connects to the internal segment.

The Slackware box was configured to run tcpdump at startup, writing to a binary
dump file. The dump file is rotated at the end of each day. For remotely managing
this box, SSH was used.

Author: Johnny Wong Page 7 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

N A T / F i r e w a l l r o u t e r
w i t h 4 - p o r t s w i t c h

S la c k w a r e L i n u x b o x
w i t h 2 N I C s

e t h 1

C a b le m o d e m

H u b

S w i t c h

e t h 0

W in d o w s 9 8 S E P C
r u n n in g G o T o M y P C s o f t w a r e

E x t e r n a l
s e g m e n t

(p u b l i c
I P)

I n t e r n a l
s e g m e n t
(p r i v a t e

I P)

Figure 2 Network set-up

Installing and running the GoToMyPC software

To download the trial GoToMyPC software, I have to enter my credit card information
in the online form. Upon registering for the trial, I received an email indicating the
expiry of my trial and how to go about canceling the trial. Next, the GoToMyPC
software was downloaded on the Windows 98 PC. 2 files: gosetup.exe and setup.exe
were downloaded. Installation of the software was straightforward. During the
process, I was prompted for ID and access code8 for the PC. After which, I restarted
the PC for the changes to take effect.

Upon startup, Tiny detected outgoing TCP connections to poll.gotomypc.com ports
80, 443 and 8200 from the executable C:\Program
Files\expertcity\gotomypc\g2comm.exe (supposedly the servlet). A virus scan
(Norton) on the hard disk did not reveal any suspicious Trojans or executables in the
machine. Refer to Figures 3 and 4.

Accessing the remote PC

I accessed the home PC from my office desktop using IE6.0. Logging on to my
GoToMyPC account, I was presented with a list of my PCs which are online. A click
of the “Connect” button brought of up a window where I have to enter the access
code. Finally, my home desktop was presented to me in a window. The whole
process took roughly a minute to complete. I tried out some Windows activities such
as drag-and-drop, file transfer. Although the response was a bit lethargic, the action
was carried out eventually. Figure 5 shows how the remote desktop is presented in a
browser.

Author: Johnny Wong Page 8 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Figure 3 Detection of outgoing connections from GoToMyPC

Figure 4 Result of anti-virus scan of hard disk of PC

Analyzing the raw dump

I analyzed a day of raw traffic dump collected on 25th Jul, with the GoToMyPC
activated on the Windows 98 PC. Firstly, I ran the dump through snort with a
standard rulebase:

$ snort –r 20030725-2359.tcp –c /usr/local/snort/snort.conf –dbl
/var/log/snort

Other than those known alerts that were captured off the net (e.g. MS-SQL worm,
SCAN SOCKS), there were no other alerts registered. I used Ethereal to nail down to
the time when the GoToMyPC was activated. The first communication packet from
the PC was a SYN to 63.251.224.177 port 8200, which resolved to
poll.gotomypc.com. All subsequent GoToMyPC traffic was initiated from the PC.

Author: Johnny Wong Page 9 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Figure 5 My remote PC’s desktop

The payloads of the TCP packets exchanged between the PC and the server
suggested that HTTP version 1.0 (RFC19459) based commands were used. The PC
issued HTTP GET commands in the form “GET / <request> HTTP/1.0”. The server
replied with “HTTP/1.0 OK 200 OK <data>”.

Each HTTP transaction lasted for less than a second, with a single data packet (via
TCP PUSH) exchanged in the process.

Time

My PC:high port Server:8200

SYN

SYN,ACK

ACK
PUSH, ACK

PUSH, ACK

FIN, ACK

ACK
FIN, ACK

ACK

Figure 6 HTTP transaction between PC and server

Author: Johnny Wong Page 10 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Using the “Follow TCP Stream” function of Ethereal, I observed the single-packet
HTTP exchanges between the PC and poll.gotomypc.com:

Source Destination
My PC poll.gotomypc.com

Observations

GET
/servlet/com.ec.ercbroker.ser
vlets.PingServlet HTTP/1.0

HTTP/1.0 200 OK
Pragma: no-cache
Content-Type: text/plain
Content-Length: 41

ERCBroker broker
http://www.gotomypc.com

First HTTP transaction. The servlet
probably informing GoToMyPC of it
being “live” or “up”.

GET
/erc/GetOptions?build=275&
platform=win32&machinekey
=792680&random=0e6db2c
d25……….d%3d HTTP/1.0

HTTP/1.0 200 OK
Content-Type: text/plain
Content-Length: 992

0
random=7df03f0e20df874b4
f7097221ec7df55xtra=BQk
N6B2riSme……………

Next transaction, random keys were
exchanged. I could only deduce these
were part of some session key
exchange mechanism. The random
keys might be used to generate a
session encryption key.

“build=275” might indicate the build
version of the servlet. The operating
platform of the PC (Win32) was also
made known in the exchange.

GET
/erc/Poll?machinekey=79268
0&eventid=17454924&build=
275&platform=win32&nc=42
HTTP/1.0

HTTP/1.0 200 OK
Content-Type: text/plain
Content-Length: 67

0
cnt=0
eventid=17454924
purl=http://66.151.150.190/31
1.txt
pcnt=5

The keyword “Poll” might indicate that
the servlet is requesting for the
address(es) of any nearby
GoToMyPC communication servers.
poll.gotomypc.com does not seem to
be a communication server.

True enough, a Poll URL (“purl”) was
returned. The URL points to a text file
131.txt.

Next, we see the HTTP exchange between the PC and the “purl” obtained earlier:

My PC 66.151.150.190 Observations
GET /311.txt?nc=42
HTTP/1.0

HTTP/1.0 200 OK
Content-Type: text/plain
Content-Length: 311
Pragma: no-cache

This document is used by
Expertcity to probe your
network connectivity
to our Desktopstreaming and
GoToMyPC servers. These
probes allow
us to optimize the
performance of your screen
sharing sessions by
directing you to the best
server. For additional
information, please
contact
customersupport@expertcity.
com.

The servlet issues a GET for the text
file 131.txt from 66.151.150.190. The
content of 131.txt explained the
purpose of this request. I would think
that the servlet uses this HTTP GET
request to determine the response or
round-trip delay to the communication
server (in this case, 66.151.150.190).

Author: Johnny Wong Page 11 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Subsequent HTTP between the PC and poll.gotomypc.com were most likely
keepalives:

Source Destination
My PC poll.gotomypc.com

Observations

GET
/l?792680=17454924N90
HTTP/1.0

HTTP/1.0 200 OK
Content-Type: text/plain

1

The keepalive occurred about every
15s. 17454924 probably indicated a
keepalive packet. The number after
“N” increments every keepalive.

The following communication servers were observed. The servers were hosted on
different sites to achieve higher availability and redundancy. Probes to these servers
occurred about every 15s too. As mentioned earlier, the servlet uses these probes to
determine the “best” communication server to assign for a remote access session at
any point in time.

Communication
server IP

Remarks

66.162.64.62 Address block belonged to Time Warner Telcom
66.151.115.190 Address block belonged to Expertcity
63.209.15.126 Resolved to unknown.level3.net
66.151.150.190 Address block belonged to Expertcity
64.74.80.187 Address block belonged to Expertcity
63.209.15.70 Resolved to unknown.level3.net

So how would the servlet know about any request for a remote access connection?
Zooming in to the packets exchanged before a remote access session was started, I
noted that this was communicated to the servlet via a HTTP reply packet from
poll.gotomypc.com. The content “eventid=17876104” in the payload probably
indicated this. The servlet then followed up with a “GET /Jedi?request….” to server
63.209.15.70, followed by a series of single-packet HTTP exchanges for 30s. While
the remote access session was active, the TCP connection between the PC and
server was maintained, unlike in other activity, the TCP connection only lasted one
packet exchange.

Figure 7 describes the process flow observed so far.

Assessment of the GoToMyPC Solution

Overall, the solution was quite neat. Expertcity put in a lot of effort to convince
customers of their commitment to security. The security measures put in place were
clearly defined and detailed in the technical documents hosted on their site, which
goes to show that this is indeed a serious piece of software or solution. There is even
an enterprise solution for corporate users. As Tolly noted, there is no evil intention on
the part of Expertcity.

Author: Johnny Wong Page 12 of 72
 Author retains full rights

The thought of a group of corporate machines in constant contact with an external or
3rd-party service providers may not go down well with most network/security
administrators or managers. However, if an organization deliberately subscribed to
such a solution, the risk could be properly contained because you know who is using
the service, and control the type of access rights given to the GoToMyPC client

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

residing on the corporate desktop. Site or organizational security policies can be
implemented at global, group or user levels.

GoToMyPC servlet
activated upon PC

startup

Servlet contacts
poll.gotomypc.com

Servlet passes info
about PC to

poll.gotomypc.com

Servlet exchanges
random keys with

poll.gotomypc.com

Servlet requests URL
of comms servers

Servlet tests network
connectivity to
various comms

servers

Servlet maintains
keepalives with

poll.gotomypc.com

poll.gotomypc.com
informs servlet of
remote access

connection in HTTP
reply packet

Servlet establishes
sessions via "best"

comms server

Figure 7 Process flow upon activation of GoToMyPC servlet

The threat arises when users install and run the software without the knowledge of
the organization, circumventing the security policies in the process. Once a user
gained access to his corporate desktop, his access rights would be just like him being
physically at his desktop. Note that access to the remote desktop can be carried out
from just about anywhere, as long as a Java-enabled browser is available e.g. from
home, Internet café, Network gaming centers. You can then think of all the network
security breaches possible. An ignorant user might use simple passwords, or might
subject to shoulder-surfing, social engineering.

Most security policies necessitate the inspection of incoming network traffic, but
outgoing traffic is seldom scrutinized. To counter the threat of rogue uses of such
software, I recommend the following measures:

Inspection of outgoing traffic
In the analysis of the raw traffic dump, the GoToMyPC activities did not trigger any
alerts from a fairly standard Snort rulebase. From the observations in the previous
sections, the following Snort rules could be applied to detect the presence of any
GoToMyPC instances in the network:

alert TCP $HOME_NET any -> $EXTERNAL_NET any (msg: "Possible instance of
GoToMyPC in network"; content: "GET /erc/Poll?machinekey";)
alert TCP $HOME_NET any -> $EXTERNAL_NET any (msg: "Possible activation of
GoMyPC remote access session!!"; content: "GET /Jedi?request=";)

Author: Johnny Wong Page 13 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Note that we can block GoToMyPC altogether by disallowing access to
poll.gotomypc.com and a list of other Expertcity/GoToMyPC IP addresses in the
perimeter firewall. However, this method will not work if the software can re-configure
itself to point to another location.

Proxy server or application proxy firewall
HTTP 1.0 commands were used in the information exchanges between the servlet
and the GoToMyPC servers. I do not see a problem in the solution working behind a
proxy server or firewall. Rules could be implemented to detect GoToMyPC HTTP
traffic and block them. They could follow the Snort signatures in the previous section.

Software scan on desktops
Conduct a periodic scan of the desktops in your organization, looking for non-
standard issue software installed (in the case of GoToMyPC, go2comm.exe). The
desktop usage policy of your organization should be communicated to the users,
warning them on the dangers of installing illegal software.

User education
The users would have to be informed of the possible risks of such software, even
though they are legitimate. If the organization allowed the use of such software, then
good security practices have to be observed, such as use of non-trivial password,
screen savers or desktop disable functions when away.

Other Remote Access Solutions

I also tried out TotalRC version 1.2010. One thing I liked about this site was that in
order to download the trial, you do not need to submit your credit card information.
Other than that, the software allows you to set whichever outgoing port to use.
However, it does not do too well in the usability department. Screen updates were not
instantaneous and keyboard entries have to be sent through another Window.

There was also eBLVD Remote from ENC Technology Corporation11. Due to the
requirement to upload my credit card information (again?) in order to download the
trial, I decided not to try out this software.

4. Conclusion

Security is a never-ending cycle. In this paper, we looked at another set of threats
arising from legitimately packaged software solutions. They boast the ability to solve
deployment issues previously faced by traditional remote access solutions, such as
VPN and PC Anywhere. However, these solutions make use of outgoing connections
to establish screen sharing sessions, which are normally not scrutinized. To put it
bluntly, the same way how Trojans communicate. These solutions have the ability to
integrate in almost any existing environment with firewalls, NAT etc. The use of such
software in a controlled environment is acceptable, provided good security practices
are adopted by the users. The threat comes from rogue use of the software, without
the knowledge of the organization. The seriousness of this threat is real. There will
always be users/employees trying to circumvent the organization’s security policies –
either knowingly or unknowingly. Other than the security measures recommended at

Author: Johnny Wong Page 14 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

the network layer, user education and awareness is critical in mitigating this sort of
risks.

Part 2: Network detects

1. Detect #1: Scan Squid and Proxy (8080) attempts

Source of trace

The rawdump file used for this detect was 2002.4.31 and obtained from
http://www.incidents.org/Raw/logs.

Looking at the rawdump, the OUI of the source and destination MAC addresses
(00:03:E3 and 00:00:0C) belonged to CISCO Systems. Hence, I suspect the IDS
probe was placed in between 2 CISCO devices. A quick glance at the IP addresses
revealed that the scanned network was a class B (226.185.X.X).

The incorrect checksums reported were ignored due to the fact that the IP adresses
have been tampered with (http://www.incidents.org/Raw/logs/README).

Detect was generated by

I used Snort version 1.9.1 (Build 231) and the rules file dated 13 May 2003 (with a
default snort.conf). The command run was:

snort -dr 2002.4.31 -c ~snort/var/rules/snort.conf -bl ~snort/var/log &

2 files were subsequently created in ~snort/var/log:

ls -l ~snort/var/log/
total 81416
-rw------- 1 root root 67170142 May 13 15:43 alert
-rw------- 1 root root 16104188 May 13 15:43 snort.log.1052869387

A sample of the alert file generated was:

[**] [1:620:2] SCAN Proxy (8080) attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
05/30-16:02:57.834488 216.13.66.30:3841 -> 226.185.141.57:8080
TCP TTL:113 TOS:0x0 ID:58481 IpLen:20 DgmLen:48 DF
******S* Seq: 0xF7C9D762 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

[**] [1:620:2] SCAN Proxy (8080) attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
05/30-16:02:57.834488 216.13.66.30:3839 -> 226.185.141.56:8080
TCP TTL:113 TOS:0x0 ID:58479 IpLen:20 DgmLen:48 DF
******S* Seq: 0xF7C8555E Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

[**] [1:618:2] SCAN Squid Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
05/30-16:02:57.834488 216.13.66.30:3842 -> 226.185.141.57:3128
TCP TTL:113 TOS:0x0 ID:58482 IpLen:20 DgmLen:48 DF
******S* Seq: 0xF7CA97E4 Ack: 0x0 Win: 0x4000 TcpLen: 28

Author: Johnny Wong Page 15 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

TCP Options (4) => MSS: 1460 NOP NOP SackOK

[**] [1:620:2] SCAN Proxy (8080) attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
05/30-16:02:57.834488 216.13.66.30:3843 -> 226.185.141.58:8080
TCP TTL:113 TOS:0x0 ID:58483 IpLen:20 DgmLen:48 DF
******S* Seq: 0xF7CB2602 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

[**] [1:618:2] SCAN Squid Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
05/30-16:02:57.834488 216.13.66.30:3840 -> 226.185.141.56:3128
TCP TTL:113 TOS:0x0 ID:58480 IpLen:20 DgmLen:48 DF
******S* Seq: 0xF7C93C93 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

A whole list of SCAN Proxy (8080) and Squid Proxy attempts were triggered.
Running a combination of grep, uniq and sort, I was able to generate a statistical
listing of the alerts generated:

cat alert | grep '\[**\]' | sort | uniq -c | sort -rn | cat >
alert.stats &
cat alert.stats
 103873 [**] [1:618:2] SCAN Squid Proxy attempt [**]
 102496 [**] [1:620:2] SCAN Proxy (8080) attempt [**]
 57 [**] [1:1616:4] DNS named version attempt [**]
 10 [**] [1:628:1] SCAN nmap TCP [**]
 1 [**] [1:498:3] ATTACK RESPONSES id check returned root [**]
 1 [**] [116:45:1] (snort_decoder) TCP packet len is smaller than 20
bytes! [**]

Due to the high frequency of Proxy scans, I shall based my analysis on them. The
triggering rule for the SCAN Squid Proxy and Proxy attempts was:

cat scan.rules | awk '/8080/ || /3128/ {print $0}'

alert tcp $EXTERNAL_NET any -> $HOME_NET 3128 (msg:"SCAN Squid Proxy
attempt"; flags:S; classtype:attempted-recon; sid:618; rev:2;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 8080 (msg:"SCAN Proxy \(8080\)
attempt"; flags:S; classtype:attempted-recon; sid:620; rev:2;)

These Snort signatures look for any TCP SYN packets to destination ports 3128 and
8080.

Probability the source address was spoofed

I sieved out the SYN SCAN packets into another binary file for ease of analysis (with
the help of text-Ethereal) :

tethereal -r 2002.4.31 'tcp.flags.syn==1 and tcp.flags.ack==0' -w
syn.only.bin

tethereal -r syn.only.bin | awk '{print $4}' | sort | uniq -c | sort -rn
> syn.source.stats

cat syn.source.stats
 206363 216.13.66.30
 6 194.108.153.205

That's a lot of SYN packets coming from 216.13.66.30, over a period of about 1.5
Author: Johnny Wong Page 16 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

hours. A check with whois revealed the source of both IP addresses:

OrgName: ATT Canada Telecom Services Company
NetRange: 216.13.0.0 to 216.13.255.255
CIDR: 216.13.0.0/16

OrgName: TIPI (Netherlands)
NetRange: 195.108.153.0 - 195.108.153.255
CIDR: 195.108.153.0/24

I did not suspect the IP addresses were spoofed because being SYN packets, the
attacker required replies from the target in order to complete the connection.

