
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Task-Optimized Operating Systems

for Intrusion Detection

Benjamin Allen
SANS New Orleans, Louisiana, USA

November 13-19, 2003
GIAC GCIA Practical Assignment (version 3.4)

Submitted: 30 April 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract
This paper is presented in pursuit of the GIAC GCIA certification, using
version 3.4 of the assignment.

The first section gives an introduction to a few open source customized
operating system distributions focused on intrusion detection. These
distributions offer analysts a functional snort system, often with an analysis
console included, which can be installed in well under an hour. These
systems provide analysts a tool for rapidly deploying additional IDS sensors
on demand. This could prove invaluable when responding to an incident.

In the second section, three network detects are presented based on logs
from SANS and from an employer network. These detects cover a CWD
buffer overflow attack aimed at the Vermilion FTPd server, NULL scanning,
and some common warez-related FTP activities detected on a printer.

In the final section, 5 days of logs from SANS are analyzed, revealing virus
infected hosts, peer to peer file sharing, and some anomalous scanning
behavior. Also, a novel example for visualizing IDS data using free tools is
presented.

- 2 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1.State of Intrusion Detection

Task-Optimized Operating Systems for Intrusion Detection

As open source operating systems like Linux, FreeBSD, NetBSD, and
OpenBSD have become more popular and more mature, the community
around them has created tools to enable customization of the operating
system and of how it's installed. Because of the nature of open source
licenses and the growth of the tools required for customization, task oriented
operating system (OS) distributions have flourished. The site
http://www.distrowatch.com provides a place to search for all manner of
Linux distributions, and according to their statistics page, there are nearly
300 cataloged on the site.

Considering the mind boggling number of OS distributions, there must be
some that are designed with the needs of intrusion detection analysts in
mind. Searching distrowatch.com for “intrusion detection” lists some of the
distributions I will summarize below, and some others.

Benefits

Regardless of which system you choose, there are several benefits to
working with a task-optimized version of your favorite operating system. The
first is rapid deployment. When the CD-ROM in your hand has everything
you need to get the OS installed, configure snort with default rules, and start
logging traffic, you can create a usable system quickly. This is critical when
responding to a security incident. When the need arises to do extra
monitoring for a portion of the network, spending a couple of hours to install
a generic OS, all of the necessary packages and their prerequisites, and then
configuring everything prevents you from collecting data and starting
analysis. When it comes to computer security, time is always critical.

Another advantage to a customized OS distribution is repeatability. As many
of the customized Linux distributions are designed to run directly from CD,
you can be assured that you will get the same software, installed the same
way every time you boot that CD. The other IDS oriented distributions that
I've experimented with ask a minimal set of questions, and install and
configure everything. This simplicity enables you to keep the list of your
answers on a slip of paper in the CD case, ready for the next time you need
it, or to walk someone through setting up an IDS sensor at a remote office
over the phone.

Finally, an intrusion detection oriented OS distribution can be an educational
tool. Using a bootable CD distribution, a user can test an unfamiliar
operating system without needing a dedicated machine and without risking
the data on their primary system. Also, as these OS's are focused on
security work, the creators take care to provide default settings which mesh

- 3 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

well with industry best practices. This allows an analyst to focus his or her
time on learning the analysis tools, not on closing gaping security holes left
by a generic, “user friendly” installation of the operating system.

Features

The table below gives an overview of the four distributions with which I've
experimented. The table lists the underlying operating system and kernel
version, the versions of snort and ACID which are included, whether the OS
supports multiprocessor systems or SCSI, where the OS runs from, and a
short note about rule management capabilities that are installed by default.

Distro B
a
s
e

O
S

S
n
o
r
t

A
C
I
D

S
M
P

S
C
S
I

R
u
n

F
r
o
m

Rule Management

OpenIDS v1.1 OpenBSD
3.4

2.0.6 0.9.6
b23

NO NO HDD SSH. Since the OS is
installed on a disk, can

add other s/w.

Sentinix v1.0 Beta Linux
2.4.22

2.0.6 0.9.6
b23

YES YES HDD SnortCenter

IPCop v1.3.0 Linux
2.4.20

2.0.0 NO NO NO HDD OS upgrades, SSH, install
something.

Knoppix-STD v0.1 Linux
2.4.21

2.1.0 0.9.6
b20

YES N/A CD Oinkmaster. New rules lost
at reboot.

OpenIDS

This distribution is based on OpenBSD version 3.4, and installs to a hard disk.
Somehow, the authors have managed to streamline the OpenBSD's already
minimalist installer. Installation is quick, and upon reboot the system starts
snort and ACID, and provides SSH and https access on the management
interface. As the default configuration of the firewall prohibits all traffic on
the management interface except SSH and https, using one interface for
traffic sniffing and management does not work well. During the installation,
you are asked for the parameters to create a self-signed certificate for the
SSL-enabled web server.

Sentinix

In addition to snort, ACID, and SnortCenter, Sentinix provides tools for
monitoring network performance and service availability, fighting spam, and
performing vulnerability assessments of your network. The installer lets you
choose which services you would like to install, but exposes some services to
the network unnecessarily (MySQL, http). This is the only distribution I've
seen which includes SnortCenter for managing snort's rules and config files

- 4 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

via the web (Dens). Finally, Sentinix supports SMP on a single system, and
clustering by way of the openMosix kernel extension (Bar).

The installer should add at least one dependency check so that enabling
Snort and ACID requires MySQL to be enabled also. This configuration is
valid to the installer, but packets don't get logged to the database when it is
not installed. One other drawback with the system is that snort needs to be
started from the web GUI at each system boot. However, since Sentinix is
installed to the hard disk, this can be fixed easily.

IPCop

Designed to be a firewall and gateway system, IPCop also provides snort as
part of its tool set. One feature about the IPCop installer that stood out to
me was the clarity of the questions it asked. This makes IPCop more
accessible to those unfamiliar with security, increasing the likelihood that it
will be used. IPCop configures snort to log to syslog, and does not provide
direct tools for updating snort or its rules. However, the system upgrades
include updates to snort and snort's rules.

IPCop explicitly does not support SCSI, but when it attempts to find a hard
disk for installation, at least it tells you “No IDE harddisk found.” One other
nice feature would be occasional “roll-up” upgrades. When I looked, there
were 9 updates on the IPCop site, each of which needed to be applied
individually. Not all of them require a reboot, but it is an annoyance at
installation, and barrier to rapid deployment.

Knoppix-STD

By employing on-the-fly decompression, Klaus Knopper raised the bar for
bootable CD's when KNOPPIX was first released. The compression technique
allows for roughly 2GB of applications to be accessible from an OS booted via
a 650MB CD-ROM. There are many customizations to KNOPPIX, ranging from
language localizations to cluster-oriented to bioinformatics (Bodnar).

With Knoppix-STD, booting from the CD gives you a full graphical desktop,
with access to tools including the Nessus vulnerability scanner, snort and
ACID, and Prelude Hybrid IDS (Vandoorselaere). Some of the startup scripts
seem to have glitches when called from the GUI, but running them by hand
seems to solve them. This, unfortunately, is true of the script which is
supposed to start snort, barnyard, and MySQL to get ACID running. For some
reason, barnyard does not start properly. This may be a timing issue where
barnyard tries to start before MySQL is ready to receive any alerts.

Prelude NIDS is included in the distribution, however it failed to start due to
read-only filesystem errors. Having access to prelude on a bootable CD
would be an excellent opportunity to explore some of the features it has to
offer.

- 5 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Downfalls

Now that we've seen some of the features and benefits of IDS specific OS
distributions, we should give some consideration to the drawbacks to these
tools. Especially with the CD-ROM based distributions, making updates to
the OS and applications is more difficult. Since all of these OS's are taking
steps to make installation, package selection, and configuration much easier
for end users, they would be doing a disservice to their users to expect them
to download and compile updates to the OS itself. IPCop was the only distro
I looked at which provided binary updates that were designed to be easy for
end users to apply. One relief with CD-ROM based distributions is that it is
also more difficult for attackers to make persistent changes.

Another concern is performance. Since these distributions are targeting a
wide range of hardware, optimizations for more recent hardware are not
available. Fortunately, in the scope of rapidly getting an IDS system online,
performance is not necessarily measured in packet per second, but rather in
minutes of traffic not analyzed.

While Sentinix provides a comprehensive method for managing snort's rules
and configuration, the others do not. This can be a problem when custom
rules need to be deployed and for keeping standard rules up to date. Since
OpenIDS and IPCop both install to a hard disk, additional software could be
loaded to address rule management, however, that software would not get
updated with any patches to the distribution's software.

One final shortcoming, especially for an environment which is already set up
for centralized logging, is that central logging is not typically supported.
Since SnortCenter can be used on a Sentinix installation to configure an
output plugin, a user would be able to configure a new output plugin from
the web interface. However, this is no less work than editing the snort
configuration file directly. Separating the sensor and alert aggregation roles
is on the “to do” list for OpenIDS (Keri).

Although these and other IDS oriented distributions are still maturing, they
provide a valuable set of tools for IDS analysts urgently needing an
additional sensor. Learning to use these tools can provide insight into
unfamiliar operating systems, experience with new tools, and readiness to
respond to the next emergency.

- 6 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References
Bar, Moshe. "openMosix, an Open Source Linux Cluster Project".

<http://openmosix.sourceforge.net>. 2002-2004 Moshe Bar. Visited 28 April
2004.

Belinger, Jack. IPCop. “Twiki. IPCop. WebHome”. <http://www.ipcop.org>. 2001. 17
April 2004. Visited 26 April 2004.

Bodnar, Ladislav. “DistroWatch.com: Put the fun back into computing. Use Linux,
BSD.”. <http://www.distrowatch.com>. Visited 28 April 2004.

Blomgren, Michel. “SENTINIX GNU/Linux distribution”. <http://www.sentinix.org/>.
2003. Visited 26 April 2004.

Dens, Setfan. "Snort Center - Snort management console".
<http://users.pandora.be/larc>. 2002 Stefan Dens. Visited 28 April 2004.

Keri, Mikael. “OpenIDS”. <http://www.prowling.nu/main/openids/openids.html>. 3
June 2003. 1 March 2004. Visited 26 April 2004.

Knpooer, Klaus. "KNOPPIX - Live Linux Filesystem On CD".
<http://knopper.net/knoppix-info/index-en.html>. Visited 28 April 2004.

Knoppix-STD. “Knoppix STD 0.1 security tools distribution”. <http://www.knoppix-
std.org/>. 3 February 2004. Visited 26 April 2004.

Roesch, Martin. “SnortTM Users Manual v2.1.1”. <http://www.snort.org/docs/
snort_manual.pdf> The Snort Project. 25 February 2004.

Vandoorselaere, Yoann. "Prelude Hybrid IDS". <http://www.prelude-ids.org>. Visited
28 April 2004.

- 7 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.Network Detects

Detect #1 – Vermilion FTPd CWD attack

This detect was posted to the intrusions@incidents.org email list on 11
February 2004, and is archived at:
http://cert.uni-stuttgart.de/archive/intrusions/2004/02/msg00099.html

There were no replies.

1. Source of trace

This trace is based on logs obtained from
http://www.incidents.org/logs/Raw/2002/ . Mergecap [1] was used to
combine logs from sets 9, and 10 dated Dec 2, 2002 into one large capture
file.
% mergecap -w goodset 2002*

2. Detect was generated by

I used a 2-pass method with snort (v2.1.0 [3])... first, a pass with all rules
enabled (rule set from 28 Jan 2004), then a second pass looking for specific
alert types. For both passes, binary logging is enabled (-b), logs go to a
specified directory (-l dirname), "Full" alert mode is used (-A full), no
checksums are verified (-k none), hex & ascii are shown in any text logs (-X),
and ethernet headers are included (-e).

First pass:
% snort -c snort/snort.conf -r goodset -A full -l log200 -beXk none
% cd log200
% cat alert | grep -E "^\[**\]" | sort | uniq -c | sort -n > alert.summary

Use IpAudit's total [2] to count the number of alerts (- => no grouping, 1s
=> sum of column 1) :
% total - 1s alert.summary
215898

Since dealing with 215898 alerts is not realistic, I choose to examine the
“SHELLCODE” alerts more closely.
% cat alert.summary | grep SHELLCODE
 1 [**] [1:651:6] SHELLCODE x86 stealth NOOP [**]
 1 [**] [1:653:6] SHELLCODE x86 unicode NOOP [**]
 2 [**] [1:2314:1] SHELLCODE x86 0x90 NOOP unicode [**]
 7 [**] [1:1424:6] SHELLCODE x86 0xEB0C NOOP [**]
 9 [**] [1:649:6] SHELLCODE x86 setgid 0 [**]
 16 [**] [1:650:6] SHELLCODE x86 setuid 0 [**]
 64 [**] [1:1390:4] SHELLCODE x86 inc ebx NOOP [**]
 73 [**] [1:1394:4] SHELLCODE x86 NOOP [**]
 263 [**] [1:648:6] SHELLCODE x86 NOOP [**]

- 8 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Second pass: run snort again, with binary logging enabled, using only the
SHELLCODE rules, and placing output into a new directory
% snort -c snort/snort.conf.shellcode -r goodset -A full -l log201 -beXk none

Use tcpdump to determine the time span of events:
% tcpdump -nttttr log201/snort.log | cut -d' ' -f1,2
10/09/2002 11:46:18.486507
....
11/17/2002 12:54:27.776507

Create a summary of the alerts triggered by snort.
% cat alert | grep -E "^\[**\]" | sort | uniq -c | sort -n > alert.summary
% cat alert.summary
 1 [**] [116:54:1] (snort_decoder): Tcp Options found with bad lengths [**]
 1 [**] [121:3:1] Portscan detected from 32.245.166.236 Talker(fixed: 30 sliding: 4)
Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [121:4:1] Portscan detected from 170.129.50.120 Talker(fixed: 28 sliding:
30) Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [121:4:1] Portscan detected from 202.108.254.200 Talker(fixed: 10 sliding:
30) Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [121:4:1] Portscan detected from 207.166.87.157 Talker(fixed: 22 sliding:
30) Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [121:4:1] Portscan detected from 216.77.219.165 Talker(fixed: 2 sliding: 30)
Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [121:4:1] Portscan detected from 217.228.210.78 Talker(fixed: 30 sliding:
30) Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [121:4:1] Portscan detected from 24.101.114.84 Talker(fixed: 10 sliding: 30)
Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [121:4:1] Portscan detected from 24.154.202.158 Talker(fixed: 30 sliding:
30) Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [121:4:1] Portscan detected from 24.190.48.235 Talker(fixed: 30 sliding: 30)
Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [121:4:1] Portscan detected from 24.220.227.20 Talker(fixed: 30 sliding: 30)
Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [121:4:1] Portscan detected from 24.90.122.137 Talker(fixed: 30 sliding: 30)
Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [121:4:1] Portscan detected from 66.123.116.234 Talker(fixed: 30 sliding:
30) Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [121:4:1] Portscan detected from 66.250.114.252 Talker(fixed: 30 sliding:
30) Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [121:4:1] Portscan detected from 66.28.100.206 Talker(fixed: 6 sliding: 30)
Scanner(fixed: 0 sliding: 0) [**]
 1 [**] [1:651:6] SHELLCODE x86 stealth NOOP [**]
 1 [**] [1:653:6] SHELLCODE x86 unicode NOOP [**]
 2 [**] [1:2314:1] SHELLCODE x86 0x90 NOOP unicode [**]
 7 [**] [1:1424:6] SHELLCODE x86 0xEB0C NOOP [**]
 8 [**] [116:97:1] (snort_decoder): Short UDP packet, length field > payload length
[**]
 9 [**] [1:649:6] SHELLCODE x86 setgid 0 [**]
 16 [**] [1:650:6] SHELLCODE x86 setuid 0 [**]
 42 [**] [116:46:1] (snort_decoder) WARNING: TCP Data Offset is less than 5! [**]
 64 [**] [1:1390:4] SHELLCODE x86 inc ebx NOOP [**]
 73 [**] [1:1394:4] SHELLCODE x86 NOOP [**]

- 9 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 263 [**] [1:648:6] SHELLCODE x86 NOOP [**]

Take a glance at snort.log with ethereal to see if any of the protocol decodes
jump out as interesting... here's a block of
"FTP CWD 000"

lines that are consecutive.

Sorting packets by ethereal's "Info" field, and finding the CWD
00000000000000000, we find that there are 7 such packets. Looking at the
summary, we see that there are exactly 7 instances of only one snort rule:
sid=1424 "SHELLCODE x86 0xEB0C NOOP".

Finding that rule in shellcode.rules, we see that it is (edited for readability):
 alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (

msg:"SHELLCODE x86 0xEB0C NOOP";
 content:"|EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C|";

classtype:shellcode-detect; sid:1424; rev:6;)

The relevant info from the snort alert output is:
% grep -A 6 "1:1424:6" alert
[**] [1:1424:6] SHELLCODE x86 0xEB0C NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/02-05:09:06.526507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x23E
195.232.55.6:1701 -> 207.166.87.42:21 TCP TTL:45 TOS:0x0 ID:55450 IpLen:20 DgmLen:560
DF
AP Seq: 0x82340FD5 Ack: 0x4333A866 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1040178 3948516

[**] [1:1424:6] SHELLCODE x86 0xEB0C NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/02-05:10:00.686507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x23E

- 10 -

Illustration 1 Ethereal - note the 5 FTP Request:CWD 000... lines.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

195.232.55.6:1710 -> 207.166.87.40:21 TCP TTL:45 TOS:0x0 ID:37808 IpLen:20 DgmLen:560
DF
AP Seq: 0x866C7E2B Ack: 0x45F91C5E Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1045592 3953929

[**] [1:1424:6] SHELLCODE x86 0xEB0C NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/02-05:10:51.706507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x23E
195.232.55.6:1737 -> 207.166.87.41:21 TCP TTL:45 TOS:0x0 ID:11897 IpLen:20 DgmLen:560
DF
AP Seq: 0x8971D6B0 Ack: 0x48EDC37E Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1050693 3959031

[**] [1:1424:6] SHELLCODE x86 0xEB0C NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/02-05:11:41.886507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x23E
195.232.55.6:1756 -> 207.166.87.60:21 TCP TTL:45 TOS:0x0 ID:29061 IpLen:20 DgmLen:560
DF
AP Seq: 0x8CFA6343 Ack: 0x4BEAE351 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1055711 3964041

[**] [1:1424:6] SHELLCODE x86 0xEB0C NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/02-05:12:32.626507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x23E
195.232.55.6:1763 -> 207.166.87.58:21 TCP TTL:45 TOS:0x0 ID:14521 IpLen:20 DgmLen:560
DF
AP Seq: 0x8F862074 Ack: 0x4F49B33B Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1060783 3969121

--
[**] [1:1424:6] SHELLCODE x86 0xEB0C NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/16-09:41:40.176507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x23E
163.24.239.8:2377 -> 170.129.50.5:21 TCP TTL:44 TOS:0x0 ID:35386 IpLen:20 DgmLen:560
DF
AP Seq: 0xAB7BA6BD Ack: 0xA5C3AABB Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 4675704 5583989

--
[**] [1:1424:6] SHELLCODE x86 0xEB0C NOOP [**]
[Classification: Executable code was detected] [Priority: 1]
11/17-06:54:27.776507 0:3:E3:D9:26:C0 -> 0:0:C:4:B2:33 type:0x800 len:0x23E
165.154.7.2:1982 -> 170.129.50.4:21 TCP TTL:46 TOS:0x0 ID:35277 IpLen:20 DgmLen:560 DF
AP Seq: 0x473ADE51 Ack: 0x719E0279 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 648881732 4580808

Looking at one of these packets with tcpdump, we can verify that it matches
the snort rule:
 alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (

msg:"SHELLCODE x86 0xEB0C NOOP";
 content:"|EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C EB 0C|";
classtype:shellcode-detect; sid:1424; rev:6;)

% tcpdump -nvXr snort.log 'dst host 170.129.50.5 and dst port 21'
09:41:40.176507 163.24.239.8.2377 > 170.129.50.5.21: P [bad tcp cksum f6fe!]

- 11 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2877007549:2877008057(508) ack 2781063867 win 32120 <nop,nop,timestamp 4675704
5583989> (DF) (ttl 44, id 35386, len 560)
0x0000 4500 0230 8a3a 4000 2c06 53e6 a318 ef08 E..0.:@.,.S.....
0x0010 aa81 3205 0949 0015 ab7b a6bd a5c3 aabb ..2..I...{......
0x0020 8018 7d78 dd79 0000 0101 080a 0047 5878 ..}x.y.......GXx
0x0030 0055 3475 4357 4420 3030 3030 3030 3030 .U4uCWD.00000000
0x0040 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0050 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0060 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0070 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0080 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0090 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00a0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00b0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00c0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00d0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00e0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00f0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0100 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0110 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0120 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0130 3030 3030 3030 3030 f0fc 4031 0708 985f 00000000..@1..._
0x0140 0808 eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0150 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0160 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0170 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0180 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0190 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01a0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01b0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01c0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01d0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01e0 eb0c eb0c eb0c eb0c 9090 9090 9090 9090
0x01f0 9090 9090 31db 43b8 0b74 510b 2d01 0101 1.C..tQ.-...
0x0200 0150 89e1 6a04 5889 c2cd 80eb 0e31 dbf7 .P..j.X......1..
0x0210 e3fe ca59 6a03 58cd 80eb 05e8 ed0a ca59 ...Yj.X........Y
0x0220 6a03 58cd 80eb 05e8 edff ffff ffff ff0a j.X.............

