GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

SANS GCIA Practical ver 3.5

Alexander Schinner

SANS Miunchen
19-24 April 2004

1 XC

Slobal information
Assurance Cerification

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Contents

1. Data mining - Detection and isolation of events using transformations 3
1.1, Abstract 3
1.2. Introduction 3
1.3, Examples 9
1.4. Conclusion 11
1.5. Bibliography 11

2. Network detects 12
2.1. ...egg and spam; egg bacon and spam; egg bacon sausage and spam 12
2.2. He does not like snort? 21
2.3. Just looking! 31

3. Analyze this 39
3.1 Overview L 39
32. Alistofthefiles 39
3.3. Relationships between the different computers 40
34. Alistofdetects 43
35. Atoptalkers” list. 54
3.6. Five selected external source addresses and registration information 25
3.7. Linkgraph 60
3.8. Defensive recommendationso 60
3.9. Description of the analysis process 63

A. ipanalyze 67
Al Name e 67
A2, SYnopsis 68
A.3. Description 68
A4, Options 68
A5, Examples 68
A.6. Output format 69
A7. Seealso 71
A8. Authors 71
A9. Bugs 71

B. Patch for driftnet 72

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. Data mining - Detection and
isolation of events using
transformations

1.1. Abstract

There is a variety of tools to filter packets from a network. One of the most popular ones
is the Berkeley Packet Filter (BPF). All such filters are based on static descriptions, e.g.,
fixed source ports or fixed subnets of IP addresses. These methods work well for most
types of network traffic, but there are cases in which a wider variety of applications may be
appropriate. In this paper we will introduce a new analysis tool which will allow us to do a
time-dependent analysis. One of the advantages of this method is that it enables us to loosen
the relationship of the packet to it's IP source address. We will show that we can distinguish
between traffic from different machines even if they have the same source address (e.g., NAT
router) and that we can detect traffic from the same machine, even if the IP source address
had changed. Many other analysis are possible. The basic concept behind this new filter is
that it will try to detect any type of linear relationship in the data, independent of nuisance
factors as white noise, etc.

1.2. Introduction

Due to the TCP/IP network concept, an intrusion detection specialist must handle enormous
amounts of data, analyzing a sequence of packets with a lot of header information like IP-
addresses, ports, checksums, flags, etc. [1]. How can we find our way through this jungle of
data, which is usually formed by different outputs of tcpdump, ethereal, and snort? Typically,
we try to find patterns that allow us to categorize the packets into logical groups [2]. Based on
our experience, we decide which groups are interesting and need further analysis. Generally,
those groupings are described as Berkeley Packet Filters. Those will, e.g. based on the IP
address, ask questions of the following type:

1. tcpdump -r data.dmp dst host 10.0.0.1
(Who was accessing my server 10.0.0.17)

2. tcpdump -r data.dmp src host 192.168.1.1
(How did the user of computer 192.168.1.1 try to attack my server farm?)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

These methods allow us to analyze a wide range of aspects like source and destination
ports, and patterns, such as illegal values in certain header fields, illegal combinations of
header fields, or values which are in principal legal but are highly suspicious. An example
of a legal but suspicious expression could be the value 31337 or the hexadecimal number
0xDEADBEFEF. Of course, an intrusion detection specialist will combine all of these
techniques, which will lead to a very good analysis, but as a fact, all the criteria are time
independent. What does this mean?

We will try to explain this in a more formal way. We will assume that we have sniffed NV
packets p’ with @ = 1,..., N. Each packet is a combination of different values, therefore
we might represent it as a vector. However, this complicated syntax gives us no gain in our
work. We want to introduce a more simple writing.

In the following, we will index packets p with a filter we want to apply, e.g., psrerp if we
are interested in the source address. With this, we will define our search as an index function
f(p) which will be equal to one if the packet matches our criteria ¢, else the function is zero.

_ 1 for Periteria = €
0 ={ 5 (L)
Using this notation, a search for port 80 or host 192.168.1.1 will have the following
structure.
| 1 for Dport = 80
a1 g o (12)
1 for Phost = 192.168.1.1
R (1)

Of course, the two index functions fi(p) and fo(p) can also be combined to search for
port 80 and host 192.168.1.1. In this case we will use the following notation.

f(p) = fi(p) x fap) (1.4)

Every BPF can be written as search function. But can every search function be written
as BPF?

Figure 1.1 shows an example where this may be difficult. We see from the pattern in the
graph that someone tried to contact many ports on our server. Can we write a BPF for
filtering only the packets of this port scan? Yes an no. Yes, because in most cases, we will
try to identify the source IP (e.g., 10.0.0.10) and then we will filter for the address (tcpdump
src host 10.0.0.10). No, because in some cases these connects may not originate from
one address but from different source addresses. A reason might be that the sender was
faking his address. In this case, we will need a search function with a time dependent
criterion c(t).

f; iteria —
f(p)={ (1) e W (1.5)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3 768 oo, o) 0o o oo
3 - oo @0 o OOO o Oo o ° ® o o ° o 026 ©® & oog
o < © 0o ° o © o o o O o©® 0 00 g go OOo@
% ©%o ° <) co,®) ° ° 08 G ° Q0 go°
? % 00%, © % oo ° oo &5 ° 8 %3 o 00 ° [e 2 o
o]
S ° ° ° %8, o o 08° 8, o, 08,0, 4o ° 0 o % o, ® °Lo S
5 50 © ®8 o b Og o 00 % © 00 ° %
%o © o ° o » 06 00 090 g
og ° o ? 0° @ ° ©©® 00 ®o o 0%, o
o 0% o o o o 8 o o o o Oocoao oo o
o o 60 9 0 o o 80 o8 oo o ° e
o 0° @ o 97 o 0o @ 0% ° 00 e
o o o o & o o o
000% o 0% 0o Oo% o o 8 ® oo o o ®0
o O'
o (o] o o)
oo Ooo%cc S0 & & ® 0o © og Ogoooo OoO ooo ©®°og o &
o (&) o o
—— o o o OO oo o o ° &8 o 4%00 ®o P o
= 0%00 & o 9 o 0% o o o oo o) v o
(@] o % @ ° °° o ° ° o & °g ®
o© o _o o o o ®?P o 5 0o o5 wRo o & 000 © o o o o
o %o g © ° [o
© o o © ® ° Q I ol & 6 © 0 © o9
o o ° 7, o o o0 ° o o 8% 0%
5 33 68 > Cod® ° %o °0” %o B ° ° 9d3 ¢ ° °© g 8 °
+— 2 o S
- 00 oRPe o o OOO 8 8090 00 %o 06 o° o © °®
n DoO oo 600, ©0@° ° © »Co 0 o 0 ° 5 q® N o ° 00
) So, o o8 00 o oo o 9 ©°LYa
-C o %00@)00 o S o 0o o © gaoo o ° 000 O o o0 @
o o o ° [} ol ° 000 Y
()
02 o 4 &) 0oP® o 90% o SRy © o o P 00 o 50 o
g o & 8 an@ 50 o 0 ® oo Q@ ° g
o oo © o 000 @, o Q o o & oo oo
&° o © o 98 @ o o o o &
L o o o o ° o & o® o o 9 ° & o o
©o0 @ o o ® 9 ° S @ @ ®
o~ @ o 8 00 © ©o0 o o o 0 2 00 o % ©
Q% o §° 0% © o o 00 °© o % 50 ° ° o o
° o§00 9 ° B, © o o o ©o o © [
o o o © 0 00,9 50 . o $% 8 K 0 o o 00 °
o °© @%OQ;C % 8 O§o © "% » o® 0% o 00800, o %o & °
o o o o o ° °_o
o Odj o o O, ° [e] O o 8
° %5 0o 96000 ® © & 0% oo %, 00 0’ 4 3
09 o & o o© 0. % © o000 g ° 00 ® S5 o0 P
@ o o 0% ¢ % o @° o og ® o
3:2768 o O P Lo o 4) ©0 90 | oo} o |

Figure 1.1.: This graph shows a port scan, plotting destination ports versus time.

However, as most networks are very noisy, the exact comparison peiteria = ¢(t) will be
difficult. Some packets will arrive a few milliseconds earlier, some a little bit later. Therefore,

we need a term of the form periteria = c(t).

uncertainty, we write:

f(p) =

1 for
0 else

|p criteria —

c(t)| < d

Defining a small value d which describes the

(1.6)

In the example given by figure 1.1, ¢(¢) would be a linear function of the form at + b,
where a is the number of connects per second and b is an offset, mostly representing the
time the scan started. Two problems arise. First, even if we know a and b, it is not possible
to translate this criterion into BPF notation. Furthermore, we do not know a and are not
very much interested in . The next sections will show how to realize such a time dependent
search function without knowledge of a and b.

But before we do the math, we have to prepare our data. How this can be achieved easily
will be explained in appendix A.

1.2.1. Method

In most cases ¢(t) will follow a linear function as in the example given by figure 1.1. Therefore,
within this paper, we will concentrate on linear functions ¢(t) = at + b. But other functions

are possible.

The most obvious way to fit data of this form would be linear regression. Unfortunately,
our data will most probably not only hold one interesting pattern, but several ones, in addition
to white noise, etc. We thus are not interested in fitting ¢(t) = at + b for all data points, but

© SANS Institute 2004,

As part of GIAC practical repository.

Author retains full rights.

-© o o 1o b (X o o
o o o
o~ 4o o o® o 6©
e 4 o ® o 4 Jc o g o
Ics - o IV o o
e® 0O o©
© © o [c¥ SENCE o ° o
9,0 o o ©50 o o °0° ® o
o o o o o ° o o o
| | |

Figure 1.2.: The plots show the distance of the points for three different values of a;.

only for a subset of data points of interest, and therefore will need to work with a different
algorithm.

Not knowing the correct values for a and b, we will need to apply best guesses.

Trying different values of a; and b;, we will calculate the shortest distance of each point to
the line ¢;(t) = a;t+b; and will count the number n; of all points, which are close enough to
the line. The maximum allowed distance will be d from equation 1.6. The line ¢;(t) with the
largest n; count is the best available result. This method works good, but is slow. We can
reduce calculation times by choosing narrow search intervals for a and b. Still, the method
has limitations.

Equivalent, but faster is the following variation of the above idea. Instead of rotating
(parameter a) and shifting (parameter b) a linear function and fitting the points, we will
simply rotate the data set using a rotation matrix [3].

()= () (ol i) .

We will then distribute the rotated points (¢}, p;) to bins of fixed width. Afterwards, we
will calculate the frequency distribution of the points. If we have chosen a good rotation
angular «, one bin will contain a maximum possible number of points p; with f;(p) = 1.
The advantage is that instead of varying a and b we only need to tune one parameter .
Another advantage is that this angle « is only of interest in the range o = [-7;5]. The
idea becomes clearer if we look at figure 1.3.

We are starting with N pairs of values p;,t;. We can assume, that both ¢, and p;. n
are in the intervals ¢ = [0, t4:] and p = [0, piaz|, respectively. If the raw data does not
fulfill this restriction, we can simply shift the values without changing the result.

Now, we have to choose a value d. In the example above we chose d = 1. This means,
that the width of a bin is one second.

With this, out algorithm will be of the following form:
Start main loop Loop over a = [—7; 7] with sufficiently small step
Transformation Rotate the data points by the rotation angle o

t: = cos(a) * t; — sin(a) * p; (1.8)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

o o b

o OO o OOo

00 o

o o
0 o© o
OO o (e} d le)
o
A A A

of

Figure 1.3.: Rotating the points to detect linear pattern
p; = sin(a) * t; + cos(a) * p; (1.9)

Calculate bin width As d is a value from the original system, we have to rotate it, too:

d = cos(a)d (1.10)

Distribute points to bins
Find bin with most points

Check for best result until now If the bin found for this « is better than the best value
already found remember « and all other interesting information.

End main loop

Output Print the dataset for the "best” bin

The above algorithm was designed for linear functions of the form c(t) = at +b. If
we want to filter other functions, we need to replace the rotation by another appropriate
transformation.

One situation we need to pay attention to while working with this algorithm is the case
where we observe port scans for very long time periods. This results in an extremely flat
rectangle due to the fact that the number of ports is restricted to 65536 but the time period
is large.

In this case the slope a of ¢(t) becomes very small, which means that the according rotation

™

angular o will be close to 5 and cos(a) will be close to 0, resulting in numerical problems.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

150

2 100 -
o
o
©
H 50 [

-1.5 ~1 -0.5 0 0.5 1 1.5
alpha

Figure 1.4.: Maximum number of packets found during each step plotted versus «

To improve the numerical stability, it is useful to scale the values, so that both axes ¢ and
p(t) cover roughly the same intervals. This will not change the results.

After explanation of the basic math, we want to demonstrate how this method works.

We will do so by applying it to the data shown in figure 1.1. While processing the
algorithm, we have stored the maximum number of packets found during each step. Plotting
this value versus « gives us a good impression of the internal structure of the data. Please
find the according plot presented in figure 1.4. The maximum number of packets was seen at
a = 0.051, therefore this is the value of interest. Figure 1.5 shows that our algorithm filtered
exactly those packets, that we would have found suspicious after a first manual review of the
pattern in figure 1.1.

The data for this example comes from the lab. One computer (10.0.0.10) made 1431
random connections, the other (10.0.0.11) made 129 connects generating the linear pattern.
Altogether, we had 1560 connects.

reality
linear white
pattern noise
linear 151 (93,7 %) | 7 (6.3 %)
algorithm pat.tern
white |l g (05 %) | 1424 (99.5 %)
noise

For the linear pattern 121 correct packets were filtered, and 7 wrong ones. 1424 packets
were identified correctly as white noise, and only 8 packets of the linear pattern were failed
to be filtered. Using no previous knowledge for the analysis, this is a good result.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

33768

33268

dest. port

32768
0

time (s)

Figure 1.5.: Our algorithm filtered exactly those packets, that we would have found suspi-
cious after a first manual review.

