
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analyst (GCIA)

Practical Assignment
Version 3.4 (revised September 24, 2003)
Thomas Harbour
March 11, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

i/iii

Table of Contents

Part 1 - msdm.exe Trojan Horse and Spamming .. 1

1.1 Introduction.. 1
1.2 How the Trojan was Detected ... 1
1.3 How the msdm.exe Trojan Horse Works ... 4
1.4 About the Master of this Trojaned Host ... 6
1.5 How to Protect against this Exploit .. 6
1.6 References .. 8

Part 2 - Network Detects... 9
2.1 Network Detect #1 – Various Web Server Exploits 9

2.1.1 Snort Alerts.. 9
2.1.2 Source of Trace... 10
2.1.3 Detect was generated by?... 11

2.1.3.1 Detect of Traffic to and from Inside IP Addresses...................... 12
2.1.3.1.1 Traffic to port tcp/80 on 115.74.249.202 14
2.1.3.1.1.1 “WEB-CGI formmail” Exploit.. 15
2.1.3.1.1.2 “WEB-FRONTPAGE shtml.exe access” Exploit 16
2.1.3.1.1.3 “WEB-IIS _vti_inf access” Exploit 16
2.1.3.1.1.4 "WEB-MISC WebDAV propfind access" Exploit 17

2.1.4 Probability the source address was spoofed 18
2.1.5 Description of attack.. 18
2.1.6 Correlations ... 18
2.1.7 Evidence of active targeting .. 19
2.1.8 Severity ... 19
2.1.9 Defensive recommendation... 19
2.1.10 Multiple choice test question ... 19

2.2 Network Detect #2 - “BAD-TRAFFIC ip reserved bit set” alert................. 20
2.2.1 Snort Alerts.. 20
2.2.2 Source of Trace... 21
2.2.3 Detect was generated by?... 22
2.2.4 Probability the source address was spoofed 25
2.2.5 Description of Attack.. 25
2.2.6 Correlations ... 27
2.2.7 Evidence Of Active Targeting .. 27
2.2.8 Severity ... 27
2.2.9 Defensive Recommendation ... 28
2.2.10 Multiple Choice Test Question... 28
2.2.11 Submission to “intrusions-subscribe@incidents.org”....................... 29

2.3 Network Detect #3 – “SNMP public access udp” alert 29
2.3.1 Snort Alerts.. 29
2.3.2 Source of Trace... 29
2.3.3 Detect was generated by?... 31
2.3.4 Description of Attack.. 32
2.3.5 Attack Mechanism ... 33
2.3.6 Correlations ... 33

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ii/iii

2.3.7 Evidence Of Active Targeting .. 33
2.3.8 Severity ... 34
2.3.9 Defensive Recommendation ... 34
2.3.10 Multiple Choice Test Question... 34

Part 3 - Analyze This... 36
3.1 Executive Summary... 36
3.2 List of the files analyzed .. 37
3.3 Scan Analysis.. 38
3.4 Alert Analysis... 40
3.5 OOS Analysis .. 42
3.6 Detects prioritized by number of occurrences ... 47

3.6.1 SMB Name Wildcard Signature (902,224 hits) 50
3.6.2 “MY.NET.30.4 activity” Signature (50,224 hits) 50
3.6.3 Incomplete Packet Fragments Discarded (7,604 hits)..................... 51
3.6.4 MY.NET.30.3 activity (7,216 hits) .. 53
3.6.5 High port 65535 tcp & udp - possible Red Worm – traffic (9,038 hits)54
3.6.6 Null scan! (2,903 hits).. 56
3.6.7 Tiny Fragments - Possible Hostile Activity (2,375 hits).................... 58
3.6.8 EXPLOIT x86 NOOP (1,462 hits) .. 60
3.6.9 Connect to 515 from outside (1,198 hits)... 61
3.6.10 Possible trojan server activity (489 hits) .. 62

3.7 Correlations from other sources .. 64
3.8 Link Graph Analysis... 65
3.9 Insights into internal machines .. 68
3.10 Defensive recommendations ... 69
3.11 Description of Analysis Process Used... 71

References... 73

List of Figures

Figure 1. Location of IDS Sensor on Network ..2
Figure 2. Spam e-mail that Trojan horse tries to send ...5
Figure 3. Common Intruder methods used against an organization4..........................7
Figure 4. Representative Locations of hosts and IDS Sensor on Network #1..........11
Figure 5. Representative Locations of hosts and IDS Sensor on Network #2..........22
Figure 6. Representative Locations of IDS Sensor for Detect #330
Figure 7. Graphs of the 3 Categories of Alerts over the five-day Period42
Figure 8. RFC 793 definition of bytes 13 and 14 of the TCP header........................43
Figure 9. RFC 3168 definition of bytes 13 and 14 of the TCP header......................44
Figure 10. Link graph of activity associated with targeting of host MY.NET.6.15.....68
Figure 11. Recommended Defence in Depth Approach...71

List of Tables

Table 1. SCAN Proxy (8080) and SCAN Squid Proxy attempt Alerts.........................9
Table 2. Inbound Packets found in Detect #1 File..13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

iii/iii

Table 3. Outbound Packets found in Detect #1 File ...13
Table 4. Alerts found in Detect #2 File ...20
Table 5. Inbound Packets found in Detect #2 File..24
Table 6. Outbound Packets found in Detect #2 File ...24
Table 7. Forensics of packet triggering “BAD-TRAFFIC ip reserved bit set” alert26
Table 8. Log files selected to Analyze..37
Table 9. Internal "Top Talkers" list for scanning activity ...39
Table 10. "Top Destination Port" list for scanning activity ..40
Table 11. Number of Alerts by General Categories..41
Table 12. Top Ten Source IP Addresses and their Destinations in the OOS Logs ..43
Table 13. Flag Settings found in the OOS packets ..44
Table 14. Activity of source IP of 24.35.51.121 ..46
Table 15. Top N Statistics for the “non-ICMP (non-spp_portscan)” Alerts48
Table 16. Daily Statistics for the “non-ICMP (non-spp_portscan)” Alerts49
Table 17. Top Source IP Addresses for “SMB Name Wildcard” Signature...............50
Table 18. Activity to Destination Ports on MY.NET.30.4 ..51
Table 19. Top Sources of “Incomplete Packet Fragments Discarded” Alerts...........52
Table 20. Top Destinations of “Incomplete Packet Fragments Discarded” Alerts52
Table 21. Activity to Destination Ports on MY.NET.30.3 ..53
Table 22. Internal Hosts that triggered “possible Red Worm” Alert and sent mail55
Table 23. “High port 65535 tcp & udp - possible Red Worm” Activity......................56
Table 24. Top Source IPs in the “Null scan!” Alerts..57
Table 25. Top destination IPs in “Null scan!” Alerts by 220.99.94.7757
Table 26. Top Source and Destination IPs for the “Tiny Fragments” Alert59
Table 27. Top Source IPs, and Destination IPs and Ports for the “EXPLOIT x86

NOOP” Alert..61
Table 28. Top Destination IPs and Ports for Source IP of 194.199.203.761
Table 29. Statistics for “connect to 515 from outside” Alerts62
Table 30. Statistics for “Possible trojan server activity” Alerts63
Table 31. “Possible Trojan server activity” Alerts of Concern...................................64
Table 32. Destination Ports targeted on MY.NET.6.15 ..65
Table 33. Events triggered by traffic to\from host MY.NET.6.15 (130.85.6.15)67
Table 34. Information about some hosts that targeted tcp/27374 and tcp/111 on

MY.NET.6.15 ..67

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1/75

Part 1 - msdm.exe Trojan Horse and Spamming

1.1 Introduction

This part of the GCIA Practical Assignment will examine how the msdm.exe Trojan
horse can appear on a network and what it can be used for. The incident that this part
is based on occurred in December 2003. The Trojan was seen again in February 2004
so it’s still a current exploit.

1.2 How the Trojan was Detected

On the network being monitored by a variety of sensors, a Cisco IDS sensor started
reporting a large number of signature ID 3050 events with a destination of port tcp/25.
These events were similar to the following example:

CSIDS: 4 0 12/10/2003 14:52:42 12/10/2003 9:52:42 10008 102 100 IN OUT 3 3050 25 TCP/IP
10.10.64.114 209.58.237.10 12041 25 0.0.0.0 0 0 NO DATA NO DATA TCP 1

The reporting sensor was monitoring traffic going out to the Internet from the private
network. The source IP address was one of two private IP addresses while the
destination IP addresses were invariably legitimate Internet mail exchangers. In the
example event shown above, the destination is hawaii.smtp-in.load.com
(209.58.237.10), a mail exchanger for load.com.

Signature ID 3050 is a half-open SYN attack signature triggered when multiple TCP
sessions have been improperly initiated on any of several well known service ports. In
this case the well known service port was smtp (tcp/25).

Since the source IP address was not an authorized mail exchanger, two possibilities
were that either the source had some malware or else someone was conducting a
denial of service (DoS) attack against Internet mail exchangers. The latter possibility
seemed unlikely since there were so many destinations such that the effect of a DoS
would have been very diluted.

The desktop support personnel were asked to check the two source IP addresses for
Trojans or other malware. They ran Symantec's Norton anti-virus software but found
nothing, as well they ran Lavasoft’s Ad-Aware software. Ad-aware is a detection and
removal utility that scans memory, registry and drives for known Datamining, aggressive
advertising, Parasites, Scumware, Keyloggers, selected traditional Trojans, Dialers,
Malware, Browser hijackers, and tracking components. Ad-Aware found and removed
many items, however signature ID 3050 events continued to be triggered by the same
two source IP addresses. The desktop support personnel did not want to spend
anymore time examining the two hosts unless it could be shown that the traffic
triggering the signature originated from these hosts, e.g. IP address spoofing was not
occurring.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2/75

To examine the nature of the traffic triggering the signature, iplogging was turned on the
IDS sensor for the two source IP addresses, i.e. 10.10.64.114 and 10.10.80.187. The
iplogging output files are in the standard tcpdump format and are named in the form of
“iplog.<ip_address>.<date-time stamp>.

Running the “windump -ne -r iplog.10.10.64.114.200312040301”, we see the MAC
addresses of the traffic as seen by the IDS.

03:06:29.000000 0:2:17:fc:40:0 0:6:d7:3:17:81 0800 62: IP 10.10.64.114.4310 > 61.172.244.198.1131

Both MAC address prefixes, i.e. 000217 and 0006D7 are assigned to Cisco Systems2..
This agrees with the understanding that the IDS is located on the port of a switch
between a Cisco router and a firewall with the traffic between them spanned to it (see
Figure 1). Hence the IDS is not on the subnet of any hosts in seen in the capture file.

Figure 1. Location of IDS Sensor on Network

Running the “windump -n -r iplog.10.10.64.114.200312040301”, we can see the
following outline of the transaction between the internal host 10.10.64.114 and the
external host 61.172.244.198:

1. The host 10.10.64.114 establishes a tcp connection to 61.172.244.198 on tcp/1131:

03:06:29.000000 IP 10.10.64.114.3504 > 61.172.244.198.1131: S 3499192079:3499192079(0) win 64240 <mss
1460,nop,nop,sackOK> (DF)
03:06:29.000000 IP 61.172.244.198.1131 > 10.10.64.114.3504: S 1814580424:1814580424(0) ack 3499192080 win 65535
<mss 1380,nop,nop,sackOK> (DF)
03:06:29.000000 IP 10.10.64.114.3504 > 61.172.244.198.1131: . ack 1 win 64860 (DF)

2. Then 7,941 bytes of data are transfer from the destination IP to the internal host and

23 bytes of data in the other direction (in the next section we’ll see what this data
consists of):

03:06:29.000000 IP 61.172.244.198.1131 > 10.10.64.114.3504: P 1:10(9) ack 1 win 65535 (DF)
03:06:29.000000 IP 10.10.64.114.3504 > 61.172.244.198.1131: . ack 10 win 64851 (DF)
03:06:29.000000 IP 10.10.64.114.3504 > 61.172.244.198.1131: P 1:24(23) ack 10 win 64851 (DF)
03:06:30.000000 IP 61.172.244.198.1131 > 10.10.64.114.3504: P 10:24(14) ack 24 win 65512 (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3/75

03:06:30.000000 IP 61.172.244.198.1131 > 10.10.64.114.3504: P 24:1404(1380) ack 24 win 65512 (DF)
03:06:30.000000 IP 61.172.244.198.1131 > 10.10.64.114.3504: P 1404:1414(10) ack 24 win 65512 (DF)
03:06:30.000000 IP 61.172.244.198.1131 > 10.10.64.114.3504: P 1414:2794(1380) ack 24 win 65512 (DF)
03:06:30.000000 IP 61.172.244.198.1131 > 10.10.64.114.3504: P 2794:2808(14) ack 24 win 65512 (DF)
03:06:30.000000 IP 10.10.64.114.3504 > 61.172.244.198.1131: . ack 1414 win 64860 (DF)
03:06:30.000000 IP 10.10.64.114.3504 > 61.172.244.198.1131: . ack 2808 win 64860 (DF)
03:06:30.000000 IP 61.172.244.198.1131 > 10.10.64.114.3504: P 2808:4150(1342) ack 24 win 65512 (DF)
03:06:30.000000 IP 10.10.64.114.3504 > 61.172.244.198.1131: . ack 4150 win 63518 (DF)
03:06:30.000000 IP 61.172.244.198.1131 > 10.10.64.114.3504: P 4150:5530(1380) ack 24 win 65512 (DF)
03:06:30.000000 IP 61.172.244.198.1131 > 10.10.64.114.3504: P 5530:6910(1380) ack 24 win 65512 (DF)
03:06:30.000000 IP 61.172.244.198.1131 > 10.10.64.114.3504: . 6910:6934(24) ack 24 win 65512 (DF)

3. The host 61.172.244.198 finishes its data transfer with 10.10.64.114 and then

gracefully tears down the tcp connection:

03:06:30.000000 IP 61.172.244.198.1131 > 10.10.64.114.3504: FP 6934:7941(1007) ack 24 win 65512 (DF)
03:06:30.000000 IP 10.10.64.114.3504 > 61.172.244.198.1131: . ack 6934 win 64860 (DF)
03:06:30.000000 IP 10.10.64.114.3504 > 61.172.244.198.1131: . ack 7942 win 63853 (DF)
03:06:30.000000 IP 10.10.64.114.3504 > 61.172.244.198.1131: F 24:24(0) ack 7942 win 63853 (DF)

4. Immediately after the tcp connection is torn down, the internal host starts trying to

connect to port tcp/25 of various Internet mail exchangers.

03:06:30.000000 IP 10.10.64.114.3505 > 209.58.237.10.25: S 3499509159:3499509159(0) win 64240 <mss
1460,nop,nop,sackOK> (DF)
03:06:30.000000 IP 209.58.237.10.25 > 10.10.64.114.3505: R 0:0(0) ack 3499509160 win 64240 <mss
1460,nop,nop,sackOK> (DF)
03:06:30.000000 IP 10.10.64.114.3506 > 209.202.220.99.25: S 3499564050:3499564050(0) win 64240 <mss
1460,nop,nop,sackOK> (DF)
03:06:30.000000 IP 10.10.64.114.3518 > 62.253.162.40.25: S 3499944417:3499944417(0) win 64240 <mss
1460,nop,nop,sackOK> (DF)
03:06:30.000000 IP 62.253.162.40.25 > 10.10.64.114.3518: R 0:0(0) ack 3499944418 win 64240 <mss
1460,nop,nop,sackOK> (DF)
03:06:30.000000 IP 10.10.64.114.3520 > 205.188.158.25.25: S 3500029642:3500029642(0) win 64240 <mss
1460,nop,nop,sackOK> (DF)
03:06:30.000000 IP 205.188.158.25.25 > 10.10.64.114.3520: R 0:0(0) ack 3500029643 win 64240 <mss
1460,nop,nop,sackOK> (DF)

Based on these types of traces it was very likely that the traffic triggering the signature
originated from reported source IP addresses, i.e. IP address spoofing was not
occurring unless very sophisticated hacking was occurring. The desktop support
personnel were reengaged but again the anti-virus software found nothing. This time
the desktop support person manually examined the locations in the registry and file
system where Trojans are typically found and he noticed a folder named c:\winnt\msdm
that contained a file named msdm.exe. Once the msdm.exe file and registry references
to it were manually removed, the two hosts stopped sending out the previously
observed types of traffic.

There is a description of a user having a similar Trojan on his system3.. He states that
"This little thing sent out at least 200 emails every time I logged on. I just hope it wasnt
sending any worms or viruses..hopefully , just Spam. Over the past week or so,
whenever I log onto the web, hundreds of Emails are being sent from my PC. I
purchased Norton 2004 and it found over 100 spybot files. I removed all of them and
checked the registry as per the instructions at Symantec’s web page. I re-scanned my
hard drive and Norton said it was clean. Not so. Once again, the moment I logged onto

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4/75

web my PC started sending out the mass Emails again. I checked numerous Worms
and so far nothing has come up."

Searching for information about msdm.exe on Symantec’s site yielded descriptions of a
couple a Trojans based on msdm.exe:

1. Backdoor.Armageddon.20 was discovered on January 09, 2003. It is a Backdoor

Trojan Horse that opens some randomly changed TCP/UDP ports to connect to the
hacker and allows him to remotely control an infected computer.

2. Backdoor.DMSpammer was discovered on October 28, 2003. It is a Backdoor

Trojan Horse that relays spam email messages. When Backdoor.DMSpammer is
executed, it listens on a (configurable) port for spammers, who can send it a list of
addresses as well as what to send.

Based on these descriptions it would appear that the Trojan found on the two hosts was
one of these two identified by Symantec. The method by which the hosts became
infected is unknown but probably via an e-mail bearing the Trojan as an attachment.

1.3 How the msdm.exe Trojan Horse Works

Trojans do not self-replicate. They are spread manually, often under the premise that
the executable is something beneficial. Distribution channels include IRC, peer-to-peer
networks, newsgroup postings, email, etc.1

The following are the activities that the host with the msdm.exe Trojan Horse was
performing on behalf of the individual who planted this Trojan (a verbose trace is
available but was not included for reasons of space):

1. The trojaned host contacted its master, IP address 61.172.244.198, on port
tcp/1131. The Master and the client then exchange the following login and initial
command sequences:

<from master> 110.DMM
<from client> LOGIN.test.buffy.1.83
<from master> 200.SEND.303

2. The master sent the trojaned host a list of e-mail addresses. The following is a

sample of part of the list of e-mail addresses downloaded during one session:

b-falk@t-online.de..b-farias@eudoramail.com..b-faulstich@web.de..b-favelle@shaw.ca..b-
fc@kiss.com..b-fd@kiss.com..b-fe@kiss.com..b-fetzer1@ti.com..b-ff@kiss.com..b-fh@kiss.com..b-
fhoto@kcn.ne.jp..b-fi@kiss.com..b-file@mailcity.com..b-film-owner@onelist.com

3. The master sent the trojaned host the html-formatted e-mail to send to the list of

addresses. The following is one sample e-mail:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5/75

<html>....<body.style="font:.normal.12pt.arial,.sans;">....STOP.SPAM.FOREVER!!<p>....H
ello,....This.program.worked.for.me..If.you.hate.Spam.like.I.do,.you.owe.it.to.your.self.to...try.this.pr
ogram,.and.forward.this.email.to.all.of.your.friends.which.also.hate.Spam.or.as.many.people.possib
le..Together.lets.help.clear.the.Internet.of.Spam!....<p.align=center.style="background:.lightyellow;.
border:.1px.solid.yellow;.padding:.3px;"><a.href="http://www.quickeasysolution.com/10th.htm">ST
OP.SPAM.IN.ITS.TRACKS!..<p>..Ask.yourself.these.3.questions:..

..1)Do.you.get.junk
,.scams.and.worse.in.your.inbox...every.day?...
....2)Are.you.sick.of.spending.valuable.time...re
moving.the.trash?...
..3)Is.your.child.receiving.inappropriate...adult.material?...

..If.s
o.you.should.know.that.no.other.solution.works...better.then.our.software.to.return.control.of.yo
ur...email.back.where.it.belongs!...
..Imagine.being.able.to.read.your.important.email...without.lo
oking.through.all.that.spam....<p>..
....<p.align=center.style="background:.lightyellow;.border:.1
px.solid.yellow;.padding:.3px;"><a.href="http://www.quickeasysolution.com/10th.htm">Click.here.to.
vist.our.website........</td></tr></table>....</body>....</html>

4. Immediately following the receipt of the list and e-mail, the trojaned host tried to

send out the e-mail to the recipients using Outlook Express to connect to a
number of external mail exchangers.

Figure 2 shows what the e-mail message would look to the recipient. The two
hyperlinks shown in the image are to http://www.quickeasysolution.com/10th.htm. The
purpose of this e-mail is to get the recipient to go to
http://www.quickeasysolution.com/10th.htm. This is a web site that sells a product
called Email Filter whose purpose is to "STOP SPAM IN ITS TRACKS!" It is ironic that
a Trojan horse spammer is use to sell anti-spam software. Of course it would not be
surprising if the Email Filter also contains a Trojan.

Figure 2. Spam e-mail that Trojan horse tries to send

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6/75

1.4 About the Master of this Trojaned Host

APNIC5. offers the following information on the address block containing the Master of
the trojaned host (61.172.244.198). It turns out that both the Master and the web site
touted in the e-mail (http://www.quickeasysolution.com/10th.htm) are both in China.

inetnum: 61.172.244.0 - 61.172.244.255
netname: GAMANIA-DIGITAL
descr: GAMANIA DIGITAL ENTERTAINMENT CO.,LTD
country: CN
admin-c: WQ58-AP
tech-c: WL371-AP
mnt-by: MAINT-CHINANET-SH
changed: wanglin@shaidc.com 20030115
status: ASSIGNED NON-PORTABLE
source: APNIC

person: Wang Qing
address: 6F,380 Fushan Road,Shanghai 200122
country: CN
phone: +86-21-68761255-807
fax-no: +86-21-68761255-805
e-mail: wanglin@shaidc.com
nic-hdl: WQ58-AP
mnt-by: MAINT-CN-SHTELE-XINCHAN
changed: wanglin@shaidc.com 20021007
source: APNIC

1.5 How to Protect against this Exploit

To defend against a hacker trying to implant a Trojan to due his bidding, an organization
needs to adopt a Defence in Depth strategy to network security. A defence in depth
strategy is the traditional one adopted to afford the defended area the strongest and
most resilient protection. In the case of the organization the defended area is the
organization’s data.

As shown in Figure 3, defense in depth for the organization consists of defensive
measures adopted in four layers, namely: network access; the operating system; user
applications; and data. At the center of the defended area is the most prized
component of the defended area – the organization’s data.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

7/75

Figure 3. Common Intruder methods used against an organization4.

This layered approach is required since even the most expensive firewall controlling
network access cannot effectively control traffic content. For example, most firewalls
will allow in e-mail attachments containing malware. Malware may be cleaned at the
operation system layer by anti-virus software if it is recognized. However, if it is of an
unknown type, then the final defence is at the data layer where the user opens the e-
mail attachment with care.

In this specific case of a Trojan running on hosts inside the network, the following layers
of defence are important:

1. Firewall – Ensure that the firewall is designed to control the traffic of both the inside

and outside hosts. In particular the traffic from inside users needs to be restricted to
that required to support the business. There was no justification for allowing inside
users to initiate connections to an outside server on port tcp/1131.

2. Use of IDS – In this case without the alerting from the IDS, it would have been very

difficult to detect that inside hosts were running a Trojan. This case serves to
highlight the importance using IDS to help understand traffic on a network.

3. Use and keep up to date anti-virus software – A user must prevent intentional

intrusions into the computer that take the form of viruses, worms and Trojan horses.
An effective approach to defend against this malware is the use of a virus-detection
program that is updated regularly and can run in a real-time virus scanning mode.
Although in this case it appears that the anti-virus software was up to date but did
not detect the Trojan.

4. End user education to open E-mail Attachments with Care – Users should be

educated that before opening any email attachments, they must check if they
recognize the sender of the attachment and have a good idea of why the attachment
is being sent. However, recognizing the sender is not enough since some viruses
such as Melissa, sent copies of themselves out as attachment to all addressees
found in the Microsoft Outlook address book on the infected system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

8/75

A good approach to educate users to follow when opening an attachment is as
follows:

1. Check if you recognize the sender of the attachment and know why the

attachment is being sent.

2. Be very suspicious of amusing or enticing programs since this type of social
engineering is sometimes used by malicious code for its propagation.

3. If you decide open the attachment then ensure that the anti-virus software’s
virus definitions are up-to-date and then proceed as follows:

��save the file to your hard disk
��scan the file using the anti-virus software
��finally open the file

1.6 References

1. McAfee: Trojan Name: BackDoor-BAM - Method Of Infection,
http://vil.nai.com/vil/content/v_100747.htm

2. [Ntop-dev] mac address prefixes in use, URL: http://lists.ntop.org/pipermail/ntop-

dev/2003-March/002310.html, Fri, 7 Mar 2003

3. Posting by bogart69,

URL:http://forums.spywareinfo.com/index.php?s=f5bcdae5bf7c83f7bec2b57ee6007
82c&showforum=27, Posted: Sep 19 2003, 07:45 AM

4. GSEC Practical Assignment, Defence in Depth on the Home Front by Thomas

Harbour, April 3, 2003

5. APNIC Whois Database, http://www.apnic.net/apnic-bin/whois.pl

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

9/75

Part 2 - Network Detects

2.1 Network Detect #1 – Various Web Server Exploits

2.1.1 Snort Alerts

Running new versions of Snort, e.g. v2.1.0, against the source file named 2002.8.28
generated no alerts. However, using Snort 1.9.1 the 12 alerts shown Table 1 were
generated. These alerts were only of the following types:

[**] [1:620:2] SCAN Proxy (8080) attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/28-09:17:16.346507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E
12.83.110.10:2790 -> 115.74.34.242:8080 TCP TTL:111 TOS:0x0 ID:40608 IpLen:20 DgmLen:48 DF******S* Seq:
0x379862B0 Ack: 0x0 Win: 0x16D0 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

[**] [1:618:2] SCAN Squid Proxy attempt [**]
[Classification: Attempted Information Leak] [Priority: 2]
09/28-10:35:01.766507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E
65.169.47.30:4522 -> 115.74.172.117:3128 TCP TTL:111 TOS:0x0 ID:9644 IpLen:20 DgmLen:48 DF******S* Seq:
0x45B326E9 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

Group Extracts of “SCAN Proxy (8080) attempt” Alerts Time Dif

1a 09/28-09:17:16.346507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E
12.83.110.10:2790 -> 115.74.34.242:80 TTL:111 DF******S* Seq: 0x379862B0

0 sec

1b 09/28-09:17:19.286507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E
12.83.110.10:2790 -> 115.74.34.242:80 TTL:111 DF******S* Seq: 0x379862B0

3 sec

1c 09/28-09:17:25.256507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E
12.83.110.10:2790 -> 115.74.34.242:80 TTL:111 DF******S* Seq: 0x379862B0

6 sec

2a 09/28-10:21:51.096507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E
12.83.110.10:3075 -> 115.74.165.99:8080 TTL:110 DF******S* Seq: 0xBAF2BD8

0 sec

2b 09/28-10:21:54.126507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E
12.83.110.10:3075 -> 115.74.165.99:8080 TTL:110 DF******S* Seq: 0xBAF2BD88

3 sec

2c 09/28-10:22:00.156507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E
12.83.110.10:3075 -> 115.74.165.99:8080 TTL:110 DF******S* Seq: 0xBAF2BD88

6 sec

3a 09/28-10:34:40.746507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E
65.169.47.30:4485 -> 115.74.172.117:8080 TTL:111 DF******S* Seq: 0x4547AEAE

0 sec

3b 09/28-10:34:43.746507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E
65.169.47.30:4485 -> 115.74.172.117:8080 TTL:111 DF******S* Seq: 0x4547AEAE

3 sec

3c 09/28-10:34:49.746507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E
65.169.47.30:4485 -> 115.74.172.117:8080 TTL:111 DF******S* Seq: 0x4547AEAE

6 sec

Extracts of “SCAN Squid Proxy attempt” Alerts
4a 09/28-10:35:01.766507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E

65.169.47.30:4522 -> 115.74.172.117:3128 TTL:111 DF******S* Seq: 0x45B326E9
0 sec

4b 09/28-10:35:04.806507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E
65.169.47.30:4522 -> 115.74.172.117:3128 TTL:111 DF******S* Seq: 0x45B326E9

3 sec

4c 09/28-10:35:10.756507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3E
65.169.47.30:4522 -> 115.74.172.117:3128 TTL:111 DF******S* Seq: 0x45B326E9

6 sec

Table 1. SCAN Proxy (8080) and SCAN Squid Proxy attempt Alerts

Extracts from these 12 alerts are found in Table 1. They were divided into groups
based on source/destination IP address pairs and sequence numbers. The “Time Dif”
column shows that the connection attempts are waiting the standard delay intervals

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10/75

between TCP connection attempts. It appears that the connection attempts were
unsuccessful.

The two apparent source addresses involved are 12.83.110.10 and 65.169.47.30, while
the destination addresses are 115.74.34.242, 115.74.165.99 and 115.74.172.117.

Both the SCAN Proxy (8080)27. and SCAN Squid Proxy28. attempts can be a prelude to
an attack. Hence we need to look for other events concerning the attacking IP
addresses. The two apparent source addresses involved SCAN Proxy (8080) and
SCAN Squid Proxy, i.e. 12.83.110.10 and 65.169.47.30, are not seen in the tcpdump
files associated with any other events. Furthermore, there is no additional traffic seen to
the destination IP addresses of 115.74.34.242, 115.74.165.99 or 115.74.172.117.
Therefore there was no immediate follow up of this apparent reconnaissance activity
and so we’ll look for other suspicious activity. In fact we’ll look at the activity directed
against the web server with an IP address of 115.74.249.202 for reasons that are
mentioned later.

2.1.2 Source of Trace

The source of this detect is a file named 2002.8.28 that is found on
http://www.incidents.org/logs/Raw/. It is 105,408 bytes and dated Wed Oct 9 12:22:12
2002. The details from the associated README file are found in Section 2.1.3.

The network architecture associated with this detect is unknown but running the
“windump -ne -r 2002.8.28.detect” command, we see the MAC addresses of the traffic
as seen by the IDS:

19:45:16.696507 0:0:c:4:b2:33 0:3:e3:d9:26:c0 0800 570: IP 115.74.249.65.62347 >
216.239.51.101.80: P 2743256814:2743257330(516) ack 3180748922 win 64240 (DF)

Both MAC address prefixes, i.e. 00000C and 0003E3 are assigned to Cisco Systems
according to the IEEE Organizationally Unique Identifier (OUI) listing25. Looking at the
flow of the traffic, we see that:

1. The Cisco device with a MAC address of 0:3:e3:d9:26:c0 is upstream from that with

a MAC address of 0:0:c:4:b2:33

2. Host 115.74.249.65 is running a Microsoft Internet Explorer web browser:

19:45:16.696507 IP 115.74.249.65.62347 > 216.239.51.101.80 .. User-
Agent:.Mozilla/4.0.(compatible;.MSIE.6.0;.Windows.NT.5.1)

3. Host 115.74.249.202 likely has a web server running on port tcp/80:

05:49:22.206507 IP (tos 0x0, ttl 63, id 19439, len 576) 115.74.249.202.80 >
195.29.132.167.1425

4. Hosts 115.74.34.242, 115.74.165.99 and 115.74.172.117 may have a web server

running on port tcp/8080:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11/75

09:17:16.346507 IP 12.83.110.10.2790 > 115.74.34.242.8080
10:21:54.126507 IP 12.83.110.10.3075 > 115.74.165.99.8080
10:34:40.746507 IP 65.169.47.30.4485 > 115.74.172.117.8080

Taking all this into consideration, it is likely that the Snort IDS is located either on a tap
or on a port of a switch between two Cisco router/firewall devices with the traffic
between them spanned to it as shown in Figure 4. Hence the IDS is not on the subnet
of any hosts in seen in the detect file.

Figure 4. Representative Locations of hosts and IDS Sensor on Network #1

2.1.3 Detect was generated by?

The README file on the www.incidents.org site states that:

“The log files are the result of a Snort instance running in binary logging mode. This
means that only the packets that violate the ruleset will appear in the log. The logs
themselves have been sanitized. All of the IP addresses of the protected network
space have been "munged". Additionally, the checksums have been modified to
prevent clever people from discovering the original IP addresses. You will find that
certain keywords within the packets have been replaced with "X"s. All ICMP, DNS,
SMTP and Web traffic has also been removed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12/75

A common question is, "Are the addresses changed in the same way across all of
the files?" The answer is both yes and no. If you look at the timestamp associated
with the files on the website, you will see that groups of files have been posted on
the same day. Files posted on the same day will have the IP addresses of the
protected network modified consistently. IP addresses belonging to non-local hosts
are the actual IP addresses and will be consistent across all log files regardless of
date.”

The detect file containing the logged packets is in the standard tcpdump binary format.
So any program capable of reading this format can be used against the detect file, e.g.
tcpdump/windump, snort or ethereal.

Running “windump -nXvv -r 2002.8.28” we see that

11:29:09.566507 IP 24.189.224.108.2956 > 115.74.249.202.80: GET./cgi/FormMail.cgi?

As stated earlier, we’ll look at the activity directed against the web server with an IP
address of 115.74.249.202.

2.1.3.1 Detect of Traffic to and from Inside IP Addresses

According to the README file, all of the IP addresses of the protected network space
have been "munged". In this detect file all the inside IP addresses have been munged
into the Class B network of 115.74.0.0/16.

In the following sub-sections, we will examine the detects by the IP addresses in the
Class B network. The basic information on the inbound packets found in the detect file
are shown in Table 2.

Source IP Destination IP Destination
Port

TTL Packet
Count

Suspicious?

115.74.34.242 111 3 recon 12.83.110.10
115.74.165.99

tcp/8080
110 3 recon

tcp/8080 111 3 recon 65.169.47.30 115.74.172.117
tcp/3128 111 3 recon

255.255.255.255 115.74.170.230 tcp/515 15 1 Yes
255.255.255.255 115.74.107.124 tcp/515 15 1 Yes
219.165.155.85 39,40 12 No
213.73.200.122
(qn-213-73-200-
122.quicknet.nl)

112 7 "WEB-MISC
WebDAV
propfind
access"

4.63.173.119
(tamqfl1-ar2-4-63-
173-119.tamqfl1.dsl-
verizon.net)

109 9 “WEB-CGI
formmail”

218.145.25.59
(Korea Telecom)

115.74.249.202 tcp/80

49 1 “WEB-IIS
_vti_inf
access"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

13/75

Source IP Destination IP Destination
Port

TTL Packet
Count

Suspicious?

218.145.25.52
(Korea Telecom)

49 1 “WEB-
FRONTPAGE
shtml.exe
access”

217.39.87.11 46 1 No
213.44.187.50
(l06m-4-
50.d2.club-
internet.fr)

105 2 “WEB-
FRONTPAGE
shtml.exe
access” and
“WEB-IIS
_vti_inf
access"

200.249.46.195
(Comite Gestor da
Internet no Brasil)

43 4 “WEB-CGI
formmail”

194.230.222.228 113 1 No
193.188.94.2
(NIC Jordan)

233 1 “WEB-CGI
formmail”

24.189.224.108
(Optimum Online)

120 4 “WEB-CGI
formmail”

61.193.164.211
(nissan-con.co.jp)

40,231 14 Yes

133.145.228.12
(px3.hitachi.co.jp)

231/2 2 “WEB-IIS
_vti_inf
access"

63.16.15.140
(UUNET)

115 1 “WEB-CGI
formmail”

Table 2. Inbound Packets found in Detect #1 File

The basic information on the outbound packets found in the detect file are shown in
Table 3. The fact that 115.74.249.202 generates outbound traffic from a source port of
tcp/80 indicated that it is running a publicly accessible web server, apparently an
Apache/1.3.12 server on Red.Hat Linux with FrontPage server extensions v4.0.4.3.

05:49:22.206507 IP (tos 0x0, ttl 63, id 19439, len 576) 115.74.249.202.80 >
195.29.132.167.1425
HTTP/1.1.403.Forbidden..Date:.Sat,.28.Sep.2002.14:39:20.GMT..Server:.Apache/1.3.12.(Unix)..
(Red.Hat/Linux).FrontPage/4.0.4.3

Source IP Destination IP Source Port TTL Packet

Count
Suspicious?

115.74.249.202 195.29.132.167 tcp/80 63 1 No
115.74.249.202 212.62.35.40 tcp/80 63 1 No

Source IP Destination IP Destination
Port

TTL Packet
Count

Suspicious?

115.74.249.65 various web
sites

tcp/80 122,240 Yes – varying
TTL

Table 3. Outbound Packets found in Detect #1 File

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

14/75

Note that the TTL of packets coming from host 115.74.249.65 have two very different
values, i.e. 122 or 240 even though they are apparently coming from the same source
IP/source port combination and the same destination IP/destination port combination
and occur almost simultaneously. This may be due to the way that the protected
network space has been "munged" but if not then further investigation for crafted
packets is warranted.

20:33:44.346507 IP (tos 0x0, ttl 122, id 164, len 646) 115.74.249.65.63212 >
216.239.51.101.80
20:33:44.376507 IP (tos 0x10, ttl 240, id 0, len 1162) 115.74.249.65.63212 >
216.239.51.101.80

2.1.3.1.1 Traffic to port tcp/80 on 115.74.249.202

In Table 2 we see that there were 60 packets destined to port tcp/80 on
115.74.249.202. In Section 2.1.3.1 it was established that there is a publicly accessible
web server on 115.74.249.202. The following version of snort is available:

snort -V

-*> Snort! <*-
Version 2.0.2-ODBC-MySQL-WIN32 (Build 92)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)
1.7-WIN32 Port By Michael Davis (mike@datanerds.net, www.datanerds.net/~mik
1.8 - 2.0 WIN32 Port By Chris Reid (chris.reid@codecraftconsultants.com)

Since traffic was seen to both ports tcp/80 and tcp/8080 the following preprocessor
statement was set in the snort.conf file along with the HOME_NET variable:

1. preprocessor http_decode: 80 8080 unicode iis_alt_unicode double_encode
iis_flip_slash full_whitespace

2. var HOME_NET 115.74.0.0/16

Running snort in the IDS mode using the “snort -c snort.conf -r 2002.8.28 -l detect1 –
Xde” command, we get the following output:

Snort processed 167 packets.
Breakdown by protocol: Action Stats:

 TCP: 167 (100.000%) ALERTS: 0
 UDP: 0 (0.000%) LOGGED: 0
 ICMP: 0 (0.000%) PASSED: 0
 ARP: 0 (0.000%)
 EAPOL: 0 (0.000%)
 IPv6: 0 (0.000%)
 IPX: 0 (0.000%)
 OTHER: 0 (0.000%)

===

TCP Stream Reassembly Stats:
 TCP Packets Used: 0 (0.000%)
 Reconstructed Packets: 0 (0.000%)
 Streams Reconstructed: 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

15/75

In short, the output of Snort tells us nothing about the detect since Snort finds no tcp
streams.

2.1.3.1.1.1 “WEB-CGI formmail” Exploit

Running “windump -nXvv -r 2002.8.28.detect host 115.74.249.202” we see the following
types of interesting packets involving POSTs to the formmail.pl cgi script:

07:19:32.496507 IP (tos 0x0, ttl 43, id 44468, len 552) 200.249.46.195.4985 >
115.74.249.202.80: . [bad tcp cksum f41f (->716)!] 3567267248:3567267760(512) ack 4148661565
win 16384bad cksum bdb (->7b4a)!
E..(....+.......sJ...y.P..-..G.=P.@.....POST./cgi-
bin/formmail.pl.HTTP/1.0..Host:.www.XXXXXXXX..Accept:.image/gif,.image/x-
xbitmap,.image/jpeg,.application/msword,.*/*..Content-Type:.application/x-www-form-
urlencoded..User-Agent:.Mozilla/4.06.(Win95;.I)..Content-
Length:.378....email=pvd39@tct46.com&recipient=afgman@aol.com&subject=www.XXXXXXXX%2Fcgi-
bin%2Fformmail.pl%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20lbbtlvj&=%0D%0A%0D%0At
ime%2Fdate%3A%2011%3A18%3A10am%20%2F%2009%2F28%2F2002%0D%0A<A%20HREF%3D%22www.XXXXXXXX%2Fcgi-
bin%2Fformmail

Note: According to the README file on the www.incidents.org site, the "X"s in the
data are due to replacement of certain keywords.

Replacing the Unicode characters in the data payload, we get the following:

POST /cgi-bin/formmail.pl HTTP/1.0..Host: www.XXXXXXXX..Accept: image/gif, image/x-xbitmap,
image/jpeg, application/msword, */*..Content-Type: application/x-www-form-urlencoded..User-
Agent: Mozilla/4.06 (Win95; I)..Content-Length:
378....email=pvd39@tct46.com&recipient=afgman@aol.com&subject=www.XXXXXXXX/cgi-
bin/formmail.pl lbbtlvj&=....time/date: 11:18:10am / 09/28/2002..<A
HREF="www.XXXXXXXX/cgi-bin/formmail

The Formmail IDS signatures are found in the web-cgi.rules file. This file contains the
following two signatures relevant to Formmail vulnerabilities:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI formmail arbitrary
command execution attempt"; flow:to_server,established; uricontent:"/formmail"; nocase;
content:"%0a"; nocase; reference:nessus,10782; reference:nessus,10076;
reference:bugtraq,1187; reference:cve,CVE-1999-0172; reference:arachnids,226; classtype:web-
application-attack; sid:1610; rev:5;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI formmail access";
flow:to_server,established; uricontent:"/formmail"; nocase; reference:nessus,10782;
reference:nessus,10076; reference:bugtraq,1187; reference:cve,CVE-1999-0172;
reference:arachnids,226; classtype:web-application-activity; sid:884; rev:8;)

Looking at the snort\etc\sid-msg.map file, we see the following two signature IDs
corresponding to the Formmail IDS signatures:

884 || WEB-CGI formmail access || arachnids,226 || cve,CVE-1999-0172 || bugtraq,1187 ||
nessus,10076 || nessus,10782

1610 || WEB-CGI formmail arbitrary command execution attempt || arachnids,226 || cve,CVE-
1999-0172 || bugtraq,1187 || nessus,10076 || nessus,10782

There is no message file for the 884 signature but there is one for the 1610 signature.
In the 1610.txt file, the attack scenario is that “Formmail receives information from a
form via an HTTP POST. This includes the email addresses to which the form data is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

16/75

sent. A URI in the form of a POST to the formmail script could be crafted to send
environment variables to a specified email address.”

The additional references about the “WEB-CGI formmail” exploit are:

http://www.whitehats.com/info/IDS/226
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0172
http://www.securityfocus.com/bid/1187
http://cgi.nessus.org/plugins/dump.php3?id=10076
http://cgi.nessus.org/plugins/dump.php3?id=10782

2.1.3.1.1.2 “WEB-FRONTPAGE shtml.exe access” Exploit

As shown in Section 2.1.3.1 the web server has FrontPage Server Extensions v4.0.4.3
so it may be vulnerable to Frontpage exploits such as the following “WEB-FRONTPAGE
shtml.exe access" found in the web-cgi.rules file (there is no 962.txt message file):

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-FRONTPAGE shtml.exe
access"; flow:to_server,established; uricontent:"/_vti_bin/shtml.exe"; nocase;
reference:nessus,10405; reference:cve,CAN-2000-0413; reference:cve,CAN-2000-0709;
reference:bugtraq,1608; reference:bugtraq,1174; classtype:web-application-activity; sid:962;
rev:6;)

The following is one of eight packets that would be expected to trigger the “WEB-
FRONTPAGE shtml.exe access" signature. There are six of these from 61.193.164.211
over the period of 16:30:40.236507 - 16:37:00.126507 on 28 Sep 02:

09/28-16:34:17.366507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x213
61.193.164.211:39021 -> 115.74.249.202:80 TCP TTL:231 TOS:0x0 ID:46440 IpLen:20 DgmLen:517 DF
AP Seq: 0x7DF3D391 Ack: 0x26646FB2 Win: 0x2238 TcpLen: 20 POST
/_vti_bin/shtml.exe/_vti_rpc HTTP/1.0..Date: Sun, 29 Sep 2002 02:33:11 GMT..Mime-Version:
1.0..User-Agent: MSFrontPage/4.0..Accept: auth/sicily..Content-Length: 41..Content-Type:
application/x-www-form-urlencoded..X-Vermeer-Content-Type: application/x-www-form-
urlencoded..Pragma: no-cache..Via: 1.1 - (DeleGate/7.9.3), 1.0 px15.hitachi.co.jp:8080
(Squid/2.3.STABLE1)..X-Forwarded-For: unknown..Host: www.XXXXXXXX..Cache-Control: max-
age=259200..Connection: keep-alive....

It appears that 61.193.164.211 is a proxy server connecting to the web server
115.74.249.202. The address 61.193.164.211 is assigned to Nissan Rinkai
Construction Co.,Ltd. and in fact it’s the name server for nissan-con.co.jp. Querying the
name servers for that domain, we find that dns1.nissan-con.co.jp is 61.193.164.211.
Hence it possible that it has a dual role for nissan-con.co.jp.

2.1.3.1.1.3 “WEB-IIS _vti_inf access” Exploit

One odd thing about host 61.193.164.211 is that as mentioned in Table 2, the TTL
associated with it is both 40 and 231 as shown in the following extracts:

16:34:16.546507 IP (tos 0x0, ttl 40, id 36134, len 585) 61.193.164.211.63871 >
115.74.249.202.80

16:34:17.366507 IP (tos 0x0, ttl 231, id 46441, len 81) 61.193.164.211.39021 >
115.74.249.202.80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

17/75

Given the very large differences in TTL over such a small period of time, one would
suspect crafted packets are being sent from this host. Using windump to dump the
packets with a TTL of 40 we find two, one of which is:

09/28-16:34:16.546507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x257
61.193.164.211:63871 -> 115.74.249.202:80 TCP TTL:40 TOS:0x0 ID:36134 IpLen:20 DgmLen:585 DF
AP Seq: 0x126CFEA3 Ack: 0x2610A3D1 Win: 0x2238 TcpLen: 32 TCP Options (3) => NOP NOP
TS: 9316442 7698513 GET /_vti_inf.html HTTP/1.0..X-Locking:
133.241.8.2:/var/spool/delegate/cache/http/www.XXXXXXXX/_vti_inf.html..X-Cache-ID:
3d95c5b7/3d966666..Date: Sun, 29 Sep 2002 02:33:10 GMT..Mime-Version: 1.0..Accept: */*..User-
Agent: Mozilla/2.0 (compatible; MS FrontPage 4.0)..Accept: auth/sicily..Content-Length:
0..Pragma: no-cache..Accept-Encoding: identity..Via: 1.1 - (DeleGate/7.9.3), 1.0
px14.hitachi.co.jp:8080 (Squid/2.3.STABLE4)..X-Forwarded-For: unknown..Host:
www.XXXXXXXX..Cache-Control: max-age=259200..Connection: keep-alive....

These packets would be expected to trigger the following “WEB-IIS _vti_inf access"
signature found in the web-cgi.rules file:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS _vti_inf
access";flow:to_server,established; uricontent:"_vti_inf.html"; nocase; classtype:web-
application-activity; sid:990; rev:5;)

In the 990.txt message file, the attack scenario is that an attacker can craft a URL to
access the '_vti_inf.html' file to learn the version and scripting paths of FrontPage.
Without the return traffic, we cannot tell if this attempt succeeded.

More information on this exploit is available from
http://www.securityfocus.com/bid/1608.

2.1.3.1.1.4 "WEB-MISC WebDAV propfind access" Exploit

As shown in Section 2.1.3.1 the web server is Apache/1.3.12 server running on Redhat
so it may be configured to support WebDAV and hence vulnerable to exploits such as
the following “WEB-MISC WebDAV propfind access " found in the web-cgi.rules file:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-MISC WebDAV propfind
access"; content:"<a\:propfind"; nocase; content:"xmlns\:a=\"DAV\">"; nocase;
flow:to_server,established; reference:bugtraq,1656; reference:cve,CVE-2000-0869;
classtype:web-application-activity; sid:1079; rev:8;)

In the 1079.txt file, the attack scenario is that “An attacker can get a directory listing for
all directories configured to support WebDAV in an Apache web server. Certain
configurations of Apache, such as those in SuSE 6.0-7.0 and RedHat 6.2-7.0, have
WebDAV enabled and misconfigured in such a way to allow directory listings of the
entire server file structure.”

Running “windump -nXvv -r 2002.8.28.detect host 115.74.249.202” we see the following
types of interesting packets involving sending “PROPFIND /main/ HTTP/1.1” to the web
server:

09/27-21:58:46.526507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0xEC
213.73.200.122:11757 -> 115.74.249.202:80 TCP TTL:112 TOS:0x0 ID:5669 IpLen:20 DgmLen:222 DF

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18/75

AP Seq: 0xF9A87A2B Ack: 0xB2337B4F Win: 0xF88B TcpLen: 20 PROPFIND /main/
HTTP/1.1..Depth: 0..translate: f..User-Agent: Microsoft-WebDAV-MiniRedir/5.1.2600..Host:
www.XXXXXXXX..Content-Length: 0..Connection: Keep-Alive..Pragma: no-cache....

2.1.4 Probability the source address was spoofed

To be successful, both the Formmail and FrontPage exploits require the completion of
the TCP three-way handshake hence IP address spoofing is unlikely. As well the
hacker needs to see the return traffic from the web server. Although it is possible that
the hacker could being use a sniffer or a tap to observe the return traffic, he/she would
still need to control the source IP address to initiate the TCP connection and the
exploits. This control could be via a number of mechanisms such as a Trojan or by
using a proxy server as we saw.

As can be seen in Table 2, most of the source IP addresses are from blocks assigned to
ISPs. Hence if they do not belong directly to the hacker, then they could be trojaned.

2.1.5 Description of attack

The description of attack for each of the exploits is found in the sub-sections of Section
2.1.3.1.1 follows:

• “WEB-CGI formmail” Exploit - In this exploit, we see an attempt to use the formmail

script in the cgi-bin to mail data to afgman@aol.com for future use.

• “WEB-FRONTPAGE shtml.exe access” Exploit – Certain requests sent to a

webserver running FrontPage Server Extensions involving a URL request for a MS-
DOS device through “shtml.exe” can cause the server to crash47.. However in this
case we have the request “/_vti_bin/shtml.exe/_vti_rpc” which has been associated
with web site defacements since it can allow contents to be posted48..

• “WEB-IIS _vti_inf access” Exploit – The attacker tried to GET the '_vti_inf' file to

learn the version and scripting paths of FrontPage49..

• "WEB-MISC WebDAV propfind access" Exploit – The attacker repeatedly tries uses

the “PROPFIND ./main.HTTP/1.1” request to can get a directory listing for all
directories configured to support WebDAV in an Apache web server50..

2.1.6 Correlations

The number of references about these exploits, e.g. CVE, Snort and Bugtraq, are found
in the sub-sections of Section 2.1.3.1.1 and in Section 2.1.5.

Loic Juillard discusses the Spam relay scanning targeted against this web server
(http://cert.uni-stuttgart.de/archive/intrusions/2003/08/msg00151.html).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

19/75

2.1.7 Evidence of active targeting

This web server is being actively targeted by a number of hosts that are listed in Table
2. It is not haphazard traffic, rather it is active targeting since the exploits are targeted
against the specific web server and associated extensions. Now given that many of the
attacking IP addresses belong to ISPs, the traffic seen could have been coordinated
exploits using Trojaned hosts.

2.1.8 Severity

The severity of this attack is determined by the following formula:

severity = (criticality + lethality) (system countermeasures + network countermeasures)

where each value is ranked on a scale from 1 (lowest) to 5 (highest).

• Criticality (a measure of how critical the targeted system is): The assigned value
is a “4” since a public web server is normally an important asset and should not
be defaced or made available.

• Lethality (a measure of how severe the damage to the targeted system would be

if the attack succeeded): The assigned value is a “4” since these are real
potential vulnerabilities for this particular web server.

• System countermeasures (a measure of the strength of the defensive

mechanisms in place on the host itself). The assigned value is a “3” since we do
not know these vulnerabilities have patches available.

• Network countermeasures (a measure of the strength of the defensive

mechanisms in place on the network): The assigned value is a “4” since many of
the attempted connection attempts appear not to have been established as they
are repeated.

Severity Calculation: 1 = (4 + 4) – (3 + 4)

2.1.9 Defensive recommendation

The web server administrator needs to verify that the web server is patched against the
vulnerabilities for the specific web server and associated extensions. As well the web
server should be configured not to readily provide the versions of the software that it is
running.

2.1.10 Multiple choice test question

Question: Which one of the following URL requests would raise concern that an HTTP
client is trying to trivially learn version information about a web server?

A. POST /_vti_bin/shtml.exe

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

20/75

B. POST /cgi-bin/formmail.pl
C. GET /_vti_inf.html HTTP/1.0
D. GET /personal/ HTTP/1.1

Answer: C

Explanation: Answer C is correct because a GET can be used to trivially try to retrieve
web server information. Although answer D is a GET, it’s highly unlikely that a web
server stores its version information in a file named “personal”.

2.2 Network Detect #2 - “BAD-TRAFFIC ip reserved bit set” alert

2.2.1 Snort Alerts

Running Snort v2.1.0 against the source file named 2002.9.26 generated 1,139 alerts.
The breakdown of these alerts by type is found in Table 4.

Alert Alert Count
 SCAN Squid Proxy attempt 508
 SCAN Proxy Port 8080 attempt 508
 (http_inspect) BARE BYTE UNICODE ENCODING 78
 (http_inspect) NON-RFC HTTP DELIMITER 27
 SCAN nmap TCP 9
 SCAN SOCKS Proxy attempt 4
 (http_inspect) DOUBLE DECODING ATTACK 3
 BAD-TRAFFIC ip reserved bit set 1
 (http_inspect) IIS UNICODE CODEPOINT ENCODING 1

Table 4. Alerts found in Detect #2 File

Of these alerts, the following one will be examined in detail:

[**] [1:523:4] BAD-TRAFFIC ip reserved bit set [**]
[Classification: Misc activity] [Priority: 3]
10/26-01:04:47.966507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x3C
217.85.127.102 -> 32.245.71.165 TCP TTL:244 TOS:0x0 ID:0 IpLen:20 DgmLen:40 RB
Frag Offset: 0x0079 Frag Size: 0x0014

According to the Snort Signature Database35., this event is generated when packets on
the network have the reserved bit set. This alert may be an indicator of the use of the
reserved bit by a malicious user to instigate covert channel communications, an
indicator of unauthorized network use, reconnaissance activity or system compromise.
These rules may also generate an event due to improperly configured network devices.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

21/75

2.2.2 Source of Trace

The source of this detect is a file named 2002.9.26 that is found on
http://www.incidents.org/logs/Raw/. It is 529,517 bytes and dated Mon Dec 2 15:39:41
2002. The details from the associated README file are found in Section 2.1.3.

To determine what the IDS is monitoring, we run the following commands to see first the
source MAC addresses and then the destination ones in the traffic as seen by the IDS:

tcpdump -ne -r iplog.MY.NET.101.21.200402091650.6 | awk ’{print $2}’ | sort -u
0:0:c:4:b2:33
0:3:e3:d9:26:c0

tcpdump -ne -r iplog.MY.NET.101.21.200402091650.6 | awk ’{print $3}’ | sort -u
0:0:c:4:b2:33
0:3:e3:d9:26:c0

Both MAC address prefixes, i.e. 00000C and 0003E3 are assigned to Cisco Systems
according to the IEEE Organizationally Unique Identifier (OUI) listing26.. Now looking at
the flow of the traffic, we see that:

1. The inside network appears to be the Class B network 32.245.0.0/16.

2. The Cisco device with a MAC address of 0:3:e3:d9:26:c0 is upstream from that with

a MAC address of 0:0:c:4:b2:33

3. Host 32.245.166.236 is apparently running a web browser:

21:34:41.046507 IP (tos 0x10, ttl 240, id 0, len 2960) 32.245.166.236.63794 >
207.68.176.190.80: P 2131193308:2131196228(2920) ack 2163772529 win 17520bad cksum 0 (-
>7773)!
AP Seq: 0x33F3CA71 Ack: 0xB4EC56E1 Win: 0x4470 TcpLen: 20
3Ewww.detroit.ru/links/32.php3</displayurl><url>http://www.detro
it.ru/links/32.php3</url>

4. Host 32.245.166.119 has a web server running on port tcp/80:

01:19:00.616507 32.245.166.119.80 > 194.165.8.161.1025:
<HTML><HEAD>.<TITLE>403.Forbidden</TITLE></HTML>

Taking these points into consideration, it is likely that the Snort IDS is located either on
a tap or on a port of a switch between two Cisco router/firewall devices with the traffic
between them spanned to it as shown in Figure 5. Hence the IDS is not on the subnet
of any hosts in seen in the detect file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

22/75

Figure 5. Representative Locations of hosts and IDS Sensor on Network #2

2.2.3 Detect was generated by?

This detect was generated by using Snort 2.1.0 and the “c:\Snort210\bin\snort -c
C:\Snort210\etc\snort.conf -r 2002.9.26" -l C:\Snort210\etc -Xde " command. This
source file contains the logged packets in the standard tcpdump binary format. So any
program capable of reading this format can be used against the detect file, e.g.
tcpdump/windump, snort or ethereal.

The summary of running this snort command against this iplog file follows:

===
Snort processed 1521 packets.
Breakdown by protocol: Action Stats:

 TCP: 1521 (100.000%) ALERTS: 1139
 UDP: 0 (0.000%) LOGGED: 1248
 ICMP: 0 (0.000%) PASSED: 0
 ARP: 0 (0.000%)
 EAPOL: 0 (0.000%)
 IPv6: 0 (0.000%)
 IPX: 0 (0.000%)
 OTHER: 0 (0.000%)
===
Wireless Stats:
Breakdown by type:
 Management Packets: 0 (0.000%)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

23/75

 Control Packets: 0 (0.000%)
 Data Packets: 0 (0.000%)
===
Fragmentation Stats:
Fragmented IP Packets: 1 (0.066%)
 Rebuilt IP Packets: 0
 Frag elements used: 0
Discarded(incomplete): 0
 Discarded(timeout): 0
===

TCP Stream Reassembly Stats:
 TCP Packets Used: 1521 (100.000%)
 Reconstructed Packets: 0 (0.000%)
 Streams Reconstructed: 766
===

According to the README file, all of the IP addresses of the protected network space
have been "munged". In this detect file all the inside IP addresses have been munged
into the Class B network of 32.245.0.0/16.

Before looking at the “BAD-TRAFFIC ip reserved bit set” packet in detail, we’ll take an
overview of all the traffic. The basic information on the inbound packets found in the
trace file is shown in Table 5.

Source IP Destination IP Destination
Port

TTL Packet
Count

Suspicious?

tcp/8080 43 508 recon 66.28.100.206 32.245.157.0-
32.245.157.253 tcp/3128 43 508 recon

63.111.48.133 32.245.166.236 tcp/ephemeral 113 28 web server response
255.255.255.2551 various in

32.245.0.0/16
tcp/515 15 37 Yes (source port:

31337)
207.188.7.150 32.245.166.236 tcp/61638 52 12 No - web server

response
66.75.87.174 32.245.166.119 tcp/80 115 8 “WEB-CGI formmail”
65.190.93.101 32.245.166.119 tcp/80 113 6 “WEB-IIS _vti_inf

access”
128.167.120.13 32.245.166.236 tcp/ephemeral 48 5 No - web server

response
32.245.90.118 45 3 202.29.28.1
32.245.28.52

tcp/80
45 4

Yes - source port
tcp/80

195.119.1.180 32.245.107.128 tcp/1080 38 4 Yes – syn to Socks
195.2.66.175 32.245.166.119 tcp/80 48 3 No – web server

traffic
208.184.39.132 32.245.166.236 tcp/ephemeral 54 3 No - web server

response
66.181.168.242 32.245.166.236 tcp/ephemeral 45 3 No - web server

response
140.128.251.21 32.245.229.244 tcp/80 50 3 Yes - source port

tcp/80
141.154.28.76 108 1
194.29.197.13 39 1
194.29.197.27

32.245.166.119 tcp/80

39 1

No – web server
traffic

202.57.125.41 32.245.166.119 tcp/80 44 1 “WEB-CGI formmail”
195.2.82.13 32.245.166.236 tcp/ephemeral 48 1 No - web server

response
204.202.148.19 32.245.166.236 tcp/ephemeral 113 1 No - web server

response
208.184.29.231 32.245.166.236 tcp/ephemeral 54 1 No - web server

response
63.241.16.76 32.245.166.236 tcp/ephemeral 46 1 No - web server

response

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24/75

Source IP Destination IP Destination
Port

TTL Packet
Count

Suspicious?

210.0.222.33 32.245.166.119 tcp/80 42 1 “WEB-CGI formmail”
24.167.47.7 32.245.166.119 tcp/80 109 1 “WEB-CGI formmail”
4.33.83.177 32.245.166.119 tcp/80 112 1 “WEB-CGI formmail”
64.208.107.1 32.245.166.119 tcp/80 112 1 “WEB-CGI formmail”
66.178.21.210 32.245.166.119 tcp/80 47 1 "WEB-FRONTPAGE

/_vti_bin/ access"
212.176.56.99 100 1
61.219.65.74 109 1
62.202.66.174 113 1
200.33.24.12

32.245.166.132 tcp/139

242 1

Yes – SMB traffic

217.85.127.102 32.245.71.165 244 1 Yes - frag 0:20@968
Table 5. Inbound Packets found in Detect #2 File

1 Note: The traffic in this trace with a source IP address of 255.255.255.255 was

analyzed by Peter Storm34.. The reader is referred to that analysis for more
information.

The basic information on the outbound packets found in the detect file are shown in
Table 6. The fact that 32.245.166.119 generates outbound traffic from a source port of
tcp/80 indicated that it is running a publicly accessible web server, apparently an
Apache/1.3.12 server on Red.Hat Linux with FrontPage server extensions v4.0.4.3.

01:19:00.616507 IP (tos 0x0, ttl 63, id 40697, len 623) 32.245.166.119.80 >
194.165.8.161.1025: P [bad tcp cksum 6fd3 (->a82b)!] 1728057789:1728058372(583) ack 81213162
win 32120 (DF)bad cksum f2c4 (->7dd)!
E..o..@.?......w.....P..g.....6.P.}xo...HTTP/1.1.403.Forbidden..Date:.Sat,.26.Oct.2002.10:08:
45.GMT..Server:.Apache/1.3.12.(Unix)..(Red.Hat/Linux).FrontPage/4.0.4.3..Keep-
Alive:.timeout=15,.max=100..Connection:.Keep-Alive..Transfer-Encoding:.chunked..Content-
Type:.text/html;.charset=iso-8859-1..X-
Pad:.avoid.browser.bug....11f..<!DOCTYPE.HTML.PUBLIC."-
//IETF//DTD.HTML.2.0//EN">.<HTML><HEAD>.<TITLE>403.Forbidden</TITLE>.</HEAD><BODY>.<H1>Forbid
den</H1>.You.don’t.have.permission.to.access./main/anpdf/an412.pdf.on.this.server.<P>.<HR>.<A
DDRESS>Apache/1.3.12.Server.at.www.XXXXXXXX.Port.80</ADDRESS>.</BODY>
</HTML>...0....

Source IP Destination

IP
Source

Port
TTL Packet

Count
Suspicious?

32.245.166.119 194.165.8.161 tcp/80 63 4 No

Source IP Destination
IP

Destination
Port

TTL Packet
Count

Suspicious?

32.245.166.236 various web
sites

tcp/80 124,240 274 Yes –
varying TTL

Table 6. Outbound Packets found in Detect #2 File

Note that as shown in the following extract, the TTL of packets coming from host
32.245.166.236 have two very different values, i.e. 124 or 240 even though they are
apparently coming from the same source IP/source port combination and the same
destination IP/destination port combination and occur almost simultaneously. This may
be due to the way that the protected network space has been "munged" but further
investigation is warranted.

19:38:57.886507 IP (tos 0x0, ttl 124, id 13458, len 246) 32.245.166.236.62384 >
64.154.80.48.80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

25/75

19:38:58.166507 IP (tos 0x10, ttl 240, id 0, len 245) 32.245.166.236.62384 > 64.154.80.48.80

The Snort rule that generated the “BAD-TRAFFIC ip reserved bit set” alert we are
interested in is listed below. This rule triggers on IP packets when the reserved bit is
set ('fragbits:R').

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD-TRAFFIC ip reserved bit set";
fragbits:R; sid:523; classtype:misc-activity; rev:4;)

2.2.4 Probability the source address was spoofed

If the “BAD-TRAFFIC ip reserved bit set” packet is not due to corruption then it is likely a
reconnaissance attempt. For reconnaissance to be successful the originator needs to
see the response, hence IP address spoofing is unlikely. Although it is possible that the
hacker could being use a sniffer or a tap to observe the return traffic, he/she would still
need to control the source IP address to initiate the TCP connection and the exploits.
This control could be via a number of mechanisms such as a Trojan or by using a proxy
server.

2.2.5 Description of Attack

The source IP of 217.85.127.102 is named pd9557f66.dip.t-dialin.net and according to
RIPE belongs to Deutsche Telekom AG, Internet service provider. Hence the apparent
source IP is a dialup user. This IP does not appear as an attacker in the DShield
database at this time.

As seen in Table 5, there is only one packet in the trace file with a source IP of
217.85.127.102. This is the actual packet that triggered the “BAD-TRAFFIC ip reserved
bit set” alert:

01:04:47.966507 IP (tos 0x0, ttl 244, len 40) 217.85.127.102 > 32.245.71.165: tcp (frag
0:20@968)bad cksum 71e7 (->8500)
!
0x0000 4500 0028 0000 8079 f406 71e7 d955 7f66 E..(...y..q..U.f
0x0010 20f5 47a5 8284 0050 410d 5a70 410d 5a70 ..G....PA.ZpA.Zp
0x0020 5004 0000 21a2 0000 0000 0000 0000 P...!.........

According to RFC 79136., the 3-bit flags field should look at follows:

 Flags: 3 bits
 Various Control Flags.

 Bit 0: reserved, must be zero
 Bit 1: (DF) 0 = May Fragment, 1 = Don’t Fragment.
 Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.

 0 1 2
 +---+---+---+
 | 0 | DF| MF|
 +---+---+---+

Byte(s) Explanation

45 4 = IPv4 datagram
5 = IHL (Internet header length) field is 5 words (20 bytes)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

26/75

Byte(s) Explanation
00 00 = Type of Service (TOS) field is set to zero so there are no special TOS

requirements
0028 0028 = The total length of the IP datagram, including the data field, i.e. 40 bytes
0000 0000 = The 16-bit identification field, which allows a host to determine which

datagram a newly arrived fragment belongs to. Each datagram has a unique
identification number, and each fragment of a datagram has the same
identification number.

8079 (100 0000001111001)
- 3-bit flags field (100) = Don’t fragment and More fragment bits are not set but

the Reserved bit is set which triggered the alert
- Fragmentation Offset Length (0000001111001) = 121 * 8 = 968

f4 f4 = TTL of 224
06 06 = TCP protocol

71e7 71e7 = TCP Header checksum which is incorrect as it should be "8500"
d955 7f66 d955 7f66 = 217.85.127.102 (Source IP)
20f5 47a5 20f5 47a5 = 32.245.71.165 (Destination IP)

8284 to
0000

8284 0050 410d 5a70 410d 5a70 5004 0000 21a2 0000 = 20 bytes of data in
the current fragment

Table 7. Forensics of packet triggering “BAD-TRAFFIC ip reserved bit set” alert

In Table 7 we can see the reserved bit of the 3-bit flags field is set and therefore not in
accordance with RFC 791. The other notable features of this packet are:

1. The TCP header check sum is "71e7" which is incorrect. It should be "8500". This

is undoubtedly due to the “munging” of the packets.

2. It is a fragmented packet – The Fragment Offset is 968, i.e. 0x8079.

3. It is the last fragment in the packet as the “More fragment” bit is not set.

4. The Fragment ID = 0

With only 20 bytes of data, we expect this to be the last fragment since typically
fragmentation does not occur with data less than 512 bytes, the minimum MTU.

The packet has a Fragment ID = 0 which is possible but we do not have any other traffic
from this source IP to see if the Fragment ID changes in different datagrams as we
would expect.

Possible benign causes of this packet having the 'reserved bit set' are corruption and
data munging. Unfortunately the munging inherently invalidates the TCP Header
checksum so that it cannot be readily used in the forensics. As there is only one
packet, there is insufficient information to decide if the packet was mangled in transit.

This packet may be an attempt to bypass certain security devices that filter on
destination port since this not the first fragment and so does not contain port

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

27/75

information. The sender may hope that the security device does not maintain a state
table and so will let this fragment through.

As to why someone might want to do this, the obvious reason is for reconnaissance.
Various scanning tools, e.g. nmap, use packets that deviate from RFCs as stimuli to
identify the OS on the target host. This fingerprinting approach frequently works since
the packets deviate from the standards and by definition there is no standard way of
handling them and each manufacturer can choose a different way of doing so. In this
alert the deviant packet has the ’reserved bit set’.

This packet is certainly not associated with a fragmentation-based DoS attack, e.g.
Teardrop, since it appears to be a single packet. The fact that we only see one packet
from the source IP could be because it is conducting a “low and slow” reconnaissance.

Finally the TTL of 224 and the apparent location of the source IP in Germany suggests
that the source host is running Solaris 2.x37..

2.2.6 Correlations

The CVE database39. does not an entry that corresponds to the packet seen. The
closest match is CAN-1999-0240, which is described as “Some filters or firewalls allow
fragmented SYN packets with IP reserved bits in violation of their implemented policy.”
This is only a candidate for inclusion in the CVE list.

The " BAD-TRAFFIC ip reserved bit set " alert was discussed by Ron Shuck (Mon, 10
Feb 2003 20:14:53 -0600) and Soren Macbeth (Tue, 8 Oct 2002 14:35:18 -0400). Their
postings to incidents.org can be found on the http://cert.uni-
stuttgart.de/archive/intrusions/ mirror.

James Maher also discussed this alert in his practical38..

2.2.7 Evidence Of Active Targeting

As shown in Table 5, the destination IP of 32.245.71.165 appears only once in the
trace. Hence there is no evidence to support a conclusion of active targeting of the
destination host.

2.2.8 Severity

The severity of this attack is determined by the following formula:

severity = (criticality + lethality) – (system countermeasures + network
countermeasures)

where each value is ranked on a scale from 1 (lowest) to 5 (highest).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

28/75

• Criticality (a measure of how critical the targeted system is): The assigned value
is a “4” since we do not know the importance of this system and so must assume
that it is important.

• Lethality (a measure of how severe the damage to the targeted system would be

if the attack succeeded): The assigned value is a “1” since no matching
vulnerability was found.

• System countermeasures (a measure of the strength of the defensive

mechanisms in place on the host itself). The assigned value is a “1” since we do
not know the countermeasures in place and so must assume that they are
minimal.

• Network countermeasures (a measure of the strength of the defensive

mechanisms in place on the network): The assigned value is a “3” since many of
the attempted connection attempts the triggered other alerts are not established.

Severity Calculation: 1 = (4 + 1) – (1 + 3)

2.2.9 Defensive Recommendation

Non-RFC compliant packets should be blocked at the perimeter. The inside security
device protecting the inside network should be a stateful device so that it is not
vulnerable to exploits that are based on type of packet seen here.

As well it would be worthwhile to look for future activity from the source IP because of
the possibility of that it could be conducting a "low and slow" reconnaissance.

2.2.10 Multiple Choice Test Question

Question: What is unusual about the following fragmented packet found in a tcpdump
file?

01:04:47.966507 217.85.127.102 > 32.245.71.165: (frag 0:20@968)
0x0000 4500 0028 0000 2079 f406 8500 d955 7f66
0x0010 20f5 47a5 8284 0050 410d 5a70 410d 5a70
0x0020 5004 0000 21a2 0000 0000 0000 0000

E. The More fragment bit is set.
F. The packet has a Fragment ID = 0 which is invalid.
G. Bit 0 of the 3-bit flags field is set.
H. The total length of the IP datagram is 41 bytes.

Answer: A

Explanation: Answer A is correct because the More fragment bit is set yet
there is only 20 bytes of data in the packet.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

29/75

2.2.11 Submission to “ intrusions-subscribe@incidents.org”

This detect was submitted to “intrusions-subscribe@incidents.org” on Fri, 5 Mar 2004
00:03:39 –0500. As of the day of submission of this Practical Assignment, 11 March
2004, no feedback was received.

2.3 Network Detect #3 – “SNMP public access udp” alert

2.3.1 Snort Alerts

Running Snort v2.1.0 against the source file named
iplog.MY.NET.101.21.200402091650.6 generated the following 3 alerts were generated:

[**] [1:1979:1] WEB-MISC perl post attempt [**]
[Classification: Web Application Attack] [Priority: 1]
02/09-17:50:19.000000 0:6:D7:3:17:80 -> 0:D0:FF:7C:14:0 type:0x800 len:0x359
MY.NET.101.21:1238 -> 206.65.188.241:80 TCP TTL:125 TOS:0x1B ID:49193 IpLen:20 DgmLen:843 DF
AP Seq: 0x8BD2D0C Ack: 0x17222C7F Win: 0x2058 TcpLen: 20
[Xref => http://cgi.nessus.org/plugins/dump.php3?id=11158][Xref =>
http://www.securityfocus.com/bid/5520]

[**] [1:1411:3] SNMP public access udp [**]
[Classification: Attempted Information Leak] [Priority: 2]
02/09-17:50:19.000000 0:6:D7:3:17:80 -> 0:D0:FF:7C:14:0 type:0x800 len:0x78
MY.NET.101.21:41080 -> 172.18.250.142:161 UDP TTL:125 TOS:0x0 ID:11630 IpLen:20 DgmLen:106
Len: 78
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0013][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0012][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0517]

[**] [119:12:1] (http_inspect) APACHE WHITESPACE (TAB) [**]
02/09-17:50:20.000000 0:6:D7:3:17:80 -> 0:D0:FF:7C:14:0 type:0x800 len:0x59A
MY.NET.101.21:4520 -> 66.35.229.175:80 TCP TTL:236 TOS:0x0 ID:62396 IpLen:20 DgmLen:1420
***A*R** Seq: 0x157AA768 Ack: 0xB569B799 Win: 0x8363 TcpLen: 20

The “SNMP public access udp” alert will be examined in detail because of the recent
widely publicized vulnerabilities in SNMP v1.0.

2.3.2 Source of Trace

The source of this detect is an iplog file named iplog.MY.NET.101.21.200402091650.6
that was generated by a Cisco IDS v3.1 sensor set to log traffic from MY.NET.101.21 in
a tcpdump format after a signature ID of 3050 (Half-open SYN Attack). The file is
1,047,269 bytes and dated 1650 hours on 9 February 04.

The IDS is supposed to be monitoring the traffic between a border router and a firewall.
To confirm this we run the following commands to see first the source MAC addresses
and then the destination ones in the traffic as seen by the IDS:

tcpdump -ne -r iplog.MY.NET.101.21.200402091650.6 | awk ’{print $2}’ | sort -u
0:6:d7:3:17:80
0:d0:ff:7c:14:0

tcpdump -ne -r iplog.MY.NET.101.21.200402091650.6 | awk ’{print $3}’ | sort -u
0:6:d7:3:17:80
0:d0:ff:7c:14:0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

30/75

Both MAC address prefixes, i.e. 0006D7 and 00D0FF are assigned to Cisco Systems
according to the IEEE Organizationally Unique Identifier (OUI) listing25.

Looking at the flow of the traffic as seen in the following extract, we see that the
MY.NET address traffic is coming from the device with a MAC of 0:6:d7:3:17:80:

17:50:19.000000 0:6:d7:3:17:80 0:d0:ff:7c:14:0 0800 60: IP MY.NET.101.21.61752 >
192.206.43.77.20: . ack 3020 win 64512 (DF)
17:50:19.000000 0:d0:ff:7c:14:0 0:6:d7:3:17:80 0800 1414: IP 192.206.43.77.20 >
MY.NET.101.21.61752: . 3020:4380(1360) ack 1 win 65535 (DF)

That the IDS is only dumping traffic from MY.NET.101.21 is confirmed by the fact the
following two word counts are identical:

tcpdump –ne –r iplog.MY.NET.101.21.200402091650.6 | grep "0:6:d7:3:17:80" | grep "
MY.NET.101.21" | wc –l
 1982
tcpdump –ne –r iplog.MY.NET.101.21.200402091650.6 | grep "0:6:d7:3:17:80" | wc –l
 1982

We also know that MY.NET.101.21 is one of the IP addresses in the NAT pool of the
firewall.

Taking all this into consideration, we have confirmed that the IDS sensor is located on a
port of a switch (taps are not being used) between two Cisco router/firewall devices with
the traffic between them spanned to it as shown in Figure 6. Hence the IDS is not on
the subnet of any hosts in seen in the detect file.

Figure 6. Representative Locations of IDS Sensor for Detect #3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

31/75

2.3.3 Detect was generated by?

This detect was generated by using Snort 2.1.0 and the “c:\Snort210\bin\snort -c
snort.conf -r iplog.MY.NET.101.21.200402091650.6" -l C:\Snort210\etc -Xde "
command against the iplog.MY.NET.101.21.200402091650.6 file. This file contains the
logged packets in the standard tcpdump binary format. So any program capable of
reading this format can be used against the detect file, e.g. tcpdump/windump, snort or
ethereal.

The summary of running this snort command against this iplog file follows:

===

Snort processed 1982 packets.
Breakdown by protocol: Action Stats:

 TCP: 1980 (99.899%) ALERTS: 3
 UDP: 2 (0.101%) LOGGED: 4
 ICMP: 0 (0.000%) PASSED: 0
 ARP: 0 (0.000%)
 EAPOL: 0 (0.000%)
 IPv6: 0 (0.000%)
 IPX: 0 (0.000%)
 OTHER: 0 (0.000%)
===
Wireless Stats:
Breakdown by type:
 Management Packets: 0 (0.000%)
 Control Packets: 0 (0.000%)
 Data Packets: 0 (0.000%)
===
Fragmentation Stats:
Fragmented IP Packets: 0 (0.000%)
 Rebuilt IP Packets: 0
 Frag elements used: 0
Discarded(incomplete): 0
 Discarded(timeout): 0
===

TCP Stream Reassembly Stats:
 TCP Packets Used: 1980 (99.899%)
 Reconstructed Packets: 38 (1.917%)
 Streams Reconstructed: 69
===

The “SNMP public access udp” alert found in the trace looks as follows:

[**] [1:1411:3] SNMP public access udp [**]
[Classification: Attempted Information Leak] [Priority: 2]
02/09-17:50:19.000000 0:6:D7:3:17:80 -> 0:D0:FF:7C:14:0 type:0x800 len:0x78
MY.NET.101.21:41080 -> 172.18.250.142:161 UDP TTL:125 TOS:0x0 ID:11630 IpLen:20 DgmLen:106
Len: 78
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0013][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0012][Xref =>
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0517]

The “SNMP public access udp” alert is generated when an SNMP connection over UDP
using the default 'private' community is made29..

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

32/75

2.3.4 Description of Attack

The IP address 172.18.250.142 is in the IANA blackhole network of 172.16.0.0/12.
Hence the firewall shown in Figure 6 is letting out traffic that should be blocked unless
the border router has an interface to a private network that uses addresses from
172.16.0.0/12.

The output file is produced by running “windump -nXvv -r
iplog.MY.NET.101.21.200402091650.6” and then grepped for packets with
MY.NET.101.21:41080 and 172.18.250.142:161. The following is the only such packet
in the trace and the only packet destined for the host 172.18.250.142:

grep "167\.83\.101\.21\.41080" windump_nXvvr_iplog.MY.NET.101.21.200402091650.6 | grep "172\.18\.250\.
142\.161"

17:50:19.000000 IP (tos 0x0, ttl 125, id 11630, len 106) MY.NET.101.21.41080 > 172.18.250.142.161: [udp sum ok] {
SNMPv1 { GetRequest(63) R=214 .1.3.6.1.2.1.25.3.2.1.5.1 .1.3.6.1.2.1.25.3.5.1.1.1 .1.3.6.1.2.1.25.3.5.1.2.1 } }
0x0000 4500 006a 2d6e 0000 7d11 5d0b a753 6515 E..j-n..}.]..Se.
0x0010 ac12 fa8e a078 00a1 0056 e8a3 304c 0201x...V..0L..
0x0020 0004 0670 7562 6c69 63a0 3f02 0200 d602 ...public.?.....
0x0030 0100 0201 0030 3330 0f06 0b2b 0601 0201030...+....
0x0040 1903 0201 0501 0500 300f 060b 2b06 01020...+...
0x0050 0119 0305 0101 0105 0030 0f06 0b2b 06010...+..
0x0060 0201 1903 0501 0201 0500

Furthermore, running the following command on the output file shows that there is only
one packet to or from port 161:

grep "\.161" windump_nXvvr_iplog.MY.NET.101.21.200402091650.6 | grep -v "\.161\."

Examining the SNMP GetRequest packet in more detail, we see that the host
MY.NET.101.21 is requesting the following object identifiers (OID):

.1.3.6.1.2.1.25.3.2.1.5.1 $DEVICE_STATUS_OID = ’1.3.6.1.2.1.25.3.2.1.5.1’; # hrDeviceStatus.1

.1.3.6.1.2.1.25.3.5.1.1.1 $PRINTER_STATUS_OID = ’1.3.6.1.2.1.25.3.5.1.1.1’; # hrPrinterStatus.1

.1.3.6.1.2.1.25.3.5.1.2.1 $ERROR_STATE_OID = ’1.3.6.1.2.1.25.3.5.1.2.1’; # hrPrinterDetectedErrorState.1

The hr OIDs are from the Host Resources (hr) MIB used for managing host systems.
This MIB instruments attributes common to all internet hosts including, for example,
both personal computers and systems that run variants of Unix. The requested ones
are defined as follows30.:

• hrDeviceStatus - The current operational state of the device which can be: unknown,
running, warning, testing or down.

• hrPrinterStatus - The current status of this printer device which can be: other,

unknown, idle, printing or warmup.

• hrPrinterDetectedErrorState - This object represents any error conditions detected
by the printer which can be: lowPaper, noPaper, lowToner, noToner, doorOpen,
jammed, offline and serviceRequested.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

33/75

If the source of this request was an authorize SNMP management station then the
information provided by these OIDs would be useful for alerting an operator to specific
warning or error conditions that may occur, especially those requiring human
intervention."

It appears that the host MY.NET.101.21 is interrogating the host 172.18.250.142 for
printer related information using the default SNMP read community string of “public”.
Hence the host 172.18.250.142 is likely a printer.

2.3.5 Attack Mechanism

SNMP request messages are sent from managers to agents. SNMP agents must
properly decode request messages and process the resulting data. In testing, OUSPG
found multiple vulnerabilities in the way many SNMP agents decode and process SNMP
request messages. Vulnerabilities in the decoding and subsequent processing of
SNMP messages by both managers and agents may result in denial-of-service
conditions, format string vulnerabilities, and buffer overflows. Some vulnerabilities do
not require the SNMP message to use the correct SNMP community string. These
vulnerabilities have been assigned the CVE identifiers CAN-2002-0012 and CAN-2002-
0013, respectively31..

It has been reported that the HP JetDirect firmware is more susceptible to SNMP
vulnerabilities than originally referenced in the CERT Advisory CA-2002-0332.. The
testing indicated that devices with JetDirect firmware x.08.32 crash each time a single
malformed SNMP packet was received.

2.3.6 Correlations

The "SNMP Public Access udp" alert was discussed on the Snort-users mailing list33..
The essence of the thread was that Windows client drivers for HP Printers containing
JetDirect cards use SNMP to determine the printer's extended status usually using the
default SNMP community of “public”.

2.3.7 Evidence Of Active Targeting

The trace shows that the host MY.NET.101.21 is interrogating the host 172.18.250.142
via SNMP for a count of one packet. However looking at some other available traces
we see that three such packets:

17:50:19.000000 IP (tos 0x0, ttl 125, id 11630, len 106) MY.NET.101.21.41080 > 172.18.250.142.161: [udp sum ok] {
SNMPv1 { GetRequest(63) R=214 .1.3.6.1.2.1.25.3.2.1.5.1 .1.3.6.1.2.1.25.3.5.1.1.1 .1.3.6.1.2.1.25.3.5.1.2.1 } }

17:50:26.000000 IP (tos 0x0, ttl 125, id 11638, len 106) MY.NET.101.21.41080 > 172.18.250.142.161: [udp sum ok] {
SNMPv1 { GetRequest(63) R=214 .1.3.6.1.2.1.25.3.2.1.5.1 .1.3.6.1.2.1.25.3.5.1.1.1 .1.3.6.1.2.1.25.3.5.1.2.1 } }

17:50:32.000000 IP (tos 0x0, ttl 125, id 11696, len 106) MY.NET.101.21.41080 > 172.18.250.142.161: [udp sum ok] {
SNMPv1 { GetRequest(63) R=214 .1.3.6.1.2.1.25.3.2.1.5.1 .1.3.6.1.2.1.25.3.5.1.1.1 .1.3.6.1.2.1.25.3.5.1.2.1 } }

Since these three packets are so close together and they all use the same source port,
it is likely that then same inside host is responsible for this traffic and that the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

34/75

destination IP did not respond. We could determine if the same inside host is
responsible for this traffic by looking at the firewall builds and teardowns events found
on the syslog server. Recall that the source IP is an address in the firewall’s NAT pool
so the true inside IP address is not obvious.

2.3.8 Severity

The severity of this attack is determined by the following formula:

severity = (criticality + lethality) – (system countermeasures + network
countermeasures)

where each value is ranked on a scale from 1 (lowest) to 5 (highest).

• Criticality (a measure of how critical the targeted system is): The assigned value is a

“1” since it is likely that the targeted host is a simple print server and alternate printer
probably available.

• Lethality (a measure of how severe the damage to the targeted system would be if the

attack succeeded): The assigned value is a “4” since the SNMP vulnerability
discussed may cause denial-of-service conditions, service interruptions and in some
cases may allow an attacker to gain access to the affected device.

• System countermeasures (a measure of the strength of the defensive mechanisms in

place on the host itself). The assigned value is a “1” since due to workload, it is
unlikely that the targeted printer server was patched against the SNMP vulnerability
identified in CERT Advisory CA-2002-03.

• Network countermeasures (a measure of the strength of the defensive mechanisms in

place on the network): The assigned value is a “2” since the traffic passed through the
firewall and inside router that are used to control what inside users are allowed to do.

Severity Calculation: 2 = (1 + 4) – (1 + 2)

2.3.9 Defensive Recommendation

If the investigation shows that inside hosts are required to issue SNMP queries then the
ACLs on the firewall and inside router must be checked to ensure that this SNMP traffic
is restricted only to specific destination hosts and from specific inside hosts or networks.
As well, all print servers need to be updated in accordance with CERT Advisory CA-
2002-03.

2.3.10 Multiple Choice Test Question

Question: How can you most efficiently and effectively determine if SNMP enabled
devices on a network are using the default read and write community strings?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

35/75

A. Log on to each device and check its configuration?
B. Use a network scanner and set it to look for the response to the default read and

write community strings?
C. Examine the syslog server for ACL hits or events involving tcp/161?
D. Examine the syslog server for events containing the phrases “public” or “private”?

Answer: B

Explanation: Answer B is correct because many scanners can be easily configured to
scan for devices that accept the default community strings and once configured they
can be scheduled to run periodically and send out the reports. The other answers are
either wrong or not as efficient or effective.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

36/75

Part 3 - Analyze This

3.1 Executive Summary

This section is a security audit of a university that was performed by analyzing logs from
their Intrusion Detection System (IDS) over the period of October 1-5, 2003. This audit
paid particular attention to signs of compromised systems and other network problems.

The top talkers, top listeners, top signatures, top source ports and top destination ports
were extracted to determine the most important detects over the aforementioned period.
Next more specific information was extracted from the log files and the following detects
were examined in detail:

1. SMB Name Wildcard Signature (902,224 hits)
2. “MY.NET.30.4 activity” Signature (50,224 hits)
3. Incomplete Packet Fragments Discarded (7,604 hits)
4. MY.NET.30.3 activity (7,216 hits)
5. High port 65535 tcp & udp - possible Red Worm – traffic (9,038 hits)
6. Null scan! (2,903 hits)
7. Tiny Fragments - Possible Hostile Activity (2,375 hits)
8. EXPLOIT x86 NOOP (1,462 hits)
9. Possible Trojan server activity (489 hits)

The study of these detects showed that a handful of student systems accounted for an
inordinate number of the events reported by the IDS sensor. Action is required to
ensure that these systems stop generating such traffic. To this end, the university’s
Acceptable User Policy (UAP) needs to be strengthened so that malicious traffic is
clearly defined and systems generating such traffic can be removed from the network
until it stops.

On the practical side, there are a number of Snort modifications recommended in this
audit that need to be actioned so as to make the sensor output more useful and thereby
enhancing the university’s security posture.

Finally it is recommended that management adopt the following two measures to
improve the university's security posture in a cost effective manner:

1. A security policy based on an “only allow what is explicitly permitted and deny
everything else” approach.

2. A defense in depth approach to reduce the chance of an intrusion.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

37/75

3.2 List of the files analyzed

The requirement states that “You must select five (5) consecutive days worth of files in
other words, you should have a minimum of five (5) files of each log type (Scans, Alerts,
and OOS (Out of Spec) at least one file of each type for each day) for analysis.”

For this part I used the files shown in Table 8 those data covered the period of October
1-5, 2003.

File
Type

File 1
(Oct 1)

File 2
(Oct 2)

File 3
(Oct 3)

File 4
(Oct 4)

File 5
(Oct 5)

Scan
Files

scans.031001.gz
17,491,421
Sun Oct 5 05:02:28
2003

scans.031002.gz
20,924,079
Mon Oct 6
05:02:13 2003

scans.031003.gz
16,121,849
Tue Oct 7 05:02:20
2003

scans.031004.gz
16,716,731
Wed Oct 8
05:01:26 2003

scans.031005.gz
16,381,378
Thu Oct 9 05:00:53
2003

(Dates
covered)

Oct 1 00:00:00 to
Oct 1 23:55:27

Oct 2 00:00:01 to
Oct 2 23:59:12

Oct 3 00:00:01 to
Oct 3 23:54:45

Oct 4 00:00:01 to
Oct 4 23:55:28

Oct 5 00:00:01 to
Oct 5 23:57:07

Alert
Files

alert.031001.gz
6,334,079
Sun Oct 5 05:02:06
2003

alert.031002.gz
7,343,955
Mon Oct 6 5:01:44
2003

alert.031003.gz
4,874,492
Tue Oct 7 05:01:53
2003

alert.031004.gz
2,524,857
Wed Oct 8
05:01:02 2003

alert.031005.gz
2,468,708
Thu Oct 9 05:00:38
2003

(Dates
covered)

10/01-
00:00:00.801771 to
10/02-
00:10:56.533465

10/02-
00:00:01.503292 to
10/02-
23:41:18.172608

10/03-
00:00:01.083849 to
10/04-
00:09:48.903583

10/04-
00:16:03.195630 to
10/05-
00:07:24.597884

10/05-
00:16:05.131231 to
10/06-
00:07:27.498096

OOS
Files

OOS_Report_2003
_10_02_3730
1,218,563 Thu Oct
2 00:08:13 2003

OOS_Report_2003
_10_03_10388
870,403 Fri Oct 3
00:08:09 2003

OOS_Report_2003
_10_04_7703
931,843 Sat Oct 4
00:05:16 2003

OOS_Report_2003
_10_05_7893
834,563 Sun Oct 5
00:08:11 2003

OOS_Report_2003
_10_06_14370
890,883 Mon Oct 6
00:05:16 2003

(Dates
covered)

10/01-
00:05:10.064411 to
10/02-
00:00:02.552338

10/02-
00:05:50.065593 to
10/03-
00:02:18.032469

10/03-
00:05:22.099104 to
10/04-
00:04:01.804947

10/04-
00:06:41.950857 to
10/04-
23:49:21.969584

10/05-
00:07:45.598277 to
10/05-
23:57:16.038311

Table 8. Log files selected to Analyze

As can be seen in Table 8, there is no obvious correspondence between dates of the
files and the actual dates of the alerts. Unfortunately this means that time is wasted
trying to find the matching OOS, Scan and Alert data and contributes nothing to the
exercise.

These files are found at the URL: http://www.incidents.org/logs. The README file (see
Section 2.1.3 for full extract) states that:

“The log files are the result of a Snort instance running in binary logging mode. This
means that only the packets that violate the ruleset will appear in the log. The logs
themselves have been sanitized.”

The detect file containing the logged packets is in the standard tcpdump binary format.
So any program capable of reading this format can be used against the detect file, e.g.
tcpdump/windump, snort or ethereal.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

38/75

3.3 Scan Analysis

In this section the scanning activity will be analyzed. Based on an examination of the
scans, alerts and OOS files and the fact that they are related, it is assumed that
130.85.x.x is the same network as MY.NET.x.x.

These scans contain a number of alerts with "SYN 12****S* RESERVEDBITS" as
shown below. According to Martin Roesch23 this type of alert is due to a bug that
required modifications to the TOS plugin that allow better detection of non-ECN
reserved bit usage.

Oct 5 23:44:02 194.249.91.190:38793 -> 130.85.24.44:80 SYN 12****S* RESERVEDBITS
Oct 5 23:50:36 63.71.152.2:56385 -> 130.85.100.230:113 SYN 12****S* RESERVEDBITS

The internal "top talkers" list for scanning activity is found in Table 9. These hosts are
the overall "top talkers", accounting for 86% (9,626,391) of the 11,186,574 scanning
events that were triggered. However, as can be seen in the remark column, many of
these scanning events are in fact benign since they are due to legitimate network
activity. The potentially infected hosts identified in Table 9 need to be investigated.

Source IP Event
Count

Remark

130.85.1.3 2,753,737 Mainly to destination port udp/53 on Internet name servers, hence
the host is probably an internal name server.

130.85.84.194 1,759,332 SYN scanning tcp/135 of Internet address spaces including
Tyndall AFB (131.55.0.0) and Upper Heyford AFB (131.56.0.0),
hence the host probably has a worm.

130.85.163.107 1,750,341 SYN scanning tcp/135 of Internet address spaces including
University of Alabama (130.160.0.0) and Ericsson (130.100.0.0),
hence the host probably has a worm.

130.85.84.232 1,204,595 Mainly from source port udp/3383 (destinations are Internet hosts
which appear to be end-users such as mrdh-a-
160.resnet.purdue.edu (24.153.23.66) and
12-206-176-242.client.attbi.com (24.153.23.66)) – while udp/3383
in IANA listed as the Enterprise Software Products License
Manager (esp-lm), this traffic might be due to some P2P software.
Also some SYNs to Internet hosts to non-standard portsi.

130.85.163.76 633,618 Mainly from source port udp/6257 (destinations are Internet hosts
mainly udp/6257) which is probably WinMX file-sharing program
(http://www.solidshare.com/winmx.html). This host may be
infected with the Kuang2 the Virus Trojanii (see
http://isc.incidents.org/port_details.html?port=17300).

130.85.162.118 633,161 Mainly from source port udp/1025-1026 while destination port is
udp/137 (destinations are Internet hosts). This host may be
infected with the Kuang2 the Virus Trojaniii (see
http://isc.incidents.org/port_details.html?port=17300).

130.85.1.5 407,677 Mainly to destination port udp/53 on Internet name servers, hence
the host is probably an internal name server, some ntp traffic
(source port udp/123).

130.85.84.143 240,290 Mainly from source and destination port udp/4672 (destinations
are Internet hosts which appear to be end-users such as port-212-
202-71-10.reverse.qsc.de (212.202.71.10iv) which is probably

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

39/75

Source IP Event
Count

Remark

eMule P2P program file-sharing program (http://www.eMule-
project.net/home/perl/help.cgi?l=1&rm=show_topic&topic_id=122).

130.85.112.151 136,934 SYN scanning tcp/135 of Internet address spaces including
UUNET Technologies (63.109.0.0), hence the host probably has a
worm. This host may be infected with the Kuang2 the Virus
Trojanv (see http://isc.incidents.org/port_details.html?port=17300).

130.85.70.176 106,706 Mainly from source port udp/6257 (destinations are Internet hosts
mainly udp/6257) which is probably WinMX file-sharing program
(http://www.solidshare.com/winmx.html). This host may be
infected with the Kuang2 the Virus Trojanvi (see
http://isc.incidents.org/port_details.html?port=17300).

Table 9. Internal "Top Talkers" list for scanning activity

Notes:

i Event showing host 130.85.84.232 trying to connect to tcp/2125: “Oct 5 00:59:08
130.85.84.232:1475 -> 172.197.187.92:2125 SYN ******S*” (from scans.031005.gz).

ii Event showing end-user host ip68-106-40-188.ph.ph.cox.net (68.106.40.188) trying
to connect to tcp/17300 on 130.85.163.76: “Oct 5 18:05:51 68.106.40.188:2468 ->
130.85.163.76:17300 SYN ******S*” (from scans.031005.gz).

iii Event showing end-user host pcp02561432pcs.owngsm01.md.comcast.net
(68.55.31.197) trying to connect to tcp/17300 on 130.85.163.76: “Oct 5 19:44:11
68.55.31.197:4504 -> 130.85.162.118:17300 SYN ******S*” (from scans.031005.gz).

iv Event showing end-user host pcp02561432pcs.owngsm01.md.comcast.net
(68.55.31.197) trying to connect to tcp/17300 on 130.85.163.76: “Oct 5 19:44:11
68.55.31.197:4504 -> 130.85.162.118:17300 SYN ******S*” (from scans.031005.gz).

v Event showing end-user host gso88-192-169.triad.rr.com (24.88.192.169) trying to
connect to tcp/17300 on 130.85.112.151: “Oct 5 14:48:13 24.88.192.169:4443 ->
130.85.112.151:17300 SYN ******S*” (from scans.031005.gz).

vi Event showing end-user host dsl-pb-1777.linkline.com (64.30.211.151) trying to
connect to tcp/17300 on 130.85.70.176: “Oct 5 23:42:10 64.30.211.151:2137 ->
130.85.70.176:17300 SYN ******S*” (from scans.031005.gz).

The "Top Destination Port" list for scanning activity is found in Table 10. These ports
account for 83% (9,230,661) of the destination ports associated with the scanning
events that were triggered.

The recommendation column of Table 10 is designed to better restrict the traffic to
legitimate network activity in accordance with the organization’s putative Acceptable
Use Policy (AUP). Normally network users must agree to the AUP. Typically this AUP
would restrict the use of the network to business-related activities. Hence the use of
Peer to Peer (P2P) programs such as eMule would probably be restricted.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

40/75

Destination

Port
Event
Count

Likely Service Recommendation

135 3,838,043 Microsoft Remote Procedure
Call (RPC) Service

Block inbound and outbound traffic
at edge devices

53 3,146,401 Domain Name Service (DNS) Restrict inbound and outbound
traffic at edge devices to
authorized name servers

6257 697,650 Probably WinMX file-sharing
program

Block inbound and outbound traffic
at edge devices (policy violation)

137 642,146 Microsoft NetBIOS Name
Service

Block inbound and outbound traffic
at edge devices

80 357,102 HTTP Block inbound traffic to tcp/80 at
edge devices to authorized web
servers

17300 164,482 Kuang2 the Virus Trojan Block inbound and outbound traffic
at edge devices

4672 131,857 eMule P2P program file-
sharing programii

Block inbound and outbound traffic
at edge devices (policy violation)

4662 107,877 eMule P2P program file-
sharing programii

Block inbound and outbound traffic
at edge devices (policy violation)

554 80,430 Real Time Streaming
Protocol (RTSP) used by
RealServer software that
streams media (RealAudio
and RealVideo)i

Block inbound and outbound traffic
at edge devices (policy violation)

25 64,673 SMTP Restrict inbound and outbound
traffic at edge devices to
authorized mail servers

Table 10. "Top Destination Port" list for scanning activity

Notes:

i RealServer FAQ, http://www.servicad.com/network/pdfs/RealServerFAQ.pdf

ii eMule Ports, http://www.emule-
project.net/home/perl/help.cgi?l=1&rm=show_topic&topic_id=122

Although destination port tcp/17300 is not in the top ten listed in Table 10, it is the 11th
most frequently scanned port (4,516 hits). The hosts that are the subject of port
tcp/17300 scanning ought to be examined to see if they are infected with the Kuang2
the Virus Trojan.

3.4 Alert Analysis

In Table 11 the number of alerts are shown by the following general categories:

1. “spp_portscan“ alerts: “spp_portscan” stands alerts generated by the portscan Snort

Preprocessor Plugin. The Snort Portscan Preprocessor logs the start and end of
portscans from a single source IP to the standard logging facility and if a log file is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

41/75

specified, it logs the destination IPs and ports scanned as well as the type of scan.
A portscan is defined as TCP connection attempts to more than P ports in T seconds
or UDP packets sent to more than P ports in T seconds. Ports can be spread across
any number of destination IP addresses, and may all be the same port if spread
across multiple IPs. So portscans possibilities are single IP -> single IP and single
IP -> many IPs.

The format for portscan is : <monitor network> <number of ports> <detection
period> <file path>

In the logs, these alerts look as follows:

10/05-00:16:11.011277 [**] spp_portscan: portscan status from 194.249.91.190: 1 connections across 1 hosts: TCP(1),
UDP(0) STEALTH [**]
10/05-00:16:15.855629 [**] spp_portscan: End of portscan from 194.249.91.190: TOTAL time(0s) hosts(1) TCP(1) UDP(0)
STEALTH [**]
10/05-00:16:19.014836 [**] spp_portscan: PORTSCAN DETECTED from 202.196.105.27 (THRESHOLD 12 connections
exceeded in 0 seconds) [**]

These alerts are used for correlation purposes when “non-ICMP (non-
spp_portscan)” alerts are examined.

2. “non-ICMP (non-spp_portscan) “ alerts: These alerts are neither spp_portscan alerts

nor are they ICMP-related ones, so they are called “non-ICMP (non-spp_portscan)”
alerts.

These top of this type of alert is examined in detail in Section 3.6 .

3. “ICMP (non-spp_portscan)” alerts: These alerts are ICMP alerts that are not

spp_portscan alerts, so they are called “ICMP (non-spp_portscan)” alerts. These
alerts look as follows:

10/05-01:16:21.787722 ;ICMP SRC and DST outside network;172.161.135.126;172.163.59.154
10/05-02:07:13.383605 ;ICMP SRC and DST outside network;172.139.162.66;172.137.243.248

All of this type of alerts involved ICMP traffic to and from hosts outside the internal
network. They will not be examined further, in fact the purpose of this type of alert
needs to be examined, especially if ICMP is not allowed into the network.

Number of

Alerts
File 1

(Oct 1 Wed)
File 2

(Oct 2 Thu)
File 3

(Oct 3 Fri)
File 4

(Oct 4 Sat)
File 5

(Oct 5 Sun)
non-ICMP (non-
spp_portscan)

323,051 389,185 213,055 47,074 17,598

ICMP (non-
spp_portscan)

327 313 287 313 262

spp_portscan 226,224 254,824 220,058 199,690 202,047

Table 11. Number of Alerts by General Categories

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

42/75

In Figure 7, we plot the three general categories of alerts found in Table 11 over the
five-day period (note that the ICMP (non-spp_portscan) category of alerts uses the
right-hand side Y-axis). We can see that the “spp_portscan” and “ICMP (non-
spp_portscan)” alerts remain constant over this period while the “non-ICMP (non-
spp_portscan)” alerts dramatically drop off on the weekend. Clearly those users that
caused the “non-ICMP (non-spp_portscan)” alerts took the weekend off. In fact looking
at the statistics shown in Table 16, we can see the reason is that several inside hosts
are not active, e.g. MY.NET.162.118 and MY.NET.150.133 that accounted for 90% of
these alerts do not appear on the weekend.

Figure 7. Graphs of the 3 Categories of Alerts over the five-day Period

3.5 OOS Analysis

The OOS files contain packets that were logged because they do not meet RFC
standards for some reason, e.g., packets with UPSF flags set. The reason usually
involves the layer 3 and 4 headers. Some of these packets may also be in the scan
logs or possibly the alert logs.

Now an attacker is free to set whatever flags he chooses to set on any packet. RFC 793
defines the meaning of certain bits, but does not address scenarios in which odd bit
combinations are encountered. The method in which the packet is handled is left up to
the TCP stack designer and as you might imagine, different implementations handle
these "odd bit combinations" in a variety of ways. Some implementations are more
liberal in what they accept, and choose to treat any packet with the SYN bit set
(regardless of what other bits are set or unset) as the opening in the three-way
handshake. Some implementations are more conservative, and drop packets with
unexpected combinations of flags. In the case of a liberal packet-filtering firewall, it may
allow a packet to pass if, for example, the FIN bit is set, even if the SYN bit is set46..

Table 12 lists the Top Ten source IP addresses and their destinations hosts and ports
that are found in the OOS Logs.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

43/75

Source IP Alert

Count
Destination IP Destination Port

194.249.91.190 2942 MY.NET.24.44:80 80
195.101.94.101 657 24 unique MY.NET.x.x hosts 80
195.101.94.208 540 17 unique MY.NET.x.x hosts 80
195.101.94.209 457 14 unique MY.NET.x.x hosts 80
MY.NET.216.50 443 13 unique MY.NET.x.x hosts - well-known ports: 21, 22, 25,

80, 119, 143, 389, 443, 465
- ephemeral ports: 4071-4141,
8765

205.244.242.28 377 3 unique MY.NET.x.x hosts 25
213.186.35.9 353 9 unique MY.NET.x.x hosts - well-known ports: 23, 80, 81

- ephemeral ports: 1080, 3128,
6588, 8000, 8001, 8080, 8081,
8888

216.95.201.13 337 5 unique MY.NET.x.x hosts 25
66.225.198.20 333 MY.NET.12.6 25
216.95.201.18 327 5 unique MY.NET.x.x hosts 25

Table 12. Top Ten Source IP Addresses and their Destinations in the OOS Logs

RFC 793 reserved the 6 bits before the TCP flags for future use and stated that they
must be zero40.. The TCP flags or control bits are the 6 lower order bits in the 13th byte
offset of the TCP header and these bits are defined as follows (see Figure 8):

 URG: Urgent Pointer field significant
 ACK: Acknowledgment field significant
 PSH: Push Function
 RST: Reset the connection
 SYN: Synchronize sequence numbers
 FIN: No more data from sender

Figure 8. RFC 793 definition of bytes 13 and 14 of the TCP header

More recently, RFC 316841. redefined bytes the 13th byte offset of the TCP header as
shown in Figure 9. The two new flags in the Reserved field of the TCP header are the
ECN-Echo (ECE) flag (Bit 9) and the Congestion Window Reduced (CWR) flag (Bit 8).
These are used to add Explicit Congestion Notification (ECN) to IP.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

44/75

Figure 9. RFC 3168 definition of bytes 13 and 14 of the TCP header

Snort represents the TCP flags including the two ECN as “12UAPRSF” when they are
all set42.. The reserved bits can be used to detect unusual behavior, such as IP stack
fingerprinting attempts or other suspicious activity. To handle writing rules for session
initiation packets such as ECN where a SYN packet is sent with the previously reserved
bits 12 set, an option mask may be specified. For example, the following rule checks for
a SYN FIN packet regardless of the values of the reserved bits:

alert any any -> 192.168.1.0/24 any (flags: SF,12; msg: "Possible SYN FIN scan";)

Table 13 lists the breakdown of OOS alerts based on the flag settings in the packets.
This table is folded into three double columns to conserve space.

Flags Count Flags Count Flags Count
12****S* 14518 12U***SF 1 1*U*PRSF 1
******** 311 12U*P*SF 1 1*UAP*SF 1
****P*** 141 12U*PR*F 1 1*UAPRSF 1
12***R** 42 12U*P**F 1 1*****SF 1
12*A*R** 3 12U*P*** 1 1***PRSF 1
12UAPRS* 2 12UA**SF 1 **U**RSF 1
12**PRS* 2 12UAP*SF 1 **U***** 1
12**PR*F 2 12UAPRSF 1 ******SF 1
12*A*R*F 2 12UA***F 1 *****RSF 1
1*U**RSF 2 12***RS* 1 ****P*SF 1
U*P*SF 2 12*R*F 1 ***AP*SF 1
UAP*SF 2 12P**F 1 ***APRSF 1
****PRSF 2 12*A*RSF 1 *2U**RSF 1
*2****SF 2 12*A*RS* 1 *2UA**SF 1
*2*A*RSF 2 12*AP*S* 1

Table 13. Flag Settings found in the OOS packets

As can be seen in Table 13, 96.38% of the OOS alerts are simply SYN packets with
using ECN. There is nothing inherently abnormal about these packets but in the days
before ECN these packets were indicative of potential malicious activity such as a
Queso Fingerprint attempt. The following old simple rule for Queso would have
produced false positives:

alert tcp any any -> $HOME_NET any (msg:"Possible Queso Fingerprint attempt"; flags: S12;)

This problem was recognized and the sophistication of these types of rules was
increased to not produce false positives because ECN was being used43..

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

45/75

The second most frequent OOS alert, 2.06%, was due to packets with no flags set, i.e.
“********”. These are probably due to fragmented packets. Detect #2 in Section 2.2
discusses this type of packet in detail.

The Xmas packets are interesting as they have all TCP flags set and possibly the ECN
ones as well. These are detected by the following Snort rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN XMAS"; flags:SRAFPU,12; reference:arachnids,144;
classtype:attempted-recon; sid:625; rev:2;)

According to the Snort Signature Database44., this alert is generated when TCP packets
have the ACK, FIN, PSH, RST, SYN, and URG control bits were set. Typically thise
type of packet is associated with system recon since different operating systems will
respond in different ways depending on their particular stack implementation, which
allows attackers to determine things such as open/closed ports, ACLs, and the like.

There are two such Xmas packets found in the OOS files, namely the 1*UAPRSF and
12UAPRSF packets listed in Table 13. The associated SCAN XMAS alerts are:

10/05-12:00:26.174228 24.35.51.121:0 -> MY.NET.29.3:1748
TCP TTL:116 TOS:0x0 ID:44545 IpLen:20 DgmLen:40 DF
1*UAPRSF Seq: 0x5007A9 Ack: 0xB4C770FF Win: 0x5010 TcpLen: 24 UrgPtr: 0x919
TCP Options (1) => EOL

10/02-13:55:01.255408 68.50.218.176:1679 -> MY.NET.12.7:443
TCP TTL:112 TOS:0x0 ID:19229 IpLen:20 DgmLen:40 DF
12UAPRSF Seq: 0x2F564C Ack: 0xD6CCABEF Win: 0x5010 TcpLen: 0 UrgPtr: 0x3C5

The first packet is interesting since the source IP of 24.35.51.121 is an old friend that
appears in the list of Top Source IPs in the “Null scan!” Alerts (Table 24). Table 14
shows what this host was up to over the period covered in this report.

Time Source IP Source
Port

Destination
IP

Destination
Port

Remarks

10/04-18:17:15 24.35.51.121 0 MY.NET.24.74 4193 NULL ********
10/04-18:17:15 24.35.51.121 0 MY.NET.24.74 4193 Null scan!
10/04-18:17:16 24.35.51.121 4201 MY.NET.24.74 443 SYN ******S*
10/04-18:17:18 24.35.51.121 4193 MY.NET.24.74 443 SYN ******S*
10/04-18:18:22 24.35.51.121 4244 MY.NET.29.3 80 SYN ******S*
10/04-18:18:23 24.35.51.121 4243 MY.NET.29.3 80 INVALIDACK **UAP*SF
10/04-18:36:03 24.35.51.121 spp_portscan:PORTSCAN

DETECTED (STEALTH)
10/04-18:36:07 24.35.51.121 spp_portscan:portscan status
10/04-18:36:10 24.35.51.121 spp_portscan:portscan status
10/04-18:36:14 24.35.51.121 spp_portscan:End of portscan
10/04-18:38:06 24.35.51.121 spp_portscan:PORTSCAN

DETECTED (STEALTH)
10/04-18:38:08 24.35.51.121 spp_portscan:portscan status
10/04-18:38:11 24.35.51.121 spp_portscan:End of portscan
10/05-11:32:52 24.35.51.121 0 MY.NET.29.3 1381 NOACK *2U***S*

RESERVEDBITS
10/05-11:50:42 24.35.51.121 spp_portscan:PORTSCAN

DETECTED (STEALTH)
10/05-11:50:44 24.35.51.121 spp_portscan:portscan status
10/05-11:50:49 24.35.51.121 spp_portscan:End of portscan
10/05-12:00:25 24.35.51.121 1749 MY.NET.29.3 80 SYN ******S*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

46/75

Time Source IP Source
Port

Destination
IP

Destination
Port

Remarks

10/05-12:00:26 24.35.51.121 0 MY.NET.29.3 1748 FULLXMAS 1*UAPRSF
RESERVEDBITS

10/05-12:00:26 24.35.51.121 1748 MY.NET.29.3 80 INVALIDACK *2UA*RS*
RESERVEDBITS

10/05-12:00:26 24.35.51.121 0 MY.NET.29.3 1748 SYN ******S*
10/05-12:00:29 24.35.51.121 1750 MY.NET.29.3 80 NULL ********
10/05-12:00:29 24.35.51.121 1748 MY.NET.29.3 80 Null scan!
10/05-12:00:29 24.35.51.121 1748 MY.NET.29.3 80 Null scan!
10/05-12:16:56 24.35.51.121 spp_portscan:PORTSCAN

DETECTED (STEALTH)
10/05-12:17:02 24.35.51.121 spp_portscan:portscan status
10/05-12:17:07 24.35.51.121 spp_portscan:portscan status
10/05-12:17:12 24.35.51.121 spp_portscan:End of portscan

Table 14. Activity of source IP of 24.35.51.121

We know the following about the source IP 24.35.51.121:

1. It’s named “cmu-24-35-51-121.mivlmd.cablespeed.com”.
2. cablespeed.com is headquartered in Millersville, MD and is allocated the network

block 24.35.0.0 - 24.35.127.255
3. It does not appear as an attacker in the DShield database.
4. The TTL=116 in the OOS packet, so assuming that the TTL is not crafted and given

the geographical proximity of the source and destination hosts, it is likely that the
source host is a Windows NT 4.0 or Windows 98 box37..

We know the following about the destination IPs:

1. The destination IP MY.NET.24.74 is a web server that offers webmail via SSL.
2. The destination IP MY.NET.29.3 is a web server that offers students courses over

the Internet.

Looking at the traffic reported in Table 14 we see the following oddities in the traffic:

1. Traffic with source port 0 is sent to high ports on both web servers. Now in RFC

1700, tcp/0 is supposed to be a reserved port so we do not expect to see especially
since a client normally uses an ephemeral port when connecting to a server.
Programs such as nmap and hping245. allow a user to easily craft arbitrary packets
including specifying a desired source port. With a source port of 0 and no flags
being set the sender of the packet may be hoping to get through any security
devices and elicit a response from the destination IP for OS fingerprinting purposes.

2. The source IP sends packets to certain ephemeral ports and then turns around and

uses those same ephemeral ports as source ports. For example packets are sent
from 0 -> 4193 and then from 4193 -> 443, and from 0 -> 1748 and then from 1748 -
> 80. If seems that user probes for a server like eDonkey and them turns around
and tries sending traffic as if he is now the server.

The conclusion looking at the activity of the source IP of 24.35.51.121 is that this host is
trying to fingerprint the OS and applications on the two web servers. As this

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

47/75

reconnaissance may be the precursor to an attack based on accurate OS and
application fingerprinting, the patches levels of the two web server ought to be reviewed
and the security devices configured to drop packets with a source port of 0. As well
future activity from the source IP of 24.35.51.121 ought to be reviewed and its activities
reported to abuse@cablespeed.com.

3.6 Detects prioritized by number of occurrences

Table 15 shows the total alert statistics for the top 10 signatures, source IP addresses
and ports, and destination IP addresses and ports for the “non-ICMP (non-
spp_portscan)” alerts over the five-day period in this audit. Each of the top 10
signatures will be examined in more detail.

 Totals (Period Oct 1 to Oct 5)

Name Count
SMB Name Wildcard 902,224
MY.NET.30.4 activity 50,224
Incomplete Packet Fragments Discarded 7,604
MY.NET.30.3 activity 7,216
High port 65535 udp - possible Red Worm - traffic 5,214
High port 65535 tcp - possible Red Worm - traffic 3,824
Null scan! 2,903
Tiny Fragments - Possible Hostile Activity 2,375
EXPLOIT x86 NOOP 1,462

Top Signature
IDs

connect to 515 from outside 1,198
Address Count

MY.NET.162.118 846,994
MY.NET.150.133 38,097
68.65.100.189 35,974
MY.NET.66.33 5,667
MY.NET.42.6 5,241
138.88.168.198 2,606
220.99.94.77 2,529
MY.NET.11.6 2,335
202.188.114.50 2,165

Top Source IP

68.48.217.68 2,125
Port Count

1026 423,811
1025 422,913
4043 18,569
4041 16,968

137 13,873
1560 12,296
1693 7,021

65535 4,491
1030 2,534

Top Source Port

0 2,450
Address Count

MY.NET.30.4 50,563
MY.NET.30.3 5,260
MY.NET.30.3 3,639
MY.NET.66.2 2,201

Top Destination
IP

MY.NET.30.4 1,722

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

48/75

 Totals (Period Oct 1 to Oct 5)

Name Count
146.82.109.220 1,591
MY.NET.163.76 1,558
146.82.109.225 1,436
128.183.110.242 1,384

199.72.154.71 922
Port Count

137 901,292
51443 43,775

524 8,020
65535 4,590

80 3,973
0 2,749

6257 2,553
8009 2,120

515 1,883

Top Destination
Port

3019 648

Table 15. Top N Statistics for the “non-ICMP (non-spp_portscan)” Alerts

Table 16 shows a breakdown of the “non-ICMP (non-spp_portscan)” alert statistics for
each day of the five-day period.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

49/75

 File 1
(Oct 1 Wed)

File 2
(Oct 2 Thu)

File 3
(Oct 3 Fri)

File 4
(Oct 4 Sat)

File 5
(Oct 5 Sun)

Name Count Name Count Name Count Name Count Name Count
SMB Name
Wildcard

312,168 SMB Name
Wildcard

380,741 SMB Name
Wildcard

198,604 MY.NET.30.4
activity

38,682 SMB Name
Wildcard

7,423

MY.NET.30.4
activity

3,893 MY.NET.30.4
activity

1,819 Incomplete Packet
Fragments
Discarded

4,627 SMB Name
Wildcard

3,288 MY.NET.30.4
activity

4,108

MY.NET.30.3
activity

2,634 High port 65535
udp - possible Red
Worm - traffic

1,253 Tiny Fragments -
Possible Hostile
Activity

2,344 Incomplete
Packet
Fragments
Discarded

1,997 High port 65535 tcp
- possible Red
Worm - traffic

2,467

High port 65535
udp - possible Red
Worm - traffic

1,690 connect to 515
from outside

1,055 Null scan! 2,251 MY.NET.30.3
activity

1,165 MY.NET.30.3
activity

1,330

connect to 515
from inside

694 MY.NET.30.3
activity

942 MY.NET.30.4
activity

1,722 High port 65535
udp - possible
Red Worm -
traffic

712 High port 65535
udp - possible Red
Worm - traffic

675

SUNRPC highport
access!

293 Incomplete Packet
Fragments
Discarded

756 MY.NET.30.3
activity

1,145 Null scan! 457 EXPLOIT x86
NOOP

542

NMAP TCP ping! 247 High port 65535
tcp - possible Red
Worm - traffic

601 High port 65535
udp - possible Red
Worm - traffic

884 High port 65535
tcp - possible
Red Worm -
traffic

174 Incomplete Packet
Fragments
Discarded

220

High port 65535
tcp - possible Red
Worm - traffic

217 EXPLOIT x86
NOOP

425 High port 65535
tcp - possible Red
Worm - traffic

365 EXPLOIT x86
NOOP

108 Possible trojan
server activity

195

EXPLOIT x86
NOOP

165 NMAP TCP ping! 251 EXPLOIT x86
NOOP

222 NMAP TCP
ping!

85 NMAP TCP ping! 101

Signature

Possible trojan
server activity

77 Possible trojan
server activity

217 NMAP TCP ping! 181 connect to 515
from outside

78 External RPC call 89

Address Count Address Count Address Count Address Count Address Count
MY.NET.162.118 292,882 MY.NET.162.118 361,206 MY.NET.162.118 192,635 68.65.100.189 35,974 MY.NET.66.33 3,363
MY.NET.150.133 18,000 MY.NET.150.133 16,271 MY.NET.150.133 3,826 MY.NET.42.6 2,331 MY.NET.42.6 2,910
138.88.168.198 2,606 MY.NET.66.33 1,840 202.188.114.50 2,165 24.104.7.195 1,769 68.48.217.68 2,125
68.55.105.5 1,673 68.81.2.19 778 220.99.94.77 2,162 MY.NET.11.6 670 MY.NET.84.143 843
MY.NET.163.76 843 131.118.229.7 730 MY.NET.42.8 905 68.57.90.146 572 141.157.9.122 801
68.55.158.79 744 MY.NET.163.76 608 MY.NET.21.50 782 68.55.62.79 490 MY.NET.11.6 747
MY.NET.162.41 692 68.55.62.79 404 MY.NET.21.37 746 220.99.94.77 367 217.132.44.109 675
MY.NET.66.33 464 MY.NET.42.4 391 MY.NET.21.92 580 MY.NET.21.92 333 68.55.62.79 541
68.55.52.234 373 MY.NET.11.6 340 MY.NET.21.79 565 MY.NET.21.67 328 194.199.203.7 456

Source IP

68.55.62.79 343 68.55.57.218 338 MY.NET.21.116 540 MY.NET.21.69 304 210.6.2.205 431
Port Count Port Count Port Count Port Count Port Count

1026 146,860 1025 180,843 1026 96,589 4043 18,569 137 4364
1025 146,022 1026 180,362 1025 96,048 4041 16,968 65535 1573
1693 7,021 1560 8,167 0 2,029 1030 1,314 1028 1523
1560 4,129 137 4,379 137 1,329 137 896 1030 812

137 2,905 65535 870 1029 630 1029 618 4016 750
1551 2,047 3496 863 65535 616 1028 538 3672 719
2703 1,656 721 730 1227 538 65535 520 1029 675
2462 1,040 2385 727 1030 408 0 421 4058 614
2186 1,010 6257 647 6257 404 3010 381 3806 420

65535 912 3343 577 1028 255 6257 263 4014 409

Source Port

1026 146,860 1025 180,843 1026 96,589 4043 18,569 137 4364
Address Count Address Count Address Count Address Count Address Count

MY.NET.30.4 3,887 206.24.190.158 1,840 MY.NET.66.2 2,201 MY.NET.30.4 38,682 MY.NET.30.4 4,107
MY.NET.30.3 2,630 MY.NET.30.4 1,817 MY.NET.30.4 1,722 MY.NET.30.3 1,165 146.82.109.220 1,591

MY.NET.163.76 779 MY.NET.24.15 1,055 MY.NET.30.3 1,145 169.254.0.0 674 146.82.109.225 1,436
128.183.110.242 692 MY.NET.30.3 939 MY.NET.70.176 345 MY.NET.70.176 375 MY.NET.30.3 1,329

199.72.154.71 461 MY.NET.163.76 520 64.94.189.7 325 MY.NET.66.2 368 217.132.44.109 842
MY.NET.24.8 324 169.254.0.0 340 169.254.0.0 318 169.254.45.176 153 169.254.0.0 750
219.31.76.94 285 MY.NET.150.6 262 169.254.45.176 238 MY.NET.84.143 81 MY.NET.84.143 683

169.254.0.0 267 68.101.218.125 201 MY.NET.150.6 118 MY.NET.24.15 78 MY.NET.97.25 459
61.199.46.200 182 219.173.131.15 195 210.194.220.239 100 MY.NET.12.6 73 210.6.2.205 420

Destination
IP

167.206.156.241 142 169.254.45.176 183 MY.NET.1.3 92 217.132.44.109 65 MY.NET.70.176 369
Port Count Port Count Port Count Port Count Port Count

137 311,835 137 380,341 137 198,405 51443 37,675 137 7,423
51443 3,296 51443 1,185 0 2,015 137 3,288 8009 2,120

524 2,723 515 1,055 524 1,295 524 1,616 65535 1,573
65535 1,010 65535 987 51443 929 80 572 524 1,399

6257 783 524 987 80 814 0 420 80 1,080
515 750 80 895 65535 643 65535 377 51443 690

80 612 6257 574 6257 425 6257 374 3019 648
32771 295 27374 178 111 118 25 134 3672 542

53 167 53 159 53 96 515 78 3806 431

Destination
Port

25 103 111 149 25 61 135 58 6257 397

Table 16. Daily Statistics for the “non-ICMP (non-spp_portscan)” Alerts

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

50/75

3.6.1 SMB Name Wildcard Signature (902,224 hits)

Typical alert from the “SMB Name Wildcard” signature look as follows:

10/05-00:49:10.666640 [**] SMB Name Wildcard [**] MY.NET.153.21:3273 -> 66.171.157.127:137
10/05-00:49:30.813710 [**] SMB Name Wildcard [**] MY.NET.11.6:137 -> 169.254.0.0:137

Examining the output of the “SMB Name Wildcard” signature that was triggered 902,224
times we can see that:

1. The alerts involve traffic to port tcp/137

2. There are no detects caused by traffic from an external host to an internal host, i.e.

the source in all alerts is MY.NET.x.x. Table 17 shows the top source IP addresses
for “SMB Name Wildcard” signature, which accounts 99.6% of the source
addresses.

Source Address Count

MY.NET.162.118 847,129
MY.NET.150.133 38,097
MY.NET.66.33 5,667
MY.NET.42.6 5,251
MY.NET.11.6 2,335

Table 17. Top Source IP Addresses for “SMB Name Wildcard” Signature

3. In general most destination addresses receive only one hit while the maximum count

for a single destination address is 461. Looking at the alerts, we can see that in
general the source addresses are scanning as a worm would do.

As there are no detects caused by traffic from an external host to an internal host, either
there is a security device on the network that is blocking inbound traffic to port tcp/137
or else the rule was written to only trigger on traffic from internal hosts to port tcp/137 on
external hosts.

Some worms use tcp/137 for transmission, e.g. W32.Nimda.A@mm8. The hosts listed
in Table 17 should be scanned for worms and both outbound and inbound traffic to the
Microsoft ports of 137-139 and 445 both udp and tcp should be blocked.

3.6.2 “MY.NET.30.4 activity” Signature (50,224 hits)

The “MY.NET.30.4 activity” signature is a custom one that alerts on connections made
to an Internet assessable host with an IP address of MY.NET.30.4. The top destination
ports accounting for 99.83% of this signature over the five-day period are shown in
Table 18.

The following shows a typical alert for the “MY.NET.30.4 activity” signature:

10/05-00:08:12.699474 [**] MY.NET.30.4 activity [**] 68.55.62.79:1036 -> MY.NET.30.4:524

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

51/75

It can be seen that Internet hosts are attempting connections to ports that are typically
not exposed to the Internet. Whether these attempt succeed is not clear since we do
not have traces to examine.

Port 524 is typically used to access Netware Directory Services (NDS) on a NetWare
server. The destination port of 51443 is associated with the Novell NetStorage/iFolder
feature running on an Apache webserver on NetWare. The default port number for
NetWare Enterprise Server is 80 for HTTP and 443 for HTTPS. If the NetWare
Enterprise Server installed, by default the Apache Web Server will get port 51080 for
HTTP and 51443 for HTTPS7.

Hence it would appear that the “MY.NET.30.4 activity” signature monitors connections
to a NetWare 6.x server that is exposed on the Internet.

Destination Port Count
51443 43,775

80 2,609
8009 2,123
524 1,608

17300 17

Table 18. Activity to Destination Ports on MY.NET.30.4

The purpose of this signature is not clear. If host MY.NET.30.4 is special then the
nature of access to this server from the Internet should be reviewed and tightened up if
possible. Of course it is also possible that the host MY.NET.30.4 is a honey pot just as
host MY.NET.30.3 might be.

3.6.3 Incomplete Packet Fragments Discarded (7,604 hits)

This signature is triggered because packet fragments were detected but not all the
packets arrived so the stream could not be reassembled9.

These alerts look as follows:

10/05-10:45:33.342218 [**] Incomplete Packet Fragments Discarded [**] 80.135.88.105:0 -> MY.NET.84.143:0
10/03-05:24:47.480493 [**] Incomplete Packet Fragments Discarded [**] MY.NET.21.68 -> 206.47.132.111

Note that there are the following two types of events:

1. If the source is an external address and the destination is a MY.NET.x.x addess then

the source and destination ports are both 0.

2. If the source is a MY.NET.x.x addess and the destination is an external address then

there are no source and destination ports recorded.

There are 7,604 hits for this signature over the five-day period.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

52/75

1. On Oct 1, Wed all source IPs were outside ones and there were only 4 hits for this

signature.

2. From Oct 2 to Oct 4 all the top source IPs were inside ones.

3. On Oct 5, Sun all source IPs were outside ones.

The top sources of the “Incomplete Packet Fragments Discarded” alerts are shown in
Table 19. We can see that the top sources are all inside ones.

Source IP Count
MY.NET.21.50 1,090
MY.NET.21.92 1,016
MY.NET.21.67 958
MY.NET.21.37 936
MY.NET.21.79 769
MY.NET.21.116 739
MY.NET.21.69 723
MY.NET.21.70 542
MY.NET.21.68 529

Table 19. Top Sources of “Incomplete Packet Fragments Discarded” Alerts

The top destinations of the “Incomplete Packet Fragments Discarded” alerts for each
day are shown in Table 20. We see that most of the top destinations are outside ones.

Destination IP Count Date
64.62.132.135 2,360 3-Oct
213.249.98.11 1,142 4-Oct
212.71.43.58 1,006 3-Oct
69.39.225.230 837 4-Oct
69.31.67.217 725 2-Oct
203.135.43.233 716 3-Oct
206.47.132.111 515 3-Oct
MY.NET.153.31 168 5-Oct
MY.NET.12.4 3 1-Oct

Table 20. Top Destinations of “Incomplete Packet Fragments Discarded” Alerts

A search through the log files yielded no other traffic associated with some of the source
addresses. For example the source IP address of 80.135.88.105 found in the alert
shown above appears only once in the alert files over the five-day period, i.e. in
“Incomplete Packet Fragments Discarded” alert itself. It could be speculated that the
alerts with a source and destination port of 0 are some from of attack of reconnaissance
attempts. However, this would correspond to a very low and slow scanning rate by a
hacker. The other difficulty with these alerts is the fact that they are the top types
pointed out above.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

53/75

Given these facts, a more likely explanation for the alerts is a bug in the version of Snort
that is running. Martin Roesch states10 that this type of alert “means that you're using
the defrag preprocessor instead of the newer frag2 preprocessor and that you should
switch to frag2. The defrag preprocessor had some fairly nasty failure modes and has
since been superceded by frag2, so I'd recommend using that for now.”

Hence it is highly likely that this alert is currently mostly noise and the frag2
preprocessor should be used to eliminate the noise or else the signature disabled.

3.6.4 MY.NET.30.3 activity (7,216 hits)

The “MY.NET.30.3 activity” signature is a custom one that alerts on connections made
to an Internet assessable host with an IP address of MY.NET.30.3. The top destination
ports accounting for 99.83% of this signature over the five-day period are shown in
Table 21.

Destination Port Count
524 6,412

3019 648
80 62

17300 16
443 11

Table 21. Activity to Destination Ports on MY.NET.30.3

The following shows a typical alert for the “MY.NET.30.3 activity” signature:

10/05-09:42:47.454555 [**] MY.NET.30.3 activity [**] 68.55.62.79:1435 -> MY.NET.30.3:524

It can be seen that Internet hosts are attempting connections to ports that are typically
not exposed to the Internet. Whether these attempt succeed is not clear since we not
have traces to examine.

Again port 524 is typically used to access Netware Directory Services (NDS) on a
NetWare server. Novell BorderManager version 3.6 uses tcp/3019 for Resource
Manager13.. The default port number for NetWare Enterprise Server is 80 for HTTP and
443 for HTTPS.

Hence it would appear that the “MY.NET.30.3 activity” signature monitors connections
to a Novell BorderManager system that is on the Internet.

The tcp/17300 activity could be due to hosts probing for backdoors opened by “Kuang2
The virus”.

The purpose of this signature is not clear. If host MY.NET.30.3 is special then the
nature of access to this server from the Internet should be reviewed and tightened up if
possible. Of course it is also possible that the host MY.NET.30.3 is a honey pot just as
host MY.NET.30.4 might be.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

54/75

3.6.5 High port 65535 tcp & udp - possible Red Worm – traffic (9,038 hits)

Both the “High port 65535 udp - possible Red Worm” alerts (5,214 hits) and the “High
port 65535 tcp - possible Red Worm” alerts (3,824 hits) will be considered together.

There is no rule for the Red Worm/Adore worm in the rule sets that I examined so it may
be a custom signature triggered simply by traffic to or from tcp or udp port 65535. In
any events these alerts look as follows:

10/05-00:06:59.284331 [**] High port 65535 udp - possible Red Worm - traffic [**] MY.NET.70.176:6257 ->
61.199.1.118:65535
10/05-00:06:59.698369 [**] High port 65535 udp - possible Red Worm - traffic [**] 61.199.1.118:65535 ->
MY.NET.70.176:6257

Red Worm is the original name of the Adore worm and it is similar to the Ramen and
Lion worms. It started to spread in April 2001. Adore scans the Internet checking Linux
hosts to determine whether they are vulnerable to any of the following well-known
exploits: LPRng, rpc-statd, wu-ftpd and BIND. LPRng is installed by default on Red Hat
7.0 systems22..

Adore does several things including the following:

• Attempts to send an email to several addresses including adore9000@21cn.com.

• Installs a Trojan backdoor that activates when it receives a ping packet with correct

size, and then opens a shell in the port 6553523..

Since the ephemeral port range is 1024 through 65535, and the rule is triggering on
traffic to or from tcp/65535, we can expect many false positives. The two characteristics
listed above for the Adore worm give us a way to check for false positives, i.e. the
infected hosts that have triggered the “possible Red Worm” alert can be cross-
correlated with hosts that have sent smtp traffic to the worm related mail servers.
Unfortunately we do not have access to the traces that would allow such correlation, but
we can look for connections from tcp/65535 to tcp/25 in the “Red Worm” alerts.

Table 22 shows the internal hosts that have triggered both the “possible Red Worm”
alert and have also apparently sent e-mail to external hosts. As was mentioned, this
combination could be a strong indicator that the internal hosts are infected with the
adore worm. If the resolved name corresponds to that of a known mail exchanger then
it is likely that the internal hosts is mail server and the “possible Red Worm” alerts are
false positives and need not be checked. However if the resolved name does not
appear to be that of a known mail exchanger then the internal hosts need to be checked
to see if the are running Linux and if they are in fact infected by the Adore worm. The
internal hosts that need to be checked are indicated by a “Y” in the “Check?” column if
they are running Linux.

A destination IP of 127.0.0.2 could indicate that the source IP is a mail server using
Real-time spam Black Lists (RBL).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

55/75

Source IP Source
Port

Destination
IP

Resolved Name Dst
Port

Count Check
?

MY.NET.100.230 65535 127.0.0.2 N/A 25 15 N
MY.NET.100.13 65535 143.128.64.3 unpsun2.cc.unp.ac.za 25 3 Y
MY.NET.25.11 65535 149.174.40.6 siaag1ad.compuserve.com 25 5 Y
MY.NET.100.230 65535 150.217.15.247 not resolved 25 6 Y
MY.NET.25.10 65535 194.242.43.19 not resolved 25 2 Y
MY.NET.25.67 65535 194.67.18.128 relay2.aport.ru 25 3 N
MY.NET.25.67 65535 202.214.130.2 not resolved 25 2 Y
MY.NET.100.13 65535 203.151.37.1 not resolved 25 1 Y
MY.NET.25.67 65535 205.158.62.72 spf10.us4.outblaze.com 25 3 Y
MY.NET.25.68 65535 208.18.122.165 parker1.sprint.com 25 2 Y
MY.NET.25.10 65535 208.20.220.60 not resolved 25 10 Y
MY.NET.25.66 65535 209.202.214.116 smtp-06.sc8.finance.lycos.com 25 4 N
MY.NET.25.73 65535 209.202.214.117 smtp-07.sc8.finance.lycos.com 25 3 N
MY.NET.25.72 65535 209.204.62.47 pn13.essoc.com 25 4 Y
MY.NET.100.230 65535 209.241.185.109 not resolved 25 6 Y
MY.NET.25.69 65535 216.35.70.232 mailserver2.iexpect.com 25 2 N
MY.NET.24.20 65535 217.43.24.119 host217-43-24-119.range217-

43.btcentralplus.com
25 4 Y

MY.NET.25.66 65535 64.0.64.130 host130.netreds.net 25 2 Y
MY.NET.25.68 65535 64.119.222.7 not resolved 25 5 Y
MY.NET.25.68 65535 64.154.80.196 postal.websidestory.com 25 2 N
MY.NET.25.10 65535 64.157.4.78 mta-

v22.level3.mail.yahoo.com
25 3 N

MY.NET.24.20 65535 64.94.110.11 not resolved 25 8 Y
MY.NET.25.12 65535 65.54.200.30 support.msn.com 25 3 N
MY.NET.25.71 65535 80.201.209.168 168.209-201-

80.adsl.skynet.be
25 2 Y

MY.NET.25.72 65535 81.218.218.134 bzq-218-218-
134.red.bezeqint.net

25 5 Y

Table 22. Internal Hosts that triggered “possible Red Worm” Alert and sent mail

Table 23 shows “High port 65535 tcp & udp - possible Red Worm” activity of the top
sources. Of these sources the ones the appears to merit further interest are:

1. MY.NET.163.76 and MY.NET.152.21 - Always used a source port of udp/6257 over

the five-day period to connect to various external hosts on udp/65535.

2. MY.NET.70.176 - Always used a source port of udp/6257 over the five-day period to

connect to various external hosts on udp/65535. The destination host resolves to
ip68-0-189-136.tc.ph.cox.net, which appears to be a client’s host.

3. MY.NET.84.232 - Always used a source port of udp/3383 over the five-day period to

connect to various external hosts on udp/65535.

4. MY.NET.84.143 - This host triggered the both the udp and tcp forms of this alert

both involving the same destination host that resolves to DSL217-132-44-
109.bb.netvision.net.il, which appears to be a client’s host. This host used source
ports udp/4672 and tcp/4672 over the five-day period to connect to a single external
host on udp/65535.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

56/75

High port 65535 tcp
Source IP Source

Port
Count Destination

IP
Resolved Name Check?

MY.NET.84.143 various 892 217.132.44.109 DSL217-132-44-109.bb.netvision.net.il Y
MY.NET.97.25 3806 420 210.6.2.205 210006002205.ctinets.com Y
MY.NET.83.109 various 273 68.101.218.125 ip68-101-218-125.sd.sd.cox.net Y
MY.NET.112.152 various 86 172.184.181.157 ACB8B59D.ipt.aol.com Y
MY.NET.162.87 80 63 68.55.192.222 pcp229411pcs.catonv01.md.comcast.net Y

High port 65535 udp
Source IP Source

Port
Count Destination

IP
Resolved Name Check?

MY.NET.163.76 6257 1555 various N/A Y
MY.NET.70.176 6257 806 68.0.189.136 ip68-0-189-136.tc.ph.cox.net Y
MY.NET.152.21 6257 29 various N/A Y
MY.NET.84.232 3383 27 various N/A Y
MY.NET.84.143 4672 21 217.132.44.109 DSL217-132-44-109.bb.netvision.net.il Y

Table 23. “High port 65535 tcp & udp - possible Red Worm” Activity

All the evidence considered, we conclude that some of the hosts may be infected with
the Adore worm so the following steps are recommended:

a. The internal hosts that need to be checked are those indicated in Table 22 and

Table 23 by a “Y” in the “Check?” column if they are running Linux.

b. Patch all Linux hosts against the Adore worm.

c. Block access to the destination hosts in Table 22 and Table 23 if investigation shows

that any are associated with the Adore worm.

3.6.6 Null scan! (2,903 hits)

This signature is presumably based on the detection of a TCP frame with a sequence
number of zero and all control bits are set to zero. This frame should never be seen in
normal TCP operation. An attacker may scan hosts by sending these specially
formatted frames to see what services are available and susceptible to attack. This is
sometimes done in preparation for a future attack17..

A NULL scan attack is looking for a RST from the target when the port is closed or no
response which might mean the port is open18..

The “Null scan!” rule is probably similar to the following current rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN NULL"; flags:0; seq:0; ack:0; reference:arachnids,4;
classtype:attempted-recon; sid:623; rev:1;)

These alerts look as follows:

10/02-11:46:56.538963 [**] Null scan! [**] 67.119.232.52:5384 -> MY.NET.12.4:110
10/02-12:18:09.554702 [**] Null scan! [**] 217.136.213.195:0 -> MY.NET.84.232:0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

57/75

Table 24 lists the top source IPs in the “Null scan!” alerts. Given that the host
220.99.94.77 accounts for 87% of the “Null scan!” alerts, we’ll examine its activities in
more detail.

Top Source IP Count
220.99.94.77 2,523
67.119.232.52 138
63.251.52.75 119
218.75.129.126 37
202.188.114.50 23
202.224.226.108 7
206.14.191.84 6
129.44.176.112 5
24.35.51.121 4

Table 24. Top Source IPs in the “Null scan!” Alerts

Table 25 shows the top destination IPs in “Null scan!” alerts generated by the host
220.99.94.77. This address resolves to host220099094077.cti-now.co.jp, which
belongs to City Trust and Investment CO.,Ltd.

Top Destination IP Count
MY.NET.66.2;0 2,271
MY.NET.66.2;19697 13
MY.NET.66.2;4634 10
MY.NET.66.2;9423 9
MY.NET.66.2;55678 8
MY.NET.66.2;1322 8
MY.NET.66.2;4672 6
MY.NET.66.2;20697 6

Table 25. Top destination IPs in “Null scan!” Alerts by 220.99.94.77

All of the 2,523 alerts that the host 220.99.94.77 triggered are targeted against the
internal host MY.NET.66.2. The reason that host 220.99.94.77 is targeting this host is
unknown but clearly this needs to be investigated and any vulnerabilities patched.

The host 220.99.94.77 scans destination ports that include both low and high ports.
However it used a source and destination port of 0 in 78% of its probes of the internal
host MY.NET.66.2. These alerts look as follows and are typically associated with OS
fingerprinting by programs such as nmap:

10/04-15:39:48.677437 ;Null scan!;220.99.94.77;0;MY.NET.66.2;0

As well host 220.99.94.77 has triggered the following alerts:

1. Probable NMAP fingerprint attempts, e.g.

10/03-16:26:48.230070 [**] Probable NMAP fingerprint attempt [**] 220.99.94.77:3 -> MY.NET.66.2:38383
10/03-16:19:28.751726 [**] Probable NMAP fingerprint attempt [**] 220.99.94.77:31088 -> MY.NET.66.2:64144

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

58/75

2. Portscan alerts, e.g.

10/03-17:10:08.912714 [**] spp_portscan: portscan status from 220.99.94.77: 7 connections across 1 hosts: TCP(7), UDP(0)
STEALTH [**]
10/03-17:10:14.321651 [**] spp_portscan: End of portscan from 220.99.94.77: TOTAL time(3s) hosts(1) TCP(10) UDP(0)
STEALTH [**]

All the evidence considered, we can conclude that the host 220.99.94.77 is an attacker.
The threat posed by it is not clear as we did not have a trace showing if the internal host
MY.NET.66.2 responded. In any event, the following steps are recommended:

1. Determine whether the “Null scan” is getting into the internal network.

2. Contact the abuse address of cti-now.co.jp and notify them of the activity of the host

220.99.94.77.

3. Block the host 220.99.94.77 at the perimeter and log any denies for a period of

several weeks to see if further malicious activity occurs.

3.6.7 Tiny Fragments - Possible Hostile Activity (2,375 hits)

The “Tiny Fragments - Possible Hostile Activity” rule is probably similar to the following
current rule, which looks for packets with a payload less than 25 bytes, i.e. dsize: < 25:

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC Tiny Fragments"; fragbits:M; dsize: < 25; classtype:bad-
unknown; sid:522; rev:1;)

So typically this event is generated when an IPv4 fragment of dubiously small nature is
detected. Many IDS's are known to have issues regarding the reassembly of IP
fragments, and could miss an attack carried over such means. Some firewalls suffer
from the same issues and can be tricked into allowing packets through that should
normally be rejected. Furthermore, there is a small history of OS issues related to
unorthodox fragmentation. There is no piece of commercial network equipment that
fragments packets in sizes smaller than 512 bytes21.. However, tools have been written
to trivially fragment traffic, e.g. Dug Song's fragrouter program is a well-known
example20..

In our case, these alerts look as follows:

10/01-17:23:04.963326 ;Tiny Fragments - Possible Hostile Activity;206.14.191.84;MY.NET.53.183
10/02-16:01:27.890324 ;Tiny Fragments - Possible Hostile Activity;66.68.188.86;MY.NET.84.232
10/03-20:23:47.373552 ;Tiny Fragments - Possible Hostile Activity;202.188.114.50;MY.NET.70.197

Table 26 shows the top source and destination IPs for the “Tiny Fragments” alert.
The host 202.188.114.50 accounts for 90% of these alerts and its destination IP is
exclusively MY.NET.70.197 (see the example alerts shown above). The threat against
the host MY.NET.70.197 needs to be examined in greater depth.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

59/75

Top Source IP Count Top Destination IP Count
202.188.114.50 2139 MY.NET.70.197 2139
24.191.73.135 107 MY.NET.84.232 116
64.147.47.20 71 MY.NET.84.180 71
206.14.191.84 29 MY.NET.53.183 29
66.68.188.86 15 82.64.27.207 9
MY.NET.84.180 9 MY.NET.97.103 6
67.168.67.44 2 MY.NET.82.86 2
196.41.30.38 1 213.76.44.45 1
80.109.89.222 1 MY.NET.12.6 1
MY.NET.84.232 1 MY.NET.112.164 1

Table 26. Top Source and Destination IPs for the “Tiny Fragments” Alert

Examining the activity against the host MY.NET.70.197, we find the following correlated
alerts that show the host 202.188.114.50 is targeting it:

10/03-20:17:14.032492 [**] Null scan! [**] 202.188.114.50:0 -> MY.NET.70.197:0
… 14 other similar alerts
10/03-20:19:24.568941 [**] Null scan! [**] 202.188.114.50:0 -> MY.NET.70.197:0
10/03-20:20:17.281509 [**] Probable NMAP fingerprint attempt [**] 202.188.114.50:0 -> MY.NET.70.197:0
10/03-20:20:21.740292 [**] High port 65535 tcp - possible Red Worm - traffic [**] 202.188.114.50:6257 ->
MY.NET.70.197:65535
10/03-20:20:24.271163 [**] Null scan! [**] 202.188.114.50:0 -> MY.NET.70.197:0
10/03-20:20:35.217413 [**] Null scan! [**] 202.188.114.50:0 -> MY.NET.70.197:0
10/03-20:20:39.365149 [**] Null scan! [**] 202.188.114.50:0 -> MY.NET.70.197:0
10/03-20:21:29.762047 [**] Probable NMAP fingerprint attempt [**] 202.188.114.50:0 -> MY.NET.70.197:0
10/03-20:21:46.126118 [**] Null scan! [**] 202.188.114.50:0 -> MY.NET.70.197:0
10/03-20:22:03.818905 [**] Null scan! [**] 202.188.114.50:12 -> MY.NET.70.197:5583
10/03-20:22:11.647656 [**] Null scan! [**] 202.188.114.50:0 -> MY.NET.70.197:0
10/03-20:23:41.721376 [**] Null scan! [**] 202.188.114.50:0 -> MY.NET.70.197:0

The host 202.188.114.50 does not have a reverse lookup record, nor does it appear in
the DShield database. The APNIC Whois Database reports that this IP address
belongs to Telekom Cellular Sdn. Bhd. - Kuala Lumpur.

The following are the recommended actions:

1. Set a packet capture on this host to examine in more detail what it is doing.

2. Contact the abuse address of Telekom Cellular Sdn. Bhd. and notify them of the

activity of the host 202.188.114.50.

3. Block the host 202.188.114.50 at the perimeter and log any denies for a period of

several weeks to see if further malicious activity occurs.

4. Ensure that the IP stacks of all publicly exposed hosts are not vulnerable to DoS due

to the handling of tiny fragments.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

60/75

3.6.8 EXPLOIT x86 NOOP (1,462 hits)

This signature is presumably based on the detection of the Intel X86 no operation code
of 0x90 in the data payload of a packet. The “EXPLOIT x86 NOOP” rule is probably
similar to the following current rules involving NOOPs:

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg:"EXPLOIT ssh CRC32 overflow NOOP"; flow:to_server,established;
content:"|90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90|"; reference:bugtraq,2347; reference:cve,CVE-2001-0144;
classtype:shellcode-detect; sid:1326; rev:3;)

alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS (msg:"SHELLCODE x86 NOOP"; content: "|90 90 90
90 90 90 90 90 90 90 90 90 90 90|"; depth: 128; reference:arachnids,181; classtype:shellcode-detect; sid:648; rev:5;)

These alerts look as follows:

10/01-00:32:42.610108 [**] EXPLOIT x86 NOOP [**] 4.47.141.115:4685 -> MY.NET.190.102:135
10/01-14:49:56.881927 [**] EXPLOIT x86 NOOP [**] 217.230.76.18:63922 -> MY.NET.29.19:80
10/01-14:49:28.075247 [**] EXPLOIT x86 NOOP [**] 217.230.76.18:63916 -> MY.NET.5.55:80

The function of the NOOP bytes in a buffer overflow attack is described as follows14: “If
the attacker wants to overflow a certain buffer in a program, he needs to know the exact
address of that buffer inside the stack segment of the process memory. In fact, trying to
guess the exact address of that buffer is nearly impossible. Therefore a trick is used to
increase the chances of getting the address by putting a bunch of NOP bytes, which
actually do nothing, in front of the buffer. With this approach, only an address that
resides inside the frame of NOP commands needs to be guessed. To give an example,
if we would add 100 NOP commands, we would increase our chance to guess a good
address by the factor 100.”

Table 27 shows the top Source IPs causing the “EXPLOIT x86 NOOP” alert. As well it
shows the top Destination IPs and associated ports for this signature. The traffic to
tcp/135 (Microsoft RPC service) from external hosts is disconcerting but it is not clear if
it actually gets through the security devices to its intended targets. If it is getting
through then the access to these internal hosts from the Internet needs to be reviewed
and tightened up. If the traffic is not getting through then this signature needs to be
tuned to reduce the false-positives.

If the organization is not offering news (tcp/119 - nntp) then again this traffic should be
blocked.

Top Source IP Count Top Destination IP
and Ports

Count

194.199.203.7 455 MY.NET.150.6;80 380
62.45.86.249 262 MY.NET.189.62;80 281
129.142.207.186 118 MY.NET.190.102;135 93
66.98.160.20 78 MY.NET.190.101;135 81
131.118.254.130 58 MY.NET.190.97;135 72
217.230.67.170 45 MY.NET.24.8;119 61
217.230.76.18 34 MY.NET.29.21;80 29
62.194.28.184 21 MY.NET.5.55;80 25
80.126.85.198 18 MY.NET.29.12;80 25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

61/75

199.184.165.136 16 MY.NET.111.21;80 24

Table 27. Top Source IPs, and Destination IPs and Ports for the “EXPLOIT x86 NOOP”
Alert

Since 194.199.203.7 is the top source IP address triggering the “EXPLOIT x86 NOOP”
with its alerts accounting for 31% of the total, we’ll look at its activities in more detail.
Table 28 shows the top destination IP and associated ports of the traffic from
194.199.203.7. Given the nature of the signature and the destination port of tcp/80, it is
reasonable to assume that this traffic is meant as buffer overflow attempts against the
web servers. For example Windows 2000 IIS 5.0 had a Remote Buffer Overflow
Vulnerability that permitted remote system level code execution15.

Top Destination
IP and Ports

Count

MY.NET.189.62;80 281
MY.NET.111.21;80 24
MY.NET.5.44;80 20
MY.NET.5.20;80 20
MY.NET.5.15;80 14
MY.NET.29.18;80 13
MY.NET.29.12;80 12
MY.NET.5.92;80 10
MY.NET.5.46;80 9
MY.NET.5.95;80 8

Table 28. Top Destination IPs and Ports for Source IP of 194.199.203.7

The following actions are recommended:

1. The legitimacy of the traffic causing these alarms needs to be examined by viewing

a trace. If this traffic is malicious then the abuse address of the owner of the
appropriate IP address block ought to be contacted to notify them of the incidents.

2. Review the patch levels of publicly accessible web servers.

3. Determine the need to block traffic from IPs such as 194.199.203.7.

4. Block the traffic to tcp/135 (Microsoft RPC service) from external hosts.

5. Examine the requirement for traffic to tcp/119 (nntp) from external hosts.

3.6.9 Connect to 515 from outside (1,198 hits)

This signature is based on the detection of the traffic to port tcp/515 which is assigned
to the printer spooler, i.e. lpr. The importance of this traffic is that there is a vulnerability
in certain lprd implementations that allows remote attackers to cause a buffer overflow
and to then execute arbitrary commands18.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

62/75

The “connect to 515 from outside” rule is probably a simpler version of the following
current rules involving lpr traffic:

alert tcp $EXTERNAL_NET any -> $HOME_NET 515 (msg:"EXPLOIT LPRng overflow"; flow:to_server,established; content:
"|43 07 89 5B 08 8D 4B 08 89 43 0C B0 0B CD 80 31 C0 FE C0 CD 80 E8 94 FF FF FF 2F 62 69 6E 2F 73 68 0A|";
reference:cve,CVE-2000-0917; reference:bugtraq,1712; classtype:attempted-admin; sid:301; rev:4;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 515 (msg:"EXPLOIT Redhat 7.0 lprd overflow"; flow:to_server,established;
content:"|58 58 58 58 25 2E 31 37 32 75 25 33 30 30 24 6E|"; classtype:attempted-admin; sid:302; rev:4;)

These alerts look as follows:

10/04-20:49:18.875478 ;connect to 515 from outside;68.32.127.158;672;MY.NET.24.15;515
10/01-12:49:00.646805 ;connect to 515 from outside;131.118.229.7;721;MY.NET.24.15;515

Table 29 shows the statistics for “connect to 515 from outside” alerts. As can be seen,
both hosts 131.118.229.7 and 68.32.127.158 connect exclusively to host
MY.NET.24.15. It seem likely that this traffic from these two hosts is allowed through
the security devices to MY.NET.24.15 for a business reason.

Source IP connecting to
tcp/515

Alert Count Top Destination
IP

131.118.229.7 795 MY.NET.24.15
68.32.127.158 403 MY.NET.24.15

Table 29. Statistics for “connect to 515 from outside” Alerts

The following actions are recommended:

1. Examine the requirement for traffic to tcp/515 (printer) from external hosts and

blocked at the perimeter or at least restricted to authorized hosts, which is likely the
case here.

2. Review the patch levels of all publicly accessible hosts for vulnerabilities such as

lprd overflows.

3.6.10 Possible trojan server activity (489 hits)

While this signature is not in the overall top ten signatures, it is included because of the
potential danger posed to the organization if Trojans are operating inside the network.

These alerts look as follows:

10/05-08:03:53.468641 ;Possible trojan server activity;141.157.8.192;27374;MY.NET.24.34;80
10/05-10:36:06.652914 ;Possible trojan server activity;MY.NET.24.34;80;69.140.135.254;27374
10/01-03:06:10.742309 ;Possible trojan server activity;217.85.235.152;1385;MY.NET.16.90;27374
10/02-02:42:41.599262 ;Possible trojan server activity;68.81.83.92;3680;MY.NET.190.252;27374
10/02-02:47:20.615167 ;Possible trojan server activity;24.60.194.13;2136;MY.NET.190.4;27374

Table 31 shows the basic statistics for “Possible trojan server activity” alerts. The
obvious port of concern is tcp/27374 which is typically associated with the SubSeven
Trojan or other Trojans such as Ramen14..

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

63/75

Top Source IP Count Top

Source
Port

Count Top Destination
IP

Count Top
Destination

Port

Count

24.62.71.91 97 27374 158 68.55.242.239 35 27374 458
68.81.83.92 77 80 102 MY.NET.100.165 35 80 101
24.60.194.13 57 25 20 68.55.195.148 29 25 25
172.151.131.58 48 443 10 MY.NET.24.34 29 443 7
217.85.235.152 42 2417 3 MY.NET.24.44 25 3536 3
MY.NET.24.44 40 2436 2 MY.NET.12.6 22 3255 2
68.55.195.148 33 2653 2 65.114.173.132 15 2417 2
MY.NET.100.165 31 2654 2 141.157.8.192 7 1998 2
MY.NET.24.34 25 3255 2 MY.NET.6.15 7 143 2
68.55.242.239 21 143 1 24.60.194.13 6 4697 1

Table 30. Statistics for “Possible trojan server activity” Alerts

The first two sample alerts shown above at likely noise, as they appear to be web traffic.
The next three sample alerts are of concern since they show traffic from high ports on
external hosts to tcp/27374 on internal hosts.

Of the 489 hits on this signature, 325 are of concern. Table 31 shows a breakdown of
these alerts over the five-day reporting period. The reasons why a number of external
hosts are scanning for the same hosts, e.g. MY.NET.5.5, and networks, e.g.
MY.NET.190.x, needs to be investigated. Perhaps these hosts have a Trojan.

It should be noted that there is no traffic from the inside hosts that looks like Trojan
scanning traffic. As well none of the “Source IP scanning for Trojans” or “Scanned
Destination IP” appears in the OSS report files nor does any traffic to tcp/27374 appear.

Source IP
scanning for

Trojans

Alert
Count

Scanned
Destination IP

MY.NET.6.15 24.62.71.91 97
MY.NET.190.x
MY.NET.5.5
MY.NET.6.15

68.81.83.92 77

MY.NET.190.x
24.60.194.13 52 MY.NET.190.x

MY.NET.6.15
MY.NET.16.90
MY.NET.16.114

172.151.131.58 48

MY.NET.190.x
MY.NET.5.5
MY.NET.16.90

217.85.235.152 42

MY.NET.190.x
MY.NET.5.5
MY.NET.6.15
MY.NET.16.90
MY.NET.16.106

24.60.194.13 5

MY.NET.16.114

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

64/75

Source IP
scanning for

Trojans

Alert
Count

Scanned
Destination IP

MY.NET.5.5 141.156.176.107 4
MY.NET.6.15

Table 31. “Possible Trojan server activity” Alerts of Concern

As shown in Section 3.8 , this traffic to tcp/27374 actually gets through the security
devices to some of the intended targets. Therefore, the policy enforced by the security
devices needs to be reviewed and tightened up.

3.7 Correlations from other sources

The GCIA Practical by Joe Bowling submitted on 20 September 2003 was consulted. It
provided correlation in the general sense but not the specific sense since difference
logs were used. He found the following 13 tops detects over the period of 27-31 July
2004:

• CS Webserver
• SMB Wildcard
• IIS unicode attack
• Queso fingerprint
• CGI NULL Byte
• Exploit x86 NOOP
• TCP High port
• UDP High port
• tiny fragments
• connect to 515 from outside
• SUNRPC highport access
• IDS552/web-iis_IIS ISAPI
• Null scan

However over the period of this audit, CS Webserver, IIS unicode attack, Queso
fingerprint, CGI NULL Byte, SUNRPC highport access and IDS552/web-iis_IIS ISAPI
did not appear amongst the top detects. In short during the period of this report, web
servers detects were not prominent.

There is strong correlation between Joe’s audit and this audit, for example consider the
following:

1. Joe's Top Talker for scans was 130.85.1.3 (1,942,362), which was the same one in

this audit with a hit count of 2,753,737.

2. Joe's Top Talker for the Alerts was 68.48.217.68 which also appears in this audit.

3. A number of the external hosts from the same networks listed in Joe' audit were

found in this audit, e.g. *.client2.attbi.com and *.sndg02.pacbell.net.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

65/75

4. Joe found external hosts trying to connect to the well-known Trojan port tcp/27374

on the internal network. This was also seen in this audit and forms the basis of this
audit’s Link Graph Analysis (see Section 3.8).

3.8 Link Graph Analysis

This analysis will show a relationship among hosts that are targeting the host
MY.NET.6.15 that is not readily apparent from looking at the log traces themselves. As
seen in Table 32, there are a total of 74 events (alerts, scans and OOS) with a
destination of MY.NET.6.15. Of these events, most appear to be related to probes for
listening Trojans.

Destination
Port

IANA Port
Assignment

Possible Service on Port Event
Count

22 ssh – 2
80 http – 10

111 sunrpc – 18
137 Netbios-ns – 1
554 Unassigned Real Time Stream Control Protocol 5

1080 socks Trojan SubSeven 2.2 1
1524 ingreslock Trojan (Trinoo) 1
2417 Unassigned Composit Server 2
2540 Unassigned lonworks 1
3389 Unassigned MS Terminal Services 1
3625 Unassigned – 1
3685 Unassigned – 1
4000 Unassigned Trojan (Connect-BackBackdoor) 3
4372 Unassigned – 1
4898 Unassigned – 1
4899 Unassigned Radmin (Remote Administrator default

port)
1

6112 dtspcd CDE subprocess control 1
7070 Unassigned arcp (legacy RealServer port) 2

13240 Unassigned – 2
17300 Unassigned Kuang2TheVirus 11
27374 Unassigned Subseven, Ramen 7
34816 Unassigned – 1

Table 32. Destination Ports targeted on MY.NET.6.15

From the alerts, scans and OOS_Report files, we see in Table 33 the events triggered
by traffic to and from the host MY.NET.6.15, a.k.a 130.85.6.15. Of particular concern is
the traffic to destination port tcp/27374 that is responded to by the host MY.NET.6.15.
This is high port to high port traffic that could be associated with the SubSeven Trojan
or other Trojans such as Ramen13.

The host MY.NET.6.15 needs to be checked for a Trojan server or other cause of the
traffic to and from port tcp/27374. If the system is running a legitimate program on port

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

66/75

tcp/27374, then either the port number of the application should be changed or else the
“Possible Trojan server activity” signature tuned to avoid generating false-positives.

Event Details
10/01-03:12:43 194.133.18.72:2750 -> 130.85.6.15:4000 SYN ******S*
10/01-05:48:10 62.72.110.178:1540 -> 130.85.6.15:554 SYN ******S*
10/01-09:44:00 62.254.138.158:1119 -> 130.85.6.15:80 SYN ******S*
10/01-13:37:41 202.125.103.69:1855 -> 130.85.6.15:22 SYN ******S*
10/01-14:18:33 212.182.10.6:3013 -> 130.85.6.15:80 SYN ******S*
10/01-19:58:25 64.152.251.77:3052 -> 130.85.6.15:80 SYN ******S*
10/01-21:45:01 61.143.160.161:4170 -> 130.85.6.15:554 SYN ******S*
10/01-21:59:19.309100 [**] Possible trojan server activity [**] 141.156.176.107:2417 -> MY.NET.6.15:27374
10/01-21:59:20.268429 [**] Possible trojan server activity [**] 141.156.176.107:2417 -> MY.NET.6.15:27374
10/01-21:59:20.268533 [**] Possible trojan server activity [**] MY.NET.6.15:27374 -> 141.156.176.107:2417
10/01-21:59:20.742513 [**] Possible trojan server activity [**] 141.156.176.107:2417 -> MY.NET.6.15:27374
10/01-21:59:20.742593 [**] Possible trojan server activity [**] MY.NET.6.15:27374 -> 141.156.176.107:2417
10/02-01:27:46.118585 [**] Possible trojan server activity [**] 24.60.194.13:4372 -> MY.NET.6.15:27374
10/02-01:27:46.118842 [**] Possible trojan server activity [**] MY.NET.6.15:27374 -> 24.60.194.13:4372
10/02-02:02:47.198725 [**] Possible trojan server activity [**] 68.81.83.92:3685 -> MY.NET.6.15:27374
10/02-02:02:47.198760 [**] Possible trojan server activity [**] MY.NET.6.15:27374 -> 68.81.83.92:3685
10/02-02:27:21 212.38.180.170:1818 -> 130.85.6.15:80 SYN ******S*
10/02-02:40:26 147.83.107.173:4882 -> 130.85.6.15:13240 SYN ******S*
10/02-02:40:27 147.83.107.173:4882 -> 130.85.6.15:13240 SYN ******S*
10/02-03:33:40 81.17.102.4:2368 -> 130.85.6.15:4898 SYN ******S*
10/02-07:04:05.306226 [**] External RPC call [**] 63.203.91.212:56637 -> MY.NET.6.15:111
10/02-07:04:05.389307 [**] External RPC call [**] 63.203.91.212:56637 -> MY.NET.6.15:111
10/02-07:04:05.553865 [**] External RPC call [**] 63.203.91.212:964 -> MY.NET.6.15:111
10/02-07:04:05.556598 [**] External RPC call [**] 63.203.91.212:964 -> MY.NET.6.15:111
10/02-07:04:05.638959 [**] External RPC call [**] 63.203.91.212:964 -> MY.NET.6.15:111
10/02-07:04:05.641095 [**] External RPC call [**] 63.203.91.212:964 -> MY.NET.6.15:111
10/02-07:04:05.661318 [**] External RPC call [**] 63.203.91.212:966 -> MY.NET.6.15:111
10/02-07:04:05.828587 [**] External RPC call [**] 63.203.91.212:966 -> MY.NET.6.15:111
10/02-07:04:05.830577 [**] External RPC call [**] 63.203.91.212:966 -> MY.NET.6.15:111
10/02-07:04:05.832768 [**] External RPC call [**] 63.203.91.212:56637 -> MY.NET.6.15:111
10/02-07:04:05.912352 [**] External RPC call [**] 63.203.91.212:966 -> MY.NET.6.15:111
10/02-10:55:07 68.159.36.251:53740 -> 130.85.6.15:6112 SYN ******S*
10/02-12:29:19 133.81.136.82:2766 -> 130.85.6.15:22 SYN ******S*
10/02-13:07:54 213.184.162.18:1823 -> 130.85.6.15:4899 SYN ******S*
10/02-13:33:41 218.38.24.83:1793 -> 130.85.6.15:554 SYN ******S*
10/02-22:39:17 65.198.127.106:137 -> 130.85.6.15:137 UDP
10/03-00:10:07 68.12.154.233:3994 -> 130.85.6.15:1080 SYN ******S*
10/03-00:25:04 68.88.212.132:3023 -> 130.85.6.15:3389 SYN ******S*
10/03-01:42:54.934832 [**] Possible trojan server activity [**] 172.151.131.58:3625 -> MY.NET.6.15:27374
10/03-01:42:54.935014 [**] Possible trojan server activity [**] MY.NET.6.15:27374 -> 172.151.131.58:3625
10/03-07:01:41.489349 [**] External RPC call [**] 203.253.204.51:111 -> MY.NET.6.15:111
10/03-07:01:44.725225 [**] External RPC call [**] 203.253.204.51:3442 -> MY.NET.6.15:111
10/03-07:01:44.961183 [**] External RPC call [**] 203.253.204.51:996 -> MY.NET.6.15:111
10/03-07:01:44.979090 [**] External RPC call [**] 203.253.204.51:3442 -> MY.NET.6.15:111
10/03-13:37:11 159.242.13.10:37433 -> 130.85.6.15:80 SYN ******S*
10/03-15:01:08 217.227.109.91:2189 -> 130.85.6.15:80 SYN ******S*
10/03-19:16:37 24.241.96.134:1837 -> 130.85.6.15:17300 SYN ******S*
10/03-23:40:21 194.3.174.112:3162 -> 130.85.6.15:554 SYN ******S*
10/04-10:53:50 203.253.204.51:1524 -> 130.85.6.15:1524 SYN ******S*
10/04-12:55:54 65.213.110.86:1763 -> 130.85.6.15:80 SYN ******S*
10/04-18:36:19 212.202.30.102:1317 -> 130.85.6.15:80 SYN ******S*
10/05-00:42:34 66.171.157.127:3612 -> 130.85.6.15:4000 SYN ******S*
10/05-00:42:35 66.171.157.127:3612 -> 130.85.6.15:4000 SYN ******S*
10/05-01:14:12 130.13.66.175:1853 -> 130.85.6.15:17300 SYN ******S*
10/05-03:11:47 24.161.109.219:4860 -> 130.85.6.15:17300 SYN ******S*
10/05-03:11:48 24.161.109.219:4860 -> 130.85.6.15:17300 SYN ******S*
10/05-03:15:51 24.174.178.167:3765 -> 130.85.6.15:17300 SYN ******S*
10/05-04:02:01 217.34.34.142:3783 -> 130.85.6.15:17300 SYN ******S*
10/05-07:22:51 63.122.16.9:2086 -> 130.85.6.15:80 SYN ******S*
10/05-10:02:37 195.136.250.51:1483 -> 130.85.6.15:554 SYN ******S*
10/05-11:26:03 24.103.56.151:4788 -> 130.85.6.15:7070 SYN ******S*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

67/75

Event Details
10/05-11:26:04 24.103.56.151:4788 -> 130.85.6.15:7070 SYN ******S*
10/05-11:30:32.623008 [**] External RPC call [**] 24.207.141.186:798 -> MY.NET.6.15:111
10/05-11:30:32.799925 [**] External RPC call [**] 24.207.141.186:798 -> MY.NET.6.15:111
10/05-11:30:32.803970 [**] External RPC call [**] 24.207.141.186:798 -> MY.NET.6.15:111
10/05-13:15:57 194.199.203.7:4353 -> 130.85.6.15:80 SYN ******S*
10/05-16:23:31 12.226.188.27:3832 -> 130.85.6.15:17300 SYN ******S*
10/05-16:23:54.512263 [**] Possible trojan server activity [**] 24.62.71.91:2540 -> MY.NET.6.15:27374
10/05-16:23:54.512370 [**] Possible trojan server activity [**] MY.NET.6.15:27374 -> 24.62.71.91:2540
10/05-17:25:27 68.106.40.188:1149 -> 130.85.6.15:17300 SYN ******S*
10/05-18:57:47 66.24.131.54:4447 -> 130.85.6.15:17300 SYN ******S*
10/05-22:29:48 192.160.131.12:55868 -> 130.85.6.15:17300 SYN ******S*
10/05-22:36:53 80.247.76.117:2599 -> 130.85.6.15:34816 SYN ******S*
10/05-23:23:16 64.30.211.151:1472 -> 130.85.6.15:17300 SYN ******S*

Table 33. Events triggered by traffic to\from host MY.NET.6.15 (130.85.6.15)

Figure 10 shows a link graph of activity associated with targeting of host MY.NET.6.15.
The stimulus traffic to MY.NET.6.15 is shown in black, while the response traffic if any is
shown in red. This graph clearly shows that except for the traffic to port tcp/27374, the
remaining traffic to MY.NET.6.15 is uni-directional, i.e. MY.NET.6.15 does not respond
to the stimulus. The link graph also shows more information about the activities of three
of the hosts that targeted MY.NET.6.15. This is shown to illustrate that many of the
hosts that targeted MY.NET.6.15 also targeted other hosts on the MY.NET.6.0 network.

Table 34 shows information about the five hosts that targeted port tcp/27374 on
MY.NET.6.15 and one of the hosts that targeted port tcp/111. The events count
column shows the total number of events generated by traffic to/from these hosts over
the five-day period covered in this report.

Source IP Resolved Name Event
Count

Remarks

203.253.204.51 physics.cheju.ac.kr 9603 • Owner: Cheju National University
• Contact: sbyoon@cheju.ac.kr
• not in DShield database

63.203.91.212 adsl-63-203-91-212.dsl.snfc21.pacbell.net 292 • Owner: Pac Bell Internet Services
• Contact: abuse@pacbell.net
• not in DShield database

24.62.71.91 h008019441d6b.ne.client2.attbi.com 203 • Owner: Comcast Cable
Communications Holdings, Inc

• Contact: abuse@comcast.net
• not in DShield database

24.60.194.13 h001095d776d4.ne.client2.attbi.com 96 • as above
172.151.131.58 AC97833A.ipt.aol.com 51 • Owner: America Online

• Contact: abuse@aol.net
• not in DShield database

141.156.176.107 pool-141-156-176-
107.esr.east.verizon.net

6 • Owner: Verizon Internet Services
• Contact: abuse@verizon.net
• not in DShield database

Table 34. Information about some hosts that targeted tcp/27374 and tcp/111 on
MY.NET.6.15

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

68/75

Figure 10. Link graph of activity associated with targeting of host MY.NET.6.15

3.9 Insights into internal machines

This security audit revealed a number of signs of compromised systems as well as
possible dangerous or anomalous activity. These signs are consolidated into this
section, although there is additional information available in the sections dealing with
the analysis of the important detects.

1. The potentially infected hosts identified in Table 9 need to be examined.

2. MY.NET.162.118 and MY.NET.150.133 accounted for 90% of the “non-ICMP (non-

spp_portscan)” alerts (see Section 3.4). The cause of this traffic needs to be
eliminated.

3. The use of the internal hosts listed in Table 15, e.g. MY.NET.162.118, that are

responsible for generating an excessive number of alerts need to be examined.

4. The internal hosts listed in Table 15, e.g. MY.NET.30.4, that are the target in an

excessive number of alerts need to have their patch levels reviewed and examined
for signs of compromise.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

69/75

5. The hosts listed in Table 17 should be scanned for worms and both outbound and

inbound traffic to the Microsoft ports of 137-139 and 445 both udp and tcp should be
blocked.

6. If host MY.NET.30.4 is special then the access to this server from the Internet be

reviewed and tightened up rather then leaving it so open.

7. If host MY.NET.30.3 is special then the access to this host from the Internet be

reviewed and tightened up.

8. Some of the internal hosts may be infected with the Adore worm so the following

steps are recommended:

a. The internal hosts that need to be checked are those indicated in Table 22 and
Table 23 by a “Y” in the “Check?” column if they are running Linux.

b. Patch all Linux hosts against the Adore worm.

c. Block access to any of the destination hosts in Table 22 and Table 23 if

investigation shows that they are associated with the Adore worm.

9. The patch level and accessibility of the internal host MY.NET.66.2 are to be

examined since it was heavily target by the “Null scan!”.

10. For all publicly exposed hosts:

a. Ensure that the IP stacks are not vulnerable to DoS due to the handling of tiny
fragments.

b. Review the patch levels of all publicly accessible hosts for vulnerabilities such as

lprd overflows.

11. The host MY.NET.6.15 needs to be checked for a Trojan server or other cause of

the traffic to and from port tcp/27374. If the system is running a legitimate program
on port tcp/27374, then either the port number of the application should be changed
or else the “Possible Trojan server activity” signature tuned to avoid generating
false-positives.

3.10 Defensive recommendations

Defensive recommendations should be based on both the results of this audit and the
organization’s security policy. Currently it appears that this organization is operating in
a manner that allows much more types of traffic both from the inside to outside and from
the outside to inside than is prudent. It is reasonable to conclude that the current
security policy, not available for this Practical Assignment, results in higher than

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

70/75

necessary operational costs. These costs would be incurred for both log analysis,
investigation of potential intrusion events and excessive hardening requirement.

The study of detects over the study period showed that a handful of student systems
account for an inordinate number of the events reported by the IDS sensor. Action is
required to ensure that these systems stop generating such traffic. To this end, the
university’s Acceptable User Policy (UAP) needs to be strengthened so that malicious
traffic is clearly defined and systems generating such traffic can be removed from the
network until it stops.

The major recommendation for management is that this organization needs to adopt the
following two pillars for sound security:

1. A security policy based on an “only allow what is explicitly permitted and deny
everything else” approach.

2. A defense in depth approach to reduce the chance of an intrusion.

The first pillar is based on the belief that it is easier and more secure to define what
types of traffic, both from the inside to outside and from the outside to inside, are
required than it is to define a definitive list of bad traffic. Defining a list of bad traffic to
block is very labour intensive and it’s a losing proposition since hackers are always
investigating new ways to exploit any exposed service. With the adoption of this
approach, the IDS tuning could be significantly improved to increase the sensor’s
effectiveness by reducing the number of false-positives.

The second pillar is a defense in depth approach to reduce the chance of an intrusion.
It’s a classical approach to security since it presents the intruder with a number of
security devices to get through and worry about their intrusion reporting capability. As
shown in Figure 11, on both the route to the inside network or the DMZ, an intruder is
subjected to the traffic management and traffic reporting capabilities of three or four
security devices, i.e. the two routers, firewall and IDS sensor. As well the publicly
exposed hosts are protected by host-based IDS (HIDS). Tying all these security
devices together is the central Security Information Management (SIM) system. The
SIM acts like a syslog server but has enhanced reporting and alert generation
capabilities.

Of course there is a capital cost required to implement this recommended approach.
However with a business case, it should be possible to show that the operational cost
savings and the value of the foregone security breaches would offset capital cost of this
approach.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

71/75

Figure 11. Recommended Defence in Depth Approach

On the practical side, there are a number of Snort modifications recommended in this
audit that need to be actioned so as to make the sensor output more useful and thereby
enhancing the university’s security posture. Some of these recommendations are listed
below (the reader is referred to sections above for more recommendations and further
explanations):

1. The scans contain a number of alerts with "SYN 12****S* RESERVEDBITS"
which is due to a bug that required modifications to the TOS plugin according to
Martin Roesch. The TOS plugin should be updated.

2. The purpose of the “ICMP (non-spp_portscan)” alerts needs to be reexamined

since all of these alerts involved ICMP traffic to and from hosts outside the
internal network.

3. The SMB Name Wildcard Signature (902,224 hits) had no detects caused by

traffic from an external host to an internal host. The purpose of this signature
needs to be revisited.

4. The Incomplete Packet Fragments Discarded signature is buggy since according

to Martin Roesch the type of alert that is being seen is because the sensor is
using the defrag preprocessor instead of the newer frag2 preprocessor.

3.11 Description of Analysis Process Used

The events covering the period of October 1-5, 2003 were found in the files listed in
Table 8. The standard Unix text manipulation commands, i.e. cut, awk, sed and grep
were used to extract the data presented in this Practical Assignment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

72/75

As a first step the top talkers, top listeners, top signatures, top source ports and top
destination ports were extracted. Based on this information, more specific information
was extracted from the log files.

Given the size of the files, e.g. the scans, and the shortage to disk space available, the
files were mainly left in their zipped format. The following is a sample command used to
operate on the scans file when looking for a specific IP address:

for fname in scans.03100*.gz
do
gunzip -cd $fname | grep "24\.62\.71\.91" >> 24.62.71.91
done

then extracting the destination IP addresses targeted by the specific IP address:

cat 24.62.71.91 | cut -d’ ’ -f8 | cut -d’:’ -f1 > temp
awk -f counter.awk < temp | sort -rn > 24.62.71.91-ip_out

This analysis process was adequate for the purposes of this Practical Assignment but
for ongoing operational analysis a much more highly automated process would be
required. However this automated process is beyond the scope of the Practical
Assignment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

73/75

References

6. SANS - What port numbers do well-known trojan horses use?,
http://www.sans.org/resources/idfaq/oddports.php, updated 2/9/01

7. arachNIDS - The Intrusion Event Database - IDS203 "TROJAN-ACTIVE-Q-TCP",
http://whitehats.com/cgi/arachNIDS/Show?_id=ids203&view=research, updated
2/9/01

8. Novell - Technical Information Document “NetWare 6.0 Support Pack 2 -
TID2963227", http://support.novell.com/servlet/tidfinder/2963227, last modified
11SEP2002

9. Symantec - W32.Nimda.A@mm,
http://securityresponse.symantec.com/avcenter/venc/data/w32.nimda.a@mm.html,
Last Updated on: July 10, 2003 07:46:47 PM

10. LURHQ Threat Intelligence Group - Intrusion Detection: In-Depth Analysis,
http://www.lurhq.com/idsindepth.html, undated

11. Re: [Snort-users] Incomplete Packet Fragments Discarded,
http://www.mcabee.org/lists/snort-users/Nov-01/msg00820.html, 26 Nov 2001

12. Internet Storm Center - Port 17300,
http://isc.incidents.org/port_details.html?port=17300, undated

13. ICSA Labs Firewall Lab Report For Novell BorderManager,
http://www.icsalabs.com/html/communities/firewalls/certification/rxvendors/novellbor
dermanager36/labreport_cid1466.shtml, Last updated: September 9, 2002

14. Internet Storm Center - Port 27374,
http://isc.incidents.org/port_details.html?port=27374, undated

15. Project Honeynet, Scan of the month (SCAN 20),
http://project.honeynet.org/scans/scan20/sol/24.txt, April 2002

16. eEye Digital Security, Windows 2000 IIS 5.0 Remote Buffer Overflow Vulnerability
(Remote SYSTEM Level Access),
http://www.eeye.com/html/Research/Advisories/AD20010501.html, May 01, 2001

17. arachNIDS - The Intrusion Event Database,
http://www.digitaltrust.it/arachnids/IDS4/event.html, undated

18. Project Honeynet, Scan of the month (SCAN 23),
http://project.honeynet.org/scans/scan23/sol/Neil.html, undated

19. SecurityFocus HOME Vulns Info: Multiple Vendor lpr Format String Vulnerability,
http://www.securityfocus.com/bid/1711, Sep 26, 2000

20. Snort Signature Database: SID 522 (MISC Tiny Fragments),
http://www.snort.org/snort-db/sid.html?id=522, undated

21. Re: Newbie and snort results,
http://www.incidents.org/archives/intrusions/msg10000.html, Mon, 6 May 2002

22. SANS Institute: Adore Worm, http://www.sans.org/y2k/adore.htm, April 12, 2001
23. F-Secure Virus Descriptions : Adore, http://www.europe.f-secure.com/v-

descs/adore.shtml, April 2001
24. Neohapsis Archives - Snort discussion - Re: [Snort-users] Is there a problem with

Linux 2.4.0? - From roesch, http://archives.neohapsis.com/archives/snort/2001-
01/0198.html, Jan 12 2001

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

74/75

25. DShield.org - Port Report, http://www.dshield.org/port_report.php?, last update:
21/Feb/2004

26. IEEE OUI and Company_id Assignments,
http://standards.ieee.org/regauth/oui/index.shtml, Modified: 30 January 2004

27. Snort Signature Database - SCAN Proxy \(8080\) attempt,
http://www.snort.org/snort-db/sid.html?sid=620, undated

28. Snort Signature Database - SCAN Squid Proxy attempt, http://www.snort.org/snort-
db/sid.html?sid=618, undated

29. Snort Signature Database - SNMP public access udp, http://www.snort.org/snort-
db/sid.html?sid=1411

30. RFC 1514 (Host Resources MIB), http://rfc-1514.rfclist.net/rfc-1514.htm, September
1993

31. CERT Advisory CA-2002-03 Multiple Vulnerabilities in Many Implementations of the
Simple Network Management Protocol (SNMP), http://www.cert.org/advisories/CA-
2002-03.html, Last revised: Aug 18, 2003

32. Bugtraq Archive - Cert Advisory 2002-03 and HP JetDirect, http://securityfocus.com,
Posted Tue, 19 Feb 2002 10:53:48

33. [Snort-users] HP Printers - SNMP Public Access udp,
http://www.mcabee.org/lists/snort-users/Nov-03/msg00402.html, Posted Tue, 18
Nov 2003 12:29:43

34. GIAC Certified Intrusion Analyst (GCIA) Practical Assignment Version 3.3 by Peter
H. Storm, http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf, November 15
2003

35. Snort Signature Database - BAD-TRAFFIC ip reserved bit set,
http://www.snort.org/snort-db/sid.html?sid=523

36. Internet Protocol DARPA Internet Program Protocol Specification,
http://www.ietf.org/rfc/rfc0791.txt, September 1981

37. Default TTL Values in TCP/IP,
http://secfr.nerim.net/docs/fingerprint/en/ttl_default.html, undated

38. GIAC Certified Intrusion Analyst (GCIA) Practical Assignment Version 3.3 by James
Maher, http://www.giac.org/practical/GCIA/James_Maher_GCIA.pdf, dated
16/07/2003

39. Common Vulnerabilities and Exposures (CVE) database, http://cve.mitre.org/cve/,
undated

40. RFC 793 - Transmission Control Protocol, http://www.faqs.org/rfcs/rfc793.html,
September 1981

41. RFC 3168 - The Addition of Explicit Congestion Notification (ECN) to IP,
http://www.faqs.org/rfcs/rfc3168.html, September 2001

42. Snort - Chapter 2 Writing Snort Rules How to Write Snort Rules and Keep Your
Sanity, http://www.snort.org/docs/writing_rules/chap2.html, undated

43. [Snort-users] TOS plugin modified (ECN mitigation) from Martin Roesch,
http://archives.neohapsis.com/archives/snort/2001-01/0200.html, Fri Jan 12 2001 -
14:43:36 CST

44. Snort Signature Database - SCAN XMAS, http://www.snort.org/snort-
db/sid.html?sid=625

45. HPING MAN PAGE, http://www.hping.org/manpage.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

75/75

46. North American Network Operators Group - Multiple vendors’ TCP/IP
implementation allow packets to bypass firewalls - VU#464113,
http://www.merit.edu/mail.archives/nanog/2002-10/msg00519.html, Wed Oct 23
20:50:17 2002

47. SecurityFocus - Microsoft FrontPage Server Extensions MS-DOS Device Name DoS
Vulnerability, http://www.securityfocus.com/bid/1608/discussion/, undated

48. insecure.org - Many, many, many security holes in the Microsoft Frontpage
extensions, http://www.insecure.org/sploits/Microsoft.frontpage.insecurities.html,
Thu, 23 Apr 1998 14:36:00

49. Snort Signature Database - WEB-IIS _vti_inf access, http://www.snort.org/snort-
db/sid.html?sid=990

50. Snort Signature Database - WEB-MISC WebDAV propfind access,
http://www.snort.org/snort-db/sid.html?sid=1079

