
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Rob McBee
SANS Intel, Folsom CA, USA

GIAC GCIA Practical (version 3.3)
Submitted: July 8, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 2

Table of Contents
Assignment #1: Describe the State of Intrusion Detection..4

ManHunt - Threat Management Defense ...4
Introduction ...4
How it works ...4
Identifying Threats ..5
Sniffer Sensor..5
Flow Chaser...5
Correlation...6
Reporting...7
Protocol Anomaly Detection..8
False Positives ...9
What is the Best Approach...10
Conclusion...10
References...11

Assignment #2: Three Network Detects...12
Detect #1: WEB-ISS ISAPI .ida attempt..12

Trace Log ..12
Snort Rule That Triggered the Event..12
Source of Trace ...12
Detect was Generated By...12
Probability the Source Address was Spoofed ...13
Description of the Attack...14
Attack Mechanism...14
Correlations ...14
Evidence of Active Targeting ..15
Severity ...15
Defensive Recommendation ..16
Multiple Choice Test Question...16
References...17

Detect #2: BACKDOOR Q access...18
Trace Log ..18
Snort Rule That Triggered the Event..19
Source of Trace ...19
Detect was Generated By...19
Probability the Source Address was Spoofed ...19
Description of the Attack...22
Attack Mechanism...23
Correlations ...23
Evidence of Active Targeting ..24
Severity ...25
Defensive Recommendation ..25
Multiple Choice Test Question...25
References...26

Detect #3: BAD TRAFFIC bad frag bits..27

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 3

Trace Log ..27
Snort Rule That Triggered the Event..27
Source of Trace ...27
Detect was Generated By...28
Probability the Source Address was Spoofed ...29
Description of the Attack...31
Attack Mechanism...31
Correlations ...33
Evidence of Active Targeting ..33
Severity ...33
Defensive Recommendation ..34
Multiple Choice Test Question...34
References...35
Appendix A ...36

Assignment #3: Analyze This!...38
Analysis of the University Network...38

Executive Summary...38
Logs Analyzed...39
Detects List..39
Alert Details ..40
Top Talkers List ..64
OOS (Out of Specification) Top Talkers..67
Defensive Recommendations...70
Description of the Analysis Process ...71
References...72

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 4

Assignment #1: Describe the State of Intrusion Detection

ManHunt - Threat Management Defense

Introduction

Today, organizations are faced with the threat of attack from intrusions and
denial of service (DoS) attacks. These attacks can come from outside your
organization, or from within. Regardless of the type of attack, the recourse
available to organizations today is limited. Current security products have, to a
certain extent, the capability of keeping attackers out and identifying some
threats, but products are needed to actually stop threats and identify the sources
of attacks.

Today, an attacker can create a network of thousands of zombie hosts in a
matter of hours. New tools using metastasizing and advanced self-replication
dispersal techniques can attack trust relationships between systems and build
hierarchical levels of zombie networks; making it possible to identify, organize,
and control thousands of machines in a matter of minutes.

How it works

ManHunt™ is a protocol analysis-based NIDS. It has the added ability to correlate
data taken from other NIDS devices. It works in a peer-to-peer mode for the most
part except for its configuration management. ManHunt gives you the ability to
identify and analyze threats to your network and proactively respond with the
appropriate action.

• Identifying threats that do not necessarily correspond to known attack
signatures

• Automating the track-back process within a network and across Internet
boundaries to determine the source of the attack, a process that requires
significant time and resources when done manually

• Coordinating attack responses automatically, providing faster and more
effective attack response

• Correlating events from secondary sources, such as ManTrap, Cisco IDS
and Snort devices.

• Providing a detailed log of all activity monitored and responded to by
ManHunt so that organizations have the data necessary to take action in
response to attacks.

ManHunt is also highly scalable, extensible and flexible: scalable because it
performs and coordinates across both large and small networks; extensible
because it allows you to monitor multiple devices; flexible because you decide

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 5

which devices to monitor, allowing you to focus on problem areas or monitor a
broad range of network segments.

Identifying Threats

ManHunt is a new generation of security software that provides the ability to
respond to intrusions and prevent damage from denial of service (DoS) attacks.
ManHunt monitors the events and performs an analysis to identify the attack.
Once an attack is identified, it begins to, “…automatically determining the source
of the attack and shares attack information securely with other networks involved
in the attack, such as an upstream network service provider, to track the source
of the attack across a distributed network...”.[1]

ManHunt accomplishes this by using several components that work together to
gather event information, analyze the events, and then initiate an appropriate
response. This is accomplished by using what ManHunt calls “event sensors”.
Event sensors gather the information needed to identify the attacks. Event
sensors also receive notification of attack events handed off from the other hosts
located outside the network. ManHunt samples these events and then performs
an analysis that focuses on the devices affected by the attack. Because ManHunt
is monitoring event information across the network, it can identify a threat on one
part of the network and gather information from additional devices to effectively
monitor your network without having to inspect all the traffic.

The two main event sensors incorporated into ManHunt are:

• Sniffer Sensor
• Flow Chaser

Sniffer Sensor

The sniffer sensor allows ManHunt to monitor multiple ports. The sniffer uses
switch port analyzers (SPAN) to listen to the network flows that are directly
attached to the sniffer by copying all of a port’s incoming or outgoing traffic to
another port. This enables it to monitor 100% of the traffic on the port
without hindering the additional data coming in. When a sniffer detects an attack
or another ManHunt hands off information about a suspected attack, the
information is passed on to the flow chaser sensor.

Flow Chaser

The flow chaser’s job is to query the remote devices to trace the suspicious traffic
and verify that an attack is actually taking place. The flow chaser continues
querying devices until it finds the attack’s entry point into the network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 6

Figure 1: Diagram of how ManHunt uses FlowChaser to determine the origin of an attack. [6]

Correlation

To perform the correlation of events, ManHunt uses what it calls the “analysis
framework”. Within the analysis framework, ManHunt dynamically updates data it
receives from the sensors to the various databases that it can use. ManHunt
uses these databases from which it gathers information about attacks, network
topology, and local policies. This information, along with data from the sensors,
enables ManHunt to determine which action it needs to take in response to a
specific attack. Because the databases are constantly being updated, ManHunt
has a built-in synchronization service that synchronizes databases across hosts
by periodically checking for changes in the local database, then synchronizing
the changed database with the databases on the remote hosts that have older
versions of the database.

The ManHunt analysis framework aggregates data on a possible attack from
multiple sources: other ManHunt hosts, its own event sensors, Cisco IDS, Snort
IDS, and ISS RealSecure just to name a few. ManHunt hosts send asynchronous
notifications of possible attacks occurring inside or outside the local network. The
analysis framework can query the event sensors about its current state and tell it
to look elsewhere for more information. The analysis framework further assesses
the possible attack by gathering details from its various databases. The image

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 7

below was taken from Symantec’s web page showing the various sources that
can send data events to the ManHunt agents. [2]

Figure 2: ManHunt integrates with Third-Party Intrusion Detection Systems to provide Enterprise-
Wide Event Correlation and Analysis. [2]

The analysis framework also performs statistical correlation analysis on events to
identify event patterns that vary significantly from usual network activity and to
identify individual events that are highly related, such as a port scan followed
closely by an intrusion attempt.

The analysis framework schedules allocation of the necessary resources, for
example, it might tell the sniffer sensor to monitor traffic on a particular port. The
framework then reacts to the data according to the set of rules in the policy
database. Depending on the policy, it might begin tracking the attack back to its
source or hand off the event to another ManHunt sensor.

Because ManHunt hosts have access to information collected by other ManHunt
hosts, attack analysis and response can be coordinated across a distributed
network, enabling a rapid global attack response.

Reporting

ManHunt includes multiple levels of reporting to include data drill-down and
threat status summaries to quickly spot associated events and attack trends.
With these reporting features, you will be able to measure the overall
effectiveness of the security infrastructure, meet your operational objectives for
measuring security effectiveness, disseminating security information and tracking
compliance across the organization.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 8

In addition to the above, ManHunt utilizes a scalable web-based enterprise
reporting solution, utilizing the extensive reporting framework of WebTrends™,
allowing security administrators to produce powerful and insightful reports to
permit them to make better decisions about the threats on their network.

Figure 3: Reporting options include detailed charts and graphs with drilldown event information
that clearly depict attack trends and the overall security posture of the enterprise network. [2]

Protocol Anomaly Detection

What distinguishes ManHunt from other IDS Systems is this notion of Protocol
Anomaly Detection. Unlike most Intrusion Detection Systems today, which are
signature based, ManHunt is protocol based. It detects anomalies in the protocol.
Protocol anomaly detection is performed at the application protocol layer. Its
focus is on the composition of the protocol and looks for misusage of it. ManHunt
uses protocol anomaly detection as the heart of its core engine. What ManHunt
does is it reconstructs the packets from layer 3 to layer 7 looking for anomalies in
the data. If it finds something that does not conform to the RFC standard for that
protocol it perceives that as a protocol violation and alerts accordingly. ManHunt
supports about 20 supported protocols including the most common ones used in
attacks. Some of the supported protocols are Telnet, HTTP, RPC, SMTP, SNMP
and Rlogin.

According to Erwan Lemonnier paper from Defcom 2001, he states that,
“Protocol anomaly filters are thus able to detect all attacks that are using
protocols outside of their normal usage area…which especially includes new

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 9

attacks that may not yet have been registered by computer security authorities.
This ability of detecting new attacks added to the fact that they don’t require
signature database updates and has the same long lifetime as the protocol they
are monitoring, makes the superiority of protocol anomaly filters on signature
filters.” [5] He makes a strong point in that protocol anomaly detection can detect
new alerts that have not been seen in the wild. By capturing detects early could
mean the difference between companies suffering little or no damage to
sustaining catastrophe loses. Of course there are limits to this. For instance, if
the attack doesn’t violate any protocol behavior, then it won’t be detected. In this
case you would need a signature based IDS to capture the alert.

Figure 4: Attacks detected by Protocol Anomaly Filters. [5]

False Positives

For optimum incident response you should spend some time getting acquainted
with the ManHunt and your network. Before you monitor your network activity,
you should finalize an incident response plan. For example, you may want to
delegate responsibilities for the incident response team, develop responses for
each type of attack, and configure ManHunt to notify designated administrators
for specific activity.

To become more acquainted with ManHunt, you should monitor incidents in the
administration console and observe your network activity. During this time you
will see how your network devices communicate and how the outside world
sends and receives data to and from your network.

After you familiarize yourself with ManHunt, you should begin to customize it for
your network. Because ManHunt detects all anomalous traffic, you may see
events that trigger the ManHunt protocol anomaly detection engine but that are
not serious threats to your network. It is highly recommend that you first lower the
volume of events to sort through by filtering what you consider to be normal or
permitted traffic. Trust me on this one. Once those events are removed, you will
have fewer events to analyze; therefore you can allocate your time and energy to
the more serious threats.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 10

Now that you’ve taken the time to reduce the number of events coming into the
console, you must now take the appropriate action in responding to them. When
examining events, you may determine threatening activity immediately if an
intruder breaks into your system or launches a DoS attack against your network.
However, many “stealth” attacks occur over long periods of time, so it is
important to note suspicious activity and look for patterns over a specified range
of time.

You should dissect the event in order to make a subjective judgment based on
the incident type, priority, and location. After you dissect the incident, you may
decide to examine it further or ignore it. For example, if you see a portscan
incident outside of your firewall and your company is highly visible from the
Internet, you may decide to ignore this incident as it is probably commonplace.
However, if you see the same activity in your high-security financial database
subnet, you may want to give the incident more attention. A good place to start is
to look for events patterns, related events (or better yet, correlated events), and
high-priority events.

What is the Best Approach

What is the best approach to Intrusion Detection? This is a question that is often
asked in the security community. In preparation for this paper, I was reading an
article on the internet posted by ISP-Planet [3]. On their site, they have an article
written by Recourse Technologies [4] that basically says each company should
have a layered defense against Intrusion Detection. This is the only way to give
your company a fighting chance to the vast array of complex attacks available.

Figure 5: Layered Security Reduces Network Risk [3]

Conclusion

As you can see, Protocol Anomaly Detection is much different in the world of
Intrusion Detection Systems than say a signature-based solution. To say it would
be a better solution, would be a novice statement. It is impossible to find an Off-
The-Shelf solution. To be effective in this area of security, one must have a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 11

model made up of several layers to even stand a chance at the various types of
threats available today. No one product will be able to detect every attack, but
the only way to reduce the impact is to implement multiple layers of security
within your organization.

The topic for section one was to describe the state of Intrusion Detection. As you
can see, and you probable already know, the rules for Intrusion Detection are
ever changing. If you only take one thing from reading this paper, it is that to be
effective, you have to implement multiple layers of security. Should ManHunt be
one of those layers? It really doesn’t matter to me what products you use, just
use something. I would consider it because it takes a different approach than just
the standard signature based systems. It detects anomalies in the protocol
whereas the other big name players do signature matching. Ideally, if you can
implement both types, your company stands a better chance of not being owned!

References

1. Earl, Baron. Pigdog Journal. “ManHunt and ManTrap”, August 7, 2000. URL:
http://www.pigdog.org/auto/scary_tech/link/1628.html (March 10, 2003).

2. Symantec. “ManHunt 2.1”, URL:
http://enterprisesecurity.symantec.com/content/displaypdf.cfm?pdfid=295&EID=0 (March
11, 2003).

3. Recourse Technologies. IDS-Planet. “Intrusion Detection: Reducing Network Security
Risk”, December 24, 2001. URL: http://www.isp-planet.com/perspectives/ids_p3.html
(March 13, 2003).

4. Recourse Technologies. URL: http://www.recourse.com/index.html (March 13, 2003).

5. Lemonnier, Erwan. Defcon. “Protocol Anomaly Detection in Network-based IDSs” June 28,
2001. URL: http://erwan.lemonnier.free.fr/exjobb/report/protocol_anomaly_detection.pdf
(March 16, 2003).

6. Gray, Wayne and Maguire, Andrew. Recourse Technologies. “ManHunt DDoS Attack
Trace Back And Prevention Using FlowChaser Technology”. URL: Unavailable at this time
(March 16, 2003).

7. REACT Network Services, inc. “Products – ManHunt”. URL:
http://www.reactnetwork.com/manhunt.html (March 19, 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 12

Assignment #2: Three Network Detects

Detect #1: WEB-ISS ISAPI .ida attempt

Trace Log
This is the dump of the alert file of the Snort log that triggered the event:

[**] WEB-IIS ISAPI .ida attempt [**]
07/12-14:04:59.354488 66.76.246.193:1343 -> 46.5.180.133:80
TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:1504
AP Seq: 0x486E0A3F Ack: 0x9225932F Win: 0x7D78 TcpLen: 20

Snort Rule That Triggered the Event

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-IIS ISAPI .ida attempt"; uricontent:".ida?"; nocase;
dsize:>239; flow:to_server,established; reference:arachnids,552;
classtype:web-application-attack; reference:bugtraq,1065;
reference:cve,CAN-2000-0071; sid:1243; rev:6;)

Source of Trace
This trace originated from incidents.org: http://www.incidents.org/logs/Raw/2002.6.12
The file was downloaded in December of 2002 in preparation for the GCIA certification.
According to the README file on the incidents.org/logs/Raw page, this trace is the
result of a Snort instance running in binary logging mode. The logs have been sanitized
and the IP’s have been “munged” to protect the guilty.

Detect was Generated By
This trace was generated using Demarc PureSecure v1.6, MySQL 3.23.53 and Snort
version 1.9.0-db (Build 209). The trace was downloaded from the incidents.org web site
and the following snort command was run against it.

snort -p -l C:\PureSecure\sensor\log -r c:\dumps\2002.6.2 –c C:\PureSecure\sensor\conf\snort1.conf

The snort1.conf1 file was the standard file except for the recommendation suggested by
Daniel Wesemann on January 5, 2003 to the intrusions@incidents.org mailing list which
was to turn off the stream4preprocessor. The following lines were commented out:

preprocessor stream4: detect_scans, disable_evasion_alerts
preprocessor stream4_reassemble

1 * Normally the snort.conf is not named snort1.conf. This was something Demarc PureSecure did upon
install. Not sure why, but everything still worked.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 13

Probability the Source Address was Spoofed
According to Whitehats.com, the packet that caused this event is usually part of an
established TCP session indicating that the source IP was not spoofed. However, after
going back through ten days worth of logs, there was no associated SYN attempt to start
the TCP Handshake. Actually, from those ten days worth of logs, this is the only
occurrence of this IP address indicating that the possibility of this address being spoofed
exists. An nslookup of this IP shows the following:

Name: cdm-66-246-193-tylr.cox-internet.com
Address: 66.76.246.193

This appears to be a valid host. More than likely this is probably a compromised host.
Lets take a closer look at the packet.

Figure 2.1.1: A closer look at this packet
GET
/default.ida?NN
NNN
NNN
NNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN....................x..
%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u9090
%u8190%u00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a
HTTP/1.0
Content-type: text/xml
HOST:www.worm.com

As you can tell from the bolded text, this is obviously a CodeRed request. The
www.worm.com shown further down is another sign of CodeRed. Odds are the IP
Address is not spoofed. Checking through the logs I did not find any record of the initial
SYN attempt, but then I remembered the data present in the logs file was generated by
packets that matched a Snort signature. It is highly doubtful that initial SYN would have
been logged.

Checking through the logs I found numerous WEB related events on this destination IP.
The events included:

Ø WEB-FRONTPAGE /_vti_bin/ access
Ø WEB-CGI formmail access
Ø WEB-MISC whisker HEAD with large datagram
Ø WEB-IIS cmd.exe access
Ø WEB-MISC http directory traversal
Ø WEB-ATTACKS cc command attempt

It definitely looks like active reconnaissance going on among other things.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 14

Description of the Attack
This attack is related to Microsoft IIS Server and is explicitly looking to exploit an
unchecked buffer in Microsoft’s IIS Index Server ISAPI Extension by requesting non-
existent files with .ida or .idq extensions. If the attack is successful, the intruder would
gain system level access and have the ability to remotely administer any IIS server
running the default install. Having this type of access the attacker would be able to
change files and web pages, install applications, delete files, and modify databases among
other things. The vulnerability is well documented and a simple Google search will
provide you with more information than you know what to do with. CVE-MITRE.org has
two listing for this related to IIS and .ida or .idq files.