1.3. Examples

1.3.1. Same source, different computers

Steven Bellovin [4] showed in his paper A Technique for Counting NATted Hosts that it
is possible to distinguish different computers behind a NAT (see RFC 3022 [5]) device.
The same is possible with the here described method, with one big difference. The filter
described by Bellovin is as he admits " primarily suitable for analyzing NATs serving networks
with comparatively little Intranet traffic’. The method within this paper, however, will not
be influenced in such a way by nuisance parameters, as white noise. An example of the power
of the here described method is given in the analysis as described in figure 1.6, with data
from a NATting DSL router. In the top graph, we see that different patterns of potential
interest exist in the raw data. Using our fitting algorithm, we have done several runs during
which we did select the most intense pattern. After each run, the packets which form this
most intense pattern were deleted from the data. As a next step, a new run was started for
the remaining data in order to find the next intense pattern. This can be seen in graphs 2
to 4.

1.3.2. Same computer, different sources

Here an example from the wild. For a small cluster of computers, packet headers were
logged for about 7 days. Plotting (figure 1.7) the source ports for each start of a three way
handshake we found an interesting, discontinuous line. Using our method, we isolated these
data from the rest and had a more detailed look. Destination port for all these connections
was a single IP address on port 110 (POP3). However, the source IP address was changing

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

source port source port

source port

32100

source port

32100 |

source port

32100 |

32050

32000 -

32100 [
32050 -

32000 *

32100 ¢
32050

32000 ©

32050

32000 ©

32050 -

32000 -

#1100 [
- 50 .
g ,f: 0 ; t]
100 200 -1.5 -0.5 0.5 1.5
100 : : : : :
-1.5 -0.5 0.5 1.5
100 I \]
0 - § -
-15 -0.5 0.5 1.5
100 I ‘ I ‘]
0~ - -
-1.5 -0.5 0.5 1.5
100 = T I 3
.50]
L@ f? O E I ‘M E
100 200 -1.5 -0.5 0.5 1.5
time (s) alpha

Figure 1.6.: Data from a NATting DSL router

from day to day, but always came from the range of the same ISP.

Day Name IP address
1 pD954FEXX.dip.t-dialin.net 217.84.254 XX
2 pDIED18XX.dip.t-dialin.net 217.237.24 XX
3 pDIOE43EXX.dip.t-dialin.net 217.228.62.XX
4 pD9E43DXX.dip.t-dialin.net 217.228.61.XX
5 pD9E438XX.dip.t-dialin.net 217.228.56.XX
6 pD954F8XX.dip.t-dialin.net 217.84.248 XX

Living in Germany, we know that pXXXXXXXX.dip.t-dialin.net is a typical address for
a DSL connection from a T-COM customer. T-COM is disconnecting customers every 24
hours. When reconnecting, which is possible at once, the customer gets another address.

We think, that the source is a DSL router which is always powered on.
explain the constantly increasing source port. The computer behind this router is switched

© SANS Institute 2004,

10

As part of GIAC practical repository.

This would

Author retains full rights.

60314
p 51132
&) -
S
(@) PRI
o I
41950
32768 o e pd T R T T e S S e
0 1.728e+05 3.456e+05 5.184e+05

time (seconds)

Figure 1.7.: The source ports for each start of a three way handshake were logged for about
7 days

on in the morning, starts to check the POP3 account regularly and is switched off at night.
This explains the discontinuity of the line. Then, at night, the router is disconnected and
reconnected with another IP address, so we see changing source addresses.

1.4. Conclusion

Using this method it is possible to distill more information from the raw data than by using
only BPF. Data, simply seen by the human eye, can be isolated and used for further analysis.

1.5. Bibliography

[1] W. Richard Stevens. TCP/IP illustrated (vol. 1): The Protocols. Addison-Wesley
Longman Publishing Co., Inc., 1993.

[2] Stephen Northcutt, Judy Novak IDS: Intrusion Detection-Systems (german edition).
mitp-Verlag, Bonn, 2001.

[3] H. Stocker. Taschenbuch mathematischer Formeln und moderner Verfahren. Verlag
Harri Deutsch, 1995.

[4] Steven M. Bellovin. A technique for counting NATted hosts. In Proceedings of the
second ACM SIGCOMM Workshop on Internet measurment, pages 267-272. ACM
Press, 2002.

[5] Traditional ip network address translator (traditional nat)
http://www.fags.org/rfcs/rfc3022.html.

11

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. Network detects

2.1. ...egg and spam; egg bacon and spam; egg bacon
sausage and spam ...

2.1.1. Source of Trace

The log files to be analyzed were taken from the web server of a workgroup at a German
university. The web server is protected by a stateful packet filter firewall and the universities
router with active ACLs.

Router with ACL

Firewall

#revessses University’s
—— Network

10.0.10.10

4.63.162.8
Isanca2-ar36-4-63-162-008.Isanca2.dsl-verizon.net

server.my.net

2.1.2. Detect was generated by

The here described attack was documented in a log file that was generated by an Apache
web server. At the time of the attack Apache 1.3.x was installed (exact version unknown),
and, given the local procedures, it is almost sure that the latest Debian package for Apache
was installed.

The log file contained the following lines which had been detected by the local administrator
who allowed us to use them for this practical:

4.63.162.8 - - [31/Aug/2003:12:11:07 +0200] "GET /cgi-bin/FormMail.cgi
?realname=yzkkp’,20brgoeh&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/FormMail.cgi
&message=rvqgd’,20ddfyuynatbd%20eanbqjgblgb’%20ioffys HTTP/1.1" 404 317
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"
4.63.162.8 - - [31/Aug/2003:12:11:07 +0200] "GET /cgi-bin/FormMail.pl
?realname=pxyaw}20igqmevw&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/FormMail.pl

12

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

&message=hvxej’%20uaunbmlzgzs’20uhuaxgeqbnj’%20hnvdnh HTTP/1.1" 404 316
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"
4.63.162.8 - - [31/Aug/2003:12:11:08 +0200] "GET /cgi-bin/formmail.pl
?realname=zlixy%20oybfag&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/formmail.pl
&message=uvuwi%20lpelksuvrel’,20iarscqtaypw’20jjwbhv HTTP/1.1" 404 316
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"
4.63.162.8 - - [31/Aug/2003:12:11:08 +0200] "GET /cgi-bin/formmail/formmail.cgi
?realname=mzndb}20snxsou&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/formmail/formmail.cgi
&message=arrkl’,20ycjxhwirxrq%20nwvgydgektt?,20ef jvma HTTP/1.1" 404 326
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"
4.63.162.8 - - [31/Aug/2003:12:11:08 +0200] "GET /cgi-bin/formmail/FormMail.pl
?realname=gxajo’%20iywwvy&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/formmail/FormMail.pl
&message=qnqft’20muvxtfujbzt%420dzubgyxrky j%20pwnwpr HTTP/1.1" 404 325
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"
4.63.162.8 - - [01/Sep/2003:22:09:23 +0200] "GET /cgi-bin/FormMail.pl
?realname=owxzv)20hwldbv&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/FormMail.pl
&message=fbwdi’,20aztmalrypyr%20tgazvidpzmp20ntucmn HTTP/1.1" 404 316
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"
4.63.162.8 - - [01/Sep/2003:22:09:24 +0200] "GET /cgi-bin/formmail.pl
?realname=sxujrj20akurmb&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/formmail.pl
gmessage=ggfia%20xaqwweghdpx%20tlcdocelqbi%20buitth HTTP/1.1" 404 316
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"
4.63.162.8 - - [01/Sep/2003:22:09:24 +0200] "GET /cgi-bin/formmail/formmail.cgi
?realname=qdkgy%20prbpry&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/formmail/formmail.cgi
&message=xovhi}20vzguetfobou’20rasdvadbhqx’20bcgspe HTTP/1.1" 404 326
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"
4.63.162.8 - - [01/Sep/2003:22:09:32 +0200] "GET /cgi-bin/FormMail.cgi
?realname=bimnr}20dapqgk&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/FormMail.cgi
&message=txsif%20gfhadhpdckf’20gcpdtsjdnie),201ghhbb HTTP/1.1" 404 317
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"
4.63.162.8 - - [01/Sep/2003:22:09:33 +0200] "GET /cgi-bin/formmail/formmail.pl
?realname=uonkt}20sdvadb&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/formmail/formmail.pl
&message=hqqbc’20gs jxfwzimhx%20vvuwplpesks,20uwreti HTTP/1.1" 404 325
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"
4.63.162.8 - - [05/Sep/2003:15:36:16 +0200] "GET /cgi-bin/formmail.cgi
?realname=1lgwtu},20tvokod&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/formmail.cgi
&message=qjrtu’,20qdrhzwrbwsz%20evvpivgnulty,20mobvur HTTP/1.1" 404 317
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"
4.63.162.8 - - [05/Sep/2003:15:36:16 +0200] "GET /cgi-bin/formmail.pl
?realname=hjqvg/20mgznyx&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/formmail.pl
&message=1cleg},20tgmjsqcnzvt%20zhpztykhwxny,20xaezpt HTTP/1.1" 404 316
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"

13

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4.63.162.8 - - [05/5ep/2003:15:36:17 +0200] "GET /cgi-bin/formmail/formmail.cgi

?realname=uxvbj%20rvvamj&recipient=piscesali@aol.com&email=WantDis@aol.com

&subject=http://server.workgroup.university.de/cgi-bin/formmail/formmail.cgi
&message=yzpsc20gbroooqjmqy%2011ltoplymbar’,20mwrmtz HTTP/1.1" 404 326
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"
4.63.162.8 - - [05/Sep/2003:15:36:17 +0200] "GET /cgi-bin/formmail/formmail.pl

?realname=wapcv20dfgcod&}=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/formmail/formmail.pl

&message=skicn’,20idkphhathsy’%20gwfyanhgdmk?,20whtwua HTTP/1.1" 404 325
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"

The above is a typical example of an Apache web server log file format. Let us have a

closer look at the last line to understand the structure of this log file format [6].

4.63.162.8 IP address of the client

05/S8ep/2003:15:36:17 +0200
"GET ...

404
325

n_n

"Mozilla/4.0 (...)"

userids from identd and from HT TP authentication.

Status code
Bytes sent
the Referer

The User-Agent HTTP request header

Time when the server finished processing the request
HTTP/1.1" Request from the client

Now that we have understood the log file format, we will analyze the attack with its
different aspects.

The requests came at three different days:

Script Date

/cgi-bin/FormMail.cgi 31/Aug/2003:12:11:07 +0200
/cgi-bin /FormMail.pl 31/Aug/2003:12:11:07 +0200
/cgi-bin /formmail.pl 31/Aug/2003:12:11:08 +0200
/cgi-bin/formmail /formmail.cg 31/Aug/2003:12:11:08 +0200
/cgi-bin/formmail /FormMail.pl 31/Aug/2003:12:11:08 +0200
/cgi-bin/FormMail.pl 01/Sep/2003:22:09:23 +0200
/cgi-bin/formmail.pl 01/Sep/2003:22:09:24 +0200
/cgi-bin/formmail /formmail.cg 01/Sep/2003:22:09:24 +0200
/cgi-bin /FormMail.cgi 01/8ep/2003:22:09:32 +0200
/cgi-bin /formmail /formmail.pl 01/Sep/2003:22:09:33 +0200
/cgi-bin /formmail.cgi 05/8ep/2003:15:36:16 +0200
/cgi-bin /formmail.pl 05/S8ep/2003:15:36:16 +0200
/cgi-bin/formmail /formmail.cg 05/Sep/2003:15:36:17 +0200
/cgi-bin/formmail /formmail.pl ~ 05/Sep/2003:15:36:17 +0200

Each of those requests accesses a CGl script and transfers a number of parameters. In
order to increase comprehensibility, it will be attempted to decode these parameters. Each
of the requests had the same parameters but (sometimes) different parameter values.

© SANS Institute 2004,

14

As part of GIAC practical repository.

Author retains full rights.

realname= The sent realnames are different for every request.

generated at random.

It seems as if they were

Script realname

/cgi-bin/FormMail.cgi yzkkp brgoeh
/cgi-bin/FormMail.pl pxyaw iqmevw
/cgi-bin /formmail.pl zlixy oybfaq
/cgi-bin/formmail /formmail.cg mzndb snxsou
/cgi-bin/formmail /FormMail.pl gxajo iywwvy
/cgi-bin/FormMail.pl owxzv hwldbv
/cgi-bin /formmail.pl sxujr akurmb
/cgi-bin/formmail /formmail.cg qdkgy prbpry
/cgi-bin/FormMail.cgi bimnr dapqgk
/cgi-bin/formmail /formmail.pl ~ uonkt sdvadb
/cgi-bin/formmail.cgi lgwtu tvokod
/cgi-bin /formmail.pl hjqvg mgznyx
/cgi-bin/formmail /formmail.cg uxvbj rvvamj
/cgi-bin /formmail /formmail.pl wapcv dfgcod

recipient= The sent recipient is identical for all requests. It is piscesali@aol. com.

email= The sent parameter 'email’ is identical for all requests and has the value WantDis®@aol. com.

subject= The sent subjects are following a fixed pattern. They always contain the URL for
the script which the attacker tried to exploit. From the returned answer the attacker
will know which URL was successful.

http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:

//server
//server
//server
//server
//server
//server
//server
//server
//server
//server
//server
//server
//server
//server

.workgroup.
.workgroup.
.workgroup.
.workgroup.
.workgroup.
.workgroup.
.workgroup.
.workgroup.
.workgroup.
.workgroup.
.workgroup.
.workgroup.
.workgroup.
.workgroup.

university.
university.
.de/cgi-bin/formmail.pl
de/cgi-bin/formmail/formmail.
de/cgi-bin/formmail/FormMail.

university

university.
university.
university.
university.
university.
university.
.de/cgi-bin/formmail/formmail.

university

university.
university.
university.
university.

de/cgi-bin/FormMail.cgi
de/cgi-bin/FormMail.pl

de/cgi-bin/FormMail.pl
de/cgi-bin/formmail.pl

de/cgi-bin/formmail/formmail.

de/cgi-bin/FormMail.cgi

de/cgi-bin/formmail.cgi
de/cgi-bin/formmail.pl

de/cgi-bin/formmail/formmail.

cgi
pl

cgi

pl

cgi

de/cgi-bin/formmail/formmail .pl

message= The sent messages are different for every request but have a similar structure. It

seems as if they were generated at random.