We see a match in the shaded area starting in the row marked 0x140 above.

- 12 -

Illustration 2 Ethereal: 7 alerts for CWD 0000, 3 sources, 7 destinations.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

We can see in ethereal, and in the alerts above, that 3 sources cause these 7
alerts. Since one source has triggered this alert 5 times [195.232.55.6], we
look back at what hosts it has talked to in the large, merged capture file.
% tcpdump -nr goodset -w log201/host-195.232.55.6 'host 195.232.55.6'

And to see what's going on we look at the file with tcpdump again:
% tcpdump -nvXr host-195.232.55.6
05:09:06.526507 195.232.55.6.1701 > 207.166.87.42.21: P [bad tcp cksum acb4!]
2184450005:2184450513(508) ack 1127458918 win 5840 <nop,nop,timestamp 1040178 3948516>
(DF) (ttl 45, id 55450, len 560, bad cksum 9bb8!)
0x0000 4500 0230 d89a 4000 2d06 9bb8 c3e8 3706 E..0..@.-.....7.
0x0010 cfa6 572a 06a5 0015 8234 0fd5 4333 a866 ..W*.....4..C3.f
0x0020 8018 16d0 7135 0000 0101 080a 000f df32 q5.........2
0x0030 003c 3fe4 4357 4420 3030 3030 3030 3030 .<?.CWD.00000000
0x0040 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0050 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0060 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0070 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0080 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0090 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00a0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00b0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00c0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00d0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00e0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00f0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0100 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0110 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0120 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0130 3030 3030 3030 3030 f0fc 4031 0708 985f 00000000..@1..._
0x0140 0808 eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0150 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0160 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0170 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0180 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0190 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01a0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01b0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01c0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01d0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01e0 eb0c eb0c eb0c eb0c 9090 9090 9090 9090
0x01f0 9090 9090 31db 43b8 0b74 510b 2d01 0101 1.C..tQ.-...
0x0200 0150 89e1 6a04 5889 c2cd 80eb 0e31 dbf7 .P..j.X......1..
0x0210 e3fe ca59 6a03 58cd 80eb 05e8 ed0a ca59 ...Yj.X........Y
0x0220 6a03 58cd 80eb 05e8 edff ffff ffff ff0a j.X.............
05:09:06.976507 195.232.55.6.1701 > 207.166.87.42.21: P [bad tcp cksum b5b5!] 508:524
(16) ack 522 win 6432 <nop,nop,timestamp 1040231 3948557> (DF) (ttl 45, id 55451, len
68, bad cksum 9da3!)
0x0000 4500 0044 d89b 4000 2d06 9da3 c3e8 3706 E..D..@.-.....7.
0x0010 cfa6 572a 06a5 0015 8234 11d1 4333 aa6f ..W*.....4..C3.o
0x0020 8018 1920 5b83 0000 0101 080a 000f df67 [..........g
0x0030 003c 400d 4357 4420 7e2f 7b2e 2c2e 2c2e .<@.CWD.~/{.,.,.
0x0040 2c2e 7d0a ,.}.
05:09:09.716507 195.232.55.6.1701 > 207.166.87.42.21: P [bad tcp cksum b5b5!] 612:619
(7) ack 833 win 6432

- 13 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<nop,nop,timestamp 1040506 3948842> (DF) (ttl 45, id 55459, len 59, bad cksum 9da4!)
0x0000 4500 003b d8a3 4000 2d06 9da4 c3e8 3706 E..;..@.-.....7.
0x0010 cfa6 572a 06a5 0015 8234 1239 4333 aba6 ..W*.....4.9C3..
0x0020 8018 1920 ca34 0000 0101 080a 000f e07a 4.........z
0x0030 003c 412a 4357 4420 7e7b 0a .<A*CWD.~{.

... 4 more of these sets, 1 set for each destination host attacked by this
source.

3. Probability the source address was spoofed

Since the attacker is issuing commands to an FTP server, using an
established TCP connection, the source address is nearly impossible to spoof.
Based on the rate at which the alerts are being triggered and the content of
the packets, we can assume that this attack is being performed by a tool.

For the attack against the Vermilion FTP server to work, 3 CWD commands
longer than 504 characters each. Since we only see one of the 3, we can
imply that the other packets were sent earlier in the session, and were
crafted so as not to trigger the snort alerts.

Also, if the exploit is successful, the attacker will need to have information
from the compromised machine returned to him/her.

The TTL is consistently 45. Doing a traceroute to an address in the net
block, I observed 21 hops from the central US to France before traceroute
starts breaking. 45+21=65 so the attacker's host likely has a TTL of 64, and
is slightly closer to the victim than to my test machine. This would fit with
many variants of UNIX, based on the work of the Honeynet Project [4] and
p0f [5].

Looking up the WHOIS info for this host [details in Section 7 "Active
Targeting"], we see that this IP is part of a Compuserve Europe dial-up pool.
As the address on a dial-up tends to change between each connection, the
source address is not likely spoofed.

4. Description of attack

A search of Google for "FTP CWD overflow" yields:

• Vermillion FTP CWD overflow DoS

http://xforce.iss.net/xforce/xfdb/3543

from http://xforce.iss.net/xforce/xfdb/3543 [whitespace condensed]

vermillion-ftp-cwd-overflow (3543) Medium Risk

Description: Vermillion is an FTP is a Windows based FTP daemon. It

- 14 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

contains a buffer overflow in the CWD command. If a remote or local user
overflows the CWD command with 504 characters 3 times in a row, the
server will crash and will have to be restarted.

Platforms Affected:

 Arcane Software, Inc. Vermillion FTP Daemon 1.23

on Microsoft Corporation Windows Any version

Remedy: Upgrade to the latest version of Vermillion (1.31 or later),
available from the Arcane Software Web site. See References.

Consequences: Denial of Service

The xforce.iss.net site also had referneces to the following sites:

• http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-1058

The MITRE group's Common Vulnerabilities & Exposures list has this attack
listed as a candidate for inclusion in the list (CAN).

• http://www.securityfocus.com/bid/0818

 Security Focus classifies this activity as a "Boundary Condition Error"
which local and remote users can attack, and credits USSR Labs with
discovery or the buffer overflow.

• http://www.ussrback.com/labs14.html

USSR Labs has a write-up of the buffer overflow problem, and code which
is able to demonstrate the impact of the buffer overflow.

• http://www.iss.net/security_center/advice/Intrusions/2001308/default.htm

Lists several different buffer overflows against different FTP servers.

Also 2 others came up from the intrusions@incidents.org email list.

• http://cert.uni-stuttgart.de/archive/intrusions/2002/06/msg00175.html

Shows snort alerts for "FTP large CWD packet" and others as an example
to prompt discussion on the intrusions list.

• http://cert.uni-stuttgart.de/archive/intrusions/2003/04/msg00080.html

Is part of a discussion about alerts on large FTP commands.

Finally, 2 other students did detects on FTP CWD attacks:

• http://cert.uni-stuttgart.de/archive/intrusions/2002/09/msg00186.html

- 15 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• http://cert.uni-stuttgart.de/archive/intrusions/2002/09/msg00195.html

5. Attack mechanism

As mentioned previously, this attack was likely preformed with a tool. Nessus
has a plugin to test for this vulnerability [6,7]. Another tool is available from
USSR Labs [9].

Based on the alerts seen from this dataset, code analysis of the USSR
exploit, and tests with the nessus plugin, neither of these tools was the one
used to trigger these alerts. The tool used attempts to exploit multiple
buffer overflows for various ftp servers on each ftp connection.

To exploit the denial of service bug in the Vermilion FTP server, 3 packets
are sent with CWD commands longer than 504 bytes in length. At this point,
the server crashes [10]. As the third large CWD command triggers the buffer
overflow, it would be pointless to put SHELLCODE in the first two CWD
commands issued by the tool, since they tend to trigger IDS alerts.

6. Correlations

Searching http://www.dshield.org turned up nothing current about
195.232.0.0/16 scanning for ftp.

http://www.incidents.org/archives/intrusions/msg11827.html - shows
195.232.25.5 scanning a host for any open ports on Wed, 07 May 2002.

http://www.giac.org/practical/GCIA/Jared_McLaren_GCIA.pdf shows
195.232.60.24 scanning for the KDM window manager in analysis of the logs
from http://www.incidents.org/logs/Raw/2002.5.10

Beyond that, there seem to be no leads. If the ISP's acceptable use policy
were readily available, it may have given some insight into how the network
is managed, and what policies are in place. However, the AUP would likely
be different now than it was then.

7. Evidence of active targeting

This is the only traffic seen from this source host. It is very likely targeted.
% tcpdump -nr ../goodset 'host 195.232.55.6' | wc -l
 15

3 alert packets * 5 destination hosts = 15 packets => no other traffic from
this host.

Also, the TCP sessions are already established before we see the alerts, but
we can tell that the first 2 packets are in sequence by their IP IDs. As we're
seeing multiple FTP buffer overflow alerts per system, it would seem that the
attacker knows that these systems are ftp servers.

We can also see that each attack set spans nearly the same amount of time

- 16 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

per host (just over 3 seconds), and the time spacing between the hosts is
consistently near 50 seconds. Since we know that the destination addresses
have been mangled to protect the innocent, we cannot tell whether the
attacker was originally scanning them in sequential order by IP. However,
with the consistent timings, we can assume that the attacker knew the
addresses in advance.

Here we can see the timestamps in Month/Day/Year Hour: Minute: Second.
fraction
% tcpdump -nttttr ../goodset 'host 195.232.55.6' | cut -d: -f1-3
11/02/2002 11:09:06.526507 195.232.55.6.1701 > 207.166.87.42.21
11/02/2002 11:09:06.976507 195.232.55.6.1701 > 207.166.87.42.21
11/02/2002 11:09:09.716507 195.232.55.6.1701 > 207.166.87.42.21
11/02/2002 11:10:00.686507 195.232.55.6.1710 > 207.166.87.40.21
11/02/2002 11:10:01.146507 195.232.55.6.1710 > 207.166.87.40.21
11/02/2002 11:10:03.846507 195.232.55.6.1710 > 207.166.87.40.21
11/02/2002 11:10:51.706507 195.232.55.6.1737 > 207.166.87.41.21
11/02/2002 11:10:52.156507 195.232.55.6.1737 > 207.166.87.41.21
11/02/2002 11:10:54.846507 195.232.55.6.1737 > 207.166.87.41.21
11/02/2002 11:11:41.886507 195.232.55.6.1756 > 207.166.87.60.21
11/02/2002 11:11:42.356507 195.232.55.6.1756 > 207.166.87.60.21
11/02/2002 11:11:45.016507 195.232.55.6.1756 > 207.166.87.60.21
11/02/2002 11:12:32.626507 195.232.55.6.1763 > 207.166.87.58.21
11/02/2002 11:12:33.056507 195.232.55.6.1763 > 207.166.87.58.21
11/02/2002 11:12:36.046507 195.232.55.6.1763 > 207.166.87.58.21

We know that these were the only alerts from the attacker's address, and
nearly the only ftp traffic that generated alerts. The other ftp traffic on the
standard ports can be found with tcpdump and (t)ethereal. Since all 5 hosts
that were targeted by 195.232.55.6 are on one subnet, we will limit our
search for other ftp traffic to the subnet 207.166.87.0/24.
% tcpdump -nr ../goodset -w other-ftp-traffic \
 '(port 20 or port 21) and (host not 195.232.55.6 and net 207.166.87)'

% tethereal -r other-ftp-traffic
 1 0.000000 24.184.79.220 -> 207.166.87.157 FTP-DATA FTP Data: 536 bytes
 2 9652.670000 207.166.87.157 -> 194.213.194.37 FTP Request: GNUTELLA CONNECT/0.6
 3 246536.840000 207.166.87.157 -> 194.213.194.37 FTP Request: GNUTELLA CONNECT/0.6
 4 416334.200000 208.61.206.232 -> 207.166.87.40 FTP Request: PASS
 5 995601.770000 207.166.87.40 -> 218.147.119.184 FTP-DATA FTP Data: 1402 bytes
 6 995601.770000 207.166.87.40 -> 218.147.119.184 FTP-DATA FTP Data: 1402 bytes
 7 995602.020000 207.166.87.40 -> 218.147.119.184 FTP-DATA FTP Data: 1402 bytes
 8 995602.020000 207.166.87.40 -> 218.147.119.184 FTP-DATA FTP Data: 723 bytes

So we can see that there is an FTP-DATA transfer from 207.166.87.40 to
218.147.119.184, a login from 208.61.206.232 to 207.166.87.40, and some
GNUTELLA traffic.

Using tcpflow [8], we can rebuild the FTP-DATA stream, and see what's
inside:

- 17 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

% tcpflow -cr other-ftp-traffic 'host 207.166.87.40 and 218.147.119.184'
207.166.087.040.00020-218.147.119.184.05032: total 79336
-rw-r--r-- 1 root root 1381971 Oct 9 14:37 10n268.pdf
-rw-rw-r-- 1 root 504 360759 Jan 6 2002 20019.pdf
-rw-rw-r-- 1 root 504 380407 Jan 6 2002 20020.pdf
-rw-rw-r-- 1 root root 371140 Jun 11 2002 200203v.pdf
[snip - many lines omitted for brevity.]
-rw-rw-r-- 1 root 504 316849 Jan 6 2002 ircc20.pdf
-rw-rw-r-- 1 root 504 55645 Jan 6 2002 victorybx66.pdf

We see a directory listing for an FTP server, showing the owner of the files to
be root, the UNIX superuser. We also notice that there appear to be no other
legitimate ftp servers on the subnet of interest.

To find out more about the attacking host, we consult WHOIS (and trim out
the excess)
% whois 195.232.55.6

[snipped for brevity]
inetnum: 195.232.48.0 - 195.232.63.255
netname: UUNET-HIL-PPP-POOL
descr: Frankfurt PPP Client Pool
descr: Dynamic Dial-Up
descr: Security Incident reports should be send to: abuse@wcom.net
country: DE
admin-c: HC3-ORG
tech-c: HC3-ORG
status: ASSIGNED PA
mnt-by: RIPE-NCC-NONE-MNT
changed: hostmaster@wcom.net 19991220
changed: hostmaster@wcom.net 20001206
source: RIPE

route: 195.232.0.0/17
descr: Compuserve Europe
origin: AS5621
notify: wan@ipeng.wcom.net
mnt-by: AS5621-MNT
changed: jpinnow@ipeng.wcom.net 19990827
source: RIPE
[snipped for brevity]

Noting the "descr: Dynamic Dial-Up", this is likely a modem, DSL, or cable-
modem address, and the address may have changed between
reconnaissance & attack.

Let's look for other traffic from this net block
% tcpdump -nr ../goodset -w recon-srcs 'net 195.232.48.0/20'

If the only traffic from the 195.232.48.0/20 network block is from our
attacker, then the two files below will be the same:
% diff -s recon-srcs host-195.232.55.6

- 18 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Files recon-srcs and host-195.232.55.6 are identical

Thus, only 195.232.55.6 connected to the monitored from the
195.232.48.0/20 net block.

Based on the consistent time sequencing, definitive verification of one ftp
server, multiple exploit attempts per connect, and lack of other traffic from
this attacking host, I believe that this attacker/tool was targeting the ftp
servers on this network actively. This does not rule out the possibility that
the attacker's tool has scanned for ftp servers previously, and we have not
been alerted to the scanning.

As we are unable to see the initial logins in the snort alerts, we can assume
that the attacker was able to do any needed reconnaissance without being
detected.

8. Severity

Using the SANS formula for severity found in the GCIA practical assignment:

severity = (criticality + lethality)(system +network countermeasures) with 1
being the lowest value, and 5 the highest, we have the following:

Criticality: 5

Based on the listing of documents from the ftp data stream, and searching
Google for documents with the same name, it would seem that this system
houses public documentation which customers need access to. This is a
"first impression" system: if it is down, customers will get a poor first
impression of the company, and the company can loose customers.

Also this host does a significant amount of http traffic (403 errors outbound).

Lethality: 5

Based on other traffic from 207.166.87.40 [below], the web server claims to
be running Red Hat Linux with Apache & FrontPage.
% tcpdump -nr ../goodset -w net-207.166.87-targets 'host (207.166.87.42 or \
 207.166.87.40 or 207.166.87.41 or 207.166.87.60 or 207.166.87.58)'

% tcpflow -cr net-207.166.87-targets 'host 213.240.6.14'
207.166.087.040.00080-213.240.006.014.01120: HTTP/1.1 403 Forbidden
Date: Sat, 02 Nov 2002 10:55:17 GMT
Server: Apache/1.3.12 (Unix) (Red Hat/Linux) FrontPage/4.0.4.3
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1
X-Pad: avoid browser bug

10b
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>

- 19 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<TITLE>403 Forbidden</TITLE>
</HEAD><BODY>
<H1>Forbidden</H1>
You don't have permission to access /
on this server.<P>
<HR>
<ADDRESS>Apache/1.3.12 Server at www.XXXXXXXX Port 80</ADDRESS>
</BODY></HTML>

0
[snipped more that followed]

Also, we saw root listed as the owner of the files in the FTP directory listing
previously obtained with tcpflow. This system is likely running a flavor of
UNIX or Linux.

As this exploit is designed for the Windows-based Vermilion FTP server, it is
not likely to be lethal. However, there are other ftp servers for Linux which
have been susceptible to buffer overflows as well. Also, this tool seems to be
checking for multiple different buffer overflows on each system it visits.

Perhaps we can tell wether the host or the ftp service was crashed by
looking at the timing of the alerts.
% tcpdump -nttttr ../goodset 'host 207.166.87.40' | head -220 | tail -20 |cut -d: -f1-
3
11/02/2002 03:57:03.626507 4.63.215.135.2009 > 207.166.87.40.80
11/02/2002 04:11:03.796507 4.65.196.108.2564 > 207.166.87.40.80
11/02/2002 06:05:11.466507 207.166.87.40.80 > 213.240.6.14.1120
11/02/2002 06:05:19.936507 207.166.87.40.80 > 213.240.6.14.1120
11/02/2002 06:05:29.526507 207.166.87.40.80 > 213.240.6.14.1120
11/02/2002 07:26:05.156507 218.227.137.78.60476 > 207.166.87.40.80
11/02/2002 08:06:40.296507 64.51.141.2.3466 > 207.166.87.40.80
11/02/2002 08:37:56.386507 62.103.210.66.1216 > 207.166.87.40.80
11/02/2002 08:37:57.816507 62.103.210.66.1220 > 207.166.87.40.80
11/02/2002 10:08:59.756507 207.166.87.40.80 > 213.240.6.20.2336
11/02/2002 11:10:00.686507 195.232.55.6.1710 > 207.166.87.40.21
11/02/2002 11:10:01.146507 195.232.55.6.1710 > 207.166.87.40.21
11/02/2002 11:10:03.846507 195.232.55.6.1710 > 207.166.87.40.21
[assumed crash & reboot]
11/02/2002 11:45:56.206507 213.99.232.219.1159 > 207.166.87.40.80
11/02/2002 11:45:58.346507 213.99.232.219.1162 > 207.166.87.40.80
11/02/2002 15:28:44.536507 68.152.32.167.3509 > 207.166.87.40.80
11/02/2002 15:39:16.446507 68.152.32.167.4609 > 207.166.87.40.80
11/02/2002 17:09:59.836507 66.43.149.135.4672 > 207.166.87.40.80
11/02/2002 19:54:40.266507 24.247.223.2.1294 > 207.166.87.40.80
11/02/2002 22:28:22.066507 217.66.199.241.18871 > 207.166.87.40.80

Based on the irregularity of the alerts, we cannot conclude whether the
system has crashed.

For purposes of analysis, we will assume that the machine crashed, and was
rebooted during the 35 minutes following the alert at 11:10:03 on
11/02/2002.

- 20 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

System Countermeasures: 1

Based on the file listings from http://archive.apache.org/dist/httpd/old/
Apache v1.3.12 was released on 25-Feb-2000. Based on the date in the
HTTP/403 response and the packet capture logs, the web server software is
over 2 years old. At the time & date listed in the HTTP/403 response, the
current versions of Apache appear to have been 1.3.27 or 2.0.43.

Also, the presence of the FrontPage extensions implies to me that the
organization strongly prefers to work from Windows. These 2 things
together indicate that this system is not being actively maintained by a
security-conscious administrator.

Network Countermeasures: 4

As this is a customer-oriented web & ftp server, those services are required
to be open to the world at large. There was one packet of traffic detected
which was not to/from port 20, 21, or 80. Searching snort.org's port list for
the ports involved (40195 and 33709) turned up no listings; this packet could
have been caused by a passive FTP session. Also, the lack of packets
destined for other ports implies that there is ingress filtering in front of the
network. Without ingress filtering, the snort instance would have likely
tripped some port-based, scanning, or fingerprinting rules, if the rules were
enabled.

The existence of a NIDS on the network indicates a desire to know what is
happening on the network.

Severity = (5 + 5) (1 + 4) = 50

Using the formula from http://www.giac.org/ID_assignment_guidelines.php

Severity = (5 + 5) - (1 + 4) = 5

9. Defensive recommendations

Upgrade the web and ftp server software to current versions.