Description of the attack

The attack involved a reconnaissance attempt targeted at the 226.185.0.0/16 block of
addresses, probing for hosts listening on TCP ports 8080 or 1328. Squid proxies are
usually configured to listen on tcp/3128. The attacker might be looking for vulnerable
proxy servers (e.g. Squid or WinGate) or for open proxies. A SYN-ACK response
would indicate the presence of such services. There are numerous vulnerabilities
associated with mis-configured Squid and WinGate proxy servers.

If the attacker was looking for open proxies, then it did not matter which type of proxy
server was running. The attacker could then use the open proxy for spamming12 and
even DOS attacks against IRC servers.

Attack mechanism

The first SYN packet from the attacker arrived at 1602 hrs on 30th May 2002, and the
last at 1931 hrs on the same day. Within a timespan of about 1.5 hours, a total of
206,363 SYN packets were detected and 43433 target IP addresses were scanned.

There was a pattern in the way the SYN SCAN packets were generated. Each SYN
SCAN cycle starts from IP address A.B.C.56 to A.B.C.253, resets, and continued
from A.B.C.0 to A.B.C.57. The Class C block of the next cycle is determined by
incrementing the 3rd octet by 1. When the 3rd octet reaches 253, the next cycle will
begin from the third octet equal to zero (0) and so on. Each cycle consisted of 255 IP
addresses and the time taken for SYN SCAN each cycle was approximately a
minute. The SYN SCAN ends when the 3rd octet equals to 57. A simple diagram
illustrating the SYN SCAN pattern:

Author: Johnny Wong Page 17 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

SYN to 226.185.141.56 port 8080, 3128

SYN to 226.185.141.57 port 8080, 3128

SYN to 226.185.141.58 port 8080, 3128

SYN to 226.185.141.59 port 8080, 3128

SYN to 226.185.141.253 port 8080, 3128

SYN to 226.185.141.0 port 8080, 3128

SYN to 226.185.141.1 port 8080, 3128

SYN to 226.185.141.2 port 8080, 3128

SYN to 226.185.141.56 port 8080, 3128

SYN to 226.185.141.57 port 8080, 3128

SYN to 226.185.253.56 port 8080, 3128

SYN to 226.185.253.253 port 8080, 3128

SYN to 226.185.253.57 port 8080, 3128

SYN to 226.185.0.56 port 8080, 3128

SYN to 226.185.0.253 port 8080, 3128

SYN to 226.185.0.57 port 8080, 3128

SYN to 226.185.57.56 port 8080, 3128

SYN to 226.185.57.253 port 8080, 3128

SYN to 226.185.57.57 port 8080, 3128

1st iteration Last iteration

The following observations were made of the SYN packets originating from
216.13.66.30:
– Source port used in the range 1026 to 5000
– Source port increments by 1 every SYN
– IP ID increments by 1 every SYN – this is the behavior of the TCP/IP stack of a

number of OSes e.g. FreeBSD, Solaris 7, AIX 4.3, Win 2000, just to name a few
– Same IP TTL value of 113 for all packets (likely the initial TTL was 128, pointing to

a Windows NT/2000 machine)
– Window size of 16384
– TCP/IP options: MSS-1460 NOP NOP SACK Permitted

To determine the OS of the attacker, p0f was used with the following responses:

p0f -s snort.log.1052868990 | more
p0f: passive os fingerprinting utility, version 1.8.3
(C) Michal Zalewski <lcamtuf@gis.net>, William Stearns <wstearns@pobox.com>
p0f: file: '/etc/p0f.fp', 207 fprints, iface: 'wlan0', rule: 'all'.
216.13.66.30 [16 hops]: Windows 2000 (9)

An automated tool was probably involved, based on:
– the pattern of target IP addresses,
– high rate of scans, roughly 2300 SYN packets per minute, and
– incrementing of source port by 1 every SYN

Correlations

In Don Murdoch’s posting in incidents.org13 dated 21 Apr 2003 (on rawdump
2002.4.30), he discussed similar sightings of SCAN Proxy and Squid Proxy attempts
but these were directed at a particular IP address (226.185.177.57).

A search of Dshield's mailing list archive during the period of Apr to May 2002
showed an instance of large amounts of scans on ports 8080, 3128 and 80 detected.
The thread14 described the payload that was used to test whether the proxy is open. I
checked whether there were any replies in the 226.185.0.0/16 network:

tethereal -r 2002.4.31 -n 'ip.dst==216.13.66.30 and tcp.flags.syn==1 and
tcp.flags.ack==1'

Unfortunately, there were none, hence I was not able to look at the payload should a
Author: Johnny Wong Page 18 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

3-way handshake succeed. I also could not find any instances of the IP address
within +/- 10 days of 2002.4.31.

Evidence of active targeting

The scanning pattern described earlier suggests an automated tool was involved to
generate the SYN packets. The barrage of SYN packets were fired to locate servers
with open TCP ports 8080 and 3128 in the Class B network of 226.185.0.0/16.
Hence, there was evidence of active targeting of the network, but not at any particular
host.

Severity

Severity = Value Remarks
(Criticality

4

The scan activity was part of a reconnaissance attempt to
locate any listening proxies in 226.185.0.0/16. If the attacker
solicited a response from an active proxy, he could either use
it for spam activity, or as a springboard to attack other sites.

+
Lethality)

2

The scans would not classify as lethal, because they were
basically reconnaissance probes. However, the knowledge of
open proxies within the network may be lethal as explained
earlier.

-
(System
countermeasures

4

There were no SYN-replies to the attacking IP. 3 possibilities:
– no proxy servers present
– proxy server located in the internal network and behind a

firewall, the latter discarding the SYNs silently
– access list implemented in proxy server, accepting

requests from the internal network only
Assuming the third possibility, a high score was given.

+
Network
countermeasures)

1

The fact that the SYN packets were captured by the IDS
indicated that they at least passed the perimeter router. The
only network countermeasure in place would be the IDS
probe, which monitored incoming/outgoing traffic of
226.185.0.0/16.

Result = 1 Low severity score.

Defensive recommendations

If there was a proxy server in the network, proper access list should be in place to
prevent abuse. Such as allowing only internal IP to access the proxy services.

If there were no proxy servers in the network, then such reconnaissance attempts
should be blocked at the border router or firewall. This would in turn reduce the
amount of IDS logs.

For example,

access-list 101 deny tcp any 226.185.0.0 0.0.255.255 eq 3128
access-list 101 deny tcp any 226.185.0.0 0.0.255.255 eq 8080

Author: Johnny Wong Page 19 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Multiple choice question

Given a raw binary dump file, what are the snort options to sieve out only SYN
packets into another binary file called syn.bin?

a. -r dumpfile -v 'tcp[13] = 0x2' -bl logdir
b. -r dumpfile 'tcp[13] = 0x2' -l logdir
c. -r dumpfile 'tcp[12:2] & 0xfff0 = 0x2' -bl logdir
d. -r dumpfile 'tcp.flags.syn==1 and tcp.flags.ack==0' -bl logdir

The answer is (a). Answer (b) logs in ASCII. Answer (c) semantically incorrect, no
output will be generated. Answer (d) is syntactically incorrect, because the filter is
Ethereal-specific.

Result of post to intrusions@incidents.org

This detect was posted to intrusions@incidents.org on 10 Jun 2003. One reply was
received with 5 questions and 2 comments, which were noted and rectified.

From: "Brian Coyle" <brian@linuxwidows.com>
To: "Johnny Wong (Singapore)" <deepcrack2002@yahoo.com>,
intrusions@incidents.org
Subject: Re: LOGS: GIAC GCIA Version 3.3 Practical Detect
Date: Wed, 11 Jun 2003 00:35:19 -0400
CC: johnny_wong@ida.gov.sg

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

On Tuesday 10 June 2003 23:40, Johnny Wong \(Singapore\) wrote:

> Detect #1: Scan Squid and Proxy (8080) attempts

[massive snippage thru-out]

> [root@goober 1]# cat alert | grep '\[**\]' | sort |
> uniq -c | sort -rn | cat > alert.stats &
> [root@goober 1]# cat alert.stats
> 103873 [**] [1:618:2] SCAN Squid Proxy attempt [**]
> 102496 [**] [1:620:2] SCAN Proxy (8080) attempt [**]
> 57 [**] [1:1616:4] DNS named version attempt [**]
> 10 [**] [1:628:1] SCAN nmap TCP [**]
> 1 [**] [1:498:3] ATTACK RESPONSES id check
> returned root [**]
> 1 [**] [116:45:1] (snort_decoder) TCP packet len
> is smaller than 20 bytes! [**]
>

Nice that you're showing your work.

> [root@goober rules]# tethereal -r syn.only.bin | awk
> '{print $4}' | sort | uniq -c | sort -rn >
> syn.source.stats
>
> [root@goober 1]# cat syn.source.stats
> 206363 216.13.66.30
> 6 194.108.153.205
>
> That's a lot of SYN packets coming from 216.13.66.30.

Author: Johnny Wong Page 20 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

A lot? Over what period of time? 1 day? 1 year?
You quantify this later in section 5, but you probably
should mention it here too.

>
> 4.Description of the attack
>
> The attack involved a reconnaissance attempt targeted
> at the 226.185.0.0/16 block of addresses

The whole block? The sample you showed only had 1 target.
You don't discuss add'l targets until later... What kind of
script-fu would you use to to determine/summarize the targets?

> The SYN packets do not look to be crafted because the
> source port incremented sequentially from 1026 to
> 5000. The IP ID too incremented sequentially. The IP
> TTL value was consistent at 113.

What is the significance of the IP ID and TTL values?
What clues does this offer? Can any passive fingerprinting
be done on the attacker (don't forget the TCP/IP options)?

> An automated tool was probably involved.

Any guesses as to which tool? Any clues in how the
address range was scanned?

> As there were no listeners on ports
> 8080 and 3128 in the 226.185.0.0/16 network

How do you know this? Would a snort rule cause an alert
to be logged if there was a reply?

> There were no servers listening to TCP ports
> 8080 and 3128. I assumed that if there were, then ?no
> replies? to unsolicited SYNs (firewall?) would
> indicate that access controls were in place.

Are you sure of this after you answer the question above?

>
> 10.Multiple choice question
>
> Given a raw binary dump file, what is the snort
> command

Given what you list below, shouldn't this be 'what
snort OPTIONS...'?

> to sieve out only SYN packets into another
> binary file called syn.bin?
>
> a. -r dumpfile -v 'tcp[13] = 0x2' -bl logdir
> b. -r dumpfile 'tcp[13] = 0x2' -l logdir
> c. -r dumpfile 'tcp[12:2] & 0xfff0 = 0x2' -bl logdir
> d. -r dumpfile 'tcp.flags.syn==1 and tcp.flags.ack==0'
> -bl logdir
>
> The answer is (a).

But how does the file syn.bin get created?

- --
Linux - the ultimate Windows Service Pack
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.2.1 (GNU/Linux)

Author: Johnny Wong Page 21 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Comment: Brian Coyle, GCIA
http://www.giac.org/GCIA.php

iD8DBQE+5rGVER3MuHUncBsRAvtSAJ9XEy3PhVBQkfriv4dZa/ia/p2sNgCfaQvn
6EccjViTFavJHEaojFvm85Y=
=r2w5
-----END PGP SIGNATURE-----

2. Detect #2: ACK scan attempts

Source of trace

The rawdump file used for this detect was 2002.6.9 and obtained from
http://www.incidents.org/Raw/logs.

Looking at the rawdump, the OUI of the source and destination MAC addresses
(00:03:E3 and 00:00:0C) belonged to CISCO Systems (reference to
http://standards.ieee.org/regauth/oui/oui.txt). Hence, I suspected the IDS probe was
placed in between 2 CISCO devices.

The incorrect checksums reported were ignored due to the fact that the IP adresses
have been tampered with (http://www.incidents.org/Raw/logs/README).

Detect was generated by

I used to Snort version 1.9.1 (Build 231) and rules file dated 13 May 2003 (with a
default snort.conf). The command run was:

snort -dr 2002.6.9 -c ~snort/var/rules/snort.conf -bl ~snort/var/log &

Snort reported a whole list of SCAN nmap TCP attempts. Running a combination of
grep, uniq and sort, I generated a statistical listing of the alerts generated:

cat alert | grep '\[**\]' | sort | uniq -c | sort -rn | cat >
alert.stats &
cat alert.stats
 81 [**] [1:628:1] SCAN nmap TCP [**]
 45 [**] [1:1616:4] DNS named version attempt [**]
 27 [**] [1:1322:4] BAD TRAFFIC bad frag bits [**]
 20 [**] [1:615:3] SCAN SOCKS Proxy attempt [**]
 16 [**] [1:524:5] BAD TRAFFIC tcp port 0 traffic [**]
 10 [**] [1:624:1] SCAN SYN FIN [**]
 4 [**] [1:621:1] SCAN FIN [**]
 4 [**] [1:620:2] SCAN Proxy (8080) attempt [**]
 4 [**] [1:618:2] SCAN Squid Proxy attempt [**]
 3 [**] [1:523:3] BAD TRAFFIC ip reserved bit set [**]
 2 [**] [116:46:1] (snort_decoder) WARNING: TCP Data Offset is less
than 5! [**]

A sample of the alert file:

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/08-08:24:26.964488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
202.29.28.1:80 -> 46.5.137.172:80 TCP TTL:46 TOS:0x0 ID:28838 IpLen:20
DgmLen:40
A* Seq: 0x2B0 Ack: 0x0 Win: 0x578 TcpLen: 20
Author: Johnny Wong Page 22 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

[Xref => arachnids 28]

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/08-08:24:31.954488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
202.29.28.1:80 -> 46.5.137.172:80 TCP TTL:46 TOS:0x0 ID:29078 IpLen:20
DgmLen:40
A* Seq: 0x316 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => arachnids 28]

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/08-08:31:12.944488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
159.226.208.40:80 -> 46.5.15.174:80 TCP TTL:48 TOS:0x0 ID:2100 IpLen:20
DgmLen:40
A* Seq: 0x4A Ack: 0x0 Win: 0x400 TcpLen: 20
[Xref => arachnids 28]

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/08-08:31:13.924488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
159.226.208.40:80 -> 46.5.15.174:80 TCP TTL:48 TOS:0x0 ID:2544 IpLen:20
DgmLen:40
A* Seq: 0xA4 Ack: 0x0 Win: 0x400 TcpLen: 20
[Xref => arachnids 28]

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/08-08:31:15.334488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
211.152.3.40:80 -> 46.5.15.174:80 TCP TTL:39 TOS:0x0 ID:3056 IpLen:20
DgmLen:40
A* Seq: 0x109 Ack: 0x0 Win: 0x400 TcpLen: 20
[Xref => arachnids 28]

[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/08-08:31:16.304488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
211.152.3.40:80 -> 46.5.15.174:80 TCP TTL:39 TOS:0x0 ID:3502 IpLen:20
DgmLen:40
A* Seq: 0x15E Ack: 0x0 Win: 0x400 TcpLen: 20
[Xref => arachnids 28]

The triggering rule for the SCAN nmap TCP attempts was found to be:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap
TCP";flags:A;ack:0; reference:arachnids,28; classtype:attempted-recon;
sid:628; rev:1;)

Anytime a TCP packet with only the ACK flag set, and the ACK number equal 0, an
alert would be triggered. TCP scans carried out by older versions of nmap have the
ACK number set to 0, hence snort flagged such occurrences as an nmap TCP scan.
Newer versions of nmap uses random non-zero ACK numbers.

Probability the source address was spoofed

If indeed these were nmap TCP scans as reported by snort, then the source
addresses would not be spoofed because the attacker needs to see the response
from the target (a RST packet if the scanned port was unfiltered) as part of the
information gathering attempt.

Author: Johnny Wong Page 23 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Description of the attack

Unsolicited TCP packets with the ACK flag set and ACK number equal 0 were sent
from multiple source addresses (26 of them), starting from 8th Jul 2002 0824hrs GMT.
The ACK packets were destined to the one or more destination addresses within the
46.5.0.0/16 Class B network. In particular, I noticed the stream of packets targeted at
address 46.5.80.149:

200 2002-07-09 23:28:21.424488 66.125.147.222 -> 46.5.80.149 TCP 45147 >
6346 [ACK] Seq=713 Ack=0 Win=1024 Len=0
201 2002-07-09 23:28:26.424488 66.125.147.222 -> 46.5.80.149 TCP 45147 >
6346 [ACK] Seq=783 Ack=0 Win=1024 Len=0
202 2002-07-09 23:28:31.434488 12.99.244.2 -> 46.5.80.149 TCP 80 > 6346
[ACK] Seq=843 Ack=0 Win=1024 Len=0
203 2002-07-09 23:28:36.434488 12.99.244.2 -> 46.5.80.149 TCP 80 > 6346
[ACK] Seq=903 Ack=0 Win=1024 Len=0
204 2002-07-09 23:28:41.444488 64.3.83.34 -> 46.5.80.149 TCP 80 > 6346
[ACK] Seq=979 Ack=0 Win=1024 Len=0
205 2002-07-09 23:28:46.434488 64.3.83.34 -> 46.5.80.149 TCP 80 > 6346
[ACK] Seq=22 Ack=0 Win=1024 Len=0
206 2002-07-09 23:28:51.474488 65.113.31.2 -> 46.5.80.149 TCP 80 > 6346
[ACK] Seq=110 Ack=0 Win=1024 Len=0
207 2002-07-09 23:28:56.444488 65.113.31.2 -> 46.5.80.149 TCP 80 > 6346
[ACK] Seq=188 Ack=0 Win=1024 Len=0
208 2002-07-09 23:29:01.444488 206.111.234.194 -> 46.5.80.149 TCP 80 >
6346 [ACK] Seq=280 Ack=0 Win=1024 Len=0
209 2002-07-09 23:29:06.444488 206.111.234.194 -> 46.5.80.149 TCP 80 >
6346 [ACK] Seq=374 Ack=0 Win=1024 Len=0

I observed a pattern in the sequence of packets:
– ACK packet sent to 46.5.80.149 port 6346 at 5s intervals
– 2 ACK packets sent from each source IP
– low TCP sequence number (below 1000)
– low source port used in most of the packets (i.e. port 80)
– Window sizes of 1024 and 1400
– TTL value from 45 to 47

The same exact pattern was observed in consecutive rawdumps on 2002.6.10 to
2002.6.11 and on 2002.6.15 at the following times:

Date Time No. of
 (GMT) Source addresses
2002-07-10 04:03 4
2002-07-10 09:26 2
2002-07-11 01:12 5 **repeated source addresses
2002-07-11 18:44 7 **repeated source addresses
2002-07-11 19:39 5 **repeated source addresses
2002-07-11 22:27 5 **repeated source addresses
2002-07-11 23:26 5 **repeated source addresses
2002-07-15 16:47 2
2002-07-15 18:11 5 **repeated source addresses
2002-07-15 19:24 5 **repeated source addresses

Author: Johnny Wong Page 24 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

2002-07-15 20:52 5 **repeated source addresses
2002-07-15 23:11 5 **repeated source addresses

The logs did not show any responses from 46.5.80.149. Could this be an active
targeting of the IP? The Gnutella destination port in these ACK packets made me
look further into this particular “attack”.