© SANS Institute 2004,

15

As part of GIAC practical repository.

Author retains full rights.

Script Message

/cgi-bin/FormMail.cgi rvggd ddfyuynatbd eanbqjgblgb ioffys
/cgi-bin/FormMail.pl hvxej uaunbmlzqzs uhuaxgeqbnj hnvdnh
/cgi-bin /formmail.pl uvuwi lpelksuvrel iarscqtaypw jjwbhv
/cgi-bin/formmail /formmail.cg arrkl ycjxhwirxrq nwvgydgektt efjvma
/cgi-bin/formmail /FormMail.pl gnqft muvxtfujbzt dzubgyxrkyj pwnwpr
/cgi-bin/FormMail.pl fbwdi aztmalrypyr tgazvfdpzmp ntucmn
/cgi-bin /formmail.pl gefia xaquwweghdpx tlcdocelgbi buitth
/cgi-bin/formmail /formmail.cg xovhi vzguetfobou rasdvadbhgx bcgspe
/cgi-bin/FormMail.cgi txsif gfhadhpdckf gcpdtsjdnie lghhbb
/cgi-bin/formmail /formmail.pl hqgbc gsjxfwzimhx vvuwplpesks uwreti
/cgi-bin/formmail.cgi qjrtu qdrhzwrbwsz evvpivgnult mobvur
/cgi-bin /formmail.pl lcleg tgmjsqcnzvt zhpztykhwxn xaezpt
/cgi-bin/formmail /formmail.cg yzpsc gbroooqjmqy lltoplymbar mwrmtz
/cgi-bin/formmail /formmail.pl ~ skicn idkphhathsy gwfyanhgdmk whtwua

2.1.3.

Probability the source address was spoofed

The spamer/attacker had established a TCP three-way-handshake. Therefore, we know for
sure that address 4.63.162.8 is not spoofed.

2.1.4. Description of attack

This attack targets web servers with faulty versions of the formmail script (for example [7]).
Different vulnerabilities for the different versions of this class of scripts are known:

Name

Description

CVE-1999-0172
CVE-1999-0173

CVE-2000-0411

CAN-2001-0357

CAN-2004-0259

FormMail CGIl program allows remote execution of commands.
FormMail CGI program can be used by web servers other than the host

server that the program resides on.

Matt Wright's FormMail CGl script allows remote attackers to obtain

environmental variables via the env_report parameter.

FormMail.pl in FormMail 1.6 and earlier allows a remote attacker to
send anonymous email (spam) by modifying the recipient and message

parameters.

The check_referer() function in Formmail.php 5.0 and earlier allows
remote attackers to bypass access restrictions via an empty or spoofed
HTTP Referer, as demonstrated using an application on the same web

server that contains a cross-site scripting (XSS) issue.

The attackers main goal is to find one of those scripts which he can manipulate in such a
way that he is able to send emails to arbitrary addresses. In general, this is done by sending
an extra parameter (e.g., recipient) that was not foreseen by the script. This parameter may

© SANS Institute 2004,

16

As part of GIAC practical repository.

Author retains full rights.

overwrite internal variables. If the attacker has found a vulnerable victim, he will use it to
send spam mails. The emails will come from the victims IP address, so the spammer has
built a barrier between himself and the spam recipients.

2.1.5. Attack mechanism

As stated before, in the current case, attacks were run at 3 different days. In total, 14 at-
tempts took place with 7 different scripts. The below table describes the number of attempts
per script. It springs into mind that the scripts were tested with different frequencies.

Script # of tries
/cgi-bin /formmail.pl 3
/cgi-bin/formmail /formmail.cg 3
/cgi-bin/FormMail.cgi 2
/cgi-bin/FormMail.pl 2

2

1

1

/cgi-bin /formmail /formmail.pl
/cgi-bin /formmail.cgi
/cgi-bin /formmail /FormMail.pl

From the log files we know the source address of the attacker who came from a DSL ac-
count (Isanca2-ar36-4-63-162-008.Isanca2.dsl-verizon.net) of Verizon Online. Details about
the source network 4.63.160.0/21 can be obtained with whois.

OrgName: GTE Intelligent Network Services
OrgID: GINS

Address: 5525 MacArthur Blvd.

Address: Suite 320

City: Irving

StateProv: TX
PostalCode: 75038
Country: Us

NetRange: 4.63.160.0 - 4.63.167.255

CIDR: 4.63.160.0/21

NetName: GTEINS-63-160-15

NetHandle: NET-4-63-160-0-1

Parent: NET-4-0-0-0-1

NetType: Reassigned

Comment : The information for POC handle VOH1-ARIN has been

Comment: reported to be invalid. ARIN has attempted to obtain updated
Comment: data, but has been unsuccessful. To provide current contact
Comment: information, please email hostmaster@arin.net.

RegDate: 2002-05-16

Updated: 2003-06-03

TechHandle: VOH1-ARIN
TechName: Hostmaster, Verizon Online
TechPhone: +1-800-927-3000

17

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TechEmail:

hostmaster@bizmailsrvcs.net

OrgAbuseHandle: VOH1-ARIN

OrgAbuseName: Hostmaster, Verizon Online
OrgAbusePhone: +1-800-927-3000
OrgAbuseEmail: hostmaster@bizmailsrvcs.net
OrgNOCHandle: VOH1-ARIN

OrgNOCName : Hostmaster, Verizon Online

OrgNOCPhone:
OrgNOCEmail:

OrgTechHandle:

OrgTechName:

OrgTechPhone:
OrgTechEmail:

+1-800-927-3000
hostmaster@bizmailsrvcs.net

VOH1-ARIN

Hostmaster, Verizon Online

+1-800-927-3000
hostmaster@bizmailsrvcs.net

According to Apache's error log the attacker failed in each of the 14 attempts simply
because the web server is not providing one of those scripts.

[Sun Aug 31
script not
[Sun Aug 31
script not
[Sun Aug 31
script not
[Sun Aug 31
script not
[Sun Aug 31
script not
[Mon Sep 1
script not
[Mon Sep 1
script not
[Mon Sep 1
script not
[Mon Sep 1
script not
[Mon Sep 1
script not
[Fri Sep 5
script not
[Fri Sep 5
script not
[Fri Sep 5
script not
[Fri Sep 5
script not

© SANS Institute 2004,

12:11:

found

12:11:

found

12:11:

found

12:11:

found

12:11:

found

22:09:

found

22:09:

found

22:09:

found
22:09
found
22:09
found

15:36:

found

15:36:

found

15:36:

found

15:36:

found

07
or
07
or
08
or
08
or
08
or
23
or
24
or
24
or

:32

or

:33

or
16
or
16
or
17
or
17
or

2003] [error] [client 4.63.162.8]

unable to stat: /usr/lib/cgi-bin/FormMail.

2003] [error] [client 4.63.162.8]
unable to stat: /usr/lib/cgi-bin/FormMail
2003] [error] [client 4.63.162.8]
unable to stat: /usr/lib/cgi-bin/formmail
2003] [error] [client 4.63.162.8]
unable to stat: /usr/lib/cgi-bin/formmail
2003] [error] [client 4.63.162.8]
unable to stat: /usr/lib/cgi-bin/formmail
2003] [error] [client 4.63.162.8]
unable to stat: /usr/lib/cgi-bin/FormMail
2003] [error] [client 4.63.162.8]
unable to stat: /usr/lib/cgi-bin/formmail
2003] [error] [client 4.63.162.8]
unable to stat: /usr/lib/cgi-bin/formmail
2003] [error] [client 4.63.162.8]

unable to stat: /usr/lib/cgi-bin/FormMail.

2003] [error] [client 4.63.162.8]
unable to stat: /usr/lib/cgi-bin/formmail
2003] [error] [client 4.63.162.8]

unable to stat: /usr/lib/cgi-bin/formmail.

2003] [error] [client 4.63.162.8]
unable to stat: /usr/lib/cgi-bin/formmail
2003] [error] [client 4.63.162.8]
unable to stat: /usr/lib/cgi-bin/formmail
2003] [error] [client 4.63.162.8]
unable to stat: /usr/lib/cgi-bin/formmail

18

As part of GIAC practical repository.

cgi

.pl

.pl

.pl

.pl

cgi

cgi

.pl

Author retains full rights.

2.1.6. Correlations

This kind of search for vulnerable formmail scripts is well known. Some websites even provide
formmail scripts that were especially prepared for spammers. These script versions act like
a vulnerable formmail script. However, in fact, they do not send email but do only generate
statistics to count the connects. For example the page xrea.com [8] got different similar
connects on September 26th, 2003 with identical recipient(piscesali@aol.com) and email
(WantDis@aol.com) parameters. Here, the source address was 4.63.166.246 (lsanca2-ar36-
4-63-166-246.Isanca?2.dsl-verizon.net) which is also belonging to Verizon's DSL pool.

The FormMail hall of shame [9] got the same connect on September 4th, 2003 from
the source 4.63.162.8 (Isanca2-ar36-4-63-162-008.Isanca2.dsl-verizon.net). Once again, a
computer with DSL coming from Verizon.

The maintainers of the site Attrition.org tried to contact Verizon about this problem. Their
page [10] documents their unsuccessful tries to get response. Finally, they banned Verizon
from accessing Attrition.org.

2.1.7. Evidence of active targeting

As mentioned in the last section the spammer tried to access Formmail scripts on many
different servers. The log entries are part of a general scan of large parts of the Internet.

2.1.8. Severity

Severity = (criticality + lethality) - (system countermeasures + network countermeasures)

Severity=b The targeted web server is a very valuable target. It is the only computer
accessible through the firewall. This server is also providing many important services
for the workgroup.

Lethality=4 If the system had a vulnerable formmail script, high network traffic would be
generated. If this will stay undetected, chances are high that the server (also working
as regular mail server) or even the complete university will be included in blackmail
lists as spammer. On the other hand, the data on the server itself will not be affected.

System countermeasures=4 During installation, the system was hardened, and daily
checks for new patches from Debian take place. The only reason, why | will not assign
a b is, that this server combines too much functionality in one machine.

Network countermeasures=3 The network is secured with a stateful packet filter and
a Router with ACLs. However, knowing the university’'s network outside of the work-
group, network countermeasures are quite low.

Severity = (5+4)-(4+3)=2

19

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.1.9. Defensive recommendation

Considering the university's attitude towards network security, only local actions can be taken.

1. Services, accessible through the firewall should not stay any longer on the central server
of the workgroup. Adding a DMZ to the firewall will enhance the security.

2. In the current case, access to cgi scripts is not really necessary. Access to those
directories should be blocked. Especially, http://server.workgroup.university.de/cgi-
bin/apcupsd /multimon.cgi is of no public interest.

3. It might be interesting to have a look at mod_security for the Apache [11].

2.1.10. Multiple choice test question

You are the system administrator for a workgroup at a university. Someday, you get an angry
email, that your sever is sending spam. Which of the following lines from your Apache log
tells you that you are really having a problem.

a) access.log:

1.2.3.4 - - [some date] "GET /cgi-bin/formmail.pl?
realname=wapcv’20dfgcod&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/formmail.pl
gmessage=skicn%20idkphhathsy%20gufyanhgdmk%20whtwua HTTP/1.1" 404

325 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"

b) access.log:

1.2.3.4 - - [some date] "GET /cgi-bin/formmail/formmail.pl?
realname=wapcv’20dfgcod&recipient=piscesali@aol.com&email=WantDis@aol.com
&subject=http://server.workgroup.university.de/cgi-bin/formmail/formmail.pl
&message=skicn’,20idkphhathsy%20gwfyanhgdmk’,20whtwua HTTP/1.1" 200

325 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)"

c) error.log:

[some date] [error] [client 1.2.3.4]
script not found or unable to stat: /usr/lib/cgi-bin/formmail.pl

d) error.log:

[some date] [error] [client 1.2.3.4]

request failed: erroneous characters after protocol string: GET
/cgi-bin/formmail .pl?email=f2%40a0l%2Ecom&subject=server,2Eworkgroup
%2Euniversity%2Ede¥%2Fcgi’%2Dbin)2Fformmail)2Epl&recipient=davidsbabe61301
%40a01%2Ecom&msg=w00t HTTP/1.1Content-Type: application/x-www-form-urlencoded

The correct answer is b)

20

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

a) The return code is 404, so this access was not successful.

b) The return code is 200, so this access is successful. It is high time to check the
formmail.pl script.

c) No script found, so there is no problem.

d) The request contained an error this is not a problem.

2.2. He does not like snort?

2.2.1. Source of trace

The second detect is from a productive IDS of a company. Two computers running snort
are connected to the network with Ethernet taps. One box is sniffing the traffic between the
firewall and the Internet. The other box is monitoring the traffic between the firewall and
the DMZ. In order to be able to correlate the detects, it must be granted that the two snort
boxes are working on a synchronized time base, which, in this case, was achieved by using
NTP, or in detail, by using the same NTP server.

Firewall

10.0.0.10

internet

10.0.10.10

snort box 1 151.189.20.10

snort box 2
10.0.10.20 news.arcor-online.net

Alerts from both systems are collected in the same MySQL Database and analyzed using
ACID v0.9.6b22, a PHP-based GUI.