If practical, split the web & ftp services between 2 separate hosts.

Use a non-x86 architecture to raise the bar for writing the assembly code
used in the buffer overflow. For example, fewer people have access to sparc-
and mips-based systems to test buffer overflow code on.

Remove FrontPage extensions on the web server, if they are not used. If they
are required, add a virtual server to the apache instance, ideally using a
dedicated network interface on the web server, and only allow FrontPage
access via the dedicated interface, and/or only from explicitly enumerated
hosts.

Recompile or reconfigure Apache to give out less information (for example,
in the "Server: " blocks seen in the HTTP/403 replies). Reducing the amount

- 21 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

of information an attacker can determine about your system makes it more
difficult to attack.

Set up a reverse web proxy to filter requests coming in to the web server.

Make sure the operating system is up to date (patches, etc.).

Make sure that logging is configured and working, preferably logging to a
loghost as well as the machine itself.

Keep the snort rules up to date, and keep monitoring the alerts.

10. Multiple choice test question
% tcpdump -nvXr ftp-attack.tcpdump
05:09:06.526507 195.232.55.6.1701 > 207.166.87.42.21: P [bad tcp cksum acb4!]
2184450005:2184450513(508) ack 1127458918 win 5840 <nop,nop,timestamp 1040178 3948516>
(DF) (ttl 45, id 55450, len 560, bad cksum 9bb8!)
0x0000 4500 0230 d89a 4000 2d06 9bb8 c3e8 3706 E..0..@.-.....7.
0x0010 cfa6 572a 06a5 0015 8234 0fd5 4333 a866 ..W*.....4..C3.f
0x0020 8018 16d0 7135 0000 0101 080a 000f df32 q5.........2
0x0030 003c 3fe4 4357 4420 3030 3030 3030 3030 .<?.CWD.00000000
0x0040 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0050 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0060 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0070 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0080 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0090 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00a0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00b0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00c0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00d0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00e0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x00f0 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0100 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0110 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0120 3030 3030 3030 3030 3030 3030 3030 3030 0000000000000000
0x0130 3030 3030 3030 3030 f0fc 4031 0708 985f 00000000..@1..._
0x0140 0808 eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0150 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0160 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0170 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0180 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x0190 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01a0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01b0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01c0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01d0 eb0c eb0c eb0c eb0c eb0c eb0c eb0c eb0c
0x01e0 eb0c eb0c eb0c eb0c 9090 9090 9090 9090
0x01f0 9090 9090 31db 43b8 0b74 510b 2d01 0101 1.C..tQ.-...
0x0200 0150 89e1 6a04 5889 c2cd 80eb 0e31 dbf7 .P..j.X......1..
0x0210 e3fe ca59 6a03 58cd 80eb 05e8 ed0a ca59 ...Yj.X........Y
0x0220 6a03 58cd 80eb 05e8 edff ffff ffff ff0a j.X.............
05:09:06.976507 195.232.55.6.1701 > 207.166.87.42.21: P [bad tcp cksum b5b5!] 508:524
(16) ack 522 win 6432 <nop,nop,timestamp 1040231 3948557> (DF) (ttl 45, id 55451, len
68, bad cksum 9da3!)
0x0000 4500 0044 d89b 4000 2d06 9da3 c3e8 3706 E..D..@.-.....7.
0x0010 cfa6 572a 06a5 0015 8234 11d1 4333 aa6f ..W*.....4..C3.o

- 22 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0020 8018 1920 5b83 0000 0101 080a 000f df67 [..........g
0x0030 003c 400d 4357 4420 7e2f 7b2e 2c2e 2c2e .<@.CWD.~/{.,.,.
0x0040 2c2e 7d0a ,.}.
05:09:09.716507 195.232.55.6.1701 > 207.166.87.42.21: P [bad tcp cksum b5b5!] 612:619
(7) ack 833 win 6432
<nop,nop,timestamp 1040506 3948842> (DF) (ttl 45, id 55459, len 59, bad cksum 9da4!)
0x0000 4500 003b d8a3 4000 2d06 9da4 c3e8 3706 E..;..@.-.....7.
0x0010 cfa6 572a 06a5 0015 8234 1239 4333 aba6 ..W*.....4.9C3..
0x0020 8018 1920 ca34 0000 0101 080a 000f e07a 4.........z
0x0030 003c 412a 4357 4420 7e7b 0a .<A*CWD.~{.

In the tcpdump output above, generated by a snort instance logging in
binary mode, the approximately 3 second pause between the last 2 alerts is:

 A) A TCP retransmit timeout

 B) A symptom of a system that crashed

 C) An indication that several packets in the stream did not trigger

 any snort rules

 D) A delay while the attacker typed in the next command

Answer: C

A: If it had been a retransmit, the packet would have been identical to the
one previous (note the sequence numbers changing.)

B: If the system had crashed, we would be likely see TCP retransmits.

D: Based on the spacing between and content of the first 2 packets, we can
tell that this attack was not done by hand. [Try to type "CWD.~/{.,.,.,.}" in
less than 0.5 seconds!]

References for Detect #1

[1] mergecap - http://www.ethereal.com/mergecap.1.html included with
ethereal.

[2] ipaudit - http://ipaudit.sourceforge.net/

[3] snort - http://www.snort.org/

[4] Project Honeynet - http://project.honeynet.org/papers/finger/traces.txt

[5] p0f - http://www.stearns.org/p0f/

[6] nessus - http://www.nessus.org

[7] nessus vftpd plugin - http://cgi.nessus.org/plugins/dump.php3?id=10293

[8] tcpflow - http://www.circlemud.org/~jelson/software/tcpflow

[9] USSR Labs exploit - http://www.ussrback.com/labs14.html

[10] Security Focus Discussion - http://www.securityfocus.com/bid/0818/discussion/

- 23 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detect #2 – NULL Scans

This detect was posted to the intrusions@incidents.org email list on 27
February 2004, and is archived at:
http://cert.uni-stuttgart.de/archive/intrusions/2004/02/msg00166.html

There were no replies.

1. Source of trace

This analysis is based on logs from
http://http://www.incidents.org/logs/Raw/2003.12.15.tgz , concatenated with
mergecap[6].

[Network Architecture]

Based on the source addresses (IP and ethernet/MAC), we can determine the
topology of the network of interest using tcpdump [1]
% tcpdump -ner host-10.10.10.113 | cut -d' ' -f2,6 | cut -d. -f1-4 | sort | uniq
0:50:56:40:0:64 10.10.10.2
0:50:56:40:0:64 arp
0:50:56:40:0:6d 192.168.17.129
0:50:56:40:0:6d 192.168.17.135
0:50:56:40:0:6d 192.168.17.68
0:50:56:40:0:6d arp
0:a:95:7c:24:0 10.10.10.113
0:a:95:7c:24:0 arp

This leads us to the network diagram shown below:

The “cloud” in the illustration above could be a switch with a span port, a
hub, or an IDS sensor running on a VMWare “Host” operating system and
monitoring all traffic to the virtual machines [15].

2. Detect was generated by

This detect was generated using snort [9] v2.1.0, making 3 passes thru the

- 24 -

Illustration 3 Network Topology

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

data:

a first pass with all of the rules in the 28 Jan 2004 set,

a second pass concentrating on a single host's traffic, and

a third pass with a tuned rule set, looking only at the specified host's
traffic.

For all three passes, binary logging is enabled (-b), logs go to a specified
directory (-l dirname), "Full" alert mode is used (-A full), no checksums are
verified (-k none), hex & ascii are shown in any text logs (-X), and ethernet
headers are included (-e).
% snort -c snort-full -r 2003.12.15-all -l log100 -A full -beXk none
% cd log100
% sfa-summary alert
[source for sfa-summary in References - given "alert", creates "alert.summary"]
% cat alert.summary | tail -2
5050 [**] [1:465:1] ICMP ISS Pinger [**]
18130 [**] [1:623:1] SCAN NULL [**]
% mkdir ss && snortsnarf -d ss alert

The snortsnarf [10] index.html shows that 1 host (10.10.10.113) was
responsible for all of the SCAN NULL rules, triggered on connections to 3
hosts: 192.168.17.{68,129,135}.
% lynx -dump -nolist -width 100 index.html | grep -E "SCAN NULL|Priority"
 Priority Signature (click for sig info) # Alerts # Sources # Dests Detail link
 2 SCAN NULL [sid] [arachNIDS] 18130 1 3 Summary

For passes 2 & 3, filter the tcpdump file to contain only communications with
10.10.10.113.
% tcpdump -nr 2003.12.15-all -w host-10.10.10.113 'host 10.10.10.113'

Run snort again, this time on the dump for 10.10.10.113, to see what other
activity snort catches:
% snort -c snort-full -r host-10.10.10.113 -l log101 -A full -beXk none
% cd log101
% sfa-summary alert
% cat alert.summary
 1 [**] [121:4:1] Portscan detected from 10.10.10.113 Talker(fixed: 30 sliding: 30)
Scanner(fixed: 0 sliding: 0) [**]
 4 [**] [1:1228:2] SCAN nmap XMAS [**]
 4 [**] [1:628:2] SCAN nmap TCP [**]
 10 [**] [1:1418:2] SNMP request tcp [**]
 10 [**] [1:1420:2] SNMP trap tcp [**]
 12 [**] [1:1421:2] SNMP AgentX/tcp request [**]
18130 [**] [1:623:1] SCAN NULL [**]

The rule for "SCAN NULL" is:
alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN NULL"; flags:0;

- 25 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

seq:0; ack:0; reference:arachnids,4; classtype:attempted-recon;
sid:623; rev:1;)

Examining the rules for sid 1418, 1420, 1421 we see that all 3 are in
snmp.rules, and all 3 are port based. Since these rules will also trigger with
a "SCAN NULL" we want to ignore them, in favor of the “SCAN NULL” rule.
alert tcp $EXTERNAL_NET any -> $HOME_NET 161 (msg:"SNMP request tcp";

reference:cve,CAN-2002-0012; reference:cve,CAN-2002-0013; sid:1418;
rev:2; classtype:attempted-recon;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 162 (msg:"SNMP trap tcp";\
reference:cve,CAN-2002-0012; reference:cve,CAN-2002-0013; sid:1420;
rev:2; classtype:attempted-recon;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 705 (msg:"SNMP AgentX/tcp request";
reference:cve,CAN-2002-0012; reference:cve,CAN-2002-0013; sid:1421;
rev:2; classtype:attempted-recon;)

Running snort again, with the SNMP rules disabled,
% snort -c snort.conf.no-snmp -r host-10.10.10.113 -l log102 -A full -beXk none
% cd log102 && sfa-summary alert && cat alert.summary
 1 [**] [121:4:1] Portscan detected from 10.10.10.113 Talker(fixed: 30 sliding: 30)
Scanner(fixed: 0 sliding: 0) [**]
 4 [**] [1:1228:2] SCAN nmap XMAS [**]
 4 [**] [1:628:2] SCAN nmap TCP [**]
18162 [**] [1:623:1] SCAN NULL [**]

We see that all 32 of the packets that triggered the SNMP rules, also match
on the "SCAN NULL" rule.

To find out how many packets our attacker is sending to each of our targets,
we use tcpdump:
% tcpdump -nr host-10.10.10.113 'src 10.10.10.113 and tcp' | cut -d' ' -f4 | cut -d.
-f1-4 | sort | uniq -c | sort -n
5291 192.168.17.135
6315 192.168.17.68
6624 192.168.17.129

A total of 1657 different ports were scanned, ranging from port 1 to 65301
[see section 7 for details]. There is a notable amount of traffic setting
different flags and options being sent to port 1 of each of the 3 target hosts.
As none of these scans against port 1 responded, they will be ignored for the
rest of this detect.

To get an idea of how aggressively this scan was done, we can use tcpdump
to find the number of packets sent during each minute of the attack. We
include the date in the output to ensure that the sorting does not lump
events from different days together.
% tcpdump -nttttr host-10.10.10.113 | cut -d: -f1,2 | uniq -c
1234 11/18/2003 18:57
2122 11/18/2003 18:58

- 26 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1950 11/18/2003 18:59
1168 11/18/2003 19:00
1719 11/18/2003 19:01
2035 11/18/2003 19:02
1940 11/18/2003 19:03
 824 11/18/2003 19:04
 4 11/18/2003 19:07
 4 11/18/2003 19:12
1037 11/18/2003 19:14
1463 11/18/2003 19:15
1572 11/18/2003 19:16
1234 11/18/2003 19:17

The scan lasts 20 minutes, and generates nearly 20,000 packets. This gives
us a rate of 1000 packets per minute, or roughly 16.7 packets per second.
This is a fairly aggressive scan.

3. Probability the source address was spoofed

The attacker is trying to find out which ports are open by sending an invalid
TCP packet in an attempt to elicit a TCP RESET packet from the host. As the
attacker wants to see this packet return, spoofing the source address is
highly unlikely.

4. Description of attack

The attacker is attempting to enumerate the TCP ports which are open on
the target hosts by sending invalid packets and waiting for the response.

From snort.org's info on sid=623: [11]

"A tcp packet with none of it's control bits (URG, ACK, PSH, RST, SYN, FIN)
was detected. Additionally, both the sequence number and
acknowledgment number were set to 0. An open port will generally not
respond at all, whereas a closed port will generally respond with an ACK
RST. The particular response varies between operating systems, and is
also governed by any filtering that may be done between the two hosts."

From White Hats: [12]

“This event indicates that a TCP frame has been seen with a sequence
number of zero and all control bits are set to zero. This frame should
never be seen in normal TCP operation. An attacker may be scanning your
system by sending these specially formatted frames to see what services
are available."

From the NMAP man page: [3]

"The idea is that closed ports are required to reply to your probe
packet with an RST, while open ports must ignore the packets in question
(see RFC 793 pp 64). The FIN scan uses a bare (surprise) FIN packet as

- 27 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the probe, while the Xmas tree scan turns on the FIN, URG, and PUSH
flags. The Null scan turns off all flags."

From RFC 793, page 64: [4]
"SEGMENT ARRIVES

If the state is CLOSED (i.e., TCB does not exist) then

 all data in the incoming segment is discarded. An incoming
 segment containing a RST is discarded. An incoming segment not
 containing a RST causes a RST to be sent in response. The
 acknowledgment and sequence field values are selected to make the
 reset sequence acceptable to the TCP that sent the offending
 segment."

Thus, for a target system that is RFC 793-compliant, the attacker is
expecting to see RST packets being sent back for every port which is closed.

5. Attack mechanism

As from above, this attack is looking for RST's from the host to find out which
ports are listening.

Here's a representative packet from tcpdump, with 10.10.10.113 as the
source.
% tcpdump -nvXr host-10.10.10.113 -c 1 'src host 10.10.10.113'
12:57:23.130647 10.10.10.113.59194 > 192.168.17.68.1027: . [tcp sum ok] win 4096 (ttl
51, id 1556, len 40)
0x0000 4500 0028 0614 0000 3306 9b55 0a0a 0a71 E..(....3..U...q
0x0010 c0a8 1144 e73a 0403 0000 0000 0000 0000 ...D.:..........
0x0020 5000 1000 ce3f 0000 5555 5555 5555 P....?..UUUUUU

All TCP packets in this trace from 10.10.10.113 have the string "UUUUU" in
their payload. This string may be helpful in identifying the tool which created
the packets, however, I have not run across the specific tool.

Also, the source port of the TCP packets sent by 10.10.10.113 indicates that
a tool was used to craft & send the packets. As you can see below, 2 source
ports are associated over 18000 packets, and the remaining 64 packets are
spread across 12 other source ports. Also, the range of source ports is
contiguous.
% tcpdump -nr host-10.10.10.113 'src host 10.10.10.113 and tcp' | cut -d' ' -f2 | cut
-d. -f5 | sort | uniq -c | sort -n
 4 59196
 4 59197
 4 59198
 4 59199
 4 59200
 4 59205
 4 59206
 4 59207
 8 59201
 8 59202

- 28 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 8 59203
 8 59204
9076 59195
9090 59194

By looking at packets to 10.10.10.113, we should be able to get an idea of
which ports respond with a RST packet.
% tcpdump -nvr host-10.10.10.113 'dst host 10.10.10.113 and tcp'
12:57:23.146706 192.168.17.68.443 > 10.10.10.113.59194: R [tcp sum ok] 0:0(0) ack 0
win 0 (ttl 125, id 51235, len 40)
12:57:40.925834 192.168.17.68.22 > 10.10.10.113.59194: R [tcp sum ok] 0:0(0) ack 0 win
0 (ttl 125, id 51241, len 40)
[snip - many lines omitted for brevity]
13:15:51.854980 192.168.17.135.53 > 10.10.10.113.59194: R [tcp sum ok] 0:0(0) ack 0
win 0 (DF) (ttl 252, id 0, len 40)
13:16:10.132772 192.168.17.135.20 > 10.10.10.113.59194: R [tcp sum ok] 0:0(0) ack 0
win 0 (DF) (ttl 252, id 0, len 40)

We can see by the "R" in tcpdump's Flags position, that these packets are all
RSTs sent from the hosts being scanned back to 10.10.10.113.

Filtering this down a bit, we find out which ports are involved:
% tcpdump -nvr host-10.10.10.113 'dst host 10.10.10.113 and tcp' | cut -d' ' -f2 |cut
-d. -f5 | sort -u -n
20
21
22
23
25
53
80
443

These are the ports commonly associated with ftp-data(20), ftp(21), ssh(22),
telnet(23), smtp(25), dns(53), http(80) and https(443) [8]. This doesn't seem
right... the only ports sending RST's are the one that we would expect to be
open on a server. Looking at securityfocus [7] we find out one possible
reason:

"When a Microsoft system receives an xmas packet, it will respond with a
RST/ACK, regardless of whether or not the port is open or closed. Since an
xmas scan deems that a response from the remote host indicates a closed
port, a Microsoft system is invulnerable to the xmas tree scan, as it will
show all ports closed regardless of their state. [...]

So in the light, it also falls prey to the same limitations that its predecessor
does, [FIN and NULL Scans] cannot be used against non RFC compliant
systems, such as Microsoft Windows."

Using NMAP[13], lets do a test in a lab environment (FreeBSD, port 22 open,
port 80 closed).
target% tcpdump -ni fxp0 -w /tmp/nmap-sN-3.5 'host 192.168.77.69' &

- 29 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

attack% nmap -sN -P0 -p 22,80 192.168.77.69
target% tcpdump -nvr /tmp/nmap-sN-3.5 'port (22 or 80)'
13:45:30.689375 192.168.77.77.56182 > 192.168.77.69.80: . [tcp sum ok] ack 2925499678
win 3072 (ttl 42, id 30489)
13:45:30.689399 192.168.77.69.80 > 192.168.77.77.56182: R [tcp sum ok]
2925499678:2925499678(0) win 0 (DF) (ttl 64, id 46020)
13:45:38.945517 192.168.77.77.56162 > 192.168.77.69.22: . [tcp sum ok] win 1024 (ttl
56, id 40610)
13:45:39.265398 192.168.77.77.56163 > 192.168.77.69.22: . [tcp sum ok] win 1024 (ttl
48, id 23517)

We see that the FreeBSD TCP/IP stack sends back RST's for port 80, but not
for 22. This correctly indicates that port 80 is closed, and port 22 is open on
this host, per RFC 793.

Further testing indicates that a Windows host will respond with a RST when a
NULL SCAN packet is sent to a port which is OPEN, for example port 445.
20:40:30.929918 192.168.77.77.37262 > 192.168.77.68.445: . [tcp sum ok] ack 2425501278
win 2048 (ttl 37, id 49779, len 40)
20:40:30.930890 192.168.77.68.445 > 192.168.77.77.37262: R [tcp sum ok]
2425501278:2425501278(0) win 0 (ttl 124, id 64938, len 40)

Based on the large number of packets being sent to such a wide variety of
ports, and on the limited number of RST packets being sent out, it is very
likely that these hosts are running some flavor of Windows, or another non-
RFC compliant operating system. To confirm this, we can look at traffic with
192.168.17.68 as the source, and the RST flag not set. This should tell us
wether the ports sending RST's are doing so for all communications or only
for 10.10.10.113 .
% tcpdump -nr ../2003.12.15-all 'src host 192.168.17.68 and tcp[13] & 0x04 != 0x04' |
wc -l
 42
% tcpdump -nr ../2003.12.15-all 'src host 192.168.17.68 and tcp[13] & 0x04 != 0x04'
12:59:53.671905 192.168.17.68.80 > 10.10.10.165.1085: . ack 3841034003 win 0 (DF)
13:03:24.715660 192.168.17.68.443 > 10.10.10.112.43586: S 676105396:676105396(0) ack
656953651 win 17520 <mss 1460,nop,wscale 0,nop,nop,timestamp 0 0,nop,nop,sackOK> (DF)
13:03:27.907965 192.168.17.68.25 > 10.10.10.112.43740: S 677075485:677075485(0) ack
657908839 win 17520 <mss 1460,nop,wscale 0,nop,nop,timestamp 0 0,nop,nop,sackOK> (DF)
[snipped for brevity]
13:19:30.888709 192.168.17.68.21 > 10.10.10.165.3829: S 918526590:918526590(0) ack
1007629249 win 17520 <mss 1460,nop,nop,sackOK> (DF)
13:19:40.979699 192.168.17.68.21 > 10.10.10.165.3829: . ack 2 win 17520 (DF)
13:20:21.688109 192.168.17.68.80 > 10.10.10.165.1085: . ack 1 win 0 (DF)
[snipped again]

Based on this, we can see that ports 80, 443, 25, and 21 are all being used
to communicate with other hosts. Thus, this host is explicitly denying
10.10.10.113 access to the ports listed above, by sending RST packets.

