
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 1 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Intrusion Analysis (GCIA)
Practical Assignment

Version 3.4

Michael T Meacle

June 26th, 2004

Turbo Charging nIDS with Apache Reverse Proxy
“The smart (poor) man’s HTTP protocol Scrubber”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 2 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

TABLE of Contents
Preliminary Notes ...4

1. Evaluation of Severity...4
1 Abstract ..5
2 Introduction ..5
3 Background ..6
4 Lab ...6

2.1 Attempt 1: Fragroute (Fail)..8
2.2 Attempt 2: Fragrouter without IPTables (Fail) ...8
2.3 Attempt 3: Fragrouter with default Fedora IPTables (Fail)9
2.4 Attempt 4: Fragrouter with Custom IPTables (Success)10

5 Results ...11
6 Additional Benefits, Negatives and Alternatives ...16
7 Conclusion ...17
8 References: ..18

Question 2: Network Detects ..20
1. Detect #1 .htaccess access..20

1.1 Source Of Trace: ..20
1.2 Detect was Generated by: ..23
1.3 Probability the source address was spoofed:..23
1.4 Description of attack: ..24
1.5 Attack Mechanism: ...24
1.6 Correlations: ...24
1.7 Evidence of active targeting:...25
1.8 Severity:..25
1.9 Defensive Recommendations: ..26
1.10 Multiple Choice Question: ...26
1.11 Excerpts from Intrusion’s Discussion group:...27

2. Detect #2 nimda ...31
2.1 Source Of Trace: ..31
2.2 Detect was Generated by: ..34
2.3 Probability the source address was spoofed:..35
2.4 Description of attack: ..35
2.5 Attack Mechanism: ...36
2.6 Correlations: ...36
2.7 Evidence of active targeting:...36
2.8 Severity:..36
2.9 Defensive Recommendations: ..37
2.10 Multiple Choice Question: ...37

3. Detect #3 FTP command overflow attempt ..38
3.1 Source Of Trace: ..38
3.2 Detect was Generated by: ..41
3.3 Probability the source address was spoofed:..42
3.4 Description of attack: ..42
3.5 Attack Mechanism: ...43
3.6 Correlations: ...43
3.7 Evidence of active targeting:...43
3.8 Severity:..43
3.9 Defensive Recommendations: ..44
3.10 Multiple Choice Question: ...44

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 3 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Question 3: Analysis This ...46
1. Executive Summary ...46
2. Origin of the Logs ...47

2.1 List of Files Analysed..47
3. Traffic and Network Analysis ..47

3.1 Alerts ..48
3.2 Scans..57
3.3 OOS..66

4. Top Priority Issues..67
5. Top Talkers ..68
6. Registration Information ...68
7. Link Graph..69
8. Insights on Internal Machines...69
9. Defensive Recommendations...70
10. Analysis Process ..70

References Q3 ...72

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 4 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Preliminary Notes

Throughout this document there are numerous references to severity. As everyone’s
measure of severity will differ slightly to assist the reader I have included the
definition taken directly from the assignment. [1] This idea, as has a lot of the
structure of this assignment, is based on the previous GCIA submission by Sylvain
Randier. [2]

1. Evaluation of Severity
Severity =
(Criticality + Lethality)–(System countermeasures + Network countermeasures)

Where:
Measure Description (extracted from assignment 1)
Criticality Is a measure of how critical the target system is.
Lethality Is a measure of how severe the damage to the

target would be if the attack succeeded.
System Countermeasure Is a measure of the strength of the defensive

mechanisms in place on the host itself.
Network Countermeasure Is a measure of the strength of the defensive

mechanisms in place on the network.

Each component should be allocated a value of between 1 (lowest) and 5 (highest).

The more positive the calculated severity is the more likely the event will have
negative impact on your organisation.

A consistent method used to calculate the severity of each event, thus identifying
events of interests, can be invaluable as a method of triage during a large-scale
attack. [3]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 5 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Question 1: Turbo Charging IDS with Apache Reverse
Proxy

Option 1 - IDS Technology or Challenge

1 Abstract
Network Intrusion Detection System (nIDS), such as snort, can provide an effective
and timely alerting to malicious activity. Unfortunately due to a brilliant article by
Ptacek [4] some IDS can be rendered totally ineffective in detecting some attacks. In
this paper I look at a cheap solution for a small organisation with a small online
presence to improve the effectiveness of their nIDS.

I will demonstrate in a lab how to use a reverse proxy to sanitise all http traffic both
at the network and transport layer. As a result of removing any ambiguities in traffic
flows seen both by the IDS and ultimately any web server, any nIDS can be made to
operate more effectively.

However getting the ‘simple’ lab to work proved much more challenging than
expected. While conceptually it is a very simple lab; once one starts analysis of
alerts, capture sizes and individual frames it becomes apparent that more refinement
was required. In fact, I have included 4 distinct phases in the evolution of the lab.
This evolution to the successful lab has been included to assist understanding and
facilitate replication by fellow peers.

Relative comparison of the results obtained in the final lab will be used to
demonstrate how effective a simple inline proxy can be in improving the performance
of any nIDS.

The results speak for themselves, without a doubt an inline reverse proxy can be a
very cost effective way to improve the performance of nIDS monitoring of http traffic.

2 Introduction
Many years ago I read, and re-read the evolutionary article “Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection” [4]. At the time I was actively
involved with System administration, Network performance and firewall maintenance.
Surprisingly while I had knowledge of IDS’s my primary reason for reading the article
was not to understand NIDS but to get a better understanding of TCP/IP for use in
my day-to-day job. Ptacek’s article outlined a number of techniques to attack a
network element oblivious to a number of commonly available commercial NIDS.

Around the same time I read an interesting article “Know Your Enemy: Statistics”. [5]
One interesting point outlined in the article by the Honeynet Project is the ability of a
honeynet to help minimise false positive’s and false negatives as ‘all’ data is of
interest.

A couple years ago in a flash of brilliance I thought why not reduce false positives
and negatives by using some device to remove all traces of the tactics outlined by
Ptacek. I subsequently bounced, off a number of work colleagues, the idea of using

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 6 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

a reverse proxy as a cost effective way to improve IDS effectiveness. Due to a lack
of time I put the idea away for a rainy day.

Fast-forward to January 2004 and I had the fortune to attend a SANS GIAC IDS
course in Sydney. Now the challenging part …. “THE PRACTICAL”.

3 Background
As part of my practical I decided to investigate “my” idea of reducing false positives
and negatives. At least I thought it was my idea until I consulted google [6]. I soon
learnt that I wasn’t alone in my endeavour to turbo charge a nIDS byimproving the
quality of data an nIDS has to work with. In fact, not only has it been thoroughly
researched, due to research timings, it has two different names normalisation [7] and
scrubbing [8].

I also identified two relevant practicals on SANS reading room. The first by Ian
Martin gives a very detailed chronological analysis and culminated in an in-depth
look at normalisation. [9] The second article by Benjamin Sapiro, as part of his GSEC
practical, focused on both commercial and free packet scrubbers. [10]

My intention is to demonstrate how a small business with a small online presence
can use apache in reverse proxy mode to scrub/normalise http prior to being
monitored by a suitable nIDS. I have intentionally used free, commonly available
software so that this is both achievable and affordable to small organisations or the
budding student wishing to experiment.

4 Lab
Now for the easy part, or at least I thought so, to demonstrate how apache’s reverse
proxy can be used in increasing the effectiveness of a NIDS.

Where effectiveness means:
 Less false positives
 Less false negatives
 Less noisy data for an analyst to analyse

To do this I will run two sets of tests. The first was http vulnerability scan using
Nessus [11]. Nessus 2.0.10 for Linux was used. In this test I enabled all the “CGI
abuses“ plugins. In the second test I used wget [12] to make a number of valid http
page requests; 6 small gifs totalling 24k. For this second test the standard version of
wget provided with Fedora was used, rpm reported wget-1.8.2-15.3.

During each test I would use a suitable tool to modify the TCP/IP data stream as
outlined in Ptacek’s brilliant article [4]. While a number of tools could be used, two
tools, both by the Dug Song, were identified as they provided the easy ability to
modify the packets. The first called fragroute [13] can only be used to manipulate
traffic originating from the host it is running on. The second tool fragrouter [14] can
only work on traffic passing through the host it is operating on.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 7 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Fragroute 1.2-1 and Fragrouter 1.6-0 were both obtained as rpm’s from Dag Wieers
Apt Repository [15]

I subsequently re-ran each test with apache reverse proxy inline. A full binary
capture of each test was saved using tcpdump [16]. Each capture was then analysed
with snort [17]. The version of snort used was 2.1.2 (Build 25). Relative comparisons
were then made for each of the tests against each baseline test.

While it could be argued that my testing methodology is flawed due to the fact I
never mixed valid traffic with invalid traffic as detailed in the article “Intrusion
Detection Testing and Benchmarking Methodologies”[18]. I would argue that I am
doing subjective evaluation based on relative performance as opposed to absolute
performance.

All tests were performed on decommissioned hardware. Three boxes (mangler,
gateway, www) were old Ipex Centra with quad Zeon 550MHz processors and 1GB
ram. The client pc was AMD Athlon 1.15GHz with 512MB ram. All were fresh builds
based on a basic custom install of Fedora FC1.

Ethernet 3Ethernet 2Ethernet 1

client wwwgatewaymangler

eth1
down

etho
10.1.4.2

eth1
10.1.1.1

etho
10.1.1.2

eth1
10.1.2.2

etho
10.1.2.3

eth1
down

etho
10.1.4.1

#M1

#M4

#M5

#M6

#M3

#M2

Figure 1: Basic Lab Layout

Common components of lab for all 4 attempts was as follows:
 www

o standard install of apache configured to serve up pages
 gateway (e.g server running the reverse proxy)

o no iptables and standard ip forwarding enabled
o apache configured to listen on 10.1.1.2 and reverse proxy all requests

to 10.1.2.3, see differential config in figure 2.
o binary capture files were taken on both eth0 and eth1

 client
o snort [17] for analysis of captures

[root@gateway root]$ diff httpd.conf httpd.conf.orig
259d258
< ServerName 10.1.1.2:80
290d288
<
1053,1058d1050
<
<
< <VirtualHost 10.1.1.2:80>
< ProxyPass / http://10.1.2.3/
< ProxyPassReverse / http://10.1.2.3/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 8 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

< </VirtualHost>

Figure 2: Difference between an actual Apache configuration and original
configuration file on the gateway server.

2.1 Attempt 1: Fragroute (Fail)
This was my initial attempt at demonstrating and measuring the effectiveness of
apache reverse proxy.

The lab was set as follows:
 See previous common configurations
 mangler

o nessus[11]
o wget[12]
o fragroute [13]

 client was not used; all tests were initiated from mangler

While wget was able to transfer files without difficulty, nessus refused to work. As
shown in the following analysis of a capture on gateway interface eth0 (#m4) nessus
could not perform any tests as tcp resets were being generated as soon as syn/ack
were received.

D:\sans\T3ids\data>windump -n -r test1 "port 80"
17:56:02.396614 IP 10.1.1.1.24273 > 10.1.2.3.80: S
4268841998:4268841998(0) win 8

17:56:02.397360 IP 10.1.2.3.80 > 10.1.1.1.24273: S
505242930:505242930(0) ack 42 68841999 win 5840 <mss 1460> (DF)

17:56:02.397604 IP 10.1.1.1.24273 > 10.1.2.3.80: R
4268841999:4268841999(0) win 0 (DF)

The yellow highlight being the most important.

Footnote: Challenge for the astute reader–determine if it is possible to get this to
work using iptables as outlined in 2.4

2.2 Attempt 2: Fragrouter without IPTables (Fail)
Time for a different tack; try to use fragrouter[14] as opposed to fragroute[13]. The
lab was set as follows:
 See previous common configurations
 mangler

o fragrouter [14]
 client

o nessus [11]
o wget [12]

All tests using both wget and nessus appeared to complete successfully. However I
was concerned why the wget reverse proxied baseline tests had approximately twice
as many packets from client to gateway (3553) than from gateway to www (1629).
For this baseline test one would expect the same amount of packets for client to
www irrespective of the inline proxy.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 9 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

After close inspection of the wget baseline captures between gateway and www I
was able to identify each packet from client to www was duplicated. In fact I was able
to identify that the original packet was passed straight through while the second
packet, some 28usec latter, appeared to originate from the fragrouter software. This
was determined by the fact that both (client to www) packets appeared identical
except the second packet ttl was 64 as opposed to the original packet with a ttl of 63.
Original Packet
18:07:54.860174 IP (tos 0x10, ttl 63, id 4773, len 59) 10.1.3.1.32775 >
10.1.2.3.80: P [tcp sum ok] 1:8(7) ack 1 win 5840 <nop,nop,timestamp
582635 269265558> (DF)

Fragrouter Generated Packet
18:07:54.860202 IP (tos 0x10, ttl 64, id 4773, len 59) 10.1.3.1.32775 >
10.1.2.3.80: P [tcp sum ok] 1:8(7) ack 1 win 5840 <nop,nop,timestamp
582635 269265558> (DF)

Each of the highlights shows important relationships between the two
traces.
The yellow highlight being the most important.

2.3 Attempt 3: Fragrouter with default Fedora IPTables (Fail)
In the previous attempt I identified that the original packet from client to www was
duplicated. I decided to use IPTables on mangler to drop the original packet from
client to www. This was easily implemented as during the initial install I installed
iptables with a default restrictive policy. I had to manually start the firewall software
as I had previously stopped it.

The rule I added to drop the original packet from client to www was entered as
follows using the standard iptables CLI.

root@mangler# iptables–I FORWARD–p tcp–dport 80–j DROP

The rest of the lab was set as follows:
 See previous common configurations
 mangler

o fragrouter [14]
 client

o nessus [11]
o wget [12]

Once again all tests using both wget and nessus appeared to complete successfully.
But on closer inspection, I became concerned why the number of packets in the
baseline wget non-proxied request (1651) was almost identical to the number of
packets in fragment test [-F1] (1654). Considering fragrouter was reporting
fragmentation was taking place the number of packets in the capture indicated
otherwise.

Extract Showing Fragrouter Generating 3 Fragments
[root@mangler sbin]# ./fragrouter -p -i eth0 -F1
fragrouter: frag-1: ordered 8-byte IP fragments
10.1.3.1.32777 > 10.1.2.3.80: P ack 1644734489 win 5840

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 10 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

<nop,nop,timestamp 621358 269303928> (frag 4201:32@0+) [tos 0x10]
10.1.3.1 > 10.1.2.3: (frag 4201:8@32+) [tos 0x10]
10.1.3.1 > 10.1.2.3: (frag 4201:8@40) [tos 0x10]

Extract Showing The Defragmented Packet captures at #M4
D:\sans\T3gcia\data>windump -n -r test3 -S -v

18:14:22.049776 IP (tos 0x10, ttl 64, id 4201, len 68)
10.1.3.1.32777 > 10.1.2.3.80: P [tcp sum ok]
2193254641:2193254657(16) ack 1644734489 win 5840
<nop,nop,timestamp 621358 269303928>

Each of the highlights shows important relationships between the two
traces.
The yellow highlight being the most important.

I stopped the firewall software and reran a simple fragmented wget. Analysis of the
packets on gateway indicated effective ip fragmentation. So it appeared iptables was
defragmenting fragrouters’ fragmented ip packets prior to them leaving the mangler
server. Contained within Rusty Russell’s packet filtering HowTo is a single
throwaway line stating connection tracking, if enabled, will defragment all packets.
[19].

A quick check of loaded modules when iptables was running, confirmed that the
iptables connection-tracking module was loaded.

Extract of loaded modules showing
[root@mangler sbin]# lsmod
Module Size Used by Not tainted
<cut>
ipt_REJECT 4344 1 (autoclean)
ipt_state 1080 3 (autoclean)
ip_conntrack 28840 1 (autoclean) [ipt_state]
iptable_filter 2444 1 (autoclean)
ip_tables 15264 3 [ipt_REJECT ipt_state
iptable_filter]
<cut>

The yellow highlight being the most important.

2.4 Attempt 4: Fragrouter with Custom IPTables (Success)
In the previous attempt I identified that fragmentation was not working as expected
due to the fact iptables connection tracking module was being loaded when iptables
was being started. I initially flushed all tables, which contained connection-tracking
directives hoping, but not expecting, iptables to automatically unload the module. As
expected it remained loaded.

To allow iptables to start without any reference to connection tracking I edited to
default firewall rules and removed all references to connection tracking.

Stripped IPTABLES startup configuration
[root@mangler /]# cat /etc/sysconfig/iptables
*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 11 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

:OUTPUT ACCEPT [0:0]
-A FORWARD -p tcp --dport 80 -j DROP
COMMIT

The yellow highlight being the most important.

The rest of the lab was set as follows:
 See previous common configurations
 mangler

o fragrouter [14]
o iptable rule to drop original packets from client

 client
o nessus [11]
o wget [12]

All tests using both wget and nessus now appear to complete successfully; what’s
more initial analysis indicated tests were valid.

5 Results
A lot of data was collected during these tests. Each of the final 36 capture files kept
and analysed were captured on the gateway server [#M4, #M5]. The total size of the
capture files was 950MB.

A script was written to analyse each capture twice with snort. All snort signatures
and all pre-processors were enabled for each analysis. Each run saved its result in a
separate directory for further analysis. In the first run the stream4 pre-processor had
evasion alerting disabled; snort’s default when stream4 pre-processor is enabled. In
the second run the stream4 pre-processor had evasion alerting enabled.