Attack mechanism

As extracted from man nmap, ACK scans are used in reconnaissance attempts to
map out the firewall rulesets. They could also determine whether the firewall is a
stateful or just a simple packet filter that blocks incoming SYN. By sending an ACK-
only packet to a specified port, a returned RST packet would indicate a non-stateful
packet filter. Otherwise, no response would be given.

From the earlier observations, I found it difficult to pinpoint the ACK scans to nmap
because it would require strict coordination to send each ACK packet to the target
address every 5s from different source addresses. If we argue that nmap could have
been run from the same machine using decoy scan option, then how do we explain (i)
the use of different TCP sequence number for each ACK packet, (ii) differing TTL
values, (iii) ACK number of 0 considering that this peculiarity only found in older
versions of nmap (pre-version 2.3 BETA 8) and (iv) except for packets from
66.125.147.222 which used random source ports, the others used the same source
port of 80.

I also noted that from 2002-7-10 to 2002-7-12 and from 2002-7-15 to 2002-7-16,
there were a lot of one-sided Gnutella CONNECTs to the this IP address from
sources located in the Class B address of 148.63.0.0, 148.64.0.0 and 148.65.0.0 (all
belonging to StarBand Communications). These packets were particularly TCP with
only the PUSH flag set and ACK number 0.

16:46:19.754488 148.63.134.33.2302 > 46.5.80.149.6346: P
843355658:843355828(170) win 8192 (DF)
0x0000 4500 00d2 d1df 4000 6f06 a850 943f 8621 E.....@.o..P.?.!
0x0010 2e05 5095 08fe 18ca 3244 960a 0000 0000 ..P.....2D......
0x0020 5e08 2000 8039 0000 474e 5554 454c 4c41 ^....9..GNUTELLA
0x0030 2043 4f4e 4e45 4354 2f30 2e36 0d0a 5573 .CONNECT/0.6..Us
0x0040 6572 2d41 6765 6e74 3a20 4265 6172 5368 er-Agent:.BearSh
0x0050 6172 6520 322e 362e 320d 0a4d 6163 6869 are.2.6.2..Machi
0x0060 6e65 3a20 312c 382c 3338 332c 312c 3339 ne:.1,8,383,1,39
0x0070 380d 0a50 6f6e 672d 4361 6368 696e 673a 8..Pong-Caching:
0x0080 2030 2e31 0d0a 486f 7073 2d46 6c6f 773a .0.1..Hops-Flow:
0x0090 2031 2e30 0d0a 4c69 7374 656e 2d49 503a .1.0..Listen-IP:
0x00a0 2031 3438 2e36 332e 3133 342e 3333 3a36 .148.63.134.33:6
0x00b0 3334 360d 0a52 656d 6f74 652d 4950 3a20 346..Remote-IP:.
0x00c0 3137 302e 3132 392e 3230 342e 3139 0d0a 170.129.204.19..
0x00d0 0d0a ..

17:33:06.934488 148.63.153.23.3506 > 46.5.80.149.6346: P
168117770:168117858(88) win 8192 (DF)
0x0000 4500 0080 1365 4000 6f06 5427 943f 9917 E....e@.o.T'.?..
0x0010 2e05 5095 0db2 18ca 0a05 460a 0000 0000 ..P.......F.....
0x0020 5e08 2000 98d2 0000 474e 5554 454c 4c41 ^.......GNUTELLA

Author: Johnny Wong Page 25 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

0x0030 2043 4f4e 4e45 4354 2f30 2e36 0d0a 5573 .CONNECT/0.6..Us
0x0040 6572 2d41 6765 6e74 3a20 4265 6172 5368 er-Agent:.BearSh
0x0050 6172 6520 322e 342e 320d 0a50 6f6e 672d are.2.4.2..Pong-
0x0060 4361 6368 696e 673a 2030 2e31 0d0a 486f Caching:.0.1..Ho
0x0070 7073 2d46 6c6f 773a 2031 2e30 0d0a 0d0a ps-Flow:.1.0....

17:34:10.924488 148.63.153.23.3506 > 46.5.80.149.6346: P
168117770:168117858(88) win 8192 (DF)
0x0000 4500 0080 2203 4000 6f06 4589 943f 9917 E...".@.o.E..?..
0x0010 2e05 5095 0db2 18ca 0a05 460a 0000 0000 ..P.......F.....
0x0020 5e08 2000 98d2 0000 474e 5554 454c 4c41 ^.......GNUTELLA
0x0030 2043 4f4e 4e45 4354 2f30 2e36 0d0a 5573 .CONNECT/0.6..Us
0x0040 6572 2d41 6765 6e74 3a20 4265 6172 5368 er-Agent:.BearSh
0x0050 6172 6520 322e 342e 320d 0a50 6f6e 672d are.2.4.2..Pong-
0x0060 4361 6368 696e 673a 2030 2e31 0d0a 486f Caching:.0.1..Ho
0x0070 7073 2d46 6c6f 773a 2031 2e30 0d0a 0d0a ps-Flow:.1.0....

The “Gnutella CONNECT/0.6” suggested the version of the Gnutella protocol and the
string after “user-agent:” indicated the client (i.e. Bearshare) used. A Gnutella
servent attaches to a network via connection to another servent. Servents obtain IP
addresses of other servents from their host cache.

So how do the ACK scans relate to the Gnutella CONNECTs? I suspected the ACK
packets were “keep-alives” between other servents and 46.5.80.149, which
happened to be found in their host caches. The low source port in the ACK packets,
and particularly port 80, might be used to bypass firewalls. A packet filtering firewall
would allow these packets to pass, thinking they were part of an established HTTP
connection.

In between these ACK packets, other servents tried to join the Gnutella network via
this IP. As 46.5.80.149 was not featured in the raw dumps from 2002.6.15 onwards, I
could only deduce that the respective caches timed-out on this particular IP, and the
keep-alives stopped. This IP could have previously belonged to a Gnutella client,
hence the reason why it ended up in the host cache in the first place15, a common
scenario in dynamic IP environments like DSL, cable Internet access.

Correlations

I did a whois on the source addresses of the ACK packets and found that the packets
originated from ISPs in the US. I tried to check whether any of the source has been
reported in http://www.dshield.org/ipinfo.php, but to no avail.

Previous analysis of random ACK scans attributed the cause to load balancing
devices, notably in:

http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00027.html16
http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00039.html17
http://cert.uni-stuttgart.de/archive/intrusions/2002/12/msg00167.html18

However, in this case, the difference was that the destination port was Gnutella-6346
and more than one sending host was detected.

Author: Johnny Wong Page 26 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Evidence of active targeting

I noted that this IP did not feature in rawlogs prior to 2002.6.9. The relationship
between the ACK scans and Gnutella CONNECT events suggested that the IP
46.5.80.149 was unwittingly targeted due to the fact it was previously used by a
Gnutella client.

Severity

Criticality = 1
There was no evidence of answers from 46.5.80.149 to the ACKs or Gnutella
CONNECTs. A real Gnutella client would reply with something like “GNUTELLA/0.6
200 OK”. The existence of a Gnutella client would not count as critical to that of a
Web or DNS server.

Lethality = 1
Lethality was low. The ACKs were probably used to maintain keepalives between
Gnutella servents.

System countermeasures = 4
There was a possibility that a machine existed on IP address 46.5.80.149. The
observations suggested that this machine, if it existed, took over an IP address that
previously belonged to a Gnutella client. Or, the client software was uninstalled. I
assumed the latter and gave a high score because of the possible risks of such
software.

Network countermeasures = 1
The fact that the ACK and PUSH packets were captured by the IDS indicated that
they at least passed the perimeter router. The only network countermeasure in place
would be the IDS probe.

Severity = (1+1) – (1+1) = 0

Defensive recommendations

If the IDS probe was placed behind a firewall, and yet the ACK scans were detected,
then a stateful firewall would do the trick in dropping these packets. Similarly, access
to port 6346 from outside should be blocked, if peer-to-peer software is not allowed in
the network.

Multiple choice question

What could be the most likely reason when a network starts receiving unsolicited
Gnutella CONNECT packets destined for an IP address within the network?

a. someone is performing a scan for hosts listening on port 6346
b. the IP address was previously used by a Gnutella client
c. these packets were responses to an earlier Gnutella REQUEST packets
Author: Johnny Wong Page 27 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

d. a mis-configured Gnutella client

The answer is (b).

3. Detect #3: MS-SQL Worm Propagation Attempt

Source of trace

The last network detect came from my home network. My home network
configuration consisted of:
– a Slackware Linux box running on kernel 2.4.20 with two (2) network interfaces;

one listening promiscuously for packets ingressing and egressing from my
network, and the other connected to the internal LAN

– tcpdump was used to log the packets into a binary dump file, which got rotated
every day

– the NAT/Firewall router was configured to block any traffic originating from the
Internet into the internal LAN

The following diagram describes the network set-up:

Internet

Cable
Modem

Slackware Linux running
Snort, Tcpdump

NAT/Firewall
Router with 4 switch

ports

eth1

eth0

PC cum Management
Station

192.168.123.0/24

The binary dumps collected from 14 to 19 Jul 2003 were analysed for this exercise.

Detect was generated by

I used Snort version 2.0.0 (Build 72) and rules file dated 6 Mar 2003 (with a default
snort.conf). The command run was:

snort -r 20030714-2359.tcp -c snort.conf -dbl foo -L snort0714
snort -r 20030715-2359.tcp -c snort.conf -dbl foo -L snort0715
.
.
.

Author: Johnny Wong Page 28 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

snort -r 20030719-2359.tcp -c snort.conf -dbl foo -L snort0719

Snort reported a number of MS-SQL Worm Propagation attempts against my ISP-
assigned public IP address (masked out as X.X.X.X). Running a combination of grep,
uniq and sort on the concatenated alert file, I generated a statistical listing of the
alerts generated:

cat alert | grep '\[**\]' | sort | uniq -c | sort -rn | cat >
alert.stats &
cat alert.stats
 43 [**] [1:2003:2] MS-SQL Worm propagation attempt [**]
 24 [**] [1:615:3] SCAN SOCKS Proxy attempt [**]

A sample of the alert file:

[**] [1:2003:2] MS-SQL Worm propagation attempt [**]
[Classification: Misc Attack] [Priority: 2]
07/14-02:28:28.605996 66.199.149.229:1076 -> X.X.X.X:1434
UDP TTL:113 TOS:0x0 ID:20682 IpLen:20 DgmLen:404
Len: 376
[Xref => http://vil.nai.com/vil/content/v_99992.htm][Xref =>
http://www.securityfocus.com/bid/5311][Xref =>
http://www.securityfocus.com/bid/5310]

[**] [1:2003:2] MS-SQL Worm propagation attempt [**]
[Classification: Misc Attack] [Priority: 2]
07/14-02:29:23.288610 64.254.238.245:2876 -> X.X.X.X:1434
UDP TTL:107 TOS:0x0 ID:28892 IpLen:20 DgmLen:404
Len: 376
[Xref => http://vil.nai.com/vil/content/v_99992.htm][Xref =>
http://www.securityfocus.com/bid/5311][Xref =>
http://www.securityfocus.com/bid/5310]

[**] [1:2003:2] MS-SQL Worm propagation attempt [**]
[Classification: Misc Attack] [Priority: 2]
07/14-05:57:55.813146 62.174.168.131:3071 -> X.X.X.X:1434
UDP TTL:106 TOS:0x0 ID:16071 IpLen:20 DgmLen:404
Len: 376
[Xref => http://vil.nai.com/vil/content/v_99992.htm][Xref =>
http://www.securityfocus.com/bid/5311][Xref =>
http://www.securityfocus.com/bid/5310]

[**] [1:2003:2] MS-SQL Worm propagation attempt [**]
[Classification: Misc Attack] [Priority: 2]
07/14-06:00:22.066200 61.28.28.98:3676 -> X.X.X.X:1434
UDP TTL:112 TOS:0x0 ID:39966 IpLen:20 DgmLen:404
Len: 376
[Xref => http://vil.nai.com/vil/content/v_99992.htm][Xref =>
http://www.securityfocus.com/bid/5311][Xref =>
http://www.securityfocus.com/bid/5310]

[**] [1:2003:2] MS-SQL Worm propagation attempt [**]
[Classification: Misc Attack] [Priority: 2]
07/14-07:10:00.084010 212.103.162.176:1558 -> X.X.X.X:1434
UDP TTL:108 TOS:0x0 ID:4341 IpLen:20 DgmLen:404
Len: 376
[Xref => http://vil.nai.com/vil/content/v_99992.htm][Xref =>
http://www.securityfocus.com/bid/5311][Xref =>
http://www.securityfocus.com/bid/5310]

[**] [1:2003:2] MS-SQL Worm propagation attempt [**]
[Classification: Misc Attack] [Priority: 2]
07/14-08:13:55.508318 209.180.171.224:62694 -> X.X.X.X:1434
UDP TTL:108 TOS:0x0 ID:46224 IpLen:20 DgmLen:404
Len: 376

Author: Johnny Wong Page 29 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

[Xref => http://vil.nai.com/vil/content/v_99992.htm][Xref =>
http://www.securityfocus.com/bid/5311][Xref =>
http://www.securityfocus.com/bid/5310]

[**] [1:2003:2] MS-SQL Worm propagation attempt [**]
[Classification: Misc Attack] [Priority: 2]
07/14-08:42:45.180883 67.232.141.219:1204 -> X.X.X.X:1434
UDP TTL:112 TOS:0x0 ID:50108 IpLen:20 DgmLen:404
Len: 376
[Xref => http://vil.nai.com/vil/content/v_99992.htm][Xref =>
http://www.securityfocus.com/bid/5311][Xref =>
http://www.securityfocus.com/bid/5310]

The triggering rule for the MS-SQL Worm propagation attempts was found to be:

sql.rules:alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:"MS-SQL Worm
propagation attempt"; content:"|04|"; depth:1; content:"|81 F1 03 01 04 9B
81 F1 01|"; content:"sock"; content:"send"; reference:bugtraq,5310;
classtype:misc-attack;reference:bugtraq,5311;reference:
url,vil.nai.com/vil/content/v_99992.htm; sid:2003; rev:2;)

Using tcpdump, I found the packet contents that triggered the alert:

tcpdump -r snort_0714.1058688109 -nX 'udp and dst port 1434'

23:58:48.131367 195.29.54.131.3075 > X.X.X.X.1434: udp 376
0x0000 4500 0194 a210 0000 6b11 91fb c31d 3683 E.......k.....6.
0x0010 daba 45f2 0c03 059a 0180 0efb 0401 0101 ..E.............
0x0020 0101 0101 0101 0101 0101 0101 0101 0101
0x0030 0101 0101 0101 0101 0101 0101 0101 0101
0x0040 0101 0101 0101 0101 0101 0101 0101 0101
0x0050 0101 0101 0101 0101 0101 0101 0101 0101
0x0060 0101 0101 0101 0101 0101 0101 0101 0101
0x0070 0101 0101 0101 0101 0101 0101 01dc c9b0
0x0080 42eb 0e01 0101 0101 0101 70ae 4201 70ae B.........p.B.p.
0x0090 4290 9090 9090 9090 9068 dcc9 b042 b801 B........h...B..
0x00a0 0101 0131 c9b1 1850 e2fd 3501 0101 0550 ...1...P..5....P
0x00b0 89e5 5168 2e64 6c6c 6865 6c33 3268 6b65 ..Qh.dllhel32hke
0x00c0 726e 5168 6f75 6e74 6869 636b 4368 4765 rnQhounthickChGe
0x00d0 7454 66b9 6c6c 5168 3332 2e64 6877 7332 tTf.llQh32.dhws2
0x00e0 5f66 b965 7451 6873 6f63 6b66 b974 6f51 _f.etQhsockf.toQ
0x00f0 6873 656e 64be 1810 ae42 8d45 d450 ff16 hsend....B.E.P..
0x0100 508d 45e0 508d 45f0 50ff 1650 be10 10ae P.E.P.E.P..P....
0x0110 428b 1e8b 033d 558b ec51 7405 be1c 10ae B....=U..Qt.....
0x0120 42ff 16ff d031 c951 5150 81f1 0301 049b B....1.QQP......
0x0130 81f1 0101 0101 518d 45cc 508b 45c0 50ff Q.E.P.E.P.
0x0140 166a 116a 026a 02ff d050 8d45 c450 8b45 .j.j.j...P.E.P.E
0x0150 c050 ff16 89c6 09db 81f3 3c61 d9ff 8b45 .P........<a...E
0x0160 b48d 0c40 8d14 88c1 e204 01c2 c1e2 0829 ...@...........)
0x0170 c28d 0490 01d8 8945 b46a 108d 45b0 5031 E.j..E.P1
0x0180 c951 6681 f178 0151 8d45 0350 8b45 ac50 .Qf..x.Q.E.P.E.P
0x0190 ffd6 ebca

As quoted from http://vil.nai.com/vil/content/v_99992.htm19,

“This virus exists only in memory of unpatched Microsoft SQL servers. Its purpose is
simply to spread from one system to another and it does not carry a destructive
payload. This worm causes increased traffic on UDP port 1434 and spreads between
SQL servers. Heavy network traffic, associated with this threat, can effect network
performance on all systems on the network. It uses a buffer overflow in "Server
Resolution" service (read about CVE-CAN-2002-0649 vulnerability in MS02-39 and to

Author: Johnny Wong Page 30 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

gain control on a target server. SQL Servers running Service Pack 3 are not affected.
The malformed packet is only 376 bytes long (which is the full worm!) and carries the
following strings: "h.dllhel32hkernQhounthickChGetTf", "hws2", "Qhsockf" and
"toQhsend".”