Ø CVE-2001-0500
Ø CVE-2000-0071

This worm has three parts to it:

1. Infect new hosts
2. Deface it’s victims Web pages
3. Attack 198.137.240.91 (www1.whitehouse.gov)

IIS Versions susceptible to this attack:

Ø Microsoft Windows NT 4.0 Internet Information Services 4.0
Ø Microsoft Windows 2000 Internet Information Services 5.0
Ø Microsoft Windows XP beta Internet Information Services 6.0 beta

For a more in-depth description check out the article on the SecurityFocus.com web site.

Attack Mechanism
The CodeRed attack starts out by establishing the TCP Handshake. Once the Handshake
is completed the attacker will attempt the ISAPI .ida buffer overflow exploit described
above in order to gain system level access to the server. If successful, it will proceed to
setup the environment and then precede through the remaining steps of the code by
initiating 100 other threads, of which 99 check for other vulnerable hosts. The 100th

thread will then check to see if the system is running a vulnerable version of IIS, if so,
then it will proceed to deface the web page with a page that says, “Welcome to
http://www.worm.com !, Hacked By Chinese!”. Once the defacing is done, it will check
if the c:\notworm file is present. If so, it will go dormant until some specified time period.
Then it will check the computer’s clock to see if it should send 100k worth of data to port
80 on www.whitehouse.gov essentially performing a DoS attack on
www.whitehouse.gov.

Correlations
To confirm my assumptions, I checked through the previous ten days worth of data.
While I found no other traces of this source IP, there were multiple instances of other
addresses attempting connections to the destination IP, some of which were performing

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 15

that same ISAPI .ida buffer overflow attempt. This definitely adds strength to the
argument that this in fact is CodeRed. According to the research that Riley Hassel and
Ryan Permeh of eEye did, CodeRed’s sequence of generating random IP addresses to
attack is not exactly random. According to the research, there appears to be a static seed
the worm uses when generating IP address to attack. Because of this, each infected host
will attempt to infect the same list of addresses. This is precisely what we are seeing in
regards to this destination IP.

Another interesting thing I noticed was that this destination IP generated 72 different
events of type “ATTACK RESPONSES 403 Forbidden” in response to the stimuli. It was
actually 36 unique events, each of which stimulated two responses. Looking at the
packets it appears that the initial destination host is not hosting Microsoft IIS but Apache
1.3.12 and it’s not even a Microsoft client but a RedHat Linux client. Figure 2.1.2 shows
one of the responses.

Figure 2.1.2: Reply from 46.5.180.133
HTTP/1.1 403 Forbidden
Date: Tue, 02 Jul 2002 14:44:52 GMT
Server: Apache/1.3.12 (Unix) (Red Hat/Linux) mod_jk mod_ssl/2.6.6 OpenSSL/0.9.5a
PHP/4.0.1pl2 mod_perl/1.24 FrontPage/4.0.4.3
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

Evidence of Active Targeting
I don’t believe that is the result of active targeting. The IDS only picked up one event
from this source IP. Even though there were multiple other sources that scanned this
destination address, this would be expected behavior for CodeRed with its “statically
random” IP address algorithm. The other hosts are probably compromised looking for
potential victims to infect. It just appears that this destination address is not one of them.

Severity
Severity is calculated using the formula below:

(Criticality + Lethality) - (System Countermeasures + Network Countermeasures)

Each element is worth 1 to 5 points, and the arithmetic gives us a range of -8 to +8.

Criticality The target in this attack is a public facing web server. Having this server
compromised could have catastrophic results to the organization. Even a
simple defacement could cost the company significantly. 4

Lethality Had this been a system vulnerable to CodeRed, the attacker would have
attempted a buffer overflow resulting in the server being compromised.
This would have been very bad. 5

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 16

System In this particular case, the target machine does not appear to have any
sort of firewall present. Fortunately, this particular host was running
Apache as opposed to IIS, so that pretty much eliminates CodeRed
infection. Had this been the Slapper worm, this would have been a whole
different story. One bad thing is this host is going to generate a lot of
noise from all the infection attempts directed towards it. 4

Network From what I can tell there are no network countermeasures in place to
prevent this kind of attack from entering target the host’s network. 1

Severity = (4+5) – (4+1) = 4

This gives me an incident severity of 4. As you can see, 4 is probably higher than one
would like. There is definitely some work to be done.

Defensive Recommendation
The obvious first choice is something any decent system administrator should do. They
should ensure that the systems are patched and cleaned. Microsoft released a patch for
this vulnerability some time ago, MS01-033.asp. In addition to just applying this patch,
one should also perform Best Known Methods for all systems they administer. Here are a
few suggestions:

Ø Make sure you apply all patches and service packs (after you regression test them
of course).

Ø Harden all your operating systems by making sure you disable all unused user
accounts, disabling or removing unneeded services, implement strong passwords,
ensure that the proper ACL’s are in place whether they are on your routers or on
your file systems.

Ø Keep up-to-date with the latest vulnerabilities by subscribing to the Incidents and
Security Focus mailing lists.

Ø Have a documented security policy that upper management buy’s off on so you
have the necessary support.

Ø If for some reason you follow the above steps and still get compromised, try to
share with the community so others don’t fall victim to the same attack (if your
company lets you share this information).

Multiple Choice Test Question
Which of the following Operating Systems are not susceptible to the ISAPI .ida buffer
overflow vulnerability? (Choose all that apply)

a) Windows 2000 Advanced Server
b) Windows XP SP1
c) Windows NT
d) Windows 2000 Professional

The answer is (b). Beginning with Windows XP RC1, this vulnerability has been
eliminated. (a), (c), (d) are all susceptible to the ISAPI .ida buffer overflow vulnerability.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 17

References
CVE-MITRE.org. “Common Vulnerabilities and Exposures”
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0500 (January 11,
2003).

CVE-MITRE.org. “Common Vulnerabilities and Exposures”
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0071 (January 11,
2003).

Incidents.org. “GIAC Certification Practical Logs”
URL: http://www.incidents.org/logs/Raw/2002.6.12 (December 2002).

Incidents.org. “Intrusions GIAC Mailing List Archives”
URL: http://www.incidents.org/archives (January 5, 2003).

Hassell, Riley, Permeh, Ryan. eEye. “Advisory AD20010618” June 18, 2001.
URL: http://www.eeye.com/html/Research/Advisories/AD20010618.html (January 11, 2003).

Microsoft Corporation. “Unchecked Buffer in Index Server ISAPI Extension Could
Enable Web Server Compromise.” June 18, 2001.
URL: http://www.microsoft.com/technet/security/bulletin/MS01-033.asp (January 11,
2003).

SecurityFocus.com. “Code Red Worm” July 20, 2001.
URL: http://aris.securityfocus.com/alerts/codered/010720-Analysis-CodeRed.pdf
(January 11, 2003).

Whitehat.com. “arachNIDS IDS552 - IIS ISAPI Overflow IDA”
URL: http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids552&view=event
(January 10, 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 18

Detect #2: BACKDOOR Q access

Trace Log
This is the dump of the alert file of the Snort log that triggered the event. For the sake of
brevity, only one day is displayed. The event actually triggered for a total of six days
starting on 9/28 continuing to 10/3, which is the day shown. In total, 138 events were
generated.

+=+
[**] BACKDOOR Q access [**]
10/03-00:09:38.356507 255.255.255.255:31337 -> 115.74.48.104:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
+=+
[**] BACKDOOR Q access [**]
10/03-00:59:08.336507 255.255.255.255:31337 -> 115.74.74.204:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
+=+
[**] BACKDOOR Q access [**]
10/03-01:31:10.346507 255.255.255.255:31337 -> 115.74.253.150:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
+=+
[**] BACKDOOR Q access [**]
10/03-01:32:07.436507 255.255.255.255:31337 -> 115.74.208.225:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
+=+
[**] BACKDOOR Q access [**]
10/03-04:02:23.366507 255.255.255.255:31337 -> 115.74.142.201:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
+=+
[**] BACKDOOR Q access [**]
10/03-04:56:29.416507 255.255.255.255:31337 -> 115.74.30.152:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
+=+
[**] BACKDOOR Q access [**]
10/03-06:09:01.416507 255.255.255.255:31337 -> 115.74.217.249:515
TCP TTL:16 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
+=+
[**] BACKDOOR Q access [**]
10/03-06:26:00.476507 255.255.255.255:31337 -> 115.74.101.10:515
TCP TTL:16 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
+=+

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 19

Snort Rule That Triggered the Event

alert tcp 255.255.255.0/24 any -> $HOME_NET any
(msg:"BACKDOOR Q access"; flags:A+; dsize: >1;
reference:arachnids,203; sid:184; classtype:misc-activity; rev:3;)

Source of Trace
This trace originated from incidents.org: http://www.incidents.org/logs/Raw/2002.9.3
The file was downloaded in April of 2003 in preparation for the GCIA certification.
According to the README file on the incidents.org/logs/Raw page, this trace is the
result of a Snort instance running in binary logging mode. The logs have been sanitized
and the IP’s have been “munged” to protect the guilty. In my quest for more punishment,
I imported fourteen days worth of events to hopefully give a more accurate picture of
what was going on. The following files were imported:

2002.8.20 2002.8.21 2002.8.22 2002.8.23
2002.8.24 2002.8.25 2002.8.26 2002.8.27
2002.8.28 2002.8.29 2002.8.30 2002.9.1
2002.9.2 2002.9.3

Detect was Generated By
This trace was generated using Demarc PureSecure v1.6, MySQL 3.23.53 and Snort
version 1.9.1-db (Build 231). The trace was downloaded from the incidents.org web site
and the following snort command was run against it.

snort -p -l C:\PureSecure\sensor\log -r c:\dumps\2002.9.3 –c C:\PureSecure\sensor\conf\snort1.conf

The snort1.conf2 file was the standard file except for the recommendation suggested by
Daniel Wesemann on January 5, 2003 to the intrusions@incidents.org mailing list which
was to turn off the stream4preprocessor. The following lines were commented out:

preprocessor stream4: detect_scans, disable_evasion_alerts
preprocessor stream4_reassemble

Probability the Source Address was Spoofed
The probability the source address was spoofed is definitely high. In this event, as with
all the other events, the source address is the broadcast address of 255.255.255.255.
According to TCP/IP Illustrated Volume 1 written by W. Richard Stevens,

2 * Normally the snort.conf is not named snort1.conf. This was something Demarc PureSecure did upon
install. Not sure why, but everything still worked.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 20

“The limited broadcast address is 255.255.255.255. This can be used as
the destination address of an IP datagram during the host configuration
process, when the host might not know its subnet mask or even its IP
address. A datagram destined for the limited broadcast address is never
forwarded by a router under any circumstance. It only appears on the local
cable.” Page 171.

From this definition we can see that the source address will never be the broadcast
address. However, it can be used as the destination address to discover all the devices on
your local network. To help strengthen this argument RFC 1122 states that,

“Limited broadcast. It MUST NOT be used as a source address. A
datagram with this destination address will be received by every host on
the connected physical network but will not be forwarded outside that
network.” (Page 28, section c).

Some other things to note are the source port 31337 and destination port 515. Source port
31337, also known as eleet, is well known for being associated with the Back Orifice
Trojan. Typically, Back Orifice events would have this as the destination port and not the
source port, but this should definitely raise flags. Even though it is possible that this was
a randomly chosen ephemeral port, the odds of all the events choosing this port are slim
to none. Destination port 515 is usually associated with the spooler service. I find it odd
that a potential outside source would attempt to contact a printer port on an internal
network. This is just another raised flag.

Other factors that raised flags to the source address being spoofed and even the packet
being crafted are the TTL values. The TTL values ranged anywhere from 14 to 16. While
it is feasible that these packets could have made there journey through the internet and
arrived with these values, it is highly unlikely. After looking through some of the other
events and the packets associated with them, none of them had TTL values even close to
this. This is another indication that supports the idea of this packet being crafted. Other
factors that also support this theory are the window size being set to 0 and an ID of 0. A
window size set to 0 means that the host cannot receive anymore data because its buffer
are full and the ID field would usually be set to a random number, that increments by
one. These are all factors that strengthen the argument of a crafted packet.

Question posed from the incidents.org mailing list: (This was the only reply I received).

From: msparkz@hotmail.com
Date: Sunday, July 6, 2003 10:32:06 PM
To: rob.mcbee@sbcglobal.net
Subject: RE: LOGS: GIAC GCIA Version 3.3 Practical Detect (mcbee)

Question:
Rob,
Which alert came first? Look at the TTL’s, if the order is correct, shouldn’t

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 21

The TTL be decrementing or is the order reversed?

Answer:
Msparkz is exactly right, in this case I cut a lot of the extra graphs and
payloads in order to shrink the size of the file down to a level that
incidents.org would post. The final draft that made it through on 7/4/2003
was my third attempt at posting it to the mailing list. Anyway, msparkz
would be right if all the packets followed this pattern. When you look at all
the events they did not follow this pattern. The only TTL’s used for all the
events were 14, 15, or 16. This would be indicative of a crafted packet and
not the flow of normal path.

The last thing I want to point out, and probably the most obvious, is that each packet has
both the ACK and RST flags set in the header. Why would you set the RST flag? The
RST flag signals an abrupt termination of the session. This does not make sense.

Below is a summary of the packet with the payload as captured by Demarc PureSecure.
Not a whole lot more information, but just another view of the data.

Figure 2.2.1: A closer look at this packet
2002-10-03 07:26:00 SID:1 CID:75321
BACKDOOR Q access
[TCP] 255.255.255.255:31337 -> 115.74.101.10:515
63 6B 6F cko

2002-10-03 07:09:01 SID:1 CID:75308
BACKDOOR Q access
[TCP] 255.255.255.255:31337 -> 115.74.217.249:515
63 6B 6F cko

2002-10-03 05:56:29 SID:1 CID:75291
BACKDOOR Q access
[TCP] 255.255.255.255:31337 -> 115.74.30.152:515
63 6B 6F cko

2002-10-03 05:02:23 SID:1 CID:75282
BACKDOOR Q access
[TCP] 255.255.255.255:31337 -> 115.74.142.201:515
63 6B 6F cko

2002-10-03 02:32:07 SID:1 CID:75243
BACKDOOR Q access
[TCP] 255.255.255.255:31337 -> 115.74.208.225:515
63 6B 6F cko

2002-10-03 02:31:10 SID:1 CID:75241
BACKDOOR Q access
[TCP] 255.255.255.255:31337 -> 115.74.253.150:515
63 6B 6F cko

2002-10-03 01:59:08 SID:1 CID:75229
BACKDOOR Q access

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 22

[TCP] 255.255.255.255:31337 -> 115.74.74.204:515
63 6B 6F cko

2002-10-03 01:09:38 SID:1 CID:75202
BACKDOOR Q access
[TCP] 255.255.255.255:31337 -> 115.74.48.104:515
63 6B 6F cko

As you can tell from the bolded text, the 63 6B 6F cko is indicative of the Q signature.
This just strengthens the argument that something not right is going on.

Description of the Attack
According to the Honeynet Project, “Q v2.0 is a client / server backdoor which features
remote shell access with strong encryption for root and normal users, and a encrypted on-
demand tcp relay/bouncer that supports encrypted sessions with normal clients using the
included tunneling daemon. Also has stealth features like activation via raw packets,
syslog spoofing, and single on-demand sessions with variable ports.”

As you can see Q is somewhat sophisticated. To date there are currently three versions of
this: Q-1.0, Q-2.0, and Q-2.4. From the documentation available, the main
changes/improvements are ease of use and stronger encryption. The latest version, Q-2.4
now uses strong RSA/libiSSL encryption for sessions.

From the Q documentation, in order to use this you have to perform the following:

Ø Upload “qd” to the system you want to access.
Ø Type “qd” again to start the server (you must have root privileges to perform

this).
Ø From the client, type q along with you desired parameters (highly craft-able).

From looking at the data, there were 138 attempts made over the six days. The rate at
which these events were logged appears to be random with no distinguishable patterns in
time. It is definitely too slow to be considered a DoS attack. All attempts were from the
broadcast address on source port 31337 and directed towards random targets on the
115.74.0.0/16 network on target port 515. The payloads are all the same with “cko” being
the only characteristic. Investigating further shows no other events from the targets being
generated. This makes it impossible to distinguish whether this was just a scan of the
target or if the target actually initiated the request. My guess is this is an attacker
scanning for potentially infected hosts hoping to find some that might have been infected
either through email, IRC or maybe through a P2P client.

Below is a graph that shows the number of events per day that were captured matching
the BACKDOOR Q access signature.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 23

Figure 2.2.2: Number of Events per day

BACKDOOR Q Events

0
5

10
15
20
25
30
35
40
45

9/28/02

9/29/02

9/30/02

10/1/02

10/2/02

10/3/02
of Events

Attack Mechanism
As we can see from the data presented thus far this traffic is highly questionable. What
we can conclude is that no response should be sent back to the source. If for some reason
one of the hosts did reply, it should not make it past the perimeter router as this type of
data should be blocked. Another interesting factor to consider is that each packet had
both the ACK and RST switches set. By setting the RST flag this performs an abrupt
termination of the session, making one believe that no response will be sent. This could
conceivably be a deliberate attempt at evading an IDS or Firewall; however, what would
it prove. After scanning through the logs I didn’t find any indication of the three-way
handshake. One theory that might be possible is that an attacker is scanning for already
infected hosts and if it finds one, the “cko” in the payload details explicit instructions on
what to do next…just a theory, but remember the payload may be encrypted.