Using tcpdump, we can get an idea of how much these 3 hosts send to other
hosts, ignoring RST packets.
% tcpdump -nr ../2003.12.15-all 'src host 192.168.17.135 and tcp[13] & 0x04 !=

- 30 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x04' | cut -d' ' -f2 | sort | uniq -c | sort -n
 1 192.168.17.135.23
 1 192.168.17.135.443
 1 192.168.17.135.48486
 1 192.168.17.135.48489
[snip 18 similar lines, all for port 48xxx]
 4 192.168.17.135.48512
 13 192.168.17.135.80
 45 192.168.17.135.20
 82 192.168.17.135.25
 144 192.168.17.135.21
% tcpdump -nr ../2003.12.15-all 'src host 192.168.17.68 and tcp[13] & 0x04 != 0x04' |
cut -d' ' -f2 | sort | uniq -c | sort -n
 2 192.168.17.68.21
 2 192.168.17.68.53
 4 192.168.17.68.25
 10 192.168.17.68.80
 24 192.168.17.68.443
% tcpdump -nr ../2003.12.15-all 'src host 192.168.17.129 and tcp[13] & 0x04 != 0x04' |
cut -d' ' -f2 | sort | uniq -c | sort -n
 9 192.168.17.129.22

The large number of connections from high number ports on 192.168.17.135
is consistent with an FTP server in "passive" mode - when the client requests
data, the server sends a message to the client via the existing TCP
connection telling the client to connect to some ephemeral port. The client
will then connect to the server again, this time on the previously agreed
upon high-numbered port. [14]

Trying to determine the operating system of the hosts involved, we use p0f
[3] to examine the RST signatures.

 -R => look at RST signatures

 -U => ignore Unknown hosts

 -N => No details (distances, link media)

 -l => one line per hosts,

 -s [tcpdump snapshot] => read packets from the specified file

% p0f -RUNls host-10.10.10.113 | sort -u
p0f - passive os fingerprinting utility, version 2.0.3
(C) M. Zalewski <lcamtuf@dione.cc>, W. Stearns <wstearns@pobox.com>
p0f: listening (RST+) on 'host-10.10.10.113', 14 sigs (0 generic), rule: 'all'.
[+] End of input file.
192.168.17.129:20 - Linux recent 2.4 (refused)
192.168.17.68:20 - Windows XP/2000 (refused)

Since we did not find any information in the RST packets to identify
192.168.17.135, we run p0f again, this time using SYN mode and looking at
the full dataset:
% p0f -UNls ../2003.12.15-all | sort -u | grep 192.168.17.135
p0f - passive os fingerprinting utility, version 2.0.3

- 31 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(C) M. Zalewski <lcamtuf@dione.cc>, W. Stearns <wstearns@pobox.com>
p0f: listening (SYN) on '../2003.12.15-all', 206 sigs (12 generic), rule: 'all'.
[+] End of input file.
192.168.17.135:20 - Linux 2.4/2.6 [low delay] (up: 14 hrs)
192.168.17.135:48486 - Linux 2.4/2.6 (up: 13 hrs)
192.168.17.135:48511 - Linux 2.4/2.6 (up: 13 hrs)
192.168.17.135:48513 - Linux 2.4/2.6 (up: 14 hrs)
192.168.17.135:48517 - Linux 2.4/2.6 (up: 14 hrs)
192.168.17.135:48519 - Linux 2.4/2.6 (up: 14 hrs)
192.168.17.135:48520 - Linux 2.4/2.6 (up: 14 hrs)
192.168.17.135:48521 - Linux 2.4/2.6 (up: 14 hrs)
192.168.17.135:48522 - Linux 2.4/2.6 (up: 14 hrs)

Connecting all of the pieces together, we have 3 hosts;

• p0f identifies 2 as Linux, 1 as Windows XP/2000;

• All 3 send RST packets for ports which are OPEN; and

• All 3 use the same ethernet MAC address, in a range assigned to VMWare.

This is likely a set of 3 Virtual Machines ("guests"), running on a single
VMWare "host". Further, it appears that the "host" has a firewall enabled,
and configured to send RST packets in response to disallowed connections.
The behavior of the firewall does not give away the "host" OS in this case.

6. Correlations

Since the IP addresses have been obfuscated by placing them into address
blocks which are reserved for special purposes, information from whois will
not give us any help in linking this attacker to other attacks seen on the
internet[5].

Another detect done by Antony Gummery discusses another type of NMAP
scan and can be found at:

http://cert.uni-tuttgart.de/archive/intrusions/2003/03/msg00300.html

The Snort website describes the snort alert in more detail at:
http://www.snort.org/snort-db/sid.html?sid=623

The arachNIDS "Intrusion Event Database" rehashes much of what's in the
snort.org signature description at http://www.whitehats.com/info/IDS4

In an article at Security Focus [7] Randy Williams discusses various types of
scanning techniques, and their downfalls. From the article:

"One disadvantage to this technique was partially discussed in the above
paragraph, the system's tcp/ip implementation MUST correspond with RFC
standard 793. As such, this method will not work against any current
version of Microsoft Windows. [...] When a Microsoft system receives an
xmas packet, it will respond with a RST/ACK, regardless of whether or not
the port is open or closed. "

- 32 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Randy also explains that FIN and NULL scans are also limited by the same
problems with non-RFC-compliant TCP stacks. Finally, the article mentions
that these scans are typically ineffective against firewalled hosts, as the
firewalls often drop the packets silently before the targeted host ever sees
them.

7. Evidence of active targeting

Since the attacking host (10.10.10.113) only attempts to make TCP
connections to 3 hosts, on a large number of ports, I consider this to be
active targeting. Also, since the services that appear to be running on the 3
target hosts are those likely to be exposed to the internet for a company to
make information available to its customers, the attacker seems to have
some information about this target to begin with.

How many packets does 10.10.10.113 send to each of the targeted hosts?
% tcpdump -nr host-10.10.10.113 'src 10.10.10.113 and tcp' | cut -d' ' -f4 | cut -d.
-f1-4 | sort | uniq -c | sort -n
5291 192.168.17.135
6315 192.168.17.68
6624 192.168.17.129

Using tcpdump, we see that the attacker sweeps across a large number of
ports per host:
% tcpdump -nr ../2003.12.15-all 'src 10.10.10.113 and tcp and dst 192.168.17.129' |
cut -d' ' -f4 | cut -d. -f5 | sort | uniq | wc -l
 1657
% tcpdump -nr ../2003.12.15-all 'src 10.10.10.113 and tcp and dst 192.168.17.135' |
cut -d' ' -f4 | cut -d. -f5 | sort | uniq | wc -l
 1657
% tcpdump -nr ../2003.12.15-all 'src 10.10.10.113 and tcp and dst 192.168.17.68' | cut
-d' ' -f4 | cut -d. -f5 | sort | uniq | wc -l
 1657

Comparing the output of the 3 commands above (before cutting & sorting)
reveals that the same 1657 ports were attacked on each host, spread fairly
evenly between hosts and ports.

8. Severity

Per the SANS guidelines, the formula for severity is:

severity = (criticality + lethality)(system countermeasures + network
countermeasures)

1 is lowest, 5 highest.

Criticality: 5

- 33 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Based on the types of services the 3 target hosts appear to be running, the 3
targets appear to be offering key services for the organization.

Lethality: 1

Based on the few RST's that were sent out, and the large number of probe
packets sent in, the only information the attacker has implies that the ports
are closed. Also, since we see that the attacker made the scans repeatedly
over a short period of time, the hosts being attacked were not crashed by
these attacks.

System countermeasures: 5

All three hosts which were scanned by 10.10.10.113 appear to have firewalls
which prevent this attacker from connecting. To me, this implies that
someone responsible for these systems is pro-actively thinking about how to
secure the systems, and taking necessary actions.

Network countermeasures: 4

This network appears to have IDS & firewalls in use, and policies regarding
what resources are available to whom have been configured, and are being
enforced.

Severity = (5 + 1)(5 + 4) = 54

Using the formula from http://www.giac.org/ID_assignment_guidelines.php

Severity = (5 + 1) - (5 + 4) = -3

9. Defensive recommendations

Keep up the good work. Keep monitoring the IDS logs, and any firewall logs.
Keep the operating system and application software on the systems up to
date.

Test your network filtering devices on a regular basis to ensure that their
configuration is correct, and to detect changes in the configuration. It is
feasible that this attack could have been part of this type of testing.

10. Multiple choice test question

When examining RST packets leaving you network, which of the following is
safe to assume:

 (a) RST packets are only sent to end existing connections.

 (b) Only Windows will send RST packets for ports that are open.

 (c) Outside attackers can gain no information about your network from RST
packets.

 (d) None of the above.

- 34 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Answer: (d)

Incorrect:

(a) - Windows will respond to a NULL SCAN packet sent to an open port with
a RST, before a TCP 3-way handshake has completed.

(b) - Many firewalls can be configured to send RSTs in response to packets
which are being blocked.

(c) - Due to the many, varied implementations of TCP, any stimulus -
response test that sends packets out of your network can give an attacker
information about your network.

References for Detect #2

[1] tcpdump - http://www.tcpdump.org/

[2] nmap - http://www.insecure.org/nmap/

[3] p0f - http://lcamtuf.coredump.cx/p0f.shtml

[4] "Transmission Control Protocol" - http://www.faqs.org/rfcs/rfc793.html

[5] "Address Allocation for Private Internets" -
http://www.faqs.org/rfcs/rfc1918.html

[6] mergecap - comes with ethereal - http://www.ethereal.com/

[7] "Low-Level Enumeration With TCP/IP" -
http://www.securityfocus.com/guest/24226

[8] PORT NUMBERS - http://www.iana.org/assignments/port-numbers

[9] Snort - http://www.snort.org

[10] SnortSnarf - http://www.silicondefense.com/software/snortsnarf/

[11] http://www.snort.org/snort-db/sid.html?sid=623

[12] http://www.whitehats.com/cgi/arachNIDS/Show?_id=ids4

[13] NMap - http://www.insecure.org/nmap/

[14] FreeBSD Man Pages - http://www.freebsd.org/cgi/man.cgi?query=ftp

[15] VMWare – http://www.vmware.com/products/desktop/ws_features.html
[sfa-summary]
#!/bin/tcsh
#
generate a summary of the snort alert file passed
as argv[1]
#
setenv ALERT $1
cat $ALERT | grep -E "^\[**\]" | sort | uniq -c | sort -n > $ALERT.summary
EOF

- 35 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detect #3 – Warez Printer

This detect was not posted to the intrusions@incidents.org email list.

1. Source of trace

Data used for this trace came from a snort+ACID instance monitoring the
border of a network similar to the one shown below. In the simplified
diagram below, the snort sensor is connected to the aggregation router, on a
port mirroring the link to the ISP router.

2. Detect was generated by

The detect was generated by snort version 2.0.0, logging to a database
(Caswel). We use a mix of signatures hand-written for our environment, and
signatures from the snort development team. The sensor launches snort
using the command:
% /usr/pkg/bin/snort -c /path/to/snort.conf -NoDd -i wm1

to run snort with logging disabled (-N), with “pass” rules evaluated first (-o),
as a daemon or background process (-D), with application layer data
dumped (-d), and listening to interface wm1 (-i wm1).

For analyzing the large number of alerts generated by snort, we use Roman
Danyliw's ACID, version v0.9.6b24 from sourceforge.net's CVS server.
Logging into ACID, and clicking the link to look at the most recent 50 alerts
showed that 5 of the 7 most recent alerts were related to various FTP abuses
commonly found when warez sites are created.

- 36 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This list of alerts is listed by time (not shown in the screenshot), with the
most recent first. The “POLICY FTP 'MKD / ' possible warez site” alert (top) is
not the most frequent, but the ratio of total alerts (3677) to destination
addresses (16) stands out. To look at this one in more depth, we can click on
the link for the total number for this alert, and get a list of all of the alerts
matching the specific signature. From this page, we can choose to show a
summary by destination address, similar to the one in the screenshot below.

Further investigation, predominately with a generic FTP client and ping,
revealed that most of these are legitimate FTP servers, or are machines
which are dynamically configured. One, however, was a printer.
% ftp MY.NET.IP.248
Connected to MY.NET.IP.248.
220 JD FTP Server Ready
Name (MY.NET.IP.248:nouser): anonymous
331 Username OK, send identity (email address) as password.
Password:
230- Hewlett-Packard J3113A FTP Server Version 1.0

- 37 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Directory: Description:

PORT1 Print to port 1 HP LaserJet 4050 Series

To print a file, use the command: put <filename> [portx]
or 'cd' to a desired port and use: put <filename>.

Ready to print to PORT1

230 User logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls
500 Command unrecognized or unimplemented
227 Entering Passive Mode (MY.NET.IP,248,20,2)
150 Openining data connection.
d-w--w--w- 2 JetDirect public 512 Aug 1 1999 PORT1
226 Transfer complete.
Ftp>

Not only is it an FTP server, but it is world-writeable!

3. Probability the source address was spoofed

As this alert is generated by an established FTP session using TCP, the
liklihood that the source address was spoofed is near zero. The other alerts
which have this destination are all FTP related, and appear to be related to
various activities related to pub-scanning().

4. Description of attack

The most basic description of the attack can be found by looking at the rule
which generated the alert. The snort signature is:
alert tcp $EXTERNAL_NET any -> $HOME_NET 21

(msg:"POLICY FTP 'MKD / ' possible warez site";
flow:to_server,established; content:"MKD"; nocase; content:"/ ";
distance:1; classtype:misc-activity; sid:554; rev:6;)

according to http://www.snort.org/snort-db/sid.html?sid=554 and is found in
the warez.rules file on our installation.

The first line directs snort to use this signature only when examining TCP
packets destined for FTP servers on $HOME_NET, and to generate an alert
for any packet that matches the remaining criteria. The second line defines
the message to display when a packet does match. The final 2 line direct
snort to look for the content “MKD”, ignoring case, and to look for “/ “ at
lease one byte after the end of “MKD”. Also, for this rule to generate an
alert, the packet must be part on an established TCP connection, and must
be traveling to the server. In other words, snort will generate an alert
anytime an FTP client directs the server to create a directory with leading
spaces in the name, for example “/pub/ /imK00L/” or “/ /onespaceb4/”.

- 38 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Using ACID to look at the packet that actually generated the alert, we can
find out what the attacker tried to name the directory.

In the “Payload” area, highlighted in blue, we see that the attacker issued a
“MKD / /” command to the FTP server. ACID marks the two characters that
follow as non-printable characters by displaying them as “.”'s. The area to
the left shows the hexadecimal values to be 0x0D and 0x0A, representing
the carriage return and line feed, respectively, in ASCII (foldoc).

As the attacker tried only to create a single directory named as a single
space, we can infer that the creation of the directory failed. Had it
succeeded, the attacker would likely have created other directories below
the new directory to hide various files, and each of those following
directories would have triggered the same rule.

The only other alert generated by this attacker was generated when they
attempted to change directory into the directory “/ “ which they had just
attempted to create.

- 39 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Also, we can see that the attacker's source port did not change. This
reinforces the earlier statement that the source address is not being
spoofed, as it indicates the the MKD and CWD commands are both part of
the same TCP session.

Further, based on the sequence (SEQ) numbers, and the acknowledgment
(ACK) numbers, we can determine that there were other packets sent by this
host, as part of this session, that snort did not generate alerts for. The
payload length of the first packet is 9 bytes. Adding this to the SEQ number
of the first packet (2412639767) gives us 2412639776. Since the SEQ
number of the second packet is 2412639801, we can infer that there was 25
bytes of data transmitted which snort did not see (Bryant).

Doing a similar calculations on the ACK numbers, we find that the printer
sent a total of 249 bytes in response to the first packet and any unseen
packets. Finally, based on the difference between the IP ID's of the packets,
the attacker transmitted 199 other packets, across all IP connections, in the
3 seconds between the 2 packets logged by snort.

5. Attack mechanism

Starting the name of a directory with a space is likely done to make it
difficult for the directory to be accessed or deleted. Operating systems that
reserve certain names can be abused further by tricking the FTP server to

- 40 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

use reserved names for the directories (Hawk). The normal tools will often
refuse to delete the directories on these hosts because of the reserved
name.

Once this type of directory has been created, and the attacker has verified
that they are able to change into the new directory, they know that they will
be able to store data there. Likely next steps would be to determine the
performance of the FTP server & its network connection, and to load data
onto the server (Obscure). Also, this type of attacker is likely to try to find
out how much space is available on the FTP server. It has been my
experience that a misconfigured FTP server, with large disks (hundreds of
gigabytes) and a fast connection, can be found by a disk full error in a
surprisingly short time.

6. Correlations

Security Focus lists a vulnerability for HP Jetdirect printers in bid 1491 from
July 2001 which will cause the printer to become unusable until being
powered off & back on by issuing a specific FTP command. Also, MITRE has
assigned that same issue the identifier CVE-2000-0636, and updated it last
on April 2 of 2003.

Also, according to HP Jetdirect Firmware History,

“There was a couple of denial of service attacks that were successful
against HP Jetdirect's FTP implementation that were fixed. Also, a
malicious user could launch proxy attacks via HP Jetdirect's FTP server.
“

Both of these were fixed in version x.08.32 of the firmware.

As this printer is obviously a potential target for resource abuse, and denial
of service of the printer, the level of external access needs to be evaluated.
Attempting to connect from an external computer, I was able to reach the
printer using FTP, implying that anyone in the world could as well.

Also we must determine what other alerts have been triggered for this host.
Using ACID, from where we left off last, we click on the IP address we're
interested in. On the resulting page, we click on the number in the
“Occurrences as Dest.” column. Then, by clicking on the “... clear ...” link in
the “Meta Criteria” box, we get a list of all of the alerts with this IP as the
destination, similar to the one below.

- 41 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

As we can see from this list, there has been suspicious FTP traffic to this
device from a small number of hosts since the earliest alert in the database.
Also, considering the alerts span nearly 3 months, and the device has still
not been secured properly, I would guess that it is unlikely that this printer
has been being abused regularly.

In a thread on the intrusions@incidents.org mailing list, one member posted
some logs relating to a printer that was being scanned for ftp vulnerabilities
in August of 2002 from a host, named “p508F7435.dip.t-dialin.net”, in the
same domain as the attacker seen by our printer (Carey).

Searching dshield.org for 217.238.18.252 reveals that the IP is owned by
“Deutsche Telekom AG, Internet service provider” and is part of the
217.224.0.0/11 network (dshield). There were no reports on dshield fieled
against this specific address, but the “dialin” in the host name implies that
the addresses for any given customer may change frequently.

7. Evidence of active targeting

Based on the small number of hosts attaching to this IP, I don't belive that it
is actively being targeted. However, all of the alerts generated for this
destination host are related to the FTP service. The source IP also generated
alerts for attempting to enumerate accounts on 28 other systems, likely
using the command “finger 0@{ipaddress}” or an equivalent script. This
could be an information gathering process to find possible targets, as
discussed in http://cgi.nessus.org/plugins/dump.php3?id=10069 (Deraison)
and http://xforce.iss.net/xforce/xfdb/8378 (ISS) among others.

8. Severity

Per the SANS assignment page, the formula for severity is:

severity = (criticality + lethality)(system countermeasures + network
countermeasures) with 1 being the lowest value, and 5 the highest.

Criticality: 1

As the attacker was targeting a workgroup printer, the criticality of this
attack is very low in scope of the entire organization. However, large,

- 42 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

specialty, or high-volume printers might indicate a higher criticality.

Lethality: 3

As there was no indication of warez being stored on the printer's FTP site,
the attack was not successful, and thus a low score for lethality. Since the
FTP service is available to anyone with an IP connection, a paper & toner
denial of service could be accomplished trivially by sending random
documents to the printer at times when people are not likely to be around.

System countermeasures: 2

The printer is designed to be sufficient for printing, while not being attractive
for use as a general purpose FTP server. However, this system had not been
secured in any way... telnet was enabled, without a password; the web
management interface was also enabled, without a password, and the FTP
service had been turned ON. Fortunately, the printer has the latest
firmware, which fixes some of the worst bugs (proxy abuse, crashing the
printer).

Network countermeasures: 1

The network area in which this printer is connected has not implemented any
access control mechanisms. Controlling the printer through a departmental
print server would provide a mechanism for controlling access and doing
accounting if needed. Configuring passwords for the management accounts
would help prevent an external party reconfiguring the printer.

Severity = (1 + 3)(2 +1) = 12

Using the formula from http://www.giac.org/ID_assignment_guidelines.php

Severity = (1 + 3) – (2 +1) = 1

9. Defensive recommendations

There are many things which should be done on this printer:

• disable FTP, if operationally possible;

• limit access to the printer to either the local subnet by removing the
default gateway configuration, or by using a firewall;

• move the printer to a non-routed network segment, such as one using
addresses in the RFC-1918 space;

• keep the printer's firmware up to date;

• set passwords on the management accounts.