2.2.2. Detect was generated by

Both intrusion detection systems generated an alert following the below rule:

alert ip any any -> any any (msg:"ATTACK-RESPONSES id check returned root";
content:"uid=0|28|root|29|"; classtype:bad-unknown; sid:498; rev:6;)

Snort box 1 (Internet) generated the following alert:

21

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Generated by ACID v0.9.6b22 on Day Month XX, 2004 XX:XX:XX

#(1 - 114797) [2004-YY-YY XX:XX:XX.9364+02]
ATTACK-RESPONSES id check returned root
151.189.20.10 -> 10.0.0.10

[snort/498]

hlen=5 TOS=0 dlen=1500 ID=14912 flags=0 offset=0 TTL=60 chksum=XXXXX

port=24732 -> dport: 119 flags=x**xA*x**x*x seq=1021705143
ack=1013121476 off=8 res=0 win=17152 urp=0 chksum=XXXX
Options:

#1 - NOP len=0
#2 - NOP len=0

#3 - TS len=8 data=XXXXXXXXXXXXXXXX
length = 1448

IPv4:

TCP:

Payload:
000 : 54
010 : 31
020 : 62
030 : 6E
040 : 6B
050 : 6E
060 : 63
070 : 2E
080 : 65
090 : 73
0a0 : 65
Ob0 : 6E
0cO : 2E
0d0 : 74
0e0 : 69
0f0 : 72
100 : 20
110 : 4E
120 : 78
130 : 73
140 : 23
150 : 67
160 : 74
170 : 7E
180 : OD
190 : 53
1a0 : 37
1b0 : 2D
1cO0 : 31
1d0 : 2E
1e0 : 3A
1f0 : 67
200 : 3E
210 : 3A
220 : 71
230 : 65
240 : 40

© SANS Institute 2004,

41
TA
6F
65
65
69
61
6E
2E
32
77
65
69
21
63
6F
3C
65
2E
74
32
75
61
43
0A
65
20
49
35
69
20
61
()]
20
69
2E
62

4B
4A
66
77
6D
63
2E
6C
6E
2E
73
77
74
62
2E
6D
73
77
64
0D
36
69
74
76
44
70
2B
44
40
74
3C
74
0A
51
6E
63
75

45
2D
68
73
79
61
64
21
6C
74
2E
73
21
6F
69
3A
61
73
65
0A
39
30
69
76
61
20
30
3A
67
3E
32
65
58
69
67
6F
67

54
31
2E
31
2E
2E
65
6E
21
65
6E
66
65
66
74
20
6D
67
62
53
37
2E
6F
49
74
32
32
20
61
0D
41
64
2D
6E
6E
2E
73

48
35
69
2E
6E
64
21
65
68
6C
65
65
72
68
21
53
40
72
69
75
39
39
6E
6D
65
30
30
3C
74
0A
6F
2D
4F
67
69
75
2E

49
40
74
64
65
65
62
7
6F
65
77
65
6F
2E
72
61
TA
6F
61
62
39
2D
20
61
3A
30
30
32
65
52
6B
61
72
6E
6E
6B
64

53
67
3E
74
7
21
6F
73
6D
62
73
64
64
69
6F
6D
6F
75
6E
6A
3A
35
66
67
20
34
0D
41
64
65
4A
74
69
69
67
3E
65

20
61
0D
61
73
74
72
68
65
79
6C
2E
65
74
62
20
79
70
2E
65
20
3A
61
65
46
20
OA
71
2D
66
2D
2E
67
6E
68
2C
62

3C
74
0A
67
2E
65
69
75
2E
74
61
6E
2E
21
6F
48
2E
73
62
63
6C
20
75
46
72
32
4D
46
61
65
38
62
69
67
40
20
69

32
65
50
2E
74
6C
75
62
6E
65
6E
65
62
6E
6D
6F
6F
3A
75
74
69
53
6C
69
69
30
65
46
74
72
62
6F
6E
20
6C
32
61

41
64
61
64
65
65
6D
33
6C
2E
64
74
6F
65
6F
63
72
20
67
3A
62
65
74
6C
2C
3A
73
2D
2E
65
37
66
61
48
61
36
6E

71
2D
74
65
6C
66
2E
2E
21
6E
2E
74
66
77
64
65
67
6C
73
20
68
67
20
74
20
31
73
31
62
6E
2D
68
6C
75
6E
39
2E

22

46
61
68
21
65
6F
62
68
6E
6C
69
75
68
73
0D
76
3E
69
2E
42
69
6D
69
65
30
30
61
TA
6F
63
34
2E
2D
6F
77
37
6F

46
74
3A
74
66
6E
6F
6F
65
21
74
6E
2E
2E
OA
61
OoD
6E
64
75
67
65
6E
72
33
3A
67
4A
66
65
35
69
54
20
61
39
72

2D
2E
20
61
6F
69
78
6D
77
6E
21
6F
69
6E
46
72
0A
75
69
67
68
6E
20
73
20
30
65
2D
68
73
40
74
6F
3C
72
39
67

TAKETHIS <2AqFF-
1zJ-150gated-at.
bofh.it>. .Path:
news.arcor.de!ta
kemy.news.telefo
nica.de!telefoni
ca.de!borium.box
.nl!'newshub3.hom
e.nl'home.nl'!'new
s2.telebyte.nl!n
ews.newsland.it!
newsfeed.nettuno
.it'erode.bofh.i
t!bofh.it!news.n
ic.it!robomod. .F
rom: Sam Hocevar
<sam@zoy.org>..
Newsgroups: linu
x.debian.bugs.di
st..Subject: Bug
#269799: libhigh
gui0.9-5: Segmen
tation fault in
“CvvImageFilters
..Date: Fri, 03
Sep 2004 20:10:0
7 +0200. .Message
-ID: <2AqFF-1zJ-
15Q@gated-at.bofh
.it>. .References
: <2A0kJ-8b7-45Q0
gated-at.bofh.it
>..X-0Original-To
: Qingning Huo <
gqingningh@lanwar
e.co.uk>, 269799
@bugs.debian.org

As part of GIAC practical repository.

Author retains full rights.

250 :
260 :
270 :
280 :
290 :
2a0 :
2b0 :
2c0 :
2d0 :
2e0 :
2f0 :
300 :
310 :
320 :
330 :
340 :
350 :
360 :
370 :
380 :
390 :
3a0 :
3b0 :
3c0 :
3d0 :
3e0 :
3f0 :
400 :
410 :
420 :
430 :
440
450 :
460 :
470 :
480 :
490 :
4a0 :
400 :
4c0 :
440 :
4e0 :
410 :
500 :
510 :
520 :
530 :
540 :
550 :
560 :
570 :
580 :

0D
68
2E
70
76
3E
65
74
73
69
43
28
29
72
2D
20
6E
62
2D
72
2D
6F
74
3D
6E
69
69
2D
61
20
70
20
3D
67
69
30
52
2D
67
62
64
73
75
65
6F
77
3A
6F
20
0D
64
2D

© SANS Institute 2004,

0A
3A
64
6C
61
2C
62
2D
2D
61
63
44
20
67
4D
32
2D
68
44
64
56
6E
2F
75
74
6E
65
4E
69
6E
6C
75
30
65
0D
30
63
32
2D
75
65
74
67
62
76
73
20
6E
74
0A
40
4F

4F
20
65
79
72
20
69
54
64
6E
3A
65
3C
3E
65
36
50
69
65
73
65
74
70
73
2D
6C
73
6F
6C
6F
69
69
28
6E
0A
34
2D
39
4C
67
62
2D
73
69
65
2E
31
3A
6F
53
6E
72

6C
3C
62
2D
20
32
61
6F
69
2E
20
62
73
0oD
73
39
72
67
62
3A
72
65
6C
2D
44
69
2D
2D
69
74
65
64
72
74
58
2D
53
5F
69
73
69
49
2D
61
64
6E
38
20
20
65
65
69

64
64
69
54
3C
36
6E
3A
73
6F
53
69
61
0A
73
37
2D
68
69
20
73
6E
61
61
69
6E
54
43
6E
20
73
3D
6F
3A
2D
30
70
30
73
2D
61
44
64
6E
3A
69
0D
6C
6E
6E
77
67

2D
65
61
6F
73
39
2E
20
74
72
61
61
6D
58
61
39
50
67
61
70
69
74
69
73
73
65
6F
63
67
43
2E
30
6F
20
52
37
61
31
74
64
6E
3A
69
2E
20
63
0A
69
65
64
73
69

52
62
6E
3A
61
37
6F
64
40
67
6D
6E
2B
2D
67
39
61
75
6E
61
6F
2D
6E
63
70
()]
3A
3A
2D
43
()]
28
74
4D
63
2D
6D
0D
3A
69
2E
20
73
6F
72
2E
4F
6E
77
65
2E
6E

65
62
2E
20
6D
39
72
65
6C
0D
20
20
64
44
65
0D
63
69
2D
74
6E
54
3B
69
6F
0A
20
20
6C
20
0A
72
29
75
2D
32
3A
0A
20
73
6F
3C
74
72
6F
69
72
75
73
72
6E
61

74
75
6F
53
40
39
67
62
69
OA
48
70
65
65
3A
OA
6B
30
50
63
3A
79
20
69
73
4D
6E
49
69
6D
58
6F
0D
74
56
30
20
58
3C
74
72
64
2E
67
62
74
67
78
20
3A
69
6C

75
67
72
61
TA
40
0D
69
73
52
6F
61
62
62
20
58
61
2E
72
68
20
70
63
0D
69
61
65
20
73
65
2D
6F
0A
74
69
5F
32
2D
64
40
67
65
6C
3E
6F
OoD
61
2E
67
20
63
2D

72
73
67
6D
6F
62
0A
61
74
65
63
63
40
69
72
2D
67
39
2D
0D
31
65
68
0A
74
69
76
72
74
20
53
74
55
2F
72
30
30
4D
65
6C
3E
62
69
0D
6D
0A
6E
2A
61
72
2E
43

6E
40
3E
20
79
75
52
6E
73
73
65
6B
TA
61
65
44
65
2D
4B
OA
2E
3A
61
43
69
6C
65
65
73
6F
6E
29
73
31
75
31
30
61
62
69
20
69
73
0A
6F
4C
69
20
74
6F
69
63

2D
62
0D
48
2E
67
65
2D
2E
65
76
61
6F
6E
70
65
3A
35
65
4D
30
20
72
6F
6F
2D
72
61
3B
6E
6F
20
65
2E
73
0D
34
69
69
73
0D
61
74
41
64
69
TA
6D
65
62
74
3A

23

50
75
0A
6F
6F
73
73
62
64
6E
61
67
79
2D
6F
62
20
0D
79
49
0D
74
73
6E
6E
43
0D
64
20
20
72
67
72
35
3A
0A
2D
6C
61
74
0A
6E
73
70
40
6E
61
61
77
6F
0D
20

61
67
52
63
72
2E
65
75
65
74
72
65
2E
50
72
69
6C
0A
7
4D
OA
65
65
74
3A
6F
OA
20
64
72
74
69
2D
2E
20
58
30
69
6E
73
4C
2D
2E
70
6E
65
74
69
61
6D
0A
44

74
73
65
65
67
64
6E
67
62
2D
20
73
6F
72
74
61
69
58
6F
45
43
78
74
65
20
70
58
6D
6F
65
3A
64
41
34
32
2D
38
6E
2D
2E
69
62
64
72
65
73
69
6C
79
6F
58
65

. .01d-Return-Pat
h: <debbugs@bugs
.debian.org>. .Re
ply-To: Sam Hoce
var <sam@zoy.org
>, 269799@bugs.d
ebian.org. .Resen
t-To: debian-bug
s-dist@lists.deb
ian.org. .Resent-
Cc: Sam Hocevar
(Debian packages
) <sam+deb@zoy.o
rg>..X-Debian-Pr
-Message: report
269799. .X-Debia
n-Pr-Package: 1i
bhighgui0.9-5. .X
-Debian-Pr-Keywo
rds: patch..MIME
-Version: 1.0..C
ontent-Type: tex
t/plain; charset
=us-ascii..Conte
nt-Disposition:
inline..Mail-Cop
ies-To: never..X
-No-Cc: I read m
ailing-lists; do
not CC me on re
plies...X-Snort:
uid=0(root) gid
=0(root)..User-A
gent: Mutt/1.5.4
i..X-Rc-Virus: 2
004-07-20_01. .X-
Rc-Spam: 2004-08
-29_01..X-Mailin
g-List: <debian-
bugs-dist@lists.
debian.org> ..Li
st-ID: <debian-b
ugs-dist.lists.d
ebian.org>..Appr
oved: robomod@ne
ws.nic.it..Lines
18. .0rganizati
on: linux.* mail
to news gateway
. .Sender: robomo
d@news.nic.it..X
-Original-Cc: De

As part of GIAC practical repository.

Author retains full rights.

590 : 62 69 61 6E 20 42 75 67 20 54 72 61 63 6B 69 6E bian Bug Trackin
5a0 : 67 20 53 79 73 74 65 6D g System

Snort box 2 (DMZ) generated the following alert:

Generated by ACID v0.9.6b22 on Day Month XX, 2004 XX:XX:XX

#(2 - 14595) [2004-YY-YY XX:XX:XX.941616+02]
[snort/498] ATTACK-RESPONSES id check returned root
IPv4: 10.0.10.10 —> 10.0.10.20
hlen=5 TOS=0 dlen=1500 ID=13856 flags=0 offset=0 TTL=63 chksum=XXXX
TCP: port=36005 -> dport: 119 flags=*xx*xA*x**x seq=2024033782
ack=1356143190 off=8 res=0 win=33580 urp=0 chksum=XXXXX
Options:
#1 - NOP len=0
#2 - NOP len=0
#3 - TS len=8 data=XXXXXXXXXXXXXXXX
Payload: 1length = 1448

000 : 54 41 4B 45 54 48 49 53 20 3C 32 41 71 46 46 2D TAKETHIS <2AqFF-
010 : 31 7A 4A 2D 31 35 40 67 61 74 65 64 2D 61 74 2E 1zJ-15Qgated-at.
020 : 62 6F 66 68 2E 69 74 3E OD OA 50 61 74 68 3A 20 bofh.it>..Path:

030 : 6E 65 77 73 31 2E 64 74 61 67 2E 64 65 21 74 61 news.arcor.delta
040 : 6B 65 6D 79 2E 6E 65 77 73 2E 74 65 6C 65 66 6F kemy.news.telefo
050 : 6E 69 63 61 2E 64 65 21 74 65 6C 65 66 6F 6E 69 nica.de!telefoni
060 : 63 61 2E 64 65 21 62 6F 72 69 75 6D 2E 62 6F 78 ca.de!borium.box
070 : 2E 6E 6C 21 6E 65 77 73 68 75 62 33 2E 68 6F 6D .nl!newshub3.hom
080 : 65 2E 6E 6C 21 68 6F 6D 65 2E 6E 6C 21 6E 65 77 e.nl'home.nl!new
090 : 73 32 2E 74 65 6C 65 62 79 74 65 2E 6E 6C 21 6E s2.telebyte.nl!n
0a0 : 65 77 73 2E 6E 65 77 73 6C 61 6E 64 2E 69 74 21 ews.newsland.it!
Ob0 : 6E 65 77 73 66 65 65 64 2E 6E 65 74 74 75 6E 6F newsfeed.nettuno
0cO : 2E 69 74 21 65 72 6F 64 65 2E 62 6F 66 68 2E 69 .it!erode.bofh.i
0d0 : 74 21 62 6F 66 68 2E 69 74 21 6E 65 77 73 2E 6E t!bofh.it!news.n
0e0 : 69 63 2E 69 74 21 72 6F 62 6F 6D 6F 64 OD OA 46 ic.it!robomod..F
0f0 : 72 6F 6D 3A 20 53 61 6D 20 48 6F 63 65 76 61 72 rom: Sam Hocevar
100 : 20 3C 73 61 6D 40 7A 6F 79 2E 6F 72 67 3E 0D OA <sam@zoy.org>..
110 : 4E 65 77 73 67 72 6F 75 70 73 3A 20 6C 69 6E 75 Newsgroups: linu
120 : 78 2E 64 65 62 69 61 6E 2E 62 75 67 73 2E 64 69 x.debian.bugs.di
130 : 73 74 OD OA 53 75 62 6A 65 63 74 3A 20 42 75 67 st..Subject: Bug
140 : 23 32 36 39 37 39 39 3A 20 6C 69 62 68 69 67 68 #269799: libhigh
160 : 67 75 69 30 2E 39 2D 35 3A 20 53 65 67 6D 656 6E gui0.9-5: Segmen
160 : 74 61 74 69 6F 6E 20 66 61 75 6C 74 20 69 6E 20 tation fault in

170 : 7E 43 76 76 49 6D 61 67 65 46 69 6C 74 65 72 73 “CvvImageFilters
180 : OD OA 44 61 74 65 3A 20 46 72 69 2C 20 30 33 20 ..Date: Fri, 03

190 : 53 65 70 20 32 30 30 34 20 32 30 3A 31 30 3A 30 Sep 2004 20:10:0
1a0 : 37 20 2B 30 32 30 30 OD OA 4D 65 73 73 61 67 656 7 +0200..Message
1b0 : 2D 49 44 3A 20 3C 32 41 71 46 46 2D 31 7A 4A 2D -ID: <2AqFF-1zJ-
1cO : 31 35 40 67 61 74 65 64 2D 61 74 2E 62 6F 66 68 150gated-at.bofh
1d0 : 2E 69 74 3E 0D OA 52 65 66 65 72 65 6E 63 65 73 .it>. .References
1e0 : 3A 20 3C 32 41 6F 6B 4A 2D 38 62 37 2D 34 35 40 : <2A0kJ-8b7-450
1f0 : 67 61 74 65 64 2D 61 74 2E 62 6F 66 68 2E 69 74 gated-at.bofh.it
200 : 3E OD OA 58 2D 4F 72 69 67 69 6E 61 6C 2D 54 6F >..X-Original-To

24

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

210 :
220 :
230 :
240 :
250 :
260 :
270 :
280 :
290 :
2a0 :
2b0 :
2c0 :
2d0 :
2e0 :
2f0 :
300 :
310 :
320 :
330 :
340 :
350 :
360 :
370 :
380 :
390 :
3a0 :
3b0 :
3c0 :
3d0 :
3e0 :
3f0 :
400 :
410 :
420 :
430 :
440
450 :
460 :
470 :
480 :
490 :
4a0 :
4b0 :
4c0 :
440 :
4e0 :
410 :
500 :
510 :
520 :
530 :
540 :

3A
71
65
40
0oD
68
2E
70
76
3E
65
74
73
69
43
28
29
72
2D
20
6E
62
2D
72
2D
6F
74
3D
6E
69
69
2D
61
20
70
20
3D
67
69
30
52
2D
67
62
64
73
75
65
6F
77
3A
6F

© SANS Institute 2004,

20
69
2E
62
OA
3A
64
6C
61
2C
62
2D
2D
61
63
44
20
67
4D
32
2D
68
44
64
56
6E
2F
75
74
6E
65
4E
69
6E
6C
75
30
65
0D
30
63
32
2D
75
65
74
67
62
76
73
20
6E

51
6E
63
75
4F
20
65
79
72
20
69
54
64
6E
3A
65
3C
3E
65
36
50
69
65
73
65
74
70
73
2D
6C
73
6F
6C
6F
69
69
28
6E
0A
34
2D
39
4C
67
62
2D
73
69
65
2E
31
3A

69
67
6F
67
6C
3C
62
2D
20
32
61
6F
69
2E
20
62
73
0D
73
39
72
67
62
3A
72
65
6C
2D
44
69
2D
2D
69
74
65
64
72
74
58
2D
53
5F
69
73
69
49
2D
61
64
6E
38
20

6E
6E
2E
73
64
64
69
54
3C
36
6E
3A
73
6F
53
69
61
0A
73
37
2D
68
69
20
73
6E
61
61
69
6E
54
43
6E
20
73
3D
6F
3A
2D
30
70
30
73
2D
61
44
64
6E
3A
69
0D
6C

67
69
75
2E
2D
65
61
6F
73
39
2E
20
74
72
61
61
6D
58
61
39
50
67
61
70
69
74
69
73
73
65
6F
63
67
43
2E
30
6F
20
52
37
61
31
74
64
6E
3A
69
2E
20
63
0A
69

6E
6E
6B
64
52
62
6E
3A
61
37
6F
64
40
67
6D
6E
2B
2D
67
39
61
75
6E
61
6F
2D
6E
63
70
OD
3A
3A
2D
43
0D
28
74
4D
63
2D
6D
OD
3A
69
2E
20
73
6F
72
2E
4F
6E

69
67
3E
65
65
62
2E
20
6D
39
72
65
6C
0D
20
20
64
44
65
0D
63
69
2D
74
6E
54
3B
69
6F
0A
20
20
6C
20
0A
72
29
75
2D
32
3A
0A
20
73
6F
3C
74
72
6F
69
72
75

6E
68
2C
62
74
75
6F
53
40
39
67
62
69
OA
48
70
65
65
3A
OA
6B
30
50
63
3A
79
20
69
73
4D
6E
49
69
6D
58
6F
0oD
74
56
30
20
58
3C
74
72
64
2E
67
62
74
67
78

67
40
20
69
75
67
72
61
TA
40
OD
69
73
52
6F
61
62
62
20
58
61
2E
72
68
20
70
63
0D
69
61
65
20
73
65
2D
6F
OA
74
69
5F
32
2D
64
40
67
65
6C
3E
6F
0D
61
2E

20
6C
32
61
72
73
67
6D
6F
62
0A
61
74
65
63
63
40
69
72
2D
67
39
2D
0D
31
65
68
0A
74
69
76
72
74
20
53
74
55
2F
72
30
30
4D
65
6C
3E
62
69
0D
6D
0OA
6E
2A

48
61
36
6E
6E
40
3E
20
79
75
52
6E
73
73
65
6B
TA
61
65
44
65
2D
4B
0A
2E
3A
61
43
69
6C
65
65
73
6F
6E
29
73
31
75
31
30
61
62
69
20
69
73
OA
6F
4C
69
20

75
6E
39
2E
2D
62
0D
48
2E
67
65
2D
2E
65
76
61
6F
6E
70
65
3A
35
65
4D
30
20
72
6F
6F
2D
72
61
3B
6E
6F
20
65
2E
73
0D
34
69
69
73
0D
61
74
41
64
69
TA
6D

25

6F
77
37
6F
50
75
0A
6F
6F
73
73
62
64
6E
61
67
79
2D
6F
62
20
0D
79
49
0D
74
73
6E
6E
43
0D
64
20
20
72
67
72
35
3A
0A
2D
6C
61
74
0A
6E
73
70
40
6E
61
61

20
61
39
72
61
67
52
63
72
2E
65
75
65
74
72
65
2E
50
72
69
6C
0A
7
4D
OA
65
65
74
3A
6F
OA
20
64
72
74
69
2D
2E
20
58
30
69
6E
73
4C
2D
2E
70
6E
65
74
69

3C
72
39
67
74
73
65
65
67
64
6E
67
62
2D
20
73
6F
72
74
61
69
58
6F
45
43
78
74
65
20
70
58
6D
6F
65
3A
64
41
34
32
2D
38
6E
2D
2E
69
62
64
72
65
73
69
6C

: Qingning Huo <
gqingningh@lanwar
e.co.uk>, 269799
@bugs.debian.org
. .01d-Return-Pat
h: <debbugs@bugs
.debian.org>. .Re
ply-To: Sam Hoce
var <sam@zoy.org
>, 269799Q@bugs.d
ebian.org. .Resen
t-To: debian-bug
s-dist@lists.deb
ian.org. .Resent-
Cc: Sam Hocevar
(Debian packages
) <sam+deb@zoy.o
rg>..X-Debian-Pr
-Message: report
269799. .X-Debia
n-Pr-Package: 1i
bhighgui0.9-5..X
-Debian-Pr-Keywo
rds: patch..MIME
-Version: 1.0..C
ontent-Type: tex
t/plain; charset
=us-ascii..Conte
nt-Disposition:
inline..Mail-Cop
ies-To: never..X
-No-Cc: I read m
ailing-lists; do
not CC me on re
plies...X-Snort:
uid=0(root) gid
=0(root)..User-A
gent: Mutt/1.5.4
i..X-Rc-Virus: 2
004-07-20_01. .X-
Rc-Spam: 2004-08
-29_01..X-Mailin
g-List: <debian-
bugs-dist@lists.
debian.org> ..Li
st-ID: <debian-b
ugs-dist.lists.d
ebian.org>..Appr
oved: robomod@ne
ws.nic.it..Lines
18..0rganizati
on: linux.* mail

As part of GIAC practical repository.

Author retains full rights.

550 : 20 74 6F 20 6E 65 77 73 20 67 61 74 65 77 61 79 to news gateway
560 : OD OA 53 65 6E 64 65 72 3A 20 72 6F 62 6F 6D 6F ..Sender: robomo
570 : 64 40 6E 65 77 73 2E 6E 69 63 2E 69 74 OD OA 58 d@news.nic.it..X
580 : 2D 4F 72 69 67 69 6E 61 6C 2D 43 63 3A 20 44 65 -Original-Cc: De
590 : 62 69 61 6E 20 42 75 67 20 54 72 61 63 6B 69 6E bian Bug Trackin
5a0 : 67 20 53 79 73 74 65 6D g System

The above is a typical example of the output that ACID generates while emailing the
events from the web based GUI.

#(2 - 14595) [2004-YY-YY XX:XX:XX.941616+02]
[snort/498] ATTACK-RESPONSES id check returned root

#(6 - 14595) is an internal identifier, followed by time and date of the alert. The event
was triggered by snort rule 498 ([snort/498])

IPv4: 10.0.10.10 -> 10.0.10.20
hlen=5 T0S=0 dlen=1500 ID=13856 flags=0 offset=0 TTL=63 chksum=XXXX

This is the IPv4 header. It contains source (10.0.10.10) and destination (10.0.10.20)
address, followed by the other parts of the IPv4 headers.

TCP: port=36005 -> dport: 119 flags=**x*xA*x**x seq=2024033782
ack=1356143190 off=8 res=0 win=33580 urp=0 chksum=XXXXX
Options:

#1 - NOP len=0
#2 - NOP len=0
#3 - TS len=8 data=XXXXXXXXXXXXXXXX

This is the TCP header with source and destination port, flags (only ACK set) and other

header information.
Although the header of the two alerts is completely different, the payload is exactly iden-
tical.

TAKETHIS <2AqFF-1zJ-15Q@gated-at.bofh.it>

Path: news.arcor.de!takemy.news.telefonica.de!telefonica.de!
borium.box.nl!newshub3.home.nl'home.nl!news2.telebyte.nl!
news.newsland.it!newsfeed.nettuno.it!erode.bofh.it!bofh.it!
news.nic.it!robomod

From: Sam Hocevar <sam@zoy.org>

Newsgroups: linux.debian.bugs.dist

Subject: Bug#269799: libhighgui0.9-5: Segmentation fault in “CvvImageFilters
Date: Fri, 03 Sep 2004 20:10:07 +0200

Message-ID: <2AqFF-1zJ-15@gated-at.bofh.it>

References: <2AokJ-8b7-450@gated-at.bofh.it>

X-Original-To: Qingning Huo <qingningh@lanware.co.uk>, 269799Q@bugs.debian.org
0ld-Return-Path: <debbugs@bugs.debian.org>

Reply-To: Sam Hocevar <sam@zoy.org>, 269799Q@bugs.debian.org

Resent-To: debian-bugs-dist@lists.debian.org

Resent-Cc: Sam Hocevar (Debian packages) <sam+deb@zoy.org>
X-Debian-Pr-Message: report 269799

X-Debian-Pr-Package: libhighgui0.9-5

26

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

X-Debian-Pr-Keywords: patch

MIME-Version: 1.0

Content-Type: text/plain; charset=us-ascii
Content-Disposition: inline

Mail-Copies-To: never

X-No-Cc: I read mailing-lists; do not CC me on replies.
X-Snort: uid=0(root) gid=0(root)

User-Agent: Mutt/1.5.4i

X-Rc-Virus: 2004-07-20_01

X-Rc-Spam: 2004-08-29_01

X-Mailing-List: <debian-bugs-dist@lists.debian.org>
List-ID: <debian-bugs-dist.lists.debian.org>
Approved: robomod@news.nic.it

Lines: 18

Organization: linux.* mail to news gateway

Sender: robomod@news.nic.it

X-Original-Cc: Debian Bug Tracking System

From the key word TAKETHIS and from the destination ports we can conclude that snort has
observed the communication between two NNTP-Servers exchanging a message. However,
only a part of the NNTP header is visible. The content that triggered both alerts starts at
byte 441 and reads uid=0(root). This might be the result of successfully exploiting the
NNTP-server. We will check this in more detail.