Based on the Snort signature, the alert was triggered by:
– UDP packet from external network
– First byte of UDP payload “0x04”
– Hex contents “0x81 0xf1 0x03 0x01 0x04 0x9b” in payload
– String “send” and “sock” in payload

Probability the source address was spoofed

I tried to deduce where these worm packets originated from:

mergecap -w snortdump snort_071*
tcpdump -r snortdump -n 'udp and dst port 1434' | awk '{ print $2 }' |
sort | uniq -c | sort -rn | wc -l
 43

43 unique source addresses were accounted for, and this corresponded to the 43
MS-SQL worm alerts earlier. As these were UDP packets, it was trivial to generate
them with spoofed addresses. However, I suspected these packets originated from
compromised MS-SQL hosts.

I summarized the list of source addresses and its related TTL value:

Source address Recorded TTL value

From source (1)
Traceroute (no. of Expected initial TTL

value (= (1) + (2)) hops) from my IP (2)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

66.199.149.229

64.254.238.245

62.174.168.131

61.28.28.98

212.103.162.176

209.180.171.224

67.232.141.219

68.98.153.220

170.110.31.84

195.29.54.131

208.199.92.197

12.216.120.148

80.164.77.19

212.37.205.96

80.202.85.3

24.136.203.109

218.188.55.67

113

107

106

112

108

108

112

111

112

107

108

113

114

113

106

108

109

16 – reachable

20 - unreachable

24 - unreachable

16 - reachable

22 - unreachable

20 - unreachable

16 - unreachable

22 - unreachable

17 - reachable

24 - reachable

21 - reachable

17 - unreachable

22 - unreachable

17 - reachable

21 - unreachable

21 - unreachable

13 - unreachable

129

127

130

128

130

128

128

133

129

131

129

130

136

130

127

129

122

Author: Johnny Wong Page 31 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Source address Recorded TTL value
From source (1)

Traceroute (no. of
hops) from my IP (2)

Expected initial TTL
value (= (1) + (2))

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

195.61.75.183

217.97.53.217

203.155.234.8

195.174.71.148

129.19.3.8

64.187.31.139

212.37.11.54

213.227.150.150

203.107.147.186

64.187.61.110

80.200.47.145

200.43.11.97

210.13.19.11

211.167.92.168

203.112.97.160

221.6.233.30

68.32.170.224

64.38.236.45

202.108.220.187

212.19.31.2

64.237.33.10

128.2.166.125

220.208.245.28

208.58.202.234

211.24.158.3

195.38.27.246

106

106

110

114

111

116

110

109

111

116

108

109

116

110

118

117

111

113

111

99

105

111

108

111

117

106

21 - reachable

22 - reachable

17 - reachable

21 - reachable

16 - unreachable

17 - reachable

14 - unreachable

22 - reachable

20 - reachable

17 - reachable

17 - reachable

19 - unreachable

19 - reachable

18 - reachable

19 - reachable

16 - reachable

17 - unreachable

17 - reachable

17 - reachable

24 - unreachable

20 - reachable

18 - reachable

20 - reachable

23 - reachable

30 - reachable

18 – reachable

127

128

127

135

127

133

125

131

131

133

125

128

135

128

137

133

128

130

128

123

125

129

128

134

147

124

For those unreachable IP addresses, meaning the traceroute time-out before the max
30 hop-count is reached, I used whois to verify that the last responding hop-router
belonged to the same organization as the IP. For example, consider #17:

traceroute 218.188.55.67
traceroute to 218.188.55.67 (218.188.55.67), 30 hops max, 38 byte packets
 1 192.168.123.254 (192.168.123.254) 1.262 ms 1.598 ms 1.250 ms
 2 10.52.0.1 (10.52.0.1) 33.355 ms 17.612 ms 26.912 ms
 3 172.20.52.129 (172.20.52.129) 11.421 ms 15.634 ms 15.710 ms
 4 172.26.52.1 (172.26.52.1) 19.656 ms 11.541 ms 14.295 ms
 5 172.20.6.7 (172.20.6.7) 11.250 ms 19.695 ms 10.394 ms
 6 * * *
 7 203.118.3.203 (203.118.3.203) 18.029 ms 34.176 ms 24.734 ms
 8 134.159.125.65 (134.159.125.65) 23.032 ms 21.225 ms 14.708 ms
 9 i-2-0.ntp-core01.net.reach.com (202.84.180.141) 12.663 ms 13.125 ms
17.107 ms
10 i-5-7.tmhstcbr01.net.reach.com (202.84.249.213) 44.983 ms 47.576 ms

Author: Johnny Wong Page 32 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

48.965 ms
11 i-10-0.tmhstcar01.net.reach.com (207.176.96.67) 46.666 ms 48.138 ms
45.591 ms
12 hutchcity2-RGE.hkix.net (202.40.161.114) 55.219 ms 48.101 ms 59.171
ms
13 210.0.248.222 (210.0.248.222) 45.692 ms 45.687 ms 50.235 ms
14 * * *
15 * * *
16 * * *
17 * * *

The last responding hop was IP 210.0.248.222. I did a whois on this address and my
intended destination IP.

whois -h whois.apnic.net 210.0.248.222
whois -h whois.apnic.net 218.188.55.67

Both belonged to HTHKNET (Hutchinson Telecommunications, HK). Hence, give and
take a few TTLs, I could, with confidence, estimate the IP was about 13 hops away.
By adding this TTL value to the one recorded from the corresponding UDP packet, I
was able to deduce the initial TTL value of the packet.

The expected TTL values revolved around 128, which suggests a Windows
9x/NT/2000 system generating the packets. Quite rightfully so, if my earlier take that
these UDP packets originated from compromised hosts.

Description of the attack

The worm in action has been given names like ‘Sapphire’, ‘SQL-Hell’ and ‘MS-SQL
Slammer’20. It first struck in Jan 2003 and has caused widespread damage not
because of any malicious intent of the payload (like deletion of files) but rather the
speed of propagation. A compromised MS-SQL host sends out UDP packets
containing the worm payload of 376 bytes to port 1434 of randomly selected IP
targets in an infinite loop. When unpatched MS-SQL servers (pre-SP3) receive these
packets, the worm code receives control of the servers, and in turn propagates itself
to other unpatched servers. The worm runs in the memory of the infected server.

Attack mechanism

The Slammer worm based is a stack-based buffer overflow attack against the MS-
SQL server. When a SQL Server receives a packet on UDP port 1434 with the first
byte set to 0x04, the SQL Monitor thread takes the remaining data in the packet and
attempts to open a registry key using this user supplied information. In the worm
code, 0x04 was followed by a long series of 0x01, hence, the SQL Monitor generates
a registry key:

HKLM\Software\Microsoft\Microsoft SQL Server\......\MSSQLServer\CurrentVersion
where represents unprintable 0x01 characters. This overflows the buffer, and the
return address is overwritten, giving the worm control as well as privileges of the SQL
Monitor. After which, the worm loads WS2_32.DLL (Winsock) and starts to propagate
itself to UDP port 1434 of randomly selected IP addresses in an infinite loop.

Author: Johnny Wong Page 33 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

A complete disassembly of the worm code can be found at
http://www.nextgenss.com/advisories/mssql-udp.txt21.

Correlations

The Slammer worm was first detected in late Jan 2003 and recorded as the fastest
spreading worm in history. The capture of the worm in the wild about 6-months later
showed that there are still some compromised MS-SQL hosts out there attempting to
propagate the worm. Nothing else, I presumed, since none of them featured in Block
List found at http://www.dshield.org/block_list_info.php.

Evidence of active targeting

The worm propagates itself by sending the UDP packets to randomly selected IP
addresses. I also observed the source port used was ephemeral (>1024). A common,
firewall-friendly source port such as 53 would indicate an intentional effort to punch
the UDP packets through. But not so in this case. Hence, I would think that no active
targeting was involved.

Severity

Criticality = 1
Criticality is low because there was no host involved. The analysis was carried out on
raw traffic captured off a Cable Internet connection.

Lethality = 3
Lethality was high if an unpatched MS-SQL server was connected to the network.

System countermeasures = 1
No concerns since my router/firewall did not listen on any services or ports.

Network countermeasures = 1
My router/firewall was configured to drop any incoming UDP packets.

Severity = (1+3) – (1+1) = 2

Defensive recommendations

My router diligently dropped these attack packets from reaching into my network. I
had deliberately set up the Linux box for traffic collection, hence I would not be too
concerned with any other measures to defend against this attack.

Multiple choice question

What is one of the possible ways to deduce whether a packet originated from a
spoofed IP address?

Author: Johnny Wong Page 34 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

a. Ping the source IP
b. Traceroute to the source IP
c. Estimate the initial TTL value of the packet and check whether it matches the
signature of any OS
d. Look up Dshield

The answer is (c).

Part 3: Analyze this!

1. Executive summary:

This document summarizes the observations and analysis of 5 days’ worth of logs
files collected from your organization. Alerts, scans and OOS logs from 9th to 13th Jul
2003 were analyzed.

Several Snort alerts were detected during the analysis period. Link graphs were
constructed to give a better picture of the relationships between the various machines
and the type of activities. There were a few instances of suspicious activity involving
computers from your network. Such activities may indicate signs of compromise, like
the use of compromised machines to attack other networks. And even leakage of
information about your network to potential attackers.

Alerts found in your network were compared against the Top 20 critical Internet
Security vulnerabilities according to SANS/FBI, giving an indication of the threat to
your organization. A brief description of the other alerts were also provided. Five
external addresses with their registration information were highlighted.

Throughout the document, defensive recommendations were provided for your
consideration.

2. Log files used in analysis:

The logs from 9th to 13th Jul 2003 were downloaded from your IDS for analysis. The
15 files were:

$ ls -l
total 965504
-rwxrwxr-x 1 johnwong johnwong 27247358 Aug 2 09:51 alert.030709
-rwxrwxr-x 1 johnwong johnwong 35036701 Aug 2 09:53 alert.030710
-rwxrwxr-x 1 johnwong johnwong 33882668 Aug 2 09:55 alert.030711
-rwxrwxr-x 1 johnwong johnwong 42468295 Aug 2 09:55 alert.030712
-rwxrwxr-x 1 johnwong johnwong 29950716 Aug 2 09:57 alert.030713
-rwxrwxr-x 1 johnwong johnwong 1029123 Aug 2 09:51 OOS_Report_2003_07_09_2126
-rwxrwxr-x 1 johnwong johnwong 1402883 Aug 2 09:51 OOS_Report_2003_07_10_4402
-rwxrwxr-x 1 johnwong johnwong 1136643 Aug 2 09:51 OOS_Report_2003_07_11_27931
-rwxrwxr-x 1 johnwong johnwong 7255043 Aug 2 09:55 OOS_Report_2003_07_12_20109
-rwxrwxr-x 1 johnwong johnwong 6594563 Aug 2 09:55 OOS_Report_2003_07_13_9896
-rwxrwxr-x 1 johnwong johnwong 197186311 Aug 2 10:00 scans.030709
-rwxrwxr-x 1 johnwong johnwong 236729582 Aug 2 10:01 scans.030710
Author: Johnny Wong Page 35 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

-rwxrwxr-x 1 johnwong johnwong 122446016 Aug 2 10:00 scans.030711
-rwxrwxr-x 1 johnwong johnwong 120677834 Aug 2 10:01 scans.030712
-rwxrwxr-x 1 johnwong johnwong 125366456 Aug 2 10:01 scans.030713

Each type of files were concatenated into a single file: alert-all.txt, OOS_Report-all.txt
and scans-all.txt. As also observed by Fred Thiele’s GCIA submission22, there were
some discrepancies observed in the alert file:

– Alerts were interjected in the middle of another. For instance,

07/09-00:59:21.716736 [**] CS WEBSERVER - external web traffic [**] 66.196.72.7
307/09-01:36:06.603290 [**] spp_portscan: portscan status from MY.NET.1.4: 9 co
nnections across 9 hosts: TCP(0), UDP(9) [**]
07/09-01:36:06.606318 [**] spp_portscan: portscan status from MY.NET.114.45: 75
 connections across 75 hosts: TCP(75), UDP(0) [**]
07/09-01:36:06.700015 [**] spp_portscan: portscan status from MY.NET.1.3: 3 con
nections across 3 hosts: TCP(0), UDP(3) [**]
07/09-01:36:06.700560 [**] spp_portscan: portscan status from MY.NET.1.4: 14 co
nnections across 14 hosts: TCP(0), UDP(14) [**]
:28765 -> MY.NET.100.165:80
The alert in BOLD RED was split in the middle by the portscan entries.

– The alert file also contained a large amount of spp_portscan entries. These
were filtered off into another file (alert-portscan-all.txt) for ease of analysis. The
main file was alert-all.filtered.txt.

A manual clean-up of the files was carried out before the analysis began, which took
me about 2 days.

3. Pre-processing of alert files and tools used:

A combination of Unix command line tools like sed, cut, awk and grep were used to
massage the raw alerts, scans and OOS files into a format compatible for entry into
MySQL databases. Refer to Annex A for the details.

4. Summary of alerts:

A total of 589,595 alerts were generated during this 5-day period, which excluded the
port scan alerts. There were 61 unique alerts identified. The alerts were:

Author: Johnny Wong Page 36 of 72
 Author retains full rights

Alert #src #dst Occurrence
1 High port 65535 tcp - possible Red Worm - traffic 108 132 133659
2 CS WEBSERVER - external web traffic 20657 6 128355
3 spp_http_decode- IIS Unicode attack detected 550 1193 98201
4 SMB Name Wildcard 894 1296 70614
5 MY.NET.30.4 activity 521 4 44549
6 SYN-FIN scan! 7 23369 36271
7 EXPLOIT x86 NOOP 62 88 32702
8 MY.NET.30.3 activity 78 1 9146
9 spp_http_decode- CGI Null Byte attack detected 88 133 8995
10 Queso fingerprint 341 95 8861
11 Null scan! 47 47 2402

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

12 connect to 515 from inside 6 4 1973
13 IDS552/web-iis_IIS ISAPI Overflow ida nosize 881 466 1566
14 TCP SRC and DST outside network 112 434 1530
15 connect to 515 from outside 1 1 1384
16 High port 65535 udp - possible Red Worm - traffic 63 56 1311
17 FTP passwd attempt 46 80 1283
18 [UMBC NIDS IRC Alert] IRC user /kill detected, po 53 58 1161
19 External RPC call 6 590 989
20 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL no 2 515 827
21 NMAP TCP ping! 134 68 726
22 Possible trojan server activity 52 61 527
23 NIMDA - Attempt to execute cmd from campus host 6 393 403
24 Incomplete Packet Fragments Discarded 57 40 332
25 Tiny Fragments - Possible Hostile Activity 3 0 276
26 SNMP public access 1 1 156
27 SUNRPC highport access! 17 16 150
28 SMB C access 68 9 139
29 TFTP - Internal TCP connection to external tftp s 6 41 118
30 CS WEBSERVER - external ftp traffic 19 1 108
31 TCP SMTP Source Port traffic 2 53 96
32 Notify Brian B. 3.54 tcp 45 1 91
33 Notify Brian B. 3.56 tcp 38 1 79
34 TFTP - Internal UDP connection to external tftp s 7 10 64
35 EXPLOIT x86 stealth noop 6 6 64
36 MYPARTY - Possible My Party infection 1 1 50
37 EXPLOIT x86 setuid 0 29 28 49
38 RFB - Possible WinVNC - 010708-1 17 23 49
39 NETBIOS NT NULL session 6 8 47
40 DDOS shaft client to handler 8 4 39
41 EXPLOIT x86 setgid 0 29 24 34
42 EXPLOIT NTPDX buffer overflow 6 7 25
43 TFTP - External TCP connection to internal tftp s 6 8 22
44 Probable NMAP fingerprint attempt 5 8 21
45 Attempted Sun RPC high port access 6 7 17
46 IRC evil - running XDCC 3 3 16
47 FTP DoS ftpd globbing 1 1 16
48 [UMBC NIDS IRC Alert] Possible sdbot floodnet det 12 1 16
49 External FTP to HelpDesk MY.NET.70.49 7 1 15
50 External FTP to HelpDesk MY.NET.70.50 6 1 14
51 ICMP SRC and DST outside network 6 0 10
52 DDOS mstream handler to client 1 3 8
53 External FTP to HelpDesk MY.NET.53.29 5 1 8
54 Back Orifice 2 3 7
55 TFTP - External UDP connection to internal tftp s 3 5 6
56 Traffic from port 53 to port 123 2 2 5
57 DDOS mstream client to handler 2 2 3
58 [UMBC NIDS IRC Alert] User joining Warez channel 2 2 3
59 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send 3 3 3
60 [UMBC NIDS IRC Alert] K 1 1 2
61 NIMDA - Attempt to execute root from campus host 1 2 2

Table 1 Consolidated table of alerts collected from 9th to 13th Jul 2003

Author: Johnny Wong Page 37 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Some of the alert signatures were most likely created locally, such as #5, #8, #32,
#33, #49 and #50. For example, #5 was triggered whenever there was activity
involving the host MY.NET.30.4. Inbound web traffic would trigger #2. The Snort
signatures were probably crafted as such:

alert any any -> MY.NET.0.0/16 80 (msg: “CS WEBSERVER – external web traffic”;)
alert any any -> MY.NET.30.3/32 any (msg: “MY.NET.30.3 activity”;)
alert any any -> MY.NET.30.4/32 any (msg: “MY.NET.30.4 activity”;)

The IDS was probably sited at the edge of your campus network in between the
perimeter router and firewall.

