
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Assignment Version 3.3
For Intrusions Detection In-Depth Course (Track 3)
By Erik Montcalm
Submitted on 2003-11-12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 1: Describe the State of Intrusion Detection
An Intrusion Detection Challenge: Reviewing and Comparing IDS Systems

Executive Summary:

Intrusions Detection Systems are now part of the set of standard defensive tools
used by most security professionals. But how do people make decisions about
which one to buy and if it will prove to be effective in your specific environment?
This shows that traditional IDS testing is not a good way of measuring value of
the system, it mostly only measures performance and detection correctness.
Also, it is the author of this paper’s contention that this type of testing is
necessary but not sufficient to make an educated decision on a product.
Other testing factors will be suggested and the importance of live testing on the
actual network where the IDS system would be installed will be discussed.

1.0 Introduction:

Intrusions detection systems have now matured to the point where they are not
considered new technology anymore. Several decision makers would like to
invest in this type of technology to insure an additional layer of security for their
network. But with the total cost of ownership of an IDS infrastructure being fairly
high, these decision makers usually want to buy the best of breed solution for
their needs. What criteria can these decision makers use? With so many flavours
of IDS (host based, network based, rules based, anomaly detectors, etc) being
offered by multiple vendors, how is one supposed to determine which one to
buy? Several groups have tried to come up with a solution to this problem and
provide a framework to benchmark or test Intrusion Detection Systems. Are
these tests and benchmark sufficient to understand what a specific IDS does or
not do? Our contention is that a more in-depth review, separate from the testing
and benchmarking process is necessary and desirable before any conclusion
can be made.

2.0 Test Categories:

Before we can discuss the relevance of certain types of IDS testing
methodologies, we need to define some categories.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Several of these categories were obtained from the NIST report titled “An
Overview of Issues in Testing Intrusion Detection Systems” (1)
These categories have been modified (mostly generalized) in order to fit the
scope of this paper. New categories were then added.

2.1 Ad-hoc Testing

Reviews that do not seem to follow any type of testing parameters or standards
fall into the ad-hoc testing category. This might give a useful “first impression” but
that is about the extent of their usefulness. These review are usually pretty short.
An example of this type of review is the SC magazine review of the Lancope
StealthWatch IDS (2)

2.2 Quantitative Testing:

Quantitative testing usually implies that some tests were run and that a specific
value is obtained as a result. These results can then easily be compared
between IDS systems. The white paper entitled Experiences Benchmarking
IDS Systems (3) by Marcus Ranum is a good example of this type of approach.
Another approach is to outsource IDS testing to a company like Network Analysis
Services who will customize tests to fit the needs of your company(6)

2.2.1 IDS Performance Benchmarking:

IDS performance benchmarking is the act of testing the correctness and reliability
of the IDS system under certain types of load. Usually the metric verified is the
number of packets dropped at a certain throughput. A few years ago, several
IDS systems had issues fully analyzing a gigabit stream.

2.2.2 IDS Correctness Testing:

IDS correctness testing verifies if the detection engine of the IDS can detect all
type of attacks on monitored networks. This usually involves trying to evade the
IDS using several techniques and verifying that the IDS still picks it up.

2.2.3 IDS False Positive Testing:

A well-known issue with Intrusion Detection Systems is that they generate a large
number of alerts that do not actually denote a security issue. This “noise” is
known as a false positive. Standard IDS testing methodology usually includes a
component that counts the total number or ratio of these.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.2.4 Problems with Quantitative Testing

These approaches can tell you what an IDS does wrong or badly, but passing all
of these tests is a pre-requisite for correct functionality, not an indication that the
system adds value.

For example, performance testing a car tells you that the car will NOT break at
200km/h on the highway (performance), will NOT turn left when you ask it to turn
right (correctness) and will NOT tell you that you are out of gas when in fact you
are not (False positive testing). All of these tests do not tell you if the car is the
right one for you or if of the car adds value to the product compared to other
manufacturers. Will this car make you life easier or more complicated? Will it
enable your employee to be more productive or will it be a drain on resources?

2.3 Qualitative Testing

Qualitative testing means that the result of a test is not a measurable value, but
some other result that is usually based on the judgement of the person
administering the test.

2.3.1 Ease of Deployment & Administration

This is the ease (or difficulty) of installing and maintaining the IDS system being
reviewed.

2.3.2 Feature list

This is the set of features that the IDS vendor claims to support in their product.
In an ideal world, this would be easy to compare and measure. But unfortunately,
not every IDS feature is implemented in the same way and not everybody agree
on what defines a certain feature.

2.3.3 Problems with Qualitative Testing:

Qualitative IDS tests usually rely a lot on the person performing the tests. For
example, if the reviewer thinks that the IDS is easy to remotely administer, then
that goes in the review. This is the case even if another person might think the
opposite.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.0 Other categories we would like to see:

In order to improve the way IDS systems are tested, it is our contention that more
qualitative tests are necessary. This makes testing less scientific and adds a
certain responsibility on the shoulders of the people performing these tests.
Unfortunately, we feel that the following categories are necessary even if they
cannot be easily measured.

3.1 Integration With Process

Process is arguably the most important thing in the Incident Lifecycle. Having a
well-established process allows Intrusion Analysts, Incident Handlers and various
manager and administrators to perform all necessary steps every time an
incident occurs. Sylvain Randier makes a really good case for this in his paper
about the IDS process (4). It is therefore very important that the IDS product
being evaluated integrates well with the established processes of an
organization.
If a specific incident requires a special type of escalation, does the IDS console
allow for the analyst to automate this?
Short of having this ability, the IDS system should at the very least not hinder the
user from following the process.

3.2 Learning Curve for Analysts/Sysadmin

The IDS system might be the neatest things since sliced bread with a very long
list of features. But if everybody that is to use the IDS system requires 1 month of
training or seminars, then it is almost useless. The learning curve for users and
administrator should be carefully evaluated as this might add significant cost to
the Total Cost of Ownership of the IDS.

3.3 Tuning Abilities

Every IDS vendor offers some tuning ability to eliminate background noise and
false positives. The real question becomes how easy and automated is the
process.

3.4 Integration with other products

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

With Meta-IDS systems like ArcSight and Intellitactics offering to add an
integration layer above traditional IDS and several vendors offering IDS plug-ins
for specific things (policy,correlation,vulnerability scans etc), the ability to send
(and sometimes receive) alerts from other products is increasingly important.
The problem is that sometimes IDS vendors do not want their product to
interoperate with other products because this vendor might want their installed
base to buy the module from them.

4.0 Problems preventing full IDS testing

4.1 Real World
Developing a complete and adequate IDS testing methodology is nearly
impossible for several reasons. The first reason being that complete IDS testing
cannot happen in a lab according to top IDS experts(5). Several usage conditions
only occur in the wild and can never be replicated. For example, our criteria of
Process Integration, Learning Curve and Tuning ability are particularly hard to
reproduce in a lab.

4.2 Costs

All of these factors are made worse by the fact that IDS deployments,
maintenance and training are fairly expensive. So deploying multiple IDS
infrastructures from different vendors until the correct product is found is usually
not an option for most organizations.

4.3 Time

Another reason that correct and complete IDS testing is very hard is that to do a
good job, one would have to run the IDS in a real-world situation for an extended
period of time as several conditions only occur after prolonged usage (huge
Databases, upgrade scenarios, new deployments, etc)

5.0 Recommendations

If all of this is true, how should we review Intrusion Detection Systems?
The solution is probably a mix of tests that are currently being done with a limited
deployment that could adequately test all of the issues mentioned above.
For example, a corporation would need to deploy enough sensors, aggregation
servers, plug-in modules and databases to make sure that all elements of the
IDS are tested, but this deployment does not need to be enterprise wide to avoid
excessive costs. As Marcus Ranum states in an interview (5)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“Before you buy any product, test it on your network as it would be deployed operationally. Lots
of things that look good on paper are much less effective in the real world than you’d expect. The
only way to see if you’ll be comfortable with a system is to try it first hand!”

This will allow testing of a lot of “intangibles” like User Interface, learning curve,
ratio of manual errors, speed of access to information and integration with
Incident Handling Process. This should lead to buying an IDS that actually fits
your needs.If vendors and buyers could agree on this way of doing things, then
maybe the IDS industry can avoid its ill-fated destiny that the Gartner group
predicts for it (7)

Works Cited

(1)Mell,Lippman.Haines and Zissman.An overview of Issue in Testing Intrusion
Detection Systems. NIST, June 2003
http://csrc.nist.gov/publications/nistir/nistir-7007.pdf

(2) Jeff Bankster. StealthWatch Intrusion Detection Appliance.Scmagazine .
SCMagazine.August 2001
http://www.scmagazine.com/scmagazine/2001_08/review/review1.html

(3)Marcus Ranum. Experiences Benchmarking Intrusion Detection Systems
NFR. December 2001
http://www.snort.org/docs/Benchmarking-IDS-NFR.pdf

(4)Sylvain Randier, Process Issues (GCIA Practical White Paper).
SANS 2003
http://www.giac.org/practical/GCIA/Sylvain_Randier_GCIA.pdf

(5) Gene Schultz. Interview with top 3 IDS experts
Information Security Bulletin, May 2000
http://www.chi-
publishing.com/portal/backissues/pdfs/ISB_2000/ISB0504/ISB0504GS.pdf

(6)<Example of IDS testing as Service Offering>
Network Analysis Systems Corporation Web. Service Offering Section
http://www.netansys.co.uk/services/ids.html

(7)Gartner Group.June11,2003
http://www3.gartner.com/5_about/press_releases/pr11june2003c.jsp

(8) General Reference, IDS reviews
http://www.neohapsis.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 2 : Network Detects

Detect1: Welchia is still alive and VERY healthy

Welchia/Nachi Worm Pings:

Context:

After I started running snort at home, I quickly discovered that I was getting hit
from the outside multiple times per second by ICMP requests that were
generating the “ICMP PING CyberKit 2.2 Windows” snort Rule (SID 483). Some
basic research showed that this was a fairly well documented case of
Welchia/Nachia worm looking for targets. I found this interesting because
Welchia has been around for at least 2 months now, but end users are still being
hammered by this.

Here are 4 consecutive Alerts logged by Snort).

[**] [1:483:2] ICMP PING CyberKit 2.2 Windows [**]
[Classification: Misc activity] [Priority: 3]
11/02-08:59:42.234783 65.95.179.178 -> 65.94.176.XXX
ICMP TTL:121 TOS:0x0 ID:59987 IpLen:20 DgmLen:92
Type:8 Code:0 ID:768 Seq:50857 ECHO
[Xref => http://www.whitehats.com/info/IDS154]

[**] [1:483:2] ICMP PING CyberKit 2.2 Windows [**]
[Classification: Misc activity] [Priority: 3]
11/02-08:59:55.885556 65.95.182.52 -> 65.94.176.XXX
ICMP TTL:121 TOS:0x0 ID:29101 IpLen:20 DgmLen:92
Type:8 Code:0 ID:512 Seq:52905 ECHO
[Xref => http://www.whitehats.com/info/IDS154]

[**] [1:483:2] ICMP PING CyberKit 2.2 Windows [**]
[Classification: Misc activity] [Priority: 3]
11/02-09:00:11.517493 65.93.34.177 -> 65.94.176.XXX
ICMP TTL:119 TOS:0x0 ID:35940 IpLen:20 DgmLen:92
Type:8 Code:0 ID:768 Seq:55213 ECHO
[Xref => http://www.whitehats.com/info/IDS154]

[**] [1:483:2] ICMP PING CyberKit 2.2 Windows [**]
[Classification: Misc activity] [Priority: 3]
11/02-09:00:14.677723 65.94.134.214 -> 65.94.176.XXX
ICMP TTL:125 TOS:0x0 ID:28549 IpLen:20 DgmLen:92

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Type:8 Code:0 ID:1024 Seq:929 ECHO
[Xref => http://www.whitehats.com/info/IDS154]

Associated packets:

08:59:42.234783 0:5c:ea:53:0:0 0:5e:0:21:45:0 7901 114:
 7065 415f b3b2 415e b078 0800 d900 0300
 c6a9 aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa 7c11 df93 594e 4f54 0000 6b45 b90d
 a53f fafd
08:59:55.885556 0:5c:71:ad:0:0 0:5e:0:21:45:0 7901 114:
 e689 415f b634 415e b078 0800 d200 0200
 cea9 aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa 0000 df93 594e 4f54 0000 6b45 b90d
 a53f fafd
09:00:11.517493 0:5c:8c:64:0:0 0:5e:0:21:45:0 7701 114:
 6158 415d 22b1 415e b078 0800 c7fc 0300
 d7ad aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa c0af 3001 415e b078 0035 dac2 b7a5
 c931 3a03
09:00:14.677723 0:5c:6f:85:0:0 0:5e:0:21:45:0 7d01 114:
 1411 415e 86d6 415e b078 0800 9b09 0400
 03a1 aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa a aaa aaaa aaaa aaaa aaaa aaaa aaaa
 aaaa c0af 3001 415e b078 0035 dac2 b7a5
 c931 3a03

1-Source of Trace:

These logs were found on the external OpenBSD system that acts as the primary
firewall/router for my home DSL connection (1.5 Mb, PPPoE). These detects
were found on the external interface of this system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Simplified Network Layout:

Ext. Net ---- ADSL ------ OpenBSD Router/Firewall ------HomeNet (Windows and
 Modem LinuxWorkstations)

 |
 Snort IDS

2- Detect was generated by:

The Detect was generated by the SNORT lightweight Intrusion Detection System
version 1.8.6 (I know, I should upgrade to a more recent version)

3- Probability the source address was spoofed

If this activity is indeed Welchia, then a lot of the activity would need to be from
real source IPs in order for this ICMP reconnaissance to be useful to the worm.
The goal of this reconnaissance is to find new targets, it needs to see the reply in
order to build the target list.

But several reports about this worm (including the initial reports on
www.incidents.org) mention that some of the traffic is spoofed.

I can only guess at the worm writer’s intention, but the worm probably tries to
spoof some source IPs in order to overload the senses of anybody looking at
various logs (so that the real IPs do not immediately stand out).

Most of the Source IPs in my snort logs are in the range 65.92.X.X to 65.95.X.X
which makes them inside my service Providers network (Bell Nexxia is the
networking arm of Bell Sympatico who supplies me with DSL service.

ARIN WHOIS lookup for the range in question:

Search results for: 65.93.34.177

Bell Canada BELLNEXXIA-10 (NET-65-92-0-0-1)
 65.92.0.0 - 65.95.255.255
Bell Nexxia (High Speed) HSLON-CA (NET-65-93-0-0-1)
 65.93.0.0 - 65.93.63.255

ARIN WHOIS database, last updated 2003-11-01 19:15

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Enter ? for additional hints on searching ARIN's WHOIS
database.

Some other source adresses are also present, be they also seem to be part of
the Sympatico network (other ranges, like 67.69.211.X)

4- Description of the Attack

Welchia will try and find potential victims to infect by sending out ICMP echo
requests to IP addresses that it constructs using a semi-random algorithm.
This is the part that is seen in my logs.

Once the worm finds hosts to infect, it then sends the exploit code to obtain
access to the Windows System. It then proceeds to infect the system
(See attack mechanism section).

Here is the CVE entry for the exploit that the Nachi/Welchia worm uses.

Name CAN-2003-0352 (under review)

Description
Buffer overflow in a certain DCOM interface for RPC in Microsoft Windows
NT 4.0, 2000, XP, and Server 2003 allows remote attackers to execute
arbitrary code via a malformed message, as exploited by the
Blaster/MSblast/LovSAN and Nachi/Welchia worms.

5- Attack Mechanism

There are several steps to a successful Welchia infection, only the first one is
represented in my logs. The other steps are listed here for completeness.

The Mcafee (2) web site has an excellent paper specifically about the MS-RPC
worms (Blaster, Welchia and variants) and how to find them in our logs

Discovery:

According to both the Symantec and McAfee web sites, the discovery algorithm
works as follows (3)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. Selects the victim IP address in two different ways: The worm uses either A.B.0.0 from
the infected machine's IP of A.B.C.D and counts up, or it will construct a random IP
address based on some hard-coded addresses.

After selecting the start address, the worm counts up through a range of Class B-sized
networks; for example, if the worm starts at A.B.0.0, it will count up to at least
A.B.255.255.

2. Sends an ICMP echo request, or PING, to check whether the constructed IP address is
an active machine on the network.

3. Once the worm identifies a machine as being active on the network, it will either send
data to TCP port 135, which exploits the DCOM RPC vulnerability, or it will send data to
TCP port 80 to exploit the WebDav vulnerability.

Exploit:

Infection

Syamntec mentions that to find infected hosts, you need to “Look for a ping, then
traffic on port 135/tcp, 666-to-765/tcp, and then 69/udp, like this”

So after choosing which IPs to ping, Welchia will go-ahead and ping that list of
IPs. It will then try to send the exploit code to port 135/tcp (RPC). If successful,
one should see some other ports involved in traffic like 69/udp (tftp, to transfer
the worm) and several other ports that can be used as a rootshell.

My logs do not show any of this as my firewall is not configured to reply to
anything at all. It just appears like an unused IP to Welchia when it does its initial
ICMP scanning and hence does not get any of the exploit code or other activity.

Summary:

In my specific case, the ICMP packets appear to be the stimulus that goes
without a response.

ICMP is being used for reconnaissance, but the service that the worm wants to
attack is RPC-DCOM (not shown in the logs because the attack never gets to
that stage)

The service has some VERY well known vulnerabilities and exposures and some
VERY well documented worms that automatically exploit these vulnerabilities.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6- Correlations

I could find a lot of correlations for this type of activity, but none of the specific
sources I found were reported to security correlation sites like Dshield or
MyNetWatchman.

But several mailing mailing lists and other sources confirm my interpretation of
the logs (Symantec, McAfee, various Snort mailing lists)

The most obvious correlation is on the official Symantec write-up about these
RPC worms referenced above:

The Symantec example ping-request detects looks exactly like mine:

11:47:47.576542 169.254.56.166 > 169.254.189.84: icmp: echo request
0x0000 4500 005c 599d 0000 8001 970c a9fe 38a6 E..\Y.........8.
0x0010 a9fe bd54 0800 fa51 0200 a658 aaaa aaaa ...T...Q...X....
0x0020 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0030 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0040 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0050 aaaa aaaa aaaa aaaa aaaa aaaa

The Michael Filtcraft reply to questions about his practical detects posted to the
intrusions@incidents.org on 2003-11-05 also talks about Welchia and its pings:

“Yes, there was other traffic from the source IP. The attacking IP
ping'd the destination IP, to which the dst ip replied. This ICMP
request caused Snort to fire a "ICMP PING CyberKit 2.2 Windows" alert.
A strong indicator the source is infected with the Welchia worm.

Further analysis of the ICMP request show a ping payload of 64 bytes of
"0xaa" data. A typical signature of a Welchia ping request.”

 7- Evidence of Active Targeting

There is no evidence that my network was specifically targeted by this type of
activity. The fact that most of these source are inside of Bell Nexxia’s network is
probably due to a combination of factors.

A) As seen in the Attack Mechanism Section, this worm does a lot of its
reconnaissance by scanning its own Class B subnet, so it makes a lot of
sense that a lot of the sources would be from my class B.

B) The fact that I am not seeing many attacks from non- Bell Nexxia
attackers is probably an indication that some type of filtering for this is
happening at Bell Nexxia Perimeter (filtering ICMP with ‘aa’’s in the
packet is not hard). Several reports from various ISPs in the states

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

mention that this is also occurring (only seeing source IPs from inside of
their ISP.

8- Severity

 Criticality = 5

System is a single point of failure for my home LAN and is therefore a very
critical box.

Lethality = 2

Not really an attack, can be considered reconnaissance. This
reconnaissance can lead to a Denial of Service condition, but this is not
likely anymore.

System Countermeasures = 5

All windows systems on my home network automatically download and
install critical patches from the WindowsUpdate site. In any case, the
pings themselves or any other packets would be stopped at the
router/firewall as I do not have any open ports. (I disabled SSH after the
last OpenSSH vulnerability).

Network Countermeasures = 1

 My firewall drops ICMP. This insures that I am not receiving any
exploit packets, but this does not help if the flood of incoming
ICMP create a DOS condition on my DSL connection. This wasted
bandwidth is somewhat low at the moment, but we can imagine what it
could have been like during the initial outbreak.

 Severity = (5+2) –(5+1) = 1

*Note, my evalution for this severity would probably have been a lot higher during
the initial outbreak when:

a) A lot more systems were probably sending out the pings
b) The patches were not as widely deployed
c) The network effects were not quite as well understood

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

9-Defensive recommendations

 Patch all Windows with MS03-26 and MS03-07 (not to mention ALL critical
patches). This will make sure that no matter what else occurs, the windows
machines are not vulnerable to the actual worm.
 As far as the DOS condition, you can use a filtering router with an ACL to
drop ICMP at the router, but this might not be a good idea in all situations.
The ideal solution is to drop ICMP where a series of “AA” is present, but not all
devices can do this.

Larger customers with a good relationship with their ISPs might get some help
with filtering this traffic before it reaches their network. (ACLs, etc)

10-Multiple Choice Test Question

How does the Welchia/Nachi worm try and choose which IPs to ping?

a) It tries every sequential IP in its Class A network
b) It tries random IPs on the internet until it finds a host
c) It will construct a start IP based on the infected

machines IP and then try the whole class B network
d) It will choose a starting a random IP address based on

some hard-coded list and try the whole class B network.
e) Could be C or D
f) None of the above
g) All of the above

Answer E

References:

1-
http://archives.neohapsis.com/archives/snort/2003-08/0643.html2-

Detecting Traffic due to RPC Worms. Symantec Corportation
http://securityresponse.symantec.com/avcenter/venc/data/detecting.traffic.due.to
pc.worms.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detect2: Gamespy Arcade Custom UDP pings

Something was being very active on the network and creating some lag when I
thought no heavy load was occurring. The Switch and HUB lights were going
insane, so snort was run to find ALL traffic (using the –v –d switches with no
configuration file specified. TCPDUMP could have just as easily been used.

Several thousand of these logs were collected over a 20-minute span.
The only thing that differs is the sources. Several hundred different sources were
involved, but the activity stayed the same.

11/02-15:44:07.861120 65.94.176.XXX:57116 -> 12.209.92.35:13139
UDP TTL:127 TOS:0x0 ID:26538 IpLen:20 DgmLen:60
Len: 40
91 01 00 01 04 86 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11/02-15:44:08.220628 65.94.176.XXX:55646 -> 141.150.14.193:13139
UDP TTL:127 TOS:0x0 ID:26540 IpLen:20 DgmLen:60
Len: 40
91 01 00 01 04 87 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11/02-15:44:08.238689 141.150.14.193:13139 -> 65.94.176.XXX:13139
UDP TTL:110 TOS:0x0 ID:33722 IpLen:20 DgmLen:60
Len: 40
91 01 00 01 52 6D 00 00 00 00 00 00 00 00 00 00 Rm..........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11/02-15:44:08.267764 141.150.14.193:13139 -> 65.94.176.XXX:55646
UDP TTL:110 TOS:0x0 ID:33724 IpLen:20 DgmLen:60
Len: 40
91 01 00 02 04 87 52 6E 00 00 00 00 00 00 00 00 Rn........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11/02-15:44:08.282979 65.94.176.XXX:55646 -> 141.150.14.193:13139
UDP TTL:127 TOS:0x0 ID:26541 IpLen:20 DgmLen:60
Len: 40
91 01 00 03 00 00 52 6E 00 00 00 00 00 00 00 00 Rn........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11/02-15:44:08.633812 12.209.92.35:13139 -> 65.94.176.XXX:57116
UDP TTL:49 TOS:0x0 ID:22957 IpLen:20 DgmLen:60
Len: 40
91 01 00 02 04 86 04 1D 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11/02-15:44:08.642533 65.94.176.XXX:57116 -> 12.209.92.35:13139
UDP TTL:127 TOS:0x0 ID:26542 IpLen:20 DgmLen:60
Len: 40
91 01 00 03 00 00 04 1D 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11/02-15:44:08.808061 208.157.148.72:13139 -> 65.94.176.XXX:13139
UDP TTL:52 TOS:0x0 ID:30773 IpLen:20 DgmLen:60
Len: 40
91 01 00 01 01 4A 00 00 00 00 00 00 00 00 00 00 J..........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11/02-15:44:09.533437 65.94.176.XXX:57098 -> 24.207.232.62:13139
UDP TTL:127 TOS:0x0 ID:26546 IpLen:20 DgmLen:60
Len: 40
91 01 00 01 04 8A 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11/02-15:44:09.560528 24.207.232.62:13139 -> 65.94.176.XXX:13139
UDP TTL:110 TOS:0x0 ID:5960 IpLen:20 DgmLen:60
Len: 40
91 01 00 01 DF 45 00 00 00 00 00 00 00 00 00 00 E..........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11/02-15:44:09.578489 68.211.176.118:13139 -> 65.94.176.XXX:13139
UDP TTL:109 TOS:0x0 ID:5340 IpLen:20 DgmLen:60
Len: 40
91 01 00 01 3B E9 00 00 00 00 00 00 00 00 00 00 ;...........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11/02-15:44:09.582785 68.211.176.118:13139 -> 65.94.176.XXX:50560
UDP TTL:109 TOS:0x0 ID:5341 IpLen:20 DgmLen:60
Len: 40

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

91 01 00 02 04 89 3B EA 00 00 00 00 00 00 00 00 ;.........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1-Source of Trace

The trace was found on my home network, on the external interface of my
OpenBSD firewall/router.

Simplified Network Layout:

Ext. Net ---- ADSL ------ OpenBSD Router/Firewall ------HomeNet (Windows and
 Modem LinuxWorkstations)

 |
 Snort IDS

2- Detect was generated by

Snort in packet capturing mode (option –vd, but without a configuration or rule
file) was used to generate these logs. Once the fact that suspicious activity was
taking place using the UDP protocol, a BPF filter was used to only capture that
kind of activity.

3- Probability the source address was spoofed

The sources address could easily have been spoofed since the interesting
detects use the UDP (connectionless) protocol. But given that these detects are
most probably a false positive in the Intrusion Detection sense (see below), we
can assume that the source addresses are real. Also, the activity seem to have a
goal of relaying information and details about gaming sessions(Chatting,
GameStats, etc) so spoofing the IPs or blocking them will probably remove some
functionality.

4- Description of the Attack

There are no known exploits for this attack, since it is probably a false positive.
Several packets are sent to and from the GameSpy Arcade servers. This was
easy to track down. The more interesting detects happen to and from at least 20
different source on the internet, mostly high speed home connections (DSL or
Cable). These UDP Packets with a destination port of 13139 were seriously

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

worrying me until some research showed that they are used for the Gamespy
Arcade Chat rooms. These rooms are used as a starting point to find friends for
on-line games. Turning that functionality off immediately stopped these UDP
packets from coming in (although the GameSpy servers are still contacted once
in a while with TCP packets to other ports, see below)

5- Attack Mechanism

As soon as you join the chatroom in Gamespy arcade, it looks like everybody in
that chatroom starts exchanging UDP packets. Those packets always have a
destination port of 13139 and usually have a sourceport of 13139 also.
Once in a while, a packet arrive from a different source port (like 57098).
The cause of this could not be established.

Leaving the chatroom in Gamespy causes this behaviour to immediately Stop.
Some light TCP and UDP activity continues to occur, but this is usually on
between the Gamespy servers and the user’s IP. The traffic is a lot less
pronounced and the reduced number of source makes it a lot less worrisome.

6- Correlations

Attacks sources could not be correlated against Internet attack lists like
MyNetwatchman or DShield. But several other sources confirm that this is indeed
normal behaviour for Gamespy (lists, etc) (1)

<Snipped>

Working Around the Firewall / Proxy
If you are behind a firewall/proxy and are able to change its settings, Arcade
needs the following TCP ports open in
order to function:
6667 (IRC)
3783 (Voice Chat Port)
27900 (Master Server UDP Heartbeat)
28900 (Master Server List Request)
29900 (GP Connection Manager)
29901 (GP Search Manager)
13139 (Custom UDP Pings)
6515 (Dplay UDP)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6500 (Query Port)

<Snipped>

7- Evidence of Active Targeting

The targeting seems directed at anybody in a given chat room at a specific
point in time. This is what I found in the GameSpy Documentation.
I have no way of actually verifying this for myself, because I would need
prior knowledge of everybody’s IP in a specific chatroom.

8- Severity
 Criticality: 2

 The machines being hit by these packets are all systems that are
designed to be general purpose workstations or gaming machines. All are useful,
but no single one is overly critical.

Lethality: 1

 This attack (or false positive) had the effect of making me nervous (I
actually though I had been hacked. But this was the only ill effect from these
detects.

 System Countermeasures: 5

All of my workstations are protected by the free version of ZoneAlarm. They
should be configured to drop packets when not part of a known connection. I had
authorized Gamespy Arcade as an application that could access the internet,
which is why the packets arrived at destination.

 Network Countermeasures: 5

 My OpenBSD firewall is hardened and configured to drop all sessions not
initiated from the inside of my network. If this had been an outside attack, it would
have not gotten through.

Severity = (1+6) – (5+5) = -3

*** Note: The fact that this turned out to be a probable false positive does not
lessen the learning experience I went through in order to find this out.
It gave me a good grasp of the Incident Handling process, including all of the
emotional responses that the unknown can bring. ****

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

9-Defensive recommendations

I do not recommend any defense against this as it might break the desired
behaviour of the application. If you do not like this behaviour, do not use
GameSpy Arcade. Many bugs exist in Gamespy and they do not seem to want to
fix them (as seen by this mail).

http://www.securityfocus.com/archive/1/344214/2003-11-09/2003-11-15/0

10-Multiple Choice Test Question

How many ports does GameSpy Arcade use for its various features:

a) 3
b) 4
c) 5
d) 6
e) 7
f) none of the above

Answer: F

Gamespy Arcade uses up to 9 different TCP or UDP ports depending on how
many features are used.

References:

Gamespy Support Page. Official Web Site
1-http://www.gamespyarcade.com/support/firewalls.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detect3: Proxy Scan

Note: This detect has been submitted before. I was made aware of this after the
fact. I reviewed questions that were asked on the list and tried to answer most o
the here (this is where I decided to use the p0f tool, to make sure I had
substantial additional contribution to these detects)

The following detects were dated 2003-10-30,

But the downloadable filenames where they were found are called 2003.09.30
(other practical students have already pointed this out)

To find an interesting trace, I put the snort alerts from the files 2002.9.28 to
2002.9.30 into a PostgreSQL database and grouped the Alerts by Signature
name and count. 1 IP came back as the top offender for generating 2 different
proxy scan alerts and several IPs from the same Class B network immediately
followed were also doing smaller scans.

I need to scope the exercise a little bit so only the detect from 2003-10-30
will be discussed.

Output from the DB format of Snort-DB

All proxy scans for 2002-10-30 (aggregate view)

Count sig_name Source IP DestPort(TCP)
5425 SCAN Proxy (8080) attempt 24.90.122.137 8080
5425 SCAN Squid Proxy attempt 24.90.122.137 3128

51 SCAN SOCKS Proxy attempt 216.77.219.225 1080
14 SCAN SOCKS Proxy attempt 216.77.216.104 1080
6 SCAN SOCKS Proxy attempt 216.77.216.150 1080
6 SCAN Squid Proxy attempt 172.184.170.160 3128

Sample of the individual alerts generated by SNORT and logged to the DataBase
(sample for each source IP).

Time Signature Source Target

10/30/2002 9:33 SCAN Proxy (8080) attempt 24.90.122.137 207.166.45.235 8080
10/30/2002 9:33 SCAN Proxy (8080) attempt 24.90.122.137 207.166.45.237 8080
10/30/2002 9:33 SCAN Squid Proxy attempt 24.90.122.137 207.166.45.236 3128
10/30/2002 9:33 SCAN Squid Proxy attempt 24.90.122.137 207.166.45.238 3128
10/30/2002 9:33 SCAN Proxy (8080) attempt 24.90.122.137 207.166.45.239 8080
10/30/2002 9:33 SCAN Squid Proxy attempt 24.90.122.137 207.166.45.233 3128
10/30/2002 9:33 SCAN Proxy (8080) attempt 24.90.122.137 207.166.45.234 8080
10/30/2002 9:33 SCAN Proxy (8080) attempt 24.90.122.137 207.166.45.240 8080

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10/30/2002 9:33 SCAN Proxy (8080) attempt 24.90.122.137 207.166.45.245 8080
10/30/2002 9:33 SCAN Squid Proxy attempt 24.90.122.137 207.166.45.244 3128
10/30/2002 9:33 SCAN Squid Proxy attempt 24.90.122.137 207.166.45.243 3128
10/30/2002 9:33 SCAN Proxy (8080) attempt 24.90.122.137 207.166.45.246 8080

10/30/2002 13:21 SCAN Proxy (8080) attempt 65.169.47.29 207.166.116.126 8080
10/30/2002 13:22 SCAN Proxy (8080) attempt 65.169.47.29 207.166.116.126 8080
10/30/2002 13:22 SCAN Proxy (8080) attempt 65.169.47.29 207.166.116.126 8080
10/30/2002 13:22 SCAN Squid Proxy attempt 65.169.47.29 207.166.116.126 3128
10/30/2002 13:22 SCAN Squid Proxy attempt 65.169.47.29 207.166.116.126 3128
10/30/2002 13:22 SCAN Squid Proxy attempt 65.169.47.29 207.166.116.126 3128
10/30/2002 9:17 SCAN Squid Proxy attempt 172.184.170.160 207.166.49.39 3128
10/30/2002 9:17 SCAN Squid Proxy attempt 172.184.170.160 207.166.49.39 3128
10/30/2002 9:17 SCAN Squid Proxy attempt 172.184.170.160 207.166.49.39 3128

10/30/2002 11:45 SCAN Squid Proxy attempt 172.184.170.160 207.166.50.39 3128
10/30/2002 11:45 SCAN Squid Proxy attempt 172.184.170.160 207.166.50.39 3128
10/30/2002 11:46 SCAN Squid Proxy attempt 172.184.170.160 207.166.50.39 3128
10/30/2002 12:46 SCAN Squid Proxy attempt 172.184.170.160 207.166.51.39 3128
10/30/2002 12:46 SCAN Squid Proxy attempt 172.184.170.160 207.166.51.39 3128
10/30/2002 12:46 SCAN Squid Proxy attempt 172.184.170.160 207.166.51.39 3128
10/30/2002 23:00 SCAN Squid Proxy attempt 212.32.4.25 207.166.151.27 3128
10/30/2002 23:00 SCAN Proxy (8080) attempt 212.32.4.25 207.166.151.27 8080

10/30/2002 23:00
SCAN SOCKS Proxy
attempt 212.32.4.25 207.166.151.27 1080

10/30/2002 23:00
SCAN SOCKS Proxy
attempt 212.32.4.25 207.166.151.27 1080

10/30/2002 23:00 SCAN Squid Proxy attempt 212.32.4.25 207.166.151.27 3128
10/30/2002 23:00 SCAN Proxy (8080) attempt 212.32.4.25 207.166.151.27 8080
10/30/2002 23:00 SCAN Squid Proxy attempt 212.32.4.25 207.166.151.27 3128
10/30/2002 23:00 SCAN Proxy (8080) attempt 212.32.4.25 207.166.151.27 8080

10/30/2002 23:00
SCAN SOCKS Proxy
attempt 212.32.4.25 207.166.151.27 1080

10/30/2002 23:00
SCAN SOCKS Proxy
attempt 212.32.4.25 207.166.151.27 1080

10/30/2002 23:00 SCAN Squid Proxy attempt 212.32.4.25 207.166.151.27 3128
10/30/2002 23:00 SCAN Proxy (8080) attempt 212.32.4.25 207.166.151.27 8080
10/30/2002 23:00 SCAN Squid Proxy attempt 212.32.4.25 207.166.151.27 3128
10/30/2002 23:00 SCAN Proxy (8080) attempt 212.32.4.25 207.166.151.27 8080

10/30/2002 23:00
SCAN SOCKS Proxy
attempt 212.32.4.25 207.166.151.27 1080

10/30/2002 23:00
SCAN SOCKS Proxy
attempt 212.32.4.25 207.166.151.27 1080

10/30/2002 23:00 SCAN Squid Proxy attempt 212.32.4.25 207.166.151.27 3128
10/30/2002 23:00 SCAN Proxy (8080) attempt 212.32.4.25 207.166.151.27 8080

10/30/2002 6:32
SCAN SOCKS Proxy
attempt 216.77.216.104 207.166.225.208 1080

10/30/2002 6:36
SCAN SOCKS Proxy
attempt 216.77.216.104 207.166.17.220 1080

10/30/2002 6:41
SCAN SOCKS Proxy
attempt 216.77.216.104 207.166.108.129 1080

10/30/2002 6:45
SCAN SOCKS Proxy
attempt 216.77.216.104 207.166.82.111 1080

10/30/2002 6:49 SCAN SOCKS Proxy 216.77.216.104 207.166.165.57 1080

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

attempt

10/30/2002 6:54
SCAN SOCKS Proxy
attempt 216.77.216.104 207.166.95.144 1080

10/30/2002 6:58
SCAN SOCKS Proxy
attempt 216.77.216.104 207.166.44.119 1080

10/30/2002 7:02
SCAN SOCKS Proxy
attempt 216.77.216.104 207.166.71.193 1080

10/30/2002 7:07
SCAN SOCKS Proxy
attempt 216.77.216.104 207.166.138.253 1080

10/30/2002 7:11
SCAN SOCKS Proxy
attempt 216.77.216.104 207.166.243.38 1080

10/30/2002 7:15
SCAN SOCKS Proxy
attempt 216.77.216.104 207.166.7.39 1080

10/30/2002 7:20
SCAN SOCKS Proxy
attempt 216.77.216.104 207.166.32.3 1080

10/30/2002 7:24
SCAN SOCKS Proxy
attempt 216.77.216.104 207.166.123.38 1080

10/30/2002 7:28
SCAN SOCKS Proxy
attempt 216.77.216.104 207.166.246.195 1080

10/30/2002 11:36
SCAN SOCKS Proxy
attempt 216.77.216.150 207.166.65.142 1080

10/30/2002 11:40
SCAN SOCKS Proxy
attempt 216.77.216.150 207.166.175.163 1080

10/30/2002 11:44
SCAN SOCKS Proxy
attempt 216.77.216.150 207.166.238.24 1080

10/30/2002 11:49
SCAN SOCKS Proxy
attempt 216.77.216.150 207.166.216.231 1080

10/30/2002 11:53
SCAN SOCKS Proxy
attempt 216.77.216.150 207.166.205.192 1080

10/30/2002 11:57
SCAN SOCKS Proxy
attempt 216.77.216.150 207.166.199.98 1080

10/30/2002 12:02
SCAN SOCKS Proxy
attempt 216.77.216.150 207.166.43.243 1080

10/30/2002 12:06
SCAN SOCKS Proxy
attempt 216.77.216.150 207.166.239.247 1080

10/30/2002 12:10
SCAN SOCKS Proxy
attempt 216.77.216.150 207.166.85.25 1080

10/30/2002 12:15
SCAN SOCKS Proxy
attempt 216.77.216.150 207.166.36.164 1080

10/30/2002 12:19
SCAN SOCKS Proxy
attempt 216.77.216.150 207.166.200.6 1080

10/30/2002 12:23
SCAN SOCKS Proxy
attempt 216.77.216.150 207.166.24.213 1080

10/30/2002 12:28
SCAN SOCKS Proxy
attempt 216.77.216.150 207.166.21.196 1080

1- Source of Trace

 This trace was generated by the raw log files from incidents.org.
 The dates used were from 2002-10-28 to 2002-10-31 2002-10-30 was
chosen at first and the others were mostly used for correlation.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2- Detect was generated by

The alerts were generated by running Snort 2.0.2 with the following command

Snort –c /etc/snort.conf –b –r 2002.9.30 –k none

The snort.conf file contained the default rules and the default configurations
except that output to a postgreSQL Database was added to make data
manipulation easier.

The –k none option is used so that snort does try and calculate the checksum.
Snort would not generate any alerts without this configuration. Several mailing list
posts suggested trying this and it worked. I am assuming this would not have
been necessary if I had been using the same snort version as was used to
capture the logs.

This command was repeated for the raw logs of 2002-09-29, 2002-10-30, 2002-
and 10-31.

The following snort rules were identified as being part of the 2 relevant scans

alert tcp $EXTERNAL_NET any -> $HOME_NET 3128 (msg:"SCAN Squid Proxy
attempt"; flags:S; classtype:attempted-recon; sid:618; rev:2;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 1080 (msg:"SCAN SOCKS Proxy
attempt"; flags:S; reference:url,help.undernet.org/proxyscan/;

classtype:attempted-recon; sid:615; rev:3;)
alert tcp $EXTERNAL_NET any -> $HOME_NET 8080 (msg:"SCAN Proxy \(8080\)
attempt"; flags:S; classtype:attempted-recon; sid:620; rev:2;)

All of these alerts work in the same way. A packet will trigger one of these alerts
if it meets all of these criteria:

- It uses the TCP protocol
- It arrives from the defined external network and is destined to the internal
network
-It has the SYN Flag set
-It is destined to one of the following ports: 3128, 1080, 8080

3- Probability the source address(es) spoofed

It is not very likely that the source address was spoofed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This scan uses the connection-oriented TCP protocol and the attacker was
probably looking to get results of the scans. Although spoofing is not very likely in
this case, see section 4.1 for the fact that it is possible.

4- Description of the Attack

The attackers are scanning for ports 1080, 8080 and 3128 which usually means
looking for an open or vulnerable proxy. Several Trojans use some of these
ports, it might be hard to distinguish between a scan for a proxy running on a
given port of somebody trolling for trojaned computers.

I also looked at the possibilities that this was part of a RingZero attack, but the
timeframe and characteristics of the packets do not make this likely. (see section
below, the attacking computers do not seem to all be running the same OS)

4.1 Fingerprinting using p0f (obtaining more information about attackers)

I used a tool called p0f to passively fingerprint the captured packets, and all
Of the sources in the 216.77 class B network share the following trace by p0f

 UNKNOWN [1024:49:0:40:.:QA:?:?]

So the Window Size, TTL and MSS are exactly the same.
But it could not give an actual identification of the OS

To me this is an indication that all of the 216.77 addresses scanning for proxies
are in fact the same machine.

The practical detect by Mark Bazant talks about how nmap is able to do this.

http://cert.uni-stuttgart.de/archive/intrusions/2003/07/msg00154.html

The 24.90.122.137 IP hit a lot more targets was more active in a 2 hours span.

It was identified by p0f as

24.90.122.137:4277 - Windows 2000 SP2+, XP SP1 (seldom 98 4.10.2222)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Conclusion: The 24.90.122.137 attacker is NOT the same as the other top
offender(s) from 216.77.X.X

On the other hand, it is possible that all of the 216.77.X.X attackers are in fact the
same computer.

5- Attack Mechanism

The attackers send a single TCP packet with the SYN flag set hopping to get an
ACK in return. This would prove that a service is running on that and is trying to
complete a 3-way handshake.

6- Correlations

Several CVE number exist for the ISA, Squid, Proxy, Cisco, products that use on
of these ports. Several Papers exist talking about looking for open proxies and
several other GCIA practicals have been written about this scan
(Alfred Koo is one example)

References (sample, not an exhaustive list)

Name CVE-2002-0068

Description

Squid 2.4 STABLE3 and earlier allows remote attackers to
cause a denial of service (core dump) and possibly execute
arbitrary code with an ftp:// URL with a larger number of
special characters, which exceed the buffer when Squid
URL-escapes the characters.

Name CVE-2002-0916

Description

Format string vulnerability in the allowuser code for the
Stellar-X msntauth authentication module, as distributed
in Squid 2.4.STABLE6 and earlier, allows remote attackers
to execute arbitrary code via format strings in the user
name, which are not properly handled in a syslog call.

Name CAN-2002-0735 (under review)

Description Format string vulnerability in the logging() function in C-Note Squid
LDAP authentication module (squid_auth_LDAP) 2.0.2 and earlier allows

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

remote attackers to cause a denial of service and possibly execute
arbitrary code by triggering log messages.

References

• VULN-DEV:20020506 ldap vulnerabilities
• URL:http://marc.theaimsgroup.com/?l=vuln-

dev&m=102070267500932&w=2
• VULNWATCH:20020506 [VulnWatch] ldap vulnerabilities
• URL:http://archives.neohapsis.com/archives/vulnwatch/2002-

q2/0053.html
• BUGTRAQ:20020506 ldap vulnerabilities
• URL:http://online.securityfocus.com/archive/1/271173
• BID:4679
• URL:http://www.securityfocus.com/bid/4679
• XF:squidauthldap-logging-format-string(9019)
• URL:http://www.iss.net/security_center/static/9019.php

Phase Proposed (20020726)

Votes ACCEPT(2) Cole, Armstrong
NOOP(3) Cox, Wall, Foat

Comments

Micosoft ISA

Name CVE-2001-0239

Description
Microsoft Internet Security and Acceleration (ISA) Server
2000 Web Proxy allows remote attackers to cause a denial
of service via a long web request with a specific type.

Name CVE-2001-0658

Description

Cross-site scripting (CSS) vulnerability in Microsoft
Internet Security and Acceleration (ISA) Server 2000
allows remote attackers to cause other clients to execute
certain script or read cookies via malicious script in an
invalid URL that is not properly quoted in an error
message.

Other proxies :

Wingate (Port 1080)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Name

CVE-1999-0291

Description
The WinGate proxy is installed without a password, which
allows remote attackers to redirect connections without
authentication.

7- Evidence of Active Targeting

The attacks looks like part of scan that was targeted at proxy ports, most likely
part of a wider scan, but this is not possible to prove given the available data.
There is no evidence that any host was actively targeted.

 No evidence was found that any reply was sent to the attackers and no follow-up
probing occurred to indicate any action was taken based on this reconnaissance.
There is no evidence that the attackers knew of a proxy in the scan range or that
one was found.

8- Severity

 severity = (+ lethality) – (system countermeasures + network
countermeasures)

Criticality = 4

The attack looks for a critical service that may or may not be vulnerable

Lethality = 1

This is mostly reconnaissance. We need to lookout for follow-ups
No evidence was found that follow-up scans or exploit existed.
It is possible that the evidence is present in subsequent logs, but I cannot
base my evaluation on this.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

System Countermeasures = 2

My assumption is that this systems are relatively well protected.
I cannot find any evidence of immediate compromise so an average score
of 2 was given.

Network Countermeasures = 2

Criticality: (4+1) – (2+2) = 1

Note: Since these logs come from incidents.org,
This estimate is admittedly less precise than the other 2 detects. This is because

9-Defensive recommendations

-Make sure you are not an Open Proxy (do not allow connection from the
external interface to elsewhere, only from the internal interface of the proxy)

-Check your logs often for suspicious activity

-Keep you proxy product up-to-date

10-Multiple Choice Test Question

Which are some factors looked at to passively fingerprint
an Operating System.

a)window size
b)time to live
c)maximum segment size
d)don't fragment flag
e)window scaling
f)sackOK flag
g)nop flag
h)declared packet size
i) all of the above

Answer: I)

References:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Michal Zalewski. p0f README.. Version 1.8.3
http://www.stearns.org/p0f/README

Common Vulnerability and Exposure, Mitre Corportation
http://www.cve.mitre.org/cve/

Alfred Koo. Practical Detect for GCIA. July 30, 2003
http://cert.uni-stuttgart.de/archive/intrusions/2003/07/msg00374.html

Mark Bazant . Practical Detect for GCIA. July 2003
http://cert.uni-stuttgart.de/archive/intrusions/2003/07/msg00154.html

11- Question & Answers from intrusions@incidents.org

I did not get any replies from intrusions@incidents.org
 My were coworkers were then asked to find questions and I answered.
I posted my detects on 2003-11-07 and had only received 1 reply by 2003-11-
12.

Both Comments are from the 2003

A) Comment 1 : Your multiple choice questions is too easy

I originally had posted a question about “Which tools is used to passively
fingerprint an OS”. This did not test GCIA level knowledge

I changed the question to reflect the knowledge that GCIA students are
expected to have. I asked for the variables that p0f looks at instead.

B) Comment 2: Are the addresses spoofed or not?

I had 2 intruders running the scan. 1 IP seems real, there is a possibility that
the other one was spoofed using Nmap. Several sections were slightly
modified to make this clearer.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 3 : Analyze this

1.0 Executive Summary

These are the results of the Intrusion Detection System audit that your
University mandated through SANS/GIAC. Although these results are very
preliminary, some interesting conclusions and defensive recommendations
can be made.

286170 Alerts, 11699732 Port Scans and 21800 Out Of Spec packets were
analyzed using a variety of tools and methods, but full correlation could not be
made given that several important pieces of information were kept secret from
the auditors at your request.

The following information was found

a) VERY large variety of activity

More investigation is needed to determine if this activity follows University
Guidelines for Faculty and staff and/or acceptable use policy.
Examples of activity that might need to be reviewed:

-IRC usage
-Peer 2 Peer Usage

b) Some computers need to be looked at closely

Some highly suspect systems were found and need a closer look (forensics
analysis or at the very least be rebuilt).

Computers with MS-Blaster Alert
Computer with TFTP alerts

More detail will be given about these computers in the relevant sections of the
report.

The following Defensive recommendation can be made following this preliminary
audit:

Recommendation 1: Full Audit

A full log AND policy audit needs to be commissioned with contextual information
given to the person performing this audit. This would allow the creation of a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

report with a greater level of detail and to check the logs for sign of policy
violations as well as system compromise

Recommendation 2: Tighten up the perimeter

Add some layers of protection between users and the Internet.
It almost looks like anybody from the outside can run any attack towards
computers on the inside of the network. I would recommend forcing users to
navigate through a proxy for all allowed services and to block all other
inbound/outbound traffic (TFTP and IRC, for instance)
Placing users behind a firewall and NAT might also help mask the internals of the
networks from outside reconnaissance (of which there is quite a bit)

Recommendation 3: Tune Snort

Once this audit of services and computer logs is complete, you need to tune
the IDS avoid some false positives. Some of the alerts are not false positives in
the pure IDS sense of the word (the packet actually triggered a specific rule). But
if the type of traffic that triggered the rule is normal and allowed, that rule should
be disabled

2.0 Origin of the Logs

These logs originated from www.incidents.org and were dated from 2003-10-
19 to 2003-10-23 inclusively. Three log formats (generated by SNORT) from
these dates were analyzed. These logs represent the Alerts (named
alert.0310dd), Portscans (named scans.0310dd) and Out of Spec packets
(named OOS_Report_2003_10_XX).

alert.031019 scans.031019 OOS_Report_2003_10_19
alert.031020 scans.031020 OOS_Report_2003_10_20
alert.031021 scans.031021 OOS_Report_2003_10_21
alert.031022 scans.031022 OOS_Report_2003_10_22
alert.031023 scans.031023 OOS_Report_2003_10_23

3.0 Traffic and Network Analysis

Several techniques were used to analyse the traffic. The most important of
these techniques involves trying to find the services that are supposed to be
running inside monitored network. This would give us a good idea of what

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

kind of alerts should be happening and also allow us to eliminate some alerts
as false positives.

Context:
While trying to analyze and correlate the portscans logs to the alert logs, we
soon found that the 130.85.0.0/16 subnet is the most frequently occurring
subnet. Combine this with the fact that the MY.NET subnet is the one that
was generating the most alerts (by far) and you get a pretty strong correlation
that 130.85 is in fact MY.NET

Looking up this subnet in WHOIS yields:

Search results for: 130.85.80.51

OrgName: University of Maryland Baltimore County
OrgID: UMBC
Address: UMBC University Computing
City: Baltimore
StateProv: MD
PostalCode: 21250
Country: US

NetRange: 130.85.0.0 - 130.85.255.255
CIDR: 130.85.0.0/16
NetName: UMBCNET
NetHandle: NET-130-85-0-0-1
Parent: NET-130-0-0-0-0
NetType: Direct Assignment
NameServer: UMBC5.UMBC.EDU
NameServer: UMBC4.UMBC.EDU
NameServer: UMBC3.UMBC.EDU
Comment:
RegDate: 1988-07-05
Updated: 2000-03-17

TechHandle: JJS41-ARIN
TechName: Suess, John J.
TechPhone: +1-410-455-2582
TechEmail: jack@umbc.edu

ARIN WHOIS database, last updated 2003-11-09 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This is another indication that we are in fact guessing correctly in assuming that
130.85 is the same as MY.NET because the requirements paper listed
the monitored subnet as a University. One might wonder what the point
of hiding the source IP in the alert files is, if one can just find out with the other
files?
Was this done on purpose? Or is this another case of broken script/cron job?

3.1 Services

The alerts and Portscans were checked for patterns in source port and
destination port in order to see if this could help us determine what kind of
services is running on those computers.

Sylvain Ranier best described the technique to find servers

Summary: The assumption is that a server running on port X will probably
have alerts destined to that port or alerts source from that port. Portscans
might also be triggered from that source port to multiple IP and Destination
ports.

This will give us a list of probable servers.
We cannot really confirm this list without actually probing the network in
question so this will not be done. We fully expect to be wrong on more than a
few accounts

Here are the results:

Destination port

SourceIP Count #Dest Dest Port
MY.NET.70.49 5 3 21
MY.NET.80.51 2 2 22
MY.NET.80.51 1 1 25
MY.NET.100.13 2 1 25
MY.NET.100.230 18 1 25
MY.NET.24.20 22 3 25
MY.NET.25.10 10 1 25
MY.NET.25.67 3 1 25
MY.NET.25.68 6 2 25
MY.NET.25.69 3 2 25
MY.NET.25.70 8 1 25
MY.NET.25.71 11 4 25
MY.NET.25.73 1 1 25
MY.NET.80.51 1 1 53

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MY.NET.84.235 6 2 80
MY.NET.97.150 1 1 80
MY.NET.97.228 1 1 80
MY.NET.75.103 1 1 80
MY.NET.53.20 4 1 80
MY.NET.53.21 2 1 80
MY.NET.70.176 1 1 80

by Source Port

SourceIP Count #Dest Source Port

MY.NET.12.4 3 1 110
MY.NET.60.17 1 1 110
MY.NET.12.6 26 3 25
MY.NET.24.20 2 1 25
MY.NET.100.165 17 3 80
MY.NET.150.83 2 1 80
MY.NET.162.67 5 1 80
MY.NET.24.34 36 15 80
MY.NET.24.44 32 7 80
MY.NET.29.3 13 3 80
MY.NET.5.20 18 5 80
MY.NET.60.14 4 1 80

By removing the IP with a small number of alerts, we get the following
probable servers running these services.

Port 25 : SMTP servers

SourceIP Count #Dest Dest Port

MY.NET.24.20 22 3 25
MY.NET.25.10 10 1 25
MY.NET.25.71 11 4 25
MY.NET.12.6 26 3 25

Port 110 : Pop Servers

SourceIP Count #Dest Dest Port
MY.NET.12.4 3 1 110

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Port 80 Web Servers

MY.NET.84.235 6 2 80
MY.NET.53.20 4 1 80
MY.NET.53.21 2 1 80
MY.NET.70.176 1 1 80
MY.NET.100.16517 3 80
MY.NET.24.34 36 15 80
MY.NET.24.44 32 7 80
MY.NET.29.3 13 3 80
MY.NET.5.20 18 5 80

Port 53 : DNS servers

These machines are obviously DNS servers as per the ports scans generated
and the WHOIS lookup.

130.85.1.3
130.85.1.4

FTP servers :

SourceIP Count #Dest Dest Port
MY.NET.70.49 5 3 21

4.0 Highest Volume Alerts

The Top 5 issues in terms of volume of alerts will be briefly discussed here.
This criteria of alert volume is being used under the assumption that some of
the most damaging attacks, reconnaissance and Denial of Service activities
will probably be in this category. Investigating these issues first has the
additional side-benefit that if a false positive is found, we can then tune the
IDS to ignore this alerts. This would greatly help future analyst, as they would
have to sort through less data.

Another set of alerts will be discussed in the “Top Talkers” section as the top
talkers are not necessarily one and the same.

 Here is a table of all Alerts that generated, sorted by activity and volume

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Count #sources # targets Signature
199206 884 132248 SMB Name Wildcard
28546 619 959 SMB C access
15606 447 2 MY.NET.30.4 activity
11562 1412 937 EXPLOIT x86 NOOP
7131 1 3 connect to 515 from inside
5726 100 1 MY.NET.30.3 activity
4518 26 111 TCP SRC and DST outside network
3266 4 1830 External RPC call
3172 99 115 High port 65535 tcp - possible Red Worm - traffic
2009 84 327 Possible trojan server activity
1825 102 1498 ICMP SRC and DST outside network
752 150 59 NMAP TCP ping!
494 20 25 SUNRPC highport access!
455 60 54 Null scan!
438 75 79 High port 65535 udp - possible Red Worm - traffic
342 1 6 [UMBC NIDS IRC Alert] IRC user /kill detected
182 4 3 [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC
105 35 6 FTP passwd attempt
103 48 1 [UMBC NIDS] External MiMail alert
84 2 84 Back Orifice
83 17 27 TFTP - Internal UDP connection to external tftp server
74 57 46 Incomplete Packet Fragments Discarded
62 38 24 Tiny Fragments - Possible Hostile Activity
55 7 2 [UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC
53 10 7 EXPLOIT x86 stealth noop
51 3 13 NETBIOS NT NULL session
38 5 2 DDOS shaft client to handler
37 2 6 [UMBC NIDS IRC Alert] Possible drone command detected.
27 25 18 EXPLOIT x86 setuid 0
26 21 20 EXPLOIT x86 setgid 0
25 8 13 EXPLOIT NTPDX buffer overflow
14 3 2 DDOS mstream client to handler
14 5 1 FTP DoS ftpd globbing
13 3 3 TFTP - Internal TCP connection to external tftp server
12 2 1 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected.
11 7 7 TFTP - External UDP connection to internal tftp server
10 3 5 Attempted Sun RPC high port access
10 7 6 RFB - Possible WinVNC - 010708-1
5 1 3 HelpDesk MY.NET.70.49 to External FTP
4 1 2 [UMBC NIDS IRC Alert] K\:line'd user detected
4 4 3 NIMDA - Attempt to execute cmd from campus host
3 2 3 [UMBC NIDS] Internal MSBlast Infection Request
2 2 1 External FTP to HelpDesk MY.NET.53.29
2 1 2 connect to 515 from outside
2 2 1 External FTP to HelpDesk MY.NET.70.50
2 2 2 TFTP - External TCP connection to internal tftp server
2 1 1 Traffic from port 53 to port 123

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2 2 2 Probable NMAP fingerprint attempt
2 2 1 External FTP to HelpDesk MY.NET.70.49
1 1 1 IRC evil – running XDCC
1 1 1 Bugbear@MM virus in SMTP
1 1 1 [UMBC NIDS IRC Alert] Possible trojaned box detected attempting to IRC

SMB Name Wildcard

SMB Name Wildcard is a signature that is triggered when a NetBIOS computers
tries to request the Netbios NameTable Information from a remote computer.
This table shows the top offenders for the attacks.

Source Count # of Targets

MY.NET.80.51 115618 115610
MY.NET.150.133 72066 13748
MY.NET.29.2 3100 2147
MY.NET.84.224 1290 5
MY.NET.150.198 474 234
MY.NET.42.9 193 14
MY.NET.17.34 143 5
MY.NET.84.154 141 32
MY.NET.111.65 133 27
MY.NET.150.44 118 61
MY.NET.84.202 116 5
MY.NET.29.3 114 12
MY.NET.162.62 102 5
MY.NET.150.42 99 4

Sample activity for the top offenders of this shows that ALL of the targets are
external and mostly sequential by subnet. This tends to show that some script or
automated tool is trying to find out a lot of NetBios information. This could be the
sign of reconnaissance, system compromise or that some worm/virus infected
these machines.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Possible scenerio: a netbios Worm?

 sample of the alerts

2003-10-23 10:19:33.963 SMB Name Wildcard MY.NET.80.51 1036 16.229.19.199 137
2003-10-23 10:19:33.963 SMB Name Wildcard MY.NET.80.51 1035 52.94.88.177 137
2003-10-23 10:19:34.717 SMB Name Wildcard MY.NET.80.51 1036 16.229.19.204 137
2003-10-23 10:19:35.167 SMB Name Wildcard MY.NET.80.51 1036 16.229.19.207 137
2003-10-23 10:19:35.317 SMB Name Wildcard MY.NET.80.51 1036 16.229.19.208 137
2003-10-23 10:19:36.860 SMB Name Wildcard MY.NET.80.51 1035 52.94.88.195 137
2003-10-23 10:19:36.860 SMB Name Wildcard MY.NET.80.51 1036 16.229.19.218 137
2003-10-23 10:19:37.313 SMB Name Wildcard MY.NET.80.51 1036 16.229.19.221 137
2003-10-23 10:19:37.313 SMB Name Wildcard MY.NET.80.51 1035 52.94.88.198 137
2003-10-23 10:19:37.463 SMB Name Wildcard MY.NET.80.51 1035 52.94.88.199 137
2003-10-23 10:19:37.613 SMB Name Wildcard MY.NET.80.51 1036 16.229.19.223 137
2003-10-23 10:19:37.613 SMB Name Wildcard MY.NET.80.51 1035 52.94.88.200 137
2003-10-23 10:19:38.213 SMB Name Wildcard MY.NET.80.51 1036 16.229.19.227 137
2003-10-23 10:19:38.213 SMB Name Wildcard MY.NET.80.51 1035 52.94.88.204 137
2003-10-23 10:19:38.363 SMB Name Wildcard MY.NET.80.51 1035 52.94.88.205 137

Recommended action: Closer examination of the top 5 offenders are listed
above. They are either compromised, infected or being misused.

SMB C$ Access

This alert is triggered when somebody tries to mount the C$ share that is usually
present on unhardened Windows Machines. Administrators are the only people
authorized to mount these shares.
In our case, several IP addresses are scanning several subnets inside the
University. There is usually no good reason to do this. If this were a legitimate
administrative access, there would probably be no need to scan subnets from the
outside, as he/she would probably already know which hosts they want to
access.

Probable Scenario:

This looks like a classic case of reconnaissance for Administrative shares.
The attacker would run more directed probing or password grinding.

The assumption for the attacker is that if these C$ shares are available from the
outside, the administrative user name is probably easy to guess (admin,
administrator, etc) and a strong password policy is probably not enforced.

Sample Alerts take from the logs over a span of 2 minutes

SMB C access 12.84.41.64 1576 MY.NET.70.128 139
SMB C access 12.84.41.64 1582 MY.NET.70.146 139
SMB C access 12.84.41.64 1584 MY.NET.70.154 139
SMB C access 12.84.41.64 1588 MY.NET.70.177 139
SMB C access 12.84.41.64 1564 MY.NET.71.230 139

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SMB C access 12.84.41.64 1589 MY.NET.70.180 139
SMB C access 12.84.41.64 1596 MY.NET.70.206 139
SMB C access 12.84.41.64 1605 MY.NET.70.235 139
SMB C access 12.84.41.64 1570 MY.NET.70.72 139
SMB C access 12.84.41.64 1572 MY.NET.70.82 139
SMB C access 12.84.41.64 1576 MY.NET.70.128 139
SMB C access 12.84.41.64 1588 MY.NET.70.177 139
SMB C access 12.84.41.64 1565 MY.NET.71.237 139
SMB C access 12.84.41.64 1594 MY.NET.70.197 139
SMB C access 12.84.41.64 1629 MY.NET.69.171 139

Correllations:

http://www.digitaltrust.it/arachnids/IDS339/event.html
http://www.snort.org/snort-db/sid.html?sid=533
http://www.giac.org/practical/GCIA/Andrew_Jones_GCIA.pdf

MY.NET.30.4 activity

This alert is presumably triggered when a host that is not supposed to generate
activity actually is. A lot of people from the outside are connecting to this
computer on ports 80, 524 and 51443.

Port 524 is used by Novell and should not be going outside the local network

MY.NET.30.4 activity 172.142.110.232 1471 MY.NET.30.4 51443
MY.NET.30.4 activity 172.142.110.232 1471 MY.NET.30.4 51443
MY.NET.30.4 activity 172.142.110.232 1474 MY.NET.30.4 51443
MY.NET.30.4 activity 172.142.110.232 1474 MY.NET.30.4 51443
MY.NET.30.4 activity 172.142.110.232 1474 MY.NET.30.4 51443
MY.NET.30.4 activity 172.142.110.232 1474 MY.NET.30.4 51443
MY.NET.30.4 activity 172.142.110.232 1474 MY.NET.30.4 51443
MY.NET.30.4 activity 172.142.110.232 1471 MY.NET.30.4 51443
MY.NET.30.4 activity 172.142.110.232 1474 MY.NET.30.4 51443
MY.NET.30.4 activity 172.142.110.232 1474 MY.NET.30.4 51443
MY.NET.30.4 activity 172.142.110.232 1474 MY.NET.30.4 51443
MY.NET.30.4 activity 172.142.110.232 1474 MY.NET.30.4 51443

Port 51443 is used by Novell Secure Folder option.

Recommendation:

Take MY.NET.30.4 off the network and rebuild it, unless it is supposed to
connect to this external server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.tek-tips.com/gfaqs.cfm/lev2/3/lev3/19/pid/871/fid/3352
http://archives.neohapsis.com/archives/incidents/2000-10/0221.html

EXPLOIT x86 NOOP

Some NO-OP instruction was found in a packet. This is x86 code that is found in
a lot of known exploits. These alerts are mostly from external machines going to
internal machines. Several known false positives are documented for this, but
there is a possibility that this can be somebody that has already performed
reconnaissance and is now trying to exploit some machines on a target list.

EXPLOIT x86 NOOP 12.11.171.7 21874 MY.NET.70.164 135
EXPLOIT x86 NOOP 12.110.52.132 59809 MY.NET.80.107 135
EXPLOIT x86 NOOP 12.13.158.98 4295 MY.NET.69.175 135
EXPLOIT x86 NOOP 12.134.34.92 4722 MY.NET.66.61 135
EXPLOIT x86 NOOP 12.153.9.9 3288 MY.NET.80.107 135
EXPLOIT x86 NOOP 12.161.217.145 27876 MY.NET.150.150 135
EXPLOIT x86 NOOP 12.166.203.254 40570 MY.NET.11.9 135
EXPLOIT x86 NOOP 12.168.149.2 49324 MY.NET.53.31 135
EXPLOIT x86 NOOP 12.174.232.15 3556 MY.NET.70.235 445
EXPLOIT x86 NOOP 12.174.232.15 4229 MY.NET.69.224 445
EXPLOIT x86 NOOP 12.215.187.116 3981 MY.NET.53.31 135
EXPLOIT x86 NOOP 12.219.244.158 2644 MY.NET.111.156 135
EXPLOIT x86 NOOP 12.22.118.230 12860 MY.NET.11.9 135
EXPLOIT x86 NOOP 12.223.197.216 1282 MY.NET.190.97 135
EXPLOIT x86 NOOP 12.223.197.216 1287 MY.NET.190.102 135
EXPLOIT x86 NOOP 12.223.212.39 4672 MY.NET.152.45 135
EXPLOIT x86 NOOP 12.31.156.167 54088 MY.NET.152.45 135

Correlations:

http://www.derkeiler.com/Mailing-Lists/securityfocus/focus-ids/2002-04/0041.html

Connect to 515 from inside

This is a very well known exploit for the LPD service that runs on port 515 on
most UNIX/Linux older Linux/Unix distributions.

The activity is pretty worrisome because there is no reason for the attacker to
connect to a printer on the outside. The Ramen Worm and toolkit also use some
exploits for this service

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515
connect to 515 from inside MY.NET.162.41 721 128.183.110.242 515

Recommended Action: Host MY.NET.162.41 is probably compromised or being
misused for malicious activity. Take it off the network for forensics unless it really
needs to print on the destination host.

Correlations:

http://lists.insecure.org/lists/incidents/2001/Jun/0240.html
http://www.cert.org/incident_notes/IN-2001-01.html

MY.NET.30.3 activity

Similar to the 30.4 activity except that is only directed to computer on the outside
on port 524 which is a Novell port.

MY.NET.30.3 activity 68.57.90.146 1032 MY.NET.30.3 524
MY.NET.30.3 activity 68.57.90.146 1032 MY.NET.30.3 524
MY.NET.30.3 activity 68.57.90.146 1032 MY.NET.30.3 524
MY.NET.30.3 activity 68.55.53.222 1032 MY.NET.30.3 524
MY.NET.30.3 activity 165.247.89.143 2727 MY.NET.30.3 524
MY.NET.30.3 activity 165.247.89.143 2727 MY.NET.30.3 524
MY.NET.30.3 activity 165.247.89.143 2727 MY.NET.30.3 524
MY.NET.30.3 activity 165.247.89.143 2727 MY.NET.30.3 524
MY.NET.30.3 activity 68.55.233.51 63785 MY.NET.30.3 524
MY.NET.30.3 activity 68.55.233.51 63785 MY.NET.30.3 524
MY.NET.30.3 activity 68.55.233.51 63785 MY.NET.30.3 524
MY.NET.30.3 activity 68.55.233.51 63785 MY.NET.30.3 524

Other alerts of interest

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The following alerts were considered interesting for various reasons:

a) IRC alerts

A query was run to find all alerts containing the keyword IRC.
Interestingly enough, most of those alerts start with the prefix
[UMBC NIDS IRC Alert]. To me, this is an indication that somebody actually paid
special attention to these rules and modified the standard SNORT message.
Does this mean that the University has had problems with this in the past.
What is the IRC policy at UMBC?

Here is a table containing the IRC alerts and their associated counts

342 [UMBC NIDS IRC Alert] IRC user /kill detected
182 [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC
55 [UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC
37 [UMBC NIDS IRC Alert] Possible drone command detected.
12 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected.
4 [UMBC NIDS IRC Alert] K\:line'd user detected
1 [UMBC NIDS IRC Alert] Possible trojaned box detected attempting to IRC
1 IRC evil - running XDCC

Some of these alerts seem particularly worrisome even if the counts are not
extremely high. IRC is a brutal environment, and the University needs to make
sure that users do not commit crimes on it (Warez, Attacks, Zombies, etc)

Examples of hosts that would need to be examined:

MY.NET.15.198
MY.NET.97.91
MY.NET.80.149
MY.NET.82.79
MY.NET.80.16
MY.NET.81.18
MY.NET.97.236
MY.NET.97.126
MY.NET.97.135
MY.NET.97.21
MY.NET.97.219
MY.NET.29.2
MY.NET.163.249

TFTP connection:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TFTP connections are commonly used to transfer small files or simple transfer
from point A to point B. Usually this a way to update routers or other simple
devices. But they are also used to transfer worm and virus code as seen in the
Recent Blaster/Welchia RPC worms. (See detect#2)

Here is a summary of the TFTP alerts generated by Snort.

83 TFTP - Internal UDP connection to external tftp server
13 TFTP - Internal TCP connection to external tftp server
11 TFTP - External UDP connection to internal tftp server
2 TFTP - External TCP connection to internal tftp server

I see no good reason why TFTP connection should occur between the inside and
the outside of the University.

These two source were used as a test case because they had the highest
occurrences of TFTP alerts

MY.NET.69.156
MY.NET.153.195

The first host does not seem to have any related activity, but the second host
also seems to have MS-Blaster related alerts. This is significant because MS-
Blaster and other worms have a TFTP component to download the worm code
after being exploited.
These will be discussed in the next section, but I recommend that all computers
with TFTP activity be checked for worms or signs of compromise.
This brings us to the link graph that follows.

The graph represents a link between TFTP activity from the outside and further
activity from the target hosts.

The targets of the TFTP activity are on the X axis, and an aggregate view of their
activity is represented by the 2 bar charts. The blue charts represents the alert
count and the red bar represents the number of distinct destinations.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0
50

100
150
200
250
300
350
400
450
500

MY.N
ET

.11
2.1

59

MY.N
ET

.16
3.2

49

MY.N
ET

.53
.41

MY.N
ET

.69
.13

7

MY.N
ET

.80
.14

9

MY.N
ET

.83
.87

MY.N
ET

.97
.21

Alert Count

Dest Count

As you can tell from this graph, host MY.NET.112.159 requires further follow up
and investigation.

The SQL used to generate this graph is as follows

select sourceip,count(*) as '# of alerts',count(distinct destip) as '# of dest'
from alerts
where sourceip in
(select destip from alerts
where alert like '%tftp%' and destip like 'MY.NET.%')
group by sourceip

[UMBC NIDS] Internal MSBlast Infection

The following computers have generated the MSBlast alert.
This alert seems to trigger on having port 4444 open (known backdoor for
Msblaster)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 [UMBC NIDS] Internal MSBlast Infection Request MY.NET.163.249 4444 130.67.101.88
4865

This first computer seems to be infected with a lot more than Blaster
It is also generating the following alerts:

Possible trojan server activity MY.NET.163.249 6667 200.163.61.175 27374
SMB Name Wildcard MY.NET.163.249 137 81.53.115.246 137

Both of these alerts could be an indication of further compromise
The Possible Trojan server alert uses the Subseven port.

The next computer is also generating several SMB name Wildcard, TFTP

alerts as described in the previous section.

2003-10-22 23:37:58.173 [UMBC NIDS] Internal MSBlast Infection Request
 MY.NET.153.195 4444 67.30.249.193 4610

5.0 Top Talkers

The top Talkers section only looks at the volume of activity per category of file
analyzed.
Results should be fairly similar to the important alerts section because in both
cases the volume of logged data was used in order to sort through the data.

Here are the results:

 Alerts Portscans

Count SourceIP Alert # targets Count Source # targets

115618 MY.NET.80.51 SMB Name Wildcard 115610 2166933 130.85.1.3 85807
72066 MY.NET.150.133 SMB Name Wildcard 13748 1294187 130.85.70.154 285689
7128 MY.NET.162.41 connect to 515 from inside 3 966595 130.85.163.107 966532
4279 169.254.244.56 TCP SRC and DST outside network 4 888185 130.85.84.194 884152
3100 MY.NET.29.2 SMB Name Wildcard 2147 669973 130.85.163.249 586885
2934 68.55.85.180 MY.NET.30.4 activity 2 273705 130.85.42.1 99301
2837 193.114.70.169 External RPC call 1592 213577 130.85.70.129 85732
2743 68.54.91.147 MY.NET.30.4 activity 1 211571 130.85.1.5 21215
1290 MY.NET.84.224 SMB Name Wildcard 5 175961 130.85.80.149 92535

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1224 68.57.90.146 MY.NET.30.3 activity 1 171526 130.85.111.72 171525

As we can see, several of the alerts in question are the same as in 4.1
The only alerts we have not already discussed are:

TCP SRC and DST outside Network

This alert occurs when both the source and destination IP are outside of the
network (obviously).

What is interesting here is that there are repeated alerts for this, but all of them
have the same source, the 2 same destinations.

TCP SRC and DST outside network 169.254.244.56 2476 211.91.144.72 996
TCP SRC and DST outside network 169.254.244.56 2477 218.16.124.131 21

As you can see, the destination 211.91.144.72 is always contacted on port 996
and 218.16.124.131 is always contacted on port 21.

The IP address is obviously spoofed as it resolves to this the LINKLOCAL as
seen in the following WHOIS query.

NetRange: 169.254.0.0 - 169.254.255.255
CIDR: 169.254.0.0/16
NetName: LINKLOCAL
NetHandle: NET-169-254-0-0-1
Parent: NET-169-0-0-0-0
NetType: IANA Special Use
NameServer: BLACKHOLE-1.IANA.ORG
NameServer: BLACKHOLE-2.IANA.ORG
Comment: Please see RFC 3330 for additional information.
RegDate: 1998-01-27
Updated: 2002-10-14

OrgTechHandle: IANA-ARIN
OrgTechName: Internet Corporation for Assigned Names and Number
OrgTechPhone: +1-310-823-9358
OrgTechEmail: res-ip@iana.org

Further Investigation is needed to determine who the source actually is and what
is actually occurring.

External RPC call

This alert seems to trigger when SunRPC (port 111) is probed from the outside
as seen in the logs. SunRPC has several very well-known vulnerabilities.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

External RPC call 193.114.70.169 4253 MY.NET.16.16 111
External RPC call 193.114.70.169 4298 MY.NET.16.33 111
External RPC call 193.114.70.169 2590 MY.NET.21.0 111
External RPC call 193.114.70.169 4262 MY.NET.16.19 111

Looking for additional proof of compromised systems, we ran a query for all
activity from this subset of the destinations and it returned no results.

It looks like this is just another case of external reconnaissance.

6.0 Out of Spec Packets

Here is the Summary Output of our Perl Script.
It is a count of Packets in all of the OOS files with the associated flag
combination. The rest of the output details what source,destinations and ports
were generated with a count. Since the output was a lot less informative, it
was put in Appendix C

Given the scope of this report, only the top 2 types of flag combinations that
occurred the most often will be analyzed.

FLAGS
flags: 12****S* : 21254
flags: ******** : 296
flags: ****P*** : 122
flags: 12***R** : 37
flags: 12*A*R** : 15
flags: **U*P*SF : 7
flags: ***A**SF : 7
flags: ***AP*SF : 4
flags: *2UAPRSF : 3
flags: 1**AP*SF : 2
flags: 12*AP**F : 2
flags: 1**A**SF : 2
flags: 12**PR** : 2
flags: *2U***SF : 2
flags: 12U*P*** : 2
flags: *2***RSF : 2
flags: 12*AP*S* : 2
flags: 12UA*RS* : 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

flags: 12***R*F : 2
flags: 12U*P**F : 2
flags: *2*APRSF : 2
flags: 12UAPR*F : 2
flags: **U***** : 1
flags: 12*A**** : 1
flags: **UA**SF : 1
flags: 12UAPRSF : 1
flags: 12****** : 1
flags: 12**PRS* : 1
flags: 1**A*RSF : 1
flags: *2*A*RSF : 1
flags: *2UAP*SF : 1
flags: **UAPRSF : 1
flags: 12UA*R** : 1
flags: 12UAPRS* : 1
flags: 12*****F : 1
flags: 1**APRSF : 1
flags: 1*****SF : 1
flags: 12*A*RS* : 1
flags: 12UA*RSF : 1
flags: 12**PRSF : 1
flags: 12U***** : 1
flags: *2*AP*SF : 1
flags: *****RSF : 1
flags: *2UA*RSF : 1
flags: 1*U*PRSF : 1
flags: 12**P*SF : 1
flags: 12U***S* : 1
flags: 12**P*S* : 1
flags: *2*A**SF : 1
flags: 12UAP*** : 1
flags: 1***P*SF : 1
**REPORT
no_tcpopt : 332
tcpopt : 21468
total_packets : 21800

1) 12****S*

As we can see from the report above, the 12****S* flag combination is by far the
most common.

This thread on a snort related mailing list explains that this combination is used
for ECN (Explicit Network Congestion).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://archives.neohapsis.com/archives/snort/2002-07/0617.html

While this post deals with the behaviour of ECN.

http://archives.neohapsis.com/archives/snort/2001-01/0409.html

ECN is a protocol (defined in rfc2481 and rfc2914) that deals with network
congestion and flow control. It is a relatively new way dealing with network
congestion and not every TCP stack deals with it correctly.

An interesting side-effect of using reserved bit and flags for ECN,according to
that last link (Crist Clark) is that

“ Also remember as ECN come into more use, the threat represented by the

reserved bits" also declines. Since more IP stack implementers will
need to worry about the reserved bits, there should be better behavior
from various IP stacks when confronted with the high-bits set. The
primary malicious uses of the bits, fingerprinting and stealth, should
become less effective.”

Only time will tell if this is true or not.

Recommended Action: Verify that all of the hosts using these flags are actually
trying to use ECN. If not, something is wrong.

2) ******** (No flags)

 As discussed in Joanne_Schell’s GCIA paper,this was probably part of some
type of NULL scan that was too slow to trigger an associated alert.
I think that this analysis is fairly accurate.

7.0 WHOIS lookups for source IPs

WHOIS lookups

A sample of WHOIS lookups about some attackers was requested when the
audit was commissioned. We also provide the www.dshield.org report on the
specific external IP being investigated. You will find the listing below. In order to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

determine which attackers to investigate, we built a query to find the Top 10
external attackers.

The Top5 REAL external IPs will then be chosen from the table below.

Count IP Alert

4279 169.254.244.56 TCP SRC and DST outside network
2934 68.55.85.180 MY.NET.30.4 activity
2837 193.114.70.169 External RPC call
2743 68.54.91.147 MY.NET.30.4 activity
1224 68.57.90.146 MY.NET.30.3 activity
1124 172.142.110.232 MY.NET.30.4 activity
1023 200.96.13.157 High port 65535 tcp - possible Red Worm – traffic

997 151.196.19.202 MY.NET.30.4 activity
764 209.6.97.168 EXPLOIT x86 NOOP
735 68.55.27.157 MY.NET.30.3 activity

Search results for: 68.55.85.180

Comcast Cable Communications, Inc. JUMPSTART-1 (NET-68-32-
0-0-1)
 68.32.0.0 - 68.63.255.255
Comcast Cable Communications, Inc. BALTIMORE-A-6 (NET-68-
55-0-0-1)
 68.55.0.0 - 68.55.255.255

 # ARIN WHOIS database, last updated 2003-11-09 19:15

Enter ? for additional hints on searching ARIN's WHOIS
database.

Your IP (68.55.85.180) does not appear as an
attacker in the DShield database.

Search Results for 193.114.70.169

inetnum: 193.114.70.160 - 193.114.70.191
netname: FIRST-PROCUREMENT-ASSOCIATES-LIMITED
descr: FIRST PROCUREMENT ASSOCIATES LIMITED
country: GB

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

admin-c: JB7221-RIPE
tech-c: AB480-RIPE
status: ASSIGNED PA
notify: ripe-notify@uk.psi.com
mnt-by: PSINET-UK-SYSADMIN
changed: sysadmin@uk.psi.com 19990903
source: RIPE
route: 193.114.0.0/15
descr: EUNETGB-114-AGG
origin: AS1290
mnt-by: PSINET-MNT
changed: network-ripe@uk.psi.com 20021015
source: RIPE
person: John Barke
address: FIRST PROCUREMENT ASSOCIATES LIMITED
address: 1St Andrews House
address: Vernon Gate
address: Derby
address: DE1 1UJ
phone: +44 1332 604 313
nic-hdl: JB7221-RIPE
notify: ripe-notify@uk.psi.com
mnt-by: PSINET-UK-SYSADMIN
changed: sysadmin@uk.psi.com 19990903
source: RIPE

Your IP (193.114.70.169) does not appear as an
attacker in the DShield database.

Search results for: 68.54.91.147

Comcast Cable Communications, Inc. JUMPSTART-1 (NET-68-32-
0-0-1)
 68.32.0.0 - 68.63.255.255
Comcast Cable Communications, Inc. BALTIMORE-A-4 (NET-68-
54-80-0-1)
 68.54.80.0 - 68.54.95.255

ARIN WHOIS database, last updated 2003-11-09 19:15
Enter ? for additional hints on searching ARIN's WHOIS
database.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Your IP (68.54.91.147) does not appear as an
attacker in the DShield database.

Search results for: 68.57.90.146

Comcast Cable Communications, Inc. JUMPSTART-1 (NET-68-32-
0-0-1)
 68.32.0.0 - 68.63.255.255
Comcast Cable Communications, Inc. CHESTERFIELD-2 (NET-68-
57-64-0-1)
 68.57.64.0 - 68.57.127.255

ARIN WHOIS database, last updated 2003-11-09 19:15
Enter ? for additional hints on searching ARIN's WHOIS
database.

Your IP (68.57.90.146) does not appear as an
attacker in the DShield database.

OrgName: America Online
OrgID: AOL
Address: 22000 AOL Way
City: Dulles
StateProv: VA
PostalCode: 20166
Country: US

NetRange: 172.128.0.0 - 172.191.255.255
CIDR: 172.128.0.0/10
NetName: AOL-172BLK
NetHandle: NET-172-128-0-0-1
Parent: NET-172-0-0-0-0
NetType: Direct Allocation
NameServer: DAHA-01.NS.AOL.COM
NameServer: DAHA-02.NS.AOL.COM
NameServer: DAHA-07.NS.AOL.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-
PORTABLE
RegDate: 2000-03-24
Updated: 2003-08-08

TechHandle: AOL-NOC-ARIN

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TechName: America Online, Inc.
TechPhone: +1-703-265-4670
TechEmail: domains@aol.net

OrgAbuseHandle: AOL382-ARIN
OrgAbuseName: Abuse
OrgAbusePhone: +1-703-265-4670
OrgAbuseEmail: abuse@aol.net

OrgNOCHandle: AOL236-ARIN
OrgNOCName: NOC
OrgNOCPhone: +1-703-265-4670
OrgNOCEmail: noc@aol.net

OrgTechHandle: AOL-NOC-ARIN
OrgTechName: America Online, Inc.
OrgTechPhone: +1-703-265-4670
OrgTechEmail: domains@aol.net

ARIN WHOIS database, last updated 2003-11-09 19:15
Enter ? for additional hints on searching ARIN's WHOIS
database.

Your IP (172.142.110.232) does not appear as an
attacker in the DShield database.

7.1 Analysis of the WHOIS

Most of these sources seem to be in the range for Major ISPs (1 AOL, 3
comcast).
Only 1 appears to be a company in England.
None of these IPs had been reported to Dshield for abuse/strange activity

8.0 Process used

In order to process the amount of data that was necessary to complete this
assignment, several techniques were used:

a) Perl scripts

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Perl scripts were developed to turns the alert, portscans and OOS files into 1
CSV (Comma Separated) files. This merger was done as a first step, to make
the information more manageable. This gave us 2 VERY large CSV. We
could have searched through these files with some tools, but this made data
manipulation awkward. This leads us to the following point, the DTS

b) DTS (Microsoft Data Transformation Services)

In order to manipulate the data, it was decided that it needed to go in an SQL

database. Since I have access to several power MS-SQL servers at work, the
choice to use these was pretty obvious. Microsoft offers a tool that very easily
imports and exports data to/from SQL servers. This is called Data Transformation
Services (DTS). Although this tool is extremely powerful, the DTS transformation
needed to send the CSV file to a database was trivial. It was just a case of
running through all the steps.

1) Source: The source of the DTS was defined as the CSV
2) Target: The Target was defined as a table in the DB, if you had not
create a table yet, one can be created at this time. We just mapped the same

fields as in the Perl scripts (see appendix) and put them in the same order.
3) Transformation: Because the fields of the CSV and the target tables were

mapped in the same order, we did not even need to modify defaults here.
4) Run the DTS

Repeat the steps for all of the CSVs

c) SQL

Once a everything was inside a few tables, some simple SQL queries
were developed to do some data mining.

These queries were based on some basic building blocks of what to look for:
A very large number of queries were run to analyze the data, but most were a
combination (subset, ordering, grouping) of the following factors:

-Total Count
-Counts per source IP
-Count per Target IP
-Counts per alert
-Count per source port

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

-Count per destination port
-# of sources
-# of targets
-Is it internal of external
-Number of distinct ports

After these queries had been run to find some interesting activity,
some more standard queries were run to find more specific activity

-Past activity from attacker
-Past activity from target
-Past activity towards target

d) OOS files:

Another Perl Script was used to generate a report about OOS files.
The Counts of source IP, destination IP and Various packet combination.
The alerts were not put into a DB as the output was not as important as
seeing everything that was going on. The Perl script keeps tracks of totals
and outputs a summary at the end.

Works Cited
Part 3: Analyze this

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(Most of these links were included directly in the text)

GCIA practicals referenced in part 3

http://www.giac.org/practical/GCIA/Sylvain_Randier_GCIA.pdf
www.whitehats.ca/main/members/Herc_Man/Files/Al_Williams_GCIAPractical
.pdf
http://www.giac.org/practical/GCIA/Andrew_Jones_GCIA.pdf
http://www.giac.org/practical/GCIA/Bruce_Auburn_GCIA.pdf

Correllations:

Port 524: compromised machine with ndsd. Jans Hector.Oct 2000
http://archives.neohapsis.com/archives/incidents/2000-10/0221.html

How do I get NetWare 6 Web Services to work?.Tek-tip website
http://www.tek-tips.com/gfaqs.cfm/lev2/3/lev3/19/pid/871/fid/3352
l
ECN,Phil Wood, July 2002. Snort Mailing list
http://archives.neohapsis.com/archives/snort/2002-07/0617.html

massive lpr exploit attempt. Pavel Lozhkin.July2001.Incidents mailing list
http://lists.insecure.org/lists/incidents/2001/Jun/0240.html

Incident Note IN-2001-01.CERT.January 2001
http://www.cert.org/incident_notes/IN-2001-01.html

SHELLCODE x86 NOOP. Kevein Butters. April 2002Focus IDS list
http://www.derkeiler.com/Mailing-Lists/securityfocus/focus-ids/2002-

04/0041.html

Signature References

http://www.digitaltrust.it/arachnids/IDS339/event.html
http://www.snort.org/snort-db/sid.html?sid=533

Whois lookup

www.arin.net

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix A

Credits, help and acknowledgment

In addition to the other GCIA practicals and sources already credited, the

following people helped me in one way or another in doing this practical

Xavier Guilbault for debugging and helping with some Per.l

Tom Chmielarski for general help and using his Databases.

Richard Noel, Philippe Lafontaine, Mitchell Choiniere and Daeman Stewart for
proofreading and suggestion.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix B :Perl Scripts

Perl Script for transferring ALERTS to a CSV file and portscans to CSVs
Bit and pieces from the GCIA practicals cited above were used but the whole
thing ended up re-written.
The regular expression was taken directly from Al Williams’ practical

#!/usr/bin/perl
Convert alert.DDDDDD files to csv
#my $file = shift;
my $dir = shift;
my $mask = shift;
opendir(DIR,$dir) or die " Could not open dir : $!";
my @files = readdir DIR;
closedir DIR;
my $file;
foreach $file (@files) {
 if($file =~ /$mask/) {
 print STDERR "Parsing $file\n";

 open(FILE,"<",$file);
 while(<FILE>) {
 next unless m/^\d/;
 next if m/spp_portscan/;
 chomp;
 ($date_time,$alert,$addrs) = split(/\s+\Q[**]\E\s+/);
 ($source, $dest) = ($addrs =~ m/(.*)\s+->\s+(.*)/);
 ($date,$time) = split(/-/,$date_time);
 ($source_ip, $source_port) = split(/:/,$source);
 ($dest_ip, $dest_port) = split(/:/,$dest);
 print
"$date,$time,$alert,$source_ip,$source_port,$dest_ip,$dest_port\n";
 }

 close(FILE);
 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2nd script

#!/usr/bin/perl
Convert scans.DDDDDD files to csv
my %months = ("Mar" => 3,
 "Oct" => 10);
my $dir = shift;
my $mask = shift;
opendir(DIR,$dir) or die " Could not open dir : $!";
my @files = readdir DIR;
closedir DIR;
my $file;
foreach $file (@files) {
 if($file =~ /$mask/) {
 print STDERR "Parsing $file\n";
 open(FILE,"<",$file);
 while(<FILE>) {
 next unless m/^[A-Z]/;
 chomp;
 ($month,$day,$time,$source,$dir,$dest,$proto,$flags) = split;
 $month = $months{$month};
 $date = sprintf("%02d/%02d", $month, $day);
 ($src_ip,$src_port) = split(/:/,$source);
 ($dst_ip,$dst_port) = split(/:/,$dest);
 print
"$date,$time,$src_ip,$src_port,$dst_ip,$dst_port,$proto,$flags\n";
 }
 }
}

3rd script to analyze OOS files

#!/usr/bin/perl

use strict;
my $dir = shift;
my $mask = shift;
if($dir eq "") {
 print "usage: $0 dir mask\n";
 print "if you want it in a file... well do:\n";
 print "$0 . OOS_ > file_to_write \n";
 print "TADAM!\n";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 exit(0);
}

opendir(DIR,$dir) or die "INVALID DIR !!!";
my @allfiles = readdir DIR;
closedir DIR;
my $file;
my %records;
$records{"total_packets"} = 0;
my %sources;
my %targets;
my %targetsNports;
my %sourcesNports;
my %source_ports;
my %target_ports;
my %flags;

my $line = 2;
my ($date,$source_ip,$source_port,$dest_ip,$dest_port);
my ($date_time,$alert,$tmp,$addrs,$source,$dest,$time,$month,$day);
my ($proto,$ttl,$tos,$id,$iplen,$dmglen,$frag);
my ($flags,$seq,$ack,$win,$tcplen);
my ($tcpopt);

foreach $file (@allfiles) {
 if($file =~ /$mask/) {
 print STDERR "Reading $file...";
 open(FILE,"<",$file) or die "Invalid file...";
 $line = 2;

 while(<FILE>) {
 if(/=\+=\+=\+=\+=\+=\+/) { $line = 0; }
 elsif($line >= 2) {
 if($line == 2) {
 ($date_time,$source,$tmp,$dest) = split(/\s+/);
 ($date,$time) = split(/-/,$date_time);
 ($month,$day) = split(/\//,$date);
 ($source_ip, $source_port) = split(/:/,$source);
 ($dest_ip, $dest_port) = split(/:/,$dest);
 # print "2003-$month-$day
$time,$source_ip,$source_port,$dest_ip,$dest_port\n";
 } elsif ($line == 3) {
 ($proto,$ttl,$tos,$id,$iplen,$dmglen,$frag) =
split(/\s+/);
 my @ttl = split(/:/,$ttl);
 $ttl = $ttl[1];

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 my @tos = split(/:/,$tos);
 $tos = $tos[1];
 my @id = split(/:/,$id);
 $id = $id[1];
 my @iplen = split(/:/,$iplen);
 $iplen = $iplen[1];
 #print "$proto $ttl $tos $id $iplen $dmglen
$frag\n";
 } elsif ($line == 4) {
 my @tmp = split(/\s+/);
 $flags = $tmp[0];
 $seq = $tmp[2];
 $ack = $tmp[4];
 $win = $tmp[6];
 $tcplen = $tmp[8];
 #if($flags eq "") {
 # print STDERR "$line at $. and
".$records{"total_packets"}."\n";
 #}
 #print "$flags $seq $ack $win $tcplen\n";
 } elsif ($line == 5) {
 if(/\d+/) { $tcpopt = 1; } else { $tcpopt =0;}
 }
 }
 if($line == 0) {

 # On a fini de parser le packet, alors on update les
records,
 # tu n'as qua ajouter un field dans le hash table et
suivre la
 # meme methode que pour les autres stats et tu peux
avoir ce
 # que tu veux.

 if($date eq "") { print STDERR "ERR date at $.\n";}
 if($dest_ip eq "") { print STDERR "ERR dest ip at
$.\n"; }
 if($source_ip eq "") { print STDERR "ERR source ip at
$.\n"; }
 if($flags eq "") { print STDERR "ERR flags at $.\n"; }

 #,$source_ip,$source_port,$dest_ip,$dest_port);
my
($date_time,$alert,$tmp,$addrs,$source,$dest,$time,$month,$day);
my ($proto,$ttl,$tos,$id,$iplen,$dmglen,$frag);
my ($flags,$seq,$ack,$win,$tcplen);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

my ($tcpopt);
my %targetsNports;
#my %sourcesNports;

 my $rec_key = "Source : $source_ip";

 if($sources{$rec_key} == undef) {
 $sources{$rec_key}=1;
 } else {
 $sources{$rec_key}++;
 }

 $rec_key = "Source with dst port :
$source_ip\:$dest_port";

 if($sourcesNports{$rec_key} == undef) {
 $sourcesNports{$rec_key}=1;
 } else {
 $sourcesNports{$rec_key}++;
 }

 $rec_key = "Dest with dst port : $dest_ip\:$dest_port";

 if($targetsNports{$rec_key} == undef) {
 $targetsNports{$rec_key}=1;
 } else {
 $targetsNports{$rec_key}++;
 }

 $rec_key = "Dest : $dest_ip";

 if($targets{$rec_key} == undef) {
 $targets{$rec_key}=1;
 } else {
 $targets{$rec_key}++;
 }

 $rec_key = "Dest port : $dest_port";

 if($target_ports{$rec_key} == undef) {
 $target_ports{$rec_key}=1;
 } else {
 $target_ports{$rec_key}++;
 }

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 $rec_key = "Source port : $source_port";

 if($source_ports{$rec_key} == undef) {
 $source_ports{$rec_key}=1;
 } else {
 $source_ports{$rec_key}++;
 }

 $rec_key = "flags: $flags";

 if($flags{$rec_key} == undef) {
 $flags{$rec_key}=1;
 } else {
 $flags{$rec_key}++;
 }

 if($tcpopt) {
 if ($records{"tcpopt"} == undef) {
 $records{"tcpopt"} = 1;
 } else {
 $records{"tcpopt"}++;
 }
 } else {
 if ($records{"no_tcpopt"} == undef) {
 $records{"no_tcpopt"} = 1;
 } else {
 $records{"no_tcpopt"}++;
 }
 }
 $records{"total_packets"} ++;
 }
 # print "2003-$month-$day
$time,$alert,$source_ip,$source_port,$dest_ip,$dest_port\n" ;

 $line++;
 }
 print STDERR "Done\n";
 close(FILE);
 }

}

On print le rapport pour le plus grand plaisir de nous tous.
print "\nReport \n";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

my @keys;
my $key;

@keys = sort {
 $sources{$b} <=> $sources{$a}
} keys %sources;

print "\nSOURCES \n";
foreach $key (@keys) {
 print "$key : $sources{$key}\n";
}

print "*" x 50;

@keys = sort {
 $targets{$b} <=> $targets{$a}
} keys %targets;

print "\nTARGETS \n";
foreach $key (@keys) {
 print "$key : $targets{$key}\n";
}

print "*" x 50;

@keys = sort {
 $source_ports{$b} <=> $source_ports{$a}
} keys %source_ports;

print "\nSOURCE PORTS \n";
foreach $key (@keys) {
 print "$key : $source_ports{$key}\n";
}

print "*" x 50;

@keys = sort {
 $target_ports{$b} <=> $target_ports{$a}
} keys %target_ports;

print "\nTARGET PORTS \n";
foreach $key (@keys) {
 print "$key : $target_ports{$key}\n";
}

print "*" x 50;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

@keys = sort {
 $targetsNports{$b} <=> $targetsNports{$a}
} keys %targetsNports;

print "\nTARGETS WITH target PORTS \n";
foreach $key (@keys) {
 print "$key : $targetsNports{$key}\n";
}

print "*" x 50;

@keys = sort {
 $sourcesNports{$b} <=> $sourcesNports{$a}
} keys %sourcesNports;

print "\n SOURCE WITH TARGET PORTS \n";
foreach $key (@keys) {
 print "$key : $sourcesNports{$key}\n";
}

print "*" x 50;

@keys = sort {
 $flags{$b} <=> $flags{$a}
} keys %flags;

print "\nFLAGS \n";
foreach $key (@keys) {
 print "$key : $flags{$key}\n";
}

print "*" x 50;

print "REPORT\n";
foreach my $key (sort keys %records) {
 print "$key : $records{$key}\n";
}
print "\n";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix C
OOS packet summary
(This is only a sample as the full report is over 300 pages long)

SOURCES
Source : 217.174.98.145 : 1142
Source : 195.111.1.93 : 1130
Source : 212.16.0.33 : 1038
Source : 158.196.149.61 : 973
Source : 194.67.62.194 : 792
Source : 82.82.64.209 : 685
Source : 213.23.46.99 : 682
Source : 195.208.238.143 : 472
Source : 195.14.47.202 : 454
Source : 200.77.250.50 : 437

TARGETS
Dest : MY.NET.111.52 : 7867
Dest : MY.NET.12.6 : 4114
Dest : MY.NET.100.165 : 1672
Dest : MY.NET.69.181 : 1504
Dest : MY.NET.24.44 : 1407
Dest : MY.NET.75.240 : 839
Dest : MY.NET.84.143 : 734
Dest : MY.NET.24.34 : 471
Dest : MY.NET.100.230 : 327
Dest : MY.NET.6.7 : 282
Dest : MY.NET.12.4 : 260
Dest : MY.NET.112.159 : 243
Dest : MY.NET.60.38 : 219
Dest : MY.NET.112.152 : 184
Dest : MY.NET.60.39 : 168
Dest : MY.NET.60.16 : 107
Dest : MY.NET.29.66 : 106
Dest : MY.NET.150.133 : 82
Dest : MY.NET.84.198 : 79
Dest : MY.NET.111.61 : 60
Dest : MY.NET.99.38 : 53

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SOURCE PORTS
Source port : 80 : 40
Source port : 20 : 23
Source port : 14976 : 23
Source port : 3931 : 15
Source port : 25 : 14
Source port : 47153 : 13
Source port : 52627 : 12

TARGET PORTS
Dest port : 25 : 13446
Dest port : 80 : 4194
Dest port : 8887 : 1489
Dest port : 4662 : 1255
Dest port : 113 : 406
Dest port : 110 : 246
Dest port : 1214 : 90
Dest port : 6881 : 56
Dest port : 6883 : 41
Dest port : 3264 : 26
Dest port : 443 : 26
Dest port : 22 : 26
Dest port : 21 : 21
Dest port : 18753 : 20

TARGETS WITH target PORTS
Dest with dst port : MY.NET.111.52:25 : 7867
Dest with dst port : MY.NET.12.6:25 : 4114
Dest with dst port : MY.NET.100.165:80 : 1672
Dest with dst port : MY.NET.69.181:8887 : 1489
Dest with dst port : MY.NET.24.44:80 : 1405
Dest with dst port : MY.NET.75.240:25 : 839
Dest with dst port : MY.NET.84.143:4662 : 727
Dest with dst port : MY.NET.24.34:80 : 457
Dest with dst port : MY.NET.6.7:80 : 281
Dest with dst port : MY.NET.100.230:113 : 258
Dest with dst port : MY.NET.12.4:110 : 246
Dest with dst port : MY.NET.112.159:4662 : 243
Dest with dst port : MY.NET.60.38:25 : 213
Dest with dst port : MY.NET.112.152:4662 : 184
Dest with dst port : MY.NET.60.39:25 : 159
Dest with dst port : MY.NET.29.66:80 : 106
Dest with dst port : MY.NET.60.16:25 : 99

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Dest with dst port : MY.NET.150.133:1214 : 81
Dest with dst port : MY.NET.84.198:4662 : 78
Dest with dst port : MY.NET.100.230:25 : 69
Dest with dst port : MY.NET.99.38:6881 : 53
Dest with dst port : MY.NET.24.35:80 : 51
Dest with dst port : MY.NET.60.14:80 : 45
Dest with dst port : MY.NET.29.3:80 : 33
Dest with dst port : MY.NET.75.3:25 : 28
Dest with dst port : MY.NET.83.109:3264 : 26
Dest with dst port : MY.NET.12.7:443 : 23
Dest with dst port : MY.NET.84.180:6883 : 23
Dest with dst port : MY.NET.60.17:25 : 23
Dest with dst port : MY.NET.111.140:80 : 22
Dest with dst port : MY.NET.25.67:113 : 22

SOURCE WITH TARGET PORTS
Source with dst port : 217.174.98.145:25 : 1142
Source with dst port : 195.111.1.93:80 : 1130
Source with dst port : 212.16.0.33:25 : 1038
Source with dst port : 158.196.149.61:25 : 973
Source with dst port : 194.67.62.194:25 : 792
Source with dst port : 82.82.64.209:8887 : 685
Source with dst port : 213.23.46.99:8887 : 682
Source with dst port : 195.208.238.143:25 : 472
Source with dst port : 195.14.47.202:25 : 454
Source with dst port : 200.77.250.50:25 : 437
Source with dst port : 62.29.135.2:25 : 431
Source with dst port : 66.225.198.20:25 : 406
Source with dst port : 216.220.105.4:80 : 72
Source with dst port : 35.8.2.57:113 : 70
Source with dst port : 213.23.48.69:8887 : 70
Source with dst port : 204.92.128.11:25 : 68
Source with dst port : 62.121.89.3:80 : 67
Source with dst port : 81.21.202.98:80 : 67
Source with dst port : 204.92.158.14:25 : 65
Source with dst port : 204.92.158.11:25 : 62
Source with dst port : 193.219.49.20:25 : 57
Source with dst port : 200.208.2.21:25 : 55
Source with dst port : 69.50.131.181:25 : 53
Source with dst port : 216.95.201.30:25 : 50
Source with dst port : 193.219.1.48:6881 : 50
Source with dst port : 199.184.165.135:25 : 49
Source with dst port : 193.252.22.27:25 : 48
Source with dst port : 195.19.254.35:25 : 48
Source with dst port : 81.57.41.9:25 : 47
Source with dst port : 204.60.93.234:80 : 46

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Source with dst port : 66.48.78.13:25 : 46
Source with dst port : 204.92.158.12:25 : 45
Source with dst port : 216.95.201.27:25 : 44
Source with dst port : 192.115.133.133:4662 : 41
Source with dst port : 216.190.181.192:80 : 39
Source with dst port : 193.41.64.2:80 : 38
Source with dst port : 80.202.102.223:80 : 37
Source with dst port : 200.21.87.165:80 : 35
Source with dst port : 80.77.40.62:25 : 34
Source with dst port : 81.31.166.251:80 : 34
Source with dst port : 207.6.138.228:80 : 34
: 195.71.9.198:18753 : 20

**
FLAGS
flags: 12****S* : 21254
flags: ******** : 296
flags: ****P*** : 122
flags: 12***R** : 37
flags: 12*A*R** : 15
flags: **U*P*SF : 7
flags: ***A**SF : 7
flags: ***AP*SF : 4
flags: *2UAPRSF : 3
flags: 1**AP*SF : 2
flags: 12*AP**F : 2
flags: 1**A**SF : 2
flags: 12**PR** : 2
flags: *2U***SF : 2
flags: 12U*P*** : 2
flags: *2***RSF : 2
flags: 12*AP*S* : 2
flags: 12UA*RS* : 2
flags: 12***R*F : 2
flags: 12U*P**F : 2
flags: *2*APRSF : 2
flags: 12UAPR*F : 2
flags: **U***** : 1
flags: 12*A**** : 1
flags: **UA**SF : 1
flags: 12UAPRSF : 1
flags: 12****** : 1
flags: 12**PRS* : 1
flags: 1**A*RSF : 1
flags: *2*A*RSF : 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

flags: *2UAP*SF : 1
flags: **UAPRSF : 1
flags: 12UA*R** : 1
flags: 12UAPRS* : 1
flags: 12*****F : 1
flags: 1**APRSF : 1
flags: 1*****SF : 1
flags: 12*A*RS* : 1
flags: 12UA*RSF : 1
flags: 12**PRSF : 1
flags: 12U***** : 1
flags: *2*AP*SF : 1
flags: *****RSF : 1
flags: *2UA*RSF : 1
flags: 1*U*PRSF : 1
flags: 12**P*SF : 1
flags: 12U***S* : 1
flags: 12**P*S* : 1
flags: *2*A**SF : 1
flags: 12UAP*** : 1
flags: 1***P*SF : 1
**REPORT
no_tcpopt : 332
tcpopt : 21468
total_packets : 21800