The source of the first packet is the NNTP-server of Arcor, one of the largest German
Internet Providers. The recipient is the firewall. The second packet was sent from the firewall
to the companies NNTP-Server, located in the DMZ. In both cases, the source port is a high
port and the destination port is 119, the port assigned to NNTP service.

The first question to be resolved is, whether the two packets are referring to the same event.
Comparing both headers it seems, that these two packets are belonging to two separate TCP
connections. As mentioned before, the payload is identical. In addition, the time difference
between both detects (.941616 — 0.9364 = 5.2ms) is so small, that it seems unreasonable
that there is a normal NNTP-server working on the firewall, receiving the message and
sending it to the NNTP-server 10.0.10.20.

What helps in understanding the above is some basic details we know of the firewall. As
the great differences between the two TCP/IP headers suggest, this firewall is not a packet
filter with Network Address Translation. Instead, this firewall is an Application Gateway.
Any TCP connection from the Internet ends at the firewall (packet 1 from 151.189.20.10 to
the external address 10.0.0.10). Furthermore, another connection is established between the
firewall 10.0.10.10 and the "real” destination 10.0.10.20, the NNTP-server. This means, we
have to investigate only one incident, both snort boxes had seen the same thing.

2.2.3. Probability the source address was spoofed

Due to the internal structure of the firewall, the TCP-connection between the DMZ-interface
and the internal NNTP-server is only initiated after the three-way-handshake between the
NNTP-server of ARCOR and the external interface is established. So, it is extremely unlikely
that the source addresses 151.189.20.10 and 10.0.10.10 are spoofed.

27

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.2.4. Description of attack

Snort itself declares rule 498 as ATTACK-RESPONSES. This rule is not for a specific attack,
but tries to detect a typical behavior of a hacker after a successful attack. After the exploit
is sent, the attacker checks his id. Other snort rules of this category are searching for strings
like 1 file(s) copied if the hacker tried to copy a file or Directory of as a response to
a dir-command. Depending on the type of traffic, these rules can trigger false positives, if
a user is reading those advisories mentioned below. On the other hand, if you happen to see
such kind of traffic on connections which are normally encrypted it is high time to get your
companies incidence response procedure manual.

Let us have a look at some examples of " Advisories for hackers” found by google. The
below is an example of the comment of an ssh exploit [12]:

==

drop-root -v24 localhost
%%.2022u%24$hn@10ca1host’s password:
Connection closed by 127.0.0.1

% telnet localhost 10275

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’7]°.

id; exit;

uid=0(root) gid=0(root) groups=0(root)
Connection closed by foreign host.

* X X X X X X X X ¥

Even advisories [13] use this command as " proof” that the exploit was successful.

elguapo@gentoo tmp $./0x82-BRU_overformat 1

0x82-BRU_overformat - backup and restore utility (BRU) local root exploit.
Target package: BRU-15.1-3.i386.rpm

[*] shellcode: Oxbfffff9e

[*] It’s my message:
KFK. . .
KFKFKFKFKFKFKFKFKFKFKFKFKFKFKFKFthanks ! ! >

sh-2.05b# id

uid=0(root) gid=0(root) groups=100(users),10(wheel)

As rule 498 is just searching for the string uid=0(root), downloading this practical as
HTML might trigger your companies snort system.

2.2.5. Attack mechanism

The suspicious text uid=0(root) is part of the line X-Snort: uid=0(root) gid=0(root).
This line itself is part of the header of an NNTP message. Obviously, this is not a usual
NNTP header line. To evaluate whether this line is legal traffic it is advisable, to read the
according RFC. RFC 850 defines the " Standard for Interchange of USENET Messages” and
defines the following:

28

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[...]

An article consists of several header lines, followed by a
blank 1line, followed by the body of the message. The
header lines consist of a keyword, a colon, a blank, and
some additional information. [...]

Certain headers are required, certain headers are
optional. Any unrecognized headers are allowed, and will
be passed through unchanged. [...]

The most important sentence is: "Any unrecognized headers are allowed, and will be
passed through unchanged.” This means, that the X-Snort line is absolutely correct, and
covered by the RFC. We can only speculate about the senders motives. According to the
From: header the sender was Sam Hocevar. He is maintainer of several debian packages and
had found a buffer overflow in the rinetd daemon. But we cannot be sure, that this header
was added by him.

1. The sender can be easily forged.

2. The header line could have been added by any NNTP server the message had passed.

What are the effects of this header? First, nearly every snort-based IDS will be triggered,
and thus, time of the analysts will be wasted. Second, this message might be blocked if it is
sent through an inline-snort based Intrusion Prevention System.

2.2.6. Correlations

No information was found about this kind of provocation.

2.2.7. Evidence of active targeting

Due to the structure of the NNTP protocol, this message will be distributed all over the
world. The nasty sender has no chance to direct this traffic towards a specific destination.
Instead, he is bothering every SNORT based IDS which is monitoring NN T P-traffic.

2.2.8. Severity

Severity = (Criticality + Lethality) - (System Countermeasures + Network Countermeasures)

Severity=1 The NNTP system hosts no other services. Loosing this server will not be a
great problem.

Lethality=1 The lethality is extremely low, as this is a (provoked) false positive.

System countermeasures=4 The NNTP-system is regularly patched and tested and the
firewall is accepting NNTP-messages only from a certain peer.

29

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network countermeasures=5 he companies network is designed for In-depth defense and
is protected by a professional and up-to-date firewall. We can calculate with a 5.

Severity= (14+ 1) — (4+5) = -7
The severity is extremely low, although the IDS manager was quite angry when he had
seen this packet for the first time.

2.2.9. Defensive recommendation

It is very hard to defend this kind of traffic. And, as this traffic has a very low severity,
fighting this traffic might cost more time and money than ignoring it. But, if you really want
to take measures, you can do the following:

1. Contact the possible sender in the hope that he will stop this. This will only work if
he is really the sender and if he is willing to stop.

2. Change the snort rule. One can, for example add content:

rule.

I"X-Snort"; to the

3. Try to filter the traffic at the firewall either by removing this annoying header or by
rejecting every message with this header. This will of course not work, if the sender

decides to change the string.

4. Try to filter the traffic and let only those headers pass, which are really necessary

according to RFC 850.

2.2.10. Multiple choice test question

In your companies network, snort has alerted four packets with the following signature

alert ip any any -> any any (msg:"ATTACK-RESPONSES id check returned root";
content:"uid=0|28|root|29|"; classtype:bad-unknown; sid:498; rev:6;)

Which of theses packets is the most severe?

a) 22:59:37 IP

0000
0010
0020
0030
0040
0050
0060

b) 16:31:
0000
0010
0020

© SANS Institute 2004,

de
20
65
T4
6¢c
3e
3d

12
75
30
28

6f
79
74
20
3c
75
30

IP
69
28
72

external.

77
6f
68
77
62
69
28

internal.

20
75
65
61
72
64
72

65
20
72
73
3e
3d
6f

64 3d 30
72 6f 6f
6f 6f 74

WWw >

6e
77
20
20
68
30
6f

74
69
74
73
6f
28
74

internal.3142:

65
6¢
68
75
73
72
29

telnet >
28 72 6f
74 29 20
29 04 Oa

72
6¢
65
63
T4
6f
3c

external.32772: ...

20
20
20
63
23
6f
62

69
73
65
65
20
74
72

64
65
78
73
69
29
3e

20 61
65 20
70 6¢
73 66
64 3c
20 67

6f 74 29 20 67 69
67 72 6f 75 70 73
69 6e 74 65 72 6e

30

6e
77
6f
75
62
69

64
3d
23

64
68
69
6¢c
72
64

3d
30

As part of GIAC practical repository.

Now enter id and

you will see wh
ether the exploi
t was successful
1
host# id
uid=0(root) gid
=0(root)

uid=0(root) gid=
0(root) groups=0
(root)..intern#

Author retains full rights.

C) 10:32:91 IP internal.ssh > external.32772: ...
0000 75 69 64 3d 30 28 72 6f 6f 74 29 20 67 69 64 3d uid=0(root) gid=
0010 30 28 72 6f 6f 74 29 20 67 72 6f 75 70 73 3d 30 O(root) groups=0
0020 28 72 6f 6f 74 29 0d Oa 69 6e 74 65 72 6e 23 (root)..intern#

d) 15:37:64 IP external.4367 > internal.nntp: ...
0000 4d 61 69 6¢ 2d 43 6f 70 69 65 73 2d 54 6f 3a 20 Mail-Copies-To:
0010 6e 65 76 65 72 O0a 58 2d 53 6e 6f 72 74 3a 20 75 never.X-Snort: u
0020 69 64 3d 30 28 72 6f 6f 74 29 20 67 69 64 3d 30 id=0(root) gid=0
0030 28 72 6f 6f 74 29 Oa 55 73 65 72 2d 41 67 65 6e (root).User-Agen
0040 74 3a 20 4d 75 74 74 2f 31 2e 35 2e 34 69 Oa t: Mutt/1.5.4i.

a) (wrong) The traffic is part of a normal web-page. Maybe a user is reading how to
become a hacker.

b) (wrong) Working as root with telnet is not advisable, but may be necessary for some
reason.

c) (correct) You see plain text on an encrypted connection and the text is typical for
hacker behavior after starting an exploit. Here, chances are very high that your ssh
server was exploited.

d) (wrong) An example of a correct, but nasty header for NNTP-Traffic. Although this
is extremely impolite, it must be accepted.

2.3. Just looking!

This detect was posted to intrusionsincidents.org on September, 18th, 2004. We did not
receive any response untill the submission of the practical.

Message-Id: <200409180933.57286.schinner@acm.org>
X-OriginalArrivalTime: 18 Sep 2004 12:45:55.0766 (UTC)
FILETIME=[70882560:01C49D7D]

2.3.1. Source of trace

The original tcpdump log file 2002.10. 13 was downloaded from the given site [14]. Accord-
ing to SANS Institute, the network traffic was captured using an unknown version of snort
with an unknown rule set. The data has been sanitized.

Before analyzing any network traffic it is highly recommended to have some basic know-
ledge about the network itself. Without this knowledge, a lot of questions cannot be answered
and it will be hard to judge the severity of an attack. As the only data provided by GIAC is
the tcpdump log file, we will at first try to make good, reasonable guesses on the network.

Using the program ipanalyze, we see that 245 IP-addresses are contributing to this log:

host> ipanalyze -r ~/SANS/raw/2002.10.13 -o ’%d\n¥%s’ | sort -u | wc -1
245

31

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The next step of our little network analysis is to check the frequency of the different IP
addresses grouped by class B networks. With some luck, the most frequent among those
should be the local network.

207.166.0.0/16
64.154.0.0/16
66.159.0.0/16
205.188.0.0/16
209.11.0.0/16
63.111.0.0/16
209.10.0.0/16
64.12.0.0/16
255.255.0.0/16
207.68.0.0/16

3109
1086
663
430
117
107
71
48
35
30

The biggest block of addresses occurs in the subnet 207.166.0.0/16 with 68 addresses
ranging from 207.166.11.232 to 207.166.252.249. By checking the MAC address, we try to

prove that this is the

local network.

If the MAC addresses in network 207.166.0.0/16 are mostly belonging to NIC manufac-
turers, the computer is most probably part of a LAN. This would be another strong hint for
the assumption that 207.166.0.0/16 is the local network.

> ipanalyze -r 20
00:00:0c:04:p2:33
00:03:e3:d9:26:c0

02.10.13 -0 ’Ym\n%M’ | sort -u

Bad luck, only two MAC addresses were found, both belonging to CISCO. This means,
we are sniffing between two switches, routers or firewalls.

ipanalyze -r 2002.10.13 -o %M %s\n/m %d’ | sort -u

00:00:0c:04:b2:33
00:00:0c:04:b2:33
00:00:0c:04:b2:33
[... deleted some
00:00:0c:04:b2:33
00:00:0c:04:b2:33
00:00:0c:04:b2:33
00:03:e3:d9:26:c0
00:03:e3:d9:26:c0
[... deleted some
00:03:e3:d9:26:c0
00:03:e3:d9:26:c0
00:03:e3:d9:26:c0

© SANS Institute 2004,

12.11.133.5
12.111.47.194
12.47.193.41
lines ...]
80.4.53.36
80.6.223.204
81.98.104.191
207.166.103.217
207.166.104.170
lines ...]
207.166.87.53
207.166.95.105
207.166.98.123

32

As part of GIAC practical repository.

Now we can try to get some
information by mapping the MAC addresses to the IP addresses.

Author retains full rights.

Obviously, all computers in the subnet 207.166.0.0/16 can be reached through the MAC
address 00:03:e3:d9:26:c0, all other addresses are connected to 00:00:0c:04:b2:33. The fact
that computers in Parsippany, NJ (2.11.133.5) and Tokyo, Japan (219.163.126.118) can be
accessed over the same MAC address, belonging to CISCO, tells us, that this device is a
router or firewall connected to the Internet.

The local network seems to be behind a CISCO device, which will have the following MAC
address 00:03:€3:d9:26:c0. However, as this data has been sanitized by GIAC, it can be
assumed that these addresses are not the original ones. The device could be a router or a
firewall, but we can not be sure.

Important for an analysis is where and with what kind of method we are capturing the
network traffic. Can the dump tell us how the snort box is sniffing? The IDS can be
connected using a SPAN port, a Hub or an Ethernet tap. All these methods do not influence
the network, therefore we do not gain any knowledge about the type of connection.

