GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

WEB APPLICATION FIREWALLS

Enterprise Techniques
GIAC (GCIA) Gold Certification

Author: Jason Pubal, jpubal@mastersprogram.sans.edu
Advisor: Barbara Filkins

Accepted: March 13, 2015

Abstract

For years, attackers have assailed network and system level vulnerabilities, fueling
demand for products like firewalls and intrusion detection systems. As these
products mature and IT security teams learn to better handle network security, the
information security industry is seeing a visible increase in attacks moving up the
stack to target application-level vulnerabilities.

Web application firewalls protect web applications from attackers. They sit in front
of web applications, monitor activity, and block malicious traffic. This paper
describes how a web application firewall works and covers different deployment
options. It goes into drivers for organizations to adopt web application firewalls,
such as reducing the effort required to remediate vulnerabilities in production web
applications, speeding up risk reduction, protecting web applications that may not
be able to be fixed such as commercial or legacy applications, and the need to meet
compliance requirements such as PCI DSS. It then takes a deep dive into how to
reduce the window of vulnerability exposure through virtual patching, and how a
web application firewall fits into an overall security monitoring and incident
response strategy.

A lab environment was created to experiment with and demonstrate shielding in
web application vulnerability management via virtual patching and security
monitoring using ModSecurity, an open source web application firewall. Using the
lab exercise results as an example, this paper goes into depth about using a web
application firewall as a means for virtual patching and as a sensor in a network
security monitoring infrastructure.

Web Application Firewalls | 2

Introduction

For years, attackers have assailed networks and exploited system level
vulnerabilities, fueling demand for products like firewalls and intrusion detection
systems. As these products mature and IT security teams learn to better handle network
security, the security industry is seeing a visible increase in attacks moving up the stack
to target application-level vulnerabilities. These attacks are aimed at exploiting
weaknesses in the web application software itself, not those at the network or server
level. Traditional defenses such as network firewalls and intrusion detection systems are

unable to offer comprehensive protection.

Internet facing web applications make up a large part of the attack surface, and
are where attackers are focusing their attention. According to Verizon’s Data Breach
Investigations Report (2014), 35% of breaches were caused by web application attacks,

making it the most prevalent attack pattern.

Figure 1. DBIR Frequency of Incidents. From “2014 Verizon Data Breach Investigations
Report,” 2014.

Web application firewalls (WAFs) protect web applications from attackers. They
sit in front of web applications and block malicious traffic. But, web application firewalls
can be used for more than just blocking generic malicious traffic — they can be used in a
web application vulnerability program to drastically reduce remediation time without

having to change application source code. As part of a security monitoring infrastructure,

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls | 3

WAFs can also increase visibility into application traffic far beyond what is possible with

a firewall or intrusion detection system.

Enterprises looking to manage the risks of web applications will benefit from
these techniques. A lab environment was created to experiment with and demonstrate
virtual patching and security monitoring using ModSecurity, an open source web
application firewall. Using the lab exercise results as an example, this paper gives an in-
depth view of using a web application firewall as a means for virtual patching and as a

sensor in a security monitoring infrastructure.

1.1. Web Application Firewalls

WAFs are designed to protect web applications. WAFs are a shielding safeguard
intended to defend applications accessed via the hypertext transfer protocol (HTTP).
They are capable of preventing attacks that network firewalls or intrusion prevention
systems cannot. WAFs sit in front of a web application, monitor application activity, and
alert on or block traffic that is malicious or that does not comply with specific rules. The
intention is to catch application level attacks, such as SQL injection and cross-site

scripting, along with attempts to manipulate web application behavior.

This shielding technology does not require modification of the application source
code. WAFs can reduce risk without actually fixing the underlying vulnerability. In cases
where it might take a long time or it is infeasible to fix the vulnerability in code, a WAF

is useful in protecting against attacks targeting the vulnerability.

1.2. Negative and Positive Security Models

WAFs compare requests to generic attack signatures and application specific
policies for the web application being protected, and alert on or block violations. A web
application firewall can follow a positive or negative security model to develop security

policies for an application.

A positive security model defines what is allowed and rejects everything else. For
example, when performing input validation, use of the positive security model would
only specify the allowed characters as opposed to trying to filter out all of the potentially

malicious input. This is referred to as whitelisting. Only allowing what is known as good

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls | 4

is generally considered to be the more secure approach. A positive security model can be
achieved using strict content-validation polices. According to the Web Application
Firewall Evaluation Criteria, it “can be more efficient (fewer rules to process per
transaction) and more secure, but it requires very good understanding of the applications
being protected. The positive security model can also be more difficult to maintain if the

web application changes frequently” (2006, p. 11).

A negative security model defines what is disallowed and implicitly allows
everything else. This is referred to as blacklisting. The negative security model is
achieved by compiling a list of attack signatures, comparing web traffic against those
signatures, and blocking traffic that matches. Blocking only what is known as bad is
considered the more functional approach from a business perspective. According to
Murphy and Salchow, “negative security policies do not take into account how the
application works, they only notice what accesses the application and if that access

violates any negative security patterns” (2007, p. 2).

Because the negative security model does not need to know anything about the
application, it offers out-of-the-box protection. However, the negative security model
does not provide protection against unknown attacks. Although considered more secure,
the positive security model takes time and effort to setup, requires deep knowledge of the
application, and has to be maintained as the application changes. To help with that
learning curve, some WAFs have the ability to learn the application. They watch traffic to
the application for a period of time to determine normal application behavior and inputs,
creating a map of URLs and parameters. All WAFs use either a positive or negative

security model, or some use a combination of both.

1.3. Deployment Options
Web application firewalls have a number of architectures and operating modes.

These vary in ease of deployment and resulting WAF functionality.

e Reverse Proxy — In reverse proxy mode, the WAF sits inline and has an
IP address. Incoming connections to the application are sent to the WAF,
which makes a separate request to the web server. Encrypted connections

are terminated at layer 7 letting the WAF decrypt and analyze all of the

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls | 5

web traffic. This allows for a more feature rich WAF deployment as it
gives the WAF complete control over the traffic enabling it to rewrite
content and inject security mechanisms per policy. The architecture is

shown in Figure 2. The WAF is the device with the shield, and is sitting

in-line between the firewall and the web server.

Figure 2.Reverse Proxy or Layer 2 Bridge WAF.

e Layer 2 Bridge — In layer 2 bridge mode, the WAF sits in-line and acts as
a layer 2 switch. The WAF performs passive SSL decryption, and is able
to block traffic by simply dropping the offending packets. This allows for
higher performance than reverse proxy with less significant network
changes. However, not terminating and replaying the traffic limits some
WAF functionality because it cannot rewrite elements per policy. In
addition, the WAF will not be able to decrypt traffic using Diffie-Hellman
cipher suites in a forward secrecy implementation. Architecturally this

looks like reverse proxy, and is also shown in Figure 2.

¢ QOut-of-Band — In out-of-band mode, the WAF is not in-line. It gets a
copy of the traffic via a monitoring port on a network device. It can
passively decrypt SSL traffic, and has the same Diffie-Hellman limitation
that bridge mode suffers. The WAF’s ability to block traffic is further
limited — it can only send TCP-reset packets to interrupt traffic. This mode
has the least amount of impact on the network and application, and it

allows the WAF to be configured to only alert on malicious traffic

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls | 6

eliminating the danger of blocking false-positive detections or failing
closed and causing an application outage. The architecture is shown in
Figure 3. The WAF is sitting off of a switch, and is getting a copy of

traffic going to the web server.

W =1

Figure 3.Out-of-Band WAF.

Server Resident — A server resident or embedded WAF is software
installed on the host running the web server. This could be implemented as
an independent application, or a web server plug-in. Server resident WAFs
are not as functional as their network appliance counterparts, but remove
the additional network point of failure. They put extra load on the server,
so it is important to take a good look at server resource utilization prior to
implementation. The architecture is shown in Figure 4. The WAF,

represented by the shield, is functioning as software on the web server.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls | 7

Figure 4. Server Resident WAF.

e Internet Hosted / Cloud — A newer but increasingly popular option is
using a cloud provider to implement a WAF solution. Gartner predicts that
by “2020, more than 50% of public web applications protected by a WAF
will use WAFs delivered as a cloud service or Internet-hosted virtual
appliance — up from less than 10% today” (D'Hoinne, Hils, Young, and
Feiman, 2014, p.1). This works like the reverse proxy option — public
DNS is configured to point to the cloud provider, which then creates
another connection to the web property. Since the implementation details
are not under corporate control, one needs to review any compliance
requirements and make sure they are met by the cloud provider. Like other
cloud services, review the service level agreements and make sure they are
acceptable. The architecture is shown in Figure 5. The WAF, represented
by the shield, is external to the corporate environment and is software as a

service (SaaS) in the cloud.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls @ 8

W77

Figure 5. Cloud WAF.

1.4. WAF Drivers
1.4.1. Protecting Production Applications

The best way to secure an application is to develop it using a mature, secure
software development lifecycle (SDLC). The earlier in the SDLC a security issue is
addressed, the cheaper it is to remediate. Conversely, the later in the SDLC a security
issue is found, the more expensive it is to fix — the worst case scenario being a security
vulnerability that is found once an application is live in production. “The main benefit of
a WAF is the subsequent protection of completed, production applications on the
application level with a reasonable amount of effort and without having to change the
application itself” (Dermann, M., Dziadzka, M.,Hemkemeier, B., Hoffmann, A., Meisel,
A Matthias Rohr, M., et al, 2008, p. 10). That is, a WAF can reduce the time and cost of

remediating the risk of vulnerabilities in live, production-level web applications.

1.4.2. Protecting Legacy and COTS Applications

Generally, companies have access to the source code of applications that were
developed in house and are live and in production. While it is more expensive, it is
possible to remediate the security vulnerability by fixing the source code. If the
application is commercial off the shelf (COTS) or a legacy application, an organization’s
ability to address issues in code could be minimal to nonexistent. For legacy applications,
the organization may no longer have developers for the application or even have

developers who know how to write code in the language the application was originally

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls = 9

developed. For a COTS application, the organization can disclose the problem to the third
party, but are at the mercy of the vendor’s priorities and timelines. “With decreasing
access to the web application — and depending on its importance and complexity — the
benefits stemming from the use of a WAF grow rapidly. Using a WAF often results in the
least additional work for the required security level” (Dermann, M., Dziadzka,

M., Hemkemeier, B., Hoffmann, A., Meisel, A.Matthias Rohr, M., et al, 2008, p. 17).

1.4.3. Vulnerability Management

Shielding is an integral part of the vulnerability management process. According
to Nicolett, “shielding should be used to protect vulnerable assets until mitigation is
complete” (2005, p. 5). When a vulnerability is discovered in an application, a WAF
signature can be created to block attacks against it. Whether the application was
developed in house or is a COTS application, this protects it while the vulnerable code is
fixed or an organization waits for a vendor to provide an update. This is referred to as a

virtual patch.

Policy Discover/Baseline

» Define desired state * Determine policy compliance
+ |dentify vulnerabilities

- Prioritize

i « Vulnerability data,
Monitor + Thraat dat:]r
= Policy compliance » Asset classification
« Vulnerabilities
* Threat environment
/ Shield
Controls/ Mitigate

Eliminate Root Cause * H|gh priority vulnerabilities

Figure 6. Vulnerability Management Process. From “How to develop an effective
vulnerability management process’ by Nicolett, M, 2005. Gartner.

Some web application firewalls help automate virtual patching by integrating with
dynamic application security testing (DAST) tools. Some WAFs can import DAST

results, and automatically generate signatures that protect against vulnerabilities the

DAST tool found. According to Feiman, “accuracy of the WAF increases when DAST

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls = 10

passes to it detected security vulnerabilities and attack patters, so WAF can terminate

sessions that match malicious patterns” (2013, p. 3).

1.4.4. Compliance

Compliance is a big driver for the adoption of WAFs. The Payment Card Industry
Data Security Standard (PCI DSS) is an information security standard for organizations
that handle cardholder information for debit and credit cards. Defined by the PCI Security
Standards Council (SSC), the standard was created to increase controls around cardholder
data to reduce credit card fraud caused by the exposure of that data. Organizations that
accept, store, processe, or transmit credit card data must comply with the PCI DSS. PCI
DSS version 1.2 added web application firewalls as an alternative to web application

vulnerability assessments in 2008. Now in version 3, PCI DSS requirement 6.6 reads
(2013, p. 59):

For public-facing web applications, address new threats and vulnerabilities on an

ongoing basis and ensure these applications are protected against known attacks

by either of the following methods:

e Reviewing public-facing web applications via manual or automated
application vulnerability security assessment tools or methods, at least

annually and after any changes

o [nstalling an automated technical solution that detects and prevents web-
based attacks (for example, a web-application firewall) in front of public-

facing web applications, to continually check all traffic

Failing to comply with PCI DSS can lead to fines of up to $500,000 levied by
banks and credit card institutions. If PCI DSS compliance applies to a company that does
not have the resources to conduct an application vulnerability security assessment after
every change, deploying a WAF could be necessary to comply with the standard.
According to D'Hoinne and Hils, "The PCI requirement has given additional momentum
to the WAF market, helping it expand beyond niche use cases, especially in financial and

banking organizations" (2014, p. 3).

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls | 11

1.4.5. Intrusion Detection and Incident Response

WAFs can serve as sensors in a security monitoring infrastructure. Sensor collect
data and alerts on potentially malicious traffic for analysis in the detection phase of
intrusion detection and incident response, as shown in Figure 7. The alerts and logs from
a WAF can be sent to a security incident and event management (SIEM) system for
correlation with other sensors, enhancing monitoring capabilities and expanding it into
web traffic. Over other kinds of sensors, a WAF gives the best visibility into web
application traffic and potential attacks against an organization’s websites. If an Internet
presence represents a substantial risk to an organization, a WAF might be the most

important security monitoring sensor the organization can deploy.

DETECTION RESPONSE
Collection Analysis Escalation Resolution
Host data Constituent c
A | 10C<entric . | nofification S [FGonsuent
Net data A analysis, or A N
y | “matching” v | NewlOC T ! Addiional
R . ;
Applggusiton 3 $ | creation ! reisionke
- — - £
9 o L T | Collection
Data from N N[collection =5 e =
third party 3| 1O0CHee 3 | requirement P
L | onalysis, or ¢ R
Data from li "hunting” {s) | New analysis 55 1 imAr:;lZ::ini =
constituent requirement L pr

Event ‘::’;"":“j/——Uvntlhcquon—b‘iulldullon——-Dxunonlalion—-—Noﬂhcollon—-A&:k—- Contalnment—s Remediation
3

Request more dala

Figure 7. Intrusion Detection and Incident Response Process. From “The Practice of

Network Security Monitoring” by Richard Bejtlich, 2013, No Starch Press.

1.5. Vendors
While outside the scope of this paper, choosing a WAF will rely on the
environment and application requirements. Gartner has a Magic Quadrant for Web

Application Firewalls that highlights the commercial space as shown in Figure 8.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls = 12

. Imperva
Citrix

Barracudn Metworks
Akamai . '.
HNSFOCUS

. Fortmet

Ergan Informatik @ Radware

Penta Secarity

. Trastwave DemyAl

AdNoyum @ BeeWore

O
‘ United Security Providers

DEAPPSecurity

Figure 8. WAF Magic Quadrant. From “Magic Quadrant for Web Application
Firewalls” by Jeremy D'Hoinne, Adam Hils, Greg Young, & Joseph Feiman, 2014,

Gartner.

2. Web Application Firewall Enterprise Techniques
A lab environment was put together to experiment with and demonstrate virtual
patching and security monitoring using ModSecurity, an open source web application

firewall.

2.1. Lab Environment

To experiment with and demonstrate web application firewall use cases, three
virtual machines were built in a lab environment as shown in Figure 9. On a server
running an Ubuntu Linux distribution, there is an Apache web server with a server
resident instance of the open source WAF, ModSecurity. This server is running a web
application called Damn Vulnerable Web App (DVWA). On a second server running a

specialized distribution of Linux built for network security monitoring, Security Onion, a

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls | 13

ModSecurity centralized log management tool called AuditConsole is installed. On a
third virtual machine running Windows is an environment for web application security
testing using two tools: a DAST tool called Burp Suite and a vulnerability aggregation
tool called ThreadFix. These components are further described below.

ThreadFix

Security Onion
AuditConsale

WAF Rules
Wirtual Patching mioge

DAST Results WAF Events

—DAST Testing——— = ‘

Burp Suite Apache / ModSecurity
DWVWA

Figure 9. WAF Lab Architecture.

2.1.1. ModSecurity

ModSecurity is an open source, free web application firewall. According to Ristic,
it “is a toolkit for real-time web application monitoring, logging, and access control”
(2012, p. 4). Apache is an open-source HTTP server, and its functionality can be

extended using modules. ModSecurity was implemented as an Apache module.

ModSecurity supports two deployment options: server resident and reverse proxy.
Because ModSecurity is an Apache Module, it can be added to any compatible instance
of a running Apache web server. For organizations that have many web servers, this
scales as the web infrastructure grows. However, ModSecurity shares resources with the
web server which could make an embedded implementation taxing on a web server
already at full utilization. To setup a reverse proxy WAF, configure a dedicated Apache
reverse proxy and add the ModSecurity module to it. In this configuration, there are more
dedicated resources for the WAF. However, reverse proxy mode also adds a new point of
failure to the overall infrastructure. For the lab, an embedded instance of ModSecurity

was used.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls = 14

2.1.2. ModSecurity Core Rule Set

The Open Web Application Security Project (OWASP) has a project that
maintains a set of generic attack detection rules called the ModSecurity Core Rule Set
(CRS). These rules aim to provide a base level of protection for all web applications. The
CRS was installed with ModSecurity, and enabled to show how ModSecurity might

function as a security monitoring sensor.

2.1.3. Damn Vulnerable Web App

The web application that ModSecurity is protecting in the lab 1s Damn Vulnerable
Web App (DVWA). It is an open source application written in PHP with a MySQL
database backend. DVWA has several security flaws purposefully written into a
functional web application. It was created as a teaching aid for security professionals and

software developers to learn how to discover and remediate vulnerabilities.

2.1.4. AuditConsole

With deployments of more than a single instance of ModSecurity, centralized
logging is essential for scalable security monitoring. One application that can be used for
central logging of ModSecurity events is JWall’s AuditConsole. It receives events from
multiple instances of ModSecurity, logs them to a database, indexes them, and has a web-

application front end for security analyst review of the events.

AuditConsole can receive events via file-uploads of ModSecurity audit log files.
It can also leverage mlogc, a tool that is distributed with ModSecurity, to send logs to the
AuditConsole receiver using an HTTP connection. The events can either be stored in the
embedded SQL database, or an external database such as MySQL. Users define rules that
incoming events are evaluated against, such as creating notifications, deleting events, or
executing scripts. Events can be tagged by users, allowing them to be noted as false-

positives, or something to be followed up on at a later time.

Security Onion is a Linux distribution used for network security monitoring
(NSM). AuditConsole was installed on top of Security Onion as a proof-of-concept. Once
ModSecurity logs are centralized on Security Onion, one could utilize other tools built
into Security Onion for analysis of those events or to correlate the events with logs from

other NSM sensors.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls | 15

2.1.5. Burp Suite

Burp Suite is a platform for performing security testing of web applications. It is a
favorite among application penetration testers. It has an interception proxy that allows
inspection and modification of traffic between the browser and target application, and
several built in tools for manipulating traffic for security testing. The professional version

also has a dynamic application security testing scanner.

Burp Suite can be used to find vulnerabilities in a web application. A WAF, such

as ModSecurity, can then be used to virtually patch those security flaws.

2.1.6. ThreadFix

ThreadFix is a web application vulnerability management tool that aggregates
results from various web application security testing tools over time. It consolidates and
de-duplicates findings, while providing various dashboards and reports of the data. It also
integrates with various defect tracking tools to push web application vulnerability data

into the format and processes that developers are comfortable using.

ThreadFix can also assist in virtual patching by generating WAF rules based on the
vulnerabilities it stores. ThreadFix creates ModSecurity rules to block malicious traffic

capable of exploiting vulnerabilities found in Burp Suite’s DAST scan results.

2.2. Virtual Patching

In an ideal world, the secure software develop lifecycle (SDLC) would produce web
applications free of security vulnerabilities. In the real-world, there is need for a web
application vulnerability management process to assess applications, find security flaws,
and help drive them to remediation. Once identified, vulnerabilities in custom
applications take time to fix. Essentially, we are taking development time away from
creating new functionality to devote to fixing a security issue. This is a costly endeavor at
best. At worst, the web application is a legacy application and the company does not have
development resources devoted to it. To fill this gap, organizations could use a WAF to
help remediate web application vulnerabilities without the need to change the

application’s source code.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls | 16

Virtual Patching is “a security policy enforcement layer that prevents the
exploitation of a known vulnerability” (Barnett, 2013. p. 69). Given a custom rule that
addresses a specific vulnerability, the WAF can analyze transactions and intercept attacks
in transit so the malicious traffic targeting the vulnerability never reaches the application.
Exploitation attempts would be unsuccessful without having to modify the source code of

the application

The lab environment is running Damn Vulnerable Web App, which has several web
application vulnerabilities. Using the reflected cross-site scripting example in DVWA,
here is how virtual patching might work within a web application vulnerability

management program.

2.2.1. Cross-Site Scripting

Cross-site scripting (XSS) attacks are a type of injection attack where an attacker
sends a malicious script, typically browser side JavaScript, through a web application to
another end user. The user’s browser then executes that script, and the malicious code
carries out its nefarious purpose. XSS can be used to “hijack user sessions, deface web
sites, insert hostile content, redirect users, and hijack the user’s browser using malware”

(Williams and Wichers, 2013, p 9).

The XSS example in DVWA is implemented using a form asking for the user’s

name. After typing in “Jason” and clicking submit, the application says “Hello Jason™ as

shown in Figure 10.

L R AT AT ® | - 8 4+ & = =
DA)
T 1 Vulnerability: Reflected Cross Site Scripting (XSS) e Vulnerability: Reflected Cross Site Scripting (XSS)
Instrical e 1 Insamctions
Corup, What's yousr name? Sotup
Baute Force — o Bruse Force =
Command Exacution Mors info Command Exscution
CSRE | csaF |
JoeecumC AERCHA S| Inscimn CAPTCHA More info
File lnsclhusion Fibe Inclusion
SO Injection SO Injection
S0L Injaction (Biied) S0L Injection (Blind)
Upload .Ilnln-
XSS stornd XS5 wornd

Figure 10. DVWA XSS Example Functionality.

Jason Pubal jpubal@mastersprogram.sans.edu

© 2015 The SANS Institute Author retains full rights.

Web Application Firewalls | 17

Instead of typing in a name, one could provide JavaScript — for example, a simple

script that creates a pop-up box that says “XSS”:
<SCRIPT>alert<”XSS”>;</SCRIPT>

DVWA will insert this script into the HTML where it would have put “Jason”, and

the browser will execute it, as shown in Figure 11.

& 9 BT S I AL v 3 A =

|

bility: Reflected Cross Site Scripting (XSS)

[ECRIPTs e M55 of | Subet

What's yous sameT ‘

More info

Figure 11. DVWA XSS Exploit.

2.2.2. Dynamic Application Security Testing

As part of security testing within the secure SDLC and as general vulnerability
management, dynamic application security testing should be conducted against web
applications. DAST technologies are designed to detect conditions indicative of a security
vulnerability in an application in its running state. Web application vulnerability scanners
are tools that scan web applications to look for security vulnerabilities such as cross-site
scripting. They communicate with an application through the web front-end in order to
identify potential security vulnerabilities and architectural weaknesses. First they spider
the application, starting at the application’s front page and recursively following every
link to find each page and input. Then they fuzz those inputs looking for responses that

indicate security issues.

In the lab environment, Burp Suite Pro was used to scan the XSS example in

DVWA, and the XSS vulnerability was a finding in the results as shown in Figure 12.

Jason Pubal jpubal@mastersprogram.sans.edu

© 2015 The SANS Institute Author retains full rights.

© 2015 The SANS Institute

Web Application Firewalls | 18

Burp Intruder Repeater Window Help

Target | Proxy | Spider TSIH?H T Intruder T Repeater TSBquencer TDECDC'EV TCDnmarer fotznder T Options | Alerts

jﬂe&ul&T Scan queue T Live scanning T Options. }

1
ﬁ http://192 168 2.167 ¥ @) Cross-site scripting (reflected) [2] ;1~
ilti _ri [name il
(] ,_ri [security cookie] _ |=

_[ovmony | reuet [Response |

0 Cross-site scripting (reflected)

Issue Cross-site scripting (reflected)
Severity: High
Confidence: Certain

Host: hitp:/1192.168.2.167
Path: Idvwaivulnerabilities/xss_r/
Issue detail

The value of the name request parameter is copied into the HTML document as plain text between tags. The payload
efcof<script=alert{1)<iscript~aae0b was submitted in the name parameter. This inputwas echoed unmodified in the application’s response

This proof-of-concept altack demonstrates thatitis possible to inject arbitrary JavaScriptinto the application’s response. W

Issue background

Reflected cross-site scripting vulnerabilities arise when data is copied from a request and echoed into the application’s immediate response in an
unsafe way. An altacker can use the vulnerability to construct a request which, if issued by another application user, will cause JavaScript code
supplied by the altacker to execute within the user's browser in the context of that users session with the application.

The aftacker-supplied code can perform a wide variety of actions, such as stealing the victints session token or login credentials, performing
arbitrary actions on the victim's behalf, and logaing their keystrokes.

Users can be induced to issue the altacker's crafied request in various ways. For example, the attacker can send a victim a link containing a
malicious URL in an email or instant message. They can submit the link to popular web sites that allow content authoring, for example in blog
comments. And they can create an innocuous looking web site which causes anyone viewing itto make arbitrary cross-domain requests to the
wulnerable application (using either the GET or the POST method).

e |

Y va =

Figure 12. Burp Suite XSS Finding.

2.2.3. Vulnerability Aggregation

In an enterprise environment with several applications being developed or many
applications being tested within a vulnerability management program, more than one
application testing tool could be testing a plethora of web applications. Aggregation and
correlation of all of those findings helps the management of a program with a large scope.
In the lab environment, an open source vulnerability aggregation tool called ThreadFix
was used to import the Burp Suite Pro DAST scan results as shown in Figure 13.
ThreadFix was also used because it has the ability to generate web application firewall

rules based on DAST results.

Jason Pubal jpubal@mastersprogram.sans.edu

Author retains full rights.

© 2015 The SANS Institute

Web Application Firewalls | 19

X
i Vulnerability Details | Threa., #

\ € | @ https://localhost 3443/ threadfix/organizations/1/applications/1/vulnerabilities/ 1 7nence=D261605 L= @ ‘0\ Search ﬁ’ B ¥+ @ | =
s
.S S
ThreadFix-=— — Seans nayies Buser - o
Powered by Denim Group

Applications Index ' Team: Lab < Application: DVWA ' Vulnerability 1
Vulnerability Details ggie more info

Basic Information

Type Severity Path Parameter
Improper Neutralization of Input During Web Page Generation (Cross-site Scripting’) (CWE Entry) High / name
Findings
Calculated
Scanner Vulnerability Calculated Source
Name Severity Type Path URL Path Path Parameter Native ID

Cross-site fdwwalvulner 26798590049

Burp Suite High scripting abilities ! name 36991744 View Finding
(reflected) fxss 1/

Figure 13. ThreadFix XSS Finding.

2.2.4. Web Application Firewall Rules

The last step is to have ThreadFix generate WAF rules to protect against the
vulnerability, and deploy them to ModSecurity. ThreadFix’s new WAF rule is shown in
Figure 14.

Jason Pubal jpubal@mastersprogram.sans.edu

Author retains full rights.

Web Application Firewalls | 20

x
i ModSecurity | ThreadFix x

-_'(- | @ https//localhost: 3443 threadfic wafs/ 1 nonce=0541CC517DDIFSCBEACCF23CO26ABCCD | @ Q Search v ®m & & | =
o
H ~— A
ThreadFix===— - -
Powered by Denim Group Dashboard Teams Scans Analytics X user o
ModSecurity

Type: mod_security

Applications
Name URL
DVIWVA http:/f192.168.2.167/dvwal
All Applications E‘ deny Generate WAF Rules

WAF Rule Statistics View Details

WAF Rules:

Download Waf Rules

SecRule REQUEST_URI "~\/dwwa\/vulnerabilities\/xss_r\/""phase:2,chain,deny,msg: 'Cross-site Scripting attempt: /dvwa/vulnerabilit
ies/xss_r/ [name]’,id:'180008°,severity:'2""
SecRule ARGS:name "<|\%¥3C|>|\¥3E"

Figure 14. ThreadFix WAF Rules.

A file called modsecurity crs_15 customrules.conf containing the rule was created,
and a symlink was placed in ModSecurity’s activated rules directory. This was the only
rule enabled in ModSecurity, as it was the only one in the activated rules directory as

shown in Figure 15.

Jason Pubal jpubal@mastersprogram.sans.edu

© 2015 The SANS Institute Author retains full rights.

Insacurs CAPTCHA More info

Web Application Firewalls | 21

o pubal@ubuntu: fusr/share/modsecurity-crs

pubal@ubuntu: fusr/share/modsecurity-crs$ cat custom_rules/modsecurity_crs_15_customrules.conf

SecRule REQUEST_URI "~\/dvwa\/vulnerabilities\/xss_r\/""phase:2,chain,deny,msg:'Cross-site Scripting attempt: /dvwa/vulnerabilities/xss

| r/ [name]',id:'100000"',severity:'2""
SecRule ARGS:name "<|\%3C|>]\%3E"

SecRule REQUEST_URI "~\/dvwa\/vulnerabilities\/xss_r\/[*?]*(<|\%3C|>|\%3E)""phase:2,deny,msg: 'Cross-site Scripting attempt: fdvwa/vulne
rabilities/xss_r/',1id:'100001',severity:'2"'"

pubal@ubuntu: fusr/share/modsecurity-crs$ 1s -al activated_rules/
total 12

drwxr-xr-x 2 root root 4896 Jan 17 88:46 .

drwxr-xr-x 10 root root 4096 Jan 17 08:37

Lrwxrwxrwx 1 root root 75 Jan 17 08:46 modsecurity_crs_15_customrules.conf -> fusr/share/modsecurity-crs/custop_rullesfmodsecurity_cr

s_15_customrules.conf
pubal@ubuntu: /usr/share/modsecurity-crs$ I

Figure 15. ModSecurity Activated Rules.

After the XSS rule was deployed to ModSecurity, a test was performed to see if was
effective. The same proof-of-concept JavaScript exploit above in our example was

attempted a second time. This time, ModSecurity blocks the attempt with an HTTP 403

Forbidden error as shown in Figure 16.

Forbidden
You doeit have permison 1o sccess dvwa valnerabilines wv_y on this verver

Vulnerability: Reflected Cross Site Scripting (XSS) Apoche2.4.7 (Ubuntu) Sirver at [92.164.1.159 Port 80

Figure 16. DVWA Blocked XSS Exploit.

Viewing the Apache logs shows that ModSecurity blocked the exploit attempt

because it matched the pattern created in the new WAF rule as shown in Figure 17.

o

pubal@ubuntu: fvarflogfapache2

[Sat Jan 17 09:09:52.775673 2015] [:error] [pid 34197] [client 192.168.1.155] ModSecurity: Access denied wi
th code 4083 (phase 2). Pattern match "<|\\\\%3C|=|\\\\%3E" at ARGS:name. [file "/usr/share/modsecurity-crs/

activated_rules/modsecurity_crs_15_customrules.conf"] [line "1"] [id "100000"] [msg "Cross-site Scripting a
ttempt: /dvwa/vulnerabilities/xss_r/ [name]"] [severity "CRITICAL"] [hostname "192.168.1.159"] [uri "/dvwa/
vulnerabilities/xss_r/"] [unique_id "VLgXYHBAAQEAAIWVqjIAAAAB"]

Figure 17. Apache ModSecuirty Logs.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls = 22

The main advantage of virtual patching is the speed of risk reduction. That is, the
exposed attack surface is reduced far faster than by any other means. It is important to
understand the level of protection virtual patching provides. Depending on the flaw, it
may or may not be possible to completely remediate the vulnerability with a virtual
patch. In some cases, the best that can be done is identifying when a malicious attacker
attempts to exploit the vulnerability. Virtual patching and fixing the source code are not
mutually exclusive, and virtual patching should only be viewed as temporary risk

reduction until a source code fix is pushed to production.

2.3. Network Security Monitoring

Network security monitoring (NSM) is “the collection, analysis, and escalation of
indications and warnings to detect and respond to intrusions’ (Bejtlich, 2013, p. 3). NSM
is a security paradigm that believes prevention eventually fails and security breaches are
inevitable. The goal is to have enough visibility into the network to detect and
appropriately react to a security incident. Crimes involving technology take time — after
an initial compromise it can take days or weeks to find, gather, and exfiltrate what the
criminal wants. Most sophisticated intruders seek to gain persistence in target networks.
This gives defenders an opportunity to detect and respond to intruders before they can do

damage to the enterprise.

According to Sanders and Smith, “the NSM cycle consists of three distinct phases:
Collection, Detection, and Analysis” (2014, p. 9).

e Collection: The NSM cycle begins with collection. This occurs with sensors
that are used to generate and collect data for NSM detection and analysis.
Where the sensors are located defines what network visibility exists. Sanders
and Smith recommend a risk based approach for deciding what data to
collect, and where to deploy sensors. One such sensor could be a web
application firewall. While quantifying risk to an organization, a mission
critical, Internet facing web application quickly raises to the top making it
obvious that web application monitoring is in scope. The alerting and logs
that a web application firewall generates provide the best visibility into web

traffic and web application attacks available.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls | 23

e Detection: “Detection is the process by which collected data is examined
and alerts are generated based upon observed events and data that are
unexpected” (Sanders and Smith, 2014, p. 10). Detection can be as simple as
a user calling the helpdesk to complain about an infected desktop. Usually, it
is in the form of traffic that matches a signature on a sensor such as an
intrusion detection system or web application firewall that then triggers an

alert for investigation.

e Analysis: The NSM cycle ends with analysis. This is when a human reviews
and interprets the data generated by the alert. During the course of the
investigation, an analyst will often pull in data from other sources. This may
involve packet analysis and network or host forensics. At this point, an event
may be escalated to an incident and an incident response (IR) process would
be initiated. Or, the result could be that the investigation was triggered by a
false-positive alert and the sensor is tuned so that it does not alert on the

same anomalous traffic in the future.

2.3.1. Web Application Firewall’s Role in NSM

Web application firewalls are sensors in a network security monitoring
infrastructure. In the risk based sensor placement strategy, consider what risk web
applications pose to an organization. If an organization does not have a web presence or
only has a small, static marketing website; web applications would rank low on a risk
assessment. If an organization has a mission critical web application such as a large
ecomimnerce site or is a business built on a mobile application, then a risk assessment
would rank the risks involved rather highly. If web applications pose a high level of risk

for an organization, a WAF will be the most critical sensor in an NSM deployment.

WAFs are sensors particularly suited for monitoring web application traffic. The
ability to decrypt web traffic using SSL or TLS makes a big difference in traffic visibility
as compared to other kinds of sensors such as firewalls or intrusion prevention systems
(IPS). Gartner conducted a survey to see how organizations are handling encrypted
traffic. According to D’Hoinne and Hils, the survey showed that “less than 20% of

organizations with a firewall, IPS, or unified threat management (UTM) appliance

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls @ 24

decrypt inbound or outbound SSL traffic. However, more than 90% of organizations with
a public website and a WAF decrypt inbound web traffic”’ (2013, p. 2). That is, inbound
web traffic that might pass an IPS uninspected because it is encrypted is much more

likely to get decrypted and inspected by a WAF.

2.3.2. ModSecurity Centralized Logging via AuditConsole

As a proof-of-concept, the lab has an instance of Security Onion, an open source
NSM Linux distribution. AuditConsole, a centralized log management tool for
ModSecurity, is installed on top of Security Onion. ModSecurity is an NSM sensor
collecting and sending logs and alert data to AuditConsole to enable detection and

analysis by a security analyst.

During the DAST scan from the virtual patching example, the OWASP Core Rule
Set was enabled in ModSecurity and configured to alert on malicious traffic. These alerts
were sent, via mlogc, to AuditConsole. Figure 18 shows a screenshot of the dashboard in
AuditConsole right after the scan completed. If this were a scan done for reconnaissance
by an attacker, the security analyst could perform analysis based on these alerts and take

whatever actions were deemed appropriate.

ene < I & 192.168.2.102 u 30

Alerts last Minute
Tags

Tag Lasthow Last24 hours Total

Alerts

: - = Ruls Rule
Dats Event 1D Savarity Category 0 Message Alerts last Hour

[OWASP_CRS/POLICY/METHOD_NOT_ALLOWED,

ILOLI0LE) g aann WASCTC/WASC-15, OWASP_TOP_10/AB, 960012

HEETN OWASP_AppSensor/RE1, PCI/12.1
[OWASP_CRS/PROTOCOL_VIOLATION/IP_HOST,

LLOLI0IS 0 o WASCTC/WASC-21, OWASP_TOP_10/A7,

LM, ARAC 5

Heosiaa LA PCI/6.5.10, Nt tochnet. microsalt.comysn- S
us/magarine/2005.01 hackerbasher aspx

[OWASP_CRS/POLICY/METHOD. '\(" AL[O#\‘[D

WASCTC/WASC-15, OWASP_TOP_10

OWASP_AppSensor/REL, PCI/12.1

[CWASP_CRS/PROTOCOL_V TP_HOST,

1012018 o L

20:05:44 0z

20:05:44 PCL/6.5.10, http://technet. mi c'.\r;ue.-\ 960017
us/magazing/2005.01.hackerbasher.aspa]

'SQL_INIECTION,

Alerts last Day

(oW CRS/WEB,

?; gsi’is VLM AAAR WASETC/WASC-19, OWASP_TOP_10/A 950001
OWASP_AppSensor/CIEL, PCL/E.5.2]
[OWASP_CRS/WEB_ATTACK/SQL_INJECTION, % Tbect
WASCTC/WASC-19, OWASP_TOP_10/A1, 559073
OWASP_AppSensor/CIEL, PCL/6.5.2] o

11.01.2015
20:0544 VIMI-AMAS

11.01.2015

J0.08.44 VAME AAAB [CWASP_CRS/WEB_ATTACK/SQL_IMIECTION] $81272

11.01,2015

20-ns e VLMJ. AAAB [OWASP_CRS/WEB_ATTACK/SQL_INJECTION] 81257

-
WARNDD.
(Temmeil
MOLI0IS i s RSN WASCTC/WASC-21, OWASP.T
(emmea]
Ty
o
E—

Figure 18. AuditConsole Dashboard.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls | 25

3. Conclusion
In the era of the Internet, web applications are critical to conducting business.
Attackers know this, and are focused on exploiting vulnerabilities for their own gain.

Web application firewalls shield web applications from these attacks.

When new web application vulnerabilities are found, virtual patching quickly
remediates the risk without needing to change the application’s source code. For
production applications that will take time to fix, utilizing a web application firewall to
deploy a virtual patch will require the least amount of effort for the desired security
posture. For a legacy or COTS application, it could be the only mitigating control

available short of taking the vulnerable functionality offline.

Web application firewalls have visibility into application traffic that no other
security monitoring sensor is capable of analyzing. If web applications pose risk to an

organization, web application firewalls are vital to your overall protection strategy.

As a final word of advice, consider who will be doing the application security
monitoring. Application security has a different knowledgebase and skillset than general
network security monitoring. Going beyond IP addresses and ports to look deep into
Layer 7 HTTP traffic takes specialized skills. When adding application security
monitoring to an analyst’s responsibilities, consider giving that staff member the

specialized training they need to be successful.

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls = 26

4. References

Auger, R., Barnett, R., Cano, C., Chuvakin, A., Estrade, M., Ristic, L., et al. (2006,
January).Web Application Firewall Evaluation Criteria. Retrieved November 20,
2014 from http://projects.webappsec.org/f/wasc-wafec-v1.0.pdf

Barnett, R. (2013). The web application Defender's Cookbook: Batting Hackers and
Protecting Users. Indianapolis, Ind: John Wiley & Sons.

Bejtlich, R. (2013). The practice of network security monitoring.: Understanding incident

detection and response. San Francisco: No Starch Press.

Dermann, M., Dziadzka, M., Hemkemeier, B., Hoffmann, A., Meisel, A.Matthias Rohr,
M., et al. (2008, March). Best Practices. Use of web application firewalls.
Retrieved November 20, 2014, from
https://www.owasp.org/images/b/b0/Best_Practices WAF v105.en.pdf

D'Hoinne, J., Hils, A., Young, G., Feiman, J. (2014, June). Magic quadrant for web
application firewalls. Retrieved November 25, 2014, from
http://www.gartner.com/reprints/imperva?id=1-

IVIQEFW &ct=140617&st=sg&elq=2df8cc4b7b814062bdda2fafd5c75ee3&elqC
ampaignld=

D'Hoinne, J., Hils, A. (2013, December). Security leaders must address threats from
risking SSL traffic. Retrieved November 25, 2014 from
https://www.gartner.com/doc/2635018/security-leaders-address-threats-rising

D'Hoinne, J., Hils, A. (2014, February). Web application firewalls are worth the

investment for enterprises. Retrieved November 25, 2014 from

https://www.imperva.com/lg/lgw.asp?pid=505

Jason Pubal jpubal@mastersprogram.sans.edu

Web Application Firewalls = 27

Feiman, J. (2013, February). Application security detection and protection must interact
and share knowledge. Retrieved November, 24 from
https://www.gartner.com/doc/23503 18/application-security-detection-protection-

interact

Murphey, A., Salchow, K. (2007, October). Applied Application Security — Positive &
Negative Efficiency. Retrieved November 20, 2014 from
https://www.f5.com/pdf/white-papers/applied-app-security-wp.pdf

Nicolett, M. (2005, March). How to develop an effective vulnerability management
process. Retrieved November 23, 2014, from
http://www85.homepage.villanova.edu/timothy.ay/DIT2160/IdMgt/how_to_devel
op_.pdf

Payment Card Industry Security Standards Council. (2013, November). Payment Card
Industry (PCI) Data Security Standard. Retrieved November 20, 2014, from
https://www.pcisecuritystandards.org/documents/PCI_DSS v3.pdf

Ristic, I. (2012). Modsecurity handbook. London: Feisty Duck.

Sanders, C., Smith, J., & Bianco, D. J. (2014). Applied network security monitoring:
Collection, detection, and analysis. Waltham, MA: Syngress.

Verizon. (2014) 2014 Data breach investigations report. Retrieved November 20, 2014,
from http://www.verizonenterprise.com/DBIR/2014/reports/rp_Verizon-DBIR-
2014 en xg.pdf

Williams, J., & Wichers, D. (2013). OWASP Top 10. Retrieved January 20, 2015, from

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-
%202013.pdf

Jason Pubal jpubal@mastersprogram.sans.edu