Other statistics worth noting were:

To
To
To

To

To
Total number of unique attacks launched against MY.NET
ho

49

 total of 589,595 alerts were triggered by 24,428 hosts (internal and external), which

he previous figures indicated that a number of hosts in your network were used to

. Relationships between the various addresses

he following tables were created to look for any meaningful relationships between

ttacks involving MY.NET hosts

tal number of alerts detected 589,595
tal number of unique alerts 61
tal number of unique source addresses detected 24,428

- from MY.NET 466
- from external 23,962

tal number of unique destination addresses detected 25,687
- from MY.NET 23,635
- from external 2,052

tal number of unique attacks launched by MY.NET hosts 18

sts

A
indicates many of the attacks originated from the same host. Most of the attacks
originated from external addresses, which made up 98% of the total number of
attack-related source addresses. A total of 23,635 hosts from your network were
targeted, which made up 92% of the total number attacked destination addresses.

T
attack other networks, or might be compromised and used as launch-pads for attacks
against other networks. 18 unique types of attack were found. However, a larger
number of hosts in your network were attacked. 49 unique attacks were launched
against the hosts in your network.

5

T
the various addresses:

A

Top 10 source from MY.NET

Address Type of alerts triggered

Occurrence % of total alerts
per type of
alert

generated by
MY.NET hosts

Port 65536 tcp-Red Worm 78692MY.NET.82.36 .28%
CGI Null Byte 61

48

Author: Johnny Wong Page 38 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

 IIS Unicode 2
Unicode 5

MY.NET.153.185 IIS Unicode 7297 4.47%
IIS Unicode 5376MY.NET.97.79

Conn to 515 from inside 313
3.49%

MY.NET.97.168 IIS Unicode 3470 2.13%
MY.NET.97.63 IIS Unicode 3120 1.91%
MY.NET.153.211 IIS Unicode 2398 1.47%
MY.NET.84.216 IIS Unicode 2096 1.28%
MY.NET.97.44 IIS Unicode 1678 1.03%

IIS Unicode 1667MY.NET.97.64
Port 65536 tcp-Red Worm 6

1.03%

Table 2

MY.NET.198.172 IIS 973 5.97%

Observation:
The host MY.NET.82.36 triggered the most number of alerts, 99.9% of which came
from Red Worm attacks. It was also noted that all the top 10 MY.NET hosts triggered
the IIS Unicode alert.

Top destination from MY.NET

Address
e type of

Occurrence
per type of

% of total alerts
of uniqu
alerts triggered alert

generated by
MY.NET hosts

CS WEBSERVER – ext web 128346MY.NET.100.165 .34%
Others (11 types) 468

30

5536 tcp-Red Worm 783
Others (4 types) 7

MY.NET.30.4 6 types 44612 10.51%
MY.NET.30.3 4 types 9215 2.17%
MY.NET.24.8 5 types 5606 1.32%
MY.NET.137.7 6 types 5518 1.30%
MY.NET.137.46 5 types 3451 0.81%
MY.NET.86.19 5 types 2212 0.52%
MY.NET.5.67 4 types 1973 0.46%
MY.NET.189.62 5 types 1963 0.46%

Table 3

Port 6 53MY.NET.82.36 12.67%

Observation:
MY.NET.100.165 was the most attacked host in your network. MY.NET.82.36, which
occupied the top spot in Table 2, also appeared here, in second place. Strange
enough, the Red Worm attack which was previously used by this host was now used
against it here.

Type of attacks launched by MY.NET hosts

Alert

of

 Occurrence

MY.NET
hosts
involved

High por 38 79392
2 spp_http_decode- IIS Unicode attack detected 368 70623
3 spp_http_decode- CGI Null Byte attack detected 81 8846

1 t 65535 tcp - possible Red Worm – traffic

Author: Johnny Wong Page 39 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

4 connect to 515 from inside 6 1973
5 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL no 2 827
6 High port 65535 udp - possible Red Worm – traffic 11 496
7 NIMDA - Attempt to execute cmd from campus host 6 403
8 Possible trojan server activity 21 272
9 Incomplete Packet Fragments Discarded 1 123
10 MYPARTY - Possible My Party infection 1 50
11 TFTP - Internal TCP connection to external tftp s 2 29
12 RFB - Possible WinVNC - 010708-1 8 27
13 TFTP - Internal UDP connection to external tftp s 4 25
14 [UMBC NIDS IRC Alert] Possible sdbot floodnet det 12 16
15 IRC evil - running XDCC 3 16
16 DDOS mstream handler to client 1 8
17 TFTP - External TCP connection to internal tftp s 4 6
18 NIMDA - Attempt to execute root from campus host 1 2

Table 4

Observation:
A majority of MY.NET hosts triggered IIS Unicode alerts (#2). Some of the alerts
could be due to false positives such as the IIS Unicode and CGI Null Byte attacks.
#8, #10 and #16 are related to Trojan activities. #2, #3, #5, #7 and #18 are closely
related to IIS vulnerabilities.

Type of attacks launched against MY.NET hosts

 Alert

of

 Occurrence

MY.NET
hosts
targeted

1 CS WEBSERVER - external web traffic 5 128350
2 SMB Name Wildcard 1294 70612
3 High port 65535 tcp - possible Red Worm – traffic 44 54270
4 MY.NET.30.4 activity 4 44548
5 SYN-FIN scan! 23368 36268
6 EXPLOIT x86 NOOP 86 32700
7 spp_http_decode- IIS Unicode attack detected 450 27579
8 MY.NET.30.3 activity 1 9146
9 Queso fingerprint 94 8860
0 Null scan! 47 2402
11 IDS552/web-iis_IIS ISAPI Overflow ida nosize 466 1566
12 connect to 515 from outside 1 1384
13 FTP passwd attempt 80 1283
14 [UMBC NIDS IRC Alert] IRC user /kill detected, po 58 1161
15 External RPC call 590 989
16 High port 65535 udp - possible Red Worm - traffic 28 815
17 NMAP TCP ping! 68 726
18 Possible trojan server activity 20 255
19 Incomplete Packet Fragments Discarded 38 209
20 SNMP public access 1 156
21 SUNRPC highport access! 16 150
22 spp_http_decode- CGI Null Byte attack detected 7 149
23 SMB C access 9 139
24 CS WEBSERVER - external ftp traffic 1 108

1

Author: Johnny Wong Page 40 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

25 TCP SMTP Source Port traffic 53 96
26 Notify Brian B. 3.54 tcp 1 91
27 TFTP - Internal TCP connection to external tftp s 39 89
28 Notify Brian B. 3.56 tcp 1 79
29 EXPLOIT x86 stealth noop 6 64
30 EXPLOIT x86 setuid 0 28 49
31 NETBIOS NT NULL session 8 47
32 DDOS shaft client to handler 4 39
33 TFTP - Internal UDP connection to external tftp s 5 39
34 EXPLOIT x86 setgid 0 24 34
35 EXPLOIT NTPDX buffer overflow 7 25
36 RFB - Possible WinVNC - 010708-1 11 22
37 Probable NMAP fingerprint attempt 8 21
38 Attempted Sun RPC high port access 7 17
39 TFTP - External TCP connection to internal tftp s 6 16
40 FTP DoS ftpd globbing 1 16
41 External FTP to HelpDesk MY.NET.70.49 1 15
42 External FTP to HelpDesk MY.NET.70.50 1 14
43 External FTP to HelpDesk MY.NET.53.29 1 8
44 Back Orifice 3 7
45 TFTP - External UDP connection to internal tftp s 5 6
46 Traffic from port 53 to port 123 2 5
47 [UMBC NIDS IRC Alert] User joining Warez channel 2 3
48 DDOS mstream client to handler 2 3
49 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send 3 3

Table 5

Observation:
A large number of MY.NET hosts were probed with SYN-FIN scans (#5). There were
a couple of locally created alert signatures such as #1, #4 and #8. These were most
likely used to track host activity.

Attacks involving External hosts

Top 10 source from external

Address Type of alerts triggered

Occurrence
per type of

% of total alerts

Author: Johnny Wong Page 41 of 72
 Author retains full rights

alert
generated by
external hosts

24.84.205.243 1%Port 65536 tcp-Red Worm 53783 12.6
IIS Unicode 2638780.204.44.179

5 other types 779
6.37%

142.26.120.7 SYN-FIN scan 20538 4.82%
68.54.93.211 MY.NET.30.4 activity 18881 4.43%
195.5.55.32 SYN-FIN scan 15722 3.69%
172.176.163.24 EXPLOIT x86 NOOP 10828 2.54%
169.254.45.176 SMB Name Wildcard 8084 1.90%
217.88.160.45 EXPLOIT x86 NOOP 6620 1.55%
172.180.87.233 6 types of alerts 6571 1.54%
131.118.254.13 4 types of alerts 5352 1.25%

Table 6

Observation:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

The host at 24.84.205.243 featured prominently and closely related to the Red Worm
attacks. Hosts 142.26.120.7 and 195.5.55.32 carried out SYN-FIN probes against
machines in MY.NET, an observation noted earlier too (refer to Table 5). Hosts
172.168.163.24 and 217.88.160.45 contributed to most of the EXPLOIT x86 NOOP
attacks against MY.NET machines.

Top 10 destination from external

Address Type of alerts triggered

Occurrence
per type of

% of total alerts

alert
generated by
external hosts

Port 65536 tcp-Red Worm 7869024.84.205.243 9%
SMB Name Wildcard 1

47.7

211.147.7.47 IIS Unicode 11598 7.04%
IIS Unicode 9627210.192.111.73

CS WEBSERVER – ext web 1
5.85%

65.127.129.10 IIS Unicode 3750 2.28%
207.200.86.97 IIS Unicode 2679 1.63%
216.241.219.22 CGI Null byte 2247 1.36%
218.153.6.229 IIS Unicode 2189 1.33%
202.103.69.100 IIS Unicode 2044 1.24%
218.153.6.244 IIS Unicode 1716 1.04%
211.43.210.143 IIS Unicode 1536 0.93%

Table 7

Observation:
Notice the similarity to Table 2. Most of the top external hosts targeted by IIS Unicode
attacks.

Top source/alert pair
Address Alert Occurrence
MY.NET.82.36 High port 65535 tcp - possible Red Worm - traffic 78692
24.84.205.243 High port 65535 tcp - possible Red Worm - traffic 53783
80.204.44.179 spp_http_decode- IIS Unicode attack detected 26387
142.26.120.7 SYN-FIN scan! 20538
68.54.93.211 MY.NET.30.4 activity 18881
195.5.55.32 SYN-FIN scan! 15722
172.176.163.24 P EXPLOIT x86 NOO 10828
MY.NET.198.172 spp_http_decode- IIS Unicode attack detected 9735
169.254.45.176 SMB Name Wildcard 8084
MY.NET.153.185 spp_http_decode- IIS Unicode attack detected 7297

Table 8

Top destination/alert pair
Address Alert Occurrence
MY.NET.100.165 ERVER - external web traffic CS WEBS 128346
24.84.205.243 High port 65535 tcp - possible Red Worm - traffic 78690
MY.NET.82.36 High port 65535 tcp - possible Red Worm - traffic 53782
MY.NET.30.4 MY.NET.30.4 activity 44545
211.147.7.47 spp_http_decode- IIS Unicode attack detected 11598
210.192.111.73 spp_http_decode- IIS Unicode attack detected 9627
MY.NET.30.3 MY.NET.30.3 activity 9146

Author: Johnny Wong Page 42 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

MY.NET.24.8 EXPLOIT x86 NOOP 5520
MY.NET.137.7 SMB Name Wildcard 5437
65.127.129.10 spp_http_decode- IIS Unicode attack detected 3750

Table 9

Top source-destination pair
Source Destination Occurrence
MY.NET.82.36 24.84.205.243 78688
24.84.205.243 MY.NET.82.36 53780
68.54.93.211 MY.NET.30.4 18881
MY.NET.198.172 210.192.111.73 9627
131.118.254.13 MY.NET.24.8 5352
MY.NET.97.79 211.147.7.47 5349
193.41.146.24 MY.NET.100.165 4576
65.214.36.116 MY.NET.100.165 3760
MY.NET.97.168 65.127.129.10 3470
68.55.52.234 MY.NET.30.3 3182

Table 10

bservation: O

Notice the two-way relationship between MY.NET.82.36 and 24.84.205.243, both
directions involved the Red Worm attacks. The external host 210.192.111.73 was
one of the top listener and all its traffic came from MY.NET.198.172. The alerts that
came from locally created signatures also featured prominently, namely the CS
WEBSERVER and MY.NET.30.4 activity. Note the high occurrence of web traffic
from 193.41.146.24 and 65.214.36.116.

Note also the high frequency of SYN-FIN and EXPLOIT x86 NOOP in Table 8, but
none of the source addresses featured in Table 10. This was because they were
probes sent to a range of destination addresses, not active targeting of a single host.

Reviewing the scans logs

here were a total of 12,281,498 scans detected during the five-day period from 9th to

Top 5 Scans type

T
13th Jul. From the “scans” files, the “MY.NET” prefixes were replaced with “130.85”,
which coincidently owned by Maryland University. The Top scans activities by to
protocol type were:

Type

of
u

Count

Top destination

 nique

source
address

port

UDP 576 62 53 (51%)18981
SYN 943 5845119 80 (71%)
FIN 31 177659 1214 (100%)
SYNFIN 9 36281 21 (100%)
NULL 49 889 110 (46%)

Table 11
Author: Johnny Wong Page 43 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

The other statistics generated from Table 11 were:

op Source Address to Destination UDP Port 53
ation

T
Address Occurrence # of destin

addresses
0.85.1.3 2,698,955 72,208
0.85.1.4 468,395 30,475

ese two hos ing a lot s to a

13
13

h ts were send of DNS querie large of external hosts.

op Source Address of SYNFIN scans

T
Could these 2 be compromised servers sending out probes? A search in the alert
logs of any alerts triggered with either of these 2 addresses as source turned out
empty. This could be legitimate activity but I would still recommend checking out the
contents of the UDP payloads sent out.

T
Address Occurrence
14 .7 2.26.120 20,538
5.5.55.32 15,723

e SYNFIN typ re com

19

h e statistics he plemented Table 8, identifying the top 2 culprits

ossible scan activity from 130.85.114.45

he host 130.85.114.45 was sending out SYN probes to a series of external

ul 9 00:00:06 130.85.114.45:1042 -> 134.203.218.29:80 SYN ******S*

ry next

T
of SYN-FIN scans against your network to be 142.26.120.7 and 195.5.55.32. The
SYN-FIN scans were targeted at port 21 (ftp).

P

T
addresses:

J
Jul 9 00:00:06 130.85.114.45:1043 -> 134.203.218.30:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1044 -> 134.203.218.31:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1046 -> 134.203.218.32:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1047 -> 134.203.218.33:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1048 -> 134.203.218.34:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1049 -> 134.203.218.35:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1050 -> 134.203.218.36:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1051 -> 134.203.218.37:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1052 -> 134.203.218.38:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1053 -> 134.203.218.39:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1054 -> 134.203.218.40:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1056 -> 134.203.218.41:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1059 -> 134.203.218.42:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1060 -> 134.203.218.43:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1061 -> 134.203.218.44:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1062 -> 134.203.218.46:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1063 -> 134.203.218.45:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1065 -> 134.203.218.48:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1066 -> 134.203.218.49:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1067 -> 134.203.218.50:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1068 -> 134.203.218.51:80 SYN ******S*
Jul 9 00:00:06 130.85.114.45:1069 -> 134.203.218.52:80 SYN ******S*

otice the traits of a portscan tool, such as incrementing source port with eveN
destination IP (sequential), and the frequency of the SYN packets being generated.

Author: Johnny Wong Page 44 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

1,403,124 addresses were SYN-scanned by this host.

Reviewing the OOS logs

 total of 63,922 OOS packets (49 types) were observed throughout the 5-day

OOS Type
No. of OOS

Percentage
of total OOS

Remarks

A
period. The most common type of OOS packets were:

packets packets

were 142.26.120.7 and 195.5.55.32,
which complemented Table 8, the
source IP of SYN-FIN scans.
Reference to the Queso finger
attack discussed later.
A signature of a NULL sca
later section on detects.

******SF 48,039 75.15%

The top source of these OOS packets

12****S* 14,751 23.08%
print

******** 638 1.00%
n – see

6. Link Graphs

ase 1 – Attacks involving the Red Worm

C

en the hosts involved in the Red Worm

ot indicated in the diagram below, the host MY.NET.82.36 initiated some access to

7/11-09:09:09.347592 | EXPLOIT x86 setuid 0 | 68.5.225.168 | 15448 | MY.NET.82.36 | 6881 |

he observation of the destination port targeted (6881) was significant, because on

First, I examined the relationships betwe
attacks.

N
217.215.27.135 port 80 from 1334hrs to 1510hrs on 07/10/03, which triggered 61
“CGI Null Byte detected” alerts. On 07/11/03, hosts 68.5.225.168 and 205.252.89.182
initiated connections to the MY.NET host port 6881, triggering the “Exploit x86 setuid
0” and “Exploit x86 setgid 0” alerts:

0
07/11-09:23:47.215387 | EXPLOIT x86 setgid 0 | 68.5.225.168 | 15448 | MY.NET.82.36 | 6881 |
07/11-18:25:28.121629 | EXPLOIT x86 setgid 0 | 205.252.89.182 | 1819 | MY.NET.82.36 | 6881 |

T
the following day, the traffic between MY.NET.82.36:6881 and 24.84.205.243:65535
triggered a barrage of Red Worm alerts on the same day. The host 24.84.205.243 did
not communicate with any other MY.NET host. Was it purely coincidental or
somehow the attack on the earlier day was related? A search of
http://www.sans.org/y2k/ports.htm23 did not return any associated service with this
port number. Could MY.NET.82.36 be used to attack another host?

Author: Johnny Wong Page 45 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Link Graph 1

I would recommend checking on the machine MY.NET.82.36 for any signs of
compromise. The raw logs could be examined to detect any malicious code in the
payload.

Case 2 – Attacks involving the IIS Unicode
The “IIS Unicode attack” rated as number 3 overall for the number of alerts
generated. As evident from Tables 2 and 7, there was a correlation between the “IIS
Unicode attack” alerts triggered by the MY.NET hosts as source and the external
hosts as destination. I also noted the external host 80.204.44.179 triggered the alert
against 26,738 MY.NET hosts.

Let’s look at the targeted external hosts first. 7 out of the top 10 targeted hosts
belonged to sites located in Asia. Netscape.com also appeared in the list:

External host Location?
Alert
Count

of MY.NET
hosts

involved
211.147.7.47 China 11,598 14

210.192.111.73 China 9,627 1

65.127.129.10
U.S. -

performancestore.com 3,750
2

207.200.86.97
U.S.

Netscape.com 2,679
6

218.153.6.229 Korea 2,189 1

202.103.69.100 China 2,044 10

218.153.6.244 Korea 1,716 1

211.43.210.143 Korea 1,536 1

66.36.238.12
U.S.

Mixedrace.com 1,511
4

210.115.150.102 Korea 1,315 2

Author: Johnny Wong Page 46 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Link Graph 2

This attack is susceptible to generating false positives. Most Asian web sites use
Unicode to display the language characters, such as Japanese, Korean and Chinese.
These alerts might have been triggered as such. For the non-Asian sites, I would
advise inspecting the payload for any malicious content. If the result of the inspection
pointed to false positive, then I recommend turning off the detection of Unicode in the
Snort IDS. The steps can be found at http://www.snort.org/docs/FAQ.txt24 under item
4.17.

My attention now turned to the external host 80.204.44.179. This particular host
launched the attack against 437 machines in your network, triggering 26,387 alerts in
the process. This attack was launched against port 80 of the destination host. Hence,
the locally created alerts such as:

• “MY.NET.30.4 activity”,
• “MY.NET.30.3 activity”,
• “CS WEBSERVER – external web traffic”,
• “Notify Brian B. 3.54 tcp” and
• “Notify Brian B. 3.56 tcp”

were also triggered. The attack started on 07/10 at 0148hrs and lasted till 0942hrs on
the same day. I also noted that the hosts MY.NET.7.140 (326 times) and
MY.NET.111.155 (282 times) were targeted the most times. The other hosts
averaged about 60~70 alerts each.

This host could be running a vulnerability scan against the machines in your network,
specifically looking for vulnerable IIS web servers susceptible to the Unicode
attack(s). A check with Dshield and Sam Spade did not reveal any information about
this IP address. I would recommend:

• Checking the raw logs to see there were any return traffic from your hosts to
this IP, especially from MY.NET.7.140 and MY.NET.111.155. This might
indicate a successful compromise.

• Ensure that the IIS web servers in your network are patched to the latest

Author: Johnny Wong Page 47 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

versions.
• Block this IP from entering your network if it was confirmed that an attack was

carried out.

Case 3 – Attacks involving the Exploit x86 NOOP

Reference to Table 6, the hosts at 172.176.163.24 and 217.88.160.45 featured
prominently in terms of the Exploit x86 NOOP attacks. Upon further examination, I
found that the targeted MY.NET hosts by these 2 IPs were similar:

Link Graph 3

A run of whois against these two addresses revealed them to be from America On
Line and Deutsche Telekom respectively. This alert is also susceptible to false
positives, such as traffic carrying binary data, jpg, GIF and bitmaps. I found out that
all the destination ports for the alerts was port 80 (HTTP). This could indicate return
HTTP traffic to web servers in MY.NET, whose payload contained NOOP bytes. I
deduced that 172.176.163.24 and 217.88.160.45 belonged to Internet users who
were accessing web servers in your network, but unintentionally triggered the NOOP
alerts. Maybe they were transferring executables, pictures that contained NOOP
bytes.

Reference to Table 4 and 5, I found that only incoming traffic triggered these alerts. In
summary,

1 o. 3
2 o. 7
 - N 7
3 o. 2
 - N 2
4 o. 5

N of alerts 2,702
N of alerts where source port eq 80 02

o. of unique MY.NET hosts targeted 4
N of alerts where destination port eq 80 6,656

o. of unique MY.NET hosts targeted 1
N of alerts where destination port eq 119 ,521

Author: Johnny Wong Page 48 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

 - N 2o. of unique MY.NET hosts targeted

Source port of 80 indicated traffic from external web servers to MY.NET hosts. 74
hosts in MY.NET were involved, most likely belonging to users who were accessing
to external web sites.

Destination port of 80 was explained earlier. I would recommend verifying whether
the MY.NET hosts (as in Link Graph 3) are indeed legitimate web servers, and if
possible, run vulnerability scans against them.

Destination port of 119 indicated postings to news servers in MY.NET. 2 were found,
namely MY.NET.24.8 and MY.NET.81.42, and I would advise verifying these 2
machines are indeed running as news servers.

From the observations, I recommend disabling the “Exploit x86 NOOP” signature in
the Snort IDS, which would reduce the amount of alerts due to false positives.

Case 4 – Port scans activities against and from MY.NET hosts

Link Graph 4

Two activities brought about concerns here. Firstly, your network was actively
targeted by SYN-FIN scans from 2 particular external hosts. Secondly,
MY.NET.114.45 sent out a barrage of SYN packets against port 80 of a wide range of
external addresses. I suspect an automated portscan tool was run on this particular
machine. I recommend checking on this machine for any possible compromise.

Author: Johnny Wong Page 49 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

7. List of Detects

I referred to the SANS/FBI Top 20 List of the Most Critical Internet Security
Vulnerabilities at http://www.sans.org/top20/25, and grouped the attacks found in your
network according to the categories of vulnerabilities. The remaining attacks were
highlighted at the end of the section.

SANS/FBI Top Vulnerabilities to Windows Systems

W1 – Internet Information Services (IIS)
Alert
Count

Attack Description

98,201 IIS Unicode
attack

Unicode, which are basically hex-encoded
characters, are used to attack IIS servers that are
not able to handle improperly formatted HTTP
requests. A remote attacker would be able to
execute arbitrary commands on the server, such as
cmd.exe as part of crafted HTTP request.

The alerts triggered could also be false positives,
as Unicode characters could exist in legitimate web
traffic. This was highlighted in Case 2 of the Link
Graphs section.

8,995 CGI Null Byte When the Snort http pre-processor detects a %00 in
a http request, it will alert with “CGI Null Byte
Attack”. Attackers could use this as means to have
arbitrary access to a web server.

However, the alerts could be false positives,
instances where access to sites that use cookies
with URL-encoded binary data, or when SSL encrypted
is picked up. Having a packet dump is the only way
to verify whether we have a real attack in our
hands.

A couple of reports on this alert has concluded
that such alerts were false alarms:

http://www.giac.org/practical/Joe_Ellis_GCIA.doc26
(Joe Ellis’ GCIA Practical)
http://www.lurhq.com/idsindepth.html27
(Johnny Calhoun’s GCIA Practical)

2,393 IDS552/web_iis
ISAPI overflow
ida nosize

&

IDS552/web_iis
ISAPI overflow
IDA internal

Many ISAPI extensions are vulnerable to buffer
overflows. This event indicates a remote attacker
has attempted to exploit a vulnerability in
Microsoft IIS:

http://www.whitehats.com/info/IDS55228

An unchecked buffer in the Microsoft IIS Index
Server ISAPI Extension could enable a remote
intruder to gain SYSTEM access to the server:

Author: Johnny Wong Page 50 of 72
 Author retains full rights

http://www.eeye.com/html/Research/Advisories/AD2001

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

0618.html29

The hosts MY.NET.97.24 and MY.NET.97.205 were
triggering such alerts. These 2 hosts could be
compromised.

405 NIMDA –
Attempt to
execute cmd or
root from
campus host

These attacks target the buffer overflow
vulnerability of ISAPI extensions. Such attacks
could cause Denial of Service or allow the
execution of arbitrary code on the Web server.

Six MY.NET hosts were found generating these
alerts:
- MY.NET.30.86
- MY.NET.97.24
- MY.NET.97.176
- MY.NET.114.15
- MY.NET.184.25
- MY.NET.97.205

Defensive Recommendations
The SANS/FBI Top 20 site suggested a few approaches to protect against IIS
attacks, such as applying the latest patches, eliminating sample
applications and unmapping unnecessary ISAPI extensions.

I would also like to recommend checking the MY.NET hosts indicated earlier
for any signs of compromise. Particularly MY.NET.97.24 and MY.NET.97.205,
both featured as source of ISAPI and Nimda alerts.

Author: Johnny Wong Page 51 of 72
 Author retains full rights

W4 NETBIOS – Unprotected Windows Network Shares
Alert
Count

Attack Description

70,614 SMB Name
Wildcard

Attackers could craft packets directed at port 137
to extract useful NetBIOS information like
workstation name, domain and users currently logged
in (NetBIOS Name Table Retrieval Query). Such
packets would trigger the SMB Name Wildcard alerts.

There was a high number of alerts coming from
source address 169.254.45.176. This address
belonged to the Linklocal address space, as defined
in RFC3330:

http://www.rfc-editor.org/rfc/rfc3330.txt30

Linklocal addresses are assigned to network
interfaces when a local DHCP server is not
available. The fact that none of the MY.NET hosts
was the source of this attack, I concluded that the
alerts (from source 169.254.45.176) originated from
MY.NET hosts running Microsoft Windows 98. Refer
to:

http://www.sans.org/y2k/072500-1200.htm31

139 SMB C access This signature captures attempts to access the
default administrative share C$. If successful, the
attacker would be able to access the c: filesystem.

http://www.whitehats.com/info/IDS33932

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Defensive Recommendations
Some of the recommendations from the SANS/FBI Top 20 site:
- Disable Windows file sharing if not required, otherwise, enforce
authenticated shares
- Deny sharing with hosts on the Internet
- Block ports used for Windows shares at your network perimeter i.e. 137-
139 TCP and UDP, and 445 TCP and UDP.

W5 Anonymous Logon – NULL sessions
Alert
Count

Attack Description

47 NetBIOS NT
Null session

This signature detects a Windows NT login as Nobody
(nt-netbios-nullsession). Null sessions are used to
list shares and users on a Windows NT server or
client workstation.

http://www.whitehats.com/info/IDS20433

Defensive Recommendations
The recommendations pointed out in W4 could be adopted here.

SANS/FBI Top Vulnerabilities to Unix Systems

Author: Johnny Wong Page 52 of 72
 Author retains full rights

U1 Remote Procedure Calls (RPC)
Alert
Count

Attack Description

989 External RPC
call

The external RPC calls targeted port 111, the
portmapper service. The attackers hoped to find out
what services are running on a particular host and
on which port the services are run. A total of 6
external hosts targeted 590 machines in your
network:
- 216.101.67.45
- 211.168.183.66
- 67.34.61.114
- 67.32.137.235
- 210.251.104.22
- 143.225.151.30

167 SUNRPC
highport
access

&

Attempted Sun
RPC high port
access

The signature used to detect this attack was based
on access to port 32771 TCP or UDP. Hence, it was
highly probable that these were false positives.

It would be a concern if those hosts that carried
out the “external RPC call” were featured here, but
fortunately, they did not. If they did, that meant
that they got a response from the targeted host on
which services were running, and attempted to
connect to them.

Defensive Recommendations
Some recommendations which I wish to highlight:
- turn off any RPC service on your Unix hosts unless absolutely required
- install the latest patches if RPC services count not be removed
- block portmapper port 111 at your network perimeter
- block RPC “loopback” ports from 32770 to 32789 (TCP and UDP)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

U4 Simple Network Management Protocol (SNMP)
Alert
Count

Attack Description

156 SNMP public
access

This Snort signature attempts to detect any access
to port 161 (SNMP) with the “public” community
string.

The 150 occurrences was attributed to a one-sided
traffic from 134.192.86.65 to MY.NET.190.13. The
culprit resolved to a host in your network,
according to whois.

I would recommend verifying whether the traffic was
legitimate or due to some mis-configuration of
equipment.

Defensive Recommendations
If SNMP is not required, it should be turned off. Otherwise, replace the
default “public” community string.

U5 File Transfer Protocol (FTP)
Alert
Count

Attack Description

1,283 FTP passwd
attempt

This signature detects any attempt to retrieve the
passwd file from an FTP server.

The external host 218.19.12.57 triggered the alert
against 80 MY.NET hosts. This address originated
from China.

16 FTP DOS ftpd
globbing

This signature detects any attempt to crash the
ftpd server software by sending a wildcard request
to create a DOS on vulnerable FTP servers:

http://www.whitehats.com/info/IDS48734

The 16 occurrences were attributed to a one-sided
traffic from 213.133.108.15 to MY.NET.24.27. The
culprit resolved to a host in Germany, according to
whois.

Defensive Recommendations
The following recommendations are suggested:
- upgrade to latest version of FTP
- implement restrictive file permissions on the FTP server

Author: Johnny Wong Page 53 of 72
 Author retains full rights

U7 Line Printer Daemon (LPD)
Alert
Count

Attack Description

1,973 Connect to 515
from inside

The LPD daemon listens on TCP port 515. Many
implementations of LPD contain programming flaws
which led to buffer overflow situations, allowing
attackers to run arbitrary code with root
privileges.

The hosts MY.NET.97.20, MY.NET.97.79, MY.NET.97.93

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

and MY.NET.97.122 could be running a portscan on
132.250.182.61. This was characterized by the
incrementing (by one every attempt) source port
used.

1,384 Connect to 515
from outside

The 1,384 occurrences were attributed to incoming
traffic from 131.118.229.7 to MY.NET.24.15.

Defensive Recommendations
The following recommendations are suggested:
- conduct a check on MY.NET.97.20, MY.NET.97.79, MY.NET.97.93 and
MY.NET.97.122. These machines could be compromised.
- verify whether the traffic between 131.118.229.7 and MY.NET.24.15 is
legitimate. If the machine does not need to act as a print server for
remote requests, then the LPD service should be blocked.

U9 BIND/DNS
Alert
Count

Attack Description

3,167,350 Possible scans
for BIND
weaknesses

As observed in the scans logs, both hosts
MY.NET.1.3 and MY.NET.1.4 were sending out UDP
packets destined to port 53 (DNS) of 76,316
external hosts.

Defensive Recommendations
I would recommend checking on the hosts MY.NET.1.3 and MY.NET.1.4 for any
signs of compromise. The fact that port 53 is related to BIND/DNS servers,
and the large number of hosts targeted suggested a possibility that these
hosts were looking for weak hosts to compromise.

I also highlighted the other types of attacks:

Author: Johnny Wong Page 54 of 72
 Author retains full rights

Possible reconnaissance attempts
Alert
Count

Attack Description

36,271 SYN-FIN scans Packets with SYN-FIN flags set do not occur
naturally and indicates an intentional probe.
It is probably a single packet OS detection
probe:

http://www.whitehats.com/info/IDS19835

The SYN-FIN scans against your network were
targeted at port 21 (FTP). The attackers were
most likely looking for vulnerable FTP servers,
such as WU-FTPD. Similar sightings of SYN-FIN
scan to port 21 were found:

http://www.dshield.org/pipermail/list/2003-
July/009146.php (James C. Slora, Jr)36
http://cert.uni-
stuttgart.de/archive/intrusions/2003/01/msg0044
6.html (Dave R)37
http://cert.uni-
stuttgart.de/archive/intrusions/2002/10/msg0011
1.html (Al Williams)38

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

8,861 Queso
fingerprint

The Queso fingerprinting tool is used to
determine the OS running on the targeted
servers. Queso packets are characterized by the
SYN, ECN and CWR (Reserved bits 1 & 2) flags
set to 1, and a high TTL value. However,
legitimate traffic might also bear the same
characteristics, such as traffic across ECN-
enabled routers.

Toby discussed the impact of the use of ECN/CWR
bits (RFC 3168 previously RFC 2481) for network
QoS on Intrusion Detection:

http://www.securityfocus.com/infocus/120539

The IP 213.186.35.9 seemed to be probing your
network for listening ports on
- ports 80, 81, 3128, 6588, 8080, 8081, 8000,
8001 (proxy related)
- port 23 (telnet)

The traffic was characteristic of a portscan in
action, such as incrementing source port with
every probe.

2,402 Null scans Packets from a Null scan attempt are
characterized by zero-ed TCP SEQ and ACK
numbers, and all TCP flags. Null scans are used
to detect the open ports on the targeted
servers by observing the responses.

The top source of the NULL scan originated from
213.176.8.2. This IP was also culprit of
launching the NMAP fingerprint and SYN-FIN
against the hosts in your network.

726 Nmap TCP ping TCP packets with the ACK number of zero and ACK
flag set would trigger this alert.

http://www.whitehats.com/info/IDS2840

The remote attack could be using Nmap to probe
the servers in your network.

21 Probable Nmap
fingerprint
attempt

A remote attacker used nmap to fingerprint the
OS running on your servers. The packets are
characterized by the SYN, FIN, URG and PUSH
flags all set:

http://www.whitehats.com/info/IDS541

Defensive Recommendations
The reconnaissance attempts highlighted used packets that are out-of-spec
(not likely to occur in normal traffic) to solicit response from servers,
such as determining the OS running or which ports were opened. All the
probe attempts originated from external hosts (fortunately). A stateful
firewall would be able to block these out-of-spec packets from entering
your network.

Author: Johnny Wong Page 55 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Shellcode attacks
Alert
Count

Attack Description

32,702 Exploit x86
NOOP

64 Exploit x86
stealth NOOP

49 Exploit x86
setuid 0

34 Exploit x86
setgid 0

25 Exploit NTPDX
buffer
overflow

Shellcode exploits make use of platform
specific operations (such as the 0x90 character
which represents NOOP in x86 machine code) to
hide the buffer overflow attempts. Hence, the
IDS signatures detect such attacks by
inspecting the packet payload for specific
strings of hex bytes.

Exploit x86 NOOP:
http://www.whitehats.com/info/IDS18142

Exploit x86 stealth NOOP (using the jmp 0x02):
http://www.whitehats.com/info/IDS29143

Exploit x86 setuid 0 (using the setuid(0)
system call for x86 platform):
http://www.whitehats.com/info/IDS28344

Exploit x86 setgid 0 (using the setgid(0)
system call for x86 platform):
http://www.whitehats.com/info/IDS28445

The above alerts are susceptible to false
positives because the very signatures used to
detect them occur in normal legitimate network
traffic as well. For example, the byte strings
may occur in binary files downloads. Another
example (x86 Exploit NOOP – false alarm):

http://www.giac.org/practical/David_Oborn_GCIA.
html46
http://cert.uni-
stuttgart.de/archive/intrusions/2003/05/msg0009
0.html47

The Exploit NTPDX buffer overflow attack
attacks vulnerable implementations of ntpd and
xntpd daemons:
http://www.whitehats.com/info/IDS49248

The signature works be detecting any UDP
packets destined for port 123 with the length
greater than 128 bytes. According to the URL
above, there was mention of some unusual
implementations or obscure options that might
cause longer packets than normal to be sent.

Defensive Recommendations
It would be more difficult to block such attacks than detecting them
because more often than not, normal network traffic would be the culprit.
The only way to verify whether such attacks did occur is by inspecting the
raw packet logs.

Author: Johnny Wong Page 56 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Author: Johnny Wong Page 57 of 72
 Author retains full rights

Worm activity
Alert
Count

Attack Description

133,659 High port tcp
65535 –
possible Red
Worm traffic

1,311 High port udp
65535 –
possible Red
Worm traffic

The Snort signature appeared to be locally
created and not found in a standard Snort
rulebase, possibly:

alert tcp any any -> any 65535 (msg: “High port
65535 tcp – possible Red Worm – traffic”;)

alert udp any any -> any 65535 (msg: “High port
65535 udp – possible Red Worm – traffic”;)

The Red Worm is also known as the Adore Worm.
The signature was probably created to detect
the Adore Worm, which spreads in Linux via
vulnerabilities found in BIND named, wu-ftpd,
rcp.statd and lpd services. A compromised host
opens a backdoor in the port 65535. The
signature triggered an alert as long as either
the source or destination TCP port equals
65535. However, port 65535 could also exist in
a legitimate TCP connection, giving rise to
false positives.

http://www.sans.org/y2k/adore.htm49
http://www.dials.ru/english/inf/linux_adore.htm
50
http://www.f-secure.com/v-descs/adore.shtml51
http://www.giac.org/practical/Michael_Reiter_GC
IH.zip52

William Stearns has written a script to detect
the presence of the Adore Worm called
adorefind, which could be downloaded from:

http://www.ists.dartmouth.edu/IRIA/knowledge_ba
se/tools/adorefind.htm53

50 MYPARTY –
possible My
Party
infection

MyParty is a mass-mailing email worm. Part of
the worm code opens a backdoor Trojan that
allows a remote attacker to control the
compromised host:

http://securityresponse.symantec.com/avcenter/v
enc/data/w32.myparty@mm.html54

According to the description, the backdoor
Trojan contacts the web site at 209.151.250.170
and execute instructions based on the contents
of the site. Matt Yackley captured some of the
web activity from the Trojan at:

http://www.incidents.org/archives/intrusions/ms
g03040.html55

Defensive recommendations
Perhaps the signature used to detect the Red Worm traffic was too

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

simplistic, resulting in false positives. Rather, I recommend running the
adorefind script to detect the presence of this worm in your network.

As for the MyParty worm infection, I would recommend checking the firewall
logs for any outgoing connection to 209.151.250.170. If there are, then the
affected machines should be checked for the presence of the file
msstask.exe.

Author: Johnny Wong Page 58 of 72
 Author retains full rights

Trojan activity

Alert
Count

Attack Description

527 Possible
Trojan server
activity

The signature for this alert was probably
crafted to detect the TCP port 27374. Port
27374 is related to a variety of Trojans, such
as the SubSeven Trojan.

Simple as it was, the signature might attribute
to false positives, because port 27374 could be
the ephemeral port used in a legitimate
transaction.

49 RFB – possible
WinVNC

WinVNC is the Microsoft Windows version of
AT&T’s VNC (Virtual Network Computing). VNC is
a remote control software that allows a user to
view and interact with one computer using
another computer anywhere in the Internet.

http://home.earthlink.net/~jknapka/vncpatch.htm
l56

A default installation of VNC serves out the
Java applet via port 5800. Ports 5900-5903 is
used to serve the RFB (remote frame buffer)
sessions between the client and server. The
signature for this alert was probably crafted
to detect the presence of any WinVNC sessions
by looking for traffic where ports 5900-5903
was used.

The signature is susceptible to false positives
because ports 5900-5903, being above 1024,
might be used is normal traffic.

39 DDOS shaft
client to
handler

shaft is a DDOS tool that is made up of a few
handlers and a large number of agents. The
attacker uses telnet to communicate with the
handlers. A detailed analysis of the shaft DDOS
tool can be found at:

http://home.adelphi.edu/~spock/shaft_analysis.t
xt57

Traffic flow between the client and handlers is
characterized by the use of tcp port 20432. A
sample Snort signature can be found at:

http://www.whitehats.com/info/IDS25458

The signature is susceptible to false positives
because port 20432 might be used is normal

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

traffic.
8 DDOS mstream

handler to
client

3 DDOS mstream
client to
handler

mstream is another DDOS tool that consists of a
handler and an agent component. The agent
performs the actual DDOS attack, whereas the
handler issues commands to the agent to begin
the attack. Both components were designed to
run on Unix systems.

http://www.cert.org/incident_notes/IN-2000-
05.html59
http://staff.washington.edu/dittrich/misc/mstre
am.analysis.txt60

The signature for detecting mstream handler to
client traffic was based on the use of source
port 15104/tcp or 12754/tcp. Likewise for
mstream client to handler, the use of
destination port of 15104/tcp or 12754/tcp
would trigger the alert.

This signature is susceptible to false
positives because ports 15104 and 12754 might
appear in normal traffic. There was no cause
for concern here because the MY.NET hosts that
appeared in the handler->client alerts did not
appear in the client->handler alerts logs. If
the tool did exist, then there would be two-way
communications

7 Back Orifice Back Orifice is a Trojan tool that allows an
attacker to take over control of another
computer. There was reported Back Orifice
activity on MY.NET hosts:

- MY.NET.153.113
- MY.NET.150.21
- MY.NET.114.88

Defensive recommendations
Most of the signatures used to detect the Trojans are based on the
identification of the ports used in the traffic flow. Hence, they are
susceptible to false positives. An inspection of the packet payload would
give a clearer picture as to whether a Trojan activity took place.

I recommend checking on the hosts MY.NET.153.113, MY.NET.150.21 and
MY.NET.114.88 for any signs of Back Orifice.

Unusual network traffic
Alert
Count

Attack Description

1,530 TCP SRC and
DST outside
network

10 ICMP SRC and
DST outside
network

These alerts are result of spoofed traffic that
originated from your network. Packets with the
source and destination addresses outside your
address space should never be seen in normal
traffic.

332 Incomplete
packet
fragments

A search of this alert produced the following
information:

Author: Johnny Wong Page 59 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

discarded This message is generated by the Snort
defragmentation preprocessor when packets
bigger than 8Kbytes that are more than half
empty when the last fragment is received are
discarded.

http://archives.neohapsis.com/archives/snort/20
01-02/0320.html61

Possible causes of such conditions are
transmission errors, broken stacks or
fragmentation attacks (evasion?). It was noted
that the source and destination ports of the
all these packets were 0.

276 Tiny fragments
– possible
hostile
activity

Older versions of Snort contained the minfrag
preprocessor. The minfrag preprocessor checks
for fragmented packets. If the packet is a
fragment, and its size is less than the
threshold value set, then the alert will
trigger.

For example, to generate an alert each time a
packet fragment less than 128bytes in size is
received:

preprocessor: minfrag 128 any

A majority of the alerts was triggered by the
external host 208.180.168.58.

Defensive recommendations
In order to prevent spoofed packets from exiting your network, I recommend
implementing egress filtering at the perimeter router.

Vulnerable services – TFTP
Alert
Count

Attack Description

118 TFTP –
internal TCP
connection to
external tftp
server

64 TFTP –
internal UDP
connection to
external TFTP
server

22 TFTP –
external TCP
connection to
internal tftp
server

6 TFTP –
external UDP
connection to
internal TFTP
server

TFTP (Trivial File Transfer Protocol) is a
simple protocol used to transfer files. The
protocol is defined in RFC 1350:

http://www.rfc-editor.org/rfc/rfc1350.txt62

The weakness of the protocol is that no
authentication is required (the fact that it is
trivial to begin with). The protocol was also
used by Worms to download code from another
location. The TFTP server listens on port 69
TCP and UDP.

Author: Johnny Wong Page 60 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Defensive recommendations
I would recommend a re-evaluation of the availability of TFTP services in
your network to external hosts. And also whether outgoing TFTP connections
can be blocked altogether. TFTP has often being linked to worms and Trojans
because of its simplicity and no authentication required.

Author: Johnny Wong Page 61 of 72
 Author retains full rights

IRC-related attacks
Alert
Count

Attack Description

16 IRC evil –
running XDCC

3 Possible
incoming XDCC
send

I managed to locate a link to the operation of
the IRC XDCC bot from Sanjay Menon’s GCIA
practical:

http://security.duke.edu/cleaning/xdcc.html63

The XDDC backdoor allows a remote attacker to
take over a compromised host.

MY.NET hosts that could possibly be compromised
were:
- MY.NET.82.36
- MY.NET.80.209
- MY.NET.74.216
- MY.NET.198.221

16 Possible sdbot
floodnet

Sdbot is a backdoor Trojan that allows an
attacker to unauthorized access to an infected
computer:

http://securityresponse.symantec.com/avcenter/v
enc/data/backdoor.sdbot.html64

The Trojan connects to an IRC server, joins a
specific channel, and notifies the attacker by
sending a private message. The Trojan then
awaits commands from the attackers via IRC.

12 MY.NET hosts were detected, most from the
MY.NET.97.x segment:
- MY.NET.150.85 and MY.NET.150.121
- MY.NET.153.111
- MY.NET.97.10/16/18/68/74/100/124/184
- MY.NET.98.15

I also noticed that the destination of these
hosts was port 6667 of 213.186.35.9, the port
used for IRC. This external IP was also
observed conducting a portscan of your network
(refer to the Queso fingerprint attack).

3 User joining
warez channel

I suspect this was a locally created signature
to detect any users joining a warez channel via
IRC.

Defensive recommendations
Communications using IRC channels is one of the ways Trojans employ. Hence,
the use of Snort signatures to detect the strings in IRC communications
related to possible compromise or attacks.

I would recommend a check on the MY.NET hosts involved in the attacks for

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

any signs of compromise.

8. Registration information of 5 external addresses

The following addresses were selected because of their involvement in possible
attacks against your network:

#1 – 24.84.205.243
Why? – There was a two way communication between this host and MY.NET.82.36,
which generated close to 132,468 Red Worm alerts (refer to Link Graphs – Case 1):

$ whois -h whois.arin.net 24.84.205.243

OrgName: Shaw Communications Inc.
<< snipped >>

NetRange: 24.80.0.0 - 24.87.255.255
CIDR: 24.80.0.0/13
NetName: SHAW-COMM
<< snipped >>

<< snipped >>

ARIN WHOIS database, last updated 2003-09-30 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

A search of Google.com revealed Shaw Comms as a Canadian-based
communications company whose core business is providing broadband cable TV,
Internet and satellite services. Loading the IP in InfoBear.Com’s NSLookup page, the
following information was retrieved:

Output of:
nslookup -q=A 24.84.205.243 ns1.worldnet.att.net

Server: ns1.worldnet.att.net
Address: 204.127.129.1

Name: h24-84-205-243.vc.shawcable.net
Address: 24.84.205.243

The hostname suggested the IP belonged to an ISP subscriber. A check on Dshield
did not return any hits on this address.

#2 – 80.204.44.179
Why? – This IP was suspected of running some vulnerability scans against the
servers in your network (refer to Link Graphs – Case 2):

$ whois -h whois.ripe.net 80.204.44.179
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

Author: Johnny Wong Page 62 of 72
 Author retains full rights

inetnum: 80.204.44.176 - 80.204.44.183

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

netname: NORLIGHT--SRL
descr: NORLIGHT SRL
country: IT
<< snipped >>
notify: network@cgi.interbusiness.it
changed: network@cgi.interbusiness.it 20020214
source: RIPE
<< snipped >>
changed: datacomnet@telecomitalia.it 20011212
source: RIPE

person: Luca Camarda
address: NORLIGHT SRL
address: V.CELLINI 8
address: I- 21100 CASSANO MAGNAGO (VA)
address: Italy
<< snipped >>
changed: domain@cgi.interbusiness.it 20020214
source: RIPE

The host originated from Italy. A search for “Norlight Italy” returned an Italian-based
company specializing in lighting solutions. However, the domain lookup of
www.norlight.it did not match the IP net range of the earlier whois result. From
Infobear.com’s NSLookup page, the information returned was:

Output of:
nslookup -q=A 80.204.44.179 ns1.worldnet.att.net
Server: ns1.worldnet.att.net
Address: 204.127.129.1

Name: host179-44.pool80204.interbusiness.it
Address: 80.204.44.179

The domain interbusiness.it belonged to Telecom Italia, an Internet service provider.
The hostname suggested the IP belonged to an ISP subscriber. A check on Dshield
did not return any hits on this address.

#3 – 142.26.120.7
Why? – This host carried out 20,538 SYN-FIN scans against 20,538 machines in
your network.

$ whois -h whois.arin.net 142.26.120.7

OrgName: British Columbia Systems Corporation
OrgID: BCSC
<< snipped >>
Country: CA

NetRange: 142.26.0.0 - 142.26.255.255
CIDR: 142.26.0.0/16
NetName: BCSYSTEMS5
NetHandle: NET-142-26-0-0-1
Parent: NET-142-0-0-0-0
NetType: Direct Assignment
NameServer: DNS.GOV.BC.CA
NameServer: DNS1.GOV.BC.CA
NameServer: DNS2.GOV.BC.CA

Author: Johnny Wong Page 63 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

NameServer: DNS3.GOV.BC.CA
<< snipped >>

ARIN WHOIS database, last updated 2003-09-30 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

The domain suggested that the host originated from the Canadian Government’s
Class B address space. A check on Dshield did not return any reports on this
address.

#4 – 195.5.55.32
Why? – This host garnered a total of 15,722 SYN-FIN scans against 15,720 hosts in
your network:

$ whois -h whois.ripe.net 195.5.55.32
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 195.5.0.0 - 195.5.63.255
netname: UA-UKRTELECOM-970717
descr: Provider Local Registry
descr: PROVIDER
country: UA
<< snipped >>

UKRTelecom is an Internet Service Provider in Ukraine. A check on Dshield did not
return any reports on this address.

#5 – 213.176.8.2
Why? – IP 213.176.8.2 was responsible for conducting a mixture of NULL, NMAP
fingerprint and SYN-FIN scans against your network:

$whois -h whois.ripe.net 213.176.8.2
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 213.176.8.0 - 213.176.8.255
netname: AKU
descr: Amir Kabir University of Technology
descr: Tehran
country: IR
<< snipped >>

person: Saied Mohammad Taghi Lavasani
address: Computer and Information Center
address: Amir Kabir University of Technology
address: Hafez Ave. No 424
address: Tehran
address: Iran
<< snipped >>

Author: Johnny Wong Page 64 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

This IP originated from a host within the Class C address space of a University in
Tehran, Iran. From Infobear.com’s NSLookup:

Output of:
nslookup -q=A 213.176.8.2 ns1.worldnet.att.net

Server: ns1.worldnet.att.net
Address: 204.127.129.1

Name: cic.aut.ac.ir
Address: 213.176.8.2

I could not make whether the hostname represented a client or a server machine. No
reports of this IP was found in Dshield.

9. Conclusions and recommendations

I have so far taken a look at the alerts that were generated from your network within a
short span of 5 days. The figures would seemed alarming at first, but upon analysis of
the alerts, I singled out those that required attention, those that required further
analysis and those that were possibly due to false alarms.

General observations

Generic signatures – There were instances where the alert signature was too
generic, possibly creating a large number of alerts. For example, the Red Worm
detection signature might mistake legitimate web traffic for attacks. I would advise the
alert signatures be more clearly defined, such as looking at the payload content. In
the case of the Red Worm, the Adorefind utility could be deployed instead to detect
the existence of the worm, rather than flooding the alert logs with false positives.

There were a couple of locally created signatures to detect specific host activities. If
the intention was so, then I would recommend filtering these alerts or employ other
methods of host activity logging, such as Web server logs.

False positives – There were several instances of alerts which were susceptible to
false positives. For example, Unicode, x86 NOOP, CGI Null Byte and Queso. The
detection of some of these attacks could be disabled in Snort, if required.

Possible compromised MY.NET hosts

MY.NET.82.36 – This machine could possibly be compromised. The events
presented in the section Link Graphs – Case 1 justified a check on this machine for
any signs of compromise.

MY.NET.114.45 – This machine was carrying out portscans against a wide range of
external addresses. Refer to Link Graphs – Case 4.

MY.NET.97.24 and MY.NET.97.205 – These two hosts could possibly be

Author: Johnny Wong Page 65 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

compromised. They were detected running NIMDA-related attacks against external
hosts.

MY.NET.1.3 and MY.NET.1.4 – These two could be running BIND-related attacks
against external machines.

Network targeting

SYN-FIN probes – There was a significant amount of SYN-FIN probes against your
network, mostly originating from 142.26.120.7 and 195.5.55.32. Your perimeter
firewall should be able to block such scans from reaching the internal machines, but it
would be good to verify. Such probes were possibly crafted using automated tools.

Unicode attacks – There was noticeable activity from 80.204.44.179, triggering
26,397 alerts in the process that involved 437 MY.NET hosts. I recommend a
vulnerability scan to be conducted against the web servers in your network, and
ensure that they were patched. The signs possibly indicated a successful attack
against MY.NET.7.140 and MY.NET.111.155.

Open proxy scans – The host 213.186.35.9 was detected probing for open proxies in
your network. I recommend patching the proxy servers in your network, if any, and
implement access lists to restrict access to internal hosts only. There was also
activity from some MY.NET hosts to the IRC port of this address.

Multiple fingerprint attempts was detected from 213.176.8.2. As with SYN-FIN scans,
your perimeter firewall should be able to block such attempts.

Unsafe services

NETBIOS – such traffic should be filtered at your network’s perimeter routers.

RPC – turn these services off unless absolutely required.

FTP – upgrade to the latest version/patch/build of the FTP server.

LPD – evaluate the need for serving print services to external hosts.

TFTP – block the serving of TFTP services to external hosts.

Back Orifice – Noted BO traffic on hosts MY.NET.153.113, MY.NET.150.21 and
MY.NET.114.88.

Author: Johnny Wong Page 66 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Annex A: Pre-Analysis stage for Part 3: Tools used
and procedures

Task: Concatenation of various alert, scans and OOS files

$ cp alert.030709 alert-all.txt
$ cat alert.030710 >> alert-all.txt
$ cat alert. 030711 >> alert-all.txt
$ cat alert. 030712 >> alert-all.txt
$ cat alert. 030713 >> alert-all.txt

$ cp scans.030709 scans-all.txt
$ cat scans.030710 >> scans-all.txt
$ cat scans.030711 >> scans-all.txt
$ cat scans.030712 >> scans-all.txt
$ cat scans.030713 >> scans-all.txt

$ cp OOS_Report_2003_07_09_2126 OOS_Report-all.txt
$ cat OOS_Report_2003_07_10_4402 >> OOS_Report-all.txt
$ cat OOS_Report_2003_07_11_27931>> OOS_Report-all.txt
$ cat OOS_Report_2003_07_12_20109 >> OOS_Report-all.txt
$ cat OOS_Report_2003_07_13_9896>> OOS_Report-all.txt

Task: Separating alerts from portscan events

$ grep –v portscan alert-all.txt > alert-all.filtered.txt

Task: Use the separator % for entry into MySQL database (learnt from Brandon
Newport’s GCIA paper65

Alerts

Step 1: sed –e ‘s/\[**\]/%/g’ alert-all.filtered.txt #replace [**] with %
Step 2: sed –e ‘s/->/%/g’ input-file #replace -> directional arrow with %
Step 3: sed –e ‘s/decode:/decode-/g’ input-file #the string “decode:” will
cause \ problems with replacement of : later
Step 4: sed –e ‘s/:/ % /4’ input-file #replace 4th occurrence of : in input\
string, which separates the destination IP address and destination port
Step 5: sed –e ‘s/:/ % /3’ input-file #replace 3rd occurrence of : in input\
string, which separates the source IP address and source port

Overall command for alerts
$ sed –e ‘s/\[**\]/%/g’ alert-all.filtered.txt | sed –e ‘s/->/%/g’ | sed
–e ‘s/:/ % /4’ | sed –e ‘s/:/ % /3’ > alert-all.mysql

$ head –3 alert-all.mysql #sample output
07/09-00:00:02.463431 % CS WEBSERVER - external web traffic %
210.241.238.236 % 62639 % MY.NET.100.165 % 80
07/09-00:00:04.180310 % CS WEBSERVER - external web traffic %
210.241.238.236 % 62642 % MY.NET.100.165 % 80
07/09-00:00:04.578871 % MY.NET.30.4 activity % 66.196.72.70 % 53835 %
MY.NET.30.4 % 80

Author: Johnny Wong Page 67 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Overall command for scans
$ awk ‘{print $4,$6,$7}’ scans-all.txt | sed –e ‘s/ / % /g’ | sed –e ‘s/:/
% /2’ | sed –e ‘s/:/ % /1’ > scans-all.mysql

Task: Enter the alerts information into MySQL database thanks to Brandon
Newport’s excellent paper again ☺

$ mysql –u zz –p part3
Password:
mysql> \c
mysql> create table alert
 -> (date varchar (21),
 -> attack varchar (50),
 -> src varchar (15),
 -> srcp varchar (6),
 -> dst varchar (15),
 -> dstp varchar (6));
mysql> load data infile '/home/jwong/GCIA/alert-all.mysql' into table alert
fields terminated by '%' ;

Task: Alerts statistics (Table 1)

mysql> select attack,count(distinct src),count(distinct dst),count(*) as
count from alert group by attack order by count desc;

Task: Top Source and Destination, MY.NET and External, Top Talkers,
Listeners

Top 10 Source from MY.NET (Table 2)
mysql> select src,count(distinct attack),count(*) as count from alert where
src like "%MY.NET%" group by src order by count desc limit 10 ;

Top 10 Destination from MY.NET (Table 3)
mysql> select dst,count(distinct attack),count(*) as count from alert where
dst like "%MY.NET%" group by dst order by count desc limit 10 ;

Types of attacks launched by MY.NET hosts (Table 4)
mysql> select attack,count(distinct src),count(*) as count from alert where
src like “%MY.NET%” group by attack order by count desc ;

Types of attacks launched against MY.NET hosts (Table 5)
mysql> select attack,count(distinct dst),count(*) as count from alert where
dst like “%MY.NET%” group by attack order by count desc ;

Top 10 Source from external (Table 6)
mysql> select src,count(distinct attack),count(*) as count from alert where
src not like "%MY.NET%" group by src order by count desc limit 10 ;

Top 10 Destination from external (Table 7)
mysql> select dst,count(distinct attack),count(*) as count from alert where
dst not like "%MY.NET%" group by dst order by count desc limit 10 ;

Top source/attack pair (Table 8)
mysql> select src,attack,count(*) as count from alert group by src,attack
order by count desc limit 10 ;

Top source/attack pair (Table 9)

Author: Johnny Wong Page 68 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

mysql> select dst,attack,count(*) as count from alert group by dst,attack
order by count desc limit 10 ;

Top Source/Destination Pair (Table 10)
mysql> select src,dst,count(*) as count from alert group by src,dst order
by count desc limit 10 ;

Task: Reviewing the scans logs

$ wc –l scans-all.txt
12281498 scans-all.txt

The scans were successfully imported into a MySQL database.

mysql> \c
mysql> create table scans
 -> (src varchar (15),
 -> srcp varchar (6),
 -> dst varchar (15),
 -> dstp varchar (6)
 -> type varchar (15));
mysql> load data infile '/home/jwong/GCIA/scans-all.mysql' into table scans
fields terminated by '%' ;

Top 5 Scans type (Table 11)
mysql> select type,count(distinct src),count(*) as count from scans group
by type order by count desc limit 5 ;

Author: Johnny Wong Page 69 of 72
 Author retains full rights

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Author: Johnny Wong Page 70 of 72
 Author retains full rights

List of References

1 http://www.nwfusion.com/columnists/2002/0930tolly.html. There was also a discussion thread in
Dshield.org on GoToMyPC at http://www.dshield.org/pipermail/list/2002-May/004014.php.

2 Hompage of Expertcity’s GoToMyPC. URL: http://www.gotomypc.com.

3 These were extracted from the technical documents downloadable from the site.

4 Homepage of TruSecure. URL: http://www.trusecure.com

5 TruSecure’s SiteSecure: URL: http://www.trusecure.com/solutions/assurance/sitesecure/

6 AES – Advanced Encryption Standard, the algorithm selected by the National Institute of Standards
and Technology (NIST) as the successor to DES (Data Encryption Standard).

7 CFB – Cipher Feedback Mode.

8 The ID is used to identify the PC and the access code (alphanumeric password) serves to
authenticate user’s access to the PC.

9 The Hypertext Transfer Protocol version 1.0 – HTTP/1.0 (RFC1945) can be found at http://www.rfc-
editor.org/rfc/rfc1945.txt

10 Homepage of TotalRC.net. URL: http://www.totalrc.net.

11 eBLVD remote can be downloaded from http://www.eblvd.com.

12 An article on the use of open proxies for spamming http://zdnet.com.com/2100-1106-958847.html

13 Murdoch, Don [incidents.org list] Proxy scan attempts. URL: http://cert.uni-
stuttgart.de/archive/intrusions/2003/04/msg00176.html

14 Kibler, John R. [Dshield list] Scans on ports 3128, 8080 and 80. URL:
http://www.dshield.org/pipermail/list/2002-May/004161.php

15 I found a similar observation and response in Bergen, Keith. [Neohapsis archives] Logging of
connects to port 6346. URL: http://archives.neohapsis.com/archives/incidents/2003-04/0063.html.

16 Rohan, Amin. [incidents.org list] Strange NMAP from Port 80 to Linux Box. URL: http://cert.uni-
stuttgart.de/archive/intrusions/2003/01/msg00027.html

17 Brenton, Chris. [incidents.org list] Strange NMAP from Port 80 to Linux Box. URL: http://cert.uni-
stuttgart.de/archive/intrusions/2003/01/msg00039.html

18 Thomas, Ashley. [incidents.org list] LOGS; GIAC GCIA Version 3.3 Practical Detect. URL:
http://cert.uni-stuttgart.de/archive/intrusions/2002/12/msg00167.html

19 Description of the W32/SQLSlammer worm. URL: http://vil.nai.com/vil/content/v_99992.htm

20 Analysis of the Port 1434 MS-SQL Worm. URL: http://isc.incidents.org/analysis.html?id=180

21 A complete disassembly of the MS-SQL Slammer worm code. URL:
http://www.nextgenss.com/advisories/mssql-udp.txt

22 Fred Thiele’s GCIA Practical. URL: http://www.giac.org/practical/GCIA/Fred_Thiele_GCIA.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Author: Johnny Wong Page 71 of 72
 Author retains full rights

23 SANS’ Commonly Probed Ports. URL: http://www.sans.org/y2k/ports.htm

24 The Snort FAQ. URL: http://www.snort.org/docs/FAQ.txt

25 SANS’ The Twenty Most Critical Internet Security Vulnerabilities. URL:
http://www.snort.org/docs/FAQ.txt

26 Joe Ellis’ GCIA Practical. URL: http://www.giac.org/practical/Joe_Ellis_GCIA.doc

27 Johnny Calhoun’s GCIA Practical. URL: http://www.lurhq.com/idsindepth.html

28 Whitehat’s arachNIDS – The Intrusion Event Database. “IIS ISAPI OVERFLOW IDA”. URL:
http://www.whitehats.com/info/IDS552

29 eEye Digital Security. “Microsoft Internet Information Services Remote Buffer Overflow
(SYSTEM Level Access)”. URL: http://www.eeye.com/html/Research/Advisories/AD20010618.html

30 Special-use IPv4 addresses – RFC3330. URL: http://www.rfc-editor.org/rfc/rfc3330.txt

31 Detect analyzed 7/25/00 – use of Linklocal addresses by Windows 98 workstations. URL:
http://www.sans.org/y2k/072500-1200.htm

32 Whitehat’s arachNIDS – The Intrusion Event Database. “NETBIOS SMB-C$ACCESS”. URL:
http://www.whitehats.com/info/IDS339

33 Whitehat’s arachNIDS – The Intrusion Event Database. “NETBIOS NT-NULL-SESSION”. URL:
http://www.whitehats.com/info/IDS204

34 Whitehat’s arachNIDS – The Intrusion Event Database. “DOS-FTPD-GLOBBING”. URL:
http://www.whitehats.com/info/IDS487

35 Whitehat’s arachNIDS – The Intrusion Event Database. “SYN FIN SCAN”. URL:
http://www.whitehats.com/info/IDS198

36 James C. Slora Jr. [Dshield list] Port 21 to Port 21 Scan. URL:
http://www.dshield.org/pipermail/list/2003-July/009146.php

37 Dave R. [Incidents.org list] LOGS GIAC GCIA Version 3.2 Practical Detect. URL: http://cert.uni-
stuttgart.de/archive/intrusions/2003/01/msg00446.html

38 Williams, Al. [incidents.org list] LOGS; GIAC GCIA Version 3.3 Practical Detect. URL: http://cert.uni-
stuttgart.de/archive/intrusions/2002/10/msg00111.html

39 Miller, Toby. ECN and its impact on Intrusion Detection. URL:
http://www.securityfocus.com/infocus/1205

40 Whitehat’s arachNIDS – The Intrusion Event Database. “PROBE-NMAP_TCP_PING”. URL:
http://www.whitehats.com/info/IDS28

41 Whitehat’s arachNIDS – The Intrusion Event Database. “PROBE-
NMAP_FINGERPRINT_ATTEMPT”. URL: http://www.whitehats.com/info/IDS5

42 Whitehat’s arachNIDS – The Intrusion Event Database. “SHELLCODE-X86-NOPS”. URL:
http://www.whitehats.com/info/IDS181

43 Whitehat’s arachNIDS – The Intrusion Event Database. “SHELLCODE-x86-STEALTH-NOP”. URL:
http://www.whitehats.com/info/IDS291

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment version 3.3 GIAC Intrusion Detection In-Depth

Author: Johnny Wong Page 72 of 72
 Author retains full rights

44 Whitehat’s arachNIDS – The Intrusion Event Database. “SHELLCODE-X86-SETUID0”. URL:
http://www.whitehats.com/info/IDS283

45 Whitehat’s arachNIDS – The Intrusion Event Database. “SHELLCODE-X86-SETGID0”. URL:
http://www.whitehats.com/info/IDS284

46 David Oborn’s GCIA Practical at URL: http://www.giac.org/practical/David_Oborn_GCIA.html

47 McDonald, Terry [incidents.org list] LOGS GIAC GCIA Version 3.3 Practical Detect. URL:
http://cert.uni-stuttgart.de/archive/intrusions/2003/05/msg00090.html

48 Whitehat’s arachNIDS – The Intrusion Event Database. “NTPDX-BUFFER-OVERFLOW”. URL:
http://www.whitehats.com/info/IDS492

49 SANS’ description of the Adore Worm. URL: http://www.sans.org/y2k/adore.htm

50 The Linux.Adore Worm. URL: http://www.dials.ru/english/inf/linux_adore.htm

51 F-Secure’s Virus description: Adore. URL: http://www.f-secure.com/v-descs/adore.shtml

52 Reiter, Michael. Exploiting Loadable Kernel modules. URL:
http://www.giac.org/practical/Michael_Reiter_GCIH.zip

53 Stearns, William. Adore Worm detection and removal tool. URL:
http://www.ists.dartmouth.edu/IRIA/knowledge_base/tools/adorefind.htm

54 Symantec’s description of the MyParty worm. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.myparty@mm.html

55 Yackley, Matt. [incidents.org list] MyParty Trojan behaviour. URL:
http://www.incidents.org/archives/intrusions/msg03040.html

56 RFB port for VNC. URL: http://home.earthlink.net/~jknapka/vncpatch.html

57 Sven Dietrich, Neil Long and David Dittrich – An analysis of the “shaft” distributed denial of service
tool. URL: http://home.adelphi.edu/~spock/shaft_analysis.txt

58 Whitehat’s arachNIDS – The Intrusion Event Database. “DDOS-SHAFT-CLIENT-TO-HANDLER”.
URL: http://www.whitehats.com/info/IDS254

59 CERT Incident Note IN-2000-05 – “mstream” distributed denial of service tool. URL:
http://www.cert.org/incident_notes/IN-2000-05.html

60 David Dittrich, George Weaver, Sven Dietrich and Neil Long – The “mstream” distributed denial of
service tool. URL: http://staff.washington.edu/dittrich/misc/mstream.analysis.txt

61 Ruiu, Dragos [neohapsis archives] Incomplete Packet Fragments Discarded? URL:
http://archives.neohapsis.com/archives/snort/2001-02/0320.html

62 The TFTP Protocol (Revision 2). URL: http://www.rfc-editor.org/rfc/rfc1350.txt

63 IRC bot and backdoor: XDCC. URL: http://security.duke.edu/cleaning/xdcc.html

64 Symantec’s description of the SdBot backdoor Trojan. URL:
http://securityresponse.symantec.com/avcenter/venc/data/backdoor.sdbot.html

65 Brandon Newport’s GCIA Practical. URL: http://www.giac.org/practical/Brandon_Newport_GCIA.zip