00:03:€3:d9:26:c0 00:00:0c:04:b2:33

207.166.0.0/16

snort box

2.3.2. Detect was generated by

The detect was generated by snort version 2.2.0 (build 30) using the command line:

snort -c /etc/snort/snort.conf -k none -r 2002.10.13

Using the option -t was important as due to the sanitizing the header checksums are
incorrect. Only with this option snort is willing to analyze packets with bad checksums.
The generated alerts had been saved in a MySQL database and were viewed with ACID
v0.9.6b20-5.1. We will analyze the following three detects in more detail:

Generated by ACID v0.9.6b20-5.1 on Sat, 11 Sep 2004 19:49:09 +0200

#(3 - 3780) [2002-11-13 01:21:55] url([snort/615] SCAN SOCKS Proxy attempt
IPv4: 66.159.18.49 -> 207.166.87.157
hlen=5 TOS=0 dlen=60 ID=49542 flags=0 offset=0 TTL=53 chksum=21100
TCP: port=48451 -> dport: 1080 flags=****x*xx3* seq=2275796995
ack=0 off=10 res=0 win=5840 urp=0 chksum=41682
Options:
#1 - MSS len=2 data=05B4
#2 - SACKOK len=0
#3 - TS len=8 data=01F1298500000000
#4 - NOP len=0
#5 - WS len=1 data=00
Payload: none

#(3 - 3781) [2002-11-13 01:21:55] [snort/620] SCAN Proxy Port 8080 attempt
IPv4: 66.159.18.49 -> 207.166.87.157
hlen=5 T0S=0 dlen=60 ID=18547 flags=0 offset=0 TTL=53 chksum=52095

33

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TCP: port=48452 -> dport: 8080 flags=k***x*xS*x 5eq=2272616959
ack=0 off=10 res=0 win=5840 urp=0 chksum=3495
Options:
#1 - MSS len=2 data=05B4
#2 - SACKOK len=0
#3 - TS len=8 data=01F1298C00000000
#4 - NOP len=0
#5 - WS len=1 data=00
Payload: none

#(3 - 3782) [2002-11-13 01:21:55] [snort/618] SCAN Squid Proxy attempt
IPv4: 66.159.18.49 -> 207.166.87.157

hlen=5 TOS=0 dlen=60 ID=3550 flags=0 offset=0 TTL=53 chksum=1557
TCP: port=48453 -> dport: 3128 flags=k***xxS*x seq=2282038346

ack=0 off=10 res=0 win=5840 urp=0 chksum=24091

Options:

#1 - MSS len=2 data=05B4

#2 - SACKOK len=0

#3 - TS len=8 data=01F1299400000000

#4 - NOP len=0

#5 - WS len=1 data=00
Payload: none

The notation of the output format is described in the analysis of the last detect. Please
refer to section 2.2.
These above alerts had been triggered by the following snort signatures:

alert tcp $EXTERNAL_NET any -> $HOME_NET 8080
(msg:"SCAN Proxy Port 8080 attempt"; flags:S,12; flow:stateless;
classtype:attempted-recon; sid:620; rev:10;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 3128
(msg:"SCAN Squid Proxy attempt"; flags:S,12; flow:stateless;
classtype:attempted-recon; sid:618; rev:9;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 1080

(msg:"SCAN SOCKS Proxy attempt"; flags:S,12; flow:stateless;
reference:url,help.undernet.org/proxyscan/; classtype:attempted-recon;
sid:615; rev:9;)

The only functional difference between these three signatures is the destination port.

2.3.3. Probability the source address was spoofed

The alert showed, that there were three attempts to connect to different ports. Most prob-
ably, the attacker wanted to check whether the ports are accessible. Spoofing the source
address would be useless, as in this case the scanner would get no answer. An exception
might be, if the sender was able to monitor the traffic going to the forged source address.
However, chances are high, that the address was not spoofed.

34

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3.4. Description of attack

The three connects follow the same scheme. The attacker tried to initiate a three way
handshake to proxy services which should normally be accessible only by users of the local
network. Then, after he had found a proxy accepting his requests, he had the following
different possibilities.

1. Attack hosts on the LAN in the hope to use some trusted relationships
2. Attack or connect hosts on the outside, hiding behind the proxies IP-address

3. Attack the proxy service itself by using some exploits.

2.3.5. Attack mechanism and correlations

In the current case, all three connects came within 0.15 seconds. This means the attacker
was using an automated tool. Was the connect successful? It is hard to decide this directly
from the tcpdump file, as we see no answer from 207.166.87.157 either accepting or rejecting
the connection. However, there is some evidence that this connect was not successful:

1. We see no other packet originating from or going to the attackers address (66.159.18.49).

2. No other traffic from outside the network is directed to ports 3128 and 1080. There
are only two other connects to port 8080. One can assume, that an open proxy might
have attracted much more traffic which would have been recorded and reported by
snort.

On the other hand, 207.166.87.157 might be the local proxy. Every connection going to
port 80 on the outside network is coming from 207.166.87.157.

What can we say about the tool that was used by the attacker? The first guess would
be that the connects had not been initiated by a human attacker but by a Trojan, the well
known ZeroRing. Three connects to port 1080, 8080, and 3128 are typical for this malware.
Everything we need to know about this Trojan was already described by Steven Northcut [15]
so | do not want to bother the reader by repeating his words. However, also according to
S. Northcut [16], some attackers are hiding other attacks behind a typical ZeroRing behavior.

A search of the CVE database for keywords like squid, proxy or socks results in such a
tremendous lot of entries that it might in fact be a good idea to hide behind a well known

pattern while attempting new attacks.
What can we say about the attacker himself? Searching dnsstuff.com for 66.159.18.49 we
get the following information:

OrgName: IIC Internet
OrglID: IICINT

Address: 17905 Vista Court
City: Santa Clarita

StateProv: CA
PostalCode: 91387
Country: Us

35

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

NetRange: 66.159.16.0 - 66.159.20.255
CIDR: 66.159.16.0/22, 66.159.20.0/24
NetName: WLCO-TWC874610-IICINT
NetHandle: NET-66-159-16-0-1

Parent: NET-66-159-0-0-1

NetType: Reassigned

NameServer: STLDNS1.WCG.NET

NameServer: TULDNS1.WCG.NET

Comment :

RegDate: 2002-07-19

Updated: 2002-07-19

TechHandle: CH1236-ARIN

TechName: Herzig, Chris

TechPhone: +1-661-298-1438

TechEmail: chris@iicinternet.com

The company itself, according to their homepage, seems to work in the web-hosting busi-
ness. We searched dshield.org and mynetwatchman.com to see if there is activity reported
for 66.159.18.49. Both did not return any hit.

The program pOf, a passive OS fingerprinting utility, tells us, that the attacker is using
Linux.

pOf - passive os fingerprinting utility, version 2.0.3
(C) M. Zalewski <lcamtuf@dione.cc>, W. Stearns <wstearns@pobox.com>
pOf: listening (SYN) on ’2002.10.13°, 207 sigs (12 generic), rule: ’host 66.159.18.49°.
66.159.18.49:48451 - Linux 2.4/2.6 (up: 90 hrs)
-> 207.166.87.157:1080 (distance 11, link: ethernet/modem)
66.159.18.49:48452 - Linux 2.4/2.6 (up: 90 hrs)
-> 207.166.87.157:8080 (distance 11, link: ethernet/modem)
66.159.18.49:48453 - Linux 2.4/2.6 (up: 90 hrs)
-> 207.166.87.157:3128 (distance 11, link: ethernet/modem)

As the Trojan is running on Windows systems but the source seems to be a Linux box,
the theory about the ZeroRing attack might be improper.

Another piece of information is the link [17] which we find in the snort signature " Proxy
attempt” (sid:615). According to this page the UnderNet server is scanning everybody who
is connecting to their service:

Due to the overwhelming abuse of misconfigured Wingate, Socks and Proxy
servers being exploited daily, the UnderNet network is now checking all users upon
connection to any of the UnderNet IRC Servers. This check is ONLY DONE if a
user attempts to establish a connection to an UnderNet IRC server.This should
not be considered an attack on your system. Be aware that this sort of connection
to your system is probably common if you use services such as free IRC networks,
game servers, etc...

Unfortunately, no connection to UnderNet IP-address 209.198.2.21 was made, which would
have explained the detect. The last sentence in the message taken from the URL [17] gives

36

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

us a next hint for our search. Maybe our target 207.166.87.157 had made connections which
might have triggered this traffic. ACID gives us the following alerts for the host:

CHAT IRC nick change 718
SHELLCODE x86 NOOP 25
SCAN nmap TCP 18
CHAT MSN message 3
SCAN Proxy Port 8080 attempt 1
SCAN SOCKS Proxy attempt 1
SCAN Squid Proxy attempt 1

Great, there is IRC traffic, don't forget UnderNet is an IRC server, too. Most of the traffic
(680 packets) is going to server.iicinternet.com (66.159.18.68). And this IP belongs to the
same range, the proxy scan came from. So this is another strong evidence that the origin
was not a ZeroRing but triggered by IRC traffic.

Unfortunately, we have a problem with the timestamps. The alerts based on the IRC traffic
appeared between 2002-11-13 20:26:49 and 2002-11-13 20:22:57. The proxy scan was 19
hours earlier, at 2002-11-13 01:21:55. The tcpdump does not tell us whether there was IRC
traffic before 20:26:49. The type of IRC traffic that we would need to proove the above
assumptions would normally not be registered by snort. The registered IRC traffic, however,
is suspicious in itself. 680 Nick changes to ROOteD would need another analysis not given
here. Everything points to the fact that the attack was not triggered by ZeroRing but by the
target itself.

2.3.6. Evidence of active targeting

If we assume that the attacker was infected by the ZeroRing Trojan, targeting 209.198.2.21
was only a random hit. Alternatively, host 207.166.87.157 might have attracted this scan by
entering some shady areas of the Internet. The is no evidence from this data (ignoring the
nick changes) that 207.166.87.157 is under attack.

2.3.7. Severity

Severity = (Criticality 4 Lethality) - (System Countermeasures + Network Countermeasures)

Severity=3 Host 207.166.87.157 seems to be in heavy use on the victims network. How-
ever, without complete information it is hard to decide its criticality.

Lethality=4 Here we should differentiate between the two possible sources. If it was a
ZeroRing, the severity would be quite high, maybe even a 5. If it was the reaction of
the IRC-server, there will be no harm to the system, so maybe a 1. As chances are
very high, we are not dealing with ZeroRing, we choose 4.

System countermeasures=2 Judging from the other traffic of this host, there is no
draconian system administrator. It is hard to decide how well the network is patched.

37

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network countermeasures=2 Due to the estimated network, it seems reasonable to
assume, that there is at least a packet filter firewall or ACLs on the router.

Severity= (34+4) — (2+2) =3

2.3.8. Defensive recommendation

The first steps should be at least a stateful packet filter firewall in front of the organizations
network. Judging from the seen traffic, there are no restrictions for the users, resulting in
highly suspicious traffic. The management of this organization must also face the fact that
users are surfing for hard core porn. Checking this and the other log files with a patched!
version of driftnet (driftnet is comparable to dsniff, however, it sniffs for pictures and not
for passwords), one sees pictures showing every detail of the human anatomy striking very
explicit poses.

2.3.9. Multiple choice test question

According to some IDS specialists, the Trojan ZeroRing tries to connect the ports 1080, 8080
and 3128 of a possible victim in always exactly this order.

In your log files, you found three connects in the following order: 8080, 1080 and 3128.
Which statement is not correct?

a) Maybe it is a modified version of ZeroRing
b) It can’'t be ZeroRing, as this is the wrong order

c) It might be an original ZeroRing, but the packets arrived in another order than they
had been sent.

d) Maybe someone is hiding behind a behavior very similar to ZeroRing.

The correct answer is b)

a) This is possible, of course.

)
b) A wrong statement, see a) and c)
c) Today not very likely, but possible

)

d) This is possible, see http://www.sans.org/y2k/050300-1100.htm

IThe original version of driftnet cannot read tcpdump files. In this case, a combination of driftnet and
tepreplay mostly works.

38

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3. Analyze this

3.1. Overview

All files for the below analysis were downloaded from the site mentioned by the GCIA Practical
Assignment Version 3.5. The task of this report is to improve the network security at the
university and to show up acute problems. To achieve this, we analyze the provided data and
suggest suitable actions to improve the security. The only information provided to us were
the IDS system log files of 5 subsequent days.

No information about network structure, operating system, etc. was available. All ac-
cording facts need to be guessed from the log-files. Diverse university net services can be
accessed via Internet. Among those, there are official hosts, like mail server, Novell server,
and more than 340 web servers.

Several of the alarms reported by the IDS are analyzed in detail. Depending on the type
of alarm, we have to deal with different problems. Some alerts point to the fact that the IDS
was also used as a monitoring tool. Other alerts show computers which have been attacked
and were taken over by the attacker. Furthermore, some alerts were found that suggest a
misuse of university IP-addresses. Some problems regarding the configuration of the network
and the functioning of the DHCP-server are also discussed.

Due to the huge amount of data, it is impossible to analyze each and every single alarm.
In order to classify the computers, top-talker lists are generated for different aspects. In
addition, a link graph and the registration information of several important computers outside
the university should simplify the classification of the diverse alarms.

Afterwards, specific suggestions are made to improve the network security. We separate
short, middle, and long-term actions and discuss the responsibilities for the different actions.

At the end of the report, the applied methods are summarized for transparency.

3.2. A list of the files

Three different file types are available and were investigated. All files originate from an
unknown version of snort. Moreover, the available data is not the original but a modified
one. The GIAC page says:

The logs themselves have been sanitized. All of the IP addresses of the protected
network space have been "munged’. Additionally, the checksums have been
modified to prevent clever people from discovering the original IP addresses.
You will find that certain keywords within the packets have been replaced with
"X"s. All ICMP, DNS, SMTP and Web traffic has also been removed.

39

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This will have some effects on the analysis of the data, as some errors were added to the
files during this procedure.

The following files were downloaded from http://isc.sans.org/logs/ and cover the
time from May, 27-31, 2004.

Date Alerts OOS Report Scans
27.3.2004 || alert.040327.gz oos_report 040323 scans.040327.gz
28.3.2004 || alert.040328.gz oos_report 040324 scans.040328.gz
29.3.2004 || alert.040329.gz oos_report 040325 scans.040329.gz
30.3.2004 || alert.040330.gz oos_report_ 040326 scans.040330.gz
31.3.2004 || alert.040331.gz oos_report_040327 scans.040331.gz

Please pay attention to the fact that the files for the OOS reports have different timestamps
than the alert and scan files. Also, the timestamps inside the OOS reports differ from the
date, the filename suggests. For this analysis, it was assumed that the timestamps inside the
files are correct and the filenames are faulty.

Before data could be analyzed, it needed some slight preparation. Please consult ap-
pendix A for more detailed information.