To assist in understanding the name of each capture the following naming
convention was used:
Fragment Comment
nessus A test in which nessus was used
wget A test in which wget was used
np No proxy e.g. directly connecting to www
px Proxy, e.g. connecting via reverse proxy
eth0 Eth0 on gateway
eth1 Eth1 on gateway

Fragrouter test
B1 -B1: base-1: normal IP forwarding
F1 -F1: frag-1: ordered 8-byte IP fragments
F7 -F7: frag-7: ordered 16-byte fragments, fwd-overwriting
T7 -T7: tcp-7: 3-whs, ordered 1-byte segments, interleaved null

segments
C2 -C2: tcbc-2: 3-whs, ordered 1-byte segments, interleaved SYNs
M1 -M1: misc-1: Windows NT 4 SP2 -

http://www.dataprotect.com/ntfrag/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 12 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

tcpdump capture Time Info Snort

Filename Size real user sys Total # Alerts
nessus-np-eth0-B1 5077071 1.21 0.95 0.1 2.26 410
nessus-np-eth0-F1 10320228 1.77 1.34 0.13 3.24 414
nessus-np-eth0-F7 16598843 2.11 1.52 0.4 4.03 3974
nessus-np-eth0-T7 246225452 21.28 18.35 1.43 41.06 4528
nessus-np-eth1-B1 5074085 1.33 0.86 0.18 2.37 410
nessus-np-eth1-F1 8624078 1.59 1.33 0.1 3.02 414
nessus-np-eth1-F7 14472241 2.19 1.41 0.5 4.1 3974
nessus-np-eth1-T7 243315886 21.62 18.61 1.36 41.59 4536
nessus-px-eth0-B1 5042589 1.39 0.98 0.11 2.48 418
nessus-px-eth0-F1 13598452 2.44 1.54 0.25 4.23 396
nessus-px-eth0-F7 13783612 1.86 1.32 0.27 3.45 3093
nessus-px-eth0-T7 351555232 29.91 25.63 1.73 57.27 3748
nessus-px-eth1-B1 5021455 1.35 0.96 0.07 2.38 0
nessus-px-eth1-F1 4966478 1.15 0.92 0.09 2.16 0
nessus-px-eth1-F7 4979965 1.19 0.9 0.1 2.19 0
nessus-px-eth1-T7 719731 0.73 0.54 0.08 1.35 0
Table 1: Nessus capture with snort’s Evasion Alert Disabled

tcpdump capture Time Info Snort

Filename Size real user sys Total # Alerts
nessus-np-eth0-B1 5077071 1.73 0.97 0.12 2.82 524
nessus-np-eth0-F1 10320228 1.89 1.26 0.19 3.34 712
nessus-np-eth0-F7 16598843 2.26 1.58 0.4 4.24 3980
nessus-np-eth0-T7 246225452 72.91 30.52 35.3 138.73 576232
nessus-np-eth1-B1 5074085 1.46 0.97 0.1 2.53 524
nessus-np-eth1-F1 8624078 1.5 1.26 0.2 2.96 712
nessus-np-eth1-F7 14472241 2.2 1.51 0.42 4.13 3980
nessus-np-eth1-T7 243315886 70.61 30.12 33.34 134.07 576224
nessus-px-eth0-B1 5042589 1.27 0.91 0.13 2.31 420
nessus-px-eth0-F1 13598452 1.76 1.46 0.22 3.44 402
nessus-px-eth0-F7 13783612 1.85 1.24 0.35 3.44 3101
nessus-px-eth0-T7 351555232 83.88 39.06 34.06 157 707134
nessus-px-eth1-B1 5021455 1.57 0.96 0.09 2.62 172
nessus-px-eth1-F1 4966478 1.22 0.92 0.11 2.25 48
nessus-px-eth1-F7 4979965 1.31 0.92 0.08 2.31 68
nessus-px-eth1-T7 719731 0.88 0.55 0.07 1.5 4
Table 2: Nessus capture with snort’s Evasion Alert Enabled

tcpdump capture Time Info Snort

Filename Size real user sys Total # Alerts
wget-np-eth0-B1 7868 1.09 0.51 0.05 1.65 0
wget-np-eth0-C2 2015202 0.81 0.6 0.08 1.49 0
wget-np-eth0-F1 12680 0.7 0.5 0.05 1.25 0
wget-np-eth0-F7 13282 0.72 0.52 0.03 1.27 5
wget-np-eth0-M1 7920 0.73 0.47 0.08 1.28 0
wget-np-eth1-B1 7868 0.74 0.46 0.08 1.28 0
wget-np-eth1-C2 1978322 0.87 0.54 0.13 1.54 0
wget-np-eth1-F1 11322 0.69 0.47 0.08 1.24 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 13 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

tcpdump capture Time Info Snort

Filename Size real user sys Total # Alerts
wget-np-eth1-F7 12038 0.75 0.46 0.08 1.29 5
wget-np-eth1-M1 7786 0.7 0.45 0.09 1.24 0
wget-px-eth0-B1 7570 0.71 0.5 0.04 1.25 0
wget-px-eth0-C2 1260389 0.85 0.55 0.08 1.48 0
wget-px-eth0-F1 12926 0.67 0.47 0.08 1.22 0
wget-px-eth0-F7 13148 0.73 0.48 0.06 1.27 5
wget-px-eth0-M1 7570 0.72 0.5 0.04 1.26 0
wget-px-eth1-B1 7754 0.74 0.46 0.08 1.28 0
wget-px-eth1-C2 7754 0.81 0.48 0.08 1.37 0
wget-px-eth1-F1 7754 0.68 0.47 0.07 1.22 0
wget-px-eth1-F7 7754 0.72 0.47 0.07 1.26 0
wget-px-eth1-M1 7754 0.73 0.49 0.06 1.28 0
Table 3: wget capture with snort’s Evasion Alert Disabled

tcpdump capture Time Info Snort

Name Size real user sys Total # Alerts
wget-np-eth0-B1 7868 0.78 0.47 0.07 1.32 0
wget-np-eth0-C2 2015202 1.46 0.81 0.48 2.75 9864
wget-np-eth0-F1 12680 0.76 0.45 0.08 1.29 0
wget-np-eth0-F7 13282 0.73 0.49 0.03 1.25 5
wget-np-eth0-M1 7920 0.76 0.44 0.11 1.31 0
wget-np-eth1-B1 7868 0.74 0.41 0.11 1.26 0
wget-np-eth1-C2 1978322 1.77 0.8 0.66 3.23 10094
wget-np-eth1-F1 11322 0.7 0.43 0.12 1.25 0
wget-np-eth1-F7 12038 0.99 0.48 0.08 1.55 5
wget-np-eth1-M1 7786 0.7 0.45 0.1 1.25 0
wget-px-eth0-B1 7570 0.74 0.47 0.08 1.29 0
wget-px-eth0-C2 1260389 1.13 0.62 0.28 2.03 4574
wget-px-eth0-F1 12926 0.71 0.42 0.13 1.26 0
wget-px-eth0-F7 13148 1.02 0.46 0.07 1.55 5
wget-px-eth0-M1 7570 0.7 0.44 0.12 1.26 0
wget-px-eth1-B1 7754 0.72 0.41 0.13 1.26 0
wget-px-eth1-C2 7754 0.8 0.45 0.1 1.35 0
wget-px-eth1-F1 7754 0.7 0.46 0.07 1.23 0
wget-px-eth1-F7 7754 0.81 0.44 0.1 1.35 0
wget-px-eth1-M1 7754 0.75 0.4 0.13 1.28 0
Table 4: wget capture with snort’s Evasion Alert Enabled

Tables 1 to 4 shows a summary of the raw analysis of each capture. They contain a
lot of data and are shown for completeness in obtaining table 5.

Disable Evasion Alert Enable Evasion Alert

Gateway eth1 No Proxy Proxy No Proxy Proxy

Test Total # Alerts Total # Alerts Total # Alerts Total # Alerts
nessus B1 2.37 410 2.38 0 2.53 524 2.62 172
nessus F1 3.02 414 2.16 0 2.96 712 2.25 48
nessus F7 4.1 3974 2.19 0 4.13 3980 2.31 68

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 14 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Disable Evasion Alert Enable Evasion Alert

Gateway eth1 No Proxy Proxy No Proxy Proxy

Test Total # Alerts Total # Alerts Total # Alerts Total # Alerts
nessus T7 41.59 4536 1.35 0 134.07 576224 1.5 4

wget B1 1.28 0 1.28 0 1.26 0 1.26 0
wget C2 1.54 0 1.37 0 3.23 10094 1.35 0
wget F1 1.24 0 1.22 0 1.25 0 1.23 0
wget F7 1.29 5 1.26 0 1.55 5 1.35 0
wget M1 1.24 0 1.28 0 1.25 0 1.28 0

9339 0 591539 292
Table 5: Summary of Analysis for Comparison

Table 5 is a summary of the most important fields from tables 1-4. To ensure table 5
is as concise as possible it only contains output of the gateway server (#M5). Data is
displayed both when used as a reverse proxy and as a normal forwarding router.

The initial review of the values contained in table 5 raises some interesting results.
The most glaring is variation (0–591 539) in the number of alerts that are created
for the same traffic. Table 5 compares and contrast between using an inline proxy
and not having the inline proxy to normalise the traffic. Additionally table 5 shows
another dimension that is whether enabling the evasion alert option to the stream4
pre-processor has any effect.

Depending on how the same capture files are analysed snort will produce either 0,
292, 9339 or 591 539 alerts.

Which one is most correct?
Which one would your prefer to manage?

In trying to answer this, let us start with the wget results. Each test involved
downloading 5 small gif’s, total size 24kB. Yet 5.4MB of data was transferred.
Depending on how snort was configured the analyst may have 0,5 or 10099 alerts to
wade through. Remember these were simple obfuscated successful wget's with no
malicious traffic. So in effect they are all false positives. All these false positives put
load on both the analyst and the IDS infrastructure. In fact if the analyst regularly had
to look through 11k of false positives he would either miss the real events or stop
looking.[20]

An astute reader might have noticed in the proxied nessus scan when the anti-
evasion was enabled that some 292 alerts were created. These, especially the 172
in the baseline concerned me. On closer inspection I discovered they were all
categorised as “TCP CHECKSUM CHANGED ON RETRANSMISSION (possible
fragroute) detection”. Considering we had a proxy inline to remove all ambiguities
this seemed odd. On closer inspection of alerts in B1 and F1 captures I was able to
confirm each time it happened the proxy had retransmitted a tcp packet
approximately 210msec after the first. In all cases the two packets were identical
except for the first tcp timestamps had changed. This new timestamp results in a
new tcp checksum. Unfortunately snort stream4 pre-processor expects the same
checksum for retransmitted tcp frames.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 15 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Extract from nessus-px-eth1-B1 alert
[**] [111:16:1] (spp_stream4) TCP CHECKSUM CHANGED ON RETRANSMISSION
(possible fragroute) detection [**]
05/08-12:09:04.590814 10.1.2.2:60612 -> 10.1.2.3:80
TCP TTL:64 TOS:0x0 ID:11869 IpLen:20 DgmLen:460 DF
AP Seq: 0xA94DCD06 Ack: 0xC2D9CC70 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 176022388 210223287

Extract Showing The Deframented Packet
[root@gateway /]# tcpdump -n -s 0 -r nessus-px-eth1-B1 'src port 60612
and tcp[tcpflags] & tcp-push != 0' -X

12:09:04.383897 10.1.2.2.60612 > 10.1.2.3.http: P
2840448262:2840448670(408) ack 3269053552 win 5840
<nop,nop,timestamp 176022367 210223287> (DF)

0x0000 4500 01cc 2e5c 4000 4006 f2c9 0a01 0202 E....\@.@.......
0x0010 0a01 0203 ecc4 0050 a94d cd06 c2d9 cc70P.M.....p
0x0020 8018 16d0 39ad 0000 0101 080a 0a7d e35f9........}._
0x0030 0c87 c0b7 4745 5420 2f50 5355 7365 722fGET./PSUser/
<cut>

12:09:04.590814 10.1.2.2.60612 > 10.1.2.3.http: P
0:408(408) ack 1 win 5840
<nop,nop,timestamp 176022388 210223287> (DF)

0x0000 4500 01cc 2e5d 4000 4006 f2c8 0a01 0202 E....]@.@.......
0x0010 0a01 0203 ecc4 0050 a94d cd06 c2d9 cc70P.M.....p
0x0020 8018 16d0 3998 0000 0101 080a 0a7d e3749........}.t
0x0030 0c87 c0b7 4745 5420 2f50 5355 7365 722fGET./PSUser/
<cut>
0x01c0 2e6c 6162 2e63 6f6d 0d0a 0d0a .lab.com....

Each of the highlights show important relationships between the two
traces.
The yellow and red highlight being the most important.

While 210mSec seems excessively low for fast retransmit; RTO as low as 200mSec
are now commonly seen since Linux kernel 2.4 [21].

A review of the stream4 pre-processor source code confirms for retransmitted
packets of the same length only tcp checksum’s are used to validate if data has been
changed. The challenge here for the snort developer is to correctly handle “TCP
Stream Reassembly” ambiguities as detailed in section 5.4 of Ptacek paper [4]. From
my initial analysis of these false positives, I believe that this part of the snort code
could be enhanced to consider the case where the only changed data in the
retransmitted packet is the monotonically increasing TCP timestamp options. While
this could help reduce some false positives in the case of TCP retransmits it
becomes quite complex if the developer wishes to allow for repacketization [22]. If
efficient checksum recalculation techniques as outlined in rfc1141[23] are used, it
should be possible to substantially reduce false positives without a performance
impact on Snort.
Extract source snort 2.1.2(25) src/preprocessors/spp_stream4.c
3735 /* check for retransmissions */
3736 returned = (StreamPacketData *) ubi_sptFind(&s->data,
(ubi_btItemPtr)spd);
3737
3738 if(returned != NULL)
3739 {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 16 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

3740 DEBUG_WRAP(DebugMessage(DEBUG_STREAM, "WARNING: returned
packet not null\n"););
3741 if(returned->payload_size == p->dsize)
3742 {
3743 /* check to see if the data has been ack'd */
3744 if(s->last_ack < pkt_seq + p->dsize)
3745 {
<cut>
3767 DEBUG_WRAP(DebugMessage(DEBUG_STREAM,
3768 "Checking Packet Contents versus Packet
Store\n"););
3769
3770 if(returned->cksum != p->tcph->th_sum)
3771 {
3772 DEBUG_WRAP(DebugMessage(DEBUG_STREAM, "TCP Checksums not
equal\n"););
<cut>
3783 SetEvent(&event, GENERATOR_SPP_STREAM4,
3784 STREAM4_EVASIVE_RETRANS_DATA, 1, 0, 5, 0);
3785
3786 CallAlertFuncs(p, STREAM4_EVASIVE_RETRANS_DATA_STR,
3787 NULL, &event);
3788

The yellow and red highlight being the most important.

6 Additional Benefits, Negatives and Alternatives
Thus far we have only looked at how effective an inline reverse proxy can be at
reducing false positives and false negatives in http traffic. This alone can make any
installation of an NIDS so much more effective however there are many more
additional benefits from installing a fully configured reverse proxy:
 Centralised logging of all incoming requests
 Centralised URL and content filtering and rewriting [24]
 Load Sharing
 Centralised Authentication effectively providing single http sign-on
 Static pages can be cached taking load off back-end dynamic servers

So are reverse proxies the perfect solution to turbo charging nIDS?
Unfortunately there are some negatives:
 Latency of a very heavily loaded reverse proxy
 Risks becoming an open Internet based anonymiser if set up incorrectly e.g.
see the “ProxyRequests” directive [25].

 Reliance on the security of the OS and reverse proxy application[26]
 In the case of SSL, requires certificates to be situated in DMZ[26]

With so many benefits, and research papers back to 1999/2000, there must be
alternative scrubbing and normalisation solutions available. Fortunately there is,
unfortunately most solutions are commercial and as such cost real money. Each
solution provides scrubbing and normalisation to different levels and performance.
Here is a small sample of available solutions / product feature:
 Application based firewalls; various vendors
 Intrusion Detection Prevention; various vendors
 eGap Application Firewall [26]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 17 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

 Top Layer IPS 5500 [27]
 Juniper’s Deep Packet Inspection [28]
 Hogwash [29]

7 Conclusion
The use of an inline reverse proxy can be very effective in improving the
performance of an IDS monitoring http traffic. One of the reasons most nIDS suffer
from false positives or negatives is due to ambiguities in implementations of TCP/IP
stacks by various vendors. By placing an inline reverse proxy I have demonstrated a
cheap and effective way of reducing the quantity and improving the quality of data an
IDS has to monitor.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 18 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

8 References:

1 GIAC Certified Intrusion Analyst (GCIA),
URL: http://www.giac.org/GCIA_assignment_print.php (30/01/2004)

2 Randier Sylvain, GCIA Practical Assignment.
URL: http://www.giac.org/practical/GCIA/Sylvain_Randier_GCIA.pdf (01/04/2004)

3 SANS Institute,
IDS Signatures and Analysis–Part1 & 2, Chapter 4 (Sydney 2004)

4 Ptacek, Thomas H and Newsham, Timothy N.
Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection
URL: http://www.snort.org/docs/idspaper/ (18/04/2003)

5 Honeynet Project.
Know Your Enemy: Statistics.
URL: http://project.honeynet.org/papers/stats/ (26/11/2001)

6 Google, URL: http://www.google.com (various)

7 Handley, Mark and Paxson, Vern and Kreibich, Christian.
Network Intrusion Detection: Evasion, Traffic Normalization, End-To-End Protocol Semantics
URL: http://www.icir.org/vern/papers/norm-usenix-sec-01.pdf (29/04/2004)

8 Malan, G. Robert and Watson, David and Jahanian, Farnam and Howell, Paul.
Transport and Application Protocol Scrubbing
URL: http://www.cs.ucsd.edu/~savage/cse291/papers/Malan00.pdf (15/02/2004)

9 Martin, Ian.
Packet Level Normalisation
URL: http://www.sans.org/rr/papers/70/1128.pdf (17/02/2004)

10 Sapiro, Benjamin.
Application Level Content Scrubbers. August 22, 2001.
URL: http://www.sans.org/rr/paper.php?id=800 (5/4/2204)

11 Nessus,
URL: http://www.nessus.org (1/2/2004)

12 Wget,
URL: http://www.gnu.org/software/wget/wget.html (3/4/2004)

13 Song, Dug
Fragroute
URL: http://monkey.org/~dugsong/fragroute/ (3/4/2004)

14 Song, Dug
Fragouter
URL: http://packetstorm.widexs.nl/UNIX/IDS/nidsbench/fragrouter.html (3/4/2004)

15 Wieers, Dag
DAG APT Repository
URL: http://dag.wieers.com/packages/ (3/4/2004)

16 TCPDUMP
URL: http://www.tcpdump.org (3/4/2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 19 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

17 Snort,
URL: http://www.snort.org/ (1/4/2004)

18 Athanasiades, Nicholas and Abler, Randal and Levine, John and Owen, Henry and Riley George.
Intrusion Detection Testing and Benchmarking Methodologies
URL:
http://users.ece.gatech.edu/~owen/Research/Conference%20Publications%20/sim_IIAW2003.pdf
(7/4/2004)

19 Rusty, Russell
Linux 2.4 Packet Filtering HOWTO
URL: http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO-7.html#ss7.3
(21/4/2004)

20 Newman, David and Snyder, Joel and Thayer, Rodney
Crying wolf: False alarms hide attacks
URL: http://www.nwfusion.com/techinsider/2002/0624security1.html (13/05/2004)

21 Sarolahti, Pasi and Kuznetsov, Alexey
Congestion Control in Linux TCP.
URL: http://www.cs.helsinki.fi/research/iwtcp/papers/linuxtcp.pdf (15/05/2004)

22 Stevens, W Richard
TCP/IP Illustrated Volume 1, The Protocols
Reading: Addison Wesley Professional Computing Series, 1994, PP 272,349,350

23 Mallory, T and Kullberg, A
Incremental Updating of the Internet Checksum (January 1990)
URL: http://www.cse.ohio-state.edu/cgi-bin/rfc/rfc1141.html (26/06/2004)

24 Apache HTTP Server 2.0, Apache Module mod_rewrite
URL: http://httpd.apache.org/doc-2.0/mod/mod_rewrite.html (23/04/2003)

25 Apache HTTP Server Version 2.0, Apache Module mod_proxy
URL: http://httpd.apache.org/doc-2.0/mod/mod_proxy.html (23/04/2003)

26 E-GAP Application Firewall Appliance,
A Technical Overview, January 2003
URL: http://www.whalecommunications.com/site/Whale/Corporate/Whale.asppi=30 (5/04/2004)
[requires email registration]

27 Lindstrom, Pete
Intrusion Prevention Systems(IPS): Next Generation Firewalls
URL: http://www.toplayer.com/pdf/Whitepapers/Spire%20-%20Top%20Layer%20WP.pdf
(13/04/2004) [requires email login]

28 Sorensen, Sarah
The Need for Pervasive Application-Level Attack Protection
URL:
http://www.netscreen.com/auth/login.jsp?_returnurl=http%3A%2F%2Fwww.juniper.net%2Fsolutions%
2Fliterature%2Fwhite_papers%2Fpervasive_application_level_wp.pdf&_id=www.whitepapers
(13/05/2004) [online registration required]

29 Haile, Jed and Larsen, Jason
Securing an Unpatchable webserver …Hogwash, last updated July 31,2001
URL: http://www.securityfocus.com/infocus/1208 (23/05/2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 20 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Question 2: Network Detects

1. Detect #1 .htaccess access
Extract from /tmp/alert
[**] [1:1129:4] WEB-MISC .htaccess access [**]
[Classification: Attempted Information Leak] [Priority: 2]
10/27-10:45:29.116507 210.186.62.136:1361 -> 32.245.166.119:80
TCP TTL:108 TOS:0x0 ID:29485 IpLen:20 DgmLen:529 DF
AP Seq: 0xC4BF5 Ack: 0xBA2B05FE Win: 0x2180 TcpLen: 20

1.1 Source Of Trace:
The raw log file was obtained from http://www.incidents.org/logs/Raw/2002.9.27. As
numerous students have previously pointed out before, the logfile timestamp and
records contained within don’t match. In fact according to tcpdump the actual period
is for 27/10/2002.

Determining range of records in the capture
[root@snort captures]# tcpdump -n -r 2002.9.27 -tttt
10/27/2002 00:05:29.746507 255.255.255.255.31337 > 32.245.78.8.printer:
R 0:3(3) ack 0 win 0
<cut>
10/27/2002 23:55:02.596507 32.245.166.236.65048 > 63.88.212.154.http: P
546101877:546102810(933) ack 3748866716 win 64601 [tos 0x10]

Let us determine the likely network topology. This will allow us to set the snort
HOME_NET thus enabling snort to be more accurate. The analysis process I have
used to determine the network topology is based on the process used by Chris
Reining[1]. First we need to determine how many devices snort can see, this is
achieved by determining how many unique source and destination MAC addresses
are in the capture.

Number of unique Source MAC addresses in capture
[root@snort captures]# tcpdump -ner 2002.9.27 | awk '{print $2}' |
sort -u
0:0:c:4:b2:33
0:3:e3:d9:26:c0

Number of unique Destination MAC addresses in capture
[root@snort captures]# tcpdump -ner 2002.9.27 | awk '{print $3}' | sort
-u
0:0:c:4:b2:33
0:3:e3:d9:26:c0

In both cases we only have the same two mac’s so it is fair to assume that snort is
located between these two network elements. For completeness let us determine
which vendor the mac’s belong to[2].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 21 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Extract from IEEE OUI and Company ID Assignments
00-00-0C (hex) CISCO SYSTEMS, INC.
00000C (base 16) CISCO SYSTEMS, INC.

170 WEST TASMAN DRIVE
SAN JOSE CA 95134-1706

00-03-E3 (hex) Cisco Systems, Inc.
0003E3 (base 16) Cisco Systems, Inc.

170 West Tasman Dr.
San Jose CA 95134
UNITED STATES

It is unlikely we will be able to determine the actual network addresses belonging to
these two mac’s however by further analysing flows between them we should be
able to determine, with reasonable certainly, our internal network range. To do this
we will use a number of Unix utilities to group various fields of each tcpdump.

Below is the anatomy of the first record within the capture. I have highlighted and
numbered each import field. This is a handy reference in future grouping commands.

Anatomy of Tcpdump output of first record
[root@snort captures]# tcpdump -nner 2002.9.27 -c 1
10:05:29.746507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60:
255.255.255.255.31337 > 32.245.78.8.515: R 0:3(3) ack 0 win 0

If we use space as separator we get:
Field 1: Time Field 2: Source MAC
Field 3: Destination MAC Field 4: Ethernet Frame Type
Field 5: Packet Length Field 6: Source IP Port
Field 7: > Field 8: Destination IP Port
Field 9: Flags Field 10: Seq Numbers

First we will determine how many different source addresses originate from each
mac address.
Unique Source IP addresses from MAC 0:3:e3:d9:26:c0
[root@snort captures]# tcpdump -nner 2002.9.27 "ether src
0:3:e3:d9:26:c0" | awk '{print $6}' | awk -F\. '{print $1 "." $2 "."
$3 "." $4}' | sort -n | uniq
24.167.47.7
<cut>
218.234.199.77
255.255.255.255
[root@snort captures]#

29 in total

Unique Source IP addresses from MAC 0:0:c:4:b2:33
[root@snort captures]# tcpdump -nner 2002.9.27 "ether src

0:0:c:4:b2:33" | awk '{print $6}' | awk -F\. '{print $1 "." $2 "." $3
"." $4}' | sort -n | uniq
32.245.166.119
32.245.166.236
[root@snort captures]#

2 in total

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 22 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Second we will determine how many different destination addresses originate from
each mac address.

Unique Destination IP addresses from MAC 0:3:e3:d9:26:c0
[root@snort captures]# tcpdump -nner 2002.9.27 "ether src
0:3:e3:d9:26:c0" | awk '{print $8}' | awk -F\. '{print $1 "." $2 "."
$3 "." $4}' | sort -n | uniq
32.245.10.231
32.245.135.248
32.245.141.246
<cut>
32.245.87.215
[root@snort captures]#

134 in total

Unique Destination IP addresses from MAC 0:0:c:4:b2:33
[root@snort captures]# tcpdump -nner 2002.9.27 "ether src
0:0:c:4:b2:33" | awk '{print $8}' | awk -F\. '{print $1 "." $2 "." $3
"." $4}' | sort -n | uniq
61.145.114.153
61.145.114.156
<cut>
216.33.240.250
[root@snort captures]#

22 in total

From this it would appear that our internal range is 32.245.0.0/16. In addition by
looking at the profile of source ip addresses originating from within, it would appear
that a natting device is being used (32.245.166.236). This is further confirmed when
we observe variation in ttl’s originating from this ip address[3].
Profile of Source IP addresses
[root@snort captures]# tcpdump -nner 2002.9.27 "ether src
0:0:c:4:b2:33" | awk '{print $6}' | awk -F\. '{print $1 "." $2 "." $3
"." $4}' | sort -n | uniq -c

3 32.245.166.119
192 32.245.166.236

Profile of TTL of Source NAT address
[root@snort captures]# tcpdump -nner 2002.9.27 -v "ether src
0:0:c:4:b2:33 and src host 32.245.166.236" | perl -ne 'print "$1\n"
if { $_ =~ /.*\((ttl\s\d.*?)\D/ };' | sort | uniq -c

8 ttl 122
64 ttl 124
8 ttl 125

112 ttl 240

Where for example 8 is the record count and 122 is the actual ttl.

Below is what I believe is the likely network topology extracted from this capture. I
have used it as the basis for the rest of the analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 23 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Basic Network Layout:
** Internet **

|

* Cisco Device *
* 0:3:e3:d9:26:c0 *

|
**************** *********
* Hub / Switch * <--- * snort *
**************** *********

|

* 0:0:c:4:b2:33 *
* Cisco Device *

|
****************** Note This could be done on the above router
* NAT Device *
* 32.245.166.236 *

|

* Rest of Network *
* 32.245.0.0/16 *

1.2 Detect was Generated by:
The detect was generated by Snort Version 2.1.2 (Build 25), using a default rule set
and a command-line specified HOME_NET.

Snort Command Line Used:
[root@snort captures]# snort -b -l /tmp/ -c /etc/snort/snort.conf -r
2002.9.27 -k none -h 32.245.0.0/16

The rule, which triggered the alert, is part of the standard snort install and can be
found in the file web-misc.rules.

The Snort Rule Matched:
[root@snort snort]# grep ".htaccess" *rules
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-
MISC .htaccess access"; flow:to_server,established;
content:".htaccess"; nocase; classtype:attempted-recon; sid:1129;
rev:4;)

In this rule Snort alert whenever it sees the content of “.htaccess” in a flow to a web
server.

1.3 Probability the source address was spoofed:
It is very unlikely that the source address is spoofed. First as this a reconnaissance
so the attacker needs to obtain the response. Second for this attempt to work it has
to be part of an http connection and thus an established TCP connection. It is very
hard to spoof 3-whs to establish a TCP session.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 24 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

1.4 Description of attack:
Any avid user of the Internet would have on occasions been prompted for a
username/password to access a protected document. While there are any number of
ways to challenge for a username/password one common way is known as “Basic”.
Some web servers, apache[4] for example, commonly store a web
username/password in a flat file routinely known as “.htaccess”.

Extract of sample “.htaccess” file:
JDOE:rdtgHCcuBiMNU
FRED:v5.MvYkEMeNTY
MARY:dk4MhtlsoUiba
WILMA:NejKl2naRtwkM

The format of the file is line-delimited username:encrypted-password. Where, by
default, the standard Unix crypt is used to encrypt the password. Since the weak
Unix crypt algorithm is used, any standard Unix brute force password cracker can be
run against the file. For example an effective tool would be “John the Ripper”[5].

Once the brute force cracker has been run directly against the file the resulting clear
text username/passwords can be used to freely access the ‘protected’ documents.

1.5 Attack Mechanism:
When an attacker wishes to obtain unfettered access to a username/password
protected site, his number one objective is to obtain any valid username/password.
One common way to do this is to obtain a copy of the file that stores all valid
usernames/passwords. Due in part to sysadmin’s following documentation to the
letter, this file generally has a common name “.htaccess”.

Thus a hacker will commonly try to download the said file so he can brute force it
offline. The preference is to download the file, as generally, brute force cracking tools
will run much faster offline. In addition the larger log files on the actual web site may
cause concern to an alert sysadmin.

The snort alert was triggered as a result of seeing content “.htaccess” in a
established flow to a web server.

So in a nutshell we have:
Who: attacker at 210.186.62.136 who is on a reconnaissance mission.
What: wants a copy of .htaccess file which contains username / passwords
Why: so that he can brute force crack them offline
When: 27th October 2002 at 10:45am
Where: a stimulus packet has been sent to our internal web server 32.245.166.119
How: The file can be downloaded and saved using a standard web browser.

1.6 Correlations:
As of 30th May, 2004 dshield.org does not have any reports against this address;
remember the capture was taken in 2002.

Brian Coyle a fellow GCIA student has also previously analysed a similar trace[6].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 25 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

And a reference is the snort signature database.[7]

1.7 Evidence of active targeting:
There are a total of 3 relevant records in the capture. Snort with standard rules only
detects two of them. In fact these 3 records are the only occurrence of the source
address in all of the capture files contained within the Raw directory.

Tcpdump of all matching source records:
[root@snort captures]# tcpdump -nner 2002.9.27 "host 210.186.62.136"
10:45:29.116507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 543:
210.186.62.136.1361 > 32.245.166.119.80: P 805877:806366(489) ack
3123381758 win 8576 (DF)
10:45:29.906507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 590:
210.186.62.136.1361 > 32.245.166.119.80: . 489:1025(536) ack 793 win
8576 (DF)
10:55:28.146507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 1075:
210.186.62.136.1437 > 32.245.166.119.80: P
3774972488:3774973509(1021) ack 1430629 win 32696 [tos 0x10]

The second record is a request of the original page requested in the first record with
an invalid basic authentication record attached; it resulted in the following snort alert.
It was transmitted some 790mSec latter. This would probably have been in response
to receiving a 401 error code [8].

Snort Alert generated by second record:
[**] [1:1260:6] WEB-MISC long basic authorization string [**]
[Classification: Attempted Denial of Service] [Priority: 2]
10/27-10:45:29.906507 210.186.62.136:1361 -> 32.245.166.119:80
TCP TTL:108 TOS:0x0 ID:33581 IpLen:20 DgmLen:576 DF
A* Seq: 0xC4DDE Ack: 0xBA2B0916 Win: 0x2180 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/3230]

The third record, although snort isn’t concerned, is interesting for a couple of
reasons. First it has the unusual ip.id of zero. Second is that it’s ttl is 240 where as
the two previous records were 108. The main difference is that it is trying to
download “logos.html” instead of “.htaccess” in the same directory structure.

I believe it is active targeting. The fact that “.htaccess” was requested is enough in
itself, coupled with different ttl then something strange is going on.

1.8 Severity:
Criticality: 4 It is hard to determine how important this asset is without knowing
exactly what the business purpose of the server is, that aside it is an internet
connected web server with some form of password-protected documents. Thus by
inference it must be reasonably important.

Lethality: 5 If this file is obtained the impact can be disastrous. Other alerts from the
capture file indicate that this server is a Redhat Linux server running Apache with
Frontpage extensions. In addition the second and third records have basic
authentication credentials embedded in the requests inferring that authentication is
needed to access this server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 26 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

System Countermeasures: 2, This is very hard to determine without knowledge of
how well the server has been maintained. Since I can find no alerts originating from
this server except 68 “Attack- Responses 403 Forbidden” one can assumeit has
been installed and maintained correctly. That was until one takes into consideration
the version of Apache. The “403 messages” indicated Apache 1.3.12 is being used.
A quick google indicates Apache was officially up to version 1.3.27 as at Oct 3 2002
[9]. I have assumed that the syadmin has not over-ridden the http response header.

Network Countermeasures: 1, http is a permitted protocol to this host and thus the
web server has been afforded no protection by firewall or border routers.

(4+5)–(2+1) = 6

1.9 Defensive Recommendations:
As outlined in the Snort signature database, one should first determine if the page
can be successfully downloaded. If it can, then escalate the event to an incident and
manage.

One should then ensure all servers within your organisation are configured correctly
to restrict access to any files containing username/passwords. The snort signature
database indicates how to do it for files starting with “.ht” Use it as a basis for
blocking any relevant files.

Preventing Access to .ht* files in Apache:
<Files ~ "^\.ht">

Order allow,deny
Deny from all

</Files>

It generally is also be more effective to offload authentication and authorisation via
suitable apache modules e.g. via radius or ldap.

If you continue to useapache’s htpasswd to manage user password’s, wrap the
htpasswd in a suitable script / alias to ensure that it is always called with the ‘-m’
command-line option thus enforcing the use of the more secure MD5 encryption
algorithm.

Also, update to the latest version of apache.

1.10 Multiple Choice Question:
Why should an intrusion analyst working for an eCommerce site using Apache be
concerned about the following alert. ?

[**] [1:1129:4] WEB-MISC .htaccess access [**]
[Classification: Attempted Information Leak] [Priority: 2]
10/27-10:45:29.116507 210.186.62.136:1361 -> 32.245.166.119:80
TCP TTL:108 TOS:0x0 ID:29485 IpLen:20 DgmLen:529 DF
AP Seq: 0xC4BF5 Ack: 0xBA2B05FE Win: 0x2180 TcpLen: 20

(a) doesn’t need to worry as the encryption is very strong.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 27 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

(b) as the files contains all web usernames and weakly encrypted passwords.
(c) apache never uses this file so this is not a concern.
(d) “.htaccess” files only contain usernames and as such is not that valuable.

The best answer is (b).
(a) is wrong, as historically encryption was based on crypt.
(c) is wrong, as “.htaccess” files have commonly been used to control access to files
and directories on apache web server.
(d) is wrong as it is a line-delimited file containing username and encrypted
passwords.

1.11 Excerpts from Intrusion’s Discussion group:
Originally Submitted:
mtvpm mtvpm at bigpond.com
Tue Jun 1 14:46:38 UTC 2004

My (only) Response to Questions:
Subject: Re: [Intrusions] LOGS: GIAC GCIA Version 3.4 Practical Detect
Michael Meacle
Date: Sat, 19 Jun 2004 02:16:34 +1000
From: mtvpm mtvpm@bigpond.com
Reply-To: "Intrusions List (GCIA Practicals)" intrusions@lists.sans.org
To: intrusions@lists.sans.org

Mohan,

Thanks for the questions.

1.Sorry for being a little too terse thus your need to highlight a gap in
my reasoning, not to mention a error in my document which I found while
trying to check my logic.

First my error, In my numbering of the fields I didn't count the '>', this
would confuse you if you were looking back at its field references. See
below the amended field numbering.

Field 8: Destination IP Port
Field 9: Flags
Field 10: Seq Numbers

Now as for how I concluded that only two host were 'effectively' talking
to the internet is based on analysing the flows. Least just consider the
32.245.x range.

- We have 2 (Source IP Addresses) with a destination mac of
0:3:e3:d9:26:c0. (remember we only had two mac's so we can infer that the
destination mac address is the above because it can't be 0:0:c:4:b2:33 - a
review at the raw data confirms this)
- We also have 134 (Destination IP Addresses) with a source mac of
0:3:e3:d9:26:c0.

So by focusing only on the one mac address we can see only 2 addresses
going to, yet 134 coming from it. The primary reason why we see 134
incoming address I believe is we own all 65535 (based on the fact that
134 addresses were randomly spaced across the B'class range) address and
over the capture period 134 were scanned from the internet. In addition
the reason we only see 2 addresses flowing in both directions (in this
capture) is they (at present) are the only valid (active) i/c and o/g real

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 28 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

addresses.

2. While trying to analyse the raw records around the records of interest
I noticed the variation. The primary reason I noticed the variation was
that I was trying to verify the OS (against the 304 error messages [NOTE
MTM: 23/06/2004 that should have said 403]) so that I could compare it
against well known values as outlined in the Sans training material
"Network Traffic Analysis - Using Tcpdump parts 1 & 2 p4-24&25. If you
don't have access to the material have a look at
http://project.honeynet.org/papers/finger/traces.txt .

When I noticed the variation I had to explain it. The only two ideas I
could come up with were NAT or crafted packets. As I believed it unlikely
the file would have been full of crafted packets, the fact that I could
see so much traffic from the one host and the fact that NAT'ng is commonly
done by enterprises to hide their real internal addresses. I played the
odds.

I wasn't sure what should happen at a nat'ng device, or in fact whether
they all act the same (unlikely), e.g.
- do they set the ttl to some predefined value e.g. to values as outlined
in the honeynet paper
- do they decrement by 1
- do they leave it alone
I didn't know but I went with the second one as I believed it to be the
safest against asymmetrical routing loops. As such it was the only way I
could explain the 4 grouped ttl values.

As a result of your question I consulted google again. I have found
a very interesting article by Peter Phaal
(http://www.sflow.org/detectNAT/) which outlines his concept of detecting
unauthorised NAT devices. His article (thankfully) confirms that what I
observed is probably nat'ng. In his article he refers to another article
by Steven Bellovin (http://www.research.att.com/~smb/papers/fnat.pdf) it
outlines a further (some what more complex) way of doing it based on ip-
id. Due to the fact I'm running very late on my assignment I have only
skimmed both articles but both appear to confirm that nat'ng was taking
place.

I'm glad you challenged so now we both know two new ways.

Out of interest while doing my other detect's I refined the way of
counting each TTL's as on my 3rd detect (due to some strange packets) I
was getting erratic results. For you convenience here is the better
command.

tcpdump -nner 2002.9.27 -v "ether src 0:0:c:4:b2:33
and src host 32.245.166.236" | perl -ne 'print"$1\n" if { $_ =~
/.*\((ttl\s\d.*?)\D/ };' | sort | uniq -c

8 ttl 122
64 ttl 124
8 ttl 125
112 ttl 240

Hope that helps
Mick

Mohan Chirumamilla wrote:

Michael,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 29 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

May be it is obvious, but I am missing something here and would appreciate
if you could help me out with the following two questions.

1. Your analysis shows that there are possibly two hosts 32.245.166.119
and 32.245.166.236 talking to the Internet.

Unique Source IP addresses from MAC 0:0:c:4:b2:33
[root at snort captures]# tcpdump -nner 2002.9.27 "ether src
0:0:c:4:b2:33" | awk '{print $6}' | awk -F\. '{print $1 "." $2 "." $3 "."
$4}' | sort -n | uniq

32.245.166.119
32.245.166.236

[root at snort captures]#

And here, the numbers show that there are more than two hosts
participating from within the 32.245.0.0 address range.

Unique Destination IP addresses from MAC 0:3:e3:d9:26:c0
[root at snort captures]# tcpdump -nner 2002.9.27 "ether src
0:3:e3:d9:26:c0" | awk '{print $8}' | awk -F\. '{print $1 "." $2 "." $3
"." $4}' | sort -n | uniq

32.245.10.231
32.245.135.248
32.245.141.246
<cut>
32.245.87.215

[root at snort captures]#

In a normal TCP session, traffic flows in either direction almost
symmetrically. What I meant by symmetric is that, for every data packet
received the receipent sends an ack back to the sender (assuming that
there's no loss of packets at all).
So that being said, should,'t we be seeing almost the same hosts on each
of your lists you described above. I agree that it might not be the case
if we are talking about UDP. I did not take a look at the dump yet. But
to me that case is a bit unusual.

One possible reason could be is that all hosts in the second list could be
sitting in between the two routers. But having 134 hosts in a "DMZ" like
set-up is again....little bit unusual.

2. You derived through your analysis that there could be a NAT'ing device
(32.245.166.236). Can you please throw some more details on how the study
of TTL field contributed to your decission? Based on your analysis, and
assuming that my "possible reason" that I mentioned above is ture.....I
got an impression that the source IP addresses are not being modified
during the NAT'ing process. Is this correct?

Reference:

1 Reining, Chris
LOGS: GIAC GCIA Version 3.4 Practical Detect Chris Reining, (8/2/2004)
URL: http://cert.uni-stuttgart.de/archive/intrusions/2004/02/msg00064.html (28/5/2004)

2 IEEE OUI and Company_id Assignments
URL: http://standards.ieee.org/regauth/oui/oui.txt (30/5/2004)

3 Phaal, Peter.
Detection NAT Devices using sFlow

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 30 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

URL: http://www.sflow.org/detectNAT/ (19/06/2004)

4 Apache HTTP Server 2.0,
Authentication, Authorization and Access Control.
URL: http://httpd.apache.org/docs-2.0/howto/auth.html (30/5/2004)

5 John the Ripper password cracker
URL: http://www.openwal.com/john (30/5/2004)

6 Coyle, Brian.
GCIA Practical V3.1 Part 1–State of IDS (April 2002)
URL: http://www.giac.org/practical/GCIA/Brian_Coyle_GCIA.pdf (30/5/2004)

7 Sourcefire Research Team,
Snort Signature Database.
URL: http://www.snort.org/snort-db/sid.html?sid=1129 (30/5/2004)

8 Part of Hypertext Transfer Protocol–HTTP/1.1
URL: http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html (23/06/2004)

9 Jagielski, Jim.
Apache 1.3.27 Released (3/10/2002)
URL: http://archives.neohapsis.com/archives/apache/2002/0019.html (30/5/2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 31 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

2. Detect #2 nimda

Extract from /tmp/alert
[**] [1:1002:5] WEB-IIS cmd.exe access [**]
[Classification: Web Application Attack] [Priority: 1]
11/04-09:30:42.666507 140.116.141.73:4156 -> 207.166.8.195:80
TCP TTL:109 TOS:0x0 ID:39971 IpLen:20 DgmLen:136 DF
AP Seq: 0x8E75B600 Ack: 0x3A381913 Win: 0xFD20 TcpLen: 20

2.1 Source Of Trace:
The raw log file was obtained from http://www.incidents.org/logs/Raw/2002.10.3 . As
numerous students have previously pointed out before the logfile timestamp and
records contained within don’t match. In fact according to tcpdump the actual period
is for 03/11/2002.

Determining range of records in the capture
[root@snort captures]# tcpdump -nn -r 2002.10.3 -tttt
11/03/2002 00:00:49.426507 216.77.219.195.48839 > 207.166.233.11.1080:
S 1769720 505:1769720505(0) win 1024
<cut>
11/03/2002 23:54:58.496507 209.226.144.25.3914 > 207.166.87.53.139: P
4018084:4018143(59) ack 2276636370 win 8572 NBT Packet (DF)

Lets determine the likely network topology. This will allow us to set the snort
HOME_NET thus enabling snort to be more accurate. The analysis process I have
used to determine the network topology is based on the process used by Chris
Reining[1]. First we need to determine how many devices snort can see, this is
achieved by determining how many unique source and destination MAC addresses
are in the capture.

Number of unique Source MAC addresses in capture
[root@snort captures]# tcpdump -ner 2002.10.3 | awk '{print $2}' |
sort -u
0:0:c:4:b2:33
0:3:e3:d9:26:c0

Number of unique Destination MAC addresses in capture
[root@snort captures]# tcpdump -ner 2002.10.3 | awk '{print $3}' | sort
-u
0:0:c:4:b2:33
0:3:e3:d9:26:c0

In both cases we only have the same two mac’s so it is fair to assume that snort is
located between these two network elements. For completeness let us determine
which vendor the mac’s belong too[2].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 32 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Extract from IEEE OUI and Company ID Assignments
00-00-0C (hex) CISCO SYSTEMS, INC.
00000C (base 16) CISCO SYSTEMS, INC.

170 WEST TASMAN DRIVE
SAN JOSE CA 95134-1706

00-03-E3 (hex) Cisco Systems, Inc.
0003E3 (base 16) Cisco Systems, Inc.

170 West Tasman Dr.
San Jose CA 95134
UNITED STATES

It is unlikely we will be able to determine the actual network addresses belonging to
these two mac’s however by further analysing flows between them we should be
able to determine, with reasonable certainly, our internal network range. To do this
we will use a number of Unix utilities to group various fields of each tcpdump.

Below is the anatomy of the first record within the capture. I have highlighted and
numbered each import field. This is a handy reference in future grouping commands.

Anatomy of Tcpdump output of first record
[root@snort captures]# tcpdump -nner 2002.10.3 -c 1
10:00:49.426507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 60:
216.77.219.195.48839 > 207.166.233.11.1080: S
1769720505:1769720505(0) win 1024

If we use space as separator we get:
Field 1: Time Field 2: Source MAC
Field 3: Destination MAC Field 4: Ethernet Frame Type
Field 5: Packet Length Field 6: Source IP Port
Field 7: > Field 8: Destination IP Port
Field 9: Flags Field 10: Seq Numbers

First we will determine how many different source addresses originate from each
mac address.
Unique Source IP addresses from MAC 0:3:e3:d9:26:c0
[root@snort captures]# tcpdump -nner 2002.10.3 "ether src
0:3:e3:d9:26:c0" | awk '{print $6}' | awk -F\. '{print $1 "." $2 "."
$3 "." $4}' | sort -n | uniq
24.165.67.204
61.223.29.184
<cut>
218.14.156.61
255.255.255.255
[root@snort captures]#

38 in total

Unique Source IP addresses from MAC 0:0:c:4:b2:33
[root@snort captures]# tcpdump -nner 2002.10.3 "ether src

0:0:c:4:b2:33" | awk '{print $6}' | awk -F\. '{print $1 "." $2 "." $3
"." $4}' | sort -n | uniq
207.166.87.157
207.166.87.40
[root@snort captures]#

2 in total

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 33 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Second we will determine how many different destination addresses originate from
each mac address.

Unique Destination IP addresses from MAC 0:3:e3:d9:26:c0
[root@snort captures]# tcpdump -nner 2002.10.3 "ether src
0:3:e3:d9:26:c0" | awk '{print $8}' | awk -F\. '{print $1 "." $2 "."
$3 "." $4}' | sort -n | uniq
207.166.0.20
207.166.0.204
<cut>
207.166.99.101
207.166.99.151
[root@snort captures]#

911 in total

Unique Destination IP addresses from MAC 0:0:c:4:b2:33
[root@snort captures]# tcpdump -nner 2002.10.3 "ether src
0:0:c:4:b2:33" | awk '{print $8}' | awk -F\. '{print $1 "." $2 "." $3
"." $4}' | sort -n | uniq
4.33.9.31
4.60.214.29
<cut>
217.224.151.162
218.186.94.120
[root@snort captures]#

800 in total

From this it would appear that our internal range is 207.166.0.0/16. In addition by
looking at the profile of source ip addresses originating from within it would appear
that a nating device is being used (207.166.87.157). This is further confirmed when
we observe variation in ttl’s originating from this ip address[3].
Profile of Source IP addresses
[root@snort captures]# tcpdump -nner 2002.10.3 "ether src
0:0:c:4:b2:33" | awk '{print $6}' | awk -F\. '{print $1 "." $2 "." $3
"." $4}' | sort -n | uniq -c

1048 207.166.87.157
3 207.166.87.40

Profile of TTL of Source NAT address
[root@snort captures]# tcpdump -nner 2002.10.3 -v "ether src
0:0:c:4:b2:33 and src host 207.166.87.157" | perl -ne 'print "$1\n"
if { $_ =~ /.*\((ttl\s\d.*?)\D/ };' | sort | uniq -c

975 ttl 124
73 ttl 240

Where for example 975 is the record count and 124 is the actual ttl.

Below is what I believe is the likely network topology extracted from this capture. I
have used it as the basis for the rest of the analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 34 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Basic Network Layout:
** Internet **

|

* Cisco Device *
* 0:3:e3:d9:26:c0 *

|
**************** *********
* Hub / Switch * <--- * snort *
**************** *********

|

* 0:0:c:4:b2:33 *
* Cisco Device *

|
****************** Note This could be done on the above router
* NAT Device *
* 207.166.87.157 *

|

* Rest of Network *
* 207.166.0.0/16 *

2.2 Detect was Generated by:
The detect was generated by Snort Version 2.1.2 (Build 25), using a default rule set
and a command-line specified HOME_NET.

Snort Command Line Used:
[root@snort captures]# snort -b -l /tmp/ -c /etc/snort/snort.conf -r
2002.10.3 -k none -h 207.166.0.0/16

The rule, which triggered the alert, is part of the standard snort install and can be
found in the file web-iis.rules.

The Snort Rule Matched:
[root@snort snort]# grep "WEB-IIS cmd.exe access" *rules
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-
IIS cmd.exe access"; flow:to_server,established; content:"cmd.exe";
nocase; classtype:web-application-attack; sid:1002; rev:5;)

In this rule Snort alerts whenever it sees the content of “cmd.exe” in a flow to a web
server. A full dump of the packet triggering the alert is shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 35 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Tcpdump of two of eight packets triggering the alert:
[root@snort captures]# tcpdump -nner 2002.10.3 -X -v " host
140.116.141.73 and host 207.166.8.195 and port 80"
09:30:42.666507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 150:
140.116.141.73.4156 > 207.166.8.195.80: P [bad tcp cksum 79c5!]
2390078976:2390079072(96) ack 976754963 win 64800 (DF) (ttl 109, id
39971, len 136, bad cksum cb6e!)
0x0000 4500 0088 9c23 4000 6d06 cb6e 8c74 8d49 E....#@.m..n.t.I
0x0010 cfa6 08c3 103c 0050 8e75 b600 3a38 1913<.P.u..:8..
0x0020 5018 fd20 1b9e 0000 4745 5420 2f73 6372 P.......GET./scr
0x0030 6970 7473 2f2e 2e25 3563 2e2e 2f77 696e ipts/..%5c../win
0x0040 6e74 2f73 7973 7465 6d33 322f 636d 642e nt/system32/cmd.
0x0050 6578 653f 2f63 2b64 6972 2072 2048 5454 exe?/c+dir.r.HTT
0x0060 502f 312e 300d 0a48 6f73 743a 2077 7777 P/1.0..Host:.www
0x0070 0d0a 436f 6e6e 6e65 6374 696f 6e3a 2063 ..Connnection:.c
0x0080 6c6f 7365 0d0a 0d0a lose....
<cut>
09:32:34.886507 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 171:
140.116.141.73.3263 > 207.166.8.195.80: P [bad tcp cksum 9819!]
0:117(117) ack 1 win 64800 (DF) (ttl 109, id 46786, len 157, bad
cksum b0ba!)
0x0000 4500 009d b6c2 4000 6d06 b0ba 8c74 8d49 E.....@.m....t.I
0x0010 cfa6 08c3 0cbf 0050 9298 9d2d 14f9 b09dP...-....
0x0020 5018 fd20 07c8 0000 4745 5420 2f5f 7674 P.......GET./_vt
0x0030 695f 6269 6e2f 2e2e 2535 632e 2e2f 2e2e i_bin/..%5c../..
0x0040 2535 632e 2e2f 2e2e 2535 632e 2e2f 7769 %5c../..%5c../wi
0x0050 6e6e 742f 7379 7374 656d 3332 2f63 6d64 nnt/system32/cmd
0x0060 2e65 7865 3f2f 632b 6469 7220 632b 6469 .exe?/c+dir.c+di
0x0070 7220 4854 5450 2f31 2e30 0d0a 486f 7374 r.HTTP/1.0..Host
0x0080 3a20 7777 770d 0a43 6f6e 6e6e 6563 7469 :.www..Connnecti
0x0090 6f6e 3a20 636c 6f73 650d 0a0d 0a on:.close....

The yellow highlight being the most important.

2.3 Probability the source address was spoofed:
It is very unlikely that the source address is spoofed. It is either a nimda infected host
or an attacker with a script trying to find a vulnerable host e.g. their next victim. In
either case they need to be able to see the response. Second for this attempt to
work it has to be part of an http connection and thus an established TCP connection.
It is very hard to spoof 3-whs to establish a TCP session.

2.4 Description of attack:
In the capture we see two different attempts by an infected host to send a stimulus
probe to our internal web server. The http requests are distinct in that they try to take
advantage of a known vulnerability in unpatched IIS servers, version 4 and 5.
The vulnerability known as “Unicode Web Traversal exploit” [4] relies on the
interaction of canonicalization and Unicode to allow url’s, which would normally be
prevented by IIS because they contained “../..”, to be serviced by the server. To do
this we need to replace (as a minimum) any ‘/’ characters with its equivalent
Unicode, for example replace the ‘/’ with ‘%5c’. This allows a savvy user (worm) to
run arbitrary commands on the web server as user IUSR_machinename.

In this particular case we have another infected host running the reconnaissance
probes to determine if our web server is vulnerable. If from the responses it
determines the host is vulnerable it will get the “new victim” to download, via tftp, a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 36 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

copy of the worm code. Using the same mechanism it will install and activate the
worm.

2.5 Attack Mechanism:
A server infected with the worm will attempt to infect as many other computers as
possible. It will do this using a number of mechanisms including mass mailing,
network share propagation, and Unicode web transversal vulnerability.

So in a nutshell we have:
Who: attacker/infected host at 140.116.141.73
What: sends a couple of stimulus packets to our web server 207.166.8.195
Why: so that they can determine if the web server is vulnerable to nimda worm.
When: 04th November 2002 at 9:30am
Where: to our internal web server 207.166.8.195
How: The worm will do it automatically. If it is a hacker (unlikely) he must be using a
script as both records are only seconds apart.

2.6 Correlations:
As of 4th June, 2004 dshield.org does not have any reports against this address;
remember the capture was taken in 2002.

Danny Li, a fellow GCIA student, has also previously analysed a similar nimda
detect[5].

Cert advisory also explains in detail how nimda operates, including the very
important expected log entries, which assisted me in determining that it is indeed
part of a nimda trace [6].

And a reference is the snort signature database.[7]

2.7 Evidence of active targeting:
The nimda worm randomly scans for the next vulnerable host so in this case we are
merely a statistic. However it is interesting that on 8th November we receive more
random nimda scans from 140.116.141.108 to other internal hosts.

2.8 Severity:
Criticality: 5, Very hard to determine how important this asset is without knowing
exactly what the business purpose of the server is, that aside, it is an internet
connected web server. Thus, by inference, it must be reasonably important.

Lethality: 5, An administrative shell is obtainable if we are vulnerable.

System Countermeasures: 5, Very hard to determine without knowledge of how well
the server has been maintained. Since I can find no subsequent alerts from our
internal web server I believe either it is not running IIS or is not vulnerable.

Network Countermeasures: 1, http is a permitted protocol to this host and thus the
web server has been afforded no protection by firewall or border routers.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 37 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

(5+5)–(5+1) = 4

2.9 Defensive Recommendations:
One should ensure all servers within your organisation are configured correctly and
fully patched.

Should also ensure that the default install and sample scripts are removed.

In addition it is important to install the web server on a different partition than the OS.

2.10 Multiple Choice Question:
If someone requested the following url from an unpatched IIS 4.0 server, what
happens.

http://vulnerable.com/scripts/..%5c../winnt/system32/cmd.exe /c dir

(a) the default web page will be displayed.
(b) will spawn a cmd shell, run the command “dir” in the shell, return the output of the
command to the user’s browser and then terminate the shell.
(c) redirect the user to http://www.cmd.com/
(d) the server returns error as it doesn’t understand %5c.

The best answer is (b).
(a) is wrong, see (b).
(c) is wrong, see (b).
(d) is wrong, IIS servers understand the Unicode ‘%5c’.

Reference:

1 Reining, Chris
LOGS: GIAC GCIA Version 3.4 Practical Detect Chris Reining, (8/2/2004)
URL: http://cert.uni-stuttgart.de/archive/intrusions/2004/02/msg00064.html (28/5/2004)

2 IEEE OUI and Company_id Assignments
URL: http://standards.ieee.org/regauth/oui/oui.txt (30/5/2004)

3 Phaal, Peter.
Detection NAT Devices using sFlow
URL: http://www.sflow.org/detectNAT/ (19/06/2004)

4 Microsoft Security Bulletin (MS00-078) (Oct 17th 2000)
URL: http://www.microsoft.com/technet/security/bulletin/MS00-078.mspx (4/6/2004)

5 Li, Danny.
LOGS: GIAC GCIA Version 3.3 Practical Detect 1/3 (22/10/2003)
URL: http://cert.uni-stuttgart.de/archive/intrusions/2003/10/msg00149.html (1/6/2004)

6 CERT Advisory CA-2001-26 Nimda Worm. (September 25,2001)
URL: http://www.cert.org/advisories/CA-2001-26.html (4/6/2004)

7 Sourcefire Research Team,
Snort Signature Database.
URL: http://www.snort.org/snort-db/sid.html?sid=1002 (30/5/2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 38 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

3. Detect #3 FTP command overflow attempt

Extract from /tmp/alert
[**] [1:1748:4] FTP command overflow attempt [**]
[Classification: Generic Protocol Command Decode] [Priority: 3]
05/17-02:01:19.264488 212.164.216.3:10071 -> 78.37.212.165:21
TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:173
AP Seq: 0x2413567D Ack: 0xBE5BCB77 Win: 0x7D78 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/4638]

3.1 Source Of Trace:
The raw log file was obtained from http://www.incidents.org/logs/Raw/2002.4.16 . As
numerous students have previously pointed out before the logfile timestamp and
records contained within don’t match. In fact according to tcpdump the actual period
is for 16/5/2002.

Determining range of records in the capture
[root@snort captures]# tcpdump -n -r 2002.4.16 -tttt | more
05/16/2002 00:05:52.074488 207.229.152.8.http > 78.37.212.28.62487: P
4269347772:4269349232(1460) ack 3957273 win 32120 (DF)
<cut>
05/16/2002 23:53:40.944488 207.178.214.185.knetd > 78.37.212.165.ftp: P
2256582263:2256582279(16) ack 491506774 win 8217 (DF)

Let us determine the likely network topology. This will allow us to set the snort
HOME_NET thus enabling snort to be more accurate. The analysis process I have
used to determine the network topology is based on the process used by Chris
Reining[1]. First we need to determine how many devices snort can see, this is
achieved by determining how many unique source and destination MAC addresses
are in the capture.

Number of unique Source MAC addresses in capture
[root@snort captures]# tcpdump -ner 2002.4.16 | awk '{print $2}' |
sort -u
0:0:c:4:b2:33
0:3:e3:d9:26:c0

Number of unique Destination MAC addresses in capture
[root@snort captures]# tcpdump -ner 2002.4.16 | awk '{print $3}' | sort
-u
0:0:c:4:b2:33
0:3:e3:d9:26:c0

In both cases we only have the same two mac’s so it is fair to assume that snort is
located between these two network elements. For completeness let us determine
which vendor the mac’s belong too[2].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 39 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Extract from IEEE OUI and Company ID Assignments
00-00-0C (hex) CISCO SYSTEMS, INC.
00000C (base 16) CISCO SYSTEMS, INC.

170 WEST TASMAN DRIVE
SAN JOSE CA 95134-1706

00-03-E3 (hex) Cisco Systems, Inc.
0003E3 (base 16) Cisco Systems, Inc.

170 West Tasman Dr.
San Jose CA 95134
UNITED STATES

It is unlikely we will be able to determine the actual network addresses belonging to
these two mac’s however by further analysing flows between them we should be
able to determine, with reasonable certainly, our internal network range. To do this
we will use a number of Unix utilities to group various fields of each tcpdump.

Below is the anatomy of the first record within the capture. I have highlighted and
numbered each import field. This is a handy reference in future grouping commands.

Anatomy of Tcpdump output of first record
[root@snort captures]# tcpdump -nner 2002.4.16 -c 1
10:05:52.074488 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 1514:
207.229.152.8.80 > 78.37.212.28.62487: P 4269347772:4269349232(1460)
ack 3957273 win 32120 (DF)

If we use space as separator we get:
Field 1: Time Field 2: Source MAC
Field 3: Destination MAC Field 4: Ethernet Frame Type
Field 5: Packet Length Field 6: Source IP Port
Field 7: > Field 8: Destination IP Port
Field 9: Flags Field 10: Seq Numbers

First we will determine how many different source addresses originate from each
mac address.
Unique Source IP addresses from MAC 0:3:e3:d9:26:c0
[root@snort captures]# tcpdump -nner 2002.4.16 "ether src
0:3:e3:d9:26:c0" | awk '{print $6}' | awk -F\. '{print $1 "." $2 "."
$3 "." $4}' | sort -n | uniq
4.3.95.238
12.37.117.126
<cut>
218.96.62.2
255.255.255.255
[root@snort captures]#

108 in total

Unique Source IP addresses from MAC 0:0:c:4:b2:33
[root@snort captures]# tcpdump -nner 2002.4.16 "ether src

0:0:c:4:b2:33" | awk '{print $6}' | awk -F\. '{print $1 "." $2 "." $3
"." $4}' | sort -n | uniq
78.37.212.165
78.37.212.28
[root@snort captures]#

2 in total

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 40 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Second we will determine how many different destination addresses originate from
each mac address.

Unique Destination IP addresses from MAC 0:3:e3:d9:26:c0
[root@snort captures]# tcpdump -nner 2002.4.16 "ether src
0:3:e3:d9:26:c0" | awk '{print $8}' | awk -F\. '{print $1 "." $2 "."
$3 "." $4}' | sort -n | uniq
78.37.0.113
78.37.0.76
<cut>
78.37.96.218
78.37.98.99
[root@snort captures]#

120 in total

Unique Destination IP addresses from MAC 0:0:c:4:b2:33
[root@snort captures]# tcpdump -nner 2002.4.16 "ether src
0:0:c:4:b2:33" | awk '{print $8}' | awk -F\. '{print $1 "." $2 "." $3
"." $4}' | sort -n | uniq
4.42.79.213
12.109.100.230
<cut>
216.33.240.250
217.211.124.172
[root@snort captures]#

114 in total

From this it would appear that our internal range is 78.37.0.0/16. In addition by
looking at the profile of source ip addresses originating from within it would appear
that a nating device is being used (78.37.212.28). This is further confirmed when we
observe variation in ttl’s originating from this ip address[3].

Profile of Source IP addresses
[root@snort captures]# tcpdump -nner 2002.4.16 "ether src
0:0:c:4:b2:33" | awk '{print $6}' | awk -F\. '{print $1 "." $2 "." $3
"." $4}' | sort -n | uniq -c

9 78.37.212.165
2961 78.37.212.28

Profile of TTL of Source NAT address
[root@snort captures]# tcpdump -nner 2002.4.16 -v "ether src
0:0:c:4:b2:33 and src host 78.37.212.28" | perl -ne 'print "$1\n" if
{ $_ =~ /.*\((ttl\s\d.*?)\D/ };' | sort | uniq -c

13 ttl 123
890 ttl 124
476 ttl 125

1582 ttl 240

Where for example 13 is the record count and 123 is the actual ttl.

Below is what I believe is the likely network topology extracted from this capture. I
have used it as the basis for the rest of the analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 41 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Basic Network Layout:
** Internet **

|

* Cisco Device *
* 0:3:e3:d9:26:c0 *

|
**************** *********
* Hub / Switch * <--- * snort *
**************** *********

|

* 0:0:c:4:b2:33 *
* Cisco Device *

|
***************** Note This could be done on the above router
* NAT Device *
* 78.37.212.28 *

|

* Rest of Network *
* 78.37.0.0/16 *

3.2 Detect was Generated by:
The detect was generated by Snort Version 2.1.2 (Build 25), using a default rule set
and a command-line specified HOME_NET.

Snort Command Line Used:
[root@snort captures]# snort -b -l /tmp/ -c /etc/snort/snort.conf -r
2002.4.16 -k none -h 78.37.0.0/16

The rule, which triggered the alert, is part of the standard snort install and can be
found in the file “ftp.rules".

The Snort Rule Matched:
[root@snort snort]# grep "FTP command overflow attempt" *rules
alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP command
overflow attempt"; flow:to_server,established,no_stream; dsize:>100;
reference:bugtraq,4638; classtype:protocol-command-decode; sid:1748;
rev:4;)

In this rule Snort alerts whenever the payload size is greater than 100 in a flow to a
FTP command port. A full dump of the packet triggering the alert is shown below and
shows that the payload was 133 bytes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 42 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Tcpdump payload of the packet triggering the alert:
[root@snort captures]# tcpdump -nner 2002.4.16 -X -v " host
212.164.216.3 and 78.37.212.165 and port 21 and ip[4:2] == 0"
02:01:19.264488 0:3:e3:d9:26:c0 0:0:c:4:b2:33 0800 187:
212.164.216.3.10071 > 78.37.212.165.21: P [bad tcp cksum 8956!]
605247101:605247234(133) ack 3193686903 win 32120 [tos 0x10] (ttl
240, id 0, len 173, bad cksum 0!)
0x0000 4510 00ad 0000 0000 f006 0000 d4a4 d803 E...............
0x0010 4e25 d4a5 2757 0015 2413 567d be5b cb77 N%..'W..$.V}.[.w
0x0020 5018 7d78 0000 0000 5553 4552 2061 6e6f P.}x....USER.ano
0x0030 6e79 6d6f 7573 0d0a 5041 5353 2079 6f75 nymous..PASS.you
0x0040 726e 616d 6540 796f 7572 636f 6d70 616e rname@yourcompan
0x0050 792e 636f 6d0d 0a52 4553 5420 3130 300d y.com..REST.100.
0x0060 0a52 4553 5420 300d 0a54 5950 4520 410d .REST.0..TYPE.A.
0x0070 0a50 4153 560d 0a4c 4953 5420 2f70 7562 .PASV..LIST./pub
0x0080 2f75 7362 2f67 616d 6570 6f72 742e 7064 /usb/gameport.pd
0x0090 660d 0a54 5950 4520 490d 0a50 4153 560d f..TYPE.I..PASV.
0x00a0 0a52 4554 5220 2f70 7562 2f75 73 .RETR./pub/us

The yellow highlight being the most important (shortly).
And ip id of 0 is unusual.

3.3 Probability the source address was spoofed:
It is very unlikely that the source address is spoofed. First this is part of an
established ftp-command channel. Second for this attempt to work it has to be part of
an ftp connection and thus a established TCP connection. It is very hard to spoof 3-
whs to establish a TCP session.

3.4 Description of attack:
The alert rule was written as a result of a vulnerability in a free Windows 32 bit based
ftp server[4]. The 3Com demon is vulnerable to a buffer overflow when the server
receives 400 or more characters. The snort developers have conservatively set a low
value of 100 to detect invalid ftp commands. Clearly the above capture will not cause
a buffer overflow and consequently a DOS.

Exploit DOS code has also been posted to bugtraq, however a quick review of the
code indicates that it would send 420 “A” and as such has not been used here.

So what is the attack?
As far as I can establish is it a long and invalid ftp command. It is invalid for a couple
of reasons. The first (highlighted in yellow above) is the fact that the first REST
command is not immediately followed with a FTP service command as required in
the rfc959[5]. The second reason is that the rfc959 states that communication
between user and server is intended to be an alternating dialogue and as such a
user protocol interpreter should wait for a response to any command before sending
a new command. There are at least 9 consecutive commands in the above record,
hardly an alternating dialogue.

I tried to identify if any client would naturally generate such an invalid request. Since
I couldn’t identify one I suggest it is a crafted, yet invalid, ftp request. A review of the
payload indicated it had no malicious payload.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 43 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

3.5 Attack Mechanism:
In a nutshell we have:
Who: attacker at 212.164.216.3
What: attempting an invalid stimulus against an internal FTP server 78.37.212.165
Why: He could have number motives

 Denial of Service, unlikely as it isn’t big enough for the known 3Com
vulnerability.

 Attempting to get malicious code to execute, this is unlikely as the
payload doesn’t appear to have any malicious content.

 Reconnaissance to try and identify the ftp server’s response to a
incorrectly constructed request (stimulus), this is the most likely.

When: 17th May 2002 at 2:01:19 am
Where: from a internal ftp server 78.37.212.165
How: unknown client in fact it would appear to be a crafted packet.

3.6 Correlations:
As of 30th May, 2004 dshield.org does not have any reports against the address
212.164.216.3; remember the capture was taken in 2002.

And a reference is the snort signature database.[6]

Bugtraq also details vulnerability in 3Com’s windows ftp daemon (3Cdaemon)[4].

3.7 Evidence of active targeting:
There are a total of 12 records between these two hosts. Ten were immediately
before this record and one immediately after. The other 11 records appeared to be
valid anonymous ftp attempts.

Considering that the payload violates rfc959, and I can find no standard client to
generate such a request I believe it to be a calculated stimulus attack.

So yes, there is evidence of active targeting.

3.8 Severity:
Criticality: 3 It is hard to determine how important this asset is without knowing
exactly what its business purpose of the server is, that aside it is an Internet
connected ftp and www server. It would also appear that anonymous ftp access is
allowed. Thus by inference one would believe it to be some form of vendor supplied
informational site.

Lethality: 1 This is a stimulus to gather information about the ftp server.

System Countermeasures: 3, Very hard to determine without knowledge of how well
the server has been maintained. There are however a lot of “Attack- Responses 403
Forbidden”. The “403 messages” indicated Apache 1.3.12 is being used. A quick
google indicates Apache was officially up to version 1.3.27 as at Oct 3 2002 [7]. I
have assumed that the syadmin has not over-ridden the http response header. If the
http demon is so out-of-date one has to assume the ftp demon is also un-maintained.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 44 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Network Countermeasures: 1, ftp is a permitted protocol to this host and thus the
web server has been afforded no protection by firewall or border routers.

(3+1)–(3+1) = 0

3.9 Defensive Recommendations:
The packet appears to be a specially crafted reconnaissance probably to confirm the
actual version of ftp server. As such it is important that a suitably qualified sysadmin
ensure the server is fully patched and correctly configured.

Since the real motive of the attacker cannot be conclusively determined with the
above capture, I suggest the analyst temporarily add the following rule to the
local.rules file. Remember, it will now have the highest precedence and in particular
will have a higher priority than all other rules in the ftp.rules file. If this creates an
issue, you probably should modify the ftp.rules file. The new rule will capture all
traffic to and from the external host triggering the alert for a period of 300 seconds.

The Updated Snort Rule added to local.rules:
alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP command
overflow attempt – Tracked"; flow:to_server,established,no_stream;
dsize:>100; reference:bugtraq,4638; classtype:protocol-command-
decode; sid:1748; rev:4; tag: host, 300, seconds, src;)

As at 31 May 2004 the venerability still exist in the software as the vendor has not
released on updated version[8]. It strongly suggested that an audit confirm no one
within the organisation is using the vulnerable software.

3.10 Multiple Choice Question:
What is the primary purpose of sending a overly long and syntactically invalid
command to a ftp server.?
(a) invalid commands simply get dumped by the ftp server.
(b) provided it is less than one datagram it wont be invalid.
(c) to simulate a response which might leak information about the server.
(d) the rfc959 is very flexible and as such it is ok to send long commands.

The best answer is (c).
(a) is wrong, the server should always return a 3 digit response code.
(b) is wrong, there is no limit to the size. Also remember at the application layer tcp is
a stream and as such the server doesn’t know how many datagrams were used.
(d) while being quite long it clearly outlines what is a valid command structure and
exchange sequence.

Reference:

1 Reining, Chris
LOGS: GIAC GCIA Version 3.4 Practical Detect Chris Reining, (8/2/2004)
URL: http://cert.uni-stuttgart.de/archive/intrusions/2004/02/msg00064.html (28/5/2004)

2 IEEE OUI and Company_id Assignments
URL: http://standards.ieee.org/regauth/oui/oui.txt (30/5/2004)

3 Phaal, Peter.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 45 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Detection NAT Devices using sFlow
URL: http://www.sflow.org/detectNAT/ (19/06/2004)

4 Msh, Skyrim.
3Com 3Cdaemon Buffer Overflow Vulnerability. (Apr 30, 2002)
URL: http://www.securityfocus.com/bid/4638/info/ (31/05/2004)

5 Postel, J and Reynolds, J
File Transfer Protocol, Request For Comment 959 (October 1995)
URL: http://www.javvin.com/protocol/rfc959.pdf (2/5/2004)

6 Sourcefire Research Team,
Snort Signature Database.
URL: http://www.snort.org/snort-db/sid.html?sid=1748 (30/5/2004)

7 Jagielski, Jim.
Apache 1.3.27 Released (3/10/2002)
URL: http://archives.neohapsis.com/archives/apache/2002/0019.html (30/5/2004)

8 3Com Software Library–Additional Files–Utilities for Windows 32 Bit
URL: http://support.3com.com/software/utilities_for_windows_32_bit.htm (31/05/2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 46 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Question 3: Analysis This

1. Executive Summary
Effectively securing a single personal computer at home on an ADSL line can be a
daunting task; securing a whole university is mammoth task. The additional
challenges your IT staff face are:

 End users such as students and dare I say it lecturers may be a lot less
cooperative than desired.

 Universities tend to be connected to the internet with fat pipes, this
network resource is sought after by shady individuals wishing to wreak
havoc.

 A lot of the students have no interest in computers but are at university
to do a major other than IT.

 Some students with too much spare time tend to be creative.

In this report I review how effective your IT staff have been in maintaining the
security of your infrastructure. This review specifically looks at the period
Wednesday 7th April, 2004 through to and including Sunday 11th April, 2004.
However I do believe the results obtained over this 5 day period really reflects how
effective your policies, IT staff and Security specialist have been in the months
leading up to the audit.

Over the 5 day period there were:
 93, 379 alerts trending slightly up
 15,683,216 port scans also trending slightly up
 5,891 Out of Specification packet trending slightly down

Of the 93,379 alerts there were 51 different categories detected by your network
based intrusion detection probe. In this report we look in depth at the 7 highest
occurring alerts and the 10 internal hosts most actively scanning.

Overall, considering the size of your university network, it is quite secure. There are
however a couple of issues which need your immediate attention:
 At least 18 hosts appear to have been compromised, 14 of which appear to

be infected with a fast scanning worm.
 At least 12 of the previous 14 hosts appear to be ‘bots’ remotely controlled

via IRC channels.
 One compromised host remotely controlled via VNC.
 Ingress filtering needs enhancing.
 DNS servers need to be dedicated to outgoing traffic.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 47 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

2. Origin of the Logs
All logs were downloaded from http://www.incidents.org/logs/ as outlined in
assignment requirement, however you will note that I’m just outside my 60-day limit.
This was unavoidable as it was impossible to get anything near 5 continuous days at
the end of April; even though the assignment suggested filling the gap with files
immediately before the gap, in all cases the gap was excessive.

2.1 List of Files Analysed

Date Alert File Scan File Out of Spec
Apr
04

Name Size Name Size Name Size

7 alert.040407.gz 1,714,968 scans.040407.gz 28,569,712
oos_report_040407
#2 3,456,000

8 alert.040408.gz 3,918,959
scans.040408.gz
#1 8,937,472

oos_report_040408
#2 1,341,440

9 alert.040409.gz 4,134,815
scans.040409.gz
#1 21,184,512

oos_report_040409
#1 #2 516,096

10 alert.040410.gz 5,008,515 scans.040410.gz 41,031,562
oos_report_040410
#2 1,638,400

11 alert.040411.gz 4,977,930
scans.040411.gz
#1 27,385,856

oos_report_040411
#2 360,448

The files tagged with #1 were partially corrupted. By using zcat instead of gunzip I
was able to extract records up to the corruption. The files were corrupted as follows.
Scans.040408 terminated at 03:51:32. Scans.040409 terminated at 11:38:42.
Scans.040411 terminated at 14:26:32. In all cases one would expect them to finish
close to 23:59. The text file oos_report_040405 (e.g. data for 9th) contained some
binary data near the end of it at 05:55:49.

The files tagged with #2 represent the file containing the actual data for the day
required.

3. Traffic and Network Analysis
The one-hour summary graph below graphically indicates the amount of activity over
the five-day period. Please be aware that the y-axis is logarithmic and as a result any
spikes are indeed very big spikes.

The first observation is that the logs appear broken. In the previous section I
indicated that 4 of the downloaded files appeared corrupted toward the end, this is
reflected in the graph.

Looking at the alerts we can see 8 distinct spikes in activity over the 5 days. The
alert plot does appear to show a gap in data between 1:00am and 12:00 on the first
day. Shown on the graph is an unfortunate trending up in the number of alerts
recorded over the five-day period.

Next looking at the Out Of Spec (OOS) plot we see a very strange, yet very
consistent, pattern. On all 5 days the pattern for OOS packets start just before
midnight and abruptly stop just before 08:00am. Over the five- day period there is a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 48 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

small trend down in the number of OOS packets but with such a fragmented plot the
trend shouldn’t be considered further.

Lastly looking at the scans plot uncovers some interesting patterns (ignoring the
apparent break in data because of corrupted files). The first is that there were 3
distinct outbreaks of wide scale scanning; on one occasion spiking up to 660,000
scans in 1 hr. Also shown on the graph is an unfortunate trending up in the number
of scans recorded over the five- day period.

3.1 Alerts
Unique Flow Direction

Alert Message Total
Alerts Ext

Src
Int
Dst

Int
Src

Ext
Dst

In-
bound

Out-
bound I->I E->E

EXPLOIT x86 NOOP 28822 2035 1801 28822
MY.NET.30.3 activity 12994 194 1 12994
SMB Name Wildcard 12170 140 525 12170
High port 65535 tcp - possible Red Worm
–traffic 10664 75 46 48 105 5489 5175
MY.NET.30.4 activity 10207 344 1 10207
Tiny Fragments - Possible Hostile Activity 8005 10 14 1 1 8004 1
DDOS mstream handler to client 3253 2 7 3253
NMAP TCP ping! 1098 208 81 1098
Possible trojan server activity 1081 23 271 18 44 849 232
Null scan! 972 161 88 972
External RPC call 930 2 260 930
SUNRPC highport access! 637 29 24 637
Incomplete Packet Fragments Discarded 511 100 81 1 1 510 1
TCP SRC and DST outside network 309 29 90 309
High port 65535 udp - possible Red Worm
–traffic 244 59 19 11 34 158 86
ICMP SRC and DST outside network 210 50 207 210
[UMBC NIDS] Internal MiMail alert 158 3 102 158

1 Hour Snort Summary

1

10

100

1000

10000

100000

1000000

7/04/2004 0:00 7/04/2004
12:00

8/04/2004 0:00 8/04/2004
12:00

9/04/2004 0:00 9/04/2004
12:00

10/04/2004
0:00

10/04/2004
12:00

11/04/2004
0:00

11/04/2004
12:00

Time

C
o

u
n

t

Alerts

OOS
Scans

Linear (Alerts)

Linear (OOS)
Linear (Scans)

Wed Thur Fri Sat Sun

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 49 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Unique Flow Direction
Alert Message Total

Alerts Ext
Src

Int
Dst

Int
Src

Ext
Dst

In-
bound

Out-
bound I->I E->E

[UMBC NIDS IRC Alert] IRC user /kill
detected 147 41 47 0 0 147
DDOS shaft client to handler 142 23 1 142
[UMBC NIDS IRC Alert] Possible sdbot
floodnet detected attempting to IRC 108 17 4 108
FTP passwd attempt 100 91 1 100
TCP SMTP Source Port traffic 83 3 1 83
IRC evil - running XDCC 72 3 3 72
EXPLOIT x86 setuid 0 66 55 35 66
SMB C access 55 13 5 55
[UMBC NIDS] External MiMail alert 47 19 1 47
connect to 515 from outside 46 1 1 46
EXPLOIT x86 setgid 0 33 26 27 33
EXPLOIT x86 stealth noop 28 8 8 28
[UMBC NIDS IRC Alert] Possible drone
command detected. 25 3 8 25
RFB - Possible WinVNC - 010708-1 24 5 6 6 5 13 11
FTP DoS ftpd globbing 22 5 1 22
[UMBC NIDS IRC Alert] Possible
Incoming XDCC Send Request Detected. 17 3 2 17
NIMDA - Attempt to execute cmd from
campus host 15 9 3 15
Attempted Sun RPC high port access 14 6 5 14
TFTP - Internal UDP connection to
external tftp server 14 6 2 3 6 7 7
EXPLOIT NTPDX buffer overflow 10 8 7 10
SYN-FIN scan! 9 9 9 9
EXPLOIT x86 NOPS 8 1 1 8
DDOS mstream client to handler 6 4 2 6
Probable NMAP fingerprint attempt 5 5 5 5
TFTP - External TCP connection to
internal tftp server 4 2 2 1 1 3 1
NETBIOS NT NULL session 3 1 3 3
PHF attempt 2 2 1 2
[UMBC NIDS IRC Alert] K\:line'd user
detected 2 2 2 2
[UMBC NIDS IRC Alert] User joining
XDCC channel detected. Possible XDCC
bot 2 1 1 2
External FTP to HelpDesk MY.NET.53.29 1 1 1 1
External FTP to HelpDesk MY.NET.70.49 1 1 1 1
External FTP to HelpDesk MY.NET.70.50 1 1 1 1
Fragmentation Overflow Attack 1 1 1 1
[UMBC NIDS IRC Alert] XDCC client
detected attempting to IRC 1 1 1 1

Totals: 93379 3665 2875 264 1139 71569 21291 0 519

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 50 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Alerts Top 10 External talkers
External
Source IP FQDN

Total
scans

Dst
Hosts

Dst
Port
(Ports)

212.76.225.24 cable-212.76.225.24.coditel.net 7559 2 16
199.131.21.34 zc7831522.ip.fs.fed.us 3480 500 3
68.81.0.87 pcp01333933pcs.columb01.pa.com

cast.net
2993 1 2

141.157.102.155 pool-141-157-102-
155.balt.east.verizon.net

2693 1 1

131.92.177.18 aeclt-cf00a4.apgea.army.mil 2166 1 1
68.57.90.146 pcp912734pcs.brndml01.va.comca

st.net
1660 2 1

69.138.77.62 pcp08479849pcs.desoto01.md.com
cast.net

1628 2 1

68.43.170.140 bgp01087647bgs.waren301.mi.co
mcast.net

1566 87 3

68.55.113.194 pcp311543pcs.woodln01.md.comc
ast.net

1519 1 1

68.55.178.168 pcp233959pcs.elictc01.md.comcast
.net

1298 2 1

Alerts Top 10 Internal Talkers
Internal Source IP Total scans Unique

Dst Hosts
UniqueDst Ports (Dst’ Port
decreasing Frequency)

MY.NET.11.7 7016 2 1
MY.NET.84.235 3952 35 8
MY.NET.60.16 2169 2 2
MY.NET.111.228 991 1 1
MY.NET.150.198 674 167 1
MY.NET.150.44 632 165 1
MY.NET.97.51 618 1 1
MY.NET.75.13 598 171 1
MY.NET.11.6 524 2 1
MY.NET.97.92 379 1 1

Alerts Top 10 Alerts from External Hosts
Alert Message Total
SMB Name Wildcard 12170
High port 65535 tcp - possible Red Worm - traffic 5175
DDOS mstream handler to client 3253
Possible trojan server activity 232
[UMBC NIDS] Internal MiMail alert 158
[UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to IRC 108
High port 65535 udp - possible Red Worm - traffic 86
IRC evil - running XDCC 72
NIMDA - Attempt to execute cmd from campus host 15
RFB - Possible WinVNC - 010708-1 11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 51 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Alerts Top 20 Alerts from Internal Hosts
Alert Message Total
EXPLOIT x86 NOOP 28822
MY.NET.30.3 activity 12994
MY.NET.30.4 activity 10207
Tiny Fragments - Possible Hostile Activity 8004
High port 65535 tcp - possible Red Worm–traffic 5489
NMAP TCP ping! 1098
Null scan! 972
External RPC call 930
Possible trojan server activity 849
SUNRPC highport access! 637
Incomplete Packet Fragments Discarded 510
TCP SRC and DST outside network 309
ICMP SRC and DST outside network 210
High port 65535 udp - possible Red Worm–traffic 158
[UMBC NIDS IRC Alert] IRC user /kill detected, possible trojan. 147
DDOS shaft client to handler 142
FTP passwd attempt 100
TCP SMTP Source Port traffic 83
EXPLOIT x86 setuid 0 66
SMB C access 55

Analysis of alerts with a count greater than 3000 over the 5 day period.

3.1.1 Alert #1 – EXPLOIT x86 NOOP
Unique Flow Direction TimestampTotal

Alerts Ext
Src

Int
Dst

Int
Src

Ext
Dst

In-
bound

Out-
bound I->I E->E First Last

28822 2035 1801 28822 2004-04-07 00:08:16 04-11 23:46:32
Standard Snort SID’s: none, however sid-648 [1] is a very close match.

The snort signature database description and GCIA practicals by Sai Prasad
Kevavamatham [2] and Sylvain Randier [3] all indicate that this alert is normally a
false positive.
dsport Count
80 26032
1025 1753
5000 471
135 284
389 73

The first thing of note is that all alerts are for incoming traffic. Looking at the
destination ports (see abridged table above) tells us a little more. First as expected
port 80 is the highest. Initially I investigated the two highest sources and destinations
of port 80 traffic, nothing was found unusual. I then decided to look a little deeper at
the remaining ports as I believe it unusual to have such traffic incoming to a
university. For example port 1025 is known to be used a back-door port as well as

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 52 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

having a number of vulnerabilities including one registered cve [4]. Likewise port
5000 is also commonly known as a back-door port. Port 389 (ldap) is used for
authentication and also was targeted from one external source (216.65.73.26) to a
number of internal destinations.

Recommendations:
Seriously consider whether ports such as 1025/5000/135/389 are required incoming.
Unfortunately, even though this rule creates lots of false positives, it is valuable when
trying to piece together how an incursion was perpetrated, thus you need to leave it
enabled.

3.1.2 Alert #2 – MY.NET.30.3 activity
Unique Flow Direction TimestampTotal

Alerts Ext
Src

Int
Dst

Int
Src

Ext
Dst

In-
bound

Out-
bound I->I E->E First Last

12994 194 1 12994 2004-04-07 13:13:16 04-11 23:38:53
Standard Snort SID’s: none, custom alert for the university. It appears the university
has implemented a custom alert to trigger on all incoming traffic to a Novell Web
Enterprise Server.

The first thing of note is that all alerts are for incoming traffic. Looking at the
destination ports (see abridged table below) tells us a little more. Port 524 is of
particular interest due to its very high value. Novell’s documentation [5] indicates that
tcp 524 is used for Netware Core Protocol and udp 524 is used for NCP time
synchronisation. From the alerts I’m unable to determine if it is tcp or udp. Even
though the alerts span the whole review period I believe they were too erratic to be
used for time synchronisation as such I believe they are tcp. A fellow GCIA student
Peter Storm also indicated that this host was running other Netware protocols[6].
dsport Count
524 12298
80 445
2745 75
6129 43
4899 20

Recommendations:
Consider whether tcp/udp port 524 needs to be available from the internet. Also
consider splitting this catch all alert into three signatures and thus allow the alert
message to indicate whether it is udp / tcp / other.

3.1.3 Alert #3 – SMB Name Wildcard
Unique Flow Direction TimestampTotal

Alerts Ext
Src

Int
Dst

Int
Src

Ext
Dst

In-
bound

Out-
bound I->I E->E First Last

12170 140 525 12170 2004-04-07 00:11:04 04-11 23:39:49
Standard Snort SID’s: none, custom alert for the university.
It appears the university has implemented a custom alert to trigger on all outgoing
traffic with a destination port of udp137. While snort does not appear to have a
matching rule it has appears to have been routinely used by various analyst. Bruce
Alexander provided an interesting trace analysis using the same alert[7].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 53 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Originally, SMB name query traffic was always between two hosts both using udp
137 (see abridged table below). Samba, an open source implementation of
SMB/CIFS is known to originate traffic from a source port other than 137[8]. An
analysis of our traffic indicates that 140 of the hosts responsible for this traffic would
appear to be Microsoft Windows work-stations. A further 2 work-stations
(MY.NET.150.198, MY.NET.150.44) appear to behave both like a Samba and a
Microsoft implementation.
srcport Count
137 11041
1071 205
1050 199
1074 136
1051 124

Recommendations:
Identify why two work-stations act both like Samba and Microsoft. It may not be an
issue e.g. DHCP is being used, but it would be easy to identify the primary use of
such ip addresses. Consider whether you require outgoing udp port 137; in fact the
university should consider the real benefits of allowing any SMB ports into and out of
the campus.

3.1.4 Alert #4 – High port 65535 tcp – possible Red Worm - traffic
Unique Flow Direction TimestampTotal

Alerts Ext
Src

Int
Dst

Int
Src

Ext
Dst

In-
bound

Out-
bound I->I E->E First Last

10664 75 46 48 105 5489 5175 2004-04-07 00:16:17 04-11 23:23:04
Standard Snort SID’s: none, custom alert forthe university.
It appears the university has implemented a custom alert to trigger any tcp traffic with
either port of 65535.

Anthony Dell[9], as part of his GSEC certification, performed a very through analysis
of how the Adore Worm worked. Anthony pointed out that the adore worm was
originally known as Red Worm and propagated to any vulnerable Unix host.

Anthony and sequentially Peter Storm[6] indicated that any infected host would be
expected to scan port 53, 111 and 515. Even though we had lots of flows to and from
our network no hosts appear infected with the Adore worm.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 54 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Mysql Console:
mysql> create table ip_65535

-> select distinct srcip from alerts where message like
-> 'High port 65535 tcp - possible Red Worm - traffic'
-> and srcip like 'MY.NET.%'
-> union distinct
-> select distinct dstip from alerts where
-> message like 'High port 65535 tcp - possible Red Worm - traffic'
-> and dstip like 'MY.NET.%';

Query OK, 51 rows affected (0.33 sec)
Records: 51 Duplicates: 0 Warnings: 0

mysql> create table ip_65535_2
-> select insert(srcip,1,6,'130.80') as srcip from ip_65535;

Query OK, 51 rows affected (0.01 sec)
Records: 51 Duplicates: 0 Warnings: 0

mysql> select distinct scans.srcip from scans,ip_65535_2 where
-> (scans.srcip=ip_65535_2.srcip) and
-> (scans.dstport=53 or scans.dstport=111 or scans.dstport=515);

Empty set (0.00 sec)

Recommendations:
This worm is quite old so effective patching as outlined by Anthony [9]should be very
effective at preventing infection.

3.1.5 Alert #5 – MY.NET.30.4 activity
Unique Flow Direction TimestampTotal

Alerts Ext
Src

Int
Dst

Int
Src

Ext
Dst

In-
bound

Out-
bound I->I E->E First Last

10207 344 1 10207 2004-04-07 00:08:22 04-11 23:45:10
Standard Snort SID’s: none, custom alert for the university. It appears the university
has implemented a custom alert to trigger on all incoming traffic to a Novell Web
Enterprise Server.

The first thing of note is that all alerts are for incoming traffic. Looking at the
destination ports (see abridged table below) tells us a little more. Port 51443 is of
particular interest due to its very high value. Novell’s documentation [10] indicates
that tcp 51443 is used as a secondary https port when the Novell Web Enterprise
Server is installed. We also see tcp/udp 524 as in alert 2 [3.1.2]. Once again it is
impossible to determine if it is udp or tcp. Even though the alerts span the whole
review period I believe they were too erratic to be used for time synchronisation as
such I believe they are tcp. A fellow GCIA student Peter Storm also indicated that
this host was running other Netware protocols[6].
Dsport Count
51443 7255
80 2253
524 447
6129 59
4899 20

Recommendations:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 55 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Consider whether tcp/udp port 524 needs to be available from the internet. Also
consider splitting this catch all alert into three signatures and thus allow the alert
message to indicate whether it is udp / tcp / other.

3.1.6 Alert #6 – Tiny Fragments – Possible Hostile Activity
Unique Flow Direction TimestampTotal

Alerts Ext
Src

Int
Dst

Int
Src

Ext
Dst

In-
bound

Out-
bound I->I E->E First Last

8005 10 14 1 1 8007 1 2004-04-07 17:32:05 04-11 08:58:02
Standard Snort SID’s: none, custom alert for the university. The current version of
snort contains a very similar alert [11]. Older versions of snort contained an minfrag
preprocessor which was depreciated in Snort 1.8 in favour of stream4
preprocessor[12]. The associated documentation for using the old minfrag
preprocessor directly matches the above alert [13].
Extract from Marty’s 1.3 user documentation:
alert tcp any any -> any any (minfrag: 256; msg: "Tiny fragments detected,
possible hostile activity";)

Marty points out in his documentation[12] and in online discussions[14] that it is
“unusual” for equipment to generate fragmented packets smaller than 256. Looking
at the alerts it is impossible to determine either the size of the packets or the
threshold. Of the recorded alerts some 94% were between MY.NET.43.3 and
212.76.225.24, additionally all but one of the alerts was incoming.

Below is a sample of the alerts between MY.NET.43.3 and 212.76.225.24.
Dttime message Srcip srcport Dstip dstport

10/04/2004 0:30
Tiny Fragments - Possible
Hostile Activity 212.76.225.24 0 MY.NET.43.3 0

10/04/2004 0:30
Tiny Fragments - Possible
Hostile Activity 212.76.225.24 0 MY.NET.43.3 0

10/04/2004 0:30
Tiny Fragments - Possible
Hostile Activity 212.76.225.24 0 MY.NET.43.3 0

As you can see neither the source port nor the destination port is set so it is very
hard to determine which service is being used/targeted.

Looking at alerts, OOS and scans does not provide much more of a insight. The
external host 212.76.225.24 (see registration information) only has alerts for “Tiny
Fragments– Possible Hostile Activity” and “Null scan!”, however no scans or OOS
associated with it. The internal MY.NET.43.3 had 70 other alerts, none of immediate
concern. There are 152 oos packets however they all appear to be standard ECN
syn packets[6]. There were 4626 outgoing scans recorded against MY.NET.43.3;
most were soulseek (tcp 2234) and some were edonkey(tcp 4662) [21]. While the
scan preprocessor recorded them as scans I believe they were a result of heavy use
of the respective P2P clients.

Sai Prasad Kesavamatham[2] also analysed similar alerts and believes it is a result
of mutlicast traffic as part of the Access Grid Project. Unfortunately I do not have
enough data to draw such a conclusion.

Recommendations:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 56 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Once again we see P2P heavily in use, as outlined elsewhere in this document the
university should consider its use. To help identify exactly what traffic is causing this
alert I suggest the university use the latest version of snort. I would further suggest
they modify the rule (see highlighted below) to temporarily apply tagging. The rule is
found in “misc.rules” file. You will also note that I have added a ‘+’ to the frag bits,
this is intentional as I have seen some GRE tunnels fragment packets with DF bit
set. Interestingly they leave the DF bit set, thus you end up with fragments with DF
bit set. I like it when vendors read rfc’s.
Extract From misc.rules:
alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC Tiny Fragments";
fragbits:M+; dsize: < 25; classtype:bad-unknown; sid:522; rev:1; tag:
host, 300, seconds, src;)

3.1.7 Alert #7 – DDOS mstream handler to client
Unique Flow Direction TimestampTotal

Alerts Ext
Src

Int
Dst

Int
Src

Ext
Dst

In-
bound

Out-
bound I->I E->E First Last

3253 2 7 3253 2004-04-09 05:29:41 04-11 06:00:02
Standard Snort SID’s: two, tcp 12754 has a snort signature of 248[15] and tcp 15104
has a snort signature of 250[16].

dstport Count srcport Count
25 5 12754 3243
4662 3248 15104 10

From the above table it is apparent that both signatures are matching. All 5 alerts to
dstport 25 were for host MY.NET.60.17, while there were a few alerts for this host
nothing was extraordinary. As such I have ruled out the 5 alerts to destination port 25
as false positives.

The 3248 to port 4662 are of more concern. All of them originated from host
MY.NET.84.235. Below is you can see that 3240 had a source address of
MY.NET.84.235:12754 and a destination address of 82.48.242.184:4662.

srcip dstip dstport srcport Cnt
MY.NET.84.235 82.48.242.184 4662 12754 3240
MY.NET.60.17 65.54.252.99 25 15104 5

MY.NET.84.235 62.42.66.52 4662 12754 3
MY.NET.84.235 81.102.85.92 4662 15104 2
MY.NET.84.235 217.236.97.47 4662 15104 1
MY.NET.84.235 80.15.47.94 4662 15104 1
MY.NET.84.235 81.69.163.174 4662 15104 1

Taking a closer look at MY.NET.84.235 I was able to determine that it was very
aggressively scanning for eDonkey clients[24]. Please refer to scan #9 latter in this
document [3.2.9]. The first alert recorded between these two hosts was at 2004-04-
10 22:19:55 and the last 2004-04-10 22:55:11. By looking at all scans originating
from MY.NET.84.235 just before and after the initial alert I was able to confirm that
source ports 12753 and 12755 were used to other random hosts. I was unable to
confirm our outgoing stimulus to 82.48.242.184 but believe it must have been missed
by the portscan preprocessor.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 57 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

While Scan #9 confirms that MY.NET.84.235 was in fact scanning for eDonkey I had
to explain why one scan, which coincidently was detected as 3240 “DDOS mstream
handler to client” alerts. The first possible explanation was that a eDonkey client
used within the university happened to use a source port of 12754 to log into
82.48.242.184 and download a file with lots of ‘>’ in it, possible but unlikely. The
second, and most likely reason is a university host scanning for eDonkey clients
locked up to host 82.48.242.184 for a period of 36 minutes. It is hard to say without
knowing the type of scanner being used why MY.NET.84.235 locked up. Two
possible reasons come too mind, first the scanner is crude and prone to lockup or
secondly 82.48.242.184 may have been running a LaBrea[8] like tarpit for eDonkey
scanners.

Recommendations:
As all these alerts appear to be false positives there is very little to do. However host
MY.NET.84.235 does need remedial work, please see scan #9 [3.2.9] for further
details.

3.2 Scans
Top Scan Types

Scantype flags count Scantype flags Count
SYN ******S* 9219429 NOACK **U*P*S* 41
UDP 0 6394838 NOACK **U**RS* 37
FIN *******F 58871 VECNA **U***** 34
SYN 12****S* 7629 UNKNOWN 12***R** 30
NULL ******** 493 UNKNOWN 1****R** 30
INVALIDACK ***A*R*F 477 UNKNOWN *2*A**S* 26
UNKNOWN *2***R** 60 UNKNOWN 1**A*R** 23
VECNA ****P*** 58 NOACK ****P*S* 22
NOACK **U**RSF 52 XMAS *2U*P**F 19

Scans Top 10 External talkers
Srcip Total

scans
Unique
Dst Hosts

Unique Dst Ports (Dst’ Port
decreasing Frequency)

213.180.193.68 51559 1 51559 (random, none twice)
203.251.69.205 28392 15568 1(80)
61.146.52.26 28219 15567 1(80)
210.221.193.137 28189 15528 1(20168)
138.100.42.180 27798 15569 1(80)
24.97.20.62 27447 15515 1(4000)
194.79.163.149 27233 15405 1(554)
136.142.36.112 26338 15320 1(6129)
205.118.75.10 26166 15287 1(4000)
64.218.200.19 25657 15027 3(most 6129,32788, 32783)

Scans Top 10 Internal Talkers
Srcip Total

scans
Unique
Dst Hosts

Unique Dst Ports (Dst’ Port
decreasing Frequency)

MY.NET.1.3 2889682 103806 1474 (53, some 123,10123, .)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 58 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Srcip Total
scans

Unique
Dst Hosts

Unique Dst Ports (Dst’ Port
decreasing Frequency)

MY.NET.111.51 1623396 1623037 112 (135, some 411, 13701..)
MY.NET.153.35 1522488 97068 6086 (1214, some 2067, ...)
MY.NET.81.39 1189494 1189003 15 (135, some 80, 10862 …)
MY.NET.70.96 1130689 89932 13 (#)
MY.NET.112.152 1082032 139714 15 (#)
MY.NET.1.4 796489 58554 695 (53, some 123, 45197 …)
MY.NET.66.56 338569 37158 13 (#)
MY.NET.84.235 295215 20414 1216 (4662, some 4661, ..)
MY.NET.42.2 253159 39941 12 (#)
very evenly distributed with ports 135,139, 445, 1025, 2745, 3127, 3410, 5000,
6129

Scan Analysis
Analysis of 10 hosts with the highest scan counts over the 5 day period.

3.2.1 Scan #1 – MY.NET.1.3
Unique TimestampTotal

Scans Dst ip Dst Port First Last
2889682 103806 1474 2004-04-07 00:08:05 2004-04-11 14:48:21

Below is a top-N profile of scans to/from MY.NET.1.3 grouped on port and scan type.
Of greatest concern is outgoing “scans” to port 53 udp. The service most commonly
found on udp 53 is dns.

Source MY.NET.1.3 Destination MY.NET.1.3
Dstport scantype Count srcport Count

53 UDP 2877966 53 25
123 UDP 9019 32768 3

10123 UDP 325 32770 2
53 SYN 300 32774 2

45190 UDP 245 32938 2

Below is a sample of the first few scan records analysed based on time.
Dttime srcip srcport Dstip dstport scantype flags info

7/04/2004 0:08 MY.NET.1.3 32783 128.193.0.30 53 UDP 0 UDP
7/04/2004 0:08 MY.NET.1.3 32783 209.208.0.96 53 UDP 0 UDP
7/04/2004 0:08 MY.NET.1.3 32783 216.127.43.91 53 UDP 0 UDP
7/04/2004 0:08 MY.NET.1.3 32783 217.160.72.252 53 UDP 0 UDP
7/04/2004 0:08 MY.NET.1.3 32783 65.198.177.5 53 UDP 0 UDP

From the above data outgoing DNS traffic represents 99.6% of all traffic. Additionally
there is also a reasonable ratio (28:1) of total scans (o/g flows) to unique destination
hosts; a ratio substantially higher than 1:1 would be expected of random internet
browsing. I believe that the traffic above is valid traffic for a primary outgoing DNS
server for this university.

A simple dns request (16/06/2004) for www.microsoft.com was resolved by the dns
server, this confirms that the dns server is now acting as a external dns server. It is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 59 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

unlikely that it has only just become a dual purpose dns server so I’m assuming it
was a dual purpose DNS server during the period of this report.

Recommendations:
Ensure such a high use, high profile DNS server is either an internal or external DNS
server but not both. A very good article by Joe Stewart explains the increased risks
of cache poisoning [17] as a result of using the one dns server as both internal and
external resolver.

3.2.2 Scan #2 – MY.NET.111.51

Below is a top-N profile of scans to/from MY.NET.11.51 grouped on port and
scantype. Of greatest concern is outgoing “scans” toport 135 tcp. The service most
commonly found on tcp 135 is epmap (Microsoft’s DCE endpoint resolution)[18].

Source MY.NET.11.51 Destination MY.NET.11.51
Dstport Scantype Count Dstport Scantype Count

135 SYN 1622974 80 SYN 14
411 SYN 84 20168 SYN 8

13701 SYN 69 6129 SYN 6
1605 SYN 55 4899 SYN 3
413 UDP 19 1025 UDP 2

Below is a sample of the first few scan records analysed based on time.
Dttime Srcip srcport Dstip dstport scantype flags Info

7/04/2004 0:08 MY.NET.111.51 4572 130.104.231.237 135 SYN ******S* SYN ******S
7/04/2004 0:08 MY.NET.111.51 4573 130.104.231.238 135 SYN ******S* SYN ******S
7/04/2004 0:08 MY.NET.111.51 4575 130.104.231.239 135 SYN ******S* SYN ******S
7/04/2004 0:08 MY.NET.111.51 4576 130.104.231.240 135 SYN ******S* SYN ******S

Below is a list of all alerts to / from MY.NET.111.51 over the 5 day period.
Dttime Message Srcip srcport Dstip dstport

8/04/2004 13:05 EXPLOIT x86 NOOP 209.214.97.96 4352 MY.NET.111.51 1025

9/04/2004 23:39
RFB - Possible WinVNC -

010708-1 MY.NET.111.51 5900 68.55.192.251 62931

9/04/2004 23:39
RFB - Possible WinVNC -

010708-1 68.55.192.251 62931 MY.NET.111.51 5900

10/04/2004 21:44
RFB - Possible WinVNC -

010708-1 MY.NET.111.51 5900 68.55.192.251 62902

10/04/2004 21:44
RFB - Possible WinVNC–

010708-1 68.55.192.251 62902 MY.NET.111.51 5900

11/04/2004 2:53
RFB - Possible WinVNC–

010708-1 MY.NET.111.51 5900 68.55.192.251 60253

11/04/2004 2:53
RFB - Possible WinVNC–

010708-1 68.55.192.251 60253 MY.NET.111.51 5900
11/04/2004 6:56 EXPLOIT x86 setuid 0 217.215.120.150 3573 MY.NET.111.51 19992
11/04/2004 8:12 EXPLOIT x86 setuid 0 217.215.120.150 3573 MY.NET.111.51 19992

11/04/2004 18:57
RFB - Possible WinVNC–

010708-1 68.55.192.251 63445 MY.NET.111.51 5900

Unique TimestampTotal
Scans Dst ip Dst Port First Last
1623396 1623037 112 2004-04-07 00:08:08 2004-04-11 14:48:15

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 60 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

From the above data outgoing TCP-135 traffic represents 99.97% of all traffic.
Additionally there is a ratio (1:1) of total scans (e.g o/g connection) to unique
destination hosts; this gives further evidence to the fact this host is being used to
identify potential targets. From the alerts above it would appear that it is being
remotely controlled via VNC by an external host 68.55.192.251
(pcp229440pcs.catonv01.md.comcast.net). Additional detail about this host is
contained in the registration section [6].

Recommendations:
Immediately isolate MY.NET.111.51 from your network. Do a through investigation of
the host to ensure virus patterns etc are up to date. You should also look through all
available logs (ids, firewall, syslog, windows event log, etc) to determine both the
infection vector and timeline of the host’s initial compromise. Finally you should notify
the respective Org Abuse contact see [6]. You should also consider blocking known
remote control ports e.g tcp-5900 on your firewall(s).

3.2.3 Scan #3 – MY.NET.153.35
Unique TimestampTotal

Scans Dst ip Dst Port First Last
1522488 97068 6086 2004-04-09 00:00:01 2004-04-11 12:47:06

Below is a top-N profile of scans to/from MY.NET.153.35 grouped on port and scan
type. Of greatest concern is outgoing “scans” to port 1214 udp. The service most
commonly found on udp 1214 is KazaA[19][20]. This port is also known to be used by
other P2P programs such as Morpheus, Grokster and Fasttrack[21]. Note there also
were 1058 outgoing connections to tcp port 1214.

Source MY.NET.153.35 Destination MY.NET.153.35
Dstport scantype Count dstport scantype Count

1214 UDP 19493 3247 SYN 102
2067 UDP 3930 3247 NOACK 21
3835 UDP 3595 3247 INVALIDACK 20

32656 UDP 3293 3247 NULL 16
2376 UDP 3184 80 SYN 11
3185 UDP 3043 3247 FIN 11
2695 UDP 2954 3247 VECNA 10

Below is a sample of some relevant scan records analysed based on time.
Dttime srcip srcport dstip dstport scantype flags Info

9/04/2004 0:00 MY.NET.153.35 3247 12.223.234.133 3019 UDP 0 UDP
9/04/2004 0:00 MY.NET.153.35 3247 128.255.166.220 3653 UDP 0 UDP
9/04/2004 0:00 MY.NET.153.35 3247 24.91.130.4 2010 UDP 0 UDP
9/04/2004 0:00 MY.NET.153.35 3247 63.13.138.227 2389 UDP 0 UDP

cut
9/04/2004 0:00 MY.NET.153.35 3351 162.40.171.84 1214 SYN ******S* SYN ******S*
9/04/2004 0:09 MY.NET.153.35 3247 172.128.81.21 1214 UDP 0 UDP

In this case 99.3% of outgoing traffic originates from one ephermal port 3247.
Because KazzA is subsequently being used I believe this host is being used to
identify ‘live’ internet hosts by initially scanning random obscure remote udp ports.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 61 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

This is being followed up with attempted KazzA scans. I was able to very that at least
90 KazzA scans were proceeded by a random scan. The objective he is to find
suitable ‘open’ hosts for leaching[23].

Recommendations:
While there is no evidence the MY.NET.153.35 has been compromised it should be
immediately be isolated from your network. Do a through investigation of the host to
ensure virus patterns etc are up to date. You should also look through all available
logs (ids, firewall, syslog, windows event log, etc) to determine both the infection
vector and timeline of the host’s initial compromise.

3.2.4 Scan #4 – MY.NET.81.39
Unique TimestampTotal

Scans Dst ip Dst Port First Last
1189494 1189003 15 2004-04-09 07:11:52 2004-04-11 14:48:04

The analysis of top-N profile of scans to/from MY.NET.81.39 grouped on port and
scantype was very similar to scan 2 found previously in this document [3.2.2]. Once
again the greatest concern is outgoing “scans” to port 135 tcp. The service most
commonly found on tcp 135 is epmap (Microsoft’s DCE endpoint resolution)[18].

Source MY.NET.81.39 Destination MY.NET.81.39
Dstport Scantype Count Dstport scantype Count

135 SYN 1188912 80 SYN 13
80 SYN 412 6129 SYN 7

10862 UDP 49 20168 SYN 7
23890 UDP 25 4000 SYN 3
23498 UDP 24 3389 SYN 2

In this case outgoing TCP-135 traffic represents 99.99% of all traffic. Once again
there is a ratio (1:1) of total scans (e.g o/g connection) to unique destination hosts;
this gives further evidence to the fact this host is being used to identify potential
targets. Below is a sample of the first few scan records based on time.

Dttime Srcip srcport Dstip dstport scantype flags info
9/04/2004 7:11 MY.NET.81.39 1039 207.46.104.20 1863 SYN ******S* SYN ******S*
9/04/2004 7:11 MY.NET.81.39 1064 108.28.156.1 135 SYN ******S* SYN ******S*
9/04/2004 7:11 MY.NET.81.39 1065 108.28.156.2 135 SYN ******S* SYN ******S*
9/04/2004 7:11 MY.NET.81.39 1066 108.28.156.3 135 SYN ******S* SYN ******S*
9/04/2004 7:11 MY.NET.81.39 1067 108.28.156.4 135 SYN ******S* SYN ******S*
9/04/2004 7:11 MY.NET.81.39 1068 108.28.156.5 135 SYN ******S* SYN ******S*

Unfortunately the analysis of all the alerts, shown below, was fruitless. I could not
identify any indications of a backdoor on the host. While there are a number of
incoming scans to known backdoor/remote control ports none appeared anything
more than normal random scans.

Dttime Message Srcip srcport dstip dstport
8/04/2004 9:50 EXPLOIT x86 NOOP 210.202.16.129 3660MY.NET.81.39 1025

8/04/2004 12:56 EXPLOIT x86 NOOP 130.160.146.172 4225MY.NET.81.39 5000
9/04/2004 5:13 EXPLOIT x86 NOOP 140.251.88.83 4397MY.NET.81.39 5000

Recommendations:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 62 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Immediately isolate MY.NET.81.39 from your network. Do a through investigation of
the host to ensure virus patterns etc are up to date. You should also look through all
available logs (ids, firewall, syslog, windows event log, etc) to determine both the
infection vector and timeline of the host’s initial compromise. You should also try to
determine if and how this work-station is being controlled.

3.2.5 Scan #5 – MY.NET.70.96
Unique TimestampTotal

Scans Dst ip Dst Port First Last
1130689 89932 13 2004-04-07 13:13:06 2004-04-09 08:53:23

Below is a top-N profile of scans to/from MY.NET.70.96 grouped on port and
scantype. Of greatest concern is the highly bunched scan to 10 well known
destination ports (see highlight).

Source MY.NET.70.96 Destination MY.NET.70.96
Dstport Scantype Count srcport scantype Count

135 SYN 127985 80 SYN 11
2745 SYN 126799 6129 SYN 6
445 SYN 126462 20168 SYN 6

3127 SYN 126321 4899 SYN 4
139 SYN 125562 4000 SYN 2

1025 SYN 125525 2812 SYN 2
6129 SYN 124859 57 SYN 2
3410 SYN 124859 40 INVALIDACK 2
5000 SYN 124163 3042 INVALIDACK 2
1981 SYN 75 2361 INVALIDACK 2

Sample of scans.
Dttime Srcip srcport Dstip dstport scantype flags Info

7/04/2004 13:13 MY.NET.70.96 1755 130.66.249.77 1025 SYN******S* SYN ******S*
7/04/2004 13:13 MY.NET.70.96 1757 130.66.249.77 445 SYN******S* SYN ******S*
7/04/2004 13:13 MY.NET.70.96 2374 130.100.178.119 5000 SYN******S* SYN ******S*
7/04/2004 13:13 MY.NET.70.96 2375 130.172.96.196 2745 SYN******S* SYN ******S*
7/04/2004 13:13 MY.NET.70.96 2379 130.172.96.196 135 SYN******S* SYN ******S*
7/04/2004 13:13 MY.NET.70.96 2382 130.172.96.196 1025 SYN******S* SYN ******S*
7/04/2004 13:13 MY.NET.70.96 2384 130.172.96.196 445 SYN******S* SYN ******S*
7/04/2004 13:13 MY.NET.70.96 2386 130.172.96.196 3127 SYN******S* SYN ******S*
7/04/2004 13:13 MY.NET.70.96 2387 130.172.96.196 6129 SYN******S* SYN ******S*
7/04/2004 13:13 MY.NET.70.96 2388 130.172.96.196 139 SYN******S* SYN ******S*
7/04/2004 13:13 MY.NET.70.96 2389 130.172.96.196 3410 SYN******S* SYN ******S*
7/04/2004 13:13 MY.NET.70.96 2390 130.172.96.196 5000 SYN******S* SYN ******S*
7/04/2004 13:13 MY.NET.70.96 2391 130.163.15.105 2745 SYN******S* SYN ******S*
7/04/2004 13:13 MY.NET.70.96 2392 130.163.15.105 135 SYN******S* SYN ******S*

Relevant alerts.
Dttime Message srcip srcport dstip dstport

7/04/2004 15:32
* 4 times

[UMBC NIDS IRC Alert]
Possible drone command

detected. 128.122.66.204 7000 MY.NET.70.96 3221
7/04/2004 16:27 EXPLOIT x86 NOOP 130.235.188.219 1740 MY.NET.70.96 1025

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 63 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Dttime Message srcip srcport dstip dstport

8/04/2004 1:50

[UMBC NIDS IRC Alert]
Possible sdbot floodnet

detected attempting to IRC MY.NET.70.96 3726 128.122.66.204 7000
8/04/2004 7:38

* 2 times
[UMBC NIDS IRC Alert]

Possible drone command
detected. 128.122.66.204 7000 MY.NET.70.96 3726

8/04/2004 16:18

[UMBC NIDS IRC Alert] IRC
user /kill detected, possible

trojan. 128.122.66.204 7000 MY.NET.70.96 3726

9/04/2004 14:39

[UMBC NIDS IRC Alert] IRC
user /kill detected, possible

trojan. 128.122.66.204 7000 MY.NET.70.96 1044

9/04/2004 18:38

[UMBC NIDS IRC Alert]
Possible sdbot floodnet

detected attempting to IRC MY.NET.70.96 1031 128.122.66.204 7000

9/04/2004 22:27

[UMBC NIDS IRC Alert]
Possible sdbot floodnet

detected attempting to IRC MY.NET.70.96 1041 128.122.66.204 7000

11/04/2004 15:23

[UMBC NIDS IRC Alert]
Possible sdbot floodnet

detected attempting to IRC MY.NET.70.96 1102 146.151.53.178 7000

From the above data it would appear that the above bot is scanning for potential
targets. It is also appears to be controlled via IRC channel hosted by 128.122.66.204
(KAPTEREV.ICAS.FAS.NYU.EDU.). Additional detail about this host is contained in
the registration section [6].

Elsewhere in this report you will see three other hosts with the same profile. As
detailed in SANS handler’s Diary during April it is most likely this pattern is a result of
variant of {Phat|Ago|Gao}bot [22]. I decided to determine if I could identify others
hosts / ‘bots’ with the same profile which didn’t reach the top 10. By using the
following sql commands I able to predict with high certainly that the following hosts
have the same bot. The IRC flag indicates whether it probably is being controlled by
128.122.66.204.
Host IRC Host IRC Host IRC
MY.NET.42.2  MY.NET.43.5 MY.NET.43.10 
MY.NET.66.56  MY.NET.70.96  MY.NET.80.5 
MY.NET.80.28  MY.NET.80.224  MY.NET.112.152 
MY.NET.150.199  MY.NET.150.210 MY.NET.151.75 
MY.NET.153.174  MY.NET.153.195 

Mysql Console:
mysql> create table bad select srcip,dstport, count(*) as count from scans
where (dstport = 135 or dstport = 2745 or dstport = 445 or dstport = 3127
or dstport = 139 or dstport = 1025 or dstport = 6129 or dstport = 3410
or dstport = 5000) group by srcip,dstport;

mysql> select srcip,count(*) as cnt from bad where srcip like '130.85.%'
and count > 10 group by srcip having cnt >7;

Recommendations:
Immediately isolate MY.NET.70.96 (and others) from your network. Do a through
investigation of the host to ensure virus patterns etc are up to date. You should also

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 64 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

look through all available logs (ids, firewall, syslog, windows event log, etc) to
determine both the infection vector and timeline of the host’s initial compromise.
Read the article by TonkiGin about how evasive bot’s can be when coupled with
IRC[23]. Finally by using information contained within TonkiGin’s article you may be
able to identify the operators of the channel(s).

3.2.6 Scan #6 – MY.NET.112.152
Unique TimestampTotal

Scans Dst ip Dst Port First Last
1082032 139714 15 2004-04-07 15:43:02 2004-04-07 22:40:51

Port profile was very similar to scan 5 [3.2.5]. There were 111 alerts similar to those
seen in scan 5. Once again 128.122.66.204 was the controller. Data has not been
repeated but the same reduction techniques were used. Recommendations are the
same as in scan 5.

3.2.7 Scan #7 – MY.NET.1.4
Unique TimestampTotal

Scans Dst ip Dst Port First Last
796489 58554 695 2004-04-07 00:08:07 2004-04-11 14:48:20

Port profile was very similar to scan 1 [3.2.1]. There were 85 alerts similar to those
seen in scan 1. Data has not been repeated but the same reduction techniques were
used. Recommendations are the same as in scan 1.

From the analysed data outgoing DNS traffic represent 98.8% of all traffic.
Additionally there is also a reasonable ratio (14:1) of total scans (o/g packet) to
unique destination hosts; a ratio substantially higher than 1:1 would be expected of
random internet browsing. I believe that the traffic above is valid traffic for a
secondary outgoing DNS server for this university.

A simple dns request (16/06/2004) for www.microsoft.com was resolved by the dns
server, this confirms that the dns server is now acting as an external dns server. It is
unlikely that it has only just become a dual purpose dns server so I’m assuming it
was a dual purpose DNS server during the period of this report.

Recommendations:
Ensure such a high use, high profile DNS server is either an internal or external DNS
server but not both. A very good article by Joe Stewart explains the increased risks
of cache poisoning [17] as a result of using the one dns server as both internal and
external resolver.

3.2.8 Scan #8 – MY.NET.66.56
Unique TimestampTotal

Scans Dst ip Dst Port First Last
338569 37158 13 2004-04-09 08:19:45 2004-04-09 11:49:44

Port profile was very similar to scan 5 [3.2.5]. There were 3 alerts similar to those
seen in scan 5. Once again 128.122.66.204 was the controller. Data has not been

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 65 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

repeated but the same reduction techniques were used. Recommendations are the
same as outlined in scan 5.

3.2.9 Scan #9 – MY.NET.84.235
Unique TimestampTotal

Scans Dst ip Dst Port First Last
295215 20414 1216 2004-04-09 00:09:43 2004-04-11 14:48:21

Below is a top-N profile of scans to/from MY.NET.84.235 grouped on port and scan
type. Of greatest concern is outgoing “scans” to port 4662 tcp. The service most
commonly found on tcp 4662 is eDonkey[24]. This port is also known to be used by
other P2P programs such as Overnet[24]. You will also notice that there is
considerable scans to port 4661,4665 which are also used by eDonkey.

Source MY.NET.84.235 Destination MY.NET.84.235
Dstport scantype Count Dstcport scantype Count

4662 SYN 216907 2745 SYN 49
4661 SYN 10539 4662 SYN 37
5662 SYN 4207 80 SYN 26
4246 UDP 3381 1025 SYN 15
4665 UDP 3375 0 NULL 12

80 SYN 2101 20168 SYN 5
4663 SYN 1727 6129 SYN 4
4660 SYN 1008 4000 SYN 4
4242 SYN 989 0 NOACK 3
2842 SYN 823 21 SYN 2

Below is a sample of the first few scan records analysed based on time.
Dttime srcip srcport dstip dstport scantype Flags info

9/04/2004 0:09 MY.NET.84.235 18528 81.203.204.143 4662 SYN ******S* SYN ******S*
9/04/2004 0:09 MY.NET.84.235 18538 65.92.213.55 4662 SYN ******S* SYN ******S*
9/04/2004 0:09 MY.NET.84.235 18539 213.102.234.6 31509 SYN ******S* SYN ******S*
9/04/2004 0:09 MY.NET.84.235 18540 80.59.160.145 4662 SYN ******S* SYN ******S*
9/04/2004 0:09 MY.NET.84.235 18541 81.33.210.224 4662 SYN ******S* SYN ******S*
9/04/2004 0:09 MY.NET.84.235 18542 217.127.98.176 4662 SYN ******S* SYN ******S*
9/04/2004 0:09 MY.NET.84.235 18543 80.36.108.187 4662 SYN ******S* SYN ******S*
9/04/2004 0:09 MY.NET.84.235 18519 217.125.191.213 4662 SYN ******S* SYN ******S*
9/04/2004 0:09 MY.NET.84.235 18520 81.33.241.106 4661 SYN ******S* SYN ******S*
9/04/2004 0:09 MY.NET.84.235 18547 218.17.215.189 4661 SYN ******S* SYN ******S*

There were some 5550 alerts over the 5 day period record against this host.
Message srcip cnt
DDOS mstream handler to client MY.NET.84.235 3248
EXPLOIT x86 NOOP 199.131.21.34 791
High port 65535 tcp - possible Red Worm - traffic MY.NET.84.235 660
High port 65535 tcp - possible Red Worm - traffic 81.203.197.37 289
High port 65535 tcp - possible Red Worm - traffic 217.95.183.166 225
DDOS shaft client to handler 207.68.172.236 49
Possible trojan server activity MY.NET.84.235 43
Null scan! 219.137.39.207 23
High port 65535 tcp - possible Red Worm - traffic 217.95.189.202 23
EXPLOIT x86 NOOP 199.131.21.37 19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 66 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Message srcip cnt
High port 65535 tcp - possible Red Worm - traffic 80.178.191.31 15
EXPLOIT x86 NOOP 203.186.80.19 14
DDOS shaft client to handler 80.33.84.164 12
Cut
[UMBC NIDS IRC Alert] Possible sdbot floodnet detected attempting to
IRC MY.NET.84.235 1

Initially I investigated the 3248 “DDOS mstream handler to client” alerts to see if they
were valid. I was able to establish that they were in fact false positives as a result of
the university host randomly selecting and the using out going ephemeral ports,
which just happen to be ‘on occasions’ to be the same port typically used by the
mstream DDOS handler. Please refer to Alert #7 analysis for additional
correlations[3.1.7]. Like wise I was able to rule out the “DDOS shaft client to handler”
alerts.

We previously have seen in this paper that both the “Red Worm [3.1.4]” and the
“Exploit x86 [3.1.1]” alerts are both prone to false positives. By using a process of
elimination I was able to determine, with reasonable certainly, that this host is really
a bot under control of a IRC channel. The IRC channel is hosted on 131.96.118.15 ,
further details available in the registration section[6].

Recommendations:
Immediately isolate MY.NET.84.235 from your network. Do a through investigation of
the host to ensure virus patterns etc are up to date. You should also look through all
available logs (ids, firewall, syslog, windows event log, etc) to determine both the
infection vector and timeline of the host’s initial compromise. Finally you should notify
the respective Org Abuse contact see [6].

3.2.10 Scan #10 – MY.NET.42.2
Unique TimestampTotal

Scans Dst ip Dst Port First Last
253159 39941 12 2004-04-09 08:30:43 2004-04-09 09:50:22

Port profile was very similar to scan 5 [3.2.5]. There were 5 alerts similar to those
seen in scan 5. Once again 128.122.66.204 was the controller. Data has not been
repeated but the same reduction techniques were used. Recommendations are the
same as outlined in scan 5.

3.3 OOS
Snort generates out-of-spec (OOS) log entries whenever it detects packets with tcp
flags outside what is expected e.g. what is defined in various rfc’s.
Tcp_flags Count
12****S* 5638
******** 112
****P*** 61
12***R** 16
*****RSF 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 67 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Over the 5 day period 5891 logs were recorded. See (above) an abridged summary
table grouped on tcp flag combinations which triggered the logs. The pattern
“12****S*” which has the highest hit ratio is commonly seen today as a result of new
tcp stacks trying to negotiate Explicit Congestion Notification (ECN), which is
explained in detail in rfc2481 [25]. A quick review indicates with reasonable certainly
most if not all of these are false positives.

The next most recorded OOS pattern over 5 day review period had tcp flags of
‘********’. Interestingly 86 of the packets were between 68.121.194.43:ephermal ->
MY.NET.12.4:110. The first was recorded 2004-04-07 00:27:12 and the last at 2004-
04-11 05:48:02. On closer inspection I noticed a further pattern all packets had the
same ip_id (highlighted in red below), this for normal IP traffic is extremely unlikely
and as such I believe these packets are crafted.
Sample Packets:
04/07-00:27:12.380674 68.121.194.43:4870 -> MY.NET.12.4:110
TCP TTL:78 TOS:0x0 ID:4660 IpLen:20 DgmLen:40
******** Seq: 0x5A6A001 Ack: 0x28EA489E Win: 0x800 TcpLen: 20
=+
04/08-03:44:10.737522 68.121.194.43:24070 -> MY.NET.12.4:110
TCP TTL:78 TOS:0x0 ID:4660 IpLen:20 DgmLen:40
******** Seq: 0x38B2001 Ack: 0x4E826A04 Win: 0x800 TcpLen: 20
=+

Additionally there were 183 “Null Scan!” from 68.121.194.43 to MY.NET.12.4 over
the period but at different times to when the OOS packet were recorded.

Recommendations:
Immediately isolate MY.NET.12.4 from your network. Do a through investigation of
the host to ensure virus patterns etc are up to date. You should also look through all
available logs (ids, firewall, syslog, windows event log, etc) to determine if you can
identify any other issues with this host.

4. Top Priority Issues
P2P: There is evidence of P2P programs being used see [3.1.6] and [3.2.3] While it
is not against the law to use such programs it is commonly known that they are used
to exchange pirated music and software. The university should ensure they have
suitable policies outlining conditions of using P2P software on university
infrastructure. They should also ensure every user is aware of, and accept the
conditions in writing prior to being allowed to use the university infrastructure.

DNS: It appears that 2 of the universities outgoing dns servers are working as split
dns servers see [3.1.2] and [3.1.5. It is suggested that the university consider
operating dns as either outgoing or incoming to minimise the likelihood of dns cache
poisoning.

Remote Control Software: There is evidence of remote control software being used
to control compromised hosts internal to the university[3.2.2] and with reasonable
certainty [3.2.4]. These hosts need to be taken out of service and either rebuilt or
suitably repaired. In addition the university needs to consider the benefits of allowing
incoming commonly known remote control connections.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 68 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Compromised Hosts: There is evidence of a number of hosts being used as
distributed scanners. There is further evidence that most of these hosts are also
being controlled via IRC channels. These hosts need to be isolated and either re-
built or suitably repaired. Further details are found in the section “Insights on Internal
Machine” [8].

5. Top Talkers
Please refer to following previous tables:

 Alerts Top 10 External Talkers
 Alerts Top 10 Internal Talkers
 Scans Top 10 External Talkers
 Scans Top 10 Internal Talkers

6. Registration Information
Host / Reason Registration Information Contact Information
212.76.225.24

Alert #6
See 3.1.6

Net Range:
212.76.225.0 - 212.76.225.255

Name:
CODITEL

Country: BE

Abuse:
abuse@coditel.be

Contact:
Yves Beckers

Phone:
+32 2 226 54 23

fax-no:
+32 2 219 77 25

e-mail:
yves.beckers@coditel.be

82.48.242.184

Alert #7
See 3.1.7

Scan #9
See 3.2.9

Net Range:
82.48.240.0 - 82.48.255.255

Name:
TELECOM-ADSL-3
Telecom Italia S.p.A.

Country: IT

Abuse:
abuse@telecomitalia.it
Phone:

+39 06 36881
e-mail:

ripe-
staff@telecomitalia.it

68.55.192.251

Scan #2
See 3.2.2

Net Range:
68.55.0.0 - 68.55.255.255

Name:
Comcast Cable Communications, Inc.
Address:

3 Executive Campus
5th Floor

City:
Cherry Hill

StateProv: NJ
Country: US

OrgAbuseEmail:
abuse@comcast.ne

TechPhone:
+1-856-317-7200

TechEmail:
cips_ip-
registration@cable.comcast.com

OrgAbusePhone:
+1-856-317-7272

128.122.66.204 Net Range: Contact:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 69 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

Host / Reason Registration Information Contact Information

Scan #5
See 3.2.5

128.122.0.0 - 128.122.255.255 Name:
New York University

Address:
Academic Computing Facility
251 Mercer Street

City: New York
StateProv: NY
Country: US

RUSSELL@NYU.EDU

TechPhone:
+1-212-998-3431

131.96.118.15

Scan #8
See 3.2.8

Net Range:
131.96.0.0 - 131.96.255.255

Name:
Georgia State University

Address:
University Computer Center
University Plaza

City: Atlanta
StateProv: GA
Country: US

TechName:
Heidt, Sam B.

TechPhone:
+1-404-651-4567

TechEmail:
sheidt@gsu.edu

7. Link Graph

8. Insights on Internal Machines
The following hosts appear to have been compromised and need further immediate
investigation.
HOST Section Why

131.96.118.15
(on Internet)

Internet

Internet

MY.NET.42.2

MY.NET.84.235

MY.NET.151.75

MY.NET.80.5 MY.NET.111.51

MY.NET.153.195

MY.NET.81.39

1188912
tcp135

1622974
tcp135

295215
udp

random
then

eD
onkey

sub
scan

1
*

IR
C

SD
bot

7
*

W
in

V
N

C

83131#1

1 * IRC SDbot

IRC bot

253159
#1

IRC bot

MY.NET.112.152MY.NET.150.199

MY.NET.43.10 MY.NET.70.96

MY.NET.80.224

MY.NET.80.28

MY.NET.43.5

MY.NET.150.210MY.NET.153.174

MY.NET.66.56

IR
C

bo
t

IRC bot

IRC bot

IRC
bot

IRC bot

IRC bot

IRC bot

IRC bot
IRC bot

IR
C

bo
t

68.55.192.251
(on internet)

128.122.66.204
(on Internet)

1130689
#1

338569
#1

81800
#1

24680
#1

13
68

67
#1

21
17

11
#1

415
#1

13
75

77
#1

48
44

9
#1

10
82

03
2

#1

13
98

41
#1

IRC
bot

likely

IR
C

bot

lik ely

#1:
TCP Ports Grouped

135, 2745, 445, 3127, 139, 1025,
6129, 3410,5000

1043
#1

Possible

69.50.174.222
(on Internet)

1
*

IR
C

S
D

bot
1

*
IRC

SDbot

69.50.174.218
(on Internet)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 70 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

HOST Section Why
MY.NET.42.2 3.2.5,3.2.5 High Volume ‘bot’ scanner to 10 well know ports
MY.NET.43.5 3.2.5 High Volume scanner to 10 well know ports
MY.NET.43.10 3.2.5 High Volume ‘bot’ scanner to 10 well know ports
MY.NET.66.56 3.2.5,3.2.8 High Volume ‘bot’ scanner to 10 well know ports
MY.NET.70.96 3.2.5 High Volume ‘bot’ scanner to 10 well know ports
MY.NET.80.5 3.2.5 High Volume ‘bot’ scanner to 10 well know ports
MY.NET.80.28 3.2.5 High Volume ‘bot’ scanner to 10 well know ports
MY.NET.80.224 3.2.5 High Volume ‘bot’ scanner to 10 well know ports
MY.NET.81.35 3.2.4 host scanning for Microsoft DCE
MY.NET.84.235 3.1.7,3.2.9 ‘bot’ Scanning for eDonkey clients
MY.NET.112.152 3.2.5,3.2.6 High Volume ‘bot’ scanner to 10 well know ports
MY.NET.111.51 3.2.2 VNC controlled host scanning for Microsoft DCE
MY.NET.150.199 3.2.5 High Volume ‘bot’ scanner to 10 well know ports
MY.NET.150.210 3.2.5 High Volume ‘bot’ scanner to 10 well know ports
MY.NET.151.75 3.2.5 High Volume scanner to 10 well know ports
MY.NET.153.35 3.2.3 Host scanning for KazaA clients
MY.NET.153.174 3.2.5 High Volume ‘bot’ scanner to 10 well know ports
MY.NET.153.195 3.2.5 High Volume ‘bot’ scanner to 10 well know ports

9. Defensive Recommendations
Throughout this document when a particular issue was identified I made
recommendations those recommendations should also be considered with the
following general recommendations.

Ingress / Egress filtering: There were 519 alerts generated for flows external to
external. There are two main subgroups of alerts with external / external flows. The
first group was rfc1918 addresses [26], depending on network topology and probe
location it is ok to have these addresses within your network. The other group were
clearly outside addresses. It is suggested the university be a good net citizen and
revise both their ingress and egress filtering detailed in rfc2827[27].

Compromised Hosts: There are a number of compromised hosts. While anti-virus
software won’t prevent all infestations a fully managed centralised anti-virus solution
can be very effective at minimising outbreaks. This also needs to be supplemented
with understandable end-user training on how each user can help minimise the
chance that they become the next victim.

10. Analysis Process
The analysis process could be broken down into the following major phases.

 Downloaded and read honours papers
 Downloaded respective log files from incidents.org
 Verified date and data ranges contained within downloaded files

i. pcregrep, vi, head, tail
 Downloaded past students scripts, tweaked and got them running how

I needed them to
i. Les Gordens’[28] sum_alerts.pl and create_gciadb.sql

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 71 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

ii. Samuel Adams[29] parseAlerts.pl, parseScans.pl, parseOOS.pl
 Concatenated each of the relevant logs files into 3 respective files
 In the case of alerts and scans files

i. Sorted based on date e.g sort–n ….
ii. Removed any lines for invalid dates e.g. pcregrep

 Modified Les’s[28] create_gciadb.sql, created database in mysql
 Loaded data into database with scripts based on Samel’s[29] scripts
 Created alerts summary using Les’s sum_alerts.pl
 Created various summary table’s using manual sql statements based

on headings used by Peter Storm[6]
 Then by iteratively using the following tools built up the report

i. Mysql queries
ii. Microsoft Excel 2000
iii. Microsoft Word 2000
iv. vi
v. PFE32 (programmers file editor)
vi. pcregrep
vii. sort, uniq, head, tail
viii. snort distribution documentation
ix. Google

Lessons learnt:
Ensure you set aside suitable time to get scripts working including time to tweak
scripts developed by others. I would strongly suggest anyone considering doing this
certification do a dry run at creating a dummy report prior to enrolling, that way all
your tools will be sharp and clean.

I also used Mysql 4.0, which unfortunately does not support sub-queries. I strongly
suggest that either Mysql 4.1 be used or an alternative database which supports
sub-queries. My SQL was a little rusty so I took a while to get up to speed; once
again a dry run would have addressed this issue.

I also suggest you keep a journal of major event’s on the internet around the time of
the expected analysis period e.g. while you’re are doing section 1 and 2 of this
assignment the university that your about to report on is silently being hacked. If you
have a journal of major virus, worm and vulnerability releases during that period it
makes it easier to analyse the data.

Start and take small steps it eventually falls into place. Ensure you jot down notes, it
helps later. Additionally, create separate log files for each alert, scan and oos
analysed, that way your crunched data is in manageable chunks.

Ensure you have heaps of spare disk space on your souped up analysis box.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 72 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

References Q3

1 Hart, Jon and Houghton, Nigel.
Snort Signature Database,
SID 648, SHELLCODE x86 NOOP
URL: http://www.snort.org/snort-db/sid.html?sid=648 (20/06/2004)

2 Kesavamatham, Sai Prasad.
Intrusion Detection and Analysis (7th July,2003)
URL: http://www.giac.org/practical/GCIA/SaiPrasad_Kesavamatham_GCIA.pdf (15/05/2004)

3 Randier, Sylvain.
GCIA Practical Assignment
URL: http://www.giac.org/practical/GCIA/Sylvain_Randier_GCIA.pdf (15/05/2004)

4 CAN-2003-0533
URL: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0533 (20/06/2004)

5 Technical Information Document,
Ports and Protocols used by Netware 5.x and 6.x –TID10013531 (18th Jun 2003)
URL: http://support.novell.com/cgi-bin/search/searchtid.cgi?/10013531.htm (18/06/2004)

6 Storm, Peter H.
GIAC Certified Intrusion Analyst (GCIA), Prctical Assignment (Nov 15, 2003)
URL: http://www.giac.org/practical/GCIA/Pete_Storm_GCIA.pdf (06/06/2004)

7 Alexander, Bruce.
Practical Assignment for GCIA Certification, Detect 1 (June 7,2000)
URL: http://www.giac.org/practical/Bryce_Alexander.doc (20/06/2004)

8 SANS Institute,
IDS Signatures and Analysis, Part 1 & 2, Ch 10 pg 24, Ch 5 pg 38 (Sydney 2004)

9 Dell, Anthony D.
Adore Worm–Another Mutation (6th April 2001)
URL: http://www.giac.org/practical/gsec/Anthony_Dell_GSEC.pdf (20/06/2004)

10 Technical Information Document,
What are the default common ports for Netware 6?–TID10071836 (31st Jan, 2003)
URL: http://support.novell.com/cgi-bin/search/searchtid.cgi?/10071836.htm (18/06/2004)

11 Houghton, Nigel and Black, Nick.
Snort Signature Database,
SID 522, MISC Tiny Fragments
URL: http://www.snort.org/snort-db/sid.html?sid=522 (20/06/2004)

12 Roesch, Martin.
Snort Users Manual, Snort Release: 1.8, (9thJuly, 2001)
URL: http://www.selso.com/doc/SnortUsersManual.pdf (21/06/2004)

13 Roesch, Martin.
Writing Snort Rules, How to write snort rules and keep your sanity, Current as of version 1.3.1.2
URL: http://packetstormsecurity.nl/papers/IDS/snort_rules.htm

14 Roesch, Martin
Tiny Fragments (May 14, 2000)
URL: http://archives.neohapsis.com/archives/snort/2000-05/0103.html (20/06/2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Page 73 of 73 GCIA Practical Version 3.4 Michael Meacle
SANS Institute 2003 As part of GIAC practical repository. Author retains full rights.

15 Novak, Judy.
Snort Signature Database,
SID 248, DDOS mstream handler to client
URL: http://www.snort.org/snort-db/sid.html?sid=248 (12/06/2004)

16 Novak, Judy.
Snort Signature Database,
SID 250, DDOS mstream handler to client
URL: http://www.snort.org/snort-db/sid.html?sid=250 (12/06/2004)

17 Stewart, Joe
DNS Cache Poisoning –The Next Generation (27/01/2003)
URL: http://www.securityfocus.com/guest/17905 (18/06/2004)

18 Dshield.org, Port Report
URL: http://www.dshield.org/port_report.php?port=135 (18/06/2004)

19 Neohapsis Port List
URL: http://www.neohapsis.com/neolabs/neo-ports/neo-ports.html (18/06/2004)

20 Supernodes
URL: http://www.kazaa.com/us/help/faq/supernodes.htm#FAQ_supernodes_4 (14/06/2004)

21 Joining P2P networks with MLDonkey through a Firewall,
URL: http://mldonkey.berlios.de/modules.php?name=Wiki&pagename=WhatFirewallPortsToOpen
(14/6/2004)

22 Fendley, Scott
Handler’s Diary April 18th 2004 (08/06/2004)
URL: http://isc.sans.org/diary.php?date=2004-04-18

23 TonikGin.
XDCC– An .EDU Admin’s Nightmare (Sept 11,2002)
http://www.cs.rochester.edu/%7Ebukys/host/tonikgin/EduHacking.html (19/06/2004)

24 Joining P2P networks with MLDonkey through a Firewall,
URL: http://mldonkey.berlios.de/modules.php?name=Wiki&pagename=WhatFirewallPortsToOpen
(14/6/2004)

25 Ramakrishnan, K and Floyd, S.
RFC2481–A Proposal to add Explicit Congestion Notification (ECN) to IP (Jan 1999)
URL: http://www.faqs.org/rfcs/rfc2481.html (24/06/2004)

26 Rekhter, Y and Moskowitz, B and Karrenberg, D and de Groot, G J and Lear, E
Address Allocation for Private Intranets (Feb 1996)
URL: http://www.cse.ohio-state.edu/cgi-bin/rfc/rfc1918.html (26/06/2004)

27 Ferguson, P and Senie, D
Network Ingress Filtering (May 2000)
URL: http://www.cse.ohio-state.edu/cgi-bin/rfc/rfc2827.html (26/06/2006)

28 Gordon, Les M.
Intrusion Analysis– The Director’s Cut! (Nov 22, 2002)
URL: http://www.giac.org/practical/GCIA/Les_Gordon_GCIA.doc (03/03/2004)

29 Adams, Samuel C.
Fun with Intrusion Detection (23 Jun 2003)
URL: http://www.giac.org/practical/GCIA/Samuel_Adams_GCIA.pdf (03/06/2004)