While additional passwords are considered by some to be a strain, writing
the password down on the inside of the printer (toner door, paper tray) is an
easy way to find it again, while not preventing unauthorized access to the

- 43 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

printer. Since the password can often be reset from the printer's control
display, there is no additional risk having the password available to anyone
who has physical access.

10. Multiple choice test question

The following log snippet came from the SANS practical logs located at
http://www.incidents.org/logs/oos/oos_report_040303.

03/07-04:39:49.032184 68.54.84.49:56552 -> MY.NET.6.7:110
TCP TTL:51 TOS:0x0 ID:59855 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x486126FF Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 605736752 0 NOP WS: 0
--
03/07-04:41:56.525619 68.54.84.49:56554 -> MY.NET.6.7:110
TCP TTL:51 TOS:0x0 ID:56764 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x506DDD42 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 605749502 0 NOP WS: 0
--
03/07-04:44:04.577181 68.54.84.49:56556 -> MY.NET.6.7:110
TCP TTL:51 TOS:0x0 ID:33495 IpLen:20 DgmLen:60 DF
12****S* Seq: 0x5881B1D5 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 605762306 0 NOP WS: 0

What is likely happening?

A – 68.54.84.49 is attempting to open a connection to MY.NET.6.7 with ECN
enabled.

B – 68.54.84.49 is responding to a portscan by MY.NET.6.7.

C – 68.54.84.49 is checking for email on MY.NET.6.7 using IMAP.

D – 68.54.84.49 is signaling MY.NET.6.7 to cut it's congestion window in half,
and stating that it will cut it's congestion window in half as well.

Answer: A. Per RFC 3168, this type of packet is used by hosts to indicate
that they wish to negotiate ECN for the connection.

B – A proper response to a port scan could include a SYN/ACK packet, or a
RESET packet. These do not match.

C – Port 110 is commonly associated with POP, port 143 IMAP.

D – As this is likely an initial SYN (Ack: 0x0), ECN has not been fully
negotiated, and thus neither side can indicate congestion.

- 44 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References for Detect #3

Bryant, Randal E. “Internetworking”. <http://www-2.cs.cmu.edu/afs/ cs.cmu.edu/
academic/class/15347-s98/public/lectures/lect25.pdf> 21 April 1998. visited
13 April 2004. Carnegie Mellon School of Computer Science. Pittsburgh, PA,
USA.

Carey, Steve T. “FTP Scan Variation (printers)”. <http://cert.uni-
stuttgart.de/archive/intrusions/2002/08/msg00177.html>. 16 August 2002.

Caswel, Brian and Roesch, Marty. “snort.org”. <http://www.snort.org/snort-db/
sid.html?sid=554>. 2002. visited 12 April 2004.

Danyliw, Roman. “Analysis Console for Intrusion Detection (ACID)”.
<http://acidlab.sourceforge.net/>. 3 March 2002. visited 12 April 2004.

Deraison,Renaud. “Finger zero at host feature”.
<http://cgi.nessus.org/plugins/dump.php3?id=10069> 1999. visited 12
April 2004.

Dshield. “DShield - IP info”. <http://www.dshield.org/
ipinfo.php?ip=217.238.018.252&summary=Y>. visited 12 April 2004.
Euclidian Consulting.

Foldoc. “ASCII character table from FOLDOC”.
<http://wombat.doc.ic.ac.uk/ foldoc/foldoc.cgi?ASCII+character+table >.
1993. visited 12 April 2004. supported by Imperial College Department of
Computing.

Grundl, Peter. “HP JetDirect Invalid FTP Command DoS Vulnerability”.
<http://www.securityfocus.com/bid/1491>. 19 July 2000. visited 12 April
2004.

Hawk. “Net Knowledge Base Forums”. http://www.netknowledgebase.com/
tutorials/locking.html visited 12 April 2004.

HP. “Jetdirect Firmware History Part II (Current Products)”.
<http://h20000.www2.hp.com/bizsupport/TechSupport/
Document.jsp?objectID=bpj02930>. Visited 12 April 2004.

ISS. “Finger service lists unused accounts”.
<http://xforce.iss.net/xforce/xfdb/8378> 1994-2004. visited 12 April 2004.
Internet Security Systems, Inc.

MITRE. “CVE-2000-0636“. <http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2000-0636>. 13 October 2000. visited 12 April
2004.

Obsecure. “When your server ends up a Warez site”. http://eyeonsecurity.org/
papers/pubscanning.pdf . 21 June 2001. obscure@eyeonsecurity.net

- 45 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.Analyze This!

Executive Summary

When presented with analyzing 5 days of logs containing more than 5 million
alert records, I prepared the worst. Fortunately, a large majority of the
records represented benign traffic from busy DNS servers doing their job.
This presents a challenge for the analysis staff – adjusting the thresholds for
these events too high can cause real events to be missed, but leaving them
as they are makes finding other events more difficult. These adjustments
need to be made cautiously.

Usage of peer to peer file sharing programs on the institution's network
presents a significant and imminent threat. The aggressive copyright
enforcement tactics employed by the RIAA, MPAA, and their international
equivalents encourage technical measures to be taken to prevent
copyrighted material from being transferred to or from hosts on MY.NET, or
risk legal battles. Additionally, this traffic consumes bandwidth resources
which are likely put to better use elsewhere.

Finally, there are hosts showing signs of virus or worm infections, and need
to be cleaned up before they spread to the rest of MY.NET or outside.

Files Analyzed

This analysis is based on logs from http://www.incidents.org/logs dated
March 3-7, 2004, and named as below:

Directory

Date

http://www.incidents.org/

logs/oos

http://www.incidents.org/

logs/scans

http://www.incidents.org/

logs/alerts

3 March oos_report_040303 scans.040303.gz alert.040303.gz

4 March oos_report_040304 scans.040304.gz alert.040304.gz

5 March oos_report_040305 scans.040305.gz alert.040305.gz

6 March oos_report_040306 scans.040306.gz alert.040306.gz

7 March oos_report_040307 scans.040307.gz alert.040307.gz

The incidents.org logs page states that the IP address obfuscation is
performed consistently for batches of logs with the same date in the file's
timestamp. To simplify analysis, I will assume that all 5 logs have had the
MY.NET addresses generated from the real addresses in the same way,
despite the 5 day span of the logfiles' timestamps. As the original data for
one log class contained no MY.NET addresses, an initial correlation was
made based on the frequency of the first 2 octets across the other log files to
determine which address range(s) to sanitize. After selecting the range(s),

- 46 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the appropriate data was obfuscated by converting the first 2 octets to
MY.NET. Other information in the data was used to validate the range
selection using DNS and whois queries. The precise details of this process
are left ambiguous intentionally.

As events of interest arise, they will be analyzed. An summary will be
provided at the end.

Top Talkers

By loading the 3 sets of logs into a database, summary reports become easy
to generate. This section looks at the “Top Talkers” in each of the log
categories, for different parameters. Since this technique immediately
highlights certain types of anomalies, those are investigated as they become
evident.

To help future analysts, the SQL queries are included with every table
generated from the database, and the database schema is included as an
appendix.

Scans Data Set

The first section we will cover is the “scans” dataset, as it is the largest. This
scan data is generated by snort's “portscan” preprocessor.

Top 10 Source Addresses by Count

To determine the IP's that are responsible for the most scan alerts, we query
the database grouping the results by source IP, and sorting by the number of
records in the database for each source address. Since every row in the
database has a value in every field, it does not matter which column we use
for counting “hits.”
select distinct src_ip, count(distinct(src_port)) as sports, count(distinct(dest_ip)) as destips,
count(distinct(dest_port)) as dports, count(dest_ip) as hits from scans2 group by src_ip order by
hits desc limit 10

src_ip sports destips dports hits

MY.NET.1.3 87 89756 835 2200824

MY.NET.110.72 5 12924 7473 246700

MY.NET.1.4 11 25458 190 237477

MY.NET.53.169 3684 29405 13878 236868

MY.NET.34.14 31331 1191 2 144770

MY.NET.81.39 3970 141159 28 141836

MY.NET.80.224 3975 112461 3 112616

MY.NET.112.216 464 20299 3412 63536

MY.NET.153.79 3963 10084 1771 55901

MY.NET.97.74 15417 17037 2207 48812

The three lines in the table above are highlighted because of their high ratio
of hits to ports. Looking into these further will reveal what is happening on

- 47 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

these 3 systems.
Detect 1

The host MY.NET.110.72 has 5 source ports responsible for roughly a quarter
of a million portscan alerts.
select distinct src_ip,src_port,count(distinct(dest_port)) as dports, count(distinct(dest_ip)) as
destips, protocol, count(src_port) as hits from scans2 where src_ip='MY.NET.110.72' group by
src_port order by hits desc limit 10

src_ip src_port dports destips protocol hits

MY.NET.110.72 8767 138 45 UDP 153959

MY.NET.110.72 12203 140 101 UDP 73593

MY.NET.110.72 12300 7327 12836 UDP 18694

MY.NET.110.72 32808 1 1 UDP 413

MY.NET.110.72 32773 1 1 UDP 41

Examining each of these, starting with the least frequent, we find that port
32773 is used by FileNet's <www.filenet.com> Content Manager service,
according to portsdb.org (FileNet, Payne). Also, Kurt Seifried lists the port as
used for the database server for ToolTalk. FileNet could be using ToolTalk in
their product, and both sources would be correct. Since the overall volume
is low, it may not matter much. The destination IP for this port,
213.202.254.116, is assigned to TeamSpeak.org – a group that makes
software for online game players to talk to each other over the internet.
% host 213.202.254.116
116.254.202.213.IN-ADDR.ARPA domain name pointer 213.202.254.116.unitedcolo.de

% whois 213.202.254.116
[snip]
inetnum: 213.202.254.112 - 213.202.254.119
netname: ETTEL-TEAMSPEAK-NET
descr: TeamSpeak.org
country: DE
[snip]

The TeamSpeak forum also contains a thread about the destination port for
this row – 45647 – explaining that these packets are used to communicate
information from various TeamSpeak servers to the primary server to
provide improved service for all of the users on the TeamSpeak network
(TeamSpeak who).

Port 32808 also has one destination IP: 207.38.8.34, which resolves to
master.gamespy.com. The gamespy.com website has reviews, cheats,
forums, and other information about a wide variety of games on numerous
platforms. The single destination port is 29910, which Microsoft lists as one
of the ports needed by the game “Rise of Nations” for multi-player mode
using “GameSpy Internet Matchmaking” (Microsoft 820877).

The Castanet Communications site lists ports 12300 and 12203 as the

- 48 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

minimum 2 ports required to play “Medal of Honor” online. It describes port
12300 as a “GameSpy Monitoring” port.

According to GameRanger, port 12203/udp is used by the game “Medal of
Honor” for playing over the network (Kevill). Additionally, a GamingForums
user states that 12300/udp is required for “Medal of Honor: Spearhead”
multi-player modes to work (Sniperstein).

According to the TeamSpeak Forums, port 8767 UDP is the primary port for
carrying voice data to & from the server (TeamSpeak Which). Based on their
documentation, this host is running a TeamSpeak server. This should be
checked against the organization's Acceptable Use Policy, and any needed
actions taken. Also, based on the number of alerts, this host is doing a fair
amount of traffic on this port.

The chart below shows a time history for this source IP & source port pair,
broken down by hour. The horizontal axis shows the number of hours after
the first event. The usage pattern is intermittent, with an average rate of
under 5000 events per hour, and a maximum over 25000 events per hour.

Detect 2

The ports for MY.NET.34.14 are commonly associated with SMTP (25) and
ident (113). Both of these protocols are commonly used by mail servers, and
this traffic is likely innocuous, provided MY.NET.34.14 is supposed to be
transmitting email. This host needs to be validated as a legitimate SMTP
server, and the snort rules adjusted accordingly.
select distinct src_ip, count(distinct(src_port)) as sports, count(distinct(dest_ip)) as destips,
dest_port, protocol, count(src_ip) as hits from scans2 WHERE src_ip='MY.NET.34.14' GROUP BY
dest_port order by hits desc

src_ip sports destips dest_port protocol hits

MY.NET.34.14 31281 509 25 SYN 143788

MY.NET.34.14 882 688 113 SYN 982

- 49 -

0 12 24 36 48 60 72 84 96 108

0

4000

8000

12000

16000

20000

24000

28000

Time History by hour for MY.NET.110.72 src_port 8767 UDP traffic

time since first seen

a
le

rt
s

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detect 3

The host MY.NET.80.224 appears to be infected with a worm or trojan of
some sort which is scanning for Windows systems with vulnerable RPC
implementations, as described in Microsoft's security bulletins MS03-026.
According to Symantec, this could be variant of GaoBot (Shannon). This host
should be visited with anti-virus repair tools, or should have it's operating
system reinstalled. This host is classified as scanning & infected based on
the fact that it attempted to connect to 112360 different hosts, without
retries, over the 5 days in the logs, as shown in the table below.
select distinct src_ip, count(distinct(src_port)) as sports, count(distinct(dest_ip)) as destips,
dest_port, protocol, count(src_ip) as hits from scans2 WHERE src_ip='MY.NET.80.224' GROUP BY
dest_port order by hits desc

src_ip sports destips dest_port protocol hits

MY.NET.80.224 3975 112360 135 SYN 112360

MY.NET.80.224 246 99 80 SYN 250

MY.NET.80.224 6 3 443 SYN 6

To determine if this host is scanning continuously, we graph some data from
the scans database to show a time history.

The graph shows a trend of intermittent spikes of activity. One pattern which
stands out to me is the alignment with an 8-hour work schedule. The first
burst lasts for about 8 hours. The second burst starts around 24 hours after
the first alert, and also lasts about 8 hours. Then there's a 48 hour gap, and
activity resumes again.

A quick check of a calendar for March 2004, and the scans data show that
the activity occurred on Wednesday March 3, Thursday March 4, and
Saturday March 6, if the timestamps are accurate. The table below shows
the date, the hour of the first alert for that day, and the total number of
alerts see for that day.

- 50 -

0 12 24 36 48 60 72 84

0

2000

4000

6000

8000

10000

12000

Time History of scanning by MY.NET.80.224

hours since first seen

h
it

s

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

select distinct DATE_FORMAT(stamp, '%e') as t_date, MIN(DATE_FORMAT(stamp, '%H')) as t_hr, count
(stamp) as hits from scans2 WHERE src_ip='MY.NET.80.224' and dest_port=135 GROUP BY t_date ORDER
BY t_date asc;

t_date t_hr hits

3 11 31347

4 10 21510

6 11 59503

This indicates that MY.NET.80.224 was being turned on around 10 or 11 AM
on the 3 days in question, and that the host was not active on Friday, March
5th or on Sunday, the 7th of March.

Top 10 Destination Addresses by Count

Now we look into the hosts which appear most often in the scans database as
destinations. In the table below, several things stand out: (1) the number of
hits only spans a factor of 2; (2) the typical number of destination ports is 1
or 2; (3) one host has vastly more destination ports; and (4) there is only one
internal host listed. These characteristics differ significantly from the
behavior of the top 10 sources, and likely indicate normal traffic getting
flagged by snort.

select distinct dest_ip, count(distinct(dest_port)) as dports, count(distinct(src_ip)) as srcips,
count(distinct(src_port)) as sports, count(src_ip) as hits from scans2 group by dest_ip order by
hits desc limit 10

dest_ip dports srcips sports hits

69.6.68.10 2 11 819 44336

69.6.68.11 1 2 2 43764

192.26.92.30 1 3 3 39665

MY.NET.25.70 30749 73 79 36816

192.48.79.30 1 2 2 33882

203.20.52.5 1 2 2 30701

4.13.52.66 27 2 2 27228

192.5.6.30 1 2 2 25387

192.52.178.30 1 2 2 24271

216.109.116.17 1 2 2 22906

Detect 4

To examine the single internal host, which is also the host with a large
number of destination ports scanned, we build a table showing the source
ports used to scan this host.
select distinct src_port, src_ip, count(distinct(dest_port)) as dports, dest_ip, protocol, count
(src_port) as hits from scans2 WHERE dest_ip='MY.NET.25.70' group by src_port,src_ip order by
hits desc limit 15

- 51 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

src_port src_ip dports dest_ip protocol hits

55746 204.152.186.189 15825 MY.NET.25.70 SYN 15825

55748 204.152.186.189 7538 MY.NET.25.70 SYN 7538

55747 204.152.186.189 6680 MY.NET.25.70 SYN 6680

55749 204.152.186.189 3167 MY.NET.25.70 SYN 3167

55750 204.152.186.189 1315 MY.NET.25.70 SYN 1315

55751 204.152.186.189 1290 MY.NET.25.70 SYN 1290

55752 204.152.186.189 576 MY.NET.25.70 SYN 576

55753 204.152.186.189 187 MY.NET.25.70 SYN 187

55754 204.152.186.189 77 MY.NET.25.70 SYN 77

55755 204.152.186.189 45 MY.NET.25.70 SYN 45

25 200.180.79.54 8 MY.NET.25.70 INVALIDA 8

55756 204.152.186.189 7 MY.NET.25.70 SYN 7

113 218.57.116.19 2 MY.NET.25.70 INVALIDA 3

113 80.224.1.68 3 MY.NET.25.70 INVALIDA 3

113 218.59.108.134 3 MY.NET.25.70 INVALIDA 3

The vast majority of these scan alerts are from traffic used to communicate
with 204.152.186.189 on ports 55746 through 55756. Looking up host
information for 204.152.186.189 shows that it is called
www.dnsbl.us.sorbs.net . Since the site resolved to a “www” address, I
checked the website, and found information about a DNS based black list
aimed at helping to limit spam (Sullivan). This would imply that
MY.NET.25.70 is a mail server, or one of the SORBS “feeder” servers. Based
on either role, rules should be tuned to account for this server's “normal”
traffic.

One of the other oddities mentioned is that each host listed in the top 10 by
destination address only seems to be using one destination port. Which
one?
select distinct dest_ip, dest_port, count(distinct(src_ip)) as srcips, count(distinct(src_port))
as sports, protocol, count(src_ip) as hits from scans2 group by dest_ip,dest_port,protocol order
by hits desc limit 10

dest_ip dest_port srcips sports protocol hits

69.6.68.11 53 2 2 UDP 43764

69.6.68.10 53 2 2 UDP 42854

192.26.92.30 53 3 3 UDP 39665

192.48.79.30 53 2 2 UDP 33882

203.20.52.5 53 2 2 UDP 30701

192.5.6.30 53 2 2 UDP 25387

192.52.178.30 53 2 2 UDP 24271

216.109.116.17 53 2 2 UDP 22906

128.194.254.5 53 2 2 UDP 22180

128.194.254.4 53 2 2 UDP 22065

This all appears to be likely DNS traffic, so let's take a quick look at the what
hostname is associated with each of the destination IP's. For any hosts
without proper records, the whois domain name for the owner is listed.

- 52 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

dest_ip hostname

69.6.68.11 Not found - whois => wholesalebandwidth.com

69.6.68.10 Not found - whois => wholesalebandwidth.com

192.26.92.30 c.gtld-servers.net

192.48.79.30 j.gtld-servers.net

203.20.52.5 Not found – whois => cluevoid.net

192.5.6.30 a.gtld-servers.net

192.52.178.30 k.gtld-servers.net

216.109.116.17 ns5.yahoo.com

128.194.254.5 ns2.tamu.edu

128.194.254.4 ns1.tamu.edu

Based on this information, this appears to be normal DNS traffic. There is
likely an opportunity to tune the snort rules to reduce the rate of these
alerts, however care must be taken to avoid muting valid alerts. Building a
list of internal DNS servers and commonly referenced external DNS servers,
and ignoring traffic between the 2 sets using port 53 UDP & TCP would likely
reduce the noise level significantly. This will likely involve using snort's
portscan-ignorehosts preprocessor to enumerate the hosts that the portscan
preprocessor is to ignore, or configuring snort's event suppression (Roesch,
User's Manual).

Top 10 Destination Ports

Now that we've examined some of the most frequently listed addresses of
scanners & scan targets, we take a quick look at the most frequently seen
port and protocol pairs.
select distinct dest_port, count(distinct(dest_ip)) as destips, count(distinct(src_port)) as
sports, count(distinct(src_ip)) as srcips, protocol, count(src_ip) as hits from scans2 group by
dest_port,protocol order by hits desc limit 10
dest_port destips sports srcips protocol hits

53 92901 33 38 UDP 2427461

135 253623 4857 122 SYN 261592

25 14309 35664 502 SYN 180972

6129 15738 13849 27 SYN 139290

80 28341 7293 271 SYN 110332

443 15615 20247 34 SYN 71199

4899 15524 3977 16 SYN 66993

20168 15533 3976 8 SYN 64631

4000 15682 18085 9 SYN 62953

21 15523 9510 32 SYN 52509

As is evident from the table above, UDP connections to external servers on
the port commonly associated with DNS are the most frequent events. One
notable item is that there were 38 hosts responsible for making direct
external DNS requests. As few organizations use such a large number of
DNS servers for redundancy, we should look at those hosts to see if there is

- 53 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

anything of interest in the data.

select distinct dest_port, count(distinct(dest_ip)) as destips, count(distinct(src_port)) as
sports, src_ip, protocol, count(src_ip) as hits from scans2 WHERE dest_port=53 group by
src_ip,protocol order by hits desc limit 10
dest_port destips sports src_ip protocol hits

53 89691 1 MY.NET.1.3 UDP 2192255

53 25430 1 MY.NET.1.4 UDP 235145

53 26 85 MY.NET.1.3 SYN 86

53 3 9 MY.NET.1.4 SYN 9

53 1 7 MY.NET.153.79 SYN 7

53 1 1 68.33.206.62 UDP 5

53 3 1 63.251.32.198 UDP 4

53 3 1 67.114.19.186 UDP 4

53 4 1 MY.NET.111.140 UDP 4

53 1 4 MY.NET.60.16 SYN 4

We see that the top 4 entries are for MY.NET.1.3 and MY.NET.1.4 using UDP
and TCP for DNS communications, and that they cover the overwhelming
majority of the entries. This behavior is typical of a site with 2 main DNS
servers for load balancing and failover. This is also consistent with the top
10 destination addresses largely indicating 2 source IP's and 2 source ports.
Detect 5

The next item highlighted in this section's first table shows connections to
more than a quarter million hosts on port 135/TCP. This activity is common
on hosts infected with malware, as described earlier for MY.NET.80.244. A
quick database query will show the hosts responsible for this traffic.
select distinct dest_port, count(distinct(dest_ip)) as destips, count(distinct(src_port)) as
sports, src_ip, protocol, count(src_ip) as hits from scans2 WHERE protocol='SYN' and
dest_port=135 group by src_ip order by hits desc limit 10
dest_port destips sports src_ip protocol hits

135 141006 3969 MY.NET.81.39 SYN 141006

135 112360 3975 MY.NET.80.224 SYN 112360

135 191 269 24.242.151.1 SYN 280

135 192 192 82.64.189.13 SYN 277

135 239 239 141.151.118.17 SYN 260

135 178 178 219.211.164.63 SYN 242

135 215 215 165.121.228.227 SYN 239

135 186 227 67.61.195.107 SYN 227

135 217 217 61.206.42.130 SYN 226

135 196 201 62.37.22.226 SYN 201

As shown above, MY.NET.80.224, a host we previously determined to be
infected with a trojan of some sort, is responsible for nearly half of the traffic.
The other primary contributor, MY.NET.81.39, is also likely infected with
some virus or trojan which is scanning for other vulnerable hosts running a
Microsoft operating system (Shannon). This machine needs to be

- 54 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

disconnected from the network and cleaned up.

Detect 6

Next on the list is port 6129. This port is used for "DameWare" and "Cisco
AUX/TTY/VTY ports,” according to Payne's portsdb.org. DameWare recently
had a remote-user gains total control exploit (Rafail), which several viruii
have made use of as an infection vector (Canavan). Again, we consult the
database for more detailed information.
select distinct dest_port, count(distinct(dest_ip)) as destips, count(distinct(src_port)) as
sports, src_ip, protocol, count(src_ip) as hits from scans2 WHERE protocol='SYN' and
dest_port=6129 group by src_ip order by hits desc limit 10
dest_port destips sports src_ip protocol hits

6129 10180 1990 80.57.227.167 SYN 12923

6129 11317 1 24.195.127.101 SYN 12153

6129 9582 3725 130.160.104.196 SYN 12035

6129 9273 1 209.195.174.212 SYN 9273

6129 6568 3263 151.8.45.167 SYN 7757

6129 6476 3137 199.103.192.38 SYN 7742

6129 6683 3453 66.76.215.81 SYN 7731

6129 6229 6229 213.104.76.54 SYN 7217

6129 6510 2 67.71.58.188 SYN 6510

6129 5620 2938 65.105.133.82 SYN 6421

As all of the source IP's listed are external to MY.NET, there is not much we
can do to stop the scanning at the source, however, a firewall or router
access control list (ACL) at the border of MY.NET could be configured to drop
the packets, thus protecting the hosts in MY.NET from attack via this vector.
Contacting the abuse contact for the source addresses may be of some help,
but it can be time consuming. Also, a secondary check of the database
shows that there are no scanners with a source address on the MY.NET
network. This is a good sign, as it implies that there are no infected
machines inside MY.NET, as they would likely start scanning once infected.
select distinct dest_port, count(distinct(dest_ip)) as destips, count(distinct(src_port)) as
sports, src_ip, protocol, count(src_ip) as hits from scans2 WHERE protocol='SYN' and
dest_port=6129 AND src_ip LIKE 'MY.NET%' group by src_ip order by hits desc limit 10;
Empty set (1 min 2.03 sec)

Top 10 Source Ports

Yet again, we turn around and look at things from the other direction. The
table below shows the top 10 source port / protocol pairs, listed by
frequency.
select distinct src_port, count(distinct(src_ip)) as srcips, count(distinct(dest_ip)) as
destips,count(distinct(dest_port)) as dports, protocol, count(src_ip) as hits from scans2 group
by src_port,protocol order by hits desc limit 10

- 55 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

src_port srcips destips dports protocol hits

32783 3 89692 1 UDP 2192259

14052 4 31229 16312 UDP 294677

32788 2 25431 1 UDP 235146

8767 1 45 138 UDP 153959

12203 2 136 192 UDP 73921

1690 1 20059 3410 UDP 62997

220 14 15584 2 SYN 53095

8888 1 241 388 UDP 41029

7674 2 16532 1 UDP 23981

1710 1 6633 2707 UDP 20338

The first two highlighted lines show 1 destination port each and account for
over 2.4 million hits. Investigating these 2 ports more fully, we find that the 2
likely DNS servers (MY.NET.1.3 and MY.NET.1.4) account for all but 5 of the
packets. If these DNS servers were configured to use a single port each as
the source of any external queries, this would be the result.
select distinct src_port, src_ip, count(distinct(dest_ip)) as destips,dest_port, protocol, count
(src_ip) as hits from scans2 WHERE src_port=32783 AND protocol='UDP' group by src_port,src_ip
order by hits desc limit 10
src_port src_ip destips dest_port protocol hits

32783 MY.NET.1.3 89691 53 UDP 2192255

32783 12.129.73.236 1 53 UDP 2

32783 63.241.203.110 1 53 UDP 2

select distinct src_port, src_ip, count(distinct(dest_ip)) as destips,dest_port, protocol, count
(src_ip) as hits from scans2 WHERE src_port=32788 AND protocol='UDP' group by src_port,src_ip
order by hits desc limit 10
src_port src_ip destips dest_port protocol hits

32788 MY.NET.1.4 25430 53 UDP 235145

32788 12.129.73.236 1 53 UDP 1

As we've seen before, port 8767 is commonly used for TeamSpeak, and this
specific host appears to have been running TeamSpeak.
select distinct src_port, src_ip, count(distinct(dest_ip)) as destips,count(distinct(dest_port))
as dports, protocol, count(src_ip) as hits from scans2 WHERE src_port=8767 AND protocol='UDP'
group by src_port,src_ip order by hits desc limit 10
src_port src_ip destips dports protocol hits

8767 MY.NET.110.72 45 138 UDP 153959

Detect 7

Also, we've previously seen port 12203 associated with MY.NET.110.72, and
determined that it is required for playing various online games. The host
MY.NET.70.207 may also be violating policy in a manner similar to
MY.NET.110.72.
select distinct src_port, src_ip, count(distinct(dest_ip)) as destips,count(distinct(dest_port))
as dports, protocol, count(src_ip) as hits from scans2 WHERE src_port=12203 AND protocol='UDP'
group by src_port,src_ip order by hits desc limit 10

- 56 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

src_port src_ip destips dports protocol hits

12203 MY.NET.110.72 101 140 UDP 73593

12203 MY.NET.70.207 37 53 UDP 328

Detect 8

The host MY.NET.112.216 is connecting to a large number of hosts, using a
source port of 1690. Searching portsdb.org and google for information on
UDP port 1690 turned up only a registered service name of “ng-umds”
(Payne).
select distinct src_port, src_ip, count(distinct(dest_ip)) as destips, count(distinct(dest_port))
as dports, protocol, count(src_ip) as hits from scans2 WHERE src_port=1690 AND protocol='UDP'
group by src_port,src_ip order by hits desc limit 10

src_port src_ip destips dports protocol hits

1690 MY.NET.112.216 20059 3410 UDP 62997

Because of the large number of destination IP's, some more searching is in
order. The table below lists the most frequently accessed destination ports.
As port UDP 1214 is commonly associated with Kazaa, this host may be
violating copyright policy, and should be visited.
select distinct src_port, src_ip, count(distinct(dest_ip)) as dests ,dest_port, protocol, count
(src_ip) as hits from scans2 WHERE src_port=1690 AND protocol='UDP' AND src_ip='MY.NET.112.216'
group by dest_port order by hits desc limit 5;

src_port src_ip dests dest_port protocol hits

1690 MY.NET.112.216 491 1214 UDP 958

1690 MY.NET.112.216 9 3312 UDP 106

1690 MY.NET.112.216 46 32656 UDP 102

1690 MY.NET.112.216 11 2919 UDP 102

1690 MY.NET.112.216 9 2292 UDP 98

Detect 9

After some web searching, Experts Exchange had a tidbit of information on
what might be using port 7674 UDP: a peer-to-peer file sharing program
called ”soribada” (Sailor). According to USA Today, the Korean authors of
soribada were attemting to create a “Napster of the East” (Associated
Press).
select distinct src_port, src_ip, count(distinct(dest_ip)) as destips,dest_port, protocol, count
(src_ip) as hits from scans2 WHERE src_port=7674 AND protocol='UDP' group by src_port,src_ip
order by hits desc limit 10
src_port src_ip destips dest_port protocol hits

7674 MY.NET.97.70 12096 7674 UDP 16819

7674 MY.NET.98.11 4549 7674 UDP 7162

In order to get a better idea of where this traffic was headed, each of the top
10 IP's was looked up using DNS and whois. DNS had no records for any of
the top 10, and whois listed the country for all of them as KR, or South Korea
(ICANN). Based on these factors, I recommend that these 2 machines be

- 57 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

checked for violations of copyright laws and of the acceptable use policy.
select distinct src_port, src_ip, dest_ip ,dest_port, protocol, count(src_ip) as hits from scans2
WHERE src_port=7674 AND protocol='UDP' group by src_port,src_ip,dest_ip order by hits desc limit
10
src_port src_ip dest_ip dest_port protocol hits

7674 MY.NET.98.11 211.38.111.37 7674 UDP 7

7674 MY.NET.98.11 221.164.183.156 7674 UDP 6

7674 MY.NET.97.70 220.94.85.134 7674 UDP 6

7674 MY.NET.98.11 211.105.138.28 7674 UDP 6

7674 MY.NET.98.11 211.222.179.95 7674 UDP 6

7674 MY.NET.97.70 221.148.239.18 7674 UDP 6

7674 MY.NET.97.70 218.146.121.82 7674 UDP 6

7674 MY.NET.97.70 211.219.122.234 7674 UDP 6

7674 MY.NET.98.11 220.71.83.141 7674 UDP 6

7674 MY.NET.98.11 61.72.144.239 7674 UDP 6

Preprocessor Alerts

The data from the “alerts” data set was split into rule-based alerts and alerts
generated by snort's preprocessors. Only one of snort's preprocessor
created any alerts – the portscan preprocessor. As the “scan” logs were also
generated by the same mechanism, no further analysis is necessary.

Rule – Based Alerts

After filtering out the preprocessor generated alerts, we are left with the
alerts generated by snort's rules for inspecting individual packets and
streams.

Top 10 Source Addresses

This is a list of the top hosts triggering snort rules, sorted by the number of
entries in the database for the IP. Also shown is the number of different
rules, source ports, destination addresses, and destination ports touched by
each source address.
select distinct src_ip, count(distinct(message)) as rules, count(distinct(src_port)) as sports,
count(distinct(dest_ip)) as destips, count(distinct(dest_port)) as dports, count(dest_ip) as hits
from rule group by src_ip order by hits desc limit 10

src_ip rules sports destips dports hits

MY.NET.27.103 2 2181 2 5 45338

68.50.102.64 1 831 1 2 8709

68.55.191.197 1 229 1 2 1710

68.34.27.67 1 290 1 1 1518

MY.NET.190.97 1 1 6 1 1415

MY.NET.70.37 1 1 1299 1 1299

68.55.250.229 2 125 2 1 1256

MY.NET.11.7 1 1 1 1 1151

63.159.88.57 1 230 1 2 963

209.126.201.99 1 4 2 844 936

- 58 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Note that the top 3 hosts span nearly 2 orders of magnitude and that most of
the top 10 touch fewer than 10 destination ports or addresses. This may be
an indication that the rules being triggered most often are host or port
based. Rules which are written to trigger based only on the host or port
information in the packet headers can generate a large number of false
positives.

Four hosts on MY.NET are listed in the table among the top 10 sources of
alerts. These hosts, and the snort rules that triggered the relevant alerts will
need to be examined to reduce the noise they are causing. If any of these
hosts are compromised, they must be taken off the network as soon as
possible. We will examine these hosts, and the rules they triggered shortly.

Also, notice that the top 4 external sources are all in the 68.32.0.0/11
network block operated by Comcast Cable Communications, Inc, according to
whois. As many cable modem users are not technically savvy, their
computers often provide easy targets to malicious crackers. However, as the
table below shows, they appear to be triggering what appears to be a host-
based rule.
select src_ip, message, count(distinct(src_port)) as sports, count(distinct(dest_ip)) as destips,
count(distinct(dest_port)) as dports, count(dest_ip) as hits from rule WHERE src_ip NOT LIKE
'MY.NET%'group by src_ip,message order by hits desc limit 5

 src_ip message sports destips dports hits

 68.50.102.64 MY.NET.30.4 activity 831 1 2 8709

 68.55.191.197 MY.NET.30.4 activity 229 1 2 1710

 68.34.27.67 MY.NET.30.3 activity 290 1 1 1518

 68.55.250.229 MY.NET.30.3 activity 121 1 1 1207

 63.159.88.57 MY.NET.30.4 activity 230 1 2 963

Top 10 Destination Addresses

The following shows the top 10 most frequently listed destination addresses.

Again, the frequency drops rapidly among the top hosts, and only a small
number of rules are triggered by any given host.

Also, the inclusion in the list of hosts outside of MY.NET indicates that
outbound attacks are occurring, and at a non-trivial rate.
select distinct dest_ip, count(distinct(message)) as rules, count(distinct(dest_port)) as dports,
count(distinct(src_ip)) as srcips, count(distinct(src_port)) as sports, count(src_ip) as hits
from rule group by dest_ip order by hits desc limit 10

- 59 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

dest_ip rules dports srcips sports hits

209.126.201.99 1 4 2 2181 45329

MY.NET.30.4 1 25 293 2108 17536

MY.NET.30.3 1 20 142 784 6312

62.166.61.120 1 1 1 1 1405

169.254.0.0 1 1 3 1 1248

MY.NET.27.103 2 844 3 6 932

64.246.65.158 1 1 2 1 690

MY.NET.42.5 5 21 14 166 630

169.254.45.176 1 1 118 1 596

MY.NET.70.247 1 1 3 2 570

Detect 10

Two of the three lines highlighted in the table above show a network address
(169.254.0.0) and a host on that network(169.254.45.176). According to RFC
3330, this network is reserved for “link-local” use(RFC 3330). That is, this
network is reserved for hosts within a broadcast domain to use when they
are unable to get their address any other way. These addresses should not
be seen on the internet. These hosts should be tracked down, and
investigated. It is possible that the addresses are being spoofed, in which
case, the router's access control lists should be updated to disable routing
for packets to or from this network.

Based on the makeup of the top 5 hosts, MY.NET.11.7 and MY.NET.11.6
seem to be sending broadcasts to the link-local subnet. These hosts should
be examined to ensure they are properly configured. If these hosts are
intended to be sending this traffic, adjusting the IDS rules to ignore it would
be beneficial.
select distinct src_ip,dest_ip, count(src_ip) as hits from rule WHERE dest_ip LIKE '169.254%'
GROUP BY src_ip ORDER BY hits DESC LIMIT 5

src_ip dest_ip hits

MY.NET.11.7 169.254.0.0 1151

MY.NET.11.6 169.254.0.0 96

MY.NET.112.229 169.254.45.176 15

MY.NET.75.114 169.254.45.176 12

MY.NET.66.61 169.254.45.176 12

select distinct message,dest_ip from rule WHERE dest_ip LIKE '169.254%'

message dest_ip

SMB Name Wildcard 169.254.0.0

SMB Name Wildcard 169.254.45.176

Detect 11

The other host, as we have not seen it previously also bears looking into.

- 60 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

select distinct message, src_ip, src_port, dest_ip, dest_port from rule where
dest_ip='62.166.61.120'

message src_ip src_port dest_ip dest_port

SMB Name Wildcard MY.NET.190.97 137 62.166.61.120 137

Looking up a couple of quick pieces of information about 62.166.61.120, we
find that its hostname is dslam120-61-166-62.adsl.zonnet.nl, and that whois
states:
whois 62.166.61.120
[snip]
inetnum: 62.166.0.0 - 62.166.63.255
netname: VERSATEL-CUST-VERSNET-ADSL-1
descr: Zon internet is one of the largest free ISP in the Netherlands
country: NL
[snip]

That the host MY.NET.190.97 is repeatedly attempting to connect to a host in
the Netherlands to do Windows file sharing is highly suspect. This host
should be examined for the presence of a virus or worm.

We will look at the SMB Name Wildcard alerts later. For the moment, it is
enough to note that based on the IP address and the alert, the hosts which
need to be reconfigured to prevent these alerts from occurring in the future
are likely running a version of Windows (Forster).

Top 10 Rules Triggered - Overall

Listed below are the top 10 rules triggered by the snort system. Notice that
at least 4 of these rules appear to be custom rules, based on the presence of
“UMBC NIDS” and “MY.NET” in the message. Also notice the stratification
that matches with the other data from the rule-based alerts.
select distinct message, count(distinct(src_ip)) as srcips, count(distinct(src_port)) as sports,
count(distinct(dest_ip)) as destips, count(distinct(dest_port)) as dports, count(message) as hits
from rule group by message order by hits desc limit 10

message srcips sports destips dports hits

[UMBC NIDS IRC Alert] XDCC client detected
attempting to IRC

5 2184 4 4 45333

MY.NET.30.4 activity 293 2108 1 25 17536

SMB Name Wildcard 161 11 1630 1 6478

MY.NET.30.3 activity 142 784 1 20 6312

EXPLOIT x86 NOOP 157 430 46 39 1181

[UMBC NIDS IRC Alert] IRC user /kill detected,
possible trojan.

45 9 27 979 1140

SUNRPC highport access! 31 12 29 1 1049

High port 65535 tcp - possible Red Worm -
traffic

85 29 110 32 753

NMAP TCP ping! 140 14 49 40 625

Null scan! 82 126 49 45 353

Detect 12

Looking at the vast quantity of the XDCC client alerts, we want to know
wether they spanned the entire time range we're examining. We might be

- 61 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

able to determine when the machine was compromised from this
information.

The “IRC Alert” hosts represent a small fraction of the source and destination
population and are responsible for a large portion of the alerts, thus, we
want to find out which hosts they are.
select message, src_ip, count(distinct(src_port)) as sps, dest_ip, dest_port as d_p, count
(message) as hits from rule WHERE message LIKE '[UMBC NIDS IRC Alert] XDCC%' group by
src_ip,dest_ip,dest_port order by hits desc

message src_ip sps dest_ip d_p hits

[UMBC NIDS IRC Alert] XDCC client
detected attempting to IRC

MY.NET.27.103 738 209.126.201.99 6667 11583

[UMBC NIDS IRC Alert] XDCC client
detected attempting to IRC

MY.NET.27.103 718 209.126.201.99 7000 11543

[UMBC NIDS IRC Alert] XDCC client
detected attempting to IRC

MY.NET.27.103 742 209.126.201.99 6668 11494

[UMBC NIDS IRC Alert] XDCC client
detected attempting to IRC

MY.NET.27.103 675 209.126.201.99 6669 10708

[UMBC NIDS IRC Alert] XDCC client
detected attempting to IRC

MY.NET.112.199 2 67.130.99.99 6667 2

[UMBC NIDS IRC Alert] XDCC client
detected attempting to IRC

MY.NET.15.198 1 64.157.246.22 6667 1

[UMBC NIDS IRC Alert] XDCC client
detected attempting to IRC

MY.NET.80.5 1 209.126.201.99 6667 1

[UMBC NIDS IRC Alert] XDCC client
detected attempting to IRC

MY.NET.97.86 1 216.152.64.62 7000 1

As we can plainly see in the table above, one source and one destination are

- 62 -

3
1

1

3
1
4

3
1
7

3
2
0

3
2
3

4
0
2

4
0
5

4
0
8

4
1

1

4
1
4

4
1

7

4
2
0

4
2

3

5
0
2

5
0
5

5
0
8

5
1

1

5
1

4

5
1

7

5
2

0

5
2

3

6
0
2

6
0
5

6
0

8

6
1
1

6
1

4

6
1

7

6
2

0

6
2
3

7
0

2

7
0
5

7
0
8

0

250

500

750

1000

1250

1500

Alert Rate - 'XDCC client'

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

responsible for the overwhelming majority of the XDCC events generated by
this snort instance. Also, we can see that there is a second host,
MY.NET.80.5, communicating with the noisiest destination. Searching the
DNS for more information about the destination host, uncovers that the
address's reverse record is desire.of.hotgirlz.org but that there is no forward
record for the reverse.
% host 209.126.201.99
99.201.126.209.IN-ADDR.ARPA domain name pointer desire.of.hotgirlz.org

% host desire.of.hotgirlz.org
Host not found, try again.

Consulting the whois database shows the following registration for the
domain hotgirlz.org:
% whois hotgirlz.org
Domain ID:D96720295-LROR
Domain Name:HOTGIRLZ.ORG
Created On:11-Apr-2003 14:37:25 UTC
Last Updated On:14-Nov-2003 03:45:13 UTC
Expiration Date:11-Apr-2004 14:37:25 UTC
Sponsoring Registrar:R39-LROR
Status:OK
Registrant ID:F2825ED08233195D
Registrant Name:roy elisa
Registrant Organization:Shell.web.id Internet Services
Registrant Street1:Jl. Anoa I No. 27
Registrant City:Palu
Registrant Postal Code:94113
Registrant Country:ID
Registrant Email:webmaster@shell.web.id
Admin ID:F2825ED08233195D
Admin Name:roy elisa
Admin Organization:Shell.web.id Internet Services
Admin Street1:Jl. Anoa I No. 27
Admin City:Palu
Admin Postal Code:94113
Admin Country:ID
Admin Email:webmaster@shell.web.id
Tech ID:F2825ED08233195D
Tech Name:roy elisa
Tech Organization:Shell.web.id Internet Services
Tech Street1:Jl. Anoa I No. 27
Tech City:Palu
Tech Postal Code:94113
Tech Country:ID
Tech Email:webmaster@shell.web.id
Name Server:NS1.EGGDROP.WEB.ID
Name Server:NS2.EGGDROP.WEB.ID

Further exploration of the whois database, reveals the owner of the IP
address block:
% whois 209.126.201.99

OrgName: California Regional Internet, Inc.

- 63 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

OrgID: CALI
Address: 8929A COMPLEX DRIVE
City: SAN DIEGO
StateProv: CA
PostalCode: 92123
Country: US
NetRange: 209.126.128.0 - 209.126.255.255
CIDR: 209.126.128.0/17
NetName: CARI
NetHandle: NET-209-126-128-0-1
Parent: NET-209-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.ASPADMIN.COM
NameServer: NS2.ASPADMIN.COM
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 1999-03-12
Updated: 2003-07-01
[snip]

In addition to being listed in whois as the registrant and tech for hotgirlz.org,
Roy Elisa is listed on the ISP's Order page (http://www.shell.web.id/
bhs/order.shtml) as the owner of the bank account which customers of
“shell.web.id” must send money to to get service. It appears that part of the
service customers get is anonymity behind the guise of “roy elisa.” Not
knowing anything about Indonesia's computer crime laws, this seems likely
to be an attractive service provider for many an evildoer. The whois
registration information for the IP address lists California Regional Internet as
the owner of the network block.

The screenshot below shows the services offered for dedicated servers,
including both “Server IRC Std” and “Server IRC Adv” options. It would
appear that this hosting company takes pride in its abilities to provide IRC
servers for its customers.

- 64 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

As one of the other custom-looking rule messages in the top 10 also appears
to be IRC related, let's find out what hosts are generating the most alerts for
that rule.
SELECT message, src_ip,dest_ip, count(message) as hits FROM rule WHERE message LIKE '%IRC user /
kill%' GROUP BY src_ip,dest_ip ORDER BY hits desc limit 10

- 65 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

message src_ip dest_ip hits

[UMBC NIDS IRC Alert] IRC user /kill detected,
possible trojan.

209.126.201.99 MY.NET.27.103 930

[UMBC NIDS IRC Alert] IRC user /kill detected,
possible trojan.

65.248.51.47 MY.NET.42.3 90

[UMBC NIDS IRC Alert] IRC user /kill detected,
possible trojan.

69.50.189.88 MY.NET.42.6 9

[UMBC NIDS IRC Alert] IRC user /kill detected,
possible trojan.

209.126.206.54 MY.NET.42.5 8

[UMBC NIDS IRC Alert] IRC user /kill detected,
possible trojan.

209.126.201.99 MY.NET.80.5 6

[UMBC NIDS IRC Alert] IRC user /kill detected,
possible trojan.

69.50.189.88 MY.NET.42.7 5

[UMBC NIDS IRC Alert] IRC user /kill detected,
possible trojan.

203.56.139.100 MY.NET.42.4 5

[UMBC NIDS IRC Alert] IRC user /kill detected,
possible trojan.

69.56.199.206 MY.NET.42.2 5

[UMBC NIDS IRC Alert] IRC user /kill detected,
possible trojan.

69.28.250.108 MY.NET.42.4 4

[UMBC NIDS IRC Alert] IRC user /kill detected,
possible trojan.

64.237.52.219 MY.NET.42.10 4

Again we see that 209.126.201.99 is the most frequently accessed IRC
server triggering alerts. Also, there is another server in the
209.126.128.0/17 network block, owned by California Regional Intranet, Inc.,
that is triggering IRC alerts on MY.NET.

The block of bold addresses in the table above shows another trend in the
IRC / trojan messages: a sequential address block. It has been my
experience that sequential blocks of hosts are often managed similarly, or
at least run similar operating systems. As IRC regularly operates using TCP,
and the snort rule's message implies that packet content is being analyzed,
we can infer that these hosts are establishing a connection with the external
host. All of the MY.NET machines listed in the table above should be visited
and checked for trojans or other signs of a compromise.

Top 10 Rules Triggered – Internal Source

Next, we look at the most frequently triggered alerts with an internal source
address. This should help us find misconfigured and cracked machines on
MY.NET.
select distinct message, count(distinct(src_ip)) as srcips, count(distinct(src_port)) as sports,
count(distinct(dest_ip)) as destips, count(distinct(dest_port)) as dports, count(message) as hits
from rule where src_ip LIKE 'MY.NET%' group by message order by hits desc limit 10

- 66 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

message srcips sports destips dports hits

[UMBC NIDS IRC Alert] XDCC client detected attempting
to IRC

5 2184 4 4 45333

SMB Name Wildcard 161 11 1630 1 6478

High port 65535 tcp - possible Red Worm - traffic 30 25 79 6 347

IRC evil - running XDCC 7 20 7 2 137

High port 65535 udp - possible Red Worm - traffic 8 5 13 1 65

Possible trojan server activity 9 4 16 4 37

connect to 515 from inside 2 20 2 1 28

TFTP - Internal TCP connection to external tftp
server

1 7 1 1 17

DDOS mstream handler to client 1 1 1 1 9

HelpDesk MY.NET.70.49 to External FTP 1 2 1 1 2

Here again, we see the top rule corresponds to the XDCC traffic triggered by
MY.NET.27.103 as the most frequent alert message.
Detect 13

The next alert referring to “SMB Name Wildcard” appears not to be a rule
from snort.org, but the rule message appears in several places with a simple
web search, including the SANS website (Green) and the snort-announce list
archive (Forster). Based on Forster's message to the list, the SMB Name
Wildcard query can be used to “to extract useful information such as
workstation name, domain, and users currently logged in.” Attackers can
also enumerate administrator accounts on the target machine. The SMB
Name Wildcard query is also used by Windows as a normal part of the file
sharing protocol.

These types of queries should not be passed outside of MY.NET without a
specific need. The internal hosts responsible for these alerts should be
investigated. If possible, Windows file sharing to computers outside MY.NET
should be prohibited at the border either by router access control lists or
firewall rules.

A quick query of the database reveals that a couple of hosts generate a large
number of these alerts, and that one highlighted host appears to be
scanning for this service (MY.NET.70.37). This host should be examined for
trojans and other signs of compromise.
select distinct message, src_ip, count(distinct(src_port)) as sports, count(distinct(dest_ip)) as
destips, dest_port, count(message) as hits from rule where src_ip LIKE 'MY.NET%' AND message LIKE
'SMB Name Wildcard' group by src_ip order by hits desc limit 10

- 67 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

message src_ip sports destips dest_port hits

SMB Name Wildcard MY.NET.190.97 1 6 137 1415

SMB Name Wildcard MY.NET.70.37 1 1299 137 1299

SMB Name Wildcard MY.NET.11.7 1 1 137 1151

SMB Name Wildcard MY.NET.190.93 1 9 137 484

SMB Name Wildcard MY.NET.75.13 1 131 137 358

SMB Name Wildcard MY.NET.190.92 1 5 137 343

SMB Name Wildcard MY.NET.150.198 6 113 137 267

SMB Name Wildcard MY.NET.150.44 6 68 137 170

SMB Name Wildcard MY.NET.11.6 1 1 137 96

SMB Name Wildcard MY.NET.29.30 1 1 137 71

Top 10 Rules Triggered – External Source

In the table below, the top 10 rules triggered by external source addresses
are listed by frequency. The 2 rules generating the most hits appear to be
custom written rules for MY.NET, and both focus on a single host each.
select distinct message, count(distinct(src_ip)) as srcips, count(distinct(src_port)) as sports,
count(distinct(dest_ip)) as destips, count(distinct(dest_port)) as dports, count(message) as hits
from rule where src_ip NOT LIKE 'MY.NET%' group by message order by hits desc limit 10

message srcips sports destips dports hits

MY.NET.30.4 activity 293 2108 1 25 17536

MY.NET.30.3 activity 142 784 1 20 6312

EXPLOIT x86 NOOP 157 430 46 39 1181

[UMBC NIDS IRC Alert] IRC user /kill detected,
possible trojan.

45 9 27 979 1140

SUNRPC highport access! 31 12 29 1 1049

NMAP TCP ping! 140 14 49 40 625

High port 65535 tcp - possible Red Worm - traffic 55 6 31 29 406

Null scan! 82 126 49 45 353

High port 65535 udp - possible Red Worm - traffic 31 8 21 15 117

Incomplete Packet Fragments Discarded 49 1 42 1 97

Detect 14

As each of the 2 hosts referenced in the top 2 alerts lists a limited number of
destination ports, it is worth finding out which occur most frequentlly. Also,
based on the number of destination ports listed, it would seem that these 2
rules are triggering on any communication with the host specified in the rule
message.
select distinct message, count(distinct(src_ip)) as srcips, count(distinct(src_port)) as sports,
count(distinct(dest_ip)) as dests, dest_port, count(message) as hits from rule where src_ip NOT
LIKE 'MY.NET%' AND dest_ip REGEXP 'MY.NET.30.[34]' group by dest_port order by hits desc limit 10

- 68 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

message srcips sports dests dest_port hits

MY.NET.30.4 activity 14 1387 1 51443 14331

MY.NET.30.3 activity 33 1038 2 524 7965

MY.NET.30.4 activity 276 487 2 80 1364

MY.NET.30.3 activity 17 19 2 6129 28

MY.NET.30.3 activity 9 15 2 4899 24

MY.NET.30.4 activity 8 13 2 20168 19

MY.NET.30.4 activity 9 14 2 1080 18

MY.NET.30.4 activity 5 10 2 443 16

MY.NET.30.3 activity 7 11 2 3128 14

MY.NET.30.3 activity 1 4 2 81 13

As the first three rows in the table show, ports 80, 524, and 51443 are
responsible for the majority of the alerts. According to portsdb.org and
Novell, these ports are commonly associated with HTTP, NCP or NetWare
Core Protocol, and Novell NetStorage, respectively. Based on Novell's
website, NetStorage provides browser based access to users' files stored on
a NetWare server.

Both of these hosts also appear to be being probed on ports commonly used
for web proxies (1080,3128,8000,8080,8081), http (80), smtp (25), ftp (21),
and DameWare (6129) among others (Payne). Depending on how the rule
triggering these alerts is written, these could indicate probe packets only, or
full connections to the server.

If these really are publicly accessible servers for providing remote access to
users' files, then logging all connections from outside to the these servers
will provide an audit trail mechanism, and should be continued. Based on
the existence of the rules specifically written to trigger on traffic to these
hosts, it would seem that this is the case.

Source & Destination Both External
Detect 15

When snort's HOME_NET and EXTERNAL_NET variables are set to be
compliments of each other, the source and destination addresses can never
both be external. This can be accomplished by defining HOME_NET to list
the networks snort is to consider internal, and setting EXTERNAL_NET to be !
HOME_NET. As the alerts being analyzed contain alerts where the source
and destination are both outside the HOME_NET, snort is obviously
configured another way.
select distinct message, count(distinct(src_ip)) as srcips, count(distinct(src_port)) as sports,
count(distinct(dest_ip)) as destips, count(distinct(dest_port)) as dports, count(message) as hits
from rule where dest_ip NOT LIKE 'MY.NET%' and src_ip NOT LIKE 'MY.NET%' group by message order
by hits desc limit 10

message srcips sports destips dports hits

TCP SRC and DST outside network 27 35 37 12 83

- 69 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The table below lists the unique source addresses of the alerts that have a
source and destination outside the network. These source addresses break
down into two ranges: (1) 192.168.0.0/16, a private network per RFC-1918,
(2) the 172.128.0.0-172.211.255.255 block owned by America Online
(whois).

select distinct(src_ip), count(distinct(src_port)) as sports, count(distinct(dest_ip)) as
destips, count(distinct(dest_port)) as dports, count(src_ip) as hits from rule where dest_ip NOT
LIKE 'MY.NET%' and src_ip NOT LIKE 'MY.NET%' group by src_ip order by src_ip desc

src_ip sports destips dports hits

192.168.123.195 4 3 1 7

192.168.1.47 1 1 1 1

192.168.1.46 3 3 1 3

192.168.1.41 2 1 1 2

192.168.1.102 1 1 1 1

172.210.36.171 1 1 1 2

172.208.104.168 1 1 1 1

172.168.196.51 1 1 1 2

172.165.205.164 2 2 2 4

172.164.150.81 1 1 1 5

172.162.181.215 1 1 1 2

172.161.176.241 1 1 1 1

172.161.147.103 1 1 1 1

172.160.220.65 1 1 1 2

172.158.184.23 1 1 1 1

172.155.49.4 2 2 1 9

172.152.188.157 1 1 1 1

172.147.40.169 1 1 1 6

172.145.229.3 1 1 1 2

172.145.22.36 1 1 1 2

172.142.196.231 3 3 1 5

172.141.55.62 2 2 2 10

172.139.130.38 1 2 2 2

172.136.225.106 1 1 1 5

172.134.167.15 1 1 1 4

172.133.94.69 1 1 1 1

172.129.197.197 1 1 1 1

This could indicate a peering type arrangement between America Online and
MY.NET, as the routers could be using the 192.168 network for private
communications between themselves to arrange routes for the hosts in the
172.128 network block. This would imply that the snort sensor is able to see
all traffic from the MY.NET and from the AOL block heading toward the
internet at large, as shown in the diagram below. Based on the small
number of alerts, all of AOL's traffic is obviously not being sent through this
router link. However, it is possible that AOL is providing modem access for
the campus, or is providing broadband for residence halls. In either
scenario, the configuration of the snort sensor should be adjusted to better

- 70 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

reflect the situation.

Out Of Specification

These packets are logged by snort's packet decoder as not following the
standard protocol specification. However, as protocols are extended and
updated, snort's decoder also needs to be adjusted to follow the changes.

Top Source Addresses

Each of the source IP addreses listed below lists the number of times the IP
occurs in the database (hits), the number of unique source ports, desintaion
IP's, destination ports, T.O.S classifications, and flag settings. Note that only
24.136.69.34 appears to be mixing flags in the packets it is sending to a
single destination.

The number of hits in the top 20 hosts seen spans nearly 2 orders of
magnitude.

Also, the close alignment between the number of hits and source ports may
indicate than snort is configured to alert on protocol options which are valid
for experimental purposes, but determined to be out of specification by the
older version of snort on the sensor.
select distinct srcip, count(srcip) as hits, count(distinct(srcport)) as sports, count(distinct
(dstip)) as destips, count(distinct(dstport)) as dports, count(distinct(tos)) as svc_types, count
(distinct(flags)) as flag_types from oos group by srcip order by hits desc limit 20

- 71 -

Illustration 4 Possible Network Topology

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

srcip hits sports destips dports svc_types flag_types

68.54.84.49 881 881 1 1 1 1

217.125.5.139 145 102 1 1 1 1

MY.NET.199.158 113 113 5 2 1 1

MY.NET.199.138 110 93 5 4 1 1

67.114.19.186 86 82 1 1 1 1

66.225.198.20 79 78 1 1 1 1

68.122.128.1 48 48 1 1 1 1

35.8.2.252 48 48 1 1 1 1

80.126.206.180 27 27 1 1 1 1

65.118.185.48 19 5 1 1 1 1

63.71.152.2 18 6 1 1 1 1

35.8.2.251 17 17 1 1 1 1

66.180.237.99 16 14 1 1 1 1

62.109.103.173 15 15 1 1 1 1

218.58.63.34 12 7 2 1 1 1

213.216.249.20 11 11 1 10 1 1

24.136.69.34 11 8 1 8 1 10

66.180.236.228 11 10 1 1 1 1

81.208.58.2 11 11 2 1 1 1

212.241.49.98 10 10 1 1 1 1

Detect 16

The host above appears to be attempting an OS fingerprint of a single host
on MY.NET by altering the flags in packets sent to that host. A quick check
of the database shows that the target host is MY.NET.24.47.
select distinct srcip,destip from oos WHERE srcip='24.136.69.34'

src_ip dest_ip

24.136.69.34 MY.NET.24.47

To find out a bit more about the source, we consult the DNS system and
whois.
% host 24.136.69.34
34.69.136.24.IN-ADDR.ARPA domain name pointer user-0c8gh92.cable.mindspring.com

% whois 24.136.69.34
EarthLink, Inc. ERLK-CBL-TW-WEST (NET-24-136-64-0-1)
 24.136.64.0 - 24.136.95.255
EARTHLINK, INC. ERLK-TW-LOSANGELES25 (NET-24-136-68-0-1)
 24.136.68.0 - 24.136.71.255

ARIN WHOIS database, last updated 2004-04-27 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

From the data provided, it appears that this host belongs to one of
EarthLink's cable modem customers in the LosAngles area.

- 72 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Top Destination Addresses

Below are the most frequently seen destination addresses in the out-of-
specification data. The frequency of hits among the top 20 destination hosts
spans nearly 3 orders of magnitude.

Again, we see a strong correlation between the number of hits, and the
number of unique source ports. As mentioned previously, this could be
caused by external hosts using protocol options which did not exist at the
time the snort sensor was installed.

The highlighted lines in the table below indicate hosts which are frequently
receiving many different types of flags.
select distinct dstip, count(dstip) as hits, count(distinct(dstport)) as dports, count(distinct
(srcip)) as srcips, count(distinct(srcport)) as sports, count(distinct(tos)) as svc_types, count
(distinct(flags)) as flag_types from oos group by dstip order by hits desc limit 20

dstip hits dports srcips sports svc_types flag_types

MY.NET.6.7 919 2 12 917 2 1

MY.NET.12.6 587 1 235 507 2 7

MY.NET.24.44 224 1 35 219 1 3

MY.NET.6.47 210 1 41 60 1 1

MY.NET.153.79 160 1 2 117 1 1

MY.NET.12.7 112 2 2 99 1 1

MY.NET.24.34 80 1 6 77 1 2

MY.NET.12.4 51 2 2 51 1 2

MY.NET.34.11 43 1 15 42 3 1

MY.NET.34.14 30 2 8 15 1 1

MY.NET.29.3 30 1 1 30 1 1

MY.NET.24.47 26 19 3 18 1 11

MY.NET.42.6 22 4 5 5 1 10

MY.NET.42.5 18 3 7 7 1 12

MY.NET.60.14 12 1 7 10 1 1

MY.NET.42.8 12 11 2 12 1 1

MY.NET.60.17 9 1 4 4 1 1

MY.NET.42.3 8 4 4 4 1 6

MY.NET.153.92 7 1 6 6 1 1

MY.NET.42.10 6 3 3 3 1 6

Top Flag Types

Looking at what flags are set most frequently in the OOS data gives some
insight into what is going on. The top flag set has nearly 35 times as many
entries as the second, and over 500 times as many as the third. Also, the
top flag set is the only one which shows any variation in the type of service
bits. Since there are only a small number of different types of service, we'll
break down the top flags by type of service later.
select distinct flags, count(flags) as hits, count(distinct(srcip)) as srcips, count(distinct
(dstip)) as destips, count(distinct(tos)) as svc_types from oos group by flags order by hits desc
limit 10

- 73 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

flags hits srcips destips svc_types

12****S* 2512 382 45 4

******** 72 19 13 1

12***R** 5 2 5 1

U*** 4 4 3 1

*2UA*RSF 3 3 3 1

URSF 3 3 3 1

12U**RS* 3 3 3 1

12UAPRSF 2 2 2 1

*2U*PRSF 2 2 2 1

12*A**** 2 2 2 1

Top Types of Service

This table lists all of the types of service seen in the OOS data set, sorted by
the number of times each TOS was seen. As we can see, the only set of
flags which touches all 4 types of service is “12****S*” from the table above.

select distinct tos, count(tos) as hits, count(distinct(srcip)) as srcips, count(distinct(dstip))
as destips from oos group by tos order by hits desc limit 20

tos hits srcips destips

0x0 2642 424 64

0x10 5 2 2

0x80 5 1 2

0x40 1 1 1

Comer's book describes the type of service bits in the IP datagram as “a hint
to the routing algorithm” which is responsible for choosing the packet's next
hop. Based on the definitions for each of the bits he provides, the type of
service codes would translate into the following:

0x00 = Normal Packet

0x10 = Packet from an application requesting low delay

0x40 = Packet stating its precedence as 2 of a maximum 7

0x80 = Packet stating its precedence as 4 of 7.

Alternatively, RFC 3168 defines the use of some bits in the type of service
field in the IP header and some bits in the flags field of the TCP header for
the use of explicit congestion notification. Using an RFC 3168 interpretation
would define all four types of service listed above as not using an ECN-
capable transport, yet having various differentiated services codepoints.

Top Flags, with Type of Service

Breaking out the type of service with the flags and again sorting by hits, we
see that “12****S*” is the only set of flags for which TOS is not 0x0.

- 74 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

select distinct flags, tos, count(flags) as hits, count(distinct(srcip)) as srcips, count
(distinct(dstip)) as destips from oos group by flags,tos order by hits desc limit 10

flags tos hits srcips destips

12****S* 0x0 2501 378 45

******** 0x0 72 19 13

12****S* 0x10 5 2 2

12****S* 0x80 5 1 2

12***R** 0x0 5 2 5

U*** 0x0 4 4 3

*2UA*RSF 0x0 3 3 3

URSF 0x0 3 3 3

12U**RS* 0x0 3 3 3

*2U*PRSF 0x0 2 2 2

Per the definition in RFC 3168, the flag set “12****S*” is considered an “ECN-
setup SYN packet” (15). Thus, it would appear that these packets
correspond to attempts by ECN-aware hosts to establish an ECN capable TCP
session with the opposite host. Also, as these are SYN packets, the sending
host must set the IP header bits used for ECN to 0, which matches the type
of service flags seen previously (RFC 3168, 16).

Based on the above assessment, it appears that the snort sensor should be
upgraded so that proper decoding of the ECN bits is performed.

Correlations

Visualization of large datasets can help analysts find more obscure events
which don't fall into the typical “top 10” ranges that basic database
manipulation allows. In his GCIA practical, Alex Wood used graphs of
destination port against time to find interesting events. Below, I've taken a
simpler approach using the open-source ploticus software to analyze source
& destination addresses as a function of the time of day (Grubb).

Time and Address Correlation
Detect 17

The following graphs, show the frequency of addresses in the scans data
plotted against the first octet of the address (horizontal axis) and the hour of
the day (vertical axis). In the scans destination graph, a strong horizontal
line shows up, indicating that at that time of day, some number of hosts on
MY.NET were attempting to scan addresses covering the range from 0.0.0.0
to roughly 224.0.0.0 over the course of 2 hours.

More information on how these plots were generated is available in the
appendix.

- 75 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Notice the vertical patterns spanning the full duration of the day. These give
an indication of the host networks to which MY.NET sends most of its traffic.
Based on the lack of entries for a destination address in the netblock
reserved for multicast communications by RFC 3171 (224.0.0.0/4), we can
infer that this site does not use multicast.

Looking back at the database, we can determine which host or hosts are
responsible for the horizontal line in the graph above. In the table below, the
“topocs” column lists the number of unique destination address top octets
touched by the listed source IP. The two highlighted hosts have not been
listed previously, and thus require further investigation.
select src_ip, count(distinct(src_port)) as sports, dest_port, count(distinct(dest_ip)) as dests,
count(distinct(LEFT(dest_ip, LOCATE('.', dest_ip) -1))) as topocs, count(src_ip) as hits FROM
scans2 WHERE dest_ip NOT LIKE 'MY.NET%' AND (LEFT(RIGHT(stamp,6),2)=18 OR LEFT(RIGHT(stamp,6),2)
=19) GROUP BY src_ip,dest_port ORDER BY hits DESC limit 10

src_ip sports dest_port dests topocs hits

MY.NET.1.3 6 53 24833 105 183379

MY.NET.97.147 3827 80 11605 220 16198

MY.NET.80.224 3814 135 12645 2 12645

MY.NET.53.169 669 6346 2349 73 11464

MY.NET.1.4 1 53 2796 91 8587

MY.NET.34.14 6569 25 231 55 8539

MY.NET.97.70 1 7674 3867 54 4434

MY.NET.97.70 1 22321 3076 61 3357

MY.NET.110.72 1 33309 1 1 2179

MY.NET.153.97 1528 4662 1249 60 1927

- 76 -

Illustration 5 Destination Address Time Distribution – Scan-based Alerts

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Digging a bit deeper into the database, we can see that MY.NET.97.147 is
largely occupied with scanning destination port 80, but that MY.NET.53.169
is doing other things as well.

Nearly all of MY.NET.97.147's traffic is used for scanning port 80.
select count(src_ip) from scans2 WHERE src_ip='MY.NET.97.147'
16213
select protocol, count(src_ip) from scans2 WHERE src_ip='MY.NET.97.147' AND dest_port=80 group by
protocol
SYN,16198

However, MY.NET.53.169 is doing other things as well, including scanning for
port 6346 during other times of the day.
select count(src_ip) from scans2 WHERE src_ip='MY.NET.53.169'
236868
select count(src_ip) from scans2 WHERE src_ip='MY.NET.53.169' and dest_port=6346
35250

Also, we see that MY.NET.153.97 is sending traffic to a large number of hosts
on the port commonly associated with the eDonkey peer-to-peer file sharing
program. This could be another source of a policy violation.

Generating the time versus destination address plot again with the source
address limited to MY.NET.97.147 reveals that one of the responsible hosts
has been found. Note that although the color scaling is different between
the 2 plots, the corresponding numeric ranges match properly.

The plot for MY.NET.53.169 scanning destination port 6346 is not included,
as it shows the vertical banding that matches with the destination addresses
that are being scanned throughout the day. However, as port 6346 is
commonly associated with Gnutella, this host should be examined for
possible copyright or policy infringements.

- 77 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The graph above, showing the distribution of source addresses, lacks the
strong horizontal line found in the destination plot, thus indicating that
inbound scanning seems to occur continuously. The source distribution

- 78 -

Illustration 7 Source Address Time Distribution – Scan-based Alerts

Illustration 6 Destination Address Time Distribution - Source IP = MY.NET.97.147

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

graph contains vertical bands which correspond to the strongest vertical
bands in the destination graph. This seems reasonable, as most
communications are bidirectional, and the scan data is generated without
any inspection of the packet's payload.

Below, similar graphs for the rule-based alerts show some correlation
between the scan and rule based datasets. The primary correlation shows
that the 62.x.x.x to 65.x.x.x address ranges are the destination for large
amounts of scanning and for frequent rule based alerts. Also, the 192.x.x.x
to 223.x.x.x ranges show a strong correlation. However, the destination
graphs are less similar over the 0.x.x.x to 60.x.x.x and 128.x.x.x to 176.x.x.x
ranges.

The source address bands also match well between the two datasets, across
all address ranges, as can be seen in the following graph.

- 79 -

Illustration 8 Destination Address Time Distribution - Rule-based Alerts

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

External Hosts of Interest

The table below summarizes the external hosts which have been listed
previously, with a brief summary of their information.

Host Reason

209.126.201.99 XDCC server in Indonesia or California

24.136.69.34 Flag Scanning Cable Modem in Los Angeles

172.128.0.0/10 Network block owned by America Online, possibly co-located with MY.NET

62.166.61.120 Host in the Netherlands to which MY.NET.190.97 is sending traffic

213.202.254.116 TeamSpeak.org host.

207.38.8.34 Master.gamespy.com – likely gaming server.

Internal Hosts of Interest

The table below lists machines in MY.NET which need to be examined further
for various reasons. The “code” column indicates the primary reason the
host is listed using the following codes:

POL Policy Violation

INF Infection / Virus / Trojan

TUN Sensor Tuning Opportunity

- 80 -

Illustration 9 Source Address Time Distribution - Rule-based Alerts

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Host Code Description

MY.NET.110.72 POL Gaming Server; TeamSpeak

MY.NET.34.14 TUN Likely SMTP server – Adjust IDS rules

MY.NET.80.224 INF Scanning destination port 135. Likely worm.

MY.NET.25.70 TUN Likely SMTP server participating in SORBS – Adjust IDS Rules

MY.NET.81.39 INF Scanning destination port 135. Likely worm.

MY.NET.70.207 POL Gaming Server

MY.NET.112.216 POL Peer to Peer: Kazaa

MY.NET.97.70 POL Peer to Peer: Soribada

MY.NET.98.11 POL Peer to Peer: Soribada

MY.NET.1.3
MY.NET.1.4

TUN DNS Server – Adjust IDS rules to reduce false positives.

169.254.0.0/16 TUN “link-local” addresses should not be traversing the campus border

MY.NET.11.6
MY.NET.11.7

TUN These hosts were responsible for sending broadcasts to the link-local
network.

MY.NET.27.103 POL/INF 40000+ XDCC IRC alerts to 209.126.201.99. Could be an infection.

MY.NET.42.{2-7} INF This block of hosts all triggered the IRC /kill custom rule.

MY.NET.190.97 POL/INF SMB Name Wildcard alerts – these lookups should not cross the border.

MY.NET.70.37 POL/INF SMB Name Wildcard alerts – these lookups should not cross the border.

MY.NET.30.3
MY.NET.30.4

TUN Novell NetStorage Server – adjust IDS rules to log “normal” traffic and
alert on the remainder.

MY.NET.97.147 INF This host attempted to scan hosts with 220 different first octets. It
is likely infected.

MY.NET.53.169 POL Peer to Peer: Gnutella

MY.NET.153.97 POL Peer to Peer: eDonkey

Defensive Recommendations

In order to reduce the volume of scan alerts, the snort sensor rules need to
be adjusted for the DNS servers and known SMTP servers. Alerts for these
hosts should not be discarded entirely, as having an audit trail for them is
important. According to the Snort User's Manual, the “portscan-ignorehosts”
preprocessor is designed to deal with hosts which trigger the portscan
detector frequently. DNS servers are specifically mentioned.

Adjust network or sensor rules with respect to “link local” addresses. As
these address are intended for use on a local network segment only, and
should not be routed, they should be filtered at the border, inbound and
outbound. Also, examine MY.NET.11.6 and MY.NET.11.7 to verify that they
are properly configured.

The AOL address block which seems to be neither internal nor external, 172.
128.0.0 to 128.211.255.255, ought to be handled differently – either made
part of snort's HOME_NET, or routed differently so as not to generate
unnecessary alerts.

- 81 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Place a firewall in front of 30.3 & 30.4, with IDS behind, and a tcpdump audit
trail or flow captures done on firewall. The firewall protecting these hosts
should also control access from MY.NET hosts, with different policies if
needed. These hosts deserve extra protection and attention as they appear
to be intended to enable access of internal users' data from outside the
network. As these would likely be considered mission critical systems,
redundant and load-balancing firewalls are likely in order.

The infected machines listed in the table above need to be cleaned or rebuilt
quickly to prevent them from infecting other machines inside MY.NET.
Additionally, for network segments where hosts change frequently
(residence hall networks, wireless LANs, publicly available jacks), an
authenticating firewall can help reduce the time it takes to find the owner of
an infected host. There are a number of open source and commercial
implementations available, however, it can be a challenge to find a solution
which integrates with an existing network infrastructure.

Finally, there are a number of hosts detected using peer to peer file sharing
systems. These may not be a direct threat to the network or other systems
on the network, however the legal risk involved with copyright infringements
is high, and can be mitigated by enforcing a policy forbidding peer to peer
applications across the campus border. This is often more difficult than
blocking a set of port and protocol pairs, as the authors of peer to peer
applications give their users ready access to methods to bypass simple port
blocking.

Method

The vast majority of the analysis was based on querying a database which
contained the event data. Getting the data into the database proved to be a
challenge because the original data sets contained some errant lines. Small
sections of the scans and alert data showed signs of 2 processes attempting
to write to the file simultaneously. These were discovered by some
preliminary queries to the database which revealed misaligned fields. These
were then cleaned up by hand with a text editor and re-imported into the
database.

Importing data into the database was primarily done with heavy use of sed &
awk to create delimited text files which the database could read directly. For
the out of specification data, Gary Morris' parseOOS.pl script was modified to
work with the schema I used.

The time / address distribution plots were generated with the open source
package “ploticus” by Stephen Grubb using data selected from the
database. An example is provided in the appendix.

- 82 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References
Associated Press. “Brothers face prosecution for 'Napster of the East'”. <http://

www.usatoday.com/tech/techreviews/ 2001-08-15-korea-napster.htm >.
2001. The Associated Press. Visited 22 April 2004.

Canavan, John. “W32.Mockbot.A.Worm”. <http://securityresponse.symantec.com/
avcenter/venc/data/ w32.mockbot.a.worm.html >. Symantec Corporation. 25
February 2004. Visited 19 April 2004.

Castanet Communications. “Castanet Communications Online”.
<http://www.castanet.ca/tech_guides_details.php?a_id=2>. 1997-2003.
Visited 18 April 2004. Victoria, BC, Canada.

CERT. “Vulnerability Note Search Results”. <http://www.kb.cert.org/vuls/
byid?searchview&query=Microsoft+and+IIS>. 2004 Carnegie Mellon
University. Visited 28 April 2004.

Comer, Douglas E. Internetworking with TCP/IP. 2nd ed. Vol 1. New Jersey:
Prentice-Hall, 1991. 93-94.

FileNet Corporation. “FileNet - Enterprise Content Management Solutions”
<http://www.filenet.com/index.asp>. 2003. Visited 18 April 2004.

Forster , Jim. “Re: [snort] 'SMB Name Wildcard'”. <http://archives.neohapsis.com/
archives/snort/2000-01/0222.html>. 17 January 2000. Visited 23 April 2004.

Green, John. “Global Incident Analysis Center - Detects Analyzed 4/24/00 -”.
<http://www.sans.org/y2k/042400.htm>. 24 April 2000. 1999 - 2000 SANS
Institute. Visited 23 April 2004.

Grubb, Stephen C. “ploticus: welcome”. <http://ploticus.sourceforge.net/>.
Copyright 1998-2004. Visited 28 April 2004.

ICANN. “Root-Zone Whois Information”. <http://www.iana.org/cctld/cctld-whois.htm
>. 2004 The Internet Corporation for Assigned Names and Numbers. 26
November 2001. Visited 22 April 2004.

Kevill, Scott. “Help: Ports for Hosting”. <http://www.gameranger.com/help/ports/>.
1998-2003. Visited 18 April 2004.

Microsoft. “Microsoft Security Bulletin MS03-026”. <http://www.microsoft.com/
technet/ security/bulletin/MS03-026.mspx >. 16 July 2003. Visited 21 April
2004.

Microsoft. “Required Network Ports for a Multiplayer Rise of Nations Game”.
<http://support.microsoft.com/?kbid=820877>. 9 June 2003. Visited 16
April 2004.

Morris, Gary. “Contemporary Intrusion Detection and Analysis”.
<http://www.giac.org/practical/Gary_Morris_GCIA.doc>. October 17, 2002

Novak, Judy H. Track 3 – Intrusion Detection In-Depth. Vol 2. N.p.: The SANS
Institute, 2003. p 4-11, 5-19 to 5-22.

Novell. “SUPPORT PACK 1 README”. <http://www.novell.com/documentation/lg/

- 83 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

nw6p /pdfdoc/readmesp1/readmesp1.pdf >. February 2002. Visited 23 April
2004.

Payne, Rick, et.al. “The Internet Ports Database”.
<http://www.portsdb.org/bin/portsdb.cgi?portnumber=32773>. Visited 18
April 2004.

Rafail, Jason A. “Vulnerability Note VU#909678”. <http://www.kb.cert.org/vuls/ id/
909678>. 14 December 2003. Visited 19 April 2004.

Ramakrishnan, K., et. al. “The Addition of Explicit Congestion Notification (ECN) to
IP”. <http://www.ietf.org/rfc/rfc3168.txt>. September 2001. The Internet
Society.

Roesch, Martin. “SnortTM Users Manual v2.1.1”. <http://www.snort.org/docs/
snort_manual.pdf> The Snort Project. 25 February 2004.

Roesch, Marty. “snort-lib”. <http://packetstormsecurity.nl/sniffers/snort/
snort-1.0-lib>. 17 August 1999. Visited 23 April 2004.

Sailor. “how can soribada client create room behind NAPT router”.
<http://oldlook.experts-exchange.com:8080/Networking/Broadband/ISPs/
Q_20816630.html>. 4 December 2003. Visited 22 April 2004.

Seifried, Kurt. “TCP-IP, UDP-IP, TCP, UDP Ports – 8,547 ports”.
<http://www.seifried.org/security/ports/>. 2001. 13 January 2003. Visited 18
April 2004.

Shannon, Heather. “W32.HLLW.Gaobot.gen”.
<http://securityresponse.symantec.com/avcenter/venc/data/
w32.hllw.gaobot.gen.html>. 21 November 2003. Visited 21 April 2004.

Sniperstein. “Gaming Forums - Spearhead [comp] ports”.
<http://www.gamingforums.com/ showthread.php?p=581130#post581130 >
. 2000-2004. Visited 18 April 2004.

Sullivan, Matthew. “Spam and Open Relay Blocking System”.
<http://www.us.sorbs.net/>. Visited 15 April 2004.

TeamSpeak. “Which ports does the TS2 Server use?”. <http://teamspeak.org/
forums/ showthread.php?threadid=866 >. 2000,2001. Visited 18 April 2004.

TeamSpeak. “who is 213.202.250.101?”. <http://teamspeak.org/forums/
showthread.php?threadid=4708>. 2000,2001. Visited 18 April 2004.

Wood, Alex. “Intrusion Detection: Visualizing Attacks in IDS Data”.
<http://www.giac.org/practical/GCIA/Alex_Wood_GCIA.pdf>. 2 February
2003.

- 84 -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix

Ploticus Heatmap

The time vs. address plots were generated by creating a file of data from the
database, and plotting it using the “heatmap” prefab from ploticus (Grubb).

The database query:
select LEFT(dest_ip, LOCATE('.', dest_ip) -1) as topoc,
LEFT(RIGHT(stamp,6),2) as hr,
count(dest_ip) as hits
INTO OUTFILE '/tmp/dests21'
FIELDS TERMINATED BY ' ' LINES TERMINATED BY '\n'
FROM scans2
WHERE dest_ip NOT LIKE 'MY.NET%' GROUP BY topoc,hr ORDER BY topoc,hr ASC;

The invocation of ploticus (one long line):
% pl -prefab heatmap data=/tmp/dests21 x=1 y=2 contentfield=3 xrange="0 255" xbinsize=1
ybinsize=1 yrange="0 24" ylbl="Hour of day" xlbl="first octet" zerocolor="gray(0.8)" yinc=4
xinc=16 xgrid=yes ygrid=yes title="Attack Rate" rectangle="1 1 12 7" -pagesize 14,8
symbol="shape=diamond radius=0.07" -png -o dests21-01.png

For more information on the “prefab” templates included in ploticus visit
http://ploticus.sourceforge.net/doc/prefabs.html .

Database Schema

The MySQL database schema used for the data analysis is given below.

CREATE TABLE `oos` (`stamp` timestamp(14) NOT NULL, `src_ip` varchar(25) NOT NULL default '',
`src_port` mediumint(9) unsigned NOT NULL default '0',`dest_ip` varchar(25) NOT NULL default '',
`dest_port` mediumint(9) NOT NULL default '0', `tos` varchar(10) NOT NULL default '',
`flags` varchar(25) NOT NULL default '', `ttl` int(11) NOT NULL default '0',
`id` bigint(20) unsigned NOT NULL auto_increment, PRIMARY KEY (`id`), KEY `dest_ip` (`dest_ip`),
KEY `src_ip` (`src_ip`)) TYPE=MyISAM;

CREATE TABLE `rule` (`stamp` timestamp(14) NOT NULL, `src_ip` varchar(15) default NULL,
`src_port` mediumint(8) unsigned default NULL, `dest_ip` varchar(15) default NULL,
`dest_port` mediumint(8) unsigned default NULL, `message` varchar(255) NOT NULL default '',
`id` mediumint(8) unsigned NOT NULL auto_increment, PRIMARY KEY (`id`), KEY `src_ip` (`src_ip`),
KEY `dest_ip` (`dest_ip`), KEY `src_port` (`src_port`), KEY `dest_port` (`dest_port`),
KEY `message` (`message`)) TYPE=MyISAM;

CREATE TABLE `scans2` (`stamp` timestamp(14) NOT NULL,`src_ip` varchar(15) NOT NULL default '',
`src_port` mediumint(9) NOT NULL default '0', `dest_ip` varchar(15) NOT NULL default '',
`dest_port` mediumint(9) NOT NULL default '0', `protocol` varchar(8) NOT NULL default '',
`id` mediumint(8) unsigned NOT NULL auto_increment, PRIMARY KEY (`id`), KEY `src_ip` (`src_ip`),
KEY `src_port` (`src_port`), KEY `dest_ip` (`dest_ip`), KEY `stamp` (`stamp`)) TYPE=MyISAM;

CREATE TABLE `spp` (`stamp` timestamp(14) NOT NULL, `facility` varchar(24) NOT NULL default '',
`message` varchar(255) NOT NULL default '', `info` varchar(255) default '',
`id` mediumint(8) unsigned NOT NULL auto_increment, PRIMARY KEY (`id`)) TYPE=MyISAM;

- 85 -