3.3. Relationships between the different computers

To estimate the size of the university network the number of unique addresses from the alerts
and OOS files were counted. The scan files where ignored, because an IP-address appearing
in a scan log does not necessarily mean, the according system does exist.

In total, 268 IP addresses appeared as source address of an alert or OOS event. Ignoring
the fact that these addresses might be forged, we assume that these systems do really exist.

1052 IP addresses were found as destination address for alert and OOS events. Here,
chances are higher that not all addresses found are belonging to a real machine. However, as
we had ignored scans from the alert files, this number seems reasonable. Altogether, 1320
unique addresses of the university were found.

A first estimation of the function of different computers can be made based on the used
well-known ports. The usual suspects are http (80), https (443), dns (53), mail (25), ssh (22),
ftp (21), and telnet (23). High volume ports must also be investigated.

Nowadays, web servers are the most used services in the Internet. In total, 347 web servers
could be identified. Hosts like userpages.MY.NET (MY.NET.24.44) with 4096 hits and
www.MY.NET (MY.NET.24.34) with 1600 hits look like official servers. Printers like ss513-
printerl. MY.NET (MY.NET.10.203), geography-printer4. MY.NET (MY.NET.10.24) or lib-
hc-printer3.MY.NET (MY.NET.150.33) or management systems like webadmin2.MY.NET
(MY.NET.24.58) should not be available over the Internet. There is no need to configure a
printer from outside of the university.

The number of HTTPS-servers is much lower than the number of HTTP web servers.

40

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

‘ Name IP ‘ Hits ‘

webmail MY.NET MY.NET.24.74 | 24
webauth.MY.NET MY.NET.12.7 12
lan2.MY.NET MY.NET.30.4 7
lan1.MY.NET MY.NET.30.3 7
your.MY.NET MY.NET.24.48 | 4
my.MY.NET MY.NET.24.33 | 2

Identifying the name server is tricky. As all alerts for connections to port 53 are scans, we
cannot say for sure, behind which addresses we can find DNS-servers. However, two servers
have much more traffic than all other machines

‘ Name IP ‘ Hits ‘

MY3.MY.NET MY.NET.1.3 | 472
MY4.MY.NET MY.NET.1.4 | 59

The DNS names suggest that they are official university mail servers.

‘ Name 1P ‘ Hits ‘

mxin.MY.NET MY.NET.12.6 | 366
listproc.MY.NET MY.NET.24.20 | 21
mdx.MY.NET MY.NET.60.38 | 3

Ssh connections are registered for only four addresses, exchanging only few packets. These
are extremely low numbers. Normally, in a university environment, remote connections over
ssh are very common. Of course, snort does not register every ssh connection. Therefore, it
is difficult to achieve more detailed knowledge on the ssh server.

‘ Name IP ‘ Hits ‘
lan1.MY.NET MY .NET.30.3 4
linux2.gl. MY.NET MY.NET.60.16 | 4
lan2.MY.NET MY .NET.30.4 3
linux3.gl. MY.NET MY.NET.60.39 | 1

For only two hosts lan1.MY.NET and lan2.MY.NET 6 telnet connections were detected.
As telnet is a very insecure protocol, such a low number is good.

FTP connections are registered for eight addresses. According to some signatures the
hosts MY.NET.53.29, MY.NET.70.49, and MY.NET.70.50 are belonging to the HelpDesk.

‘ Name IP ‘ Hits ‘
ftpl.MY.NET MY .NET.24.47 | 133
ragnarok. MY .NET MY.NET.24.27 | 41
lan2. MY.NET MY .NET.30.4 12
lan1.MY.NET MY .NET.30.3 11

ecs020pc06.ucslab.MY.NET MY.NET.53.29 | 5
? MY.NET.42.1 4
ecs020pc-15.ucs. MY.NET MY.NET.70.50 | 3
ecs020pc-14.ucs. MY.NET MY.NET.70.49 | 2

41

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MY.NET.24.8 seems to be the university Usenet server.

(1P [Hits |
MY .NET.24.8 | 123
MY.NET.30.4 | 3
MY.NET.30.3 | 3

The last server, which could easily be detected, is the NTP time-server MY3.MY.NET
(MY.NET.1.3) with 2301 hits.

Up to now, we had searched for well known services. It is of course possible that other
services are also important for this site. So, we should have a look at the most frequent
destination ports, maybe we can identify another server and service.

Name P Dest. | Hits
Port
lan1.MY.NET .edu MY.NET.30.3 524 | 17516
lan2.MY.NET .edu MY.NET.30.4 524 | 3619
lan2.MY .NET .edu MY.NET.30.4 51443 | 13582
lan1.MY.NET .edu MY .NET.30.3 3019 | 6730
? MY.NET.97.82 1122 | 5460
ecs021pc34.ucslab.MY.NET.edu MY.NET.53.111 | 3658 | 1228
eds-linl.engr.MY.NET.EDU MY.NET.110.72 | 12203 | 450

The above analysis has shown us that the servers lan1.MY.NET.edu and lan2.MY.NET .edu
are playing an important role in the university infrastructure. For nearly all of the seen ports
it was difficult to identify the network protocol. But for a few we can make a first guess.

MY.NET.30.4:51443 According to different sites found in google, Novell NetWare 6.0 is
available through this port.

MY.NET.110.72:12203 Searching for this port, google gives us the hint that this port is
used for Online Gaming. A server for Medal Of Honor seems to be bound to this port.

MY.NET.30.3:524

MY.NET.30.4:524 Once again, google is pointing us to Novell NetWare [18]. NDS com-
municates on port 524 TCP and UDP.

We thus know that the university is using Novell network. Important servers for this
service are lan1.MY.NET.edu and [an2.MY.NET.edu. These systems are highly valuable
targets. Also important are the servers MY3.MY.NET (MY.NET.1.3) and MY4.MY.NET
(MY.NET.1.4) which have handmade snort rules to monitor the complete traffic. Some web
servers (http and https) and other services (e.g., NTP) could also be identified from the
data.

42

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.4. A list of detects

Ignoring port scans, we found 53 unique alerts from the alert files. Different combinations
of flags ranging from a NULL scan to a full XMAS scan add another 110 different alerts for
the out-of-spec files. Additionally, more than 22.500.000 port scans are contributing to the
data we have to analyze. So, only a small selection of the data can be reviewed in detail.
The analyzed signatures were selected for three reasons:

Frequency Two signatures, producing more than 54% of all alerts must not be ignored.

Severity A signature, pointing to a highly dangerous event must be investigated, even if we
see only few according packets.

Custom signatures We assume, that the maintainer of the university IDS has written the
custom signatures for certain reasons.

The most frequent signatures cover nearly 95% of all triggered alerts.

‘ ‘ Signature ‘ Hits ‘
1 MY.NET.30.3 activity 28207
2 MY.NET.30.4 activity 21296
3 High port 65535 tcp - possible Red Worm - traffic 13423
4 EXPLOIT x86 NOOP 9343
5 Incomplete Packet Fragments Discarded 5357
6 SMB Name Wildcard 5164
7 Null scan! 1304
8 High port 65535 udp - possible Red Worm - traffic 1239
9 | TFTP - Internal UDP connection to external TFTP server | 1157

10 Traffic from port 53 to port 123 1154

As the original snort signatures were not provided by SANS Institute, one can only guess
which signatures were changed from the original snort.org version. However, some of the
signatures are containing strings, which tell us that these signatures are customized. 15
signatures were found which were containing the string MY .NET (Abbreviation of the university
name) or references to IP-addresses of the university network (e.g., MY.NET.53.29).

43

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

| | Signature | Hits |

1| MY.NET.30.3 activity 28207
2 | MY.NET.30.4 activity 21296
3 | [MY.NET NIDS IRC Alert] IRC user /kill detected & possible trojan. 616
4 | [MY.NET NIDS IRC Alert] Possible sdbot floodnet detected attempting to | 479
IRC

5| [MY.NET NIDS] External MiMail alert 133
6 | [MY.NET NIDS IRC Alert] XDCC client detected attempting to IRC 52
7 | [MY.NET NIDS IRC Alert] Possible drone command detected. 11
8 | [MY.NET NIDS IRC Alert] Possible Incoming XDCC Send Request Detected. | 10
9 | [MY.NET NIDS IRC Alert] User joining XDCC channel detected. Possible 9

XDCC bot

10 | External FTP to HelpDesk MY.NET.53.29

11 | External FTP to HelpDesk MY.NET.70.50

12 | [MY.NET NIDS] Internal MiMail alert

13 | External FTP to HelpDesk MY.NET.70.49

14 | [MY.NET NIDS IRC Alert] K\:line'd user detected & possible trojan.

15 | [MY.NET NIDS IRC Alert] User joining Warez channel detected. Possible
XDCC bot

R, NN WO

The first 4 of the following sections were chosen based on their number of occurrences.
The other detects were chosen for their severity or importance on the network configuration.

3.4.1. MY.NET.30.3 activity and MY.NET.30.4 activity

These two signatures are custom signatures with a very high frequency. None of the two
signatures seems to be very selective about the traffic. In both cases, the according IP-address
must be the destination. As more than 1350 different destination ports for MY.NET.30.3
and 1330 for MY.NET.30.4 were found, the signature might accept any destination port. No
source address from the university network MY.NET.0.0/16 was found. Each system was
contacted both on typical tcp ports (www, 80) and typical udp (tftp, 69) ports. We assume
that the signature has the below structure.

alert ip $EXTERNAL_NET any -> MY.NET.30.3 any {
msg: "MY.NET.30.3 activity"; 7}

alert ip $EXTERNAL_NET any -> MY.NET.30.4 any {
msg: "MY.NET.30.4 activity"; }

There are two possibilities why the university might have chosen the above signatures.
One could be that these rules are not used for network based intrusion detection but for
generating statistics. Such a time profile can be seen in figure 3.1. Another might be that
MY.NET.30.3 and MY.NET.30.4 are honeypots which are monitored with this IDS. However,
in this case it is unclear, why only traffic directed to these addresses is logged but no traffic
coming from them.

44

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5000

— MY.NET.30.3
4000 — MY.NET.30.4
@ 3000
c
o
>
© 2000
|
1000 ‘ y | | |
0 AMJ ! ka Wkﬁ \ ﬁli«ﬁﬁ m«x m£¢ﬁ Wwﬁ\ | hihi ‘“
0 24 48 72 96 120

time (hours)
Figure 3.1.: Time profile of events for MY.NET.30.3 and MY.NET.30.4

3.4.2. High port 65535 tcp - possible Red Worm - traffic
High port 65535 udp - possible Red Worm - traffic

These two messages point towards the Red Worm also known as Adore. None of these
signatures are part of the default rules set by snort.org. Red Worm, not to be mix up with
Code Red, a worm for Windows systems, is targeting Linux systems with vulnerable wu-ftpd,
named, rpc.statd and Ipd services [19, 20]. For both signatures, traffic is registered coming
from and going to our university. Obviously, it does not matter, whether port 65536 is source

or destination port.
We assume that the signature has the below structure.

alert tcp any any <> any 65535 {
msg: "High port 65535 tcp - possible Red Worm - traffic"; }

alert udp any any <> MY.NET.30.4 any {
msg: "High port 65535 udp - possible Red Worm - traffic"; }

Doug Kite showed some increasing destination port numbers for traffic originating from
port 65535. He came to the conclusion that this is typical of traceroute or other mapping
tools [21]. In our case, no increasing port numbers can be found.

Glenn Lareratt [22] came to the conclusion, that many systems at MY.NET university are
infected with Adore. Philip.ljungberg@kbc.be supposed a connection between AFS, Adore,
TFTP and ICMP alerts [23]. We cannot comment this, as no AFS correlated alerts were
found. Maybe the snort rule set has changed since his analysis.

Another aspect is, that traffic from port 65535 is generally not forbidden and may appear
in daily traffic. For example, the communication between client 68.55.121.177:65535 and
web server MY.NET.29.3:80 could be regular, unsuspicious traffic. Red worm traffic should

45

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

mainly be directed against ports udp/53, tcp/21, and tcp/515. However, no packet to ports
515 or 21 was found; only 13 packets to port 53 were detected. This does not fit in the
picture of an actively searching Red Worm. This traffic might be the combination of regular
traffic and some scanning tools.

3.4.3. EXPLOIT x86 NOOP

For snort version 2.2.0RC1 the according rules would be

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg: "SHELLCODE x86 NOOP";

content:"[90 90 90 90 90 90 90 90 90 90 90 90 90 90|";
depth:128; reference:arachnids,181;
classtype:shellcode-detect; sid:648; rev:7;)

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 NOOP"; content:"aaaaaaaaaaaaaaaaaaaaa';
classtype:shellcode-detect; sid:1394; rev:5;)

These signatures try to detect buffer overflows based on the fact, that the necessary
shellcode is often padded with NOOP instructions [24, 25]. As David Oborn [26] pointed
out in his analysis, false positives are quite usual for this kind of events. These sequences are
quite common in different files like images, sounds, documents etc. In our case, only 73 out
of 9343 packets are coming from port 80, but in 8216 cases the traffic is going to port 80.
There might be two reasons for this. Either, many pictures are uploaded to the web server
(e.g., as attachment for webmail) or someone is firing exploits on our university.

For better insight, we will have a look at the time distribution of theses events (figure
3.2). There is a huge peak on March, 28th Most of the traffic is coming from dial-up hosts.

| Name Address | Hits |
pool-141-157-60-104.balt.east.verizon.net ~ 141.157.60.104 | 614
nr14-66-161-196-103.fuse.net 66.161.196.103 | 148
VDSL-130-13-111-49.PHNX.QWEST.NET 130.13.111.49 143
danielo21.campus.luth.se 130.240.193.238 | 116

pool-151-197-41-243 phil.east.verizon.net ~ 151.197.41.243 | 116
adsl-208-191-120-5.dsl.snantx.swbell.net 208.191.120.5 116

adsl-223-177-47.mia.bellsouth.net 68.223.177.47 90
host84.adamsmark.com 65.245.150.84 87

219.233.3.171 85
Toronto-HSE-ppp3664999.sympