
Global Information Assurance Certification Paper

Copyright SANS Institute Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering "Network Monitoring and Threat Detection In-Depth (Security 503)" at http://www.giac.org/registration/gcia

Author: Johnny Wong

Page 1 of 72 Author retains full rights

1. Introduction 4 2. The GoToMyPC solution 5 3. Network Setup for Analysis 7 Installing and running the GoToMyPC Software 8 Accessing the remote PC 8 Assessment of the GOTOMyPC Solution 12 Other Remote Access Solutions 14 4. Conclusion 14 Part 2: Network detects 15 Detect 41: Scan Squid and Proxy (8080) attempts 15 Source of trace 15 Detect was generated by 15 Probability the source address was spoofed 16 Description of the attack 17 Attack mechanism 17 Correlations 19 Defensive recommendations 19 Multiple choice question 20 Result of post to intrusions@incidents.org 20 2. Detect #2: ACK scan attempts 22 Source of trace 22 Probability the source address was spoofed 23 Detect #2: ACK scan attempts 22 Source of trace 22 Probability the source address was s	Part	t 1:Describe the state of Intrusion Detection	4
3. Network Set-up for Analysis 7 Installing and running the GoToMyPC software 8 Accessing the remote PC 8 Analyzing the raw dump 9 Assessment of the GoToMyPC Solution 12 Other Remote Access Solutions 14 Part 2: Network detects 15 I. Detect #1: Scan Squid and Proxy (8080) attempts 15 Source of trace 15 Detect was generated by 15 Probability the source address was spoofed 16 Description of the attack 17 Attack mechanism 17 Correlations 19 Bevieting ecommendations 19 Multiple choice question 20 Result of post to intrusions@incidents.org 22 Detect was generated by 22 Probability the source address was spoofed 23 Description of the attack 24 Attack mechanism 25 Correlations 22 Detect was generated by 22 Probability the source address was spoofed 23 Description of the attack 24 </td <td>1.</td> <td></td> <td></td>	1.		
Installing and running the GoToMyPC software 8 Accessing the remote PC 8 Analyzing the raw dump 9 Assessment of the GoToMyPC Solution 12 Other Remote Access Solutions 14 4. Conclusion 14 5. Detect #1: Scan Squid and Proxy (8080) attempts 15 5. Detect #1: Scan Squid and Proxy (8080) attempts 15 5. Detect #1: Scan Squid and Proxy (8080) attempts 15 7. Detect #1: Scan Squid and Proxy (8080) attempts 15 9. Detect #1: Scan Squid and Proxy (8080) attempts 15 9. Detect #1: Scan Squid and Proxy (8080) attempts 15 9. Detect #1: Scan Squid and Proxy (8080) attempts 15 9. Detent #1: Scan Squid and Proxy (8080) attempts 15 9. Detect #1: Scan Squid attack 17 14. Attack mechanism 17 Correlations 18 Evidence of active targeting 19 9. Multiple choice question 20 20 20 20 20 20 20 20 21 22 22 22 <td>2.</td> <td></td> <td></td>	2.		
Accessing the remote PC 8 Analyzing the raw dump. 9 Assessment of the GoToMyPC Solution 12 Other Remote Access Solutions. 14 Part 2: Network detects 15 1. Detect #1: Scan Squid and Proxy (8080) attempts 15 Detect #1: Scan Squid and Proxy (8080) attempts 15 Detect was generated by 15 Probability the source address was spoofed 16 Description of the attack 17 Attack mechanism. 17 Correlations 18 Evidence of active targeting. 19 Severity 19 Defect was generated by. 20 Result of post to intrusions@incidents.org 20 2. Detect #2: ACK scan attempts 22 Source of trace 22 Detect #2: ACK scan attempts 22 Source of trace. 22 Detect #3: Masses. 25 Correlations 27 Source of trace. 22 Probability the source address was spoofed 23 Detect #3: MAS-SQL Worm Propagation Attempt. 26 Evidence of activ	3.		
Analyzing the raw dump. 9 Assessment of the GOToMyPC Solution 12 Other Remote Access Solutions. 14 4. Conclusion 14 5. Conclusion 15 1. Detect #1: Scan Squid and Proxy (8080) attempts. 15 Source of trace. 15 Detect was generated by. 15 Probability the source address was spoofed. 16 Description of the attack. 17 Attack mechanism. 17 Correlations. 19 Detensive recommendations. 19 Multiple choice question. 20 Result of post to intrusions@incidents.org 20 2. Detect #2: ACK scan attempts 22 Source of trace. 22 Detect #2: ACK scan attempts 22 Probability the source address was spoofed 23 Description of the attack. 24 Attack mechanism. 26 Correlations. 27 Detect #3: MS-SOL Worm Propagation Attempt 28 Source of trace. 28 Detect #3: MS-SOL Worm Propagation Attempt <t< td=""><td></td><td></td><td></td></t<>			
Assessment of the GoToMyPC Solution 12 Other Remote Access Solutions 14 Part 2: Network detects 15 Detect 41: Scan Squid and Proxy (8080) attempts 15 Detect was generated by 15 Probability the source address was spoofed 16 Description of the attack 17 Attack mechanism 17 Correlations 18 Evidence of active targeting 19 Severity 20 Detect #2: ACK scan attempts 20 Result of post to intrusions@incidents.org 20 2. Detect #2: ACK scan attempts 22 Source of trace 22 Detect was generated by 23 Description of the attack 24 Attack mechanism 25			
Other Remote Access Solutions 14 Part 2: Network detects 15 Part 2: Network detects 15 Source of trace 15 Detect #1: Scan Squid and Proxy (8080) attempts 15 Detect was generated by 15 Probability the source address was spoofed 16 Description of the attack 17 Attack mechanism 17 Correlations 19 Defensive recommendations 19 Multiple choice question 20 Result of post to intrusions@incidents.org 20 2. Detect #2: ACK scan attempts 22 Source of trace 22 Detect #2: ACK scan attempts 23 Description of the attack 24 Attack mechanism 25 Correlations 27 Detect #3: MS-SOL Worm Propagation Attempt 28 Source of trace 28 Detect #3: MS-SOL Worm Propagation Attempt 33 Attack mechanism 33 Correlations 27 Defensive recommendations 27 Defensive recommendations 37 <t< td=""><td></td><td></td><td></td></t<>			
4 Conclusion 14 Part 2: Network detects 15 1 Detect #1: Scan Squid and Proxy (8080) attempts 15 Source of trace 15 Probability the source address was spoofed 16 Description of the attack 17 Attack mechanism 17 Correlations 18 Evidence of active targeting 19 Sevenity 19 Defensive recommendations 19 Multiple choice question 20 Result of post to intrusions@incidents.org 20 Result of post to intrusions@incidents.org 22 Detect #2: ACK scan attempts 22 Detect was generated by 22 Probability the source address was spoofed 23 Description of the attack 24 Attack mechanism 25 Correlations 27 Defensive recommendations 27 Defensive recommendations<			
Part 2: Network detects 15 1. Detect #1: Scan Squid and Proxy (8080) attempts 15 Source of trace 15 Probability the source address was spoofed 16 Description of the attack 17 Attack mechanism 17 Correlations 18 Evidence of active targeting 19 Defensive recommendations 19 Multiple choice question 20 2. Detect #2: ACK scan attempts 22 Source of trace 22 Detect was generated by 22 Probability the source address was spoofed 23 Detect #2: ACK scan attempts 22 Source of trace 22 Detect was generated by 27 Probability the source address was spoofed 23 Description of the attack 24 Attack mechanism 25 Correlations 27 Multiple choice question 27 Defensive recommendations 27 Multiple choice question 27 Multiple choice question 27 Defensive recommendations 27			
1. Detect #1: Scan Squid and Proxy (8080) attempts 15 Source of trace 15 Detect was generated by 15 Probability the source address was spoofed 16 Description of the attack 17 Attack mechanism 17 Correlations 18 Evidence of active targeting 19 Severity 19 Defensive recommendations 19 Multiple choice question 20 2. Detect #2: ACK scan attempts 22 Source of trace 22 Detect #2: ACK scan attempts 22 Source of the attack 24 Attack mechanism 27 Severity 22 Detect #3: MCK scan attempts 22 Source of the attack 24 Attack mechanism 25 Correlations 27 Severity 27 Defensive recommendations 27 Evidence of active targeting 27 Severity 28 Detect #3: MS-SQL Worm Propagation Attempt 28 Detect was generated by			
Source of trace 15 Detect was generated by 15 Probability the source address was spoofed 16 Description of the attack 17 Attack mechanism 17 Correlations 18 Evidence of active targeting 19 Severity 19 Defensive recommendations 19 Multiple choice question 20 2. Detect #2: ACK scan attempts 22 Source of trace 22 Detect was generated by 22 Probability the source address was spoofed 23 Description of the attack 24 Attack mechanism 25 Correlations 27 Severity 27 Severity 27 Severity 27 Severity 27 Severity 27 Severity 27 Detect #3: MS-SQL Worm Propagation Attempt 28 Detect #3: MS-SQL Worm Propagation Attempt 28 Detect #3: MS-SQL Worm Propagation Attempt 33 Attack mechanism 33 <			
Detect was generated by 15 Probability the source address was spoofed 16 Description of the attack 17 Attack mechanism 17 Correlations 18 Evidence of active targeting 19 Severity 19 Defensive recommendations 19 Multiple choice question 20 Result of post to intrusion@incidents.org 20 Result of post to intrusion@incidents.org 20 Detect #2: ACK scan attempts 22 Detect was generated by 27 Severity 27 Severity 27 Detect #3: MS-SQL Worm Propagation Attempt 28 Detect was generated by 28 Probability the source address was spoofed 31 Description of the attack 33	1.		
Probability the source address was spoofed 16 Description of the attack 17 Attack mechanism 17 Correlations 18 Evidence of active targeting 19 Defensive recommendations 19 Muttiple choice question 20 Result of post to intrusions@incidents.org 20 2. Detect #2: ACK scan attempts 22 Source of trace 22 Detect #2: ACK scan attempts 22 Probability the source address was spoofed 23 Description of the attack 24 Attack mechanism 25 Correlations 27 Defensive recommendations 31 Description of the attack 3			
Description of the attack 17 Attack mechanism 17 Correlations 18 Evidence of active targeting 19 Severity 19 Defensive recommendations 19 Multiple choice question 20 Result of post to intrusions@incidents.org 20 2 Detect #2: ACK scan attempts 22 Source of trace 22 Detect was generated by 22 Detect was generated by 22 Detect was generated by 23 Description of the attack 24 Attack mechanism 25 Correlations 26 Evidence of active targeting 27 Defensive recommendations 28 Drobability the source address was spoofed 31 Description of the attack 33 Attac		Detect was generated by	
Attack mechanism. 17 Correlations 18 Evidence of active targeting. 19 Defensive recommendations 19 Multiple choice question. 20 Result of post to intrusions@incidents.org 20 2. Detect #2: ACK scan attempts 22 Source of trace 22 Detect was generated by 22 Probability the source address was spoofed 23 Description of the attack 24 Attack mechanism 25 Correlations 26 Evidence of active targeting. 27 Source of trace 28 Detect #3: MS-SQL Worm Propagation Attempt. 28 Source of trace 28 Detect was generated by 28 Probability the source address was spoofed 31 Description of the attack 33 Attack mechanism 27 Multiple choice question 37 Detect #3: MS-SQL Worm Propagation Attempt 28 Detect was generated by 28 Probability the source address was spoofed 31 Description of the att			
Correlations18Evidence of active targeting19Defensive recommendations19Multiple choice question20Result of post to intrusions@incidents.org202.Detect #2: ACK scan attempts22Source of trace22Detect was generated by22Probability the source address was spoofed23Description of the attack24Attack mechanism25Correlations26Evidence of active targeting27Defensive recommendations27Multiple choice question27Detect #3: MS-SQL Worm Propagation Attempt28Source of trace28Detect was generated by28Detect was generated by27Defensive recommendations27Multiple choice question28Detect #3: MS-SQL Worm Propagation Attempt28Detect was generated by28Detect was generated by28Detect was generated by33Attack mechanism33Correlations34Evidence of active targeting34Evidence of active targeting34Evidence of active targeting34Evidence of active targeting34Defensive recommendations34Multiple choice question34Severity34Defensive recommendations361Executive summary:351Executive summary:352Log files used in analysis			
Evidence of active targeting.19Severity.19Defensive recommendations19Multiple choice question20Result of post to intrusions@incidents.org20Result of post to intrusions@incidents.org20Result of post to intrusions@incidents.org22Source of trace.22Detect #2: ACK scan attempts22Probability the source address was spoofed23Description of the attack.24Attack mechanism.25Correlations.26Evidence of active targeting.27Severity27Defensive recommendations27Multiple choice question.27Detect #3: MS-SQL Worm Propagation Attempt.28Detect #3: MS-SQL Worm Propagation Attempt.28Detect was generated by28Detect was generated by28Detect was generated by28Detect #3: MS-SQL Worm Propagation Attempt.33Attack mechanism.33Correlations.34Evidence of active targeting.34Evidence of active targeting.34Severity.35I Executive summary:35J. Lexecutive summary:35J. Pre-processing of alert files and tools used:36J. Mittiple choice question.34Multiple choice question.34Multiple choice question.34Evidence of active targeting.35J. Executive summary:35J. Executive summary:3			
Severity 19 Defensive recommendations 19 Multiple choice question 20 Result of post to intrusions@incidents.org 20 2 Detect #2: ACK scan attempts 22 Source of trace 22 Detect was generated by 22 Probability the source address was spoofed 23 Description of the attack 24 Attack mechanism 25 Correlations 26 Evidence of active targeting 27 Severity 27 Defensive recommendations 27 Severity 27 Defensive recommendations 27 Source of trace 28 Detect #3: MS-SQL Worm Propagation Attempt 28 Source of trace 28 Detect was generated by 28 Probability the source address was spoofed 31 Description of the attack 33 Correlations 34 Evidence of active targeting 34 Evidence of active targeting 34 Defensive recommendations 34 Defensive r			
Defensive recommendations 19 Multiple choice question 20 Result of post to intrusions@incidents.org 20 2. Detect #2: ACK scan attempts 22 Source of trace 22 Detect was generated by 23 Description of the attack 24 Attack mechanism 25 Correlations 26 Evidence of active targeting 27 Severity 27 Defensive recommendations 27 Multiple choice question 27 Source of trace 28 Detect #3: MS-SQL Worm Propagation Attempt 28 Source of trace 28 Detect was generated by 28 Source of trace 28 Detect was generated by 28 Source of trace 33 Attack mechanism 33 Correlations 34 Evidence of active targeting 34 Source of trace 34 Detect #3: Analyze this! 35 1. Executive summary: 35 2. Log files used in analysis:			
Multiple choice question 20 Result of post to intrusions@incidents.org 20 2. Detect #2: ACK scan attempts 22 Source of trace 22 Detect was generated by 22 Probability the source address was spoofed 23 Description of the attack 24 Attack mechanism 25 Correlations. 26 Evidence of active targeting 27 Severity 27 Defect was generated by 27 Defensive recommendations 27 Multiple choice question 27 Source of trace 28 Detect #3: MS-SQL Worm Propagation Attempt 28 Source of trace 28 Detect was generated by 28 Probability the source address was spoofed 31 Description of the attack 33 Attack mechanism 33 Correlations 34 Evidence of active targeting 34			
Result of post to intrusions@incidents.org 20 2. Detect #2: ACK scan attempts 22 Source of trace 22 Detect was generated by 22 Probability the source address was spoofed 23 Description of the attack 24 Attack mechanism 25 Correlations 26 Evidence of active targeting 27 Severity 27 Defensive recommendations 27 Multiple choice question 27 3. Detect #3: MS-SQL Worm Propagation Attempt 28 Source of trace 28 Probability the source address was spoofed 31 Detect was generated by 28 Probability the source address was spoofed 31 Description of the attack 33 Correlations 34 Evidence of active targeting 34 Evidence of active targeting 34 Evidence of active targeting 34 Detect was generated by 35 In cerclastions 34 Detect was generated by 35 In cerclastions 34			
2. Detect #2: ACK scan attempts 22 Source of trace 22 Detect was generated by 22 Probability the source address was spoofed 23 Description of the attack 24 Attack mechanism 25 Correlations 26 Evidence of active targeting 27 Severity 27 Defect #3: MS-SQL Worm Propagation Attempt 28 Source of trace 28 Detect #3: MS-SQL Worm Propagation Attempt 28 Source of trace 28 Detect was generated by 33 Attack mechanism 33 Correlations 34 Evidence of active targeting 34 Severity 34 Defensive recommendations 34 Multiple choice question 34 Multiple choice question	Doci		
Source of trace.22Detect was generated by22Probability the source address was spoofed23Description of the attack24Attack mechanism.25Correlations.26Evidence of active targeting.27Defensive recommendations27Multiple choice question.273.Detect #3: MS-SQL Worm Propagation Attempt.28Source of trace.28Detect was generated by28Probability the source address was spoofed31Description of the attack33Attack mechanism.34Evidence of active targeting.34Source of trace.34Detert was generated by34Description of the attack33Attack mechanism.34Correlations.34Evidence of active targeting.34Severity351.Executive summary.2.Log files used in analysis.3.Pre-processing of alert files and tools used:3.Pre-processing of alert files and tools used:3.Attack traphs.4.Summary of alerts.3.Pre-processing of alert files and tools used:3.Registration information of 5 external addresses38Link Graphs.43Evidences.44Startens.45Link Graphs.46Summary of alerts.47List of Detects48Severity49Conclusions and recom			
Detect was generated by22Probability the source address was spoofed23Description of the attack24Attack mechanism25Correlations26Evidence of active targeting27Severity27Defensive recommendations27Multiple choice question273.Detect #3: MS-SQL Worm Propagation Attempt28Source of trace28Detect was generated by28Probability the source address was spoofed31Description of the attack33Attack mechanism33Correlations34Evidence of active targeting34Severity34Detest attack mechanism34Correlations34Evidence of active targeting34Severity34Defensive recommendations34Multiple choice question34Part 3: Analyze this!351.Executive summary:352.Log files used in analysis:353.Pre-processing of alert files and tools used:364.Summary of alerts:365.Relationships between the various addresses386.Link Graphs457.List of Detects508.Registration information of 5 external addresses629.Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures67List of References70	۷.		
Probability the source address was spoofed23Description of the attack24Attack mechanism25Correlations26Evidence of active targeting27Severity27Defensive recommendations27Multiple choice question27Source of trace28Detect #3: MS-SQL Worm Propagation Attempt28Source of trace28Detect was generated by28Probability the source address was spoofed31Description of the attack33Attack mechanism33Correlations34Evidence of active targeting34Severity34Defensive recommendations34Detext was generated by34Probability the source address was spoofed31Description of the attack33Attack mechanism33Correlations34Evidence of active targeting34Severity34Defensive recommendations34Defensive recommendations351.Executive summary:352.Log files used in analysis:353.Pre-processing of alert files and tools used:364.Summary of alerts:365.Relationships between the various addresses386.Link Graphs457.List of Detects508.Registration information of 5 external addresses629.Conclusions and recommendat			
Description of the attack24Attack mechanism25Correlations26Evidence of active targeting27Severity27Defensive recommendations27Multiple choice question273.Detect #3: MS-SQL Worm Propagation Attempt28Source of trace28Detect #3: MS-SQL Worm Propagation Attempt28Source of trace28Detect was generated by28Probability the source address was spoofed31Description of the attack33Attack mechanism33Correlations34Evidence of active targeting34Severity34Defensive recommendations34Multiple choice question34Defensive recommendations34Multiple choice question34Part 3: Analyze this!351.Executive summary:352.Log files used in analysis:353.Pre-processing of alert files and tools used:365.Relationships between the various addresses386.Link Graphs457.List of Detects508.Registration information of 5 external addresses629.Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures67List of References70		Probability the source address was spoofed	
Attack mechanism.25Correlations.26Evidence of active targeting.27Severity27Defensive recommendations27Multiple choice question273.Detect #3: MS-SQL Worm Propagation Attempt.28Source of trace28Detect was generated by28Probability the source address was spoofed31Description of the attack33Attack mechanism.33Correlations.34Evidence of active targeting.34Severity34Defensive recommendations34Part 3: Analyze this!351.Executive summary:352.Log files used in analysis:353.Pre-processing of alert files and tools used:364.Summary of alerts:365.Relationships between the various addresses386.Link Graphs457.List of Detects508.Registration information of 5 external addresses629.Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures67List of References70		Description of the attack	
Evidence of active targeting27Severity27Defensive recommendations27Multiple choice question273.Detect #3: MS-SQL Worm Propagation Attempt28Source of trace28Detect was generated by28Probability the source address was spoofed31Description of the attack33Attack mechanism33Correlations34Evidence of active targeting34Severity34Defensive recommendations34Multiple choice question34Part 3: Analyze this!351.Executive summary:352.Log files used in analysis:353.Pre-processing of alert files and tools used:364.Summary of alerts:365.Relationships between the various addresses386.Link Graphs457.List of Detects508.Registration information of 5 external addresses629.Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures67List of References70		Attack mechanism	
Severity27Defensive recommendations27Multiple choice question27Multiple choice question273.Detect #3: MS-SQL Worm Propagation Attempt28Source of trace28Detect was generated by28Probability the source address was spoofed31Description of the attack33Attack mechanism33Correlations34Evidence of active targeting34Severity34Defensive recommendations34Multiple choice question34Part 3: Analyze this!351.Executive summary:2.352.Log files used in analysis:3.Pre-processing of alert files and tools used:3.Pre-processing of alert files and tools used:3.Attack Graphs7.List of Detects8.Registration information of 5 external addresses9.Conclusions and recommendations61.Karpens7.List of References70.List of References71.List of References72.Conclusions and recommendations73.List of References74.List of References75.List of References76.List of References77.List of References77.List of References77.List of References77.List of References77.List of References77.Lis		Correlations	
Defensive recommendations27Multiple choice question273. Detect #3: MS-SQL Worm Propagation Attempt28Source of trace28Detect was generated by28Probability the source address was spoofed31Description of the attack33Attack mechanism33Correlations34Evidence of active targeting34Defensive recommendations34Defensive recommendations34Part 3: Analyze this!351. Executive summary:352. Log files used in analysis:353. Pre-processing of alert files and tools used:364. Summary of alerts:365. Relationships between the various addresses386. Link Graphs457. List of Detects62Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures67List of References70		Evidence of active targeting	
Multiple choice question 27 3. Detect #3: MS-SQL Worm Propagation Attempt. 28 Source of trace 28 Detect was generated by 28 Probability the source address was spoofed 31 Description of the attack 33 Attack mechanism 33 Correlations 34 Evidence of active targeting 34 Severity 34 Defensive recommendations 34 Multiple choice question 34 Part 3: Analyze this! 35 1. Executive summary: 35 2. Log files used in analysis: 35 3. Pre-processing of alert files and tools used: 36 4. Summary of alerts: 36 5. Relationships between the various addresses 38 6. Link Graphs 45 7. List of Detects 50 8. Registration information of 5 external addresses 62 9. Conclusions and recommendations 65 Annex A: Pre-Analysis stage for Part 3: Tools used and procedures 67			
3. Detect #3: MS-SQL Worm Propagation Attempt. 28 Source of trace 28 Detect was generated by 28 Probability the source address was spoofed 31 Description of the attack 33 Attack mechanism 33 Correlations 34 Evidence of active targeting 34 Severity 34 Defensive recommendations 34 Multiple choice question 34 Part 3: Analyze this! 35 1. Executive summary: 35 2. Log files used in analysis: 35 3. Pre-processing of alert files and tools used: 36 4. Summary of alerts: 36 5. Relationships between the various addresses 38 6. Link Graphs 45 7. List of Detects 50 8. Registration information of 5 external addresses 62 9. Conclusions and recommendations 65 Annex A: Pre-Analysis stage for Part 3: Tools used and procedures 67 List of References 70 <td></td> <td></td> <td></td>			
Source of trace28Detect was generated by28Probability the source address was spoofed31Description of the attack33Attack mechanism33Correlations34Evidence of active targeting34Severity34Defensive recommendations34Multiple choice question34Part 3: Analyze this!351.Executive summary:2.252.Log files used in analysis:3.Pre-processing of alert files and tools used:3.Pre-processing of alerts:3.Setween the various addresses38Link Graphs45508.Registration information of 5 external addresses9.Conclusions and recommendations67List of References70			
Detect was generated by28Probability the source address was spoofed31Description of the attack33Attack mechanism33Correlations34Evidence of active targeting34Severity34Defensive recommendations34Multiple choice question34Part 3: Analyze this!351.Executive summary:2.352.Log files used in analysis:3.Pre-processing of alert files and tools used:3.Pre-processing of alert files and tools used:36S.5.Relationships between the various addresses38457.List of Detects9.Conclusions and recommendations67List of References70	3.		
Probability the source address was spoofed31Description of the attack33Attack mechanism33Correlations34Evidence of active targeting34Severity34Defensive recommendations34Multiple choice question34Part 3: Analyze this!351.Executive summary:2.Log files used in analysis:3.Pre-processing of alert files and tools used:3.Pre-processing of alerts:3.Relationships between the various addresses38Link Graphs4.Link Graphs5.Relationships between the various addresses6.Link Graphs7.List of Detects9.Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures70			
Description of the attack33Attack mechanism33Correlations34Evidence of active targeting34Severity34Defensive recommendations34Multiple choice question34Part 3: Analyze this!351.Executive summary:2.Log files used in analysis:3.Pre-processing of alert files and tools used:3.Pre-processing of alerts:3.Selationships between the various addresses38Link Graphs4.Link Graphs7.List of Detects50Registration information of 5 external addresses6.Conclusions and recommendations6.Conclusions and recommendations6.Te-Analysis stage for Part 3: Tools used and procedures70			
Attack mechanism33Correlations34Evidence of active targeting34Severity34Defensive recommendations34Multiple choice question34Part 3: Analyze this!351.Executive summary:2.Log files used in analysis:3.Pre-processing of alert files and tools used:36Summary of alerts:36			
Correlations34Evidence of active targeting34Severity34Defensive recommendations34Multiple choice question34Part 3: Analyze this!351.Executive summary:2.Log files used in analysis:3.Pre-processing of alert files and tools used:3.Pre-processing of alert files and tools used:3.Relationships between the various addresses38Link Graphs4.Link Graphs5.Relationships between the various addresses6.Link Graphs7.List of Detects50Registration information of 5 external addresses62Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures70List of References			
Evidence of active targeting34Severity34Defensive recommendations34Multiple choice question34Part 3: Analyze this!351.Executive summary:2.Log files used in analysis:3.Pre-processing of alert files and tools used:3.Pre-processing of alert files and tools used:3.Reprocessing of alert files and tools used:3.Summary of alerts:3.365.Relationships between the various addresses38456.Link Graphs7.List of Detects8.Registration information of 5 external addresses9.Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures70			
Severity34Defensive recommendations34Multiple choice question34Part 3: Analyze this!351. Executive summary:352. Log files used in analysis:353. Pre-processing of alert files and tools used:364. Summary of alerts:365. Relationships between the various addresses386. Link Graphs457. List of Detects508. Registration information of 5 external addresses629. Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures70			
Defensive recommendations34Multiple choice question34Part 3: Analyze this!351. Executive summary:352. Log files used in analysis:353. Pre-processing of alert files and tools used:364. Summary of alerts:365. Relationships between the various addresses386. Link Graphs457. List of Detects508. Registration information of 5 external addresses629. Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures70			
Multiple choice question.34Part 3: Analyze this!351. Executive summary:352. Log files used in analysis:353. Pre-processing of alert files and tools used:364. Summary of alerts:365. Relationships between the various addresses386. Link Graphs457. List of Detects508. Registration information of 5 external addresses629. Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures67List of References70			
Part 3: Analyze this!351. Executive summary:352. Log files used in analysis:353. Pre-processing of alert files and tools used:364. Summary of alerts:365. Relationships between the various addresses386. Link Graphs457. List of Detects508. Registration information of 5 external addresses629. Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures67List of References70			
1.Executive summary:352.Log files used in analysis:353.Pre-processing of alert files and tools used:364.Summary of alerts:365.Relationships between the various addresses386.Link Graphs457.List of Detects508.Registration information of 5 external addresses629.Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures67List of References70	Par		
2.Log files used in analysis:353.Pre-processing of alert files and tools used:364.Summary of alerts:365.Relationships between the various addresses386.Link Graphs457.List of Detects508.Registration information of 5 external addresses629.Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures67List of References70			
3.Pre-processing of alert files and tools used:364.Summary of alerts:365.Relationships between the various addresses386.Link Graphs457.List of Detects508.Registration information of 5 external addresses629.Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures67List of References70			
4.Summary of alerts:365.Relationships between the various addresses386.Link Graphs457.List of Detects508.Registration information of 5 external addresses629.Conclusions and recommendations65Annex A: Pre-Analysis stage for Part 3: Tools used and procedures67List of References70			
5. Relationships between the various addresses 38 6. Link Graphs 45 7. List of Detects 50 8. Registration information of 5 external addresses 62 9. Conclusions and recommendations 65 Annex A: Pre-Analysis stage for Part 3: Tools used and procedures 67 List of References 70	4.		
6. Link Graphs 45 7. List of Detects 50 8. Registration information of 5 external addresses 62 9. Conclusions and recommendations 65 Annex A: Pre-Analysis stage for Part 3: Tools used and procedures 67 List of References 70	5.	Relationships between the various addresses	
8. Registration information of 5 external addresses 62 9. Conclusions and recommendations 65 Annex A: Pre-Analysis stage for Part 3: Tools used and procedures 67 List of References 70	6.	Link Graphs	45
9. Conclusions and recommendations 65 Annex A: Pre-Analysis stage for Part 3: Tools used and procedures 67 List of References 70			
Annex A: Pre-Analysis stage for Part 3: Tools used and procedures			
List of References	•••		
	List		70
	Auth		ae 2 of 72

Author retains full rights

-

Abstract

This practical assignment is submitted as part of the GCIA (GIAC Certified Intrusion Analyst) certification process. This paper consists of 3 parts. The first part discusses the threat of corporate remote access services. The second part describes and analyses 3 network detects. The final part analyses five days worth of logs collected by an unnamed University.

Shart and a state of the state

Part 1:Describe the state of Intrusion Detection

The threat of corporate remote access services

1. Introduction

An article by Kevin Tolly in NetworldWorldFusion titled *"Always on programs pose an always on threat"*¹ caught my attention while I was looking for a subject to write on for this practical. For most organizations, the implementation of firewalls for perimeter defense, VPNs for secure remote access, IDSes, content filters, anti-virus, personal firewalls etc. would be sufficient to counter the external threat from the Internet. But as we have heard countless times before, most network compromise stemmed from employees.

In this paper, without regarding non-business programs like Kazaa, Morpheus, and Trojans like SubSeven, BackOrifice, I will look at legitimate programs that allow users to access their office desktops remotely from anywhere in the Internet. Bear in mind these are legitimate programs, which users can easily download and install the client because they want the flexibility. One such example, which I shall attempt is study, is Expertcity's GoToMyPC.

Traditional corporate remote access was implemented using VPNs, and even tools like Symantec's PC Anywhere. However, network managers/administrators were faced with issues like distribution of client software/updates, inability to scale and firewall configuration issues. GoToMyPC helps to solve these issues to a certain extent. One obvious advantage is that no software is required on the user's PC, just a Java-enabled Web browser would do. As taken from <u>www.gotomypc.com</u>², GoToMyPC resides as an always-on program on the desktop, communicating with the GoToMyPC server by means of a "heart-beat" communication. A user who wishes to access his PC would log on to the GoToMyPC service, authenticates himself, and voila! gains control of his remote desktop. During the process, there were no incoming connection requests to the desktop, instead the communications were initiated outwards. Most organizations' firewalls permit outbound access, making GoToMyPC easily deployable.

From this scenario, we look at some of the security implications:

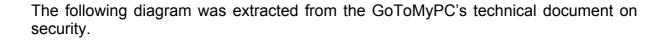
- a. The GoToMyPC server acted as the broker throughout the session between the user and the remote desktop. Wouldn't the server be able to deduce when the user is in office, the amount of activity on the desktop, the working habits etc. (as pointed out by Tolly)?
- b. With the ease of obtaining the software, how do we detect whether any user within the enterprise has installed the software? This would require inspection of the outgoing traffic, which I will attempt to capture later. We might need to amend the corporate firewall policy to block such traffic, if possible.
- c. How do we trust a third-party (i.e. Expertcity) that all the transactions were

not recorded? Since all the traffic has to go through their servers.

- d. Although the sessions between the user, remote desktop and the GoToMyPC server are encrypted using AES, it may still be possible for an attacker to eavesdrop and look for session keys.
- e. When a remote desktop (with GoToMyPC running) is accessed from a PC, a cookie is created which is used to track traffic patterns and retrieve registration information. The cookie holds a unique number generated at the time of registration, but does not contain any personally identifiable information or passwords. According to Expertcity, the cookie cannot be used by an attacker to access another user's account. However, if an attacker is able to locate the active cookie, can he actually hijack the session?
- f. Lastly, the desktop with the GoToMyPC software loaded would most likely be located and trusted in the enterprise network. It would have access to all the network resources available. Wouldn't it be a scary thought if somehow, the access codes and passwords were compromised?

My deepest concern would be the ease of obtaining and running this software **<u>without</u>** the knowledge of the organization. Imagine an ignorant employee accessing his office desktop from shared public PC (e.g. Internet café) and failing to disconnect at the end of a session. The risk is too great to ignore. In order to understand the implications, we need to examine the software, what it does, how it does it and if possible, are there any loopholes in the program?

2. The GoToMyPC solution


The GoToMyPC system is a hosted service comprising of four components:

Computer (Client): A small footprint server (Servlet) is installed on the computer to be accessed. Typically, this is a home or office PC with always-on Internet connectivity. This server registers and authenticates itself with the GoToMyPC broker server.

Browser (User): The remote or mobile user launches a Web browser, visits the secure GoToMyPC website, enters a username/password and clicks a "Connect" button for the desired computer, sending an SSL-authenticated and encrypted request to the broker.

Broker (Server): The broker is a matchmaker that listens for connection requests and maps them to registered computers. When a match occurs, the broker assigns the session a communication server. Next, the client viewer – a tiny session-specific executable – is automatically loaded by the browser's Java Virtual Machine. The GoToMyPC viewer runs on any computer with a Java-enabled browser, including wireless devices.

Communication Servers: The communication server is an intermediate system that relays an opaque and highly compressed encrypted stream from client to server for the duration of each GoToMyPC session.

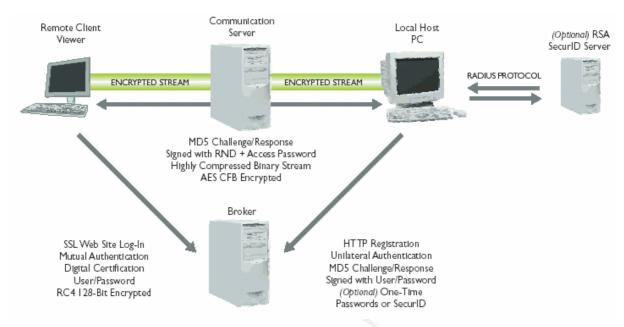


Figure 1 GoToMyPC's Security Architecture

Expertcity has put in place a few security measures³ to gain customers' confidence in the GoToMyPC solution. For instance, all GoToMyPC web, application, communication and database servers are hosted in a highly secured data center. Physical access to the servers is restricted. The entire site sits in a locked cage that is monitored by cameras. Expertcity's network operations center (NOC) in Santa Barbara, California, is similarly protected with strict security measures.

Expertcity's access routers are configured to watch for denial of service (DoS) attacks and log-denied connections. Multi-layer perimeter security is provided by a pair of firewalls: one between the Internet and web servers, another between the GoToMyPC broker and back-end databases. The security of this architecture has been independently confirmed by penetration tests and vulnerability assessments conducted by TruSecure Corporation⁴. Expertcity has achieved TruSecure SiteSecure Certification⁵. Quarterly perimeter tests ensure that Expertcity continues to meet all SiteSecure Certification requirements.

GoToMyPC is supposedly firewall-friendly. A PC loaded with the GoToMyPC software generates only *outgoing* HTTP/TCP traffic to ports 80, 443 and/or 8200. Most corporate firewalls are already configured to permit outgoing traffic, hence, no specific configuration is required to be carried out on the firewalls. Based on the same argument, GoToMyPC is compatible with remote desktops using dynamic IP addresses or NAT or PAT. I will also determine in a later section whether the traffic is legitimate HTTP, hence compatibility with application proxy firewalls.

All traffic between GoToMyPC browser client and remote PC is protected with 128-bit

AES⁶ encryption. Specifically, AES in CFB⁷ mode.

The GoToMyPC site also contained technical documents comparing itself to other technologies, most notably VPN and Symantec's PC Anywhere®. I summarized the comparison into the following table:

	GoToMyPC	VPN	PC Anywhere®
Software installation	Only required on the PC to be accessed. At the other end, a Java- enabled web browser	Software must be installed on VPN clients.	Software must be installed on the client as well as the remote PC (host).
Configuration	would do. Self-configuring.	VPN client must be configured.	PC Anywhere® must be configured.
Firewalls	No changes required.	Requires opening of special ports like IPSEC.	Requires opening of special ports (incoming).
ΝΑΤ	Compatible.	Depends on product. Some may not work well with NAT.	Unlikely to work.
IP reliance	Non-protocol specific.	IP-centric.	Non-protocol specific.
Management of remote clients	Since no software required on client PCs, just a web browser.	Sometimes, corporate policies and software updates have to be pushed down to the VPN clients.	Managing a corporate roll-out of PC Anywhere is complex and it involves license management.

3. Network Set-up for Analysis

The following network was set up to capture and study the GoToMyPC network traffic. In my home network, I used a spare Windows 98 SE PC to install the GoToMyPC software. The Windows PC was loaded with Tiny Personal Firewall and Norton Anti-virus. A NAT/Firewall router dished out dynamic IP addresses to the internal PC clients. The NAT/Firewall router has a 4-port integrated 10/100Mbps Ethernet switch. The WAN interface of the router is connected to a 10/100Mbps Ethernet hub, which in turn connects to the cable modem. A Slackware Linux box (kernel 2.4.20) with 2 NICs sits with 1 NIC listening promiscuously on the external segment, the other connects to the internal segment.

The Slackware box was configured to run tcpdump at startup, writing to a binary dump file. The dump file is rotated at the end of each day. For remotely managing this box, SSH was used.

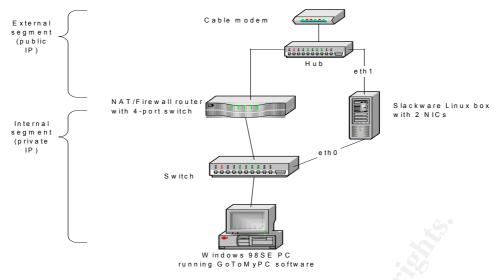


Figure 2 Network set-up

Installing and running the GoToMyPC software

To download the trial GoToMyPC software, I have to enter my credit card information in the online form. Upon registering for the trial, I received an email indicating the expiry of my trial and how to go about canceling the trial. Next, the GoToMyPC software was downloaded on the Windows 98 PC. 2 files: gosetup.exe and setup.exe were downloaded. Installation of the software was straightforward. During the process, I was prompted for ID and access code⁸ for the PC. After which, I restarted the PC for the changes to take effect.

Upon startup, Tiny detected outgoing TCP connections to *poll.gotomypc.com* ports 80, 443 and 8200 from the executable C:\Program Files\expertcity\gotomypc\g2comm.exe (supposedly the servlet). A virus scan (Norton) on the hard disk did not reveal any suspicious Trojans or executables in the machine. Refer to Figures 3 and 4.

Accessing the remote PC

I accessed the home PC from my office desktop using IE6.0. Logging on to my GoToMyPC account, I was presented with a list of my PCs which are online. A click of the "Connect" button brought of up a window where I have to enter the access code. Finally, my home desktop was presented to me in a window. The whole process took roughly a minute to complete. I tried out some Windows activities such as drag-and-drop, file transfer. Although the response was a bit lethargic, the action was carried out eventually. Figure 5 shows how the remote desktop is presented in a browser.

Author: Johnny Wong

iny Perso	nal Firewall
٢	Outgoing Connection Alert!
Time:	09/Sep/2003 21:07:52
Remote:	poll.gotomypc.com [63.251.224.177], port 80 - TCP
Details:	'GoToMyPC Communication' from your computer wants to connect to poll.gotomypc.com [63.251.224.177], port 80
	Details about application
MY PC	c:\program files\expertcity\gotomypc\g2comm.exe
	Permit Deny
	appropriate filter rule and don't ask me again tomize rule

Figure 3 Detection of outgoing connections from GoToMyPC

🏠 Scan Comp	outer			_ 🗆 ×
■ ► Ⅱ		Ø		
~	Completed			
	C:\MassRead			
Date		Filename		Virus Name '
				Þ
Files scanned: 9	901	Viruses found: 0	Elapsed time: 1	16:39 //

Figure 4 Result of anti-virus scan of hard disk of PC

Analyzing the raw dump

I analyzed a day of raw traffic dump collected on 25th Jul, with the GoToMyPC activated on the Windows 98 PC. Firstly, I ran the dump through snort with a standard rulebase:

```
$ snort -r 20030725-2359.tcp -c /usr/local/snort/snort.conf -dbl
/var/log/snort
```

Other than those known alerts that were captured off the net (e.g. MS-SQL worm, SCAN SOCKS), there were no other alerts registered. I used Ethereal to nail down to the time when the GoToMyPC was activated. The first communication packet from the PC was a SYN to 63.251.224.177 port 8200, which resolved to poll.gotomypc.com. All subsequent GoToMyPC traffic was initiated from the PC.

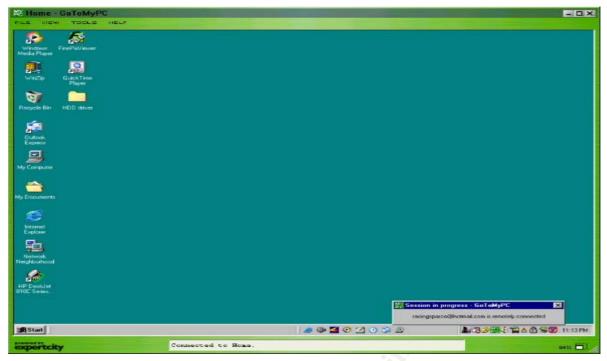
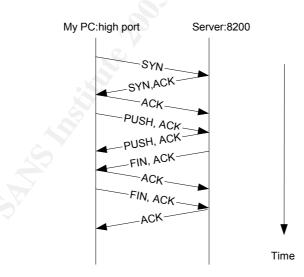
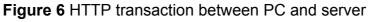




Figure 5 My remote PC's desktop

The payloads of the TCP packets exchanged between the PC and the server suggested that HTTP version 1.0 (RFC1945⁹) based commands were used. The PC issued HTTP GET commands in the form "GET / <request> HTTP/1.0". The server replied with "HTTP/1.0 OK 200 OK <data>".

Each HTTP transaction lasted for less than a second, with a single data packet (via TCP PUSH) exchanged in the process.

Using the "Follow TCP Stream" function of Ethereal, I observed the single-packet HTTP exchanges between the PC and poll.gotomypc.com:

Source	Destination	Observations
My PC	poll.gotomypc.com	First UTTD transaction. The service
GET /servlet/com.ec.ercbroker.ser vlets.PingServlet HTTP/1.0	HTTP/1.0 200 OK Pragma: no-cache Content-Type: text/plain Content-Length: 41	First HTTP transaction. The servlet probably informing GoToMyPC of it being "live" or "up".
	ERCBroker broker http://www.gotomypc.com	
GET /erc/GetOptions?build=275& platform=win32&machinekey =792680&random=0e6db2c d25d%3d HTTP/1.0	HTTP/1.0 200 OK Content-Type: text/plain Content-Length: 992 0 random=7df03f0e20df874b4 f7097221ec7df55xtra=BQk N6B2riSme	Next transaction, random keys were exchanged. I could only deduce these were part of some session key exchange mechanism. The random keys might be used to generate a session encryption key. "build=275" might indicate the build version of the servlet. The operating
		platform of the PC (Win32) was also made known in the exchange.
GET /erc/Poll?machinekey=79268 0&eventid=17454924&build= 275&platform=win32&nc=42 HTTP/1.0	HTTP/1.0 200 OK Content-Type: text/plain Content-Length: 67 0 cnt=0 eventid=17454924	The keyword "Poll" might indicate that the servlet is requesting for the address(es) of any nearby GoToMyPC communication servers. poll.gotomypc.com does not seem to be a communication server.
	purl=http://66.151.150.190/31 1.txt pcnt=5	True enough, a Poll URL ("purl") was returned. The URL points to a text file 131.txt.
		ind the "purl" obtained earlier:
My PC	66.151.150.190 HTTP/1.0 200 OK	Observations The servlet issues a GET for the text
GET /311.txt?nc=42 HTTP/1.0	Content-Type: text/plain Content-Length: 311 Pragma: no-cache	file 131.txt from 66.151.150.190. The content of 131.txt explained the purpose of this request. I would think that the servlet uses this HTTP GET
	This document is used by Expertcity to probe your network connectivity to our Desktopstreaming and GoToMyPC servers. These probes allow us to optimize the performance of your screen sharing sessions by directing you to the best	request to determine the response or round-trip delay to the communication server (in this case, 66.151.150.190).

com.

Author: Johnny Wong

Page 11 of 72 Author retains full rights

server. For additional information, please

customersupport@expertcity.

contact

Subsequent HTTP between the PC and poll.gotomypc.com were most likely keepalives:

Source My PC	Destination poll.gotomypc.com	Observations
GET /l?792680= <mark>17454924</mark> N90	HTTP/1.0 200 OK Content-Type: text/plain	The keepalive occurred about every 15s. 17454924 probably indicated a
HTTP/1.0	1	keepalive packet. The number after "N" increments every keepalive.

The following communication servers were observed. The servers were hosted on different sites to achieve higher availability and redundancy. Probes to these servers occurred about every 15s too. As mentioned earlier, the servlet uses these probes to determine the "best" communication server to assign for a remote access session at any point in time.

Communication server IP	Remarks
66.162.64.62	Address block belonged to Time Warner Telcom
66.151.115.190	Address block belonged to Expertcity
63.209.15.126	Resolved to unknown.level3.net
66.151.150.190	Address block belonged to Expertcity
64.74.80.187	Address block belonged to Expertcity
63.209.15.70	Resolved to unknown.level3.net

So how would the servlet know about any request for a remote access connection? Zooming in to the packets exchanged before a remote access session was started, I noted that this was communicated to the servlet via a HTTP reply packet from poll.gotomypc.com. The content "eventid=17876104" in the payload probably indicated this. The servlet then followed up with a "GET /Jedi?request...." to server 63.209.15.70, followed by a series of single-packet HTTP exchanges for 30s. While the remote access session was active, the TCP connection between the PC and server was maintained, unlike in other activity, the TCP connection only lasted one packet exchange.

Figure 7 describes the process flow observed so far.

Assessment of the GoToMyPC Solution

Overall, the solution was quite neat. Expertcity put in a lot of effort to convince customers of their commitment to security. The security measures put in place were clearly defined and detailed in the technical documents hosted on their site, which goes to show that this is indeed a serious piece of software or solution. There is even an enterprise solution for corporate users. As Tolly noted, there is no evil intention on the part of Expertcity.

The thought of a group of corporate machines in constant contact with an external or 3rd-party service providers may not go down well with most network/security administrators or managers. However, if an organization deliberately subscribed to such a solution, the risk could be properly contained because you know who is using the service, and control the type of access rights given to the GoToMyPC client *Author: Johnny Wong* Page 12 of 72

residing on the corporate desktop. Site or organizational security policies can be implemented at global, group or user levels.

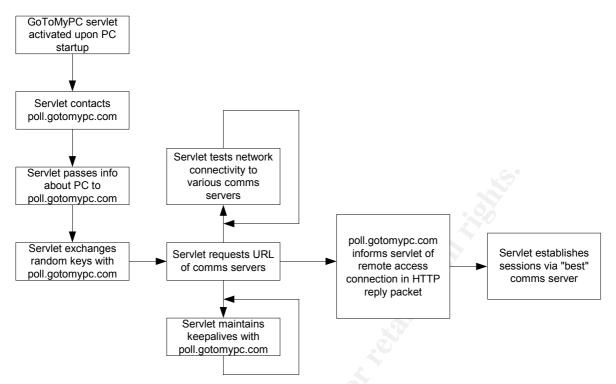


Figure 7 Process flow upon activation of GoToMyPC servlet

The threat arises when users install and run the software without the knowledge of the organization, circumventing the security policies in the process. Once a user gained access to his corporate desktop, his access rights would be just like him being physically at his desktop. Note that access to the remote desktop can be carried out from just about anywhere, as long as a Java-enabled browser is available e.g. from home, Internet café, Network gaming centers. You can then think of all the network security breaches possible. An ignorant user might use simple passwords, or might subject to shoulder-surfing, social engineering.

Most security policies necessitate the inspection of incoming network traffic, but outgoing traffic is seldom scrutinized. To counter the threat of rogue uses of such software, I recommend the following measures:

Inspection of outgoing traffic

In the analysis of the raw traffic dump, the GoToMyPC activities did not trigger any alerts from a fairly standard Snort rulebase. From the observations in the previous sections, the following Snort rules could be applied to detect the presence of any GoToMyPC instances in the network:

```
alert TCP $HOME_NET any -> $EXTERNAL_NET any (msg: "Possible instance of
GoToMyPC in network"; content: "GET /erc/Poll?machinekey";)
alert TCP $HOME_NET any -> $EXTERNAL_NET any (msg: "Possible activation of
GoMyPC remote access session!!"; content: "GET /Jedi?request=";)
```

Note that we can block GoToMyPC altogether by disallowing access to poll.gotomypc.com and a list of other Expertcity/GoToMyPC IP addresses in the perimeter firewall. However, this method will not work if the software can re-configure itself to point to another location.

Proxy server or application proxy firewall

HTTP 1.0 commands were used in the information exchanges between the servlet and the GoToMyPC servers. I do not see a problem in the solution working behind a proxy server or firewall. Rules could be implemented to detect GoToMyPC HTTP traffic and block them. They could follow the Snort signatures in the previous section.

Software scan on desktops

Conduct a periodic scan of the desktops in your organization, looking for nonstandard issue software installed (in the case of GoToMyPC, go2comm.exe). The desktop usage policy of your organization should be communicated to the users, warning them on the dangers of installing illegal software.

User education

The users would have to be informed of the possible risks of such software, even though they are legitimate. If the organization allowed the use of such software, then good security practices have to be observed, such as use of non-trivial password, screen savers or desktop disable functions when away.

Other Remote Access Solutions

I also tried out TotalRC version 1.20¹⁰. One thing I liked about this site was that in order to download the trial, you do not need to submit your credit card information. Other than that, the software allows you to set whichever outgoing port to use. However, it does not do too well in the usability department. Screen updates were not instantaneous and keyboard entries have to be sent through another Window.

There was also eBLVD Remote from ENC Technology Corporation¹¹. Due to the requirement to upload my credit card information (again?) in order to download the trial, I decided not to try out this software.

4. Conclusion

Security is a never-ending cycle. In this paper, we looked at another set of threats arising from legitimately packaged software solutions. They boast the ability to solve deployment issues previously faced by traditional remote access solutions, such as VPN and PC Anywhere. However, these solutions make use of outgoing connections to establish screen sharing sessions, which are normally not scrutinized. To put it bluntly, the same way how Trojans communicate. These solutions have the ability to integrate in almost any existing environment with firewalls, NAT etc. The use of such software in a controlled environment is acceptable, provided good security practices are adopted by the users. The threat comes from rogue use of the software, without the knowledge of the organization. The seriousness of this threat is real. There will always be users/employees trying to circumvent the organization's security policies – either knowingly or unknowingly. Other than the security measures recommended at

the network layer, user education and awareness is critical in mitigating this sort of risks.

Part 2: Network detects

1. Detect #1: Scan Squid and Proxy (8080) attempts

Source of trace

The rawdump file used for this detect was 2002.4.31 and obtained from <u>http://www.incidents.org/Raw/logs</u>.

Looking at the rawdump, the OUI of the source and destination MAC addresses (00:03:E3 and 00:00:0C) belonged to CISCO Systems. Hence, I suspect the IDS probe was placed in between 2 CISCO devices. A quick glance at the IP addresses revealed that the scanned network was a class B (226.185.X.X).

The incorrect checksums reported were ignored due to the fact that the IP adresses have been tampered with (<u>http://www.incidents.org/Raw/logs/README</u>).

Detect was generated by

I used Snort version 1.9.1 (Build 231) and the *rules* file dated 13 May 2003 (with a default snort.conf). The command run was:

snort -dr 2002.4.31 -c ~snort/var/rules/snort.conf -bl ~snort/var/log &

2 files were subsequently created in ~snort/var/log:

ls -l ~snort/var/log/ total 81416 -rw----- 1 root root 67170142 May 13 15:43 alert -rw----- 1 root root 16104188 May 13 15:43 snort.log.1052869387

A sample of the alert file generated was:

[**] [1:620:2] SCAN Proxy (8080) attempt [**] [Classification: Attempted Information Leak] [Priority: 2] 05/30-16:02:57.834488 216.13.66.30:3841 -> 226.185.141.57:8080 TCP TTL:113 TOS:0x0 ID:58481 IpLen:20 DgmLen:48 DF ******S* Seq: 0xF7C9D762 Ack: 0x0 Win: 0x4000 TcpLen: 28 TCP Options (4) => MSS: 1460 NOP NOP SackOK

[**] [1:620:2] SCAN Proxy (8080) attempt [**] [Classification: Attempted Information Leak] [Priority: 2] 05/30-16:02:57.834488 216.13.66.30:3839 -> 226.185.141.56:8080 TCP TTL:113 TOS:0x0 ID:58479 IpLen:20 DgmLen:48 DF ******S* Seq: 0xF7C8555E Ack: 0x0 Win: 0x4000 TcpLen: 28 TCP Options (4) => MSS: 1460 NOP NOP SackOK

[**] [1:618:2] SCAN Squid Proxy attempt [**] [Classification: Attempted Information Leak] [Priority: 2] 05/30-16:02:57.834488 216.13.66.30:3842 -> 226.185.141.57:3128 TCP TTL:113 TOS:0x0 ID:58482 IpLen:20 DgmLen:48 DF ******S* Seq: 0xF7CA97E4 Ack: 0x0 Win: 0x4000 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

[**] [1:620:2] SCAN Proxy (8080) attempt [**] [Classification: Attempted Information Leak] [Priority: 2] 05/30-16:02:57.834488 216.13.66.30:3843 -> 226.185.141.58:8080 TCP TTL:113 TOS:0x0 ID:58483 IpLen:20 DgmLen:48 DF ******S* Seq: 0xF7CB2602 Ack: 0x0 Win: 0x4000 TcpLen: 28 TCP Options (4) => MSS: 1460 NOP NOP SackOK

[**] [1:618:2] SCAN Squid Proxy attempt [**] [Classification: Attempted Information Leak] [Priority: 2] 05/30-16:02:57.834488 216.13.66.30:3840 -> 226.185.141.56:3128 TCP TTL:113 TOS:0x0 ID:58480 IpLen:20 DgmLen:48 DF ******S* Seq: 0xF7C93C93 Ack: 0x0 Win: 0x4000 TcpLen: 28 TCP Options (4) => MSS: 1460 NOP NOP SackOK

A whole list of SCAN Proxy (8080) and Squid Proxy attempts were triggered. Running a combination of grep, uniq and sort, I was able to generate a statistical listing of the alerts generated:

cat alert | grep '\[**\]' | sort | uniq -c | sort -rn | cat >
alert.stats &
cat alert.stats
103873 [**] [1:618:2] SCAN Squid Proxy attempt [**]
102496 [**] [1:620:2] SCAN Proxy (8080) attempt [**]
57 [**] [1:1616:4] DNS named version attempt [**]
10 [**] [1:628:1] SCAN nmap TCP [**]
1 [**] [1:498:3] ATTACK RESPONSES id check returned root [**]
1 [**] [116:45:1] (snort_decoder) TCP packet len is smaller than 20
bytes! [**]

Due to the high frequency of Proxy scans, I shall based my analysis on them. The triggering rule for the SCAN Squid Proxy and Proxy attempts was:

cat scan.rules | awk '/8080/ || /3128/ {print \$0}'

alert tcp \$EXTERNAL_NET any -> \$HOME_NET 3128 (msg:"SCAN Squid Proxy attempt"; flags:S; classtype:attempted-recon; sid:618; rev:2;)

alert tcp \$EXTERNAL_NET any -> \$HOME_NET 8080 (msg:"SCAN Proxy \(8080\)
attempt"; flags:S; classtype:attempted-recon; sid:620; rev:2;)

These Snort signatures look for any TCP SYN packets to destination ports 3128 and 8080.

Probability the source address was spoofed

I sieved out the SYN SCAN packets into another binary file for ease of analysis (with the help of text-Ethereal) :

```
# tethereal -r 2002.4.31 'tcp.flags.syn==1 and tcp.flags.ack==0' -w
syn.only.bin
# tethereal -r syn.only.bin | awk '{print $4}' | sort | uniq -c | sort -rn
> syn.source.stats
# cat syn.source.stats
206363 216.13.66.30
6 194.108.153.205
```

That's a lot of SYN packets coming from 216.13.66.30, over a period of about 1.5

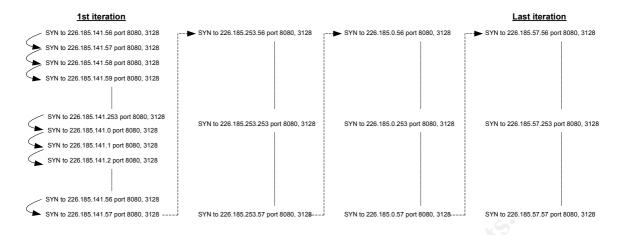
hours. A check with whois revealed the source of both IP addresses:

OrgName:	ATT Canada Telecom Services Company
NetRange:	216.13.0.0 to 216.13.255.255
CIDR:	216.13.0.0/16
OrgName:	TIPI (Netherlands)
NetRange:	195.108.153.0 - 195.108.153.255
CIDR:	195.108.153.0/24

I did not suspect the IP addresses were spoofed because being SYN packets, the attacker required replies from the target in order to complete the connection.

Description of the attack

The attack involved a reconnaissance attempt targeted at the 226.185.0.0/16 block of addresses, probing for hosts listening on TCP ports 8080 or 1328. Squid proxies are usually configured to listen on tcp/3128. The attacker might be looking for vulnerable proxy servers (e.g. Squid or WinGate) or for open proxies. A SYN-ACK response would indicate the presence of such services. There are numerous vulnerabilities associated with mis-configured Squid and WinGate proxy servers.


If the attacker was looking for open proxies, then it did not matter which type of proxy server was running. The attacker could then use the open proxy for spamming¹² and even DOS attacks against IRC servers.

Attack mechanism

The first SYN packet from the attacker arrived at 1602 hrs on 30th May 2002, and the last at 1931 hrs on the same day. Within a timespan of about 1.5 hours, a total of 206,363 SYN packets were detected and 43433 target IP addresses were scanned.

There was a pattern in the way the SYN SCAN packets were generated. Each SYN SCAN cycle starts from IP address <u>A.B.C.56</u> to <u>A.B.C.253</u>, resets, and continued from <u>A.B.C.0</u> to <u>A.B.C.57</u>. The Class C block of the next cycle is determined by incrementing the 3^{rd} octet by 1. When the 3^{rd} octet reaches 253, the next cycle will begin from the third octet equal to zero (0) and so on. Each cycle consisted of 255 IP addresses and the time taken for SYN SCAN each cycle was approximately a minute. The SYN SCAN ends when the 3^{rd} octet equals to 57. A simple diagram illustrating the SYN SCAN pattern:

Author: Johnny Wong

The following observations were made of the SYN packets originating from 216.13.66.30:

- Source port used in the range 1026 to 5000
- Source port increments by 1 every SYN
- IP ID increments by 1 every SYN this is the behavior of the TCP/IP stack of a number of OSes e.g. FreeBSD, Solaris 7, AIX 4.3, Win 2000, just to name a few
- Same IP TTL value of 113 for all packets (likely the initial TTL was 128, pointing to a Windows NT/2000 machine)
- Window size of 16384
- TCP/IP options: MSS-1460 NOP NOP SACK Permitted

To determine the OS of the attacker, p0f was used with the following responses:

```
# p0f -s snort.log.1052868990 | more
pOf: passive os fingerprinting utility, version 1.8.3
(C) Michal Zalewski <lcamtuf@gis.net>, William Stearns <wstearns@pobox.com>
pOf: file: '/etc/pOf.fp', 207 fprints, iface: 'wlan0', rule: 'all'.
216.13.66.30 [16 hops]: Windows 2000 (9)
```

An automated tool was probably involved, based on:

- the pattern of target IP addresses,
- high rate of scans, roughly 2300 SYN packets per minute, and
- incrementing of source port by 1 every SYN

Correlations

In Don Murdoch's posting in *incidents.org*¹³ dated 21 Apr 2003 (on rawdump 2002.4.30), he discussed similar sightings of SCAN Proxy and Squid Proxy attempts but these were directed at a particular IP address (226.185.177.57).

A search of Dshield's mailing list archive during the period of Apr to May 2002 showed an instance of large amounts of scans on ports 8080, 3128 and 80 detected. The thread¹⁴ described the payload that was used to test whether the proxy is open. I checked whether there were any replies in the 226.185.0.0/16 network:

```
# tethereal -r 2002.4.31 -n 'ip.dst==216.13.66.30 and tcp.flags.syn==1 and
tcp.flags.ack==1'
```

Unfortunately, there were none, hence I was not able to look at the payload should a Author: Johnny Wong Page 18 of 72 3-way handshake succeed. I also could not find any instances of the IP address within +/- 10 days of 2002.4.31.

Evidence of active targeting

The scanning pattern described earlier suggests an automated tool was involved to generate the SYN packets. The barrage of SYN packets were fired to locate servers with open TCP ports 8080 and 3128 in the Class B network of 226.185.0.0/16. Hence, there was evidence of active targeting of the network, but not at any particular host.

Severity

Severity =	Value	Remarks
(Criticality +	4	The scan activity was part of a reconnaissance attempt to locate any listening proxies in 226.185.0.0/16. If the attacker solicited a response from an active proxy, he could either use it for spam activity, or as a springboard to attack other sites.
Lethality) -	2	The scans would not classify as lethal, because they were basically reconnaissance probes. However, the knowledge of open proxies within the network may be lethal as explained earlier.
(System countermeasures	4	 There were no SYN-replies to the attacking IP. 3 possibilities: no proxy servers present proxy server located in the internal network and behind a firewall, the latter discarding the SYNs silently access list implemented in proxy server, accepting requests from the internal network only Assuming the third possibility, a high score was given.
+ Network countermeasures)	1	The fact that the SYN packets were captured by the IDS indicated that they at least passed the perimeter router. The only network countermeasure in place would be the IDS probe, which monitored incoming/outgoing traffic of 226.185.0.0/16.
Result =	1	Low severity score.

Defensive recommendations

If there was a proxy server in the network, proper access list should be in place to prevent abuse. Such as allowing only internal IP to access the proxy services.

If there were no proxy servers in the network, then such reconnaissance attempts should be blocked at the border router or firewall. This would in turn reduce the amount of IDS logs.

For example,

access-list 101 deny tcp any 226.185.0.0 0.0.255.255 eq 3128 access-list 101 deny tcp any 226.185.0.0 0.0.255.255 eq 8080

Multiple choice question

Given a raw binary dump file, what are the snort options to sieve out only SYN packets into another binary file called syn.bin?

- a. -r dumpfile -v 'tcp[13] = 0x2' -bl logdir
- b. -r *dumpfile* 'tcp[13] = 0x2' -l *logdir*
- c. -r *dumpfile* 'tcp[12:2] & 0xfff0 = 0x2' -bl *logdir*
- d. -r *dumpfile* '<u>tcp.flags.syn</u>==1 and <u>tcp.flags.ack</u>==0' -bl *logdir*

The answer is (a). Answer (b) logs in ASCII. Answer (c) semantically incorrect, no output will be generated. Answer (d) is syntactically incorrect, because the filter is Ethereal-specific.

Result of post to intrusions@incidents.org

This detect was posted to <u>intrusions@incidents.org</u> on 10 Jun 2003. One reply was received with 5 questions and 2 comments, which were noted and rectified.

```
*From:* "Brian Coyle" <brian@linuxwidows.com>
*To:* "Johnny Wong (Singapore)" <deepcrack2002@yahoo.com>,
intrusions@incidents.org
*Subject:* Re: LOGS: GIAC GCIA Version 3.3 Practical Detect
*Date:* Wed, 11 Jun 2003 00:35:19 -0400
*CC:* johnny_wong@ida.gov.sg
----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
On Tuesday 10 June 2003 23:40, Johnny Wong \(Singapore\) wrote:
> Detect #1: Scan Squid and Proxy (8080) attempts
[massive snippage thru-out]
> [root@goober 1]# cat alert | grep '\[\*\*\]' | sort |
> uniq -c | sort -rn | cat > alert.stats &
> [root@goober 1]# cat alert.stats
> 103873 [**] [1:618:2] SCAN Squid Proxy attempt [**]
> 102496 [**] [1:620:2] SCAN Proxy (8080) attempt [**]
> 57 [**] [1:1616:4] DNS named version attempt [**]
       10 [**] [1:628:1] SCAN nmap TCP [**]
>
        1 [**] [1:498:3] ATTACK RESPONSES id check
>
> returned root [**]
       1 [**] [116:45:1] (snort_decoder) TCP packet len
>
> is smaller than 20 bytes! [**]
>
Nice that you're showing your work.
> [root@goober rules]# tethereal -r syn.only.bin | awk
> '{print $4}' | sort | uniq -c | sort -rn >
> syn.source.stats
> [root@goober 1]# cat syn.source.stats
> 206363 216.13.66.30
         6 194.108.153.205
>
> That's a lot of SYN packets coming from 216.13.66.30.
```

A lot? Over what period of time? 1 day? 1 year? You quantify this later in section 5, but you probably should mention it here too. > 4.Description of the attack > > The attack involved a reconnaissance attempt targeted > at the 226.185.0.0/16 block of addresses The whole block? The sample you showed only had 1 target. You don't discuss add'l targets until later... What kind of script-fu would you use to to determine/summarize the targets? > The SYN packets do not look to be crafted because the
> source port incremented sequentially from 1026 to > 5000. The IP ID too incremented sequentially. The IP > TTL value was consistent at 113. What is the significance of the IP ID and TTL values? What clues does this offer? Can any passive fingerprinting be done on the attacker (don't forget the TCP/IP options)? > An automated tool was probably involved. Any guesses as to which tool? Any clues in how the address range was scanned? > As there were no listeners on ports > 8080 and 3128 in the 226.185.0.0/16 network How do you know this? Would a snort rule cause an alert to be logged if there was a reply? > There were no servers listening to TCP ports > 8080 and 3128. I assumed that if there were, then ?no > replies? to unsolicited SYNs (firewall?) would > indicate that access controls were in place. Are you sure of this after you answer the question above? > 10.Multiple choice question > > Given a raw binary dump file, what is the snort > command Given what you list below, shouldn't this be 'what snort OPTIONS...'? > to sieve out only SYN packets into another > binary file called syn.bin? > a. -r dumpfile -v 'tcp[13] = 0x2' -bl logdir > b. -r dumpfile 'tcp[13] = 0x2' -l logdir > c. > d. -r dumpfile 'tcp[12:2] & 0xfff0 = 0x2' -bl logdir -r dumpfile 'tcp.flags.syn==1 and tcp.flags.ack==0' > -bl logdir > > The answer is (a). But how does the file syn.bin get created? _ __ Linux - the ultimate Windows Service Pack ----BEGIN PGP SIGNATURE-----Version: GnuPG v1.2.1 (GNU/Linux)

Author: Johnny Wong

Page 21 of 72 Author retains full rights

Comment: Brian Coyle, GCIA http://www.giac.org/GCIA.php

iD8DBQE+5rGVER3MuHUncBsRAvtSAJ9XEy3PhVBQkfriv4dZa/ia/p2sNgCfaQvn 6EccjViTFavJHEaojFvm85Y= =r2w5 -----END PGP SIGNATURE-----

2. Detect #2: ACK scan attempts

Source of trace

The rawdump file used for this detect was 2002.6.9 and obtained from <u>http://www.incidents.org/Raw/logs</u>.

Looking at the rawdump, the OUI of the source and destination MAC addresses (00:03:E3 and 00:00:0C) belonged to CISCO Systems (reference to http://standards.ieee.org/regauth/oui/oui.txt). Hence, I suspected the IDS probe was placed in between 2 CISCO devices.

The incorrect checksums reported were ignored due to the fact that the IP adresses have been tampered with (http://www.incidents.org/Raw/logs/README).

Detect was generated by

I used to Snort version 1.9.1 (Build 231) and rules file dated 13 May 2003 (with a default snort.conf). The command run was:

snort -dr 2002.6.9 -c ~snort/var/rules/snort.conf -bl ~snort/var/log &

Snort reported a whole list of SCAN nmap TCP attempts. Running a combination of grep, uniq and sort, I generated a statistical listing of the alerts generated:

A sample of the alert file:

```
[**] [1:628:1] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
07/08-08:24:26.964488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
202.29.28.1:80 -> 46.5.137.172:80 TCP TTL:46 TOS:0x0 ID:28838 IpLen:20
DgmLen:40
***A**** Seq: 0x2B0 Ack: 0x0 Win: 0x578 TcpLen: 20
Author: Johnny Wong Page 22 of 72
```

Page 22 of 72 Author retains full rights [Xref => arachnids 28] [**] [1:628:1] SCAN nmap TCP [**] [Classification: Attempted Information Leak] [Priority: 2] 07/08-08:24:31.954488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C 202.29.28.1:80 -> 46.5.137.172:80 TCP TTL:46 TOS:0x0 ID:29078 IpLen:20 DqmLen:40 ***A**** Seq: 0x316 Ack: 0x0 Win: 0x578 TcpLen: 20 [Xref => arachnids 28] [**] [1:628:1] SCAN nmap TCP [**] [Classification: Attempted Information Leak] [Priority: 2] 07/08-08:31:12.944488 0:3:E3:D9:26:C0 -> 0:0:C:4:E2:33 type:0x800 len:0x3C 159.226.208.40:80 -> 46.5.15.174:80 TCP TTL:48 TOS:0x0 ID:2100 IpLen:20 DamLen:40 ***A**** Seq: 0x4A Ack: 0x0 Win: 0x400 TcpLen: 20 [Xref => arachnids 28] [**] [1:628:1] SCAN nmap TCP [**] [Classification: Attempted Information Leak] [Priority: 2] 07/08-08:31:13.924488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C 159.226.208.40:80 -> 46.5.15.174:80 TCP TTL:48 TOS:0x0 ID:2544 IpLen:20 DgmLen:40 ***A**** Seq: 0xA4 Ack: 0x0 Win: 0x400 TcpLen: 20 [Xref => arachnids 28] [**] [1:628:1] SCAN nmap TCP [**] [Classification: Attempted Information Leak] [Priority: 2] 07/08-08:31:15.334488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C 211.152.3.40:80 -> 46.5.15.174:80 TCP TTL:39 TOS:0x0 ID:3056 IpLen:20 DqmLen:40 ***A**** Seq: 0x109 Ack: 0x0 Win: 0x400 TcpLen: 20 [Xref => arachnids 28] [**] [1:628:1] SCAN nmap TCP [**] [Classification: Attempted Information Leak] [Priority: 2] 07/08-08:31:16.304488 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C 211.152.3.40:80 -> 46.5.15.174:80 TCP TTL:39 TOS:0x0 ID:3502 IpLen:20 DqmLen:40 ***A**** Seq: 0x15E Ack: 0x0 Win: 0x400 TcpLen: 20 [Xref => arachnids 28]

The triggering rule for the SCAN nmap TCP attempts was found to be:

alert tcp \$EXTERNAL_NET any -> \$HOME_NET any (msg:"SCAN nmap TCP";flags:A;ack:0; reference:arachnids,28; classtype:attempted-recon; sid:628; rev:1;)

Anytime a TCP packet with only the ACK flag set, and the ACK number equal 0, an alert would be triggered. TCP scans carried out by older versions of nmap have the ACK number set to 0, hence snort flagged such occurrences as an nmap TCP scan. Newer versions of nmap uses random non-zero ACK numbers.

Probability the source address was spoofed

If indeed these were nmap TCP scans as reported by snort, then the source addresses would not be spoofed because the attacker needs to see the response from the target (a RST packet if the scanned port was unfiltered) as part of the information gathering attempt.

Description of the attack

Unsolicited TCP packets with the ACK flag set and ACK number equal 0 were sent from multiple source addresses (26 of them), starting from 8th Jul 2002 0824hrs GMT. The ACK packets were destined to the one or more destination addresses within the 46.5.0.0/16 Class B network. In particular, I noticed the stream of packets targeted at address 46.5.80.149:

6346 [ACK] Seq=713 Ack=0 Win=1024 Len=0	CP 45147 >
	CP 45147 >
6346 [ACK] Seq=783 Ack=0 Win=1024 Len=0	
202 2002-07-09 23:28:31.434488 12.99.244.2 -> 46.5.80.149TCF	80 > 6346
[ACK] Seq=843 Ack=0 Win=1024 Len=0	
203 2002-07-09 23:28:36.434488 12.99.244.2 -> 46.5.80.149 TCP	80 > 6346
[ACK] Seq=903 Ack=0 Win=1024 Len=0	
204 2002-07-09 23:28:41.444488 64.3.83.34 -> 46.5.80.149 TCF	9 80 > 6346
[ACK] Seq=979 Ack=0 Win=1024 Len=0	
205 2002-07-09 23:28:46.434488 64.3.83.34 -> 46.5.80.149 TCF	80 > 6346
[ACK] Seq=22 Ack=0 Win=1024 Len=0	
-	80 > 6346
[ACK] Seg=110 Ack=0 Win=1024 Len=0	
	80 > 6346
[ACK] Seg=188 Ack=0 Win=1024 Len=0	
208 2002-07-09 23:29:01.444488 206.111.234.194 -> 46.5.80.149	TCP 80 >
6346 [ACK] Seq=280 Ack=0 Win=1024 Len=0	
209 2002-07-09 23:29:06.444488 206.111.234.194 -> 46.5.80.149	TCP 80 >
6346 [ACK] Seg=374 Ack=0 Win=1024 Len=0	101 00 1
osto (nek) beg-s/i nek-o win-tozi hen-o	

I observed a pattern in the sequence of packets:

- ACK packet sent to 46.5.80.149 port 6346 at 5s intervals
- 2 ACK packets sent from each source IP
- low TCP sequence number (below 1000)
- low source port used in most of the packets (i.e. port 80)
- Window sizes of 1024 and 1400
- TTL value from 45 to 47

The same exact pattern was observed in consecutive rawdumps on 2002.6.10 to 2002.6.11 and on 2002.6.15 at the following times:

Date	Time No. of
	(GMT) Source addresses
2002-07-10	04:03 4
2002-07-10	09:26 2
2002-07-11	01:12 5 **repeated source addresses
2002-07-11	18:44 7 **repeated source addresses
2002-07-11	19:39 5 **repeated source addresses
2002-07-11	22:27 5 **repeated source addresses
2002-07-11	23:26 5 **repeated source addresses
2002-07-15	16:47 2
2002-07-15	18:11 5 **repeated source addresses
2002-07-15	19:24 5 **repeated source addresses

2002-07-15 20:52 5 **repeated source addresses

2002-07-15 23:11 5 **repeated source addresses

The logs did not show any responses from 46.5.80.149. Could this be an active targeting of the IP? The Gnutella destination port in these ACK packets made me look further into this particular "attack".

Attack mechanism

As extracted from *man nmap*, ACK scans are used in reconnaissance attempts to map out the firewall rulesets. They could also determine whether the firewall is a stateful or just a simple packet filter that blocks incoming SYN. By sending an ACK-only packet to a specified port, a returned RST packet would indicate a non-stateful packet filter. Otherwise, no response would be given.

From the earlier observations, I found it difficult to pinpoint the ACK scans to *nmap* because it would require strict coordination to send each ACK packet to the target address every 5s from different source addresses. If we argue that *nmap* could have been run from the same machine using decoy scan option, then how do we explain (i) the use of different TCP sequence number for each ACK packet, (ii) differing TTL values, (iii) ACK number of 0 considering that this peculiarity only found in older versions of *nmap* (pre-version 2.3 BETA 8) and (iv) except for packets from 66.125.147.222 which used random source ports, the others used the same source port of 80.

I also noted that from 2002-7-10 to 2002-7-12 and from 2002-7-15 to 2002-7-16, there were a lot of one-sided Gnutella CONNECTs to the this IP address from sources located in the Class B address of 148.63.0.0, 148.64.0.0 and 148.65.0.0 (all belonging to StarBand Communications). These packets were particularly TCP with only the PUSH flag set and ACK number 0.

16:46:19.754488 148.63.134.33.2302 > 46.5.80.149.6346: 843355658:843355828(170) win 8192 (DF)	Ρ
04JJJJJJ0J0.04JJJJJ0Z0(I/U) WII 0IJZ (DF)	
0x0000 4500 00d2 d1df 4000 6f06 a850 943f 8621 E@.oP.?.!	
0x0010 2e05 5095 08fe 18ca 3244 960a 0000 0000P2D	
0x0020 5e08 2000 8039 0000 474e 5554 454c 4c41 ^9GNUTELLA	
0x0030 2043 4f4e 4e45 4354 2f30 2e36 0d0a 5573 .CONNECT/0.6Us	
0x0040 6572 2d41 6765 6e74 3a20 4265 6172 5368 er-Agent:.BearSh	
0x0050 6172 6520 322e 362e 320d 0a4d 6163 6869 are.2.6.2Machi	
0x0060 6e65 3a20 312c 382c 3338 332c 312c 3339 ne:.1,8,383,1,39	
0x0070 380d 0a50 6f6e 672d 4361 6368 696e 673a 8Pong-Caching:	
0x0080 2030 2e31 0d0a 486f 7073 2d46 6c6f 773a .0.1Hops-Flow:	
0x0090 2031 2e30 0d0a 4c69 7374 656e 2d49 503a .1.0Listen-IP:	
0x00a0 2031 3438 2e36 332e 3133 342e 3333 3a36 .148.63.134.33:6	
0x00b0 3334 360d 0a52 656d 6f74 652d 4950 3a20 346Remote-IP:.	
0x00c0 3137 302e 3132 392e 3230 342e 3139 0d0a 170.129.204.19	
0x00d0 0d0a	
17:33:06.934488 148.63.153.23.3506 > 46.5.80.149.6346:	Ρ
168117770:168117858(88) win 8192 (DF)	
0x0000 4500 0080 1365 4000 6f06 5427 943f 9917 Ee@.o.T'.?	
0x0010 2e05 5095 0db2 18ca 0a05 460a 0000 0000PF	
0x0020 5e08 2000 98d2 0000 474e 5554 454c 4c41 ^GNUTELLA	

Author: Johnny Wong

Page 25 of 72 Author retains full rights

0x0030 0x0040 0x0050 0x0060 0x0070	6572 6172 4361	4f4e 2d41 6520 6368 2d46	6765 322e 696e	6e74 342e 673a	3a20 320d 2030	4265 0a50 2e31	6172 6f6e 0d0a	5368 672d 486f	.CONNECT/0.6Us er-Agent:.BearSh are.2.4.2Pong- Caching:.0.1Ho ps-Flow:.1.0	
17:34:10. 168117770							5	>	46.5.80.149.6346:	Ρ
		0080					943f	9917	E".@.o.E?	
0x0010	2e05	5095	0db2	18ca	0a05	460a	0000	0000	PF	
0x0020	5e08	2000	98d2	0000	474e	5554	454c	4c41	^GNUTELLA	
0x0030	2043	4f4e	4e45	4354	2£30	2e36	0d0a	5573	.CONNECT/0.6Us	
0x0040	6572	2d41	6765	6e74	3a20	4265	6172	5368	er-Agent:.BearSh	
0x0050	6172	6520	322e	342e	320d	0a50	6f6e	672d	are.2.4.2Pong-	
0x0060	4361	6368	696e	673a	2030	2e31	0d0a	486f	Caching:.0.1Ho	
0x0070	7073	2d46	6c6f	773a	2031	2e30	0d0a	0d0a	ps-Flow:.1.0	

The "Gnutella CONNECT/0.6" suggested the version of the Gnutella protocol and the string after "user-agent:" indicated the client (i.e. Bearshare) used. A Gnutella servent attaches to a network via connection to another servent. Servents obtain IP addresses of other servents from their *host cache*.

So how do the ACK scans relate to the Gnutella CONNECTs? I suspected the ACK packets were "keep-alives" between other servents and 46.5.80.149, which happened to be found in their host caches. The low source port in the ACK packets, and particularly port 80, might be used to bypass firewalls. A packet filtering firewall would allow these packets to pass, thinking they were part of an established HTTP connection.

In between these ACK packets, other servents tried to join the Gnutella network via this IP. As 46.5.80.149 was not featured in the raw dumps from 2002.6.15 onwards, I could only deduce that the respective caches timed-out on this particular IP, and the keep-alives stopped. This IP could have previously belonged to a Gnutella client, hence the reason why it ended up in the host cache in the first place¹⁵, a common scenario in dynamic IP environments like DSL, cable Internet access.

Correlations

I did a *whois* on the source addresses of the ACK packets and found that the packets originated from ISPs in the US. I tried to check whether any of the source has been reported in <u>http://www.dshield.org/ipinfo.php</u>, but to no avail.

Previous analysis of random ACK scans attributed the cause to load balancing devices, notably in:

http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00027.html¹⁶ http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00039.html¹⁷ http://cert.uni-stuttgart.de/archive/intrusions/2002/12/msg00167.html¹⁸

However, in this case, the difference was that the destination port was Gnutella-6346 and more than one sending host was detected.

Author: Johnny Wong

Page 26 of 72 Author retains full rights

Evidence of active targeting

I noted that this IP did not feature in rawlogs prior to 2002.6.9. The relationship between the ACK scans and Gnutella CONNECT events suggested that the IP 46.5.80.149 was unwittingly targeted due to the fact it was previously used by a Gnutella client.

Severity

Criticality = 1

There was no evidence of answers from 46.5.80.149 to the ACKs or Gnutella CONNECTs. A real Gnutella client would reply with something like "GNUTELLA/0.6 200 OK". The existence of a Gnutella client would not count as critical to that of a Web or DNS server.

Lethality = 1

Lethality was low. The ACKs were probably used to maintain keepalives between Gnutella servents.

System countermeasures = 4

There was a possibility that a machine existed on IP address 46.5.80.149. The observations suggested that this machine, if it existed, took over an IP address that previously belonged to a Gnutella client. Or, the client software was uninstalled. I assumed the latter and gave a high score because of the possible risks of such software.

Network countermeasures = 1

The fact that the ACK and PUSH packets were captured by the IDS indicated that they at least passed the perimeter router. The only network countermeasure in place would be the IDS probe.

Severity = (1+1) - (1+1) = 0

Defensive recommendations

If the IDS probe was placed behind a firewall, and yet the ACK scans were detected, then a stateful firewall would do the trick in dropping these packets. Similarly, access to port 6346 from outside should be blocked, if peer-to-peer software is not allowed in the network.

Multiple choice question

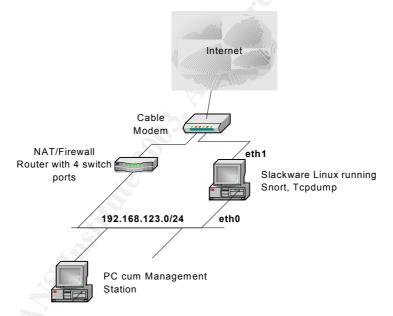
What could be the most likely reason when a network starts receiving unsolicited Gnutella CONNECT packets destined for an IP address within the network?

a. someone is performing a scan for hosts listening on port 6346

- b. the IP address was previously used by a Gnutella client
- c. these packets were responses to an earlier Gnutella REQUEST packets

d. a mis-configured Gnutella client

The answer is (b).


3. Detect #3: MS-SQL Worm Propagation Attempt

Source of trace

The last network detect came from my home network. My home network configuration consisted of:

- a Slackware Linux box running on kernel 2.4.20 with two (2) network interfaces; one listening promiscuously for packets ingressing and egressing from my network, and the other connected to the internal LAN
- tcpdump was used to log the packets into a binary dump file, which got rotated every day
- the NAT/Firewall router was configured to block any traffic originating from the Internet into the internal LAN

The following diagram describes the network set-up:

The binary dumps collected from 14 to 19 Jul 2003 were analysed for this exercise.

Detect was generated by

I used Snort version 2.0.0 (Build 72) and rules file dated 6 Mar 2003 (with a default snort.conf). The command run was:

```
# snort -r 20030714-2359.tcp -c snort.conf -dbl foo -L snort0714
# snort -r 20030715-2359.tcp -c snort.conf -dbl foo -L snort0715
.
.
.
```

snort -r 20030719-2359.tcp -c snort.conf -dbl foo -L snort0719

Snort reported a number of MS-SQL Worm Propagation attempts against my ISPassigned public IP address (masked out as X.X.X.X). Running a combination of grep, uniq and sort on the concatenated *alert* file, I generated a statistical listing of the alerts generated:

| grep '\[**\]' | sort | uniq -c | sort -rn | cat > # cat alert alert.stats & # cat alert.stats 43 [**] [1:2003:2] MS-SQL Worm propagation attempt [**] 24 [**] [1:615:3] SCAN SOCKS Proxy attempt [**] A sample of the alert file: [**] [1:2003:2] MS-SQL Worm propagation attempt [**] [Classification: Misc Attack] [Priority: 2] 07/14-02:28:28.605996 66.199.149.229:1076 -> X.X.X.X:1434 UDP TTL:113 TOS:0x0 ID:20682 IpLen:20 DgmLen:404 Len: 376 [Xref => http://vil.nai.com/vil/content/v_99992.htm][Xref => http://www.securityfocus.com/bid/5311][Xref => http://www.securityfocus.com/bid/5310] [**] [1:2003:2] MS-SQL Worm propagation attempt [**] [Classification: Misc Attack] [Priority: 2] 07/14-02:29:23.288610 64.254.238.245:2876 -> X.X.X.X:1434 UDP TTL:107 TOS:0x0 ID:28892 IpLen:20 DgmLen:404 Len: 376 [Xref http://vil.nai.com/vil/content/v_99992.htm][Xref => => http://www.securityfocus.com/bid/5311][Xref => http://www.securityfocus.com/bid/5310] [**] [1:2003:2] MS-SOL Worm propagation attempt [**] [Classification: Misc Attack] [Priority: 2] 07/14-05:57:55.813146 62.174.168.131:3071 -> X.X.X.X:1434 UDP TTL:106 TOS:0x0 ID:16071 IpLen:20 DgmLen:404 Len: 376 [Xref http://vil.nai.com/vil/content/v_99992.htm][Xref => => http://www.securityfocus.com/bid/5311][Xref => http://www.securityfocus.com/bid/5310] [**] [1:2003:2] MS-SQL Worm propagation attempt [**] [Classification: Misc Attack] [Priority: 2] 07/14-06:00:22.066200 61.28.28.98:3676 -> X.X.X.X:1434 UDP TTL:112 TOS:0x0 ID:39966 IpLen:20 DqmLen:404 Len: 376 [Xref http://vil.nai.com/vil/content/v_99992.htm][Xref => => http://www.securityfocus.com/bid/5311][Xref => http://www.securityfocus.com/bid/5310] [**] [1:2003:2] MS-SQL Worm propagation attempt [**] [Classification: Misc Attack] [Priority: 2] 07/14-07:10:00.084010 212.103.162.176:1558 -> X.X.X.X:1434 UDP TTL:108 TOS:0x0 ID:4341 IpLen:20 DgmLen:404 Len: 376 [Xref http://vil.nai.com/vil/content/v_99992.htm][Xref => => http://www.securityfocus.com/bid/5311][Xref => http://www.securityfocus.com/bid/5310] [**] [1:2003:2] MS-SQL Worm propagation attempt [**] [Classification: Misc Attack] [Priority: 2] 07/14-08:13:55.508318 209.180.171.224:62694 -> x.x.x.x:1434 UDP TTL:108 TOS:0x0 ID:46224 IpLen:20 DgmLen:404 Len: 376

[Xref http://vil.nai.com/vil/content/v_99992.htm][Xref => => http://www.securityfocus.com/bid/5311][Xref => http://www.securityfocus.com/bid/5310] [**] [1:2003:2] MS-SQL Worm propagation attempt [**] [Classification: Misc Attack] [Priority: 2] 07/14-08:42:45.180883 67.232.141.219:1204 -> x.x.x.x:1434 UDP TTL:112 TOS:0x0 ID:50108 IpLen:20 DgmLen:404 Len: 376 => http://vil.nai.com/vil/content/v_99992.htm][Xref [Xref => http://www.securityfocus.com/bid/5311][Xref => http://www.securityfocus.com/bid/5310]

The triggering rule for the MS-SQL Worm propagation attempts was found to be:

sql.rules:alert udp \$EXTERNAL_NET any -> \$HOME_NET 1434 (msg:"MS-SQL Worm
propagation attempt"; content:"|04|"; depth:1; content:"|81 F1 03 01 04 9B
81 F1 01|"; content:"sock"; content:"send"; reference:bugtraq,5310;
classtype:misc-attack;reference:bugtraq,5311;reference:
url,vil.nai.com/vil/content/v_99992.htm; sid:2003; rev:2;)

Using *tcpdump*, I found the packet contents that triggered the alert:

tcpdump -r snort_0714.1058688109 -nX 'udp and dst port 1434'

23:58:48.131367	195.29.54.131.3	3075 >	x.x.x.1434:	udp	376
-----------------	-----------------	--------	-------------	-----	-----

23:30:40	. 13130	D/ TA:		54.IJ	L.30/3) > A.		(.1434:	uap	3/0
$0 \times 0000 \times 0$	4500	0194	a210	0000	6b11	91fb	c31d	3683		E6.
0x0010	daba	45£2	0c03	059a	0180	0efb	04 01	0101		E
0x0020	0101	0101	0101	0101	0101	0101	0101	0101		
0x0030	0101	0101	0101	0101	0101	0101	0101	0101		
0x0040	0101	0101	0101	0101	0101	0101	0101	0101		
0x0050	0101	0101	0101	0101	0101	0101	0101	0101		
0x0060	0101	0101	0101	0101	0101	0101	0101	0101		
0×0070	0101	0101	0101	0101	0101	0101	01dc	c9b0		
0×0080	42eb	0e01	0101	0101	0101	70ae	4201	70ae		Bp.B.p.
0x0090	4290	9090	9090	9090	9068	dcc9	b042	b801		BhB
0x00a0	0101	0131	c9b1	1850	e2fd	3501	0101	0550		1P5P
0x00b0	89e5	5168	2e64	6c6c	6865	6c33	3268	6b65		Qh.dllhel32hke
0x00c0	726e	5168	6£75	6e74	6869	636b	4368	4765		rnQhounthickChGe
0x00d0	7454	66b9	6c6c	5168	3332	2e64	6877	7332		tTf.llQh32.dhws2
0x00e0	5£66	b965	7451	68 <mark>73</mark>	6£63	<mark>6b</mark> 66	b974	6£51		_f.etQh <mark>sock</mark> f.toQ
0x00f0	68 <mark>73</mark>	656e	64be	1810	ae42	8d45	d450	ff16		h <mark>send</mark> B.E.P
0x0100	508d	45e0	508d	45£0	50ff	1650	be10	10ae		P.E.P.E.PP
0x0110	428b	le8b	033d	558b	ec51	7405	be1c	10ae		B=UQt
0x0120	42ff	16ff	d031	c951	5150	81f1	0301	049b		B1.QQP
0x0130	81f1	0101	0101	518d	45cc	508b	45c0	50ff		Q.E.P.E.P.
0x0140	166a	116a	026a	02ff	d050	8d45	c450	8b45		.j.j.jP.E.P.E
0x0150	c050	ff16	89c6	09db	81£3	3c61	d9ff	8b45		.PE
0x0160	b48d	0c40	8d14	88c1	e204	01c2	c1e2	0829		@)
0x0170	c28d	0490	01d8	8945	b46a	108d	45b0	5031		E.jE.P1
0x0180	c951	6681	£178	0151	8d45	0350	8b45	ac50		.Qfx.Q.E.P.E.P
0x0190	ffd6	ebca								• • • •

As quoted from <u>http://vil.nai.com/vil/content/v 99992.htm¹⁹</u>,

"This virus exists only in memory of unpatched Microsoft SQL servers. Its purpose is simply to spread from one system to another and it does not carry a destructive payload. This worm causes increased traffic on UDP port 1434 and spreads between SQL servers. Heavy network traffic, associated with this threat, can effect network performance on all systems on the network. It uses a buffer overflow in "Server Resolution" service (read about CVE-CAN-2002-0649 vulnerability in MS02-39 and to

gain control on a target server. SQL Servers running Service Pack 3 are not affected. The malformed packet is only 376 bytes long (which is the full worm!) and carries the following strings: "h.dllhel32hkernQhounthickChGetTf", "hws2", "Qhsockf" and "toQhsend"."

Based on the Snort signature, the alert was triggered by:

- UDP packet from external network
- First byte of UDP payload "0x04"
- Hex contents "0x81 0xf1 0x03 0x01 0x04 0x9b" in payload
- String "send" and "sock" in payload

Probability the source address was spoofed

I tried to deduce where these worm packets originated from:

43 unique source addresses were accounted for, and this corresponded to the 43 MS-SQL worm alerts earlier. As these were UDP packets, it was trivial to generate them with spoofed addresses. However, I suspected these packets originated from compromised MS-SQL hosts.

#	Source address		•	Expected initial TTL value (= (1) + (2))
1	66.199.149.229	113	16 – reachable	129
2	64.254.238.245	107	20 - unreachable	127
3	62.174.168.131	106	24 - unreachable	130
4	61.28.28.98	112	16 - reachable	128
5	212.103.162.176	108	22 - unreachable	130
6	209.180.171.224	108	20 - unreachable	128
7	67.232.141.219	112	16 - unreachable	128
8	68.98.153.220 🛛 🔶	111	22 - unreachable	133
9	170.110.31.84	112	17 - reachable	129
10	195.29.54.131	107	24 - reachable	131
11	208.199.92.197	108	21 - reachable	129
12	12.216.120.148	113	17 - unreachable	130
13	80.164.77.19	114	22 - unreachable	136
14	212.37.205.96	113	17 - reachable	130
15	80.202.85.3	106	21 - unreachable	127
16	24.136.203.109	108	21 - unreachable	129
17	218.188.55.67	109	13 - unreachable	122

I summarized the list of source addresses and its related TTL value:

Author: Johnny Wong

Page 31 of 72 Author retains full rights

#	Source address	Recorded TTL value From source (1)	•	Expected initial TTL value (= (1) + (2))
18	195.61.75.183	106	21 - reachable	127
19	217.97.53.217	106	22 - reachable	128
20	203.155.234.8	110	17 - reachable	127
21	195.174.71.148	114	21 - reachable	135
22	129.19.3.8	111	16 - unreachable	127
23	64.187.31.139	116	17 - reachable	133
24	212.37.11.54	110	14 - unreachable	125
25	213.227.150.150	109	22 - reachable	131
26	203.107.147.186	111	20 - reachable	131
27	64.187.61.110	116	17 - reachable	133
28	80.200.47.145	108	17 - reachable	125
29	200.43.11.97	109	19 - unreachable	128
30	210.13.19.11	116	19 - reachable	135
31	211.167.92.168	110	18 - reachable	128
32	203.112.97.160	118	19 - reachable	137
33	221.6.233.30	117	16 - reachable	133
34	68.32.170.224	111	17 - unreachable	128
35	64.38.236.45	113	17 - reachable	130
36	202.108.220.187	111	17 - reachable	128
37	212.19.31.2	99	24 - unreachable	123
38	64.237.33.10	105	20 - reachable	125
39	128.2.166.125	111	18 - reachable	129
40	220.208.245.28	108	20 - reachable	128
41	208.58.202.234	111 💉	23 - reachable	134
42	211.24.158.3	117	30 - reachable	147
43	195.38.27.246	106	18 – reachable	124

For those unreachable IP addresses, meaning the traceroute time-out before the max 30 hop-count is reached, I used *whois* to verify that the last responding hop-router belonged to the same organization as the IP. For example, consider #17:

traceroute 218.188.55.67 traceroute to 218.188.55.67 (218.188.55.67), 30 hops max, 38 byte packets 1 192.168.123.254 (192.168.123.254) 1.262 ms 1.598 ms 1.250 ms 2 10.52.0.1 (10.52.0.1) 33.355 ms 17.612 ms 26.912 ms 172.20.52.129 (172.20.52.129) 11.421 ms 15.634 ms 15.710 ms 3 172.26.52.1 (172.26.52.1) 19.656 ms 11.541 ms 14.295 ms 172.20.6.7 (172.20.6.7) 11.250 ms 19.695 ms 10.394 ms 4 5 6 * * * 7 203.118.3.203 (203.118.3.203) 18.029 ms 34.176 ms 24.734 ms 134.159.125.65 (134.159.125.65) 23.032 ms 21.225 ms 14.708 ms 8 i-2-0.ntp-core01.net.reach.com (202.84.180.141) 9 12.663 ms 13.125 ms 17.107 ms i-5-7.tmhstcbr01.net.reach.com (202.84.249.213) 44.983 ms 47.576 ms 10

Author: Johnny Wong

Page 32 of 72 Author retains full rights 48.965 ms 11 i-10-0.tmhstcar0l.net.reach.com (207.176.96.67) 46.666 ms 48.138 ms 45.591 ms 12 hutchcity2-RGE.hkix.net (202.40.161.114) 55.219 ms 48.101 ms 59.171 ms 13 210.0.248.222 (210.0.248.222) 45.692 ms 45.687 ms 50.235 ms 14 * * * 15 * * * 16 * * * 17 * * *

The last responding hop was IP 210.0.248.222. I did a *whois* on this address and my intended destination IP.

```
# whois -h whois.apnic.net 210.0.248.222
# whois -h whois.apnic.net 218.188.55.67
```

Both belonged to HTHKNET (Hutchinson Telecommunications, HK). Hence, give and take a few TTLs, I could, with confidence, estimate the IP was about 13 hops away. By adding this TTL value to the one recorded from the corresponding UDP packet, I was able to deduce the initial TTL value of the packet.

The expected TTL values revolved around 128, which suggests a Windows 9x/NT/2000 system generating the packets. Quite rightfully so, if my earlier take that these UDP packets originated from compromised hosts.

Description of the attack

The worm in action has been given names like 'Sapphire', 'SQL-Hell' and 'MS-SQL Slammer'²⁰. It first struck in Jan 2003 and has caused widespread damage not because of any malicious intent of the payload (like deletion of files) but rather the speed of propagation. A compromised MS-SQL host sends out UDP packets containing the worm payload of 376 bytes to port 1434 of randomly selected IP targets in an infinite loop. When unpatched MS-SQL servers (pre-SP3) receive these packets, the worm code receives control of the servers, and in turn propagates itself to other unpatched servers. The worm runs in the memory of the infected server.

Attack mechanism

The Slammer worm based is a stack-based buffer overflow attack against the MS-SQL server. When a SQL Server receives a packet on UDP port 1434 with the first byte set to 0x04, the SQL Monitor thread takes the remaining data in the packet and attempts to open a registry key using this user supplied information. In the worm code, 0x04 was followed by a long series of 0x01, hence, the SQL Monitor generates a registry key:

HKLM\Software\Microsoft\Microsoft SQL Server\.....\MSSQLServer\CurrentVersion where represents unprintable 0x01 characters. This overflows the buffer, and the return address is overwritten, giving the worm control as well as privileges of the SQL Monitor. After which, the worm loads WS2_32.DLL (Winsock) and starts to propagate itself to UDP port 1434 of randomly selected IP addresses in an infinite loop.

```
Author: Johnny Wong
```

A complete disassembly of the worm code can be found at <u>http://www.nextgenss.com/advisories/mssql-udp.txt</u>²¹.

Correlations

The Slammer worm was first detected in late Jan 2003 and recorded as the fastest spreading worm in history. The capture of the worm in the wild about 6-months later showed that there are still some compromised MS-SQL hosts out there attempting to propagate the worm. Nothing else, I presumed, since none of them featured in Block List found at http://www.dshield.org/block_list_info.php.

Evidence of active targeting

The worm propagates itself by sending the UDP packets to randomly selected IP addresses. I also observed the source port used was ephemeral (>1024). A common, firewall-friendly source port such as 53 would indicate an intentional effort to punch the UDP packets through. But not so in this case. Hence, I would think that no active targeting was involved.

Severity

Criticality = 1

Criticality is low because there was no host involved. The analysis was carried out on raw traffic captured off a Cable Internet connection.

Lethality = 3

Lethality was high if an unpatched MS-SQL server was connected to the network.

System countermeasures = 1

No concerns since my router/firewall did not listen on any services or ports.

Network countermeasures = 1

My router/firewall was configured to drop any incoming UDP packets.

Severity = (1+3) - (1+1) = 2

Defensive recommendations

My router diligently dropped these attack packets from reaching into my network. I had deliberately set up the Linux box for traffic collection, hence I would not be too concerned with any other measures to defend against this attack.

Multiple choice question

What is one of the possible ways to deduce whether a packet originated from a spoofed IP address?

a. Ping the source IP
b. Traceroute to the source IP
c. Estimate the initial TTL value of the packet and check whether it matches the signature of any OS
d. Look up *Dshield*

The answer is (c).

Part 3: Analyze this!

1. Executive summary:

This document summarizes the observations and analysis of 5 days' worth of logs files collected from your organization. Alerts, scans and OOS logs from 9th to 13th Jul 2003 were analyzed.

Several Snort alerts were detected during the analysis period. Link graphs were constructed to give a better picture of the relationships between the various machines and the type of activities. There were a few instances of suspicious activity involving computers from your network. Such activities may indicate signs of compromise, like the use of compromised machines to attack other networks. And even leakage of information about your network to potential attackers.

Alerts found in your network were compared against the Top 20 critical Internet Security vulnerabilities according to SANS/FBI, giving an indication of the threat to your organization. A brief description of the other alerts were also provided. Five external addresses with their registration information were highlighted.

Throughout the document, defensive recommendations were provided for your consideration.

2. Log files used in analysis:

The logs from 9th to 13th Jul 2003 were downloaded from your IDS for analysis. The 15 files were:

```
      $ Is -I

      total 965504

      -rwxrwxr-x
      1 johnwong johnwong 27247358 Aug 2 09:51 alert.030709

      -rwxrwxr-x
      1 johnwong johnwong 35036701 Aug 2 09:53 alert.030710

      -rwxrwxr-x
      1 johnwong johnwong 3882668 Aug 2 09:55 alert.030711

      -rwxrwxr-x
      1 johnwong johnwong 42468295 Aug 2 09:55 alert.030712

      -rwxrwxr-x
      1 johnwong johnwong 29950716 Aug 2 09:57 alert.030713

      -rwxrwxr-x
      1 johnwong johnwong 1029123 Aug 2 09:51 OOS_Report_2003_07_09_2126

      -rwxrwxr-x
      1 johnwong johnwong 1402883 Aug 2 09:51 OOS_Report_2003_07_10_4402

      -rwxrwxr-x
      1 johnwong johnwong 1136643 Aug 2 09:51 OOS_Report_2003_07_11_27931

      -rwxrwxr-x
      1 johnwong johnwong 6594563 Aug 2 09:55 OOS_Report_2003_07_12_20109

      -rwxrwxr-x
      1 johnwong johnwong 6594563 Aug 2 09:55 OOS_Report_2003_07_12_20109

      -rwxrwxr-x
      1 johnwong johnwong 197186311 Aug 2 10:00 scans.030709

      -rwxrwxr-x
      1 johnwong johnwong 236729582 Aug 2 10:01 scans.030710
```

```
Author: Johnny Wong
```

Page 35 of 72 Author retains full rights -rwxrwxr-x1 johnwong johnwong 122446016 Aug2 10:00 scans.030711-rwxrwxr-x1 johnwong johnwong 120677834 Aug2 10:01 scans.030712-rwxrwxr-x1 johnwong johnwong 125366456 Aug2 10:01 scans.030713

Each type of files were concatenated into a single file: alert-all.txt, OOS_Report-all.txt and scans-all.txt. As also observed by Fred Thiele's GCIA submission²², there were some discrepancies observed in the alert file:

- Alerts were interjected in the middle of another. For instance,

07/09-00:59:21.716736 [**] CS WEBSERVER - external web traffic [**] 66.196.72.7 307/09-01:36:06.603290 [**] spp_portscan: portscan status from MY.NET.1.4: 9 co nnections across 9 hosts: TCP(0), UDP(9) [**] 07/09-01:36:06.606318 [**] spp_portscan: portscan status from MY.NET.114.45: 75 connections across 75 hosts: TCP(75), UDP(0) [**] 07/09-01:36:06.700015 [**] spp_portscan: portscan status from MY.NET.1.3: 3 con nections across 3 hosts: TCP(0), UDP(3) [**] 07/09-01:36:06.700560 [**] spp_portscan: portscan status from MY.NET.1.4: 14 co nnections across 14 hosts: TCP(0), UDP(14) [**] :28765 -> MY.NET.100.165:80 The alert in BOLD RED was split in the middle by the portscan entries.

The alert file also contained a large amount of spp_portscan entries. These
were filtered off into another file (alert-portscan-all.txt) for ease of analysis. The
main file was alert-all.filtered.txt.

A manual clean-up of the files was carried out before the analysis began, which took me about 2 days.

3. Pre-processing of alert files and tools used:

A combination of Unix command line tools like sed, cut, awk and grep were used to massage the raw alerts, scans and OOS files into a format compatible for entry into MySQL databases. Refer to Annex A for the details.

4. Summary of alerts:

A total of 589,595 alerts were generated during this 5-day period, which excluded the port scan alerts. There were 61 unique alerts identified. The alerts were:

#	Alert	#src	#dst	Occurrence
1	High port 65535 tcp - possible Red Worm - traffic	108	132	133659
2	CS WEBSERVER - external web traffic	20657	6	128355
3	<pre>spp_http_decode- IIS Unicode attack detected</pre>	550	1193	98201
4	SMB Name Wildcard	894	1296	70614
5	MY.NET.30.4 activity	521	4	44549
6	SYN-FIN scan!	7	23369	36271
7	EXPLOIT x86 NOOP	62	88	32702
8	MY.NET.30.3 activity	78	1	9146
9	spp http decode- CGI Null Byte attack detected	88	133	8995
10	Queso fingerprint	341	95	8861
11	Null scan!	47	47	2402

Author: Johnny Wong

Page 36 of 72 Author retains full rights

12	connect to 515 from inside	6	4	1973
13	IDS552/web-iis IIS ISAPI Overflow ida nosize	881	466	1566
	TCP SRC and DST outside network	112	434	1530
	connect to 515 from outside	1	1	1384
16	High port 65535 udp - possible Red Worm - traffic	63	56	1311
4 -	FTP passwd attempt	46	80	1283
18	[UMBC NIDS IRC Alert] IRC user /kill detected, po	53	58	1161
	External RPC call	6	590	989
20	IDS552/web-iis IIS ISAPI Overflow ida INTERNAL no	2	515	827
0.1	NMAP TCP ping!	134	68	726
22	Possible trojan server activity	52	61	527
23	NIMDA - Attempt to execute cmd from campus host	6	393	403
24	Incomplete Packet Fragments Discarded	57	40	332
25	Tiny Fragments - Possible Hostile Activity	3	0	276
26	SNMP public access	1	9 1	156
27	SUNRPC highport access!	17	16	150
28	SMB C access	68	9	139
29	TFTP - Internal TCP connection to external tftp s	6	41	118
	CS WEBSERVER - external ftp traffic	19	1	108
31	TCP SMTP Source Port traffic	2	53	96
32	Notify Brian B. 3.54 tcp	45	1	91
33	Notify Brian B. 3.56 tcp	38	1	79
34	TFTP - Internal UDP connection to external tftp s	7	10	64
35	EXPLOIT x86 stealth noop	6	6	64
36	MYPARTY - Possible My Party infection	1	1	50
37	EXPLOIT x86 setuid 0	29	28	49
38	RFB - Possible WinVNC - 010708-1 🔊	17	23	49
39	NETBIOS NT NULL session	6	8	47
40	DDOS shaft client to handler	8	4	39
41	EXPLOIT x86 setgid 0	29	24	34
42	EXPLOIT NTPDX buffer overflow	6	7	25
43	TFTP - External TCP connection to internal tftp s	6	8	22
	Probable NMAP fingerprint attempt	5	8	21
45	Attempted Sun RPC high port access	6	7	17
46	IRC evil - running XDCC	3	3	16
47	FTP DoS ftpd globbing	1	1	16
48	[UMBC NIDS IRC Alert] Possible sdbot floodnet det	12	1	16
49	External FTP to HelpDesk MY.NET.70.49	7	1	15
50	External FTP to HelpDesk MY.NET.70.50	6	1	14
51	ICMP SRC and DST outside network	6	0	10
52	DDOS mstream handler to client	1	3	8
53	External FTP to HelpDesk MY.NET.53.29	5	1	8
54	Back Orifice	2	3	7
55	TFTP - External UDP connection to internal tftp s	3	5	6
56	Traffic from port 53 to port 123	2	2	5
57	DDOS mstream client to handler	2	2	3
58	[UMBC NIDS IRC Alert] User joining Warez channel	2	2	3
59	[UMBC NIDS IRC Alert] Possible Incoming XDCC Send	3	3	3
60	[UMBC NIDS IRC Alert] K	1	1	2
61	NIMDA - Attempt to execute root from campus host	1	2	2

Table 1 Consolidated table of alerts collected from 9th to 13th Jul 2003

Author: Johnny Wong

Page 37 of 72 Author retains full rights Some of the alert signatures were most likely created locally, such as #5, #8, #32, #33, #49 and #50. For example, #5 was triggered whenever there was activity involving the host MY.NET.30.4. Inbound web traffic would trigger #2. The Snort signatures were probably crafted as such:

```
alert any any -> MY.NET.0.0/16 80 (msg: "CS WEBSERVER – external web traffic"; )
alert any any -> MY.NET.30.3/32 any (msg: "MY.NET.30.3 activity"; )
alert any any -> MY.NET.30.4/32 any (msg: "MY.NET.30.4 activity"; )
```

The IDS was probably sited at the edge of your campus network in between the perimeter router and firewall.

Other statistics worth noting were:

Total number of alerts detected	589,595
Total number of unique alerts	61
Total number of unique source addresses detected 💦 🔨	24,428
- from MY.NET	466
- from external	23,962
Total number of unique destination addresses detected	25,687
- from MY.NET	23 , 635
- from external	2,052
Total number of unique attacks launched by MY.NET hosts	18
Total number of unique attacks launched against MY.NET	49
hosts	

A total of 589,595 alerts were triggered by 24,428 hosts (internal and external), which indicates many of the attacks originated from the same host. Most of the attacks originated from external addresses, which made up 98% of the total number of attack-related source addresses. A total of 23,635 hosts from your network were targeted, which made up 92% of the total number attacked destination addresses.

The previous figures indicated that a number of hosts in your network were used to attack other networks, or might be compromised and used as launch-pads for attacks against other networks. 18 unique types of attack were found. However, a larger number of hosts in your network were attacked. 49 unique attacks were launched against the hosts in your network.

5. Relationships between the various addresses

The following tables were created to look for any meaningful relationships between the various addresses:

Top 10 source from MY.NET				
		Occurrence per type of	<pre>% of total alerts generated by</pre>	
Address	Type of alerts triggered	alert	MY.NET hosts	
MY.NET.82.36	Port 65536 tcp-Red Worm	78692	48.28%	
	CGI Null Byte	61		

Attacks involving MY.NET hosts

Author: Johnny Wong

Page 38 of 72 Author retains full rights

	IIS Unicode	2	
MY.NET.198.172	IIS Unicode	9735	5.97%
MY.NET.153.185	IIS Unicode	7297	4.47%
MY.NET.97.79	IIS Unicode	5376	3.49%
MI.NEI.97.79	Conn to 515 from inside	313	J.49%
MY.NET.97.168	IIS Unicode	3470	2.13%
MY.NET.97.63	IIS Unicode	3120	1.91%
MY.NET.153.211	IIS Unicode	2398	1.47%
MY.NET.84.216	IIS Unicode	2096	1.28%
MY.NET.97.44	IIS Unicode	1678	1.03%
MY.NET.97.64	IIS Unicode	1667	1.03%
MI. MEI. 97.04	Port 65536 tcp-Red Worm	6	1.05%

Table 2

Observation:

The host MY.NET.82.36 triggered the most number of alerts, 99.9% of which came from Red Worm attacks. It was also noted that <u>all</u> the top 10 MY.NET hosts triggered the IIS Unicode alert.

Top destination from MY.NET				
Address	<pre># of unique type of alerts triggered</pre>	Occurrence per type of alert	<pre>% of total alerts generated by MY.NET hosts</pre>	
MY.NET.100.165	CS WEBSERVER - ext web	128346	30.34%	
111.1121.100.100	Others (11 types)	468		
MY.NET.82.36	Port 65536 tcp-Red Worm	53783	12.67%	
MI.NEI.02.30	Others (4 types)	7	12.078	
MY.NET.30.4	6 types	44612	10.51%	
MY.NET.30.3	4 types	9215	2.17%	
MY.NET.24.8	5 types	5606	1.32%	
MY.NET.137.7	6 types	5518	1.30%	
MY.NET.137.46	5 types	3451	0.81%	
MY.NET.86.19	5 types	2212	0.52%	
MY.NET.5.67	4 types	1973	0.46%	
MY.NET.189.62	5 types	1963	0.46%	

Table 3

Observation:

MY.NET.100.165 was the most attacked host in your network. MY.NET.82.36, which occupied the top spot in Table 2, also appeared here, in second place. Strange enough, the Red Worm attack which was previously used by this host was now used against it here.

#		# of MY.NET	
		hosts	
Alert		involved	Occurrence
1 High port 65535 tcp - pc	ossible Red Worm - traffic	38	79392
2 spp_http_decode- II	S Unicode attack detected	368	70623
3 spp_http_decode- CG	I Null Byte attack detected	81	8846

Page 39 of 72 Author retains full rights

4	connect to 515 from inside	6	1973
5	IDS552/web-iis IIS ISAPI Overflow ida INTERNAL no	2	827
6	High port 65535 udp - possible Red Worm - traffic	11	496
7	NIMDA - Attempt to execute cmd from campus host	6	403
8	Possible trojan server activity	21	272
9	Incomplete Packet Fragments Discarded	1	123
10	MYPARTY - Possible My Party infection	1	50
11	TFTP - Internal TCP connection to external tftp s	2	29
12	RFB - Possible WinVNC - 010708-1	8	27
13	TFTP - Internal UDP connection to external tftp s	4	25
14	[UMBC NIDS IRC Alert] Possible sdbot floodnet det	12	16
15	IRC evil - running XDCC	3	16
16	DDOS mstream handler to client	1	8
17	TFTP - External TCP connection to internal tftp s	4	6
18	NIMDA - Attempt to execute root from campus host	1	2

Table 4

Observation:

A majority of MY.NET hosts triggered IIS Unicode alerts (#2). Some of the alerts could be due to false positives such as the IIS Unicode and CGI Null Byte attacks. #8, #10 and #16 are related to Trojan activities. #2, #3, #5, #7 and #18 are closely related to IIS vulnerabilities.

		# of MY.NET hosts	
	Alert	targeted	Occurrence
1	CS WEBSERVER - external web traffic	5	128350
2	SMB Name Wildcard	1294	70612
3	High port 65535 tcp - possible Red Worm - traffic	44	54270
4	MY.NET.30.4 activity	4	44548
5	SYN-FIN scan!	23368	36268
6	EXPLOIT x86 NOOP	86	32700
7	<pre>spp_http_decode- IIS Unicode attack detected</pre>	450	27579
8	MY.NET.30.3 activity	1	9146
9	Queso fingerprint 🚫	94	8860
10	Null scan!	47	2402
11	IDS552/web-iis_IIS ISAPI Overflow ida nosize	466	1566
12	connect to 515 from outside	1	1384
13	FTP passwd attempt	80	1283
14	[UMBC NIDS IRC Alert] IRC user /kill detected, po	58	1161
15	External RPC call	590	989
16	High port 65535 udp - possible Red Worm - traffic	28	815
17	NMAP TCP ping!	68	726
18	Possible trojan server activity	20	255
19	Incomplete Packet Fragments Discarded	38	209
20	SNMP public access	1	156
21	SUNRPC highport access!	16	150
22	spp http decode- CGI Null Byte attack detected	7	149
23	SMB C access	9	139
24	CS WEBSERVER - external ftp traffic	1	108

Author: Johnny Wong

Page 40 of 72 Author retains full rights

25	TCP SMTP Source Port traffic	53	96
26	Notify Brian B. 3.54 tcp	1	91
27	TFTP - Internal TCP connection to external tftp s	39	89
28	Notify Brian B. 3.56 tcp	1	79
29	EXPLOIT x86 stealth noop	6	64
30	EXPLOIT x86 setuid 0	28	49
31	NETBIOS NT NULL session	8	47
32	DDOS shaft client to handler	4	39
33	TFTP - Internal UDP connection to external tftp s	5	39
34	EXPLOIT x86 setgid 0	24	34
35	EXPLOIT NTPDX buffer overflow	7	25
36	RFB - Possible WinVNC - 010708-1	11	22
37	Probable NMAP fingerprint attempt	8	21
38	Attempted Sun RPC high port access	7	17
39	TFTP - External TCP connection to internal tftp s	6	16
40	FTP DoS ftpd globbing	1	16
41	External FTP to HelpDesk MY.NET.70.49	1	15
42	External FTP to HelpDesk MY.NET.70.50	1	14
43	External FTP to HelpDesk MY.NET.53.29	1	8
44	Back Orifice	3	7
45	TFTP - External UDP connection to internal tftp s	5	6
46	Traffic from port 53 to port 123	2	5
47	[UMBC NIDS IRC Alert] User joining Warez channel <	2	3
48	DDOS mstream client to handler	2	3
49	[UMBC NIDS IRC Alert] Possible Incoming XDCC Send	3	3

Table 5

Observation:

A large number of MY.NET hosts were probed with SYN-FIN scans (#5). There were a couple of locally created alert signatures such as #1, #4 and #8. These were most likely used to track host activity.

Attacks involving External hosts

Top 10 source from external			
Address	Type of alerts triggered	Occurrence per type of alert	<pre>% of total alerts generated by external hosts</pre>
24.84.205.243	Port 65536 tcp-Red Worm	53783	12.61%
80.204.44.179	IIS Unicode	26387	6.37%
80.204.44.179	5 other types	779	0.3/8
142.26.120.7	SYN-FIN scan	20538	4.82%
68.54.93.211	MY.NET.30.4 activity	18881	4.43%
195.5.55.32	SYN-FIN scan	15722	3.69%
172.176.163.24	EXPLOIT x86 NOOP	10828	2.54%
169.254.45.176	SMB Name Wildcard	8084	1.90%
217.88.160.45	EXPLOIT x86 NOOP	6620	1.55%
172.180.87.233	6 types of alerts	6571	1.54%
131.118.254.13	4 types of alerts	5352	1.25%

Observation:	
Author: Johnny Wong	Page 41

Page 41 of 72 Author retains full rights The host at 24.84.205.243 featured prominently and closely related to the Red Worm attacks. Hosts 142.26.120.7 and 195.5.55.32 carried out SYN-FIN probes against machines in MY.NET, an observation noted earlier too (refer to Table 5). Hosts 172.168.163.24 and 217.88.160.45 contributed to most of the EXPLOIT x86 NOOP attacks against MY.NET machines.

Top 10 destination from external					
Address	Type of alerts triggered	Occurrence per type of alert	<pre>% of total alerts generated by external hosts</pre>		
Address	Port 65536 tcp-Red Worm	78690	externar nosts		
24.84.205.243	SMB Name Wildcard	1	47.79%		
211.147.7.47	IIS Unicode	11598	7.04%		
210.192.111.73	IIS Unicode	9627	5.85%		
210.192.111.75	CS WEBSERVER - ext web	1	5.05%		
65.127.129.10	IIS Unicode	3750	2.28%		
207.200.86.97	IIS Unicode	2679	1.63%		
216.241.219.22	CGI Null byte	2247	1.36%		
218.153.6.229	IIS Unicode	2189	1.33%		
202.103.69.100	IIS Unicode	2044	1.24%		
218.153.6.244	IIS Unicode	1716	1.04%		
211.43.210.143	IIS Unicode	1536	0.93%		

Table 7

Observation:

Notice the similarity to Table 2. Most of the top external hosts targeted by IIS Unicode attacks.

Top source/alert pair				
Address	Alert	Occurrence		
MY.NET.82.36	High port 65535 tcp - possible Red Worm - traffic	78692		
24.84.205.243	High port 65535 tcp - possible Red Worm - traffic	53783		
80.204.44.179	<pre>spp_http_decode- IIS Unicode attack detected</pre>	26387		
142.26.120.7	SYN-FIN scan!	20538		
68.54.93.211	MY.NET.30.4 activity	18881		
195.5.55.32	SYN-FIN scan!	15722		
172.176.163.24	EXPLOIT x86 NOOP	10828		
MY.NET.198.172	<pre>spp_http_decode- IIS Unicode attack detected</pre>	9735		
169.254.45.176	SMB Name Wildcard	8084		
MY.NET.153.185	spp_http_decode- IIS Unicode attack detected	7297		

Table 8

Top destination/alert pair				
Address	Alert	Occurrence		
MY.NET.100.165	CS WEBSERVER - external web traffic	128346		
24.84.205.243	High port 65535 tcp - possible Red Worm - traffic	78690		
MY.NET.82.36	High port 65535 tcp - possible Red Worm - traffic	53782		
MY.NET.30.4	MY.NET.30.4 activity	44545		
211.147.7.47	spp_http_decode- IIS Unicode attack detected	11598		
210.192.111.73	<pre>spp_http_decode- IIS Unicode attack detected</pre>	9627		
MY.NET.30.3	MY.NET.30.3 activity	9146		

Author: Johnny Wong

Page 42 of 72 Author retains full rights

MY.NET.24.8	EXPLOIT x86 NOOP	5520
MY.NET.137.7	SMB Name Wildcard	5437
65.127.129.10	<pre>spp_http_decode- IIS Unicode attack detected</pre>	3750

Table 9

Top source-destination pair				
Source	Destination	Occurrence		
MY.NET.82.36	24.84.205.243	78688		
24.84.205.243	MY.NET.82.36	53780		
68.54.93.211	MY.NET.30.4	18881		
MY.NET.198.172	210.192.111.73	9627		
131.118.254.13	MY.NET.24.8	5352		
MY.NET.97.79	211.147.7.47	5349		
193.41.146.24	MY.NET.100.165	4576		
65.214.36.116	MY.NET.100.165	3760		
MY.NET.97.168	65.127.129.10	3470		
68.55.52.234	MY.NET.30.3	3182		

Table 10

Observation:

Notice the two-way relationship between MY.NET.82.36 and 24.84.205.243, both directions involved the Red Worm attacks. The external host 210.192.111.73 was one of the top listener and all its traffic came from MY.NET.198.172. The alerts that came from locally created signatures also featured prominently, namely the CS WEBSERVER and MY.NET.30.4 activity. Note the high occurrence of web traffic from 193.41.146.24 and 65.214.36.116.

Note also the high frequency of SYN-FIN and EXPLOIT x86 NOOP in Table 8, but none of the source addresses featured in Table 10. This was because they were probes sent to a range of destination addresses, not active targeting of a single host.

Reviewing the scans logs

There were a total of 12,281,498 scans detected during the five-day period from 9th to 13th Jul. From the "scans" files, the "MY.NET" prefixes were replaced with "130.85", which coincidently owned by Maryland University. The Top scans activities by to protocol type were:

Top 5 Scans type					
mana a	# of unique source	Gaugh	Top destination port		
Type UDP	address 576	Count 6218981	53 (51%)		
SYN	943	5845119	80 (71%)		
FIN	31	177659	1214 (100응)		
SYNFIN	9	36281	21 (100%)		
NULL	49	889	110 (46%)		

Table 11

Author: Johnny Wong

Page 43 of 72 Author retains full rights The other statistics generated from Table 11 were:

Top Source Address to Destination ODF Fort 35					
Address	Occurrence # of destinati				
		addresses			
130.85.1.3	2,698,955	72,208			
130.85.1.4	468,395	30,475			

Top Source Address to Destination UDP Port 53

These two hosts were sending a lot of DNS queries to a large of external hosts. Could these 2 be compromised servers sending out probes? A search in the alert logs of any alerts triggered with either of these 2 addresses as source turned out empty. This could be legitimate activity but I would still recommend checking out the contents of the UDP payloads sent out.

Top Source Address of SYNFIN scans

Address	Occurrence
142.26.120.7	20,538
195.5.55.32	15,723

The SYNFIN type statistics here complemented Table 8, identifying the top 2 culprits of SYN-FIN scans against your network to be 142.26.120.7 and 195.5.55.32. The SYN-FIN scans were targeted at port 21 (ftp).

Possible scan activity from 130.85.114.45

The host 130.85.114.45 was sending out SYN probes to a series of external addresses:

Jul	9	00:00:06	130.85.114.45:1042	->	134.203.218.29:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1043	->	134.203.218.30:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1044	->	134.203.218.31:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1046	->	134.203.218.32:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1047	->	134.203.218.33:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1048	->	134.203.218.34:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1049	->	134.203.218.35:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1050	->	134.203.218.36:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1051	->	134.203.218.37:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1052	->	134.203.218.38:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1053	->	134.203.218.39:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1054	->	134.203.218.40:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1056	->	134.203.218.41:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1059	->	134.203.218.42:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1060	->	134.203.218.43:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1061	->	134.203.218.44:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1062	->	134.203.218.46:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1063	->	134.203.218.45:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1065	->	134.203.218.48:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1066	->	134.203.218.49:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1067	->	134.203.218.50:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1068	->	134.203.218.51:80	SYN	*****S*
Jul	9	00:00:06	130.85.114.45:1069	->	134.203.218.52:80	SYN	*****S*

Notice the traits of a portscan tool, such as incrementing source port with every next destination IP (sequential), and the frequency of the SYN packets being generated.

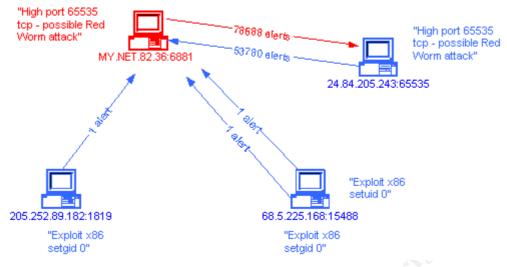
1,403,124 addresses were SYN-scanned by this host.

Reviewing the OOS logs

A total of 63,922 OOS packets (49 types) were observed throughout the 5-day period. The most common type of OOS packets were:

OOS Type	No. of OOS packets	Percentage of total OOS packets	Remarks
****SF	48,039	75.15%	The top source of these OOS packets were 142.26.120.7 and 195.5.55.32, which complemented Table 8, the source IP of SYN-FIN scans.
12****S*	14,751	23.08%	Reference to the Queso fingerprint attack discussed later.
* * * * * * * *	638	1.00%	A signature of a NULL scan - see later section on detects.

6. Link Graphs


Case 1 - Attacks involving the Red Worm

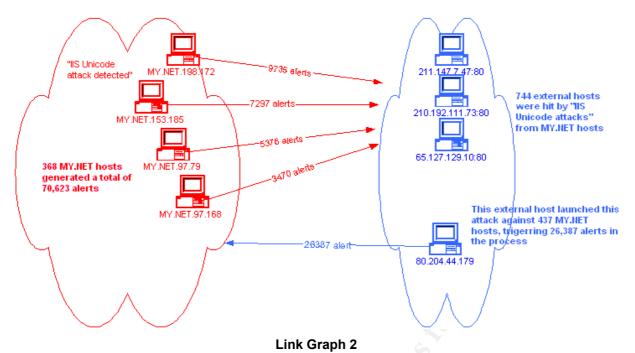
First, I examined the relationships between the hosts involved in the Red Worm attacks.

Not indicated in the diagram below, the host MY.NET.82.36 initiated some access to 217.215.27.135 port 80 from 1334hrs to 1510hrs on 07/10/03, which triggered 61 "CGI Null Byte detected" alerts. On 07/11/03, hosts 68.5.225.168 and 205.252.89.182 initiated connections to the MY.NET host port 6881, triggering the "Exploit x86 setuid 0" and "Exploit x86 setuid 0" alerts:

07/11-09:09:09.347592 | EXPLOIT x86 setuid 0 | 68.5.225.168 | 15448 | MY.NET.82.36 | **6881** | 07/11-09:23:47.215387 | EXPLOIT x86 setgid 0 | 68.5.225.168 | 15448 | MY.NET.82.36 | **6881** | 07/11-18:25:28.121629 | EXPLOIT x86 setgid 0 | 205.252.89.182 | 1819 | MY.NET.82.36 | **6881** |

The observation of the destination port targeted (6881) was significant, because on the following day, the traffic between MY.NET.82.36:**6881** and 24.84.205.243:**65535** triggered a barrage of Red Worm alerts on the same day. The host 24.84.205.243 did not communicate with any other MY.NET host. Was it purely coincidental or somehow the attack on the earlier day was related? A search of <u>http://www.sans.org/y2k/ports.htm</u>²³ did not return any associated service with this port number. Could MY.NET.82.36 be used to attack another host?

Link Graph 1


I would recommend checking on the machine MY.NET.82.36 for any signs of compromise. The raw logs could be examined to detect any malicious code in the payload.

Case 2 – Attacks involving the IIS Unicode

The "IIS Unicode attack" rated as number 3 overall for the number of alerts generated. As evident from Tables 2 and 7, there was a correlation between the "IIS Unicode attack" alerts triggered by the MY.NET hosts as source and the external hosts as destination. I also noted the external host 80.204.44.179 triggered the alert against 26,738 MY.NET hosts.

Let's look at the targeted external hosts first. 7 out of the top 10 targeted hosts belonged to sites located in Asia. Netscape.com also appeared in the list:

External host	Location?	Alert Count	<pre># of MY.NET hosts involved</pre>
211.147.7.47	China	11,598	14
210.192.111.73	China	9,627	1
65.127.129.10	U.S performancestore.com	3,750	2
207.200.86.97	U.S. Netscape.com	2,679	6
218.153.6.229	Korea	2,189	1
202.103.69.100	China	2,044	10
218.153.6.244	Korea	1,716	1
211.43.210.143	Korea	1,536	1
66.36.238.12	U.S. Mixedrace.com	1,511	4
210.115.150.102	Korea	1,315	2

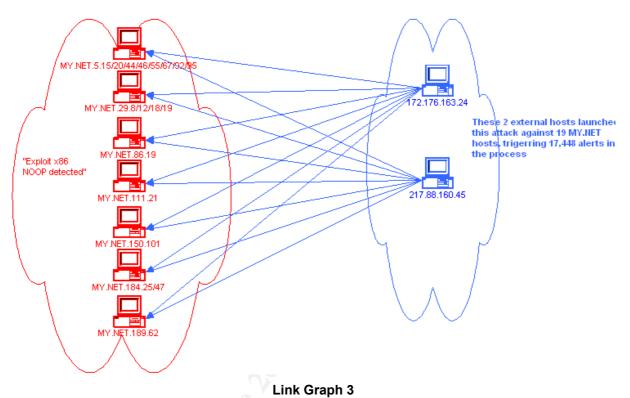
This attack is susceptible to generating false positives. Most Asian web sites use Unicode to display the language characters, such as Japanese, Korean and Chinese. These alerts might have been triggered as such. For the non-Asian sites, I would advise inspecting the payload for any malicious content. If the result of the inspection pointed to false positive, then I recommend turning off the detection of Unicode in the Snort IDS. The steps can be found at <u>http://www.snort.org/docs/FAQ.txt</u>²⁴ under item 4.17.

My attention now turned to the external host 80.204.44.179. This particular host launched the attack against 437 machines in your network, triggering 26,387 alerts in the process. This attack was launched against port 80 of the destination host. Hence, the locally created alerts such as:

- "MY.NET.30.4 activity",
- "MY.NET.30.3 activity",
- "CS WEBSERVER external web traffic",
- "Notify Brian B. 3.54 tcp" and
- "Notify Brian B. 3.56 tcp"

were also triggered. The attack started on 07/10 at 0148hrs and lasted till 0942hrs on the same day. I also noted that the hosts MY.NET.7.140 (326 times) and MY.NET.111.155 (282 times) were targeted the most times. The other hosts averaged about 60~70 alerts each.

This host could be running a vulnerability scan against the machines in your network, specifically looking for vulnerable IIS web servers susceptible to the Unicode attack(s). A check with *Dshield* and *Sam Spade* did not reveal any information about this IP address. I would recommend:


- Checking the raw logs to see there were any return traffic from your hosts to this IP, especially from MY.NET.7.140 and MY.NET.111.155. This might indicate a successful compromise.
- Ensure that the IIS web servers in your network are patched to the latest

versions.

• Block this IP from entering your network if it was confirmed that an attack was carried out.

Case 3 – Attacks involving the Exploit x86 NOOP

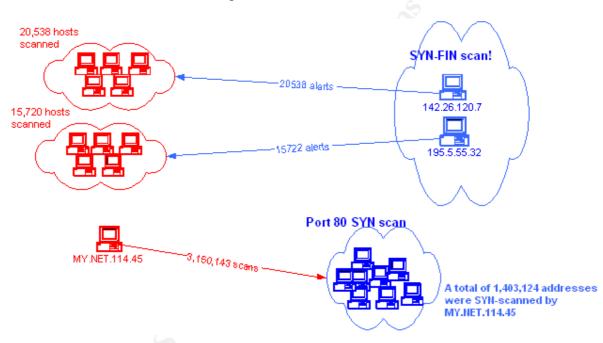
Reference to Table 6, the hosts at 172.176.163.24 and 217.88.160.45 featured prominently in terms of the Exploit x86 NOOP attacks. Upon further examination, I found that the targeted MY.NET hosts by these 2 IPs were similar:

A run of whois against these two addresses revealed them to be from America On Line and Deutsche Telekom respectively. This alert is also susceptible to false positives, such as traffic carrying binary data, jpg, GIF and bitmaps. I found out that all the destination ports for the alerts was port 80 (HTTP). This could indicate return HTTP traffic to web servers in MY.NET, whose payload contained NOOP bytes. I deduced that 172.176.163.24 and 217.88.160.45 belonged to Internet users who were accessing web servers in your network, but unintentionally triggered the NOOP alerts. Maybe they were transferring executables, pictures that contained NOOP bytes.

Reference to Table 4 and 5, I found that only incoming traffic triggered these alerts. In summary,

1	No. of alerts	32,702
2	No. of alerts where source port eq 80	702
	- No. of unique MY.NET hosts targeted	74
3	No. of alerts where destination port eq 80	26,656
	- No. of unique MY.NET hosts targeted	21
4	No. of alerts where destination port eq 119	5,521

- No. of unique MY.NET hosts targeted


2

Source port of 80 indicated traffic from external web servers to MY.NET hosts. 74 hosts in MY.NET were involved, most likely belonging to users who were accessing to external web sites.

Destination port of 80 was explained earlier. I would recommend verifying whether the MY.NET hosts (as in Link Graph 3) are indeed legitimate web servers, and if possible, run vulnerability scans against them.

Destination port of 119 indicated postings to news servers in MY.NET. 2 were found, namely MY.NET.24.8 and MY.NET.81.42, and I would advise verifying these 2 machines are indeed running as news servers.

From the observations, I recommend disabling the "Exploit x86 NOOP" signature in the Snort IDS, which would reduce the amount of alerts due to false positives.

Case 4 – Port scans activities against and from MY.NET hosts

Link Graph 4

Two activities brought about concerns here. Firstly, your network was actively targeted by SYN-FIN scans from 2 particular external hosts. Secondly, MY.NET.114.45 sent out a barrage of SYN packets against port 80 of a wide range of external addresses. I suspect an automated portscan tool was run on this particular machine. I recommend checking on this machine for any possible compromise.

7. List of Detects

I referred to the SANS/FBI Top 20 List of the Most Critical Internet Security Vulnerabilities at <u>http://www.sans.org/top20/</u>²⁵, and grouped the attacks found in your network according to the categories of vulnerabilities. The remaining attacks were highlighted at the end of the section.

attackcharacters, are used to attack IIS servers that are not able to handle improperly formatted HTTP requests. A remote attacker would be able to execute arbitrary commands on the server, such as cmd.exe as part of crafted HTTP request.8,995CGI Null ByteWhen the Snort http pre-processor detects a %00 in a http request, it will alert with "CGI Null Byte Attacker". Attackers could use this as means to have arbitrary access to a web server.8,995CGI Null ByteWhen the Snort http pre-processor detects a %00 in a http request, it will alert with "CGI Null Byte Attacker". Attackers could use this as means to have arbitrary access to a web server.8,095CGI Null ByteWhen the Snort http pre-processor detects a %00 in a http://www.gatac.cold use this as means to have arbitrary access to sites that use cookies with URL-encoded binary data, or when SSL encrypted is picked up. Having a packet dump is the only way to verify whether we have a real attack in our hands.2,393IDS552/web iis ISAPI overflow ida nosize ida nosize i SAPI overflow IDA internalMany ISAPI extensions are vulnerable to buffer overflow inds a stempted to exploit a vulnerability in Microsoft IIS: An unchecked buffer in the Microsoft IIS Index	W1 - In	ternet Informati	on Services (IIS)
 attack characters, are used to attack IIS servers that are not able to handle improperly formatted HTTP requests. A remote attacker would be able to execute arbitrary commands on the server, such as cmd.exe as part of crafted HTTP request. The alerts triggered could also be false positives, as Unicode characters could exist in legitimate web traffic. This was highlighted in Case 2 of the Link Graphs section. 8,995 CGI Null Byte When the Short http pre-processor detects a %00 in a http request, it will alert with "CGI Null Byte Attack". Attackers could use this as means to have arbitrary access to a web server. However, the alerts could be false positives, instances where access to sites that use cookies with URL-encoded binary data, or when SSL encrypted is picked up. Having a packet dump is the only way to verify whether we have a real attack in our hands. A couple of reports on this alert has concluded that such alerts were false alarms:		Attack	Description
 as Unicode characters could exist in legitimate web traffic. This was highlighted in Case 2 of the Link Graphs section. 8,995 CGI Null Byte When the Snort http pre-processor detects a %00 in a http request, it will alert with "CGI Null Byte Attack". Attackers could use this as means to have arbitrary access to a web server. However, the alerts could be false positives, instances where access to sites that use cookies with URL-encoded binary data, or when SSL encrypted is picked up. Having a packet dump is the only way to verify whether we have a real attack in our hands. A couple of reports on this alert has concluded that such alerts were false alarms: http://www.giac.org/practical/Joe Ellis GCIA.doc²⁶ (Joe Ellis' GCIA Practical) http://www.lurdg.com/idsindepth.html²⁷ (Johnny Calhoun's GCIA Practical) 2,393 IDS552/web_iis ISAPI overflow ida nosize A tempted to exploit a vulnerable to buffer overflow. This event indicates a remote attacker has attempted to exploit a vulnerability in Microsoft IIS: A turp://www.whitehats.com/info/IDS552²⁸ http://www.whitehats.com/info/IDS552²⁸ http://www.systemsion could enable a remote intruder to gain SYSTEM access to the server: 	98,201		requests. A remote attacker would be able to execute arbitrary commands on the server, such as <i>cmd.exe</i> as part of crafted HTTP request.
 a http request, it will alert with "CGI Null Byte Attack". Attackers could use this as means to have arbitrary access to a web server. However, the alerts could be false positives, instances where access to sites that use cookies with URL-encoded binary data, or when SSL encrypted is picked up. Having a packet dump is the only way to verify whether we have a real attack in our hands. A couple of reports on this alert has concluded that such alerts were false alarms: http://www.giac.org/practical/Joe Ellis GCIA.doc²⁶ (Joe Ellis' GCIA Practical) http://www.lurhg.com/idsindepth.html²⁷ (Johnny Calhoun's GCIA Practical) 2,393 IDS552/web_iis ISAPI overflow ida nosize a may ISAPI extensions are vulnerable to buffer overflows. This event indicates a remote attacker has attempted to exploit a vulnerability in Microsoft IIS: a ttp://www.whitehats.com/info/IDS552²⁸ http://www.whitehats.com/info/IDS552²⁸ An unchecked buffer in the Microsoft IIS Index Server ISAPI Extension could enable a remote intruder to gain SYSTEM access to the server: 			as Unicode characters could exist in legitimate web traffic. This was highlighted in Case 2 of the Link
 instances where access to sites that use cookies with URL-encoded binary data, or when SSL encrypted is picked up. Having a packet dump is the only way to verify whether we have a real attack in our hands. A couple of reports on this alert has concluded that such alerts were false alarms: <u>http://www.giac.org/practical/Joe Ellis GCIA.doc²⁶</u> (<i>Joe Ellis' GCIA Practical</i>) <u>http://www.lurhg.com/idsindepth.html²⁷</u> (<i>Johnny Calhoun's GCIA Practical</i>) 2,393 IDS552/web_iis ISAPI overflow ida nosize <u>k</u> <u>http://www.size.com/indicates a remote attacker</u> has attempted to exploit a vulnerability in Microsoft IIS: <u>k</u> <u>http://www.whitehats.com/info/IDS552²⁸</u> <u>http://www.whitehats.com/info/IDS552²⁸</u> <u>An unchecked buffer in the Microsoft IIS Index</u> Server ISAPI Extension could enable a remote intruder to gain SYSTEM access to the server: 	8,995	CGI Null Byte	When the Snort http pre-processor detects a %00 in a http request, it will alert with "CGI Null Byte Attack". Attackers could use this as means to have arbitrary access to a web server.
<pre>that such alerts were false alarms: http://www.giac.org/practical/Joe Ellis GCIA.doc²⁶ (Joe Ellis' GCIA Practical) http://www.lurhq.com/idsindepth.html²⁷ (Johnny Calhoun's GCIA Practical)</pre> 2,393 IDS552/web_iis ISAPI overflow ida nosize Many ISAPI extensions are vulnerable to buffer overflows. This event indicates a remote attacker has attempted to exploit a vulnerability in Microsoft IIS: & IDS552/web_iis ISAPI overflow IDA internal An unchecked buffer in the Microsoft IIS Index Server ISAPI Extension could enable a remote intruder to gain SYSTEM access to the server:			However, the alerts could be false positives, instances where access to sites that use cookies with URL-encoded binary data, or when SSL encrypted is picked up. Having a packet dump is the only way to verify whether we have a real attack in our hands.
2,393IDS552/web_iis ISAPI overflow ida nosizeMany ISAPI extensions are vulnerable to buffer overflows. This event indicates a remote attacker has attempted to exploit a vulnerability in Microsoft IIS: http://www.whitehats.com/info/IDS552^28& hrtfp://www.whitehats.com/info/IDS552 An unchecked buffer in the Microsoft IIS Index Server ISAPI Extension could enable a remote intruder to gain SYSTEM access to the server:			A couple of reports on this alert has concluded that such alerts were false alarms:
ISAPI overflow ida nosize & IDS552/web_iis ISAPI overflow IDA internal An unchecked buffer in the Microsoft IIS Index Server ISAPI Extension could enable a remote intruder to gain SYSTEM access to the server:			(Joe Ellis' GCIA Practical) http://www.lurhq.com/idsindepth.html ²⁷
IDS552/web_iis ISAPI overflow IDA internal An unchecked buffer in the Microsoft IIS Index Server ISAPI Extension could enable a remote intruder to gain SYSTEM access to the server:	2,393	ISAPI overflow ida nosize	
IDA internal An unchecked buffer in the Microsoft IIS Index Server ISAPI Extension could enable a remote intruder to gain SYSTEM access to the server:			http://www.whitehats.com/info/IDS55228
http://www.eeye.com/html/Research/Advisories/AD2001			Server ISAPI Extension could enable a remote
			http://www.eeye.com/html/Research/Advisories/AD2001

Author: Johnny Wong

Page 50 of 72 Author retains full rights

		0618.html ²⁹		
		The hosts MY.NET.97.24 and MY.NET.97.205 were triggering such alerts. These 2 hosts could be compromised.		
405	NIMDA -	These attacks target the buffer overflow		
	Attempt to	vulnerability of ISAPI extensions. Such attacks		
	execute cmd or	could cause Denial of Service or allow the		
	root from	execution of arbitrary code on the Web server.		
	campus host			
		Six MY.NET hosts were found generating these		
		alerts:		
		- MY.NET.30.86		
		- MY.NET.97.24		
		- MY.NET.97.176		
	- MY.NET.114.15			
		- MY.NET.184.25		
		- MY.NET.97.205		
Defensi	ve Recommendatio	ons		

The SANS/FBI Top 20 site suggested a few approaches to protect against IIS attacks, such as applying the latest patches, eliminating sample applications and unmapping unnecessary ISAPI extensions.

I would also like to recommend checking the MY.NET hosts indicated earlier for any signs of compromise. Particularly MY.NET.97.24 and MY.NET.97.205, both featured as source of ISAPI and Nimda alerts.

 Wildcard to extract useful NetBIOS information lik workstation name, domain and users currently logge in (NetBIOS Name Table Retrieval Query). Suc packets would trigger the SMB Name Wildcard alerts. There was a high number of alerts coming fro source address 169.254.45.176. This address belonged to the Linklocal address space, as define in RFC3330: http://www.rfc-editor.org/rfc/rfc3330.txt³⁰ Linklocal addresses are assigned to networ interfaces when a local DHCP server is no available. The fact that none of the MY.NET host was the source of this attack, I concluded that th alerts (from source 169.254.45.176) originated from MY.NET hosts running Microsoft Windows 98. Refet to: http://www.sans.org/y2k/072500-1200.htm³¹ SMB C access This signature captures attempts to access th default administrative share CS. If successful, th attacker would be able to access the c: filesystem. 	Alert	Attack	Description
Wildcardto extract useful NetBIOS information lik workstation name, domain and users currently logge in (NetBIOS Name Table Retrieval Query). Suc packets would trigger the SMB Name Wildcard alerts. There was a high number of alerts coming fro source address 169.254.45.176. This address belonged to the Linklocal address space, as define 			
 interfaces when a local DHCP server is no available. The fact that none of the MY.NET host was the source of this attack, I concluded that th alerts (from source 169.254.45.176) originated fro MY.NET hosts running Microsoft Windows 98. Refeto: http://www.sans.org/y2k/072500-1200.htm³¹ SMB C access This signature captures attempts to access th default administrative share C\$. If successful, th attacker would be able to access the c: filesystem. 			workstation name, domain and users currently logged in (NetBIOS Name Table Retrieval Query). Such packets would trigger the SMB Name Wildcard alerts. There was a high number of alerts coming from source address 169.254.45.176. This address belonged to the Linklocal address space, as defined in RFC3330:
default administrative share C\$. If successful, th attacker would be able to access the c: filesystem.			available. The fact that none of the MY.NET hosts was the source of this attack, I concluded that the alerts (from source 169.254.45.176) originated from MY.NET hosts running Microsoft Windows 98. Refer to:
default administrative share C\$. If successful, th attacker would be able to access the c: filesystem.			
	139	SMB C access	This signature captures attempts to access the default administrative share C\$. If successful, the attacker would be able to access the c: filesystem.
nttp://www.whitenats.com/into/iDS339**			http://www.whitehats.com/info/IDS339 ³²

Author: Johnny Wong

Page 51 of 72 Author retains full rights

Defensive Recommendations				
Some of the recommendations from the SANS/FBI Top 20 site:				
- Disable Windows file sharing if not required, otherwise, enforce				
authenticated shares				
- Deny sharing with hosts on the Internet				
- Block ports used for Windows shares at your network perimeter i.e. 137-				
139 TCP and UDP, and 445 TCP and UDP.				

W5 Anor	W5 Anonymous Logon - NULL sessions		
Alert	Attack	Description	
Count			
47	NetBIOS NT Null session	This signature detects a Windows NT login as Nobody (nt-netbios-nullsession). Null sessions are used to list shares and users on a Windows NT server or client workstation. <u>http://www.whitehats.com/info/IDS204</u> ³³	
Defensi	Defensive Recommendations		
The rec	The recommendations pointed out in W4 could be adopted here.		

SANS/FBI Top Vulnerabilities to Unix Systems

U1 Remo	ote Procedure Cal	lls (RPC)	
Alert	Attack	Description	
Count			
989	External RPC call	The external RPC calls targeted port 111, the portmapper service. The attackers hoped to find out what services are running on a particular host and on which port the services are run. A total of 6 external hosts targeted 590 machines in your network: - 216.101.67.45 - 211.168.183.66 - 67.34.61.114 - 67.32.137.235 - 210.251.104.22 - 143.225.151.30	
167	SUNRPC highport access & Attempted Sun RPC high port access	The signature used to detect this attack was based on access to port 32771 TCP or UDP. Hence, it was highly probable that these were false positives. It would be a concern if those hosts that carried out the "external RPC call" were featured here, but fortunately, they did not. If they did, that meant that they got a response from the targeted host on which services were running, and attempted to connect to them.	
Defens	Defensive Recommendations		
	Some recommendations which I wish to highlight:		
	- turn off any RPC service on your Unix hosts unless absolutely required		
- insta	- install the latest patches if RPC services count not be removed		
	- block portmapper port 111 at your network perimeter		
- bloc	- block RPC "loopback" ports from 32770 to 32789 (TCP and UDP)		
Author:	Author: Johnny Wong Page 52 of 72		

Author: Johnny Wong

Page 52 of 72 Author retains full rights

Alert Count	Attack	Description
156	SNMP public access	This Snort signature attempts to detect any access to port 161 (SNMP) with the "public" community string.
		The 150 occurrences was attributed to a one-sided traffic from 134.192.86.65 to MY.NET.190.13. The culprit resolved to a host in your network, according to whois.
		I would recommend verifying whether the traffic was legitimate or due to some mis-configuration of equipment.
Defensive Recommendations		
Defensive Recommendations If SNMP is not required, it should be turned off. Otherwise, replace t default "public" community string.		

U5 File	U5 File Transfer Protocol (FTP)		
Alert	Attack	Description 💦	
Count			
1,283	FTP passwd attempt	This signature detects any attempt to retrieve the passwd file from an FTP server. The external host 218.19.12.57 triggered the alert against 80 MY.NET hosts. This address originated	
		from China.	
16	FTP DOS ftpd globbing	This signature detects any attempt to crash the ftpd server software by sending a wildcard request to create a DOS on vulnerable FTP servers: <u>http://www.whitehats.com/info/IDS487</u> ³⁴ The 16 occurrences were attributed to a one-sided traffic from 213.133.108.15 to MY.NET.24.27. The culprit resolved to a host in Germany, according to whois.	
Defensive Recommendations			
– upgra	<pre>The following recommendations are suggested: - upgrade to latest version of FTP - implement restrictive file permissions on the FTP server</pre>		

U7 Line 1	Printer Daemon	(LPD)
Alert A	Attack	Description
Count		
,	Connect to 515 from inside	The LPD daemon listens on TCP port 515. Many implementations of LPD contain programming flaws which led to buffer overflow situations, allowing attackers to run arbitrary code with root privileges. The hosts MY.NET.97.20, MY.NET.97.79, MY.NET.97.93

	and MY.NET.97.122 could be running a portscan on 132.250.182.61. This was characterized by the incrementing (by one every attempt) source port used.
1,384	The 1,384 occurrences were attributed to incoming traffic from 131.118.229.7 to MY.NET.24.15.

Defensive Recommendations

The following recommendations are suggested:
- conduct a check on MY.NET.97.20, MY.NET.97.79, MY.NET.97.93 and
MY.NET.97.122. These machines could be compromised.
- verify whether the traffic between 131.118.229.7 and MY.NET.24.15 is
legitimate. If the machine does not need to act as a print server for
remote requests, then the LPD service should be blocked.

U9 BIND/DN	U9 BIND/DNS		
Alert	Attack	Description	
Count			
3,167,350	Possible scans for BIND weaknesses	As observed in the scans logs, both hosts MY.NET.1.3 and MY.NET.1.4 were sending out UDP packets destined to port 53 (DNS) of 76,316 external hosts.	
Defensive	Recommendations		
I would recommend checking on the hosts MY.NET.1.3 and MY.NET.1.4 for any signs of compromise. The fact that port 53 is related to BIND/DNS servers, and the large number of hosts targeted suggested a possibility that these hosts were looking for weak hosts to compromise.			

I also highlighted the other types of attacks:

Possible r	Possible reconnaissance attempts		
Alert	Attack	Description	
Count			
36,271	SYN-FIN scans	Packets with SYN-FIN flags set do not occur naturally and indicates an intentional probe. It is probably a single packet OS detection probe:	
	5	http://www.whitehats.com/info/IDS19835	
	O	The SYN-FIN scans against your network were targeted at port 21 (FTP). The attackers were most likely looking for vulnerable FTP servers, such as WU-FTPD. Similar sightings of SYN-FIN scan to port 21 were found:	
		<pre>http://www.dshield.org/pipermail/list/2003- July/009146.php (James C. Slora, Jr)³⁶ http://cert.uni- stuttgart.de/archive/intrusions/2003/01/msg0044 6.html (Dave R)³⁷ http://cert.uni- stuttgart.de/archive/intrusions/2002/10/msg0011 1.html (Al Williams)³⁸</pre>	

Author: Johnny Wong

Page 54 of 72 Author retains full rights

8,861	Queso	The Queso fingerprinting tool is used to
	fingerprint	determine the OS running on the targeted servers. Queso packets are characterized by the SYN, ECN and CWR (Reserved bits 1 & 2) flags set to 1, and a high TTL value. However,
		legitimate traffic might also bear the same characteristics, such as traffic across ECN-enabled routers.
		Toby discussed the impact of the use of ECN/CWR bits (RFC 3168 previously RFC 2481) for network QoS on Intrusion Detection:
		http://www.securityfocus.com/infocus/1205 ³⁹
		The IP 213.186.35.9 seemed to be probing your network for listening ports on - ports 80, 81, 3128, 6588, 8080, 8081, 8000, 8001 (proxy related) - port 23 (telnet)
		The traffic was characteristic of a portscan in action, such as incrementing source port with every probe.
2,402	Null scans	Packets from a Null scan attempt are characterized by zero-ed TCP SEQ and ACK numbers, and all TCP flags. Null scans are used to detect the open ports on the targeted servers by observing the responses.
		The top source of the NULL scan originated from 213.176.8.2. This IP was also culprit of launching the NMAP fingerprint and SYN-FIN against the hosts in your network.
726	Nmap TCP ping	TCP packets with the ACK number of zero and ACK flag set would trigger this alert.
		http://www.whitehats.com/info/IDS2840
	- Histo	The remote attack could be using Nmap to probe the servers in your network.
21	Probable Nmap fingerprint attempt	A remote attacker used nmap to fingerprint the OS running on your servers. The packets are characterized by the SYN, FIN, URG and PUSH flags all set:
	0	http://www.whitehats.com/info/IDS541
Defensive	Recommendations	1
(not like)	Ly to occur in no	s highlighted used packets that are out-of-spec ormal traffic) to solicit response from servers,
such as d probe att	letermining the C empts originated would be able to	S running or which ports were opened. All the from external hosts (fortunately). A stateful block these out-of-spec packets from entering
L		

Page 55 of 72 Author retains full rights

Shellcode	e attacks	
Alert	Attack	Description
Count		
32,702	Exploit x86	Shellcode exploits make use of platform
	NOOP	specific operations (such as the 0x90 character
64	Exploit x86	which represents NOOP in x86 machine code) to
	hide the buffer overflow attempts. Hence, the	
49	Exploit x86	IDS signatures detect such attacks by
-	setuid 0	inspecting the packet payload for specific
34	Exploit x86	strings of hex bytes.
01	setgid 0	
25	Exploit NTPDX	Exploit x86 NOOP:
20	buffer	http://www.whitehats.com/info/IDS18142
	overflow	
	OVELITOW	Exploit x86 stealth NOOP (using the jmp 0x02):
		http://www.whitehats.com/info/IDS29143
		Exploit x86 setuid 0 (using the setuid(0)
		system call for x86 platform):
		http://www.whitehats.com/info/IDS283 ⁴⁴
		Exploit x86 setgid 0 (using the setgid(0)
		system call for x86 platform):
		http://www.whitehats.com/info/IDS284 ⁴⁵
		<u>http://www.whitehats.com/init/ibszo4</u>
		The shows aloute and successfills to false
		The above alerts are susceptible to false
		positives because the very signatures used to
		detect them occur in normal legitimate network
		traffic as well. For example, the byte strings
		may occur in binary files downloads. Another
		example (x86 Exploit NOOP - false alarm):
		http://www.giac.org/practical/David_Oborn_GCIA.
		html ⁴⁶
		http://cert.uni-
		stuttgart.de/archive/intrusions/2003/05/msg0009
		0.html ⁴⁷
		The Exploit NTPDX buffer overflow attack
	• 1	attacks vulnerable implementations of ntpd and
		xntpd daemons:
		http://www.whitehats.com/info/IDS49248
		The signature works be detecting any UDP
		packets destined for port 123 with the length
		greater than 128 bytes. According to the URL
		above, there was mention of some unusual
	GY	implementations or obscure options that might
	O T	cause longer packets than normal to be sent.
Defensive	e Recommendations	•
It would	l be more diffic	ult to block such attacks than detecting them
		ot, normal network traffic would be the culprit.
		ether such attacks did occur is by inspecting the
raw packe		
paone		

Count Indep to top 65535 - possible Red Worm traffic The Snort signature appeared to be locally created and not found in a standard Snort rulebase, possibly: 1,311 High port udp 65535 - possible Red Worm traffic alert top any any -> any 65535 (msg: "High port 65535 top - possible Red Worm - traffic",) 1,311 High port udp 65535 - possible Red Worm traffic alert udp any any -> any 65535 (msg: "High port 65535 udp - possible Red Worm - traffic";) The Red Worm is also known as the Adore Worm The signature was probably created to detect the Adore Worm, which spreads in Linux vul- rep.statd and Ipd services. A compremised hour equals 65535. However, port 65335 could also exist in a legitimate TCP connection, giving rise to false positives. http://www.dials.ru/english/inf/linux adore.htm W http://www.dials.ru/english/inf/linux adore.htm ⁵¹ http://www.dials.ru/english/inf/linux adore.htm W 50 MYPARTY - possible My Party infection MyParty is a mass-mailing email worm. Part of the worm code opens a backdoor Trojan that alcorefind.htm ² 50 MYPARTY - possible My Party infection MyParty is a mass-mailing email worm. Part of the worm code opens a backdoor Trojan that alcorefind.htm ² 50 MYPARTY - possible My Party infection MyParty is a mass-mailing email worm. Part of the worm code opens a backdoor Trojan that adcorefind.htm ² 50 MYPARTY - possible My Party infection MyParty is a mass-mailing email worm. Part of the site. Matt Yackley captured some of the we bact	Worm activ		
133,659 High port tcp 65335 - possible Red Worm traffic The Snort signature appeared to be locally created and not found in a standard Snort possible Red Worm traffic 1,311 High port udp 6535 - possible Red Worm traffic alert tcp any any -> any 65535 (msg: "High port 65535 tcp - possible Red Worm - traffic";) 1,311 High port udp 65355 - possible Red Worm traffic alert tcp any any -> any 65535 (msg: "High port 65535 udp - possible Red Worm - traffic";) The Red Worm is also known as the Adore Worm. The signature was probably created to detect the Adore Worm, which spreads in Linux vie vulnerabilities found in BIND named, wu-ftpd, rcp.statd and lpd services. A compromised host opens a backdoor in the port 65535. The signature triggered an alert as long as either the source or destination TCP port equals 65535. However, port 65353 could also exist in a legitimate TCP connection, giving rise to false postives. http://www.fise.org/practical/Michael Reiter GC TH.zip ²⁷ WiPARTY - possible My Farty infection MyParty is a mass-mailing email worm. Part of the worm code opens a backdoor Trojan that also'tools/adorefind.htm ³⁵ 50 MYPARTY - possible My Farty infection MyParty is a mass-mailing email worm. Part of the worm code opens a backdoor Trojan that also'tools/adorefind.htm ³⁵ 50 MYPARTY - possible My Farty infection MyParty is a mass-mailing email worm. Part of the worm code opens a backdoor Trojan that also't the worm code opens a backdoor Trojan that also't the worm code opens a backdoor Trojan that also's a remote attacker to control the com/data/w32.myparty@mn.html ³⁵	Alert	Attack	Description
65535 - possible Red Worm traffic created and not found in a standard Snort rulebase, possibly: 1,311 High port udp 65535 - possible Red Worm traffic alert top any any -> any 65535 (msg: "High port 65535 top - possible Red Worm - traffic";) The Red Worm is also known as the Adore Worm. The signature was probably created to detect the Adore Worm, which spreads in Linux viz vulnerabilities found in BIND named, wu-ftpd, crp.statd and lpd services. A compromised host opens a backdoor in the port 65535. The signature triggered an alert as long as either the source or destination TCP port equals 65535. However, port 65535 could also exist in a legitimate TCP connection, giving rise to false positives. http://www.giac.org/y2k/adore.htm ⁴⁹ http://www.giac.org/practical/Michael Reiter CC III.zip ²⁷ 50 MYPARTY - possible My Party infection 50 MYPARTY - possible My Party infection 50 MYPARTY - possible My Party 51 MYPARTY - possible My Party			
1.311 High port udp 65535 - possible Red Worm traffic alert tcp any any -> any 65535 (mg: "High port 65535 tcp - possible Red Worm - traffic";) alert udp any any -> any 65535 (mg: "High port 65535 udp - possible Red Worm - traffic";) The Red Worm is also known as the Adore Worm. The signature was probably created to detect the Adore Worm, which spreads in Linux via vulnerabilities found in BIND named, wu-ftpd, rcp.statd and lpd services, A compromised host opens a backdoor in the port 65535. The signature triggered an alert as long as either the source or destination TCP port equals 65535. However, port 65335 could also exist in a legitimate TCP connection, giving rise to false positives. http://www.slas.org/y2k/adore.htm ¹⁵¹ http://www.slas.org/y2k/adore.htm ¹⁵¹ http://www.slas.org/ypractical/Michael Reiter GC IH.zip ²² William Stearns has written a script to detect the presence of the Adore Worm called adorefind, which could be downloaded from: http://www.ists.dartmouth.edu/IRIA/knowledge ba se/tools/adorefind.htm ³³ 50 MYPARTY - possible My Party infection MyParty is a mass-mailing email worm. Part of the worm code opens a backdoor Trojan that allows a remote attacker to control the compromised host: http://securityresponse.symantec.com/avcenter/v enc/data/w32.myparty@m.html ²⁵ According to the description, the backdoor Trojan contacts the web site at 209.151.250.170 and execute instructions based on the contents of the site. Matt Yackley captured some of the web activity from the Trojan at: http://www.incidents.org/archives/intrusions/ms g03040.html ³⁵	133,659	65535 - possible Red	created and not found in a standard Snort
Worm traffic alert udp any any -> any 65535 (msg: "High port 65535 udp - possible Red Worm - traffic";) The Red Worm is also known as the Adore Worm. The signature was probably created to detect the Adore Worm, which spreads in Linux viz vulnerabilities found in BIND named, wu-ftpd, rcp.statd and lpd services. A compromised host opens a backdoor in the port equals for a legitimate TCP connection, giving rise to false positives. http://www.sans.org/y2k/adore.htm ⁴⁵ http://www.sans.org/y2k/adore.htm ⁴⁵ http://www.giac.org/practical/Michael Reiter GC IH.zip ²² William Stearns has written a script to detect the presence of the Adore Worm called adorefind, which could be downloaded from: http://www.ists.dartmouth.edu/IRIA/knowledge ba se/tools/adorefind.htm ³⁵ 50 MYPARTY - possible My Party is a mass-mailing email worm. Part of the worm code opens a backdoor Trojan that allows a remote attacker to control the compromised host: http://www.ists.dartmouth.edu/IRIA/knowledge ba se/tools/adorefind.htm ³⁵ 50 MYPARTY - possible My Party is a mass-mailing email worm. Part of the worm code opens a backdoor Trojan that allows a remote attacker to control the compromised host: http://www.ists.dartmouth.edu/IRIA/knowledge ba se/tools/adorefind.htm ³⁵ 50 MYPARTY - possible My Party is a mass-mailing email worm. Part of the worm code opens a backdoor Trojan that allows a remote attacker to control the compromised host: http://www.ists.dartmouth.edu/IRIA/knowledge ba se/tools/adorefind.htm ³⁵ Accordi	1,311	High port udp 65535 -	alert tcp any any -> any 65535 (msg: "High port 65535 tcp - possible Red Worm - traffic";)
50 MYPARTY - possible My 50 MyParty is a mass-mailing email worm. Part of compromised host: http://www.incidents.org/anthal allows a remote attacker to control the compromised host:		-	alert udp any any -> any 65535 (msg: "High port 65535 udp - possible Red Worm - traffic";)
bitp://www.f-secure.com/v-descs/adore.shtml ⁵¹ http://www.giac.org/practical/Michael Reiter GC IH.zip ⁵² William Stearns has written a script to detect the presence of the Adore Worm called adorefind, which could be downloaded from: http://www.ists.dartmouth.edu/IRIA/knowledge ba se/tools/adorefind.htm ⁵³ 50 MYPARTY - possible My Party infection MyParty is a mass-mailing email worm. Part of the worm code opens a backdoor Trojan that allows a remote attacker to control the compromised host: http://securityresponse.symantec.com/avcenter/v enc/data/w32.myparty@mm.html ⁵⁴ According to the description, the backdoor Trojan contacts the web site at 209.151.250.170 and execute instructions based on the contents of the site. Matt Yackley captured some of the web activity from the Trojan at: http://www.incidents.org/archives/intrusions/ms g03040.html ⁵⁵ Defensive recommendations			<pre>signature triggered an alert as long as either the source or destination TCP port equals 65535. However, port 65535 could also exist in a legitimate TCP connection, giving rise to false positives. <u>http://www.sans.org/y2k/adore.htm</u>⁴⁹ <u>http://www.dials.ru/english/inf/linux adore.htm</u></pre>
possible My Party infectionthe worm code opens a backdoor Trojan that allows a remote attacker to control the compromised host: <a a="" avcenter="" href="http://securityresponse.symantec.com/avcenter/v<a href=" http:="" securityresponse.symantec.com="" v<=""><a a="" avcenter="" href="http://securityresponse.symantec.com/avcenter/v<a href=" http:="" securityresponse.symantec.com="" v<=""><a a="" avcenter="" href="http://securityresponse.symantec.com/avcenter/v<a href=" http:="" securityresponse.symantec.com="" v<=""><a avcenter="" href="http://securityresponse.symantec.com/avcenter/v<a avcenter="" href="http://securityresponse.symantec.com/avcenter/v<a archives="" href="http://securityres</td><td></td><td></td><td>http://www.f-secure.com/v-descs/adore.shtml<sup>51</sup>
http://www.giac.org/practical/Michael Reiter GC
IH.zip<sup>52</sup>
William Stearns has written a script to detect
the presence of the Adore Worm called
<i>adorefind</i>, which could be downloaded from:
http://www.ists.dartmouth.edu/IRIA/knowledge ba</td></tr><tr><td>enc/data/w32.myparty@mm.html<sup>54</sup> According to the description, the backdoor Trojan contacts the web site at 209.151.250.170 and execute instructions based on the contents of the site. Matt Yackley captured some of the web activity from the Trojan at: http://www.incidents.org/archives/intrusions/ms g03040.html<sup>55</sup></td><td>50</td><td>possible My
Party</td><td>allows a remote attacker to control the</td></tr><tr><td>Trojan contacts the web site at 209.151.250.170 and execute instructions based on the contents of the site. Matt Yackley captured some of the web activity from the Trojan at: http://www.incidents.org/archives/intrusions/msg03040.html Defensive recommendations			http://securityresponse.symantec.com/avcenter/v enc/data/w32.myparty@mm.html ⁵⁴
g03040.html ⁵⁵ Defensive recommendations			According to the description, the backdoor Trojan contacts the web site at 209.151.250.170 and execute instructions based on the contents of the site. Matt Yackley captured some of the web activity from the Trojan at:
			http://www.incidents.org/archives/intrusions/ms g03040.html ⁵⁵
Perhaps the signature used to detect the Red Worm traffic was too	Defensive	recommendations	
	Perhaps	the signature us	sed to detect the Red Worm traffic was too
Author: Johnny Wong Page 57 of 7	-	2	Page 57 of 72

simplistic, resulting in false positives. Rather, I recommend running the *adorefind* script to detect the presence of this worm in your network.

As for the MyParty worm infection, I would recommend checking the firewall logs for any outgoing connection to 209.151.250.170. If there are, then the affected machines should be checked for the presence of the file msstask.exe.

Trojan activity		
Alert	Attack	Description
Count		
527	Possible Trojan server activity	The signature for this alert was probably crafted to detect the TCP port 27374. Port 27374 is related to a variety of Trojans, such as the SubSeven Trojan.
		Simple as it was, the signature might attribute to false positives, because port 27374 could be the ephemeral port used in a legitimate transaction.
49	RFB - possible WinVNC	<pre>WinVNC is the Microsoft Windows version of AT&T's VNC (Virtual Network Computing). VNC is a remote control software that allows a user to view and interact with one computer using another computer anywhere in the Internet. <u>http://home.earthlink.net/~jknapka/vncpatch.htm</u> <u>1⁵⁶</u> A default installation of VNC serves out the Java applet via port 5800. Ports 5900-5903 is used to serve the RFB (remote frame buffer) sessions between the client and server. The signature for this alert was probably crafted to detect the presence of any WinVNC sessions by looking for traffic where ports 5900-5903 was used. The signature is susceptible to false positives because ports 5900-5903, being above 1024,</pre>
39 DDOS shaft client to handler	<pre>might be used is normal traffic. shaft is a DDOS tool that is made up of a few handlers and a large number of agents. The attacker uses telnet to communicate with the handlers. A detailed analysis of the shaft DDOS tool can be found at: <u>http://home.adelphi.edu/~spock/shaft analysis.t</u> xt⁵⁷</pre>	
		Traffic flow between the client and handlers is characterized by the use of tcp port 20432. A sample Snort signature can be found at: <u>http://www.whitehats.com/info/IDS254</u> 58
		The signature is susceptible to false positives because port 20432 might be used is normal

Author: Johnny Wong

Page 58 of 72 Author retains full rights

		traffic.
8	DDOS mstream handler to client	mstream is another DDOS tool that consists of a handler and an agent component. The agent performs the actual DDOS attack, whereas the
3	DDOS mstream client to handler	handler issues commands to the agent to begin the attack. Both components were designed to run on Unix systems.
		http://www.cert.org/incident notes/IN-2000- 05.html ⁵⁹ http://staff.washington.edu/dittrich/misc/mstre am.analysis.txt ⁶⁰
		The signature for detecting mstream handler to client traffic was based on the use of source port 15104/tcp or 12754/tcp. Likewise for mstream client to handler, the use of destination port of 15104/tcp or 12754/tcp would trigger the alert.
		This signature is susceptible to false positives because ports 15104 and 12754 might appear in normal traffic. There was no cause for concern here because the MY.NET hosts that appeared in the handler->client alerts did not appear in the client->handler alerts logs. If the tool did exist, then there would be two-way communications
7	Back Orifice	Back Orifice is a Trojan tool that allows an attacker to take over control of another computer. There was reported Back Orifice activity on MY.NET hosts: - MY.NET.153.113 - MY.NET.150.21 - MY.NET.114.88
Defensive	recommendations	
		used to detect the Trojans are based on the
identification of the ports used in the traffic flow. Hence, they are		

Most of the signatures used to detect the Trojans are based on the identification of the ports used in the traffic flow. Hence, they are susceptible to false positives. An inspection of the packet payload would give a clearer picture as to whether a Trojan activity took place.

I recommend checking on the hosts MY.NET.153.113, MY.NET.150.21 and MY.NET.114.88 for any signs of Back Orifice.

Unusual network traffic		
Alert	Attack	Description
Count		
1,530	TCP SRC and DST outside network ICMP SRC and	These alerts are result of spoofed traffic that originated from your network. Packets with the source and destination addresses outside your address space should never be seen in normal
10	DST outside network	traffic.
332	Incomplete packet fragments	A search of this alert produced the following information:

Author: Johnny Wong

Page 59 of 72 Author retains full rights

discarded	This message is generated by the Snort defragmentation preprocessor when packets bigger than &Kbytes that are more than half empty when the last fragment is received are discarded. <u>http://archives.neohapsis.com/archives/snort/20</u> 01-02/0320.html ⁶¹
	Possible causes of such conditions are transmission errors, broken stacks or fragmentation attacks (evasion?). It was noted that the source and destination ports of the all these packets were 0.
276 Tiny fragments - possible hostile activity	Older versions of Snort contained the <i>minfrag</i> preprocessor. The <i>minfrag</i> preprocessor checks for fragmented packets. If the packet is a fragment, and its size is less than the threshold value set, then the alert will trigger.
	For example, to generate an alert each time a packet fragment less than 128bytes in size is received:
	preprocessor: minfrag 128 any A majority of the alerts was triggered by the external host 208.180.168.58.
Defensive recommendations	
	d packets from exiting your network, I recommend
implementing egress filter:	ing at the perimeter router.

Vulnerabl	Vulnerable services - TFTP		
Alert	Attack	Description	
Count			
118	TFTP - internal TCP connection to	TFTP (Trivial File Transfer Protocol) is a simple protocol used to transfer files. The protocol is defined in RFC 1350:	
	external tftp server	http://www.rfc-editor.org/rfc/rfc1350.txt ⁶²	
64	TFTP - internal UDP connection to external TFTP server	The weakness of the protocol is that no authentication is required (the fact that it is trivial to begin with). The protocol was also used by Worms to download code from another	
22	TFTP - external TCP connection to internal tftp server	location. The TFTP server listens on port 69 TCP and UDP.	
6	TFTP - external UDP connection to internal TFTP server		

Page 60 of 72 Author retains full rights

Defensive recommendations

I would recommend a re-evaluation of the availability of TFTP services in your network to external hosts. And also whether outgoing TFTP connections can be blocked altogether. TFTP has often being linked to worms and Trojans because of its simplicity and no authentication required.

IRC-relate	ed attacks	
Alert	Attack	Description
Count		
16	IRC evil - running XDCC	I managed to locate a link to the operation of the IRC XDCC bot from Sanjay Menon's GCIA
3	Possible incoming XDCC	practical:
	send	http://security.duke.edu/cleaning/xdcc.html ⁶³
		The XDDC backdoor allows a remote attacker to take over a compromised host.
		MY.NET hosts that could possibly be compromised were: - MY.NET.82.36
		- MY.NET.80.209 - MY.NET.74.216
		- MY.NET.198.221
16	Possible sdbot floodnet	Sdbot is a backdoor Trojan that allows an attacker to unauthorized access to an infected computer:
		http://securityresponse.symantec.com/avcenter/v enc/data/backdoor.sdbot.html ⁶⁴
		The Trojan connects to an IRC server, joins a specific channel, and notifies the attacker by sending a private message. The Trojan then awaits commands from the attackers via IRC.
		<pre>12 MY.NET hosts were detected, most from the MY.NET.97.x segment: - MY.NET.150.85 and MY.NET.150.121 - MY.NET.153.111</pre>
	ST	- MY.NET.97.10/16/18/68/74/100/124/184 - MY.NET.98.15
	O SE	I also noticed that the destination of these hosts was port 6667 of 213.186.35.9, the port used for IRC. This external IP was also observed conducting a portscan of your network (refer to the Queso fingerprint attack).
3	User joining warez channel	I suspect this was a locally created signature to detect any users joining a warez channel via
D - 6		IRC.
Communicat the use c	of Snort signatur	nannels is one of the ways Trojans employ. Hence, es to detect the strings in IRC communications
	possible comprom	nise or attacks. on the MY.NET hosts involved in the attacks for
Author: John		Page 61 of 72

any signs of compromise.

8. Registration information of 5 external addresses

The following addresses were selected because of their involvement in possible attacks against your network:

<u>#1 - 24.84.205.243</u>

Why? – There was a two way communication between this host and MY.NET.82.36, which generated close to 132,468 Red Worm alerts (refer to Link Graphs – Case 1):

```
$ whois -h whois.arin.net 24.84.205.243
OrgName: Shaw Communications Inc.
<< snipped >>
NetRange: 24.80.0.0 - 24.87.255.255
CIDR: 24.80.0.0/13
NetName: SHAW-COMM
<< snipped >>
```

<< snipped >>

ARIN WHOIS database, last updated 2003-09-30 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

A search of Google.com revealed Shaw Comms as a Canadian-based communications company whose core business is providing broadband cable TV, Internet and satellite services. Loading the IP in InfoBear.Com's NSLookup page, the following information was retrieved:

```
Output of:
nslookup -q=A 24.84.205.243 nsl.worldnet.att.net
Server: nsl.worldnet.att.net
Address: 204.127.129.1
Name: h24-84-205-243.vc.shawcable.net
Address: 24.84.205.243
```

The hostname suggested the IP belonged to an ISP subscriber. A check on Dshield did not return any hits on this address.

<u>#2 – 80.204.44.179</u>

Why? – This IP was suspected of running some vulnerability scans against the servers in your network (refer to Link Graphs – Case 2):

\$ whois -h whois.ripe.net 80.204.44.179
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html
inetnum: 80.204.44.176 - 80.204.44.183

```
netname: NORLIGHT--SRL
aescr: NORLIGHT SRL
country: IT
<< snipped >>
notify: network@cgi.interbusiness.it
changed: network@cgi.interbusiness.it 20020214
source: RIPE
<< snipped >>
changed:
              datacomnet@telecomitalia.it 20011212
source:
              RIPE
             Luca Camarda
person:
address:
             NORLIGHT SRL
address:
              V.CELLINI 8
address: I- 21100 CASSANO MAGNAGO (VA)
address: Italy
<< snipped >>
changed:
              domain@cgi.interbusiness.it 20020214
              RIPE
source:
```

The host originated from Italy. A search for "Norlight Italy" returned an Italian-based company specializing in lighting solutions. However, the domain lookup of <u>www.norlight.it</u> did not match the IP net range of the earlier whois result. From Infobear.com's NSLookup page, the information returned was:

```
Output of:

nslookup -q=A 80.204.44.179 nsl.worldnet.att.net

Server: nsl.worldnet.att.net

Address: 204.127.129.1

Name: host179-44.pool80204.interbusiness.it

Address: 80.204.44.179
```

The domain *interbusiness.it* belonged to Telecom Italia, an Internet service provider. The hostname suggested the IP belonged to an ISP subscriber. A check on Dshield did not return any hits on this address.

#3 - 142.26.120.7

Why? – This host carried out 20,538 SYN-FIN scans against 20,538 machines in your network.

```
$ whois -h whois.arin.net 142.26.120.7
OrgName: British Columbia Systems Corporation
OrgID: BCSC
<< snipped >>
Country: CA
NetRange: 142.26.0.0 - 142.26.255.255
CIDR: 142.26.0.0/16
NetName: BCSYSTEMS5
NetHandle: NET-142-26-0-0-1
Parent: NET-142-0-0-0-0
NetType: Direct Assignment
NameServer: DNS.GOV.BC.CA
NameServer: DNS1.GOV.BC.CA
```

Page 63 of 72 Author retains full rights

NameServer: DNS3.GOV.BC.CA
<< snipped >>
ARIN WHOIS database, last updated 2003-09-30 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

The domain suggested that the host originated from the Canadian Government's Class B address space. A check on Dshield did not return any reports on this address.

<u>#4 – 195.5.55.32</u>

Why? – This host garnered a total of 15,722 SYN-FIN scans against 15,720 hosts in your network:

```
$ whois -h whois.ripe.net 195.5.55.32
% This is the RIPE Whois server.
% The objects are in RPSL format.
9
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html
inetnum: 195.5.0.0 - 195.5.63.255
inetname:
            UA-UKRTELECOM-970717
descr:
            Provider Local Registry
            PROVIDER
descr:
country:
             UA
<< snipped >>
```

UKRTelecom is an Internet Service Provider in Ukraine. A check on Dshield did not return any reports on this address.

<u>#5 – 213.176.8.2</u>

Why? – IP 213.176.8.2 was responsible for conducting a mixture of NULL, NMAP fingerprint and SYN-FIN scans against your network:

```
$whois -h whois.ripe.net 213.176.8.2
% This is the RIPE Whois server.
% The objects are in RPSL format.
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html
           213.176.8.0 - 213.176.8.255
inet.num:
netname:
           AKU
descr:
             Amir Kabir University of Technology
country:
<< snipped >>
           Saied Mohammad Taghi Lavasani
person:
address:
            Computer and Information Center
            Amir Kabir University of Technology
address:
            Hafez Ave. No 424
address:
            Tehran
address:
            Iran
address:
<< snipped >>
```

This IP originated from a host within the Class C address space of a University in Tehran, Iran. From Infobear.com's NSLookup:

```
Output of:
nslookup -q=A 213.176.8.2 nsl.worldnet.att.net
Server: nsl.worldnet.att.net
Address: 204.127.129.1
Name: cic.aut.ac.ir
Address: 213.176.8.2
```

I could not make whether the hostname represented a client or a server machine. No reports of this IP was found in Dshield.

9. Conclusions and recommendations

I have so far taken a look at the alerts that were generated from your network within a short span of 5 days. The figures would seemed alarming at first, but upon analysis of the alerts, I singled out those that required attention, those that required further analysis and those that were possibly due to false alarms.

General observations

Generic signatures – There were instances where the alert signature was too generic, possibly creating a large number of alerts. For example, the Red Worm detection signature might mistake legitimate web traffic for attacks. I would advise the alert signatures be more clearly defined, such as looking at the payload content. In the case of the Red Worm, the *Adorefind* utility could be deployed instead to detect the existence of the worm, rather than flooding the alert logs with false positives.

There were a couple of locally created signatures to detect specific host activities. If the intention was so, then I would recommend filtering these alerts or employ other methods of host activity logging, such as Web server logs.

False positives – There were several instances of alerts which were susceptible to false positives. For example, Unicode, x86 NOOP, CGI Null Byte and Queso. The detection of some of these attacks could be disabled in Snort, if required.

Possible compromised MY.NET hosts

MY.NET.82.36 – This machine could possibly be compromised. The events presented in the section Link Graphs – Case 1 justified a check on this machine for any signs of compromise.

MY.NET.114.45 – This machine was carrying out portscans against a wide range of external addresses. Refer to Link Graphs – Case 4.

MY.NET.97.24 and MY.NET.97.205 - These two hosts could possibly be

compromised. They were detected running NIMDA-related attacks against external hosts.

MY.NET.1.3 and MY.NET.1.4 – These two could be running BIND-related attacks against external machines.

Network targeting

SYN-FIN probes – There was a significant amount of SYN-FIN probes against your network, mostly originating from 142.26.120.7 and 195.5.55.32. Your perimeter firewall should be able to block such scans from reaching the internal machines, but it would be good to verify. Such probes were possibly crafted using automated tools.

Unicode attacks – There was noticeable activity from 80.204.44.179, triggering 26,397 alerts in the process that involved 437 MY.NET hosts. I recommend a vulnerability scan to be conducted against the web servers in your network, and ensure that they were patched. The signs possibly indicated a successful attack against MY.NET.7.140 and MY.NET.111.155.

Open proxy scans – The host 213.186.35.9 was detected probing for open proxies in your network. I recommend patching the proxy servers in your network, if any, and implement access lists to restrict access to internal hosts only. There was also activity from some MY.NET hosts to the IRC port of this address.

Multiple fingerprint attempts was detected from 213.176.8.2. As with SYN-FIN scans, your perimeter firewall should be able to block such attempts.

Unsafe services

NETBIOS – such traffic should be filtered at your network's perimeter routers.

RPC - turn these services off unless absolutely required.

FTP – upgrade to the latest version/patch/build of the FTP server.

LPD – evaluate the need for serving print services to external hosts.

TFTP – block the serving of TFTP services to external hosts.

Back Orifice – Noted BO traffic on hosts MY.NET.153.113, MY.NET.150.21 and MY.NET.114.88.

Author: Johnny Wong

Annex A: Pre-Analysis stage for Part 3: Tools used and procedures

Task: Concatenation of various alert, scans and OOS files

\$ cp alert.030709 alert-all.txt \$ cat alert.030710 >> alert-all.txt \$ cat alert. 030711 >> alert-all.txt \$ cat alert. 030712 >> alert-all.txt \$ cat alert. 030713 >> alert-all.txt \$ cat alert. 030719 scans-all.txt \$ cat scans.030709 scans-all.txt \$ cat scans.030710 >> scans-all.txt \$ cat scans.030711 >> scans-all.txt \$ cat scans.030712 >> scans-all.txt \$ cat scans.030712 >> scans-all.txt \$ cat scans.030713 >> scans-all.txt \$ cat scans.030713 >> scans-all.txt \$ cat scans.030713 >> scans-all.txt \$ cat oos_Report_2003_07_09_2126 oos_Report-all.txt \$ cat oos_Report_2003_07_10_4402 >> oos_Report-all.txt \$ cat oos_Report_2003_07_11_27931>> oos_Report-all.txt \$ cat oos_Report_2003_07_12_20109 >> oos_Report-all.txt \$ cat oos_Report_2003_07_13_9896>> oos_Report-all.txt

Task: Separating alerts from portscan events

\$ grep -v portscan alert-all.txt > alert-all.filtered.txt

Task: Use the separator % for entry into MySQL database (learnt from Brandon Newport's GCIA paper⁶⁵

Alerts

Step 1: sed -e `s/\[**\]/%/g' alert-all.filtered.txt #replace [**] with %
Step 2: sed -e `s/->/%/g' input-file #replace -> directional arrow with %
Step 3: sed -e `s/decode:/decode-/g' input-file #the string `decode:" will
cause \ problems with replacement of : later
Step 4: sed -e `s/:/ % /4' input-file #replace 4th occurrence of : in input\
string, which separates the destination IP address and destination port
Step 5: sed -e `s/:/ % /3' input-file #replace 3rd occurrence of : in input\
string, which separates the source IP address and source port

Overall command for alerts

s = 's/[/*/*]/%/g' alert-all.filtered.txt | sed -e 's/->/%/g' | sed -e 's/:/ % /4'] sed -e 's/:/ % /3' > alert-all.mysql

```
$ head -3 alert-all.mysql #sample output
07/09-00:00:02.463431 % CS WEBSERVER - external web traffic %
210.241.238.236 % 62639 % MY.NET.100.165 % 80
07/09-00:00:04.180310 % CS WEBSERVER - external web traffic %
210.241.238.236 % 62642 % MY.NET.100.165 % 80
07/09-00:00:04.578871 % MY.NET.30.4 activity % 66.196.72.70 % 53835 %
MY.NET.30.4 % 80
```

Overall command for scans
\$ awk `{print \$4,\$6,\$7}' scans-all.txt | sed -e `s/ / % /g' | sed -e `s/:/
% /2' | sed -e `s/:/ % /1' > scans-all.mysql

Task: Enter the alerts information into MySQL database thanks to Brandon Newport's excellent paper again ©

\$ mysql -u zz -p part3
Password:
mysql> \c
mysql> create table alert
 -> (date varchar (21),
 -> attack varchar (50),
 -> src varchar (15),
 -> srcp varchar (6),
 -> dst varchar (15),
 -> dstp varchar (6));
mysql> load data infile '/home/jwong/GCIA/alert-all.mysql' into table alert
fields terminated by '%';

Task: Alerts statistics (Table 1)

mysql> select attack,count(distinct src),count(distinct dst),count(*) as count from alert group by attack order by count desc;

Task: Top Source and Destination, MY.NET and External, Top Talkers, Listeners

Top 10 Source from MY.NET (Table 2) mysql> select src,count(distinct attack),count(*) as count from alert where src like "%MY.NET%" group by src order by count desc limit 10 ;

Top 10 Destination from MY.NET (Table 3) mysql> select dst,count(distinct attack),count(*) as count from alert where dst like "%MY.NET%" group by dst order by count desc limit 10 ;

Types of attacks launched by MY.NET hosts (Table 4) mysql> select attack,count(distinct src),count(*) as count from alert where src like "%MY.NET%" group by attack order by count desc ;

Types of attacks launched against MY.NET hosts (Table 5) mysql> select attack,count(distinct dst),count(*) as count from alert where dst like "%MY.NET%" group by attack order by count desc ;

Top 10 Source from external (Table 6) mysql> select src,count(distinct attack),count(*) as count from alert where src not like "%MY.NET%" group by src order by count desc limit 10 ;

Top 10 Destination from external (Table 7) mysql> select dst,count(distinct attack),count(*) as count from alert where dst not like "%MY.NET%" group by dst order by count desc limit 10 ;

Top source/attack pair (Table 8) mysql> select src,attack,count(*) as count from alert group by src,attack order by count desc limit 10 ;

Top source/attack pair (Table 9)

Author: Johnny Wong

Page 68 of 72 Author retains full rights mysql> select dst,attack,count(*) as count from alert group by dst,attack
order by count desc limit 10 ;

Top Source/Destination Pair (Table 10) mysql> select src,dst,count(*) as count from alert group by src,dst order by count desc limit 10 ;

Task: Reviewing the scans logs

\$ wc -l scans-all.txt
12281498 scans-all.txt

The scans were successfully imported into a MySQL database.

mysql> \c
mysql> create table scans
-> (src varchar (15),
-> srcp varchar (6),
-> dst varchar (15),
-> dstp varchar (6)
-> type varchar (6)
-> type varchar (15));
mysql> load data infile '/home/jwong/GCIA/scans-all.mysql' into table scans
fields terminated by '%';

Top 5 Scans type (Table 11) mysql> select type,count(distinct src),count(*) as count from scans group by type order by count desc limit 5 ;

List of References

¹ <u>http://www.nwfusion.com/columnists/2002/0930tolly.html</u>. There was also a discussion thread in Dshield.org on GoToMyPC at <u>http://www.dshield.org/pipermail/list/2002-May/004014.php</u>.

² Hompage of Expertcity's GoToMyPC. URL: <u>http://www.gotomypc.com</u>.

³ These were extracted from the technical documents downloadable from the site.

⁴ Homepage of TruSecure. URL: <u>http://www.trusecure.com</u>

⁵ TruSecure's SiteSecure: URL: <u>http://www.trusecure.com/solutions/assurance/sitesecure/</u>

⁶ AES – Advanced Encryption Standard, the algorithm selected by the National Institute of Standards and Technology (NIST) as the successor to DES (Data Encryption Standard).

⁷ CFB – Cipher Feedback Mode.

⁸ The ID is used to identify the PC and the access code (alphanumeric password) serves to authenticate user's access to the PC.

⁹ The Hypertext Transfer Protocol version 1.0 – HTTP/1.0 (RFC1945) can be found at <u>http://www.rfc-editor.org/rfc/rfc1945.txt</u>

¹⁰ Homepage of TotalRC.net. URL: <u>http://www.totalrc.net</u>.

¹¹ eBLVD remote can be downloaded from <u>http://www.eblvd.com</u>.

¹² An article on the use of open proxies for spamming <u>http://zdnet.com.com/2100-1106-958847.html</u>

¹³ Murdoch, Don [incidents.org list] Proxy scan attempts. URL: <u>http://cert.uni-stuttgart.de/archive/intrusions/2003/04/msg00176.html</u>

¹⁴ Kibler, John R. [Dshield list] Scans on ports 3128, 8080 and 80. URL: http://www.dshield.org/pipermail/list/2002-May/004161.php

¹⁵ I found a similar observation and response in Bergen, Keith. [Neohapsis archives] Logging of connects to port 6346. URL: <u>http://archives.neohapsis.com/archives/incidents/2003-04/0063.html</u>.

¹⁶ Rohan, Amin. [incidents.org list] Strange NMAP from Port 80 to Linux Box. URL: <u>http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00027.html</u>

¹⁷ Brenton, Chris. [incidents.org list] Strange NMAP from Port 80 to Linux Box. URL: <u>http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00039.html</u>

¹⁸ Thomas, Ashley. [incidents.org list] LOGS; GIAC GCIA Version 3.3 Practical Detect. URL: <u>http://cert.uni-stuttgart.de/archive/intrusions/2002/12/msg00167.html</u>

¹⁹ Description of the W32/SQLSIammer worm. URL: <u>http://vil.nai.com/vil/content/v_99992.htm</u>

²⁰ Analysis of the Port 1434 MS-SQL Worm. URL: <u>http://isc.incidents.org/analysis.html?id=180</u>

²¹ A complete disassembly of the MS-SQL Slammer worm code. URL: <u>http://www.nextgenss.com/advisories/mssql-udp.txt</u>

²² Fred Thiele's GCIA Practical. URL: <u>http://www.giac.org/practical/GCIA/Fred_Thiele_GCIA.pdf</u>

Author: Johnny Wong

Page 70 of 72 Author retains full rights ²³ SANS' Commonly Probed Ports. URL: <u>http://www.sans.org/y2k/ports.htm</u>

²⁴ The Snort FAQ. URL: <u>http://www.snort.org/docs/FAQ.txt</u>

²⁵ SANS' The Twenty Most Critical Internet Security Vulnerabilities. URL: <u>http://www.snort.org/docs/FAQ.txt</u>

²⁶ Joe Ellis' GCIA Practical. URL: <u>http://www.giac.org/practical/Joe_Ellis_GCIA.doc</u>

²⁷ Johnny Calhoun's GCIA Practical. URL: <u>http://www.lurhq.com/idsindepth.html</u>

²⁸ Whitehat's arachNIDS – The Intrusion Event Database. *"IIS ISAPI OVERFLOW IDA"*. URL: <u>http://www.whitehats.com/info/IDS552</u>

²⁹ eEye Digital Security. *"Microsoft Internet Information Services Remote Buffer Overflow* (SYSTEM Level Access)". URL: <u>http://www.eeye.com/html/Research/Advisories/AD20010618.html</u>

³⁰ Special-use IPv4 addresses – RFC3330. URL: <u>http://www.rfc-editor.org/rfc/rfc3330.txt</u>

³¹ Detect analyzed 7/25/00 – use of Linklocal addresses by Windows 98 workstations. URL: <u>http://www.sans.org/y2k/072500-1200.htm</u>

³² Whitehat's arachNIDS – The Intrusion Event Database. *"NETBIOS SMB-C\$ACCESS"*. URL: <u>http://www.whitehats.com/info/IDS339</u>

³³ Whitehat's arachNIDS – The Intrusion Event Database. *"NETBIOS NT-NULL-SESSION"*. URL: <u>http://www.whitehats.com/info/IDS204</u>

³⁴ Whitehat's arachNIDS – The Intrusion Event Database. **"DOS-FTPD-GLOBBING"**. URL: <u>http://www.whitehats.com/info/IDS487</u>

³⁵ Whitehat's arachNIDS – The Intrusion Event Database. **"SYN FIN SCAN"**. URL: <u>http://www.whitehats.com/info/IDS198</u>

³⁶ James C. Slora Jr. [Dshield list] Port 21 to Port 21 Scan. URL: <u>http://www.dshield.org/pipermail/list/2003-July/009146.php</u>

³⁷ Dave R. [Incidents.org list] LOGS GIAC GCIA Version 3.2 Practical Detect. URL: <u>http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00446.html</u>

³⁸ Williams, AI. [incidents.org list] LOGS; GIAC GCIA Version 3.3 Practical Detect. URL: <u>http://cert.uni-stuttgart.de/archive/intrusions/2002/10/msg00111.html</u>

³⁹ Miller, Toby. ECN and its impact on Intrusion Detection. URL: <u>http://www.securityfocus.com/infocus/1205</u>

⁴⁰ Whitehat's arachNIDS – The Intrusion Event Database. *"PROBE-NMAP_TCP_PING"*. URL: <u>http://www.whitehats.com/info/IDS28</u>

⁴¹ Whitehat's arachNIDS – The Intrusion Event Database. *"PROBE-NMAP_FINGERPRINT_ATTEMPT"*. URL: <u>http://www.whitehats.com/info/IDS5</u>

⁴² Whitehat's arachNIDS – The Intrusion Event Database. **"SHELLCODE-X86-NOPS"**. URL: <u>http://www.whitehats.com/info/IDS181</u>

⁴³ Whitehat's arachNIDS – The Intrusion Event Database. **"SHELLCODE-x86-STEALTH-NOP"**. URL: <u>http://www.whitehats.com/info/IDS291</u>

Author: Johnny Wong

Page 71 of 72 Author retains full rights ⁴⁴ Whitehat's arachNIDS – The Intrusion Event Database. *"SHELLCODE-X86-SETUID0"*. URL: <u>http://www.whitehats.com/info/IDS283</u>

⁴⁵ Whitehat's arachNIDS – The Intrusion Event Database. **"SHELLCODE-X86-SETGID0"**. URL: <u>http://www.whitehats.com/info/IDS284</u>

⁴⁶ David Oborn's GCIA Practical at URL: <u>http://www.giac.org/practical/David_Oborn_GCIA.html</u>

⁴⁷ McDonald, Terry [incidents.org list] LOGS GIAC GCIA Version 3.3 Practical Detect. URL: http://cert.uni-stuttgart.de/archive/intrusions/2003/05/msg00090.html

⁴⁸ Whitehat's arachNIDS – The Intrusion Event Database. *"NTPDX-BUFFER-OVERFLOW"*. URL: <u>http://www.whitehats.com/info/IDS492</u>

⁴⁹ SANS' description of the Adore Worm. URL: <u>http://www.sans.org/y2k/adore.htm</u>

⁵⁰ The Linux.Adore Worm. URL: <u>http://www.dials.ru/english/inf/linux_adore.htm</u>

⁵¹ F-Secure's Virus description: Adore. URL: <u>http://www.f-secure.com/v-descs/adore.shtml</u>

⁵² Reiter, Michael. Exploiting Loadable Kernel modules. URL: <u>http://www.giac.org/practical/Michael_Reiter_GCIH.zip</u>

⁵³ Stearns, William. Adore Worm detection and removal tool. URL: <u>http://www.ists.dartmouth.edu/IRIA/knowledge_base/tools/adorefind.htm</u>

⁵⁴ Symantec's description of the MyParty worm. URL: <u>http://securityresponse.symantec.com/avcenter/venc/data/w32.myparty@mm.html</u>

⁵⁵ Yackley, Matt. [incidents.org list] MyParty Trojan behaviour. URL: http://www.incidents.org/archives/intrusions/msg03040.html

⁵⁶ RFB port for VNC. URL: <u>http://home.earthlink.net/~jknapka/vncpatch.html</u>

⁵⁷ Sven Dietrich, Neil Long and David Dittrich – An analysis of the "shaft" distributed denial of service tool. URL: <u>http://home.adelphi.edu/~spock/shaft_analysis.txt</u>

⁵⁸ Whitehat's arachNIDS – The Intrusion Event Database. *"DDOS-SHAFT-CLIENT-TO-HANDLER"*. URL: <u>http://www.whitehats.com/info/IDS254</u>

⁵⁹ CERT Incident Note IN-2000-05 – "mstream" distributed denial of service tool. URL: <u>http://www.cert.org/incident_notes/IN-2000-05.html</u>

⁶⁰ David Dittrich, George Weaver, Sven Dietrich and Neil Long – The "mstream" distributed denial of service tool. URL: <u>http://staff.washington.edu/dittrich/misc/mstream.analysis.txt</u>

⁶¹ Ruiu, Dragos [neohapsis archives] Incomplete Packet Fragments Discarded? URL: <u>http://archives.neohapsis.com/archives/snort/2001-02/0320.html</u>

⁶² The TFTP Protocol (Revision 2). URL: <u>http://www.rfc-editor.org/rfc/rfc1350.txt</u>

⁶³ IRC bot and backdoor: XDCC. URL: <u>http://security.duke.edu/cleaning/xdcc.html</u>

⁶⁴ Symantec's description of the SdBot backdoor Trojan. URL: <u>http://securityresponse.symantec.com/avcenter/venc/data/backdoor.sdbot.html</u>

⁶⁵ Brandon Newport's GCIA Practical. URL: <u>http://www.giac.org/practical/Brandon_Newport_GCIA.zip</u>