Correlations
At this point, it’s still a mystery as to what is exactly going on. Looking through the
fourteen days worth of data I didn’t find any indication of three-way handshake being
established. At this point I decided to turn to the community. I read a paper written by Les
Gordon. He performed a very in-depth analysis of each version. What was interesting to me
was his analysis of version Q-2.4. In this version, he says, “qs now allows you to specify
the spoofed source IP address of control packets sent to activate servers or execute remote
commands. By default, they are randomly generated. The protocol used is now randomly
chosen between TCP, UDP and ICMP, unless otherwise specified. This version (and 2.0)
seems to have a bug which prevents you from selecting a protocol of your own choosing -
you are stuck with the random choice. As well as executing remote commands using the
shell predefined in the "conf.h" file, you can now specify what remote program to use as
your remote shell using qs.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 24

Figure 2.2.3: qs v2.4 usage message
 ./qs [-p] [-niasd] <-CSB> <host> [more hosts...]
 -p <n> shell/bouncer server listening port
 -n insecure plaintext servers [encrypted]
 -i <n> protocol (I/U/T) [random]
 -a <n> custom auth token [hardcoded]
 -s <n> source IP [random]
 -S spawn qshell server
 -B <host port> spawn qbounce to <host port>
 -C <cmd> execute <cmd>
 -P <prg> set a new program as remote shell
 -U <uid> set a new user id for redirecting

In his conclusion Les states that, “Q is a potentially very capable back-door program that
makes use of several techniques that make its traffic difficult to detect using signature-
based IDS.” He goes on to say that, “The real danger is perhaps not from Q itself, but
from other private software which makes use of similar "stealth" techniques which we
don't have signatures for…From this “stealth” technique one could easily craft a packet
that could evade an IDS or Firewall”.

The one thing that was still bugging me was the “cko” in the payload. Les didn’t mention
it in his analysis. So I went to Google and did a search on “BACKDOOR Q access” and
long behold, numerous links were presented.

1. http://lists.jammed.com/incidents/2001/04/0153.html
2. http://archives.neohapsis.com/archives/incidents/2001-05/0038.html
3. http://maclux-rz.uibk.ac.at/~maillists/focus-ms/msg01549.shtml
4. http://archives.neohapsis.com/archives/incidents/2001-04/0318.html

After reading through these lists, there seems to be a common theme associated with this
type of traffic. The theme is IRC sites, Viruses, and Trojans. This leads me to believe that
Les was right and there is probably a hacker group that has modified the code to fit their
own needs. I do believe the code would have had to of been modified because v2.4 sends
an IP Length of 0 where these packets have an IP Length of 20. This is probably
intentional to help trick the IDS and Firewall systems. I guess the better question is why.
There are still a lot of questions as to why this attacker chose this network. Did they
know something about this network or was this just completely random? Unfortunately,
with the limited information available one can only guess the answer.

Evidence of Active Targeting
I do believe this could be the result of active targeting. Of the fourteen days that I have
inspected, six of them had data present. Plus, the number of events and times differed per
day with no noticeable patterns. It’s obvious this attacker wasn’t trying to be stealthy
because they would have picked different source and targets ports instead of some well-
known ports like 31337. This one would raise flags all over the place if it wasn’t already
closed to begin with. It is interesting why no other subnets were scanned or exploited.
Maybe the attacker had some knowledge of this subnet because they only made one
attempt per host for a total of 138 attempts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 25

Severity
Severity is calculated using the formula below:

(Criticality + Lethality) - (System Countermeasures + Network Countermeasures)

Each element is worth 1 to 5 points, and the arithmetic gives us a range of -8 to +8.

Criticality At this point we do have some evidence of active targeting, but there
does not appear to be anyone responding to the scans. Plus we have no
idea what type of systems are being scanned. 2

Lethality Had one of these systems been susceptible to Q, the attacker would have
been granted root access. With this level of access and access to the
internal network, there’s no telling what mischief they could have caused.
Either way this would have been bad. 4

System Unfortunately, we have no way of knowing what kind of protection are in
place on the target systems. It does appear that no responses were sent
back to the sources so you can safely say that none of them are infected
with the Q Trojan. 2

Network One would assume that there some level of filtering in place at the
perimeter, but due to the limited knowledge we have on this network
nothing is certain. The fact that no responses were seen heading back to
the source is good. I had to split down the middle. 3

Severity = (2+4) – (2+3) = 1

This gives me an incident severity of 1. I have a little work to do, but it’s not that big of a
deal.

Defensive Recommendation
The obvious first choice is to ensure that ingress and egress filtering is enabled at your
perimeter. This will ensure that only permitted traffic is allowed through. You will also
want to setup a firewall at your perimeter as well as on your clients. Make sure you patch
your clients and servers as this will help reduce the probability of being compromised if
someone does get through the perimeter. As part of the hardening process on your
network, you could also close down unnecessary ports from the outside that are prone to
being exploited.

Multiple Choice Test Question
Given the following packet capture, what is/are the key indicator(s) in determining
whether the lpd spooler service is being targeted?

[**] BACKDOOR Q access [**]
10/03-00:09:38.356507 255.255.255.255:31337 -> 115.74.48.104:515
TCP TTL:15 TOS:0x0 ID:0 IpLen:20 DgmLen:43
***A*R** Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 26

a) The ACK & RST flags are set
b) TTL:15
c) The target port of 515
d) The Seq, Ack, and Win values are all set to 0x0
e) All of the above
f) None of the above

The answer is (c). According to IANA, port 515 is associated with the spooler service.
All the other answers have no bearing on what port the source will attempt to connect to.

References
CVE-MITRE.org. “Common Vulnerabilities and Exposures”
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0660 (April 24, 2003).

Gordon, Les. Whitehats.ca. “On Q”
URL: http://www.whitehats.ca/main/publications/external_pubs/Q-analysis/Q-analysis.html (April,
25, 2003).

Honeynet Project. “Attacker tools found on apollo.honeyp.edu”
URL: http://project.honeynet.org/challenge/results/submissions/addam/toolkit.txt (April 25, 2003).

Incidents.org. “GIAC Certification Practical Logs”
URL: http://www.incidents.org/logs/Raw/2002.9.3 (April 2002).

Incidents.org. “Intrusions GIAC Mailing List Archives”
URL: http://www.incidents.org/archives (April 24, 2003).

R. Braden, Ed. “RFC1122 - Requirements for Internet Hosts - Communication Layers”
URL: ftp://ftp.rfc-editor.org/in-notes/rfc1122.txt October 1989. (Page 28, section c).

Stevens, W. Richard. “TCP/IP Illustrated, Volume 1” Reading: Addison
Wesley, Inc, 1994. (Page 171).

Whitehat.com. “arachNIDS IDS203 - TROJAN-ACTIVE-Q-TCP”
URL: http://www.whitehats.com/info/IDS203 (April 24, 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 27

Detect #3: BAD TRAFFIC bad frag bits

Trace Log
Below is the dump of the alert file of the Snort log that triggered the event.

=+
[**] BAD TRAFFIC bad frag bits [**]
11/10-14:14:53.596507 213.107.68.84 -> 207.166.176.240
TCP TTL:111 TOS:0x0 ID:32146 IpLen:20 DgmLen:1468 DF MF
Frag Offset: 0x0000 Frag Size: 0x0014
+=+
[**] BAD TRAFFIC bad frag bits [**]
11/10-14:14:58.936507 213.107.68.84 -> 207.166.176.240
TCP TTL:111 TOS:0x0 ID:32318 IpLen:20 DgmLen:1468 DF MF
Frag Offset: 0x0000 Frag Size: 0x0014
+=+

Snort Rule That Triggered the Event
alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD
TRAFFIC bad frag bits"; fragbits:MD; sid:1322; classtype:misc-
activity; rev:4;)

Source of Trace
This trace originated from incidents.org: http://www.incidents.org/logs/Raw/2002.10.10
The file was downloaded in May of 2003 in preparation for the GCIA certification.
According to the README file on the incidents.org/logs/Raw page, this trace is the
result of a Snort instance running in binary logging mode. The logs have been sanitized
and the IP’s have been “munged” to protect the guilty. In my quest for more punishment,
I imported ten days worth of events to hopefully give a more accurate picture of what was
going on. The following files were imported:

2002.10.1 2002.10.2 2002.10.3 2002.10.4
2002.10.5 2002.10.6 2002.10.7 2002.10.8
2002.10.9 2002.10.10

To help assist my understanding of this detect, I am going to attempt to gain a better
understanding of the network. I hadn’t done this in the previous two detects, but after
reading André Cormier’s analysis, I was inspired. Plus, it’s more commands that I can
learn about.

The first step I attempted was to find the unique MAC addresses for source and target
systems. Since I’m not running on a Linux platform, I had to modify things a bit to gain
some similar functionality. To accomplish this I installed Cygwin, version 1.3.22-1, along
with Windump 3.8 Alpha. Now I have an environment comparable to that of unix. Well,
sort of.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 28

The next step is to analyze the file. Below is the sample of file that was generated by
typing the following:

C:\Dumps>windump -neqr 2002.10.10 > mac.txt

17:24:47.786507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 1482: IP 81.97.214.13.4746 > 207.166.84.248.80: tcp
1428 (frag 36529:1448@0+)
17:25:00.806507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 1482: IP 81.97.214.13.4746 > 207.166.84.248.80: tcp
1428 (frag 37596:1448@0+)
17:25:25.716507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 1482: IP 81.97.214.13.4746 > 207.166.84.248.80: tcp
1428 (frag 39660:1448@0+)
17:26:13.706507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 1482: IP 81.97.214.13.4746 > 207.166.84.248.80: tcp
1428 (frag 43627:1448@0+)
17:27:37.236507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 1482: IP 80.4.97.69.1770 > 207.166.206.194.80: tcp
1416 (frag 43019:1448@0+)
17:27:49.766507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 1482: IP 81.97.214.13.4746 > 207.166.84.248.80: tcp
1428 (frag 50451:1448@0+)

As you can see the columns highlighted in blue represent the source and target MAC
addresses. The first one is the source, which is in column 2 and the second one is the
target, which is in column 3. Below are commands I executed and the results they
returned.

C:\Dumps>windump -neqr 2002.10.10 | cut -d ' ' -f2 | sort | uniq
0:0:c:4:b2:33
0:3:e3:d9:26:c0

C:\Dumps>windump -neqr 2002.10.10 | cut -d ' ' -f3 | sort | uniq
0:0:c:4:b2:33
0:3:e3:d9:26:c0

As you can see there are only two different MAC addresses in use. According to IEEE
OUI listing, these two MAC addresses belong to Cisco devices. From this information it
is safe to assume that our network looks something like this:

CISCO-DEVICE +--+--+ CISCO-DEVICE
|

SNORT INSTANCE

Detect was Generated By
This trace was generated using Demarc PureSecure v1.6, MySQL 3.23.53 and Snort
version 2.0.0-db (Build 72). The trace was downloaded from the incidents.org web site
and the following snort command was run against it.

snort -p -l C:\PureSecure\sensor\log -r c:\dumps\2002.10.10 –c C:\PureSecure\sensor\conf\snort1.conf

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 29

The snort1.conf3 file was the standard file except for the recommendation suggested by
Daniel Wesemann on January 5, 2003 to the intrusions@incidents.org mailing list which
was to turn off the stream4preprocessor. The following lines were commented out:

preprocessor stream4: detect_scans, disable_evasion_alerts
preprocessor stream4_reassemble

Probability the Source Address was Spoofed
At first glance of the packet above, you notice that the More Fragments and Don’t
Fragments bits are set. This automatically tells you that someone is doing some packet
crafting. According to RFC 791, setting both fragmentation bits at the same is possible,
but it’s against the standard. This is not the expected behavior and should be treated as
suspicious. Knowing this much information, at first, led me to believe that the source
address might be spoofed. But taking a closer look at the payload, see below, showed
some remarkable similarities to CodeRed. To confirm my suspicion I checked cert.org
and these two packets have the exact same footprint. The one thing that was still puzzling
me was I didn’t remember CodeRed sending packets with both MF and DF bits set. So,
the only conclusion that I can come up with is someone is using a CodeRed packet and
crafting it to show both MF and DF bits set. Maybe they were trying to evade an IDS
system? Either way this CodeRed footprint is typical of a worm attempting to infect a
machine and it’s probably looking for some type of reply. If it was a spoofed address, this
would be meaningless. Because of this, I would say that the probability of the source
address being spoofed is low.

Below is the hex output of the packet generated by windump. The following command
was executed to generate this payload.

windump -X -x -vv -r 2002.10.10 "tcp and src 213.107.68.84"

Figure 2.3.1: A closer look at this packet
0x0000 4500 05bc 7d92 6000 6f06 189d d56b 4454 E...}.`.o....kDT
0x0010 cfa6 b0f0 12be 0050 2618 748b 2d96 92a6P&.t.-...
0x0020 8018 faf0 d3a6 0000 0101 080a 0002 9d03
0x0030 55d9 fd67 4745 5420 2f64 6566 6175 6c74 U..gGET./default
0x0040 2e69 6461 3f4e 4e4e 4e4e 4e4e 4e4e 4e4e .ida?NNNNNNNNNNN
0x0050 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
0x0060 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
0x0070 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
0x0080 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
0x0090 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
0x00a0 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
0x00b0 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
0x00c0 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
0x00d0 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
0x00e0 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN

3 * Normally the snort.conf is not named snort1.conf. This was something Demarc PureSecure did upon
install. Not sure why, but everything still worked.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 30

0x00f0 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
0x0100 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
0x0110 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e NNNNNNNNNNNNNNNN
0x0120 4e4e 4e4e 4e25 7539 3039 3025 7536 3835 NNNNN%u9090%u685
0x0130 3825 7563 6264 3325 7537 3830 3125 7539 8%ucbd3%u7801%u9
0x0140 3039 3025 7536 3835 3825 7563 6264 3325 090%u6858%ucbd3%
0x0150 7537 3830 3125 7539 3039 3025 7536 3835 u7801%u9090%u685
0x0160 3825 7563 6264 3325 7537 3830 3125 7539 8%ucbd3%u7801%u9
0x0170 3039 3025 7539 3039 3025 7538 3139 3025 090%u9090%u8190%
0x0180 7530 3063 3325 7530 3030 3325 7538 6230 u00c3%u0003%u8b0
0x0190 3025 7535 3331 6225 7535 3366 6625 7530 0%u531b%u53ff%u0
0x01a0 3037 3825 7530 3030 3025 7530 303d 6120 078%u0000%u00=a.
0x01b0 2048 5454 502f 312e 300d 0a43 6f6e 7465 .HTTP/1.0..Conte
0x01c0 6e74 2d74 7970 653a 2074 6578 742f 786d nt-type:.text/xm
0x01d0 6c0a 484f 5354 3a77 7777 2e77 6f72 6d2e l.HOST:www.worm.
0x01e0 636f 6d0a 2041 6363 6570 743a 202a 2f2a com..Accept:.*/*
0x01f0 0a43 6f6e 7465 6e74 2d6c 656e 6774 683a .Content-length:
0x0200 2033 3536 3920 0d0a 0d0a 558b ec81 ec18 .3569.....U.....
0x0210 0200 0053 5657 8dbd e8fd ffff b986 0000 ...SVW..........
0x0220 00b8 cccc cccc f3ab c785 70fe ffff 0000p.....
0x0230 0000 e90a 0b00 008f 8568 feff ff8d bdf0h......
0x0240 feff ff64 a100 0000 0089 4708 6489 3d00 ...d......G.d.=.
0x0250 0000 00e9 6f0a 0000 8f85 60fe ffff c785o.....`.....
0x0260 f0fe ffff ffff ffff 8b85 68fe ffff 83e8h.....
0x0270 0789 85f4 feff ffc7 8558 feff ff00 00e0X......
0x0280 77e8 9b0a 0000 83bd 70fe ffff 000f 85dd w.......p.......
0x0290 0100 008b 8d58 feff ff81 c100 0001 0089X..........
0x02a0 8d58 feff ff81 bd58 feff ff00 0000 7875 .X.....X......xu
0x02b0 0ac7 8558 feff ff00 00f0 bf8b 9558 feff ...X.........X..
0x02c0 ff33 c066 8b02 3d4d 5a00 000f 859a 0100 .3.f..=MZ.......
0x02d0 008b 8d58 feff ff8b 513c 8b85 58fe ffff ...X....Q<..X...
0x02e0 33c9 668b 0c10 81f9 5045 0000 0f85 7901 3.f.....PE....y.
0x02f0 0000 8b95 58fe ffff 8b42 3c8b 8d58 feffX....B<..X..
0x0300 ff8b 5401 7803 9558 feff ff89 9554 feff ..T.x..X.....T..
0x0310 ff8b 8554 feff ff8b 480c 038d 58fe ffff ...T....H...X...
0x0320 898d 4cfe ffff 8b95 4cfe ffff 813a 4b45 ..L.....L....:KE
0x0330 524e 0f85 3301 0000 8b85 4cfe ffff 8178 RN..3.....L....x
0x0340 0445 4c33 320f 8520 0100 008b 8d58 feff .EL32........X..
0x0350 ff89 8d34 feff ff8b 9554 feff ff8b 8558 ...4.....T.....X
0x0360 feff ff03 4220 8985 4cfe ffff c785 48feB...L.....H.
0x0370 ffff 0000 0000 eb1e 8b8d 48fe ffff 83c1H.....
0x0380 0189 8d48 feff ff8b 954c feff ff83 c204 ...H.....L......
0x0390 8995 4cfe ffff 8b85 54fe ffff 8b8d 48fe ..L.....T.....H.
0x03a0 ffff 3b48 180f 8dc0 0000 008b 954c feff ..;H.........L..
0x03b0 ff8b 028b 8d58 feff ff81 3c01 4765 7450X....<.GetP
0x03c0 0f85 a000 0000 8b95 4cfe ffff 8b02 8b8dL.......
0x03d0 58fe ffff 817c 0104 726f 6341 0f85 8400 X....|..rocA....
0x03e0 0000 8b95 48fe ffff 0395 48fe ffff 0395H.....H.....
0x03f0 58fe ffff 8b85 54fe ffff 8b48 2433 c066 X.....T....H$3.f
0x0400 8b04 0a89 854c feff ff8b 8d54 feff ff8bL.....T....
0x0410 5110 8b85 4cfe ffff 8d4c 10ff 898d 4cfe Q...L....L....L.
0x0420 ffff 8b95 4cfe ffff 0395 4cfe ffff 0395L.....L.....
0x0430 4cfe ffff 0395 4cfe ffff 0395 58fe ffff L.....L.....X...
0x0440 8b85 54fe ffff 8b48 1c8b 140a 8995 4cfe ..T....H......L.
0x0450 ffff 8b85 4cfe ffff 0385 58fe ffff 8985L.....X.....
0x0460 70fe ffff eb05 e90d ffff ffe9 16fe ffff p...............

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 31

0x0470 8dbd f0fe ffff 8b47 0864 a300 0000 0083G.d......
0x0480 bd70 feff ff00 7505 e938 0800 00c7 854c .p....u..8.....L
0x0490 feff ff01 0000 00eb 0f8b 8d4c feff ff83L....
0x04a0 c101 898d 4cfe ffff 8b95 68fe ffff 0fbeL.....h.....
0x04b0 0285 c00f 848d 0000 008b 8d68 feff ff0fh....
0x04c0 be11 83fa 0975 218b 8568 feff ff83 c001u!..h......
0x04d0 8bf4 50ff 9590 feff ff3b f490 434b 434b ..P......;..CKCK
0x04e0 8985 34fe ffff eb2a 8bf4 8b8d 68fe ffff ..4....*....h...
0x04f0 518b 9534 feff ff52 ff95 70fe ffff 3bf4 Q..4...R..p...;.
0x0500 9043 4b43 4b8b 8d4c feff ff89 848d 8cfe .CKCK..L........
0x0510 ffff eb0f 8b95 68fe ffff 83c2 0189 9568h........h
0x0520 feff ff8b 8568 feff ff0f be08 85c9 7402h........t.
0x0530 ebe2 8b95 68fe ffff 83c2 0189 9568 feffh........h..
0x0540 ffe9 53ff ffff 8b85 68fe ffff 83c0 0189 ..S.....h.......
0x0550 8568 feff ff8b 4d08 8b91 8400 0000 8995 .h....M.........
0x0560 6cfe ffff c785 4cfe ffff 0400 0000 c685 l.....L.........
0x0570 d0fe ffff 688b 4508 8985 d1fe ffff c785h.E.........
0x0580 d5fe ffff 5b53 53ff c785 d9fe ffff 6378[SS.......cx
0x0590 9090 8b4d 088b 5110 8995 50fe ffff 83bd ...M..Q...P.....
0x05a0 50fe ffff 0075 268b f46a 008d 854c feff P....u&..j...L..
0x05b0 ff50 8b8d 68fe ffff 518b 5508 .P..h...Q.U.

Description of the Attack
All leads point toward this being CodeRed or a flavor of CodeRed. After examining the
packet above and comparing it to the one on cert.org, they are virtually identical.
According to cert.org, this capture does not mean that the target has been infected, but
that it is attempting to infect it. The only anomaly that I can see is both the MF and DF
bits are set. This leads me to believe that it is a specially crafted CodeRed packet. Had
this been an actual CodeRed infected target, I would think it would be more active. From
the ten days that I imported, these two events are the only ones captured in all the IDS
files from this source. Also, had it actually infected the target system, it should have
started to make some noise. Just like the source, there were only two events captured in
all the IDS files. This does not mean the target didn’t get infected. It still could have been
and the traffic coming out was just not captured by the IDS. From the data present, it’s
impossible to tell.

For a more detailed explanation of CodeRed, see the cert.org write-up.

Attack Mechanism
The attack mechanism for CodeRed is it attempts to connect via TCP on port 80 looking
for vulnerable IIS web servers. If it finds a server that answers its request, it will send a
specially crafted HTTP GET request to the target attempting to exploit a buffer overflow
in the indexing service of the IIS web server. If the system becomes infected it will
attempt the same process on other randomly selected targets.

Based upon the information present in the IDS file, my guess would be that this is a
stimulus packet. Looking through ten days worth of data, there was only two packets sent
from this host and both went to the same target. Others could have been sent, but just not
captured. Typical behavior of a CodeRed attack would be to attempt infection on multiple
random hosts. This does not look like the case here. This would steer me in the direction

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 32

of packet crafting. Let’s take a closer look at the IP Header. This has been cut from the
packet above.

Figure 2.3.2: A closer look at the Headers
0x0000 4500 05bc 7d92 6000 6f06 189d d56b 4454 E...}.`.o....kDT
0x0010 cfa6 b0f0 12be 0050 2618 748b 2d96 92a6P&.t.-...
0x0020 8018 faf0 d3a6 0000 0101 080a 0002 9d03
0x0030 55d9 fd67 4745 5420 2f64 6566 6175 6c74 U..gGET./default

Let’s see if a quick glance at the fields shows anything interesting. The blue represents
the IP Header and the red is the TCP Header.

IP Header Information:
45 – This shows a normal IPv4 protocol with a header length of 20 bytes.
00 – We see that all the TOS bits are set to zero.
05bc – Total length of the datagram is 1468 bytes.
7d92 – Fragment ID of 32146
60 – This is the sixth offset which shows the fragmentation bits that are set. When you
convert this to binary, you get 0110 which says that the DF and MF bits are set.
00 – Shows that the rest of the Fragment Offset is not set.
6f – This is the TTL value which is set to 111
06 – Protocol is set to TCP
189d – Header Checksum. This has been purposely munged.
Df6b 4454 – Source IP = 213.107.68.84
Cfa6 b0f0 – Destination IP = 207.166.176.240

TCP Header Information:
12be – Source Port = 4798
0050 – Destination Port = 80
2618 748b = Sequence Number = 639137263
2d96 92a6 = Acknowledgement Number = 764842662
80 – Header Length = 8. Multiply this by the protocol in the IP Header to get the total
length of the TCP Header. 8 * 4 = 32 bytes long.
18 – These are the flags that are set. To do this part correctly you need to split each one
up into 4 bits and convert it into binary. Doing this would result in the 1 = 0001, which
would have the ACK flag set and the 8 = 1000, which has the PSH flag set.
Fafo – Window Size = 64240
D3a6 – TCP Checksum. This has also been munged.
0000 – No Urgent Pointer are set.
0101 080a – Options

We can see from the breakdown of the headers that the above assumptions still hold true.
The main factor here is both DF and MF bits are set and you cannot do this. Another
thing to note here is the header also shows the PSH and ACK flags. In order for a source
to push data to a target the three-way handshake needs to be completed. This would
further the argument that the source address was not spoofed, as stated above. In my

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 33

opinion, this is definitely a CodeRed attack attempting to evade an IDS system or a
firewall.

Correlations
Reading through the mailing list, this particular event has been analyzed many times.
Below are the links to some of the analysis:

1. http://cert.uni-stuttgart.de/archive/intrusions/2002/08/msg00106.html
2. http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00121.html
3. http://cert.uni-stuttgart.de/archive/intrusions/2002/08/msg00237.html
4. http://cert.uni-stuttgart.de/archive/intrusions/2002/10/msg00218.html

In addition to the mailing list posting above, below are some other links to write-ups and
advisories.

1. http://www.cert.org/advisories/CA-2001-19.html
2. http://www.securityfocus.com/bid/2880
3. http://www.microsoft.com/technet/security/bulletin/MS01-044.asp

I believe the above links strengthens my argument that this is an attack designed to evade
an IDS or firewall. I also did a Google search for “Fragmented CodeRed”, but I didn’t
find any other information other than what’s already noted above. I also went to DShield
and did a search on this IP Address. The only thing that showed up was the Whois
information. You can view this information in appendix A below. One last thing I did
was another Google search on the IP Address and the only return was a link to some
SnortSnarf logs. I attempted to view it, but the link was broken.

Evidence of Active Targeting
I don’t believe this attack was the result of active targeting. Of the ten days that I
inspected, only one of them had data from this IP. In total, there were two events from
this source directed towards the same target. No other data was captured. I believe this
was a stealthy CodeRed attack. According to CERT’s write-up on CodeRed, it attacks
randomly chosen IP Addresses.

Just to figure out if either the source or destination was running any form of web services,
I used a tool called Netcraft to query the site. Unfortunately, both sites did not return any
results.

Severity
Severity is calculated using the formula below:

(Criticality + Lethality) - (System Countermeasures + Network Countermeasures)

Each element is worth 1 to 5 points, and the arithmetic gives us a range of -8 to +8.

Criticality At this point it’s difficult to tell if target system is even a WEB server. If 3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 34

it’s not, the criticality could be even lower. Because I don’t know, I’m
going to assume it is. The fact that no replies or additional attacks were
captured from the target tells me that if it is a web server, it’s not
vulnerable.

Lethality Had this host been a vulnerable WEB server, the attack would have
compromised the machine. This is not a good thing. 5

System Since no replies or additional attacks were captured, it can be assumed
that the target was not vulnerable to this attack. Either this or it has
already been patched. Either way, well be a little conservative. 3

Network There’s not too much information gathered from the logs. Obviously,
more would have been nice. Besides, why would you allow a packet into
your network that has both DF and MF bits set. 1

Severity = (3+5) – (3+1) = 4

This gives me an incident severity of 4. There is some work that needs to be done to
harden this environment more.

Defensive Recommendation
First and foremost, patch your system. There has been a patch out for this vulnerability
for well over a year. This should be common sense, but apparently it’s not. You would
then want to have some form of antivirus running real-time scanning. Setup an inner and
outer firewall and have some form of content filtering in place. This will ensure that
packets with improper flag combinations will not make it into your network. Another
good idea might be to block all ICMP traffic that does not have a source address from
inside your network. Last, but not least, setup an IDS system to complement your other
defenses. Also, make sure your firewalls are stateful firewalls.

Multiple Choice Test Question
Given the following packet header, which offset value represents the fragment offset and
which flags are set?

0x0000 4500 05bc 7d92 6000 6f06 189d d56b 4454
0x0010 cfa6 b0f0 12be 0050 2618 748b 2d96 92a6
0x0020 8018 faf0 d3a6 0000 0101 080a 0002 9d03
0x0030 55d9 fd67 4745 5420 2f64 6566 6175 6c74

a) 18 and PSH ACK
b) 60 and DF and MF
c) 00 and 0x0
d) 06 and TCP
e) None of the above

The answer is (b). The fragment offset is located at offset 6 and 7 of the IP Header which
is 6000. When you break this value down into its binary, you get 0110 which equals 6.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 35

Starting from right to left, you don’t really care right most 0, so you’re left with 011
which are the MF and DF.

References
Cert.org. “CERT® Advisory CA-2001-19 "CodeRed" Worm Exploiting Buffer Overflow
In IIS Indexing Service DLL” URL: http://www.cert.org/advisories/CA-2001-19.html
(January 17, 2002).

Cormier, André. “LOGS: GIAC GCIA Version 3.3 Practical Detect(s)”
URL: http://cert.uni-stuttgart.de/archive/intrusions/2003/01/msg00121.html (January
2003).

Incidents.org. “GIAC Certification Practical Logs”
URL: http://www.incidents.org/logs/Raw/2002.10.10 (May 2002).

Incidents.org. “Intrusions GIAC Mailing List Archives”
URL: http://www.incidents.org/archives (May 9, 2003).

Gregory, Scott. “LOGS: GIAC GCIA Version 3.2 Practical Detect(s)”
URL: http://cert.uni-stuttgart.de/archive/intrusions/2002/08/msg00106.html (August
2002).

Kan, Bernard. “LOGS: GIAC GCIA Version 3.2 Practical Detect #3”
URL: http://cert.uni-stuttgart.de/archive/intrusions/2002/10/msg00218.html (October
2002).

Merchant, Corey. “GIAC GCIA – Fragmented CodeRed”
URL: http://cert.uni-stuttgart.de/archive/intrusions/2002/08/msg00237.html (August
2002).

Microsoft Corporation. “Microsoft Security Bulletin MS01-044” URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS
01-044.asp (August 2001).

Netcraft. URL: http://www.netcraft.com/ (May 2003).

Postel, Jon. “RFC791 – Internet Protocol Specification”
URL: ftp://ftp.rfc-editor.org/in-notes/rfc791.txt (September 1981).

SecurityFocus. “MS Index Server and Indexing Service ISAPI Extension Buffer
Overflow Vulnerability” URL: http://www.securityfocus.com/bid/2880 (August 10,
2001).

Stevens, W. Richard. “TCP/IP Illustrated, Volume 1” Reading: Addison
Wesley, Inc, 1994.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 36

Appendix A

DShield Results for Source IP
IP Address:213.107.68.84
HostName:pc3-oxfd1-3-cust84.oxfd.cable.ntl.com

DShield
Profile:

Country:

Contact E-mail:

Total Records against IP:

Number of targets:

Date Range:
to

Update Summary
Ports Attacked (up to 10):

Port
Attacks

Start
End

Fightback:not sent
Whois:% This is the RIPE Whois server.

% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-
services/db/copyright.html

inetnum: 213.107.64.0 - 213.107.71.255
netname: NTL
descr: NTL Oxford - CABLE HEADEND
country: GB
admin-c: NNMC1-RIPE
tech-c: NNMC1-RIPE
status: ASSIGNED PA
mnt-by: AS5089-MNT
changed: hostmaster@ntli.net 20011012

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 37

changed: hostmaster@ntli.net 20020815
source: RIPE

route: 213.104.0.0/14
descr: NTL-UK-IP-BLOCK-4
origin: AS5089
mnt-by: AS5089-MNT
changed: bob.procter@ntli.net 20000404
source: RIPE

role: NTLI Network Management Centre
address: NTL Internet
address: Crawley Court
address: Winchester
address: Hampshire
address: SO21 2QA
phone: +44 1483 875105
fax-no: +44 1483 875150
trouble: ---

trouble: abuse@ntlworld.com - for abuse
notifications
trouble: nmc@ntli.net - for technical
issues/questions
trouble: peering@ntli.net - for peering
issues/requests
trouble: ---

e-mail: nmc@ntli.net
admin-c: JW1142-RIPE
admin-c: EH976-RIPE
admin-c: JM2907-RIPE
admin-c: HD98-RIPE
admin-c: AF3217-RIPE
tech-c: MC1641-RIPE
tech-c: JW1142-RIPE
tech-c: EH976-RIPE
tech-c: JM2907-RIPE
tech-c: HD98-RIPE
tech-c: AF3217-RIPE
tech-c: MN3609-RIPE
tech-c: AD7775-RIPE
nic-hdl: NNMC1-RIPE
mnt-by: AS5089-MNT
notify: data.planning@ntl.com
notify: nmc@ntli.net
changed: hostmaster@ntli.net 20020619
changed: hostmaster@ntli.net 20020815
changed: hostmaster@ntli.net 20020913
changed: hostmaster@ntli.net 20030328
changed: hostmaster@ntli.net 20030401
source: RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 38

Assignment #3: Analyze This!

Analysis of the University Network

Executive Summary

0

100000

200000

300000

400000

500000

600000

700000

N
um

be
r o

f E
ve

nt
s

5/16/03 5/17/03 5/18/03 5/19/03 5/20/03

Alert
Scans

The above graph represents the number of events for the five day period of May 16th

through the 20th 2003.

From the graph above we can see a fairly consistent flow of events except for Friday the
16th where we see a huge spike in the number of the scans that occurred in the
University’s network. This spike could be the start of a reconnaissance effort or the end
of a major attack suffered by the University.

The goal of this paper is to provide an understanding as to the type of events seen on the
University’s network. With this information the University can plan additional detection
and prevention strategies, as well as pursue tuning recommendations and mitigation
tasks.

It is fairly evident that the University has some security safeguards in place. In lieu of
that, it appears that either Nimda or Code Red is running rampant within the network.
Furthermore, it also appears that other hosts have been compromised by Trojans and
backdoors being run by users via IRC Chat channels.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 39

Logs Analyzed

The following is the list of files I chose to analyze for the third assignment. They are for
five consecutive days and were retrieved from http://www.incidents.org/logs. [10]

Alert Files Size (Bytes)
alert.030516.gz 2,029,950
alert.030517.gz 1,567,656
alert.030518.gz 1,280,776
alert.030519.gz 1,648,434
alert.030520.gz 1,799,547

The alert files were all concatenated into one file. This was done for simplicity and to
make it easier to spot trends in the data. I also took Tod Beardsley’s [1] advice and
excluded the alerts generated by Snort’s portscan preprocessor. Tod stated that this data
was available in the raw scan files. I used SnortSnarf [9], snortalog [8], and snort_stat [7] to
assist me with the analysis portion of the alert files. These programs were used to
generate nice HTML reports of the data.

Scan Files Size (Bytes)
scan.030516.gz 4,891,968
scan.030517.gz 1,734,772
scan.030518.gz 2,084,334
scan.030519.gz 2,241,774
scan.030520.gz 1,739,255

As with the alert files above, the scan files were also concatenated into one file. Sawmill
[5] was used to help parse out the data and spot trends.

OOS Files Size (Bytes)
OOS_Report_2003_05_16_6191.txt 1,136,643
OOS_Report_2003_05_17_14869.txt 829,443
OOS_Report_2003_05_18_9515.txt 563,203
OOS_Report_2003_05_19_9542.txt 1,116,163
OOS_Report_2003_05_20_14142.txt 640,003

The OOS files are “Out of Spec” files captured from the above scan and alert files. There
data will contain some illegal or out of the ordinary combination of bits set. This data will
help you correlate your analyses.

Detects List
Below is a list of detects that were generated using SnortSnarf. They are prioritized by
number of occurrences. As per the GCIA Practical and Planning Guide, following this
will be a brief description of these events, linking the common ones together to help
identify relationships, correlations from other practicals, and recommendations towards

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 40

actions that should be taken. Also included will be a link graph and analysis followed by
a list of five selected external sources and a top talkers list. The list below shows all
events that have generated more than 50 events.

Priority Signature (click for sig info) Alerts Sources Dests
1 SMB Name Wildcard 195845 27246 41429
2 High port 65535 udp - possible Red Worm - traffic 44834 320 367
3 High port 65535 tcp - possible Red Worm - traffic 29881 461 2164
4 Tiny Fragments – Possible Hostile Activity 20225 17 636
5 spp_http_decode: IIS Unicode attack detected 14812 736 899
6 CS WEBSERVER - external web traffic 13118 5832 3

7 [UMBC NIDS IRC Alert] XDCC client detected attempting to
IRC 10715 10 22

8 External RPC call 10184 2 9405
9 Incomplete Packet Fragments Discarded 8927 136 109

10 TFTP - Internal TCP connection to external tftp server 7834 48 47
11 Possible trojan server activity 5901 80 4118
12 Null scan! 5034 132 142
13 SUNRPC highport access! 2817 37 26
14 spp_http_decode: CGI Null Byte attack detected 2483 119 135
15 Queso fingerprint 1797 321 129
16 IDS552/web-iis_IIS ISAPI Overflow ida nosize [arachNIDS] 977 554 763
17 EXPLOIT x86 NOOP 795 118 130
18 CS WEBSERVER - external ftp traffic 791 181 1
19 TCP SRC and DST outside network 685 146 58

20 [UMBC NIDS IRC Alert] IRC user /kill detected, possible
trojan. 461 58 74

21 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize
[arachNIDS] 434 9 385

22 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send
Request Detected. 253 14 12

23 [UMBC NIDS IRC Alert] Possible sdbot floodnet detected
attempting to IRC 226 7 2

24 SNMP public access 224 21 20
25 IRC evil - running XDCC 169 13 18
26 NIMDA - Attempt to execute cmd from campus host 150 8 147
27 EXPLOIT x86 setuid 0 146 136 117
28 NMAP TCP ping! 145 55 62
29 connect to 515 from outside 132 1 2
30 TFTP - Internal UDP connection to external tftp server 130 43 37
31 EXPLOIT x86 setgid 0 65 65 61
32 EXPLOIT x86 stealth noop 60 18 10

Alert Details
2 High port 65535 udp - possible Red Worm – traffic

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 41

3 High port 65535 tcp - possible Red Worm – traffic
5 spp_http_decode: IIS Unicode attack detected

16 IDS552/web-iis_IIS ISAPI Overflow ida nosize [arachNIDS]
21 IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize [arachNIDS]

05/16-01:26:58.966524 [**] High port 65535 udp - possible Red Worm - traffic [**] MY.NET.201.58:65535 -
> 66.124.36.48:5122
05/16-01:26:58.966537 [**] High port 65535 udp - possible Red Worm - traffic [**] MY.NET.201.58:65535 -
> 81.79.27.62:5121

05/16-04:44:10.491778 [**] High port 65535 tcp - possible Red Worm - traffic [**] 66.24.224.113:65535 ->
MY.NET.209.78:1214
05/16-04:44:10.496063 [**] High port 65535 tcp - possible Red Worm - traffic [**] MY.NET.209.78:1214 ->
66.24.224.113:65535

05/16-07:36:08.139678 [**] spp_http_decode: IIS Unicode attack detected [**] MY.NET.97.10:3186 ->
211.233.29.2:80
05/16-08:00:05.390397 [**] spp_http_decode: IIS Unicode attack detected [**] MY.NET.97.49:3112 ->
207.200.86.66:80

05/18-09:21:58.755909 [**] IDS552/web-iis_IIS ISAPI Overflow ida nosize [**] 218.63.152.220:2038 ->
MY.NET.70.205:80
05/18-09:22:34.883952 [**] IDS552/web-iis_IIS ISAPI Overflow ida nosize [**] 217.219.241.58:1338 ->
MY.NET.251.128:80

05/17-14:33:06.595300 [**] IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize [**]
MY.NET.97.122:2183 -> 130.205.8.217:80
05/17-14:33:25.295491 [**] IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize [**]
MY.NET.97.122:2371 -> 130.94.189.147:80

As you can see, there is a lot of worm activity on the Universities network.
Unfortunately, most of these events are associated with Code Red, Code Red II or
Nimda. Combined they had a total of 90,938 events. According to CERT [3], “The "Code
Red" worm is self-replicating malicious code that exploits a known vulnerability in
Microsoft IIS servers (CA-2001-13)”.[2]

One major characteristic of Code Red and Nimda is that once they are prevalent in your
network they are very noisy. You can see from events they generate they are obviously
infected. I have attempted to show this in the graphs below.

Source # Alerts (sig) # Alerts (total) # Dsts (sig) # Dsts (total)
MY.NET.97.67 54 210 54 170
MY.NET.97.19 43 226 42 180
MY.NET.97.44 19 48 19 46
MY.NET.98.146 18 98 18 84
MY.NET.97.18 11 29 10 24
MY.NET.97.122 3 10 2 8
MY.NET.97.165 1 33 1 8
MY.NET.122.35 1 1 1 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 42

Computer

MY.NET.97.67

Computer

Computer

Computer

Computer

Computer
Computer

Computer Computer

Computer

SMB Name Wildcard (57 Alerts)

Multiple External Sources

140.121.175.75

External RPC ca
ll (1

 alert)

Sp
p_

htt
p_

de
co

de
: I

IS
 U

nic
od

e a
tta

ck
 de

tec
ted

 (8
8 A

ler
ts)

Multiple External Sources

12.165.28.10

Hi
gh

 p
or

t 6
5 5

35
 tc

p
- p

os
si

bl
e

Re
d

W
or

m
 -

tra
ffi

c
(1

 a
le

rt)

233.2.171.105

Sp
p_

ht
tp

_d
ec

od
e:

 C
G

I N
ul

l B
yt

e
at

ta
ck

 d
et

ec
te

d
(2

 A
le

rts
)

N
IM

D
A - Attem

p t to execute c m
d from

 cam
pus host (43 Ale rts)

Mult iple External Hosts

IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize (162 Alerts)

Multiple External Users

Queso fi ngerprint (10 Alerts)

213.186.35.9

Possible troan server activity (1 Alert)

213.8.239.155

Link Diagram for Possible Nimda Activity

As you can see from the graph above, Code Red and Nimda infected hosts can generate a
lot of different alerts. You can start to see a pattern of scans coming in and scans going
out. One thing to note here is that some of the systems in the graph did not generate a lot
of events. These particular systems don’t follow the expected patterns and might be false-
positives. Below are the top 5 external Code Red or Nimda sources.

IP Address:211.233.29.4
HostName:211.233.29.4

DShield Profile:Country:
KR

Contact E-mail:
ip@kidc.net

Total Records against IP:
 not processed

Number of targets:
 select update below

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 43

Date Range:
to

Update Summary

Top 10 Ports hit by this source:
Port

Attacks
Start
End

Last Fightback
Sent:not sent

Whois:
IP Address : 211.233.28.0-211.233.31.255
Connect ISP Name : KIDC
Connect Date : 20001213
Registration Date : 20011115
Network Name : KIDC-INFRA-SERVERROOM-DAUM

[Organization Information]
Orgnization ID : ORG231919
Name : Daum Communication
State : SEOUL
Address : Gangnam-gu, Yeoksam-dong, DACOM
B/D 12F. 706-1
Zip Code : 135-987

[Admin Contact Information]
Name : Hanju Kim
Org Name : Daum Communication
State : SEOUL
Address : Gangnam-gu, Yeoksam-dong, DACOM
B/D 12F. 706-1
Zip Code : 135-987
Phone : +82-2-6446-6407
Fax : +82-2-6446-6499
E-Mail : hankim@daumcorp.com

[Technical Contact Information]
Name : youngchul Lee
Org Name : Daum Communication
State : SEOUL
Address : Gangnam-gu, Yeoksam-dong, DACOM
B/D 12F. 706-1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 44

Zip Code : 135-987
Phone : +82-2-6446-6407
Fax : +82-2-6446-6499
E-Mail : uniace@daumcorp.com

IP Address:218.109.54.61
HostName:218.109.54.61

DShield Profile:Country:

Contact E-mail:

Total Records against IP:
 not processed

Number of targets:
 select update below

Date Range:
to

Update Summary

Top 10 Ports hit by this source:
Port

Attacks
Start
End

Last Fightback
Sent:not sent

Whois:inetnum: 218.0.0.0 - 218.255.255.255
netname: APNIC-AP
country: AU
descr: Asia Pacific Network Information Center,
Pty. Ltd.
 Regional Internet Registry for the Asia-
Pacific Region
 Level 1 - 33 Park Road.
 PO Box 2131
 Milton QLD 4064
 Australia

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 45

admin_c: HM20-AP
tech_c: NO4-AP
remarks: Unresolved Spam complaints to Auto-
responder spam@apnic.net.
 Unresolved Network Abuse issues to Auto-
responder
 abuse@apnic.net.
mnt_by: APNIC-HM
changed: dbmon@apnic.net 20010801
 hm-changed@apnic.net 20021001
status: ALLOCATED PORTABLE
source: APNIC
notify:
mnt_lower: APNIC-HM
rev_srv:
start: 3657433088
end: 3674210303
diff: 16777215
person: APNIC Network Operations
address: Level 1
 33 Park Road
 Milton QLD 4064
country: AU
phone: +61 7 3858 3100
fax_no: +61 7 3858 3199
e_mail: technical@apnic.net
nic_hdl: NO4-AP
mnt_by: MAINT-APNIC-AP
changed: technical@apnic.net 19981111
 hostmaster@apnic.net 20020211
source: APNIC
remarks: Administrator for APNIC Network
Operations
notify: dbmon@apnic.net

IP Address:211.233.29.2
HostName:211.233.29.2

DShield Profile:Country:
KR

Contact E-mail:
ip@kidc.net

Total Records against IP:
 not processed

Number of targets:
 select update below

Date Range:
to

Update Summary

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 46

Top 10 Ports hit by this source:
Port

Attacks
Start
End

Last Fightback
Sent:not sent

Whois:
IP Address : 211.233.28.0-211.233.31.255
Connect ISP Name : KIDC
Connect Date : 20001213
Registration Date : 20011115
Network Name : KIDC-INFRA-SERVERROOM-DAUM

[Organization Information]
Orgnization ID : ORG231919
Name : Daum Communication
State : SEOUL
Address : Gangnam-gu, Yeoksam-dong, DACOM
B/D 12F. 706-1
Zip Code : 135-987

[Admin Contact Information]
Name : Hanju Kim
Org Name : Daum Communication
State : SEOUL
Address : Gangnam-gu, Yeoksam-dong, DACOM
B/D 12F. 706-1
Zip Code : 135-987
Phone : +82-2-6446-6407
Fax : +82-2-6446-6499
E-Mail : hankim@daumcorp.com

[Technical Contact Information]
Name : youngchul Lee
Org Name : Daum Communication
State : SEOUL
Address : Gangnam-gu, Yeoksam-dong, DACOM
B/D 12F. 706-1
Zip Code : 135-987
Phone : +82-2-6446-6407
Fax : +82-2-6446-6499
E-Mail : uniace@daumcorp.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 47

IP Address:216.35.123.105
HostName:boards.theforce.net

DShield Profile:Country:
US

Contact E-mail:
CompServ@Exodus.net

Total Records against IP:
 not processed

Number of targets:
 select update below

Date Range:
to

Update Summary

Top 10 Ports hit by this source:
Port

Attacks
Start
End

Last Fightback
Sent:

sent to CompServ@Exodus.net on 2002-05-25 03:23:49
no reply received

Whois:
OrgName: Cable & Wireless
OrgID: EXCW
Address: 3300 Regency Pkwy
City: Cary
StateProv: NC
PostalCode: 27511
Country: US

NetRange: 216.32.0.0 - 216.35.255.255
CIDR: 216.32.0.0/14
NetName: LEGACY-8
NetHandle: NET-216-32-0-0-1
Parent: NET-216-0-0-0-0
NetType: Direct Allocation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 48

NameServer: DNS01.EXODUS.NET
NameServer: DNS02.EXODUS.NET
NameServer: DNS03.EXODUS.NET
NameServer: DNS04.EXODUS.NET
Comment: * Rwhois reassignment information for this
block is available at:
Comment: * rwhois.exodus.net 4321
Comment: * For abuse please contact abuse@exodus.net
RegDate: 1998-07-30
Updated: 2002-10-30

TechHandle: ZC221-ARIN
TechName: Cable & Wireless
TechPhone: +1-919-465-4023
TechEmail: ip@gnoc.cw.net

OrgAbuseHandle: ABUSE11-ARIN
OrgAbuseName: Abuse
OrgAbusePhone: +1-877-393-7878
OrgAbuseEmail: abuse@exodus.net

OrgNOCHandle: NOC99-ARIN
OrgNOCName: Network Operations Center
OrgNOCPhone: +1-800-977-4662
OrgNOCEmail: trouble@cw.net

OrgTechHandle: EIAA-ARIN
OrgTechName: Exodus IP Address Administration
OrgTechPhone: +1-888-239-6387
OrgTechEmail: ipaddressadmin@exodus.net

OrgTechHandle: GIAA-ARIN
OrgTechName: Global IP Address Administration
OrgTechPhone: +1-919-465-4096
OrgTechEmail: ip@gnoc.cw.net

ARIN WHOIS database, last updated 2003-06-28 21:05
Enter ? for additional hints on searching ARIN's WHOIS
database.

OrgName: American Registry for Internet Numbers
OrgID: ARIN
Address: 3635 Concorde Parkway, Suite 200
City: Chantilly
StateProv: VA
PostalCode: 20151
Country: US

NetRange: 216.0.0.0 - 216.255.255.255
CIDR: 216.0.0.0/8
NetName: NET216
NetHandle: NET-216-0-0-0-0
Parent:
NetType: Allocated to ARIN
NameServer: ARROWROOT.ARIN.NET
NameServer: BUCHU.ARIN.NET

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 49

NameServer: CHIA.ARIN.NET
NameServer: DILL.ARIN.NET
NameServer: EPAZOTE.ARIN.NET
NameServer: FIGWORT.ARIN.NET
NameServer: GINSENG.ARIN.NET
NameServer: HENNA.ARIN.NET
NameServer: INDIGO.ARIN.NET
Comment:
RegDate: 1998-04-01
Updated: 2002-08-23

OrgNOCHandle: ARINN-ARIN
OrgNOCName: ARIN NOC
OrgNOCPhone: +1-703-227-9840
OrgNOCEmail: noc@arin.net

OrgTechHandle: ARIN-HOSTMASTER
OrgTechName: Registration Services Department
OrgTechPhone: +1-703-227-0660
OrgTechEmail: hostmaster@arin.net

ARIN WHOIS database, last updated 2003-06-28 21:05
Enter ? for additional hints on searching ARIN's WHOIS
database.

OrgName: Cable & Wireless
OrgID: EXCW
Address: 3300 Regency Pkwy
City: Cary
StateProv: NC
PostalCode: 27511
Country: US
Comment:
Comment: Rwhois reassignment information for this
block is available at:
Comment: rwhois.exodus.net 4321
RegDate:
Updated: 2002-08-26

AbuseHandle: ABUSE11-ARIN
AbuseName: Abuse
AbusePhone: +1-877-393-7878
AbuseEmail: abuse@exodus.net

AdminHandle: HINMA-ARIN
AdminName: Hinman, Tanya
AdminPhone: +1-800-977-4662
AdminEmail: thinman@cw.net

NOCHandle: NOC99-ARIN
NOCName: Network Operations Center
NOCPhone: +1-800-977-4662
NOCEmail: trouble@cw.net

TechHandle: EIAA-ARIN
TechName: Exodus IP Address Administration

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 50

TechPhone: +1-888-239-6387
TechEmail: ipaddressadmin@exodus.net

TechHandle: GIAA-ARIN
TechName: Global IP Address Administration
TechPhone: +1-919-465-4096
TechEmail: ip@gnoc.cw.net

IP Address:211.233.29.58
HostName:211.233.29.58

DShield Profile:Country:
KR

Contact E-mail:
ip@kidc.net

Total Records against IP:
 not processed

Number of targets:
 select update below

Date Range:
to

Update Summary

Top 10 Ports hit by this source:
Port

Attacks
Start
End

Last Fightback
Sent:not sent

Whois:
IP Address : 211.233.28.0-211.233.31.255
Connect ISP Name : KIDC
Connect Date : 20001213
Registration Date : 20011115
Network Name : KIDC-INFRA-SERVERROOM-DAUM

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 51

[Organization Information]
Orgnization ID : ORG231919
Name : Daum Communication
State : SEOUL
Address : Gangnam-gu, Yeoksam-dong, DACOM
B/D 12F. 706-1
Zip Code : 135-987

[Admin Contact Information]
Name : Hanju Kim
Org Name : Daum Communication
State : SEOUL
Address : Gangnam-gu, Yeoksam-dong, DACOM
B/D 12F. 706-1
Zip Code : 135-987
Phone : +82-2-6446-6407
Fax : +82-2-6446-6499
E-Mail : hankim@daumcorp.com

[Technical Contact Information]
Name : youngchul Lee
Org Name : Daum Communication
State : SEOUL
Address : Gangnam-gu, Yeoksam-dong, DACOM
B/D 12F. 706-1
Zip Code : 135-987
Phone : +82-2-6446-6407
Fax : +82-2-6446-6499
E-Mail : uniace@daumcorp.com

Correlation: Joe Ellis [18] notes this event in his analysis. In his analysis, Joe also noted
that hosts that generated a low number of alerts were probably false-positives.

Recommendation: Any and all machines that are infected with either Code Red or
Nimda need to be removed from the network and cleaned. If possible, these machines
should probably be rebuilt as they might have additional compromises installed. In
addition to these steps, all present and future system should have the latest Anti-Virus
products installed along with the most up-to-date patches and service packs. One final
step would be to setup ingress/egress filters on the outer firewall and drop the packets
that match this signature.

26 NIMDA - Attempt to execute cmd from campus host

05/17-01:08:16.790056 [**] NIMDA - Attempt to execute cmd from campus host [**] MY.NET.97.44:2468 ->
169.132.41.77:80
05/17-14:03:43.522940 [**] NIMDA - Attempt to execute cmd from campus host [**] MY.NET.97.44:2075 ->
130.149.124.100:80

Nimda was a nasty worm that was discovered back in September of 2001. It had many
components that attributed to its rapid spread. Some of those were: email, network shares,
compromised web shares, active scanning and exploiting through directory transversals.
It also looked for backdoors left behind from the Code Red II and sadmind/IIS worms.[4]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 52

Looking through the data it is very apparent that the University has many issues that need
to be addressed. From what I’m seeing, these worms are running ramped.

Correlation: Tod Beardsley [1] noted this type of event in his analysis of Nimda. Tod
recommended that the University should be dropping these packets as part of both ingress
and egress filtering.

Recommendation: Tod is exactly right in his recommendation to drop these packets with
both ingress and egress filtering. In addition, the University should check the eight
sources that generated this event. They were predominantly on the MY.NET.97.x
network but a few stragglers managed to get infected on other subnets. All these systems
need to be revisited so they can be cleaned and patched. In all likelihood, they should
probably be rebuilt from scratch to ensure nothing is missed. In addition to either method
chosen, all service packs and patches should be installed.

1 SMB Name Wildcard

05/16-01:16:24.354654 [**] SMB Name Wildcard [**] 196.15.187.132:1029 -> MY.NET.214.137:137
05/16-00:54:35.854977 [**] SMB Name Wildcard [**] 12.82.68.64:1026 -> MY.NET.195.207:137

These events are the results of increase scanning for the NetBIOS SMB service.
According to Bryce Alexander [11], there are two sources for this kind of traffic. The first
is an increase in awareness among script kiddies with the ability to discover information
about a target host using the NBTSTAT utility. The second would be the spread of an
internet worm known as network.vbs [12]. Both of these will use the standard NetBIOS
"nbstat" frames, which will elicit a node status response from either NetBIOS or SAMBA
clients. This response contains a listing of all NetBIOS names known to that node. [12]

Correlation: Chris Grout [13] noted this event in his analysis. He said that by the speed of
the scan and the number of targets that were scanned, it was obviously done by a script-
kiddy utilizing one of the many tools available. In all there were 27,246 external sources
that scanned 41,429 targets in the University.

Recommendation: The most obvious solution is to set your outer firewall to drop all
inbound connection attempts to any NetBIOS port. This would include both TCP and
UDP and port 135-139.

4 Tiny Fragments – Possible Hostile Activity

05/16-05:29:07.373988 [**] Tiny Fragments - Possible Hostile Activity [**] MY.NET.235.110 ->
80.126.52.171
05/16-05:29:07.452076 [**] Tiny Fragments - Possible Hostile Activity [**] MY.NET.235.110 ->
80.126.52.171

The Tiny Fragments alert is raised by the snort minfrag preprocessor when it detects a
fragmented IP packet that has its threshold set lower than the defined value. According to
Marty Roesch, [15] the concept of the preprocessor is that there is no commercial network
equipment that fragments their traffic less than 256 bytes, so any traffic you see below

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 53

this threshold should be treated as “very suspicious”. He also goes on to say that nmap
and fragrouter can send packets at 8 or 24 byte fragments.

Correlation: Mark Embrich [14] noted this in his analysis. He said that by setting the
fragment lower, you could attempt to bypass a firewall and/or perform a DoS on an
unsuspecting host.

Recommendation: Looking at the sources and targets that have been generating this
alert, there appears to be one main source, MY.NET.235.110, generating the majority of
these events. Of the 20,225 alerts, MY.NET.235.110 has generated 19,624 alerts to 618
distinct external IP’s. It’s hard to say if this system is infected with something or if this is
legit traffic. The number of event seems excessive, but I do not know that threshold value
either.

For starters, I would definitely have someone check MY.NET.235.110 to make sure it’s
not infected with any worm/Trojan. Also ensure that it is up-to-date with the latest
service packs and patches and that the anti-virus definitions files are current. Another
interesting note is that this host is number one on the top ten talkers list for source hosts –
see below. Lastly, I would set Ingress and Egress filters to drop fragments that meet this
criteria.

6 CS WEBSERVER – external web traffic
18 CS WEBSERVER – external ftp traffic

05/16-05:31:50.987599 [**] CS WEBSERVER - external web traffic [**] 66.196.72.46:15452 -> MY.NET.100.165:80
05/16-04:55:31.500724 [**] CS WEBSERVER - external web traffic [**] 24.24.244.196:1444 -> MY.NET.100.165:80

05/16-04:42:14.143145 [**] CS WEBSERVER - external ftp traffic [**] 62.101.126.49:3758 -> MY.NET.100.165:21
05/16-04:42:14.143145 [**] CS WEBSERVER - external ftp traffic [**] 62.101.126.49:3758 -> MY.NET.100.165:21

This event signifies external web or ftp traffic coming into your internal network. There
were 13,118 web alerts generated by 5,832 external sources to mainly one target system –
MY.NET.100.165. For the ftp traffic, there were 791 alerts from 118 external sources to
one internal system – MY.NET.100.165. My guess is that this server is externally facing
and the rule is designed to fire when external traffic accesses the server.

Correlation: Mark Embrich [14] also noted this alert in his analysis. He stated that he was
unable to ascertain any information on the rule and why it was triggering. He also
suggested that it was probably a custom rule designed to fire when external traffic
accessed it.

Recommendation: Since it is not really known why this rule is in existence, University
staff will need to examine the server and verify that it is current in patching and virus
definitions. Then I would attempt to track down the rule and figure out why it is firing.
My guess is it’s probably a custom rule designed to log all external traffic that accesses it.
It might have been created by the Computer Science department. Maybe that’s what the
CS stands for. The University staff should check with the Computer Science department

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 54

and verify that whether this traffic is expected and within compliance or if it’s out of
speck. If it’s normal and expected, it might be ok to go ahead and remove or modify the
rule to help reduce the number of events generated by the IDS.

7 [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC
20 [UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan
22 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected
23 [UMBC NIDS IRC Alert] Possible sdbot floodnet attempting to IRC
25 IRC evil – running XDCC

05/16-11:04:44.107458 [**] [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC [**]
MY.NET.198.221:1843 -> 205.188.149.12:6667
05/16-11:16:18.165709 [**] [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC [**]
MY.NET.198.221:2576 -> 205.188.149.12:6667

05/16-17:14:10.684064 [**] [UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan. [**]
216.152.64.155:6663 -> MY.NET.97.79:1071
05/16-17:40:43.083582 [**] [UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan. [**]
216.152.64.155:6662 -> MY.NET.97.79:1592

05/16-12:06:18.231852 [**] [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected. [**]
206.84.2.2:6667 -> MY.NET.105.204:1673
05/16-12:13:33.950503 [**] [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected. [**]
206.84.2.2:6667 -> MY.NET.105.204:1673

05/16-21:53:16.474158 [**] [UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC [**]
MY.NET.97.93:3309 -> 216.152.64.155:6666
05/16-22:17:10.955404 [**] [UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC [**]
MY.NET.97.93:3913 -> 216.152.64.155:6666

05/16-07:36:04.569561 [**] IRC evil - running XDCC [**] MY.NET.207.78:2091 -> 217.17.33.10:6667
05/16-07:28:04.568168 [**] IRC evil - running XDCC [**] MY.NET.207.78:2091 -> 217.17.33.10:6667

XDCC client
detected

attempting to IRC

IRC user /kill
detected,

possible trojan

Possible Incoming
XDCC Send

Request Detected

Possible sdbot
floodnet

attempting to
IRC

IRC evil –
running XDCC

MY.NET.198.221 MY.NET.105.204 MY.NET.97.79 MY.NET.150.205
MY.NET.83.100 MY.NET.241.246 MY.NET.97.85 MY.NET.207.78
MY.NET.88.163 MY.NET.207.78 MY.NET.97.93 MY.NET.241.246
MY.NET.194.125 MY.NET.201.34 MY.NET.97.97 MY.NET.86.33
MY.NET.83.173 MY.NET.80.209 MY.NET.97.242 MY.NET.80.209
MY.NET.252.82 MY.NET.132.24 MY.NET.97.72 MY.NET.249.250
MY.NET.105.204 MY.NET.217.174 MY.NET.202.26 MY.NET.132.24
MY.NET.80.209 MY.NET.150.205 MY.NET.112.199
MY.NET.132.24 MY.NET.201.158 MY.NET.198.221

MY.NET.211.14 MY.NET.194.125
MY.NET.252.134 MY.NET.211.14
MY.NET.112.199 MY.NET.223.130

There are over 74
different target

systems
generating this

alert for
MY.NET.x.x

MY.NET.201.158

As you can see there is a lot of IRC Chatting going on. This is bad news because IRC is a
forum for sending viruses, worms, trojans, backdoors, you name it.

XDCC bots are common sights in channels these days. An XDCC is a bot that has certain
packets uploaded to it. These packets may be anything from the recent game to a good

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 55

movie. XDCCs are usually r00ted (hacked), and transfer at very high speeds because they
are on fast lines. [17]

What has probably happened here is someone is either running some form of P2P
software and they have successfully installed an IRC trojan or the students are using IRC
to communicate amongst each other or with the outside. In either case, this has led to a
multitude of IRC traffic on the University network.

Correlations: Marcus Wu [16] noted similar events in his analysis. In his analysis he is
figuring that one of the University host was probably running Gnutella, download and ran
a file containing a trojan, which in-turn compromised the Universities network.

Recommendation: It must be assumed that all hosts generating these events have been
compromised. The first thing the University needs to do is disconnect them from the
network to stop the potential spread. The next step would be to attempt to block all IRC
traffic (ports 6665-6669) at the outer firewall. I would probably also include well known
ports for P2P applications. The next step would be to install a fresh OS on each machine
making sure you install all the latest service packs and patches. Next, make sure that
Anti-Virus software is installed with the latest definition files.

Marcus [16] did make another good suggestion. He said the University should keep all
sensitive computers on a trusted, more secure network. This is a very good idea. By
separating trusted and un-trusted networks, you can reduce the risk of infection to more
critical systems. Also, you can lock them down with an additional firewall and another
IDS system.

8 External RPC call

05/16-06:40:27.393263 [**] External RPC call [**] 140.121.175.75:63567 ->
MY.NET.2.163:111
05/16-06:40:27.395440 [**] External RPC call [**] 140.121.175.75:63569 ->
MY.NET.2.165:111

The Remote Procedure Call allows a Unix program to execute a command remotely on a
Unix system. By doing this, one is also able to map the services that are available. You
can see from the sample above, all the external calls are to the portmapper port 111. This
port has been a common source of attacks in the past for discovering offered services.
This particular reconnaissance attempt is usually followed up by an Attempted Sun RPC
high port access. If you see this alert, the initial target system has responded to the
external call and advertised which open ports it has to offer. [20] This is considered bad
and should definitely be investigated.

In total, the University had 10,184 alerts of this type by mainly one external source
address to 9,404 different target systems over a two hour period. The one external source
is from the Ministry of Education Computer Center, National Taiwan Ocean University

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 56

Ministry of Education Computer Center TANET BNETA (NET-140-117-0-0-1)
 140.117.0.0 140.138.255.255

National Taiwan Ocean University TANET BNTOU (NET-140-121-0-0-1)
 140.121.0.0 140.121.255.255

Correlation: Mark Menke [16] noted this event in his analysis. He concluded that the type
of reconnaissance was the first step in gathering information. He went on to say this type
of attack is usually followed up by an Attempted Sun RPC high port access alert.

Recommendation: More investigation needs to be done. The first step would be to
search for any responses to the source as these servers might have vulnerabilities
associated with this. The next step would be to compile a list of these servers and have
the Universities security team check these servers for out-dated patches and anti-virus
software. Lastly, and probably the first step, the University should block on the outer
firewalls all external traffic directed towards port 111.

9 Incomplete Packet Fragments Discarded

05/18-01:23:31.331056 [**] Incomplete Packet Fragments Discarded [**]
64.152.108.145:0 -> MY.NET.218.130:0
05/18-01:23:31.738689 [**] Incomplete Packet Fragments Discarded [**]
64.152.108.145:0 -> MY.NET.218.130:0

Traffic of this nature tends to be suspicious and should be treated that way. Sending
incomplete packets is one way an attacker will attempt to circumvent a firewall or IDS
system. One thing to look closely at here is the source and target ports. If they are both 0,
you can almost bet there’s some crafting going on.

These events are logged by the Snort defragmentation preprocessor, which triggers when
received fragments from an 8k or larger packet do no not sum more than half the packet
when the last fragment is received. Detects can indicate transmission errors, poor
routing, broken stacks, or fragmentation attacks. [19]

Correlation: Dan Hawrylkiw [19] noted this is in his analysis. He stated that same sources
that were generating Large UDP Traffic were also responsible for the Incomplete Packet
Fragments. Dan believed that the source and destination ports of 0 were caused by the
preprocessor logging, which will not report on the source or destination ports and he went
on to say that your Snort sensors probably did not capture all the fragments thereby
causing the alarms.

Recommendation: It is possible that the University might not have a current build of
their IDS. They should ensure that they have the latest stable build of Snort with the
current rules and preprocessors. Also, the University staff should investigate this traffic
and verify that its legitimacy.

29 Connect to 515 from outside

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 57

05/18-20:57:46.097920 [**] connect to 515 from outside [**] 68.54.94.58:677 ->
MY.NET.24.15:515
05/18-20:57:46.432093 [**] connect to 515 from outside [**] 68.54.94.58:677 ->
MY.NET.24.15:515

This event generated 131 attempts from an external source to one target on the University
network. This event is associated with external hosts connecting to internal hosts on
target port 515. This port has some significance as it is the Unix line printer service. This
port has had numerous vulnerabilities posted against it. The latest from CVE is CAN-
2001-0906. [21] The Ramen worm is has also been known to exploit this vulnerability.

Correlation: Tod Beardsley [1] noted this in his analysis. He stated that unless access to
the lpr servers are intended to be tightly controlled, this alert is all but useless. He went
on to say that the rule should be deactivated, and access to the lpr servers should be
monitored through local syslogs. [1]

Recommendation: Tod is exactly correct in his analysis. To take his recommendation
even further, there is no need for this port to be accessible from the outside. The
University staff should also block inbound attempts to port 515 from the outer firewall. In
addition to this, MY.NET.24.15 should also be investigated to make sure it is up-to-date
with the latest security patches and anti-virus and also check this system to verify that it’s
within compliance and has not been compromised.

10 TFTP – Internal TCP connection to external tftp server
30 TFTP – Internal UDP connection to external tftp server

05/16-00:37:14.880800 [**] TFTP - Internal TCP connection to external tftp serv
er [**] MY.NET.196.161:3246 -> 209.126.214.14:69
05/16-00:47:37.848070 [**] TFTP - Internal TCP connection to external tftp serv
er [**] MY.NET.224.242:1108 -> 64.12.200.163:69

05/16-05:34:37.945897 [**] TFTP - Internal UDP connection to external tftp serv
er [**] MY.NET.206.130:6257 -> 217.125.139.175:69
05/16-05:24:54.520749 [**] TFTP - Internal UDP connection to external tftp serv
er [**] MY.NET.209.206:6257 -> 217.125.139.175:69

TFTP is normally used by thin clients, diskless workstations or remote device upgrades
such as routers. To see this traffic travel outside the local network is definitely not
normal. A quick glance at the target port shows port 69, which is normally used in TFTP.
One thing to remember here is that Nimda also used TFTP to transfer its files. Looking
through the alerts I found numerous connections between MY.NET and other external
addresses. Either these systems are grossly mis-configured or they’ve been compromised.

Correlation: Joe Ellis [18] noted these events in his analysis. He said that for traffic to
travel from an internal network to an external network using TFTP, either there had to be
mis-configured router or the system was probably compromised.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 58

Recommendation: All systems exhibiting this behavior either need to checked for a mis-
configuration issue or a compromise. In addition to this, the University should setup an
ingress/egress filtering at the perimeter firewall and/or router to stop TCP or UDP 69
traffic from entering or exiting the network.

11 Possible trojan server activity

05/16-01:47:51.991557 [**] Possible trojan server activity [**] 216.226.129.209
:2887 -> MY.NET.237.250:27374
05/16-01:41:55.718934 [**] Possible trojan server activity [**] 64.146.21.142:2
7374 -> MY.NET.249.122:6346
05/16-06:29:36.464208 [**] Possible trojan server activity [**] 64.68.84.143:27
374 -> MY.NET.162.67:80

All alerts associated with this event are showing a source or decimation port of 27374. As
all of us know, this port is usually associated with either the SubSeven trojan or the
Ramen worm. Some analysts might consider all this data malicious. Take a look at the
examples above. These three were extracted from the alert file. The first one shows
typical behavior of either SubSeven or Ramen. The second one could be SubSeven or
Ramen, but more then likely it’s some form of P2P file-sharing like gnutella. The last one
looks like normal web server traffic.

Correlation: Tod Beardsley [1] noted this type of behavior in his analysis. In his analysis,
he saw the same types of distribution between what could be normal web traffic and what
could be either SubSeven or Ramen. Tod’s recommendation was to verify that all
affected system’s had the latest anti-virus software installed with the most current
signatures files. SubSeven and Ramen are fairly old. There’s no reason one should get
infected by it.

Recommendation: My recommendation at this time is to investigate all sources that are
exhibiting this behavior and clean and patch the system. Since the majority of these
servers are critical web servers, some form of HIDS (Host Intrusion Detection System)
should be installed.

12 Null scan!

05/16-01:45:08.992734 [**] Null scan! [**] 217.235.171.204:0 -> MY.NET.97.91:0
05/16-01:45:49.573982 [**] Null scan! [**] 217.235.171.204:0 -> MY.NET.97.91:0

The signature for a null scan fires when a packet has no flags set. Another point of
interest is the source and destination port of 0. This should definitely indicate abnormal
behavior. This event alone is not malicious in nature. It is mainly used for reconnaissance
and probably to help identify the operating system. The source and destination ports of 0
are intended to penetrate firewalls. There are numerous tools available that can do this
kind of reconnaissance. Probably the most well known is Nmap.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 59

Correlation: Brian Credeur [23] noted this event in his analysis. He said that these packets
are intended to penetrate firewalls scrolling for known or listening ports such as trojans or
P2P.

Recommendation: These events, as they come, are not malicious and probably don’t
need immediate attention. Focus should be put towards the more critical alerts as
described above. The main defense against these types of packets is to set your firewall to
drop them when they have a pattern match.

13 SUNRPC highport access!

05/16-08:29:54.999661 [**] SUNRPC highport access! [**] 24.125.66.19:6348 -> MY
.NET.252.78:32771
05/16-08:29:55.652802 [**] SUNRPC highport access! [**] 24.125.66.19:6348 -> MY
.NET.252.78:32771
05/16-08:29:55.712721 [**] SUNRPC highport access! [**] 24.125.66.19:6348 -> MY
.NET.252.78:32771
05/16-08:29:55.728224 [**] SUNRPC highport access! [**] 24.125.66.19:6348 -> MY
.NET.252.78:32771

This alert is triggered when any attempt is made to connect to UDP port 32770 and
above. Solaris rpcbind listens on UDP ports above 32770. This is in addition to the
standard rpcbind port of UDP 111 which is usually filtered from external addresses. UDP
ports above 32770 might have a better chance of being open.

This alert is also prone to false-positives. Approximately 95% of the alerts are between
24.125.66.19 and MY.NET.252.78. As shown is the sample above, all alerts are from
source port 6348, which is a known P2P. You can see the likes of programs such as
Limewire and Bearshare that are known to use this port.

Correlation: Mark Menke [20] noted this event in his analysis. Mark also came to the
same conclusion that these alerts are prone to false-positives. In Mark’s analysis, he
concluded that the source of the UDP port probes was coming from Instant Messaging
traffic. Reading Mark’s write-up I noticed a source port of 4000 which is known for ICQ
servers.

Recommendation: The alert alone is not dangerous, but University staff should
investigate MY.NET.252.78 for signs of P2P software and remove them. P2P software is
a known medium for spreading virus and trojans. In addition, anti-virus software should
be installed on the client in case P2P software is re-installed as this will assist in the
prevention of infections. One last step the University should take is to document and
publish a policy on using P2P applications. This policy should state that P2P software is
forbidden and installations of it will not be tolerated.

14 spp_http_decode: CGI Null Byte attack detected

05/16-00:55:39.828746 [**] spp_http_decode: CGI Null Byte attack detected [**]
MY.NET.234.210:49564 -> 66.135.192.226:80

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 60

05/16-01:07:54.352073 [**] spp_http_decode: CGI Null Byte attack detected [**]
MY.NET.233.142:49609 -> 208.237.178.27:80

Basically, if the http decoding routine finds a %00 in an http request, it will alert with this
message. Sometimes you may see false positives with sites that use cookies with
urlencoded binary data, or if you're scanning port 443 and picking up SSL encrypted
traffic. Having the packet dumps is the only way to tell for sure if you have a real attack
[24]

Correlation: Joe Ellis [18] noted this event in his analysis. He stated that the %00 can be
valid traffic on a web site if the web site is using CGI. Joe also noted that this feature
could be turned off by adding the “-cginull” option to the line “preprocessor
http_decode:” in Snort’s alert.ids file.

Recommendation: These alerts are more then likely false-positives, but there is not
conclusive evidence to show this. It is recommended that the University staff evaluate
their WEB servers to verify the legitimacy of these events. Also, University staff should
evaluate the rule that generated this event as it may need to be refined to reduce false-
positives.

15 Queso fingerprint

05/16-01:00:50.557074 [**] Queso fingerprint [**] 217.231.154.132:44166 -> MY.N
ET.24.44:80
05/16-04:23:17.436036 [**] Queso fingerprint [**] 138.23.88.132:56398 -> MY.NET
.60.14:80
05/16-03:40:33.402906 [**] Queso fingerprint [**] 81.57.90.18:34741 -> MY.NET.2
18.154:6346
05/16-04:32:02.404463 [**] Queso fingerprint [**] 216.95.201.31:53468 -> MY.NET
.24.22:25

This event indicates that a remote user has used the Queso tool to determine the OS of the
server. [25] This tool is used for reconnaissance in an attempt to map out a network for a
future attack. From the information gained, an attacker can decide if it’s worth targeting
or not. You can see from the top two events above, these attackers are targeting WEB
servers.

Correlation: Michael Holstein [26] noted this type of activity in his analysis. Michael
noted that after investigation of the external hosts, he saw a lot of P2P traffic. He
concluded that this type of traffic might be normal P2P traffic, but without being able to
examine the signature it would be impossible to tell.

Recommendation: I tend to agree with Michael here. After analyzing the sources, I also
discovered potential P2P traffic as indicated by the third event. In addition to the
potential P2P traffic, I also noticed SMTP traffic from port 25. It is recommended that the
servers in question here need to be hardened with all the latest patches and anti-virus
software. This will ensure that they are all protected from the latest vulnerabilities.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 61

17 EXPLOIT x86 NOOP
32 EXPLOIT x86 stealth noop

05/16-02:36:36.538164 [**] EXPLOIT x86 NOOP [**] 206.24.190.30:80 ->
MY.NET.240
.90:1245
05/16-03:49:07.390587 [**] EXPLOIT x86 NOOP [**] 205.188.68.196:5190 ->
MY.NET.
222.206:1525
05/16-05:54:48.426033 [**] EXPLOIT x86 stealth noop [**] 131.118.254.130:2698 -
> MY.NET.24.8:119
05/16-06:31:54.153066 [**] EXPLOIT x86 stealth noop [**] 131.118.254.130:2691 -
> MY.NET.24.8:119

The x86 NOOP is part of an attack on a remote service, an attacker may attempt to take
advantage of insecure coding practices in hopes of executing arbitrary code. This is done
by using the NOP instructions. The NOP allows an attacker to fill an address space with a
large number of NOPs followed by their code of choice. This will allow the "sledding"
into the attacker’s shellcode. Unfortunately, the x86 NOP can frequently be found in day-
to-day traffic, particularly when transferring large files. [27]

The x86 stealth noop rule triggers when a binary pattern appears in the packet contents
which match one form of filler-bytes used in buffer overflow attacks. Buffer overflows
allow execution of arbitrary code with the privilege level of the affected server process.
Unfortunately, this byte pattern can occur naturally in almost any binary data, so file
downloads, streaming media, etc can trigger this event. If this traffic appears to be
coming from a web or ftp server outside of your network to one of your client machines,
it is likely a false alert caused by someone downloading a binary file. If this was directed
at a port on one of your machines which is running a server process, you may want to
check to see if it has been exploited. [28]

Correlation: Michael Holstein [26] noted the event in his analysis. Michael noted that
web active content, such as Macromedia may trigger this event.

Recommendation: Without investigating the payload, it is impossible to tell if this is a
true false-positive or not. The University will need to evaluate the payload to determine if
this is a true attack or just a false-positive. The University should also check the target
hosts and verify that they are up-to-date with the latest patching and anti-virus products.

19 TCP SRC and DST outside network

05/20-21:18:59.116507 [**] TCP SRC and DST outside network [**] 24.52.59.50:29728
-> 67.80.77.94:6112
05/20-21:08:01.205412 [**] TCP SRC and DST outside network [**] 68.9.100.219:4845
-> 67.80.77.94:6112

What we are seeing here are both source and destination addresses are not part of the
MY.NET network. There are a number of things that can potentially cause this. The first
one might be misconfigured networking equipment. Another possible cause might be a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 62

network scan with a spoofed source address. Lastly, this could be as simple as the source
or target address being different than the $HOME_NET variable on the IDS sensor.
Looking at the events above my guess is that this is either a spoofed source address or a
misconfigured router. One interesting note about the data above is the target port of 6112.
This port is used a lot for online gaming for games such as Diablo and Starcraft.
Searching though the other events I also noticed that there were a lot of addresses where
the source or target was a 192.168.x.x address. This particular alert is most likely due to
$HOME_ NET variable not being defined to include the private address space.

Correlation: Heather Larrieu [30] noted the event in her analysis. She also stated that this
event was either a sign of a bad router configuration, or spoofed traffic originating on the
home network.

Recommendation: Depending on the exact cause, numerous steps can be taken. If the
issue has to do with the private address space, the University staff will need to adjust the
$HOME_NET variable in the IDS configuration file. If the issue has to do with a
misconfigured router, the University staff will need to reconfigure the router so it
functions correctly. Finally, if the issue has to do with a spoofed source address, then the
University staff should setup Egress filtering on their outer firewalls/routers to block all
non MY.NET traffic from exiting the network.

24 SNMP public access

05/16-03:04:37.280557 [**] SNMP public access [**] 147.46.56.20:1025 -> MY.NET.
154.26:161
05/16-03:46:10.189551 [**] SNMP public access [**] 147.46.56.20:1025 -> MY.NET.
154.26:161

Simple Network Management Protocol is the protocol used mostly in network
management devices. They employ what is called “community strings”. Community
strings are what is used to interlink multiple devices together so they can communicate
together. Out of the box, these devices are shipped with a default community sting of
“public” and “private”. The first is for reading and the second is for writing. SNMP is
also a good recon tool for would-be attacks.

This alert indicates that some one is attempting to access these target systems using the
community string of public. It is unclear from the data present whether these target
systems have SNMP installed or if these are just random attempts. My guess from the
low number of alerts (224) is these systems probably have it enabled and were already
actively targeted.

This rule is set to fire when a source attempts to access a target system on port 161
pushing the word “public” in the payload.

Correlation: Tod Beardsley [1] noted this traffic in his analysis. He mentioned that
SNMP is used by network management devices and they are shipped with default
community strings of public and private.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 63

Recommendation: It is good practice to change your community strings to something
other then the default. This will ensure that they won’t become easy prey for some
would-be attacker. If possible, you should instill the use of strong community strings as
this will make it harder for attackers to brute force them. Additionally, you should set a
policy to change them when you change your other passwords as SNMP is sent over the
network in clear text and can easily be sniffed off your wire.

27 EXPLOIT x86 setuid 0
31 EXPLOIT X86 setgid 0

05/18-18:18:36.836774 [**] EXPLOIT x86 setuid 0 [**] 204.210.160.37:3878 ->
MY.NET.88.214:1214
05/18-18:34:29.445743 [**] EXPLOIT x86 setuid 0 [**] 65.96.86.19:4350 ->
MY.NET.205.146:2046

05/19-02:01:10.082475 [**] EXPLOIT x86 setgid 0 [**] 67.160.75.110:1542 ->
MY.NET.207.254:4141
05/19-02:20:41.671578 [**] EXPLOIT x86 setgid 0 [**] 212.120.105.148:34192 ->
MY.NET.202.114:1214

This alert indicates that shellcode was detected that attempts to set the user identity or
group identity to 0 (root). If this code is executed successfully, it is possible for the
current process to inherit root privileges. However, setuid(2) requires root privileges to
be executed in the first place if the current uid is attempting to get a higher privilege
level. [31]

The false-positive rates of these events are fairly high. Large binary transfers, certain
web traffic, and even mail traffic can trigger this rule, but are not necessarily indicative of
actual setuid or setgid code. [31]

Correlation: Michael Holstein [26] noted the event in his analysis. Michael noted that
because the pattern matching is so small, it is frequently triggered by a wide variety of
non-suspect activity such as a mix of web and KaZaA traffic in addition to other
unknowns.

Recommendation: Due to the high false-positive rate of these events, the University
staff will need to analyze the payloads of these events to determine if they are real or not.
Unfortunately, with the information I am given, I am unable to determine if they are false
or not. The University should also check the target systems and verify they are not
compromised. While they are there, they should also verify that the systems are patched
and up-to-date of all security and anti-virus signatures.

28 NMAP TCP ping!

05/17-23:22:40.703797 [**] NMAP TCP ping! [**] 63.211.17.228:80 ->
MY.NET.1.3:53

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 64

05/17-23:22:40.703808 [**] NMAP TCP ping! [**] 63.211.17.228:53 ->
MY.NET.1.3:53

An NMAP TCP ping alert is generated when an incoming packet has the TCP ACK flag
set and the ACK field set to 0. [32] This is done to stimulate a response from the target to
determine if it’s live on the network. Looking through the alerts I noticed there to be a lot
of HTTP and DNS traffic signaling this might be legitimate traffic.

Correlation: Tod Beardsley [1] noted this traffic in his analysis. He said that in addition
to the false-positives, KaZaA filesharing networks also exhibit this type of behavior.

Recommendation: Due to the high probability of false-positives from the alert, it is
recommended that this rule be removed. Tod also noted this same recommendation as
Nmap versions greater than 2.5BETA do not exhibit this behavior.

Top Talkers List
Below are the Top Ten Source and Destination Hosts based on the number of alerts
generated from the Alert log. SnortSnarf was used for this analysis.

Source Hosts

Rank Total #
Alerts Source IP # Signatures

triggered Destinations involved

rank #1 19630
alerts MY.NET.235.110 7 signatures (618 destination IPs)

rank #2 18989
alerts MY.NET.201.58 2 signatures (47 destination IPs)

rank #3 10176
alerts 140.121.175.75 1 signatures (9404 destination IPs)

rank #4 9255 alerts MY.NET.198.221 3 signatures 233.2.171.1,
205.188.149.12

rank #5 7824 alerts 140.142.19.69 4 signatures (3 destination IPs)
rank #6 6715 alerts 12.235.36.52 4 signatures (5 destination IPs)
rank #7 5463 alerts MY.NET.251.10 1 signatures (18 destination IPs)
rank #8 4022 alerts MY.NET.202.206 3 signatures (4 destination IPs)
rank #9 3755 alerts 172.17.3.17 1 signatures (3520 destination IPs)

rank
#10 3613 alerts 208.45.250.203 2 signatures (3421 destination IPs)

Destination Hosts

Rank Total #
Alerts Destination IP # Signatures

triggered Originating sources

rank #1 14057
alerts MY.NET.100.165 9 signatures (6073 source IPs)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 65

rank #2 12733
alerts MY.NET.201.58 4 signatures (29 source IPs)

rank #3 9254 alerts 205.188.149.12 3 signatures MY.NET.198.221
rank #4 7964 alerts MY.NET.153.157 4 signatures (5 source IPs)
rank #5 7356 alerts MY.NET.202.206 8 signatures (14 source IPs)
rank #6 4959 alerts 66.67.29.21 1 signatures MY.NET.251.10
rank #7 4790 alerts MY.NET.30.4 3 signatures (300 source IPs)

rank #8 4060 alerts 24.157.3.20 2 signatures 199.35.158.1,
MY.NET.201.58

rank #9 3897 alerts MY.NET.251.10 1 signatures (20 source IPs)
rank
#10 3712 alerts 209.99.32.118 1 signatures MY.NET.251.10,

MY.NET.201.58

Below are the Top Ten Source and Destination Hosts based on the number of alerts
generated from the Scan log. Sawmill was used for this analysis.

Rank Source IP Total # Source
Hits Target IP Total # Target

Hits
rank #1 MY.NET.196.193 477,761 alerts MY.NET.196.26 116,577 alerts
rank #2 MY.NET.87.50 77,346 alerts 12.209.4.105 3,511 alerts
rank #3 MY.NET.197.30 44,689 alerts 24.42.0.66 3,149 alerts
rank #4 MY.NET.225.154 19,888 alerts 24.58.88.4 2,526 alerts
rank #5 MY.NET.97.19 16,028 alerts 65.70.30.236 2,517 alerts
rank #6 MY.NET.250.162 15,918 alerts 68.70.30.236 2,452 alerts
rank #7 MY.NET.97.18 15,808 alerts 24.203.250.243 2,442 alerts
rank #8 MY.NET.217.62 15,256 alerts 24.114.110.139 2,321 alerts
rank #9 MY.NET.97.99 12,296 alerts 131.191.68.192 2,035 alerts
rank #10 MY.NET.220.62 11,645 alerts 12.241.164.112 2,030 alerts

Below are the Top Ten Source Ports and Destination Ports based on the number of hits
for each port based on the Scan log. Sawmill was also used for this analysis.

Rank Source Port Total # of Hits Target Port Total # of Hits
rank #1 27022 77,348 alerts 17300 497,124 alerts
rank #2 7674 27,044 alerts 80 105,817 alerts
rank #3 22321 22,963 alerts 137 76,594 alerts
rank #4 1025 18,540 alerts 27005 43,717 alerts
rank #5 1027 16,078 alerts 445 42,251 alerts
rank #6 2328 15,442 alerts 23000 35,257 alerts
rank #7 1026 13,425 alerts 7674 27,047 alerts

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 66

rank #8 1028 13,082 alerts 21 23,514 alerts
rank #9 1029 12,888 alerts 22321 22,792 alerts
rank #10 6257 12,673 alerts 1433 18,782 alerts

The first portion of the graph represents the top 10 source addresses. As you can see from
the graph, after the first two the number of hits dips significantly. Below are the top two.

May 16 00:02:20 MY.NET.196.193:1171 > 216.154.194.38:17300 SYN
******S*
May 16 00:02:20 MY.NET.196.193:1168 > 216.154.194.35:17300 SYN ******S*
May 16 00:02:20 MY.NET.196.193:1181 > 216.154.194.48:17300 SYN
******S*

Looking at the events generated by the first source, you can see a series of SYN attempts
to port 17300. This looks like MY.NET.196.193 is browsing for external machines
looking for the Kuang 2 trojan. This source definitely needs to be investigated and
removed from the network. This type of traffic should also be blocked at the outer
firewall.

May 18 17:47:15 MY.NET.87.50:27022 > 68.68.42.141:27005 UDP
May 18 17:47:15 MY.NET.87.50:27022 > 65.70.30.236:43620 UDP
May 18 17:47:15 MY.NET.87.50:27022 > 24.43.149.252:43620 UDP

Like the first one, the number two source is generating a huge amount of UDP traffic. A
UDP Scan is another way for an attacker to see which hosts are active. There are a few
tools attackers can use to perform this type of scan; UDP Scan and Nmap are two of
them.

The second portion of the graph represents the top 10 destination addresses. From the
graph, we can see that after the first host, the number of hits generated is almost
negligible.

May 19 13:02:03 61.99.17.156:3760 > MY.NET.196.29:6555 UDP
May 19 13:02:04 61.99.17.156:3827 > MY.NET.196.29:2777 UDP
May 19 13:02:04 61.99.17.156:3915 > MY.NET.196.29:17698 UDP

Like the source addresses, the top destination address generated the bulk of the UDP
Scans. Of the total 1,475,162 total scans detected, the UDP and SYN scans generated
1,458,674. The two scans generated over 98.89% of all the scans detected.

The second chart shows the top 10 source and destination ports. Below is a breakdown of
what they are.

Rank Source Port Description Target Port Description
1 27022 Half-Life Game Server 17300 Kuang 2 trojan
2 7674 iMQ SSL tunnel 80 HTTP
3 22321 Unassigned 137 NetBIOS

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 67

4 1025 network blackjack 27005 FLEX LM (1-10)
5 1027 ExoSee 445 Microsoft-DS
6 2328 Netrix SFTM 23000 CVMMON
7 1026 Calender Access

Protocol
7674 iMQ SSL tunnel

8 1028 Unassigned 21 FTP
9 1029 Unassigned 22321 Unassigned

10 6257 WinMX (old protocol) 1433 Microsoft SQL
Server

From the chart above you see that the majority of traffic originated from port 27022. I did
a search on The Internet Ports Database [33] and discovered that this port is largely
associated with the Half-Life Game Server. It also listens for UDP traffic. Searching
through SecurityFocus I did find two vulnerabilities associated with this. The first
problem occurs through a machine connected to the Half-life server. The rcon command
of the Half-life Linux Dedicated Server calls a function which contains an unchecked
buffer. In this scenario, malicious user can bring up the game command console to
execute commands, similar to that of an IRC server console, and send an rcon command
to the server with enough data to overwrite the return address, causing the server to crash.
[34]

The second problem consisted of a format string vulnerability. A function within rcon
does not validate the input to the rcon command buffer, which is passed to sprintf()
function. Therefore, it is possible for a malicious user to pass a specially formatted string
via the rcon command that may result in remote code execution. [34]

The next table indicates that the majority of traffic was destined for port 17300. I did
another search on The Internet Ports Database [33] and discovered that port 17300 has
been linked to the Kuang 2 trojan. Searching through the data I found the majority of this
traffic was being generated by MY.NET.196.193 and directed towards the 216.155.x.x
and the 216.156.x.x networks. This would indicate to me that MY.NET.196.193 might be
infected by the Kuang 2 trojan.

OOS (Out of Specification) Top Talkers
Below are the Top Ten Source and Destination Hosts based on the number of alerts
generated from the OOS log. Sawmill was used for this analysis.

Rank Total # Target
Hits Target IP Total # Source

Hits Source IP

rank #1 579 alerts MY.NET.224.134 970 alerts 66.117.30.14
rank #2 485 alerts MY.NET.24.22 373 alerts 81.57.90.18
rank #3 477 alerts MY.NET.6.40 316 alerts 210.253.206.180
rank #4 468 alerts MY.NET.6.47 250 alerts 209.123.49.137
rank #5 453 alerts MY.NET.24.21 249 alerts 212.202.170.228

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 68

rank #6 447 alerts MY.NET.211.26 184 alerts 213.186.35.9
rank #7 437 alerts MY.NET.24.23 179 alerts 212.186.78.246
rank #8 316 alerts MY.NET.237.118 148 alerts 213.197.11.147
rank #9 282 alerts MY.NET.233.78 145 alerts 196.26.86.133

rank #10 261 alerts MY.NET.24.44 144 alerts 209.47.197.17

OOS Source # 1:
66.117.30.14

OOS Log:
05/17-13:13:43.327653 66.117.30.14:45010 -> MY.NET.219.198:1182
05/17-13:17:34.682517 66.117.30.14:54893 -> MY.NET.211.142:1182

Alert Log:
05/18-02:31:39.835239 [**] Queso fingerprint [**] 66.117.30.14:49416 ->
MY.NET.233.78:1182
05/18-02:28:10.453523 [**] Queso fingerprint [**] 66.117.30.14:43981 ->
MY.NET.224.134:1182

Scan Log:
May 18 02:31:39 66.117.30.14:49416 -> MY.NET.233.78:1182 SYN 12****S*
RESERVEDBITS
May 18 02:28:10 66.117.30.14:43981 -> MY.NET.224.134:1182 SYN 12****S*
RESERVEDBITS

OOS Source 1 appears to be sending out malformed packets by setting the ECN bits in
the TCP header (12****S*) on the initial SYN. Normally these bits are set to perform
network congestion checks. This source is more than likely using a network mapping tool
called Queso to perform network reconnaissance.

OOS Source # 2:
81.57.90.18

OOS Log:
05/17-15:31:27.761485 81.57.90.18:52574 -> MY.NET.218.154:6346
05/17-15:31:35.709444 81.57.90.18:52801 -> MY.NET.218.154:6346

Alert Log:
05/18-13:17:11.972995 [**] Queso fingerprint [**] 81.57.90.18:33301 -> MY.NET.218.154:6346
05/18-14:16:05.232576 [**] Queso fingerprint [**] 81.57.90.18:51279 -> MY.NET.185.48:6346

Scan Log:
May 18 11:41:40 81.57.90.18:40759 -> MY.NET.218.154:6346 SYN 12****S* RESERVEDBITS
May 18 13:16:50 81.57.90.18:33035 -> MY.NET.218.154:6346 SYN 12****S* RESERVEDBITS

OOS Source 2, at first glance, appears to be generating the same traffic as Source 1. But a
close look at the target port (6346) leads me to believe this is not Queso again, but
probably some P2P software like Gnutella or Bearshare that is sending out malformed
packets.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 69

OOS Source # 3:
210.253.206.180

OOS Log:
05/19-13:18:22.087974 210.253.206.180:53410 -> MY.NET.211.26:6011
05/19-14:56:10.220531 210.253.206.180:56014 -> MY.NET.211.26:6011

Alert Log:
05/18-07:31:47.743924 [**] Queso fingerprint [**] 210.253.206.180:54435 -> MY.NET.211.26:6011
05/18-07:53:08.068238 [**] Queso fingerprint [**] 210.253.206.180:55156 -> MY.NET.211.26:6011

Scan Log:
May 18 07:31:47 210.253.206.180:54435 -> MY.NET.211.26:6011 SYN 12****S* RESERVEDBITS
May 18 07:53:08 210.253.206.180:55156 -> MY.NET.211.26:6011 SYN 12****S* RESERVEDBITS

Here again, this looks very similar to Source 2 and exactly like Source 1. I’m starting to
see a trend. The only difference appears to be the target ports. Port 6346, as in Source 2,
was probably a random port chosen by Queso and it’s just a coincidence that it’s the same
as the P2P ports.

OOS Source #4:
209.123.49.137

OOS Log:
05/16-07:02:37.322336 209.123.49.137:43511 -> MY.NET.220.14:6883
05/16-07:03:48.280347 209.123.49.137:45707 -> MY.NET.195.155:6887

Alert Log:
05/16-06:46:25.114277 [**] Queso fingerprint [**] 209.123.49.137:42234 -> MY.NET.220.14:6889
05/16-07:01:18.638493 [**] Queso fingerprint [**] 209.123.49.137:40672 -> MY.NET.194.35:6882

Scan Log:
May 16 07:01:18 209.123.49.137:40672 -> MY.NET.194.35:6882 SYN 12****S* RESERVEDBITS
May 16 06:29:36 209.123.49.137:37815 -> MY.NET.220.14:6886 SYN 12****S* RESERVEDBITS

The trend continues! I’m about 95% sure these are all related to Queso. I did see some
other well known ports that had triggered in the OOS file. I’ll check one more source to
verify.

OOS Source #5:
212.202.170.228

OOS Log:
05/19-20:42:04.680409 212.202.170.228:34199 -> MY.NET.237.118:4662
05/19-20:42:04.680557 212.202.170.228:34198 -> MY.NET.237.118:4662

Alert Log:
05/19-20:20:52.327349 [**] Queso fingerprint [**] 212.202.170.228:59624 -> MY.NET.237.118:4662
05/19-21:02:08.184152 [**] Queso fingerprint [**] 212.202.170.228:37131 -> MY.NET.237.118:4662

Scan Log:
May 17 22:19:32 212.202.170.228:44766 -> MY.NET.237.118:4662 SYN 12****S* RESERVEDBITS

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 70

May 18 05:44:55 212.202.170.228:53153 -> MY.NET.237.118:4662 SYN 12****S* RESERVEDBITS

I’m convinced. All the packets are the same except for the target port. Let see what the
Target hosts look like.

OOS Target #1:
MY.NET.224.134

OOS Log:
05/18-03:31:36.099221 66.117.30.14:37117 -> MY.NET.224.134:1182
05/18-03:32:30.582602 66.117.30.14:39904 -> MY.NET.224.134:1182

Alert Log:
05/17-13:59:05.350223 [**] Queso fingerprint [**] 66.117.30.14:47447 -> MY.NET.224.134:1182
05/17-17:07:30.445282 [**] Queso fingerprint [**] 66.117.30.14:39247 -> MY.NET.224.134:1182

Scan Log:
There are no entries in the scan log for this IP address.

I am fairly certain that the majority of events in the OOS logs, if not all of them, are the
result of external sources performing scans on the MY.NET network. Predominantly, the
tool of choice appears to be Queso, but any number of the other vulnerability and port
scanning tools will exhibit this same behavior.

Defensive Recommendations
This analysis was put together with the intent of providing an overview of the
University’s network. From this report, the University will be able to better understand
and react to the issues presently affecting them.

After a thorough analysis of the University’s logs, it is clear that the University has little
to no security in place. The most obvious examples of this are the numerous Nimda
infections running ramped and the detection of Trojan activity within the environment.
Serious resources are needed to help combat these out-of-control activities.

The first thing the University needs to do is to get a handle on the Nimda infected servers.
The most effective way to do this is to incorporate an enterprise wide distribution of an
Anti-Virus solution. This will be a good first step as it will protect those system not
already infected. Which Anti-Virus product to use will depend on who-ever the
University has the best professional relationship with. Symantec and McAfee are
probably two of the biggest, but any of them will do. One caveat to remember is that due
to the behavior of Nimda and the holes it leaves behind, the only certain way to clean it is
to rebuild it. This is the recommended approach. If the server is a mission critical server
that cannot be taken offline, then all measures need to be taken to ensure the system is
property cleaned and patched. There are numerous documents and tools available to
assist the administrators in this process.

The next phase of remediation should be focused on the Trojan activity. There appears to
be numerous servers infected either via the IRC SDCC backdoor of from SubSeven. The

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 71

Anti-Virus solution recommended about will definitely help out in this space. In addition,
these particular servers will need to be tracked down, cleaned, patched or rebuilt to
ensure that the holes created are plugged up.

By this time the University staff should be making some good progress in cleaning up the
environment of known infectors. Now, more attention will need to be given to the
constant noise makers that are making the environment difficult to protect. To do this, the
University will need to track down all the P2P and gaming systems. It was noted above
that there is a lot of traffic being generated by these types of applications. In addition to
the P2P and gaming systems, there are also a lot of scanning activities taking place. Some
of this is related to the P2P and gaming applications, but there is also a lot of legit
scanning taking place. To fully complete this phase, the University will need to complete
some other tasks besides just removing the software.
They will need to create, publish, and enforce security policies in addition to providing
security training. Basically, they need to push security awareness to all staff and users.

Finally, as part of an initial layer of defense from external attacks as well as internal ones,
the University should implement Egress and Ingress filtering on their routers and
firewalls. This will enable them to quickly cut down on the number of scans they’re
seeing in their environment. Also, ACL’s should also be implemented to assist in
blocking all unwanted traffic, such as the SYN flood attacks and UDP scans noted above.
Having these measures in place will also assist in eliminating the P2P and gaming
application because you can block the common ports associated with these applications.
There are also numerous other benefits to having these measures in place besides the ones
described above.

There have been a lot of recommendations laid out so far. All of them are crucial to the
security of the University’s network. These changes will not happen overnight, but a
consistent effort will need to be made if this transition is to be successful. Some of these
recommendations might not be acceptable for an Educational facility, but the University
should attempt to apply all changes relevant to their policies. Failure to do so will result
in a lapse of security and may make the University liable for not performing their due
diligence.

Description of the Analysis Process
The first step in the analysis process is the gathering of the data. Per SANS requirements
I had to download five consecutive days worth of data that is posted on the incidents.org
[10] web site. The five days that I chose were 5/16/03 – 5/20/03. Each day has three
different files that need to be downloaded. There are Scans files, Alert files, and OOS
files. Each file serves its own purpose and all of them need to be analyzed to show the
different trends, events and correlation. I used a variety of tools to perform the analysis.
Two of the main tools used were SnortSnarf [9] and Sawmill [5]. These tools, and others,
were used to generate tables and reports in a usable, HTML format that made it easier to
spot suspicious traffic and anomalies.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 72

Before I could use any of the programs available, I had to do some manipulation of the
log files. This would prove to make my life a lot easier. One of the first things I did with
each group of logs was to concatenate them together in order of date. This gave me three
master files; one for each group. I used a combination of Unix commands to assist me
with this step. Some of those commands were: grep, cat, sed, cut and wc.

At this time I now have three master files that need to be analyzed. The main file for my
analysis was the alert file. This file was quite large. I took Tod Beardsley’s [1] advice and
removed all the entries that were generated by the spp_portscan preprocessor because
these events were shown to be caused by peer-to-peer file sharing application. I also took
Tod’s advice and changed all the instances of “MY.NET” with a numeric value that was
not in the concatenated alert file. After many grep attempts, I finally found a suitable
combination. I replaced the “MY.NET” with “192.182”. With the new combination, I
was able to run a successful SnortSnarf against it.

With the SnortSnarf output, it was easier to find events of interest. This also gave me a
better understanding of what was occurring on the University’s network. I was also able
to focus my attention on looking for the specific addresses, ports or events from the scans
and OOS files. To assist me with this, I used a combination of grep and a program called
Sawmill. From the output of Sawmill, I was able to focus my grep statements on more
specific criteria. With all this data presently at hand, I was able to perform a detailed
analysis of the University’s network.

References
[1] Beardsley, Tod. “GCIA Certification – Practical Assignment” URL:
http://www.giac.org/practical/Tod_Beardsley_GCIA.doc (May 24, 2003).

[2] CERT.org. “CERT® Advisory CA-2001-13 Buffer Overflow In IIS Indexing Service
DLL” URL: http://www.cert.org/advisories/CA-2001-13.html (May 31, 2003).

[3] CERT.org. “CERT® Advisory CA-2001-19 "Code Red" Worm Exploiting Buffer
Overflow In IIS Indexing Service DLL” URL: http://www.cert.org/advisories/CA-2001-
19.html (May 31, 2003).

[4] CERT.org. “CERT® Advisory CA-2001-26 Nimda Worm” URL:
http://www.cert.org/advisories/CA-2001-26.html (June 8, 2003).

[5] Sawmill.net. “Welcome to Sawmill” URL: http://www.sawmill.net (May 24, 2003).

[6] Sourcefire, Inc. “Snort Signature Search” URL: http://www.snort.org/ (May 31,
2003).

[7] Snort_stat. Chen, Yen Ming. “Snort_stat.” URL:
http://www.snort.org/dl/contrib/data_analysis/snort_stat.pl (May 24, 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 73

[8] Snortalog. Chartier, Jeremy. “SNORTALOG: SNORT Analyser Logs.” URL:
http://www.snort.org/dl/contrib/data_analysis/snortalog (May 24, 2003).

[9] SnortSnarf. “SnortSnarf Snort alert browser.” URL:
http://www.silicondefense.com/software/snortsnarf/index.htm (May 24, 2003).

[10] Incidents.org “GCIA Practical Logs, Assignment 3.” URL:
http://www.incidents.org/logs (June 14, 2003).

[11] Alexander, Bryce. “Intrusion Detection FAQ – Port 137 Scan.” URL:
http://www.sans.org/resources/idfaq/port_137.php (June 14, 2003).

[12] Singer, Abe. “Analysis of network.vbs worm.” URL:
http://security.sdsc.edu/publications/network.vbs.shtml (June 14, 2003).

[13] Grout, Chris. “GCIA Certification – Practical Assignment” URL:
http://www.giac.org/practical/Chris_Grout.doc (June 14, 2003).

[14] Embrich, Mark. “GCIA Certification – Practical Assignment” URL:
http://www.giac.org/practical/Mark_Embrich_GCIA.htm (June 14, 2003).

[15] Roesch, Marty. “Tiny Fragments; Neohapsis Archives” URL:
http://archives.neohapsis.com/archives/snort/2000-05/0103.html (June 14, 2003).

[16] Wu, Marcus. “GCIA Certification – Practical Assignment” URL:
http://www.giac.org/practical/GCIA/Marcus_Wu_GCIA.pdf (June 14, 2003).

[17] oWn3d. “IRC FAQ» What's an XDCC?” URL:
http://www.dslreports.com/faq/4493 (June 14, 2003).

[18] Ellis, Joe. “GCIA Certification – Practical Assignment” URL:
http://www.giac.org/practical/Joe_Ellis_GCIA.doc (June 14, 2003).

[19] Hawrylkiw, Dan. “GCIA Certification – Practical Assignment” URL:
http://www.giac.org/practical/Dan_Hawrylkiw_GCIA.doc (June 14, 2003).

[20] Menke, Mark. “GCIA Certification – Practical Assignment” URL:
http://www.giac.org/practical/Mark_Menke_GCIA.doc (June 17, 2003).

[21] Common Vulnerabilities and Exposures. “CVE-2001-0906” URL:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0906 (June 17, 2003).

[22] Insecure.org. “Nmap” URL: http://www.insecure.org/nmap/ (June 21, 2003).

[23] Credeur, Brian. “GCIA Certification – Practical Assignment” URL:
http://www.giac.org/practical/Brian_Credeur_GCIA.doc (June 14, 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Rob McBee Page 74

[24] Stewart, Joe. “Neohapsis Archives” URL:
http://archives.neohapsis.com/archives/snort/2000-11/0244.html (June 21, 2003).

[25] arachNIDS. “IDS29 Probe-Queso Fingerprint Attempt” URL:
http://whitehats.com/cgi/arachNIDS/Show?_id=ids29&view=event (June 21, 2003).

[26] Holstein, Michael. “GCIA Certification – Practical Assignment” URL:
http://www.giac.org/practical/Michael_Holstein_GCIA.doc (June 14, 2003).

[27] Snort.org. “SHELLCODE x86 NOOP” URL:
http://www.snort.org/snort-db/sid.html?sid=648 (June 21, 2003).

[28] Snort.org. “SHELLCODE x86 stealth noop” URL:
http://www.snort.org/snort-db/sid.html?sid=651 (June 21, 2003).

[29] So, Hee. “GCIA Certification – Practical Assignment” URL:
http://www.giac.org/practical/Hee_So_GCIA.doc (June 14, 2003).

[30] Larrieu, Heather, “GCIA Certification – Practical Assignment” URL:
http://www.giac.org/practical/GCIA/Heather_Larrieu_GCIA.doc (June 22, 2003).

[31] Snort.org. “SHELLCODE x86 setuid 0” URL:
http://www.snort.org/snort-db/sid.html?sid=650 (June 22, 2003).

[32] Snort.org “Writing Rules – Section 2.3.15” URL:
http://www.snort.org/docs/writing_rules/chap2.html#tth_sEc2.3.15 (June 22, 2003).

[33] The PortsDB Project. “The Internet Ports Database” URL:
http://www.portsdb.org/bin/portsdb.cgi (June 22, 2003).

[34] SecurityFocus. “BID 1847 – Halflife Linux Server rcon Vulnerabilities” URL:
http://www.securityfocus.com/bid/1847 (June 22, 2003).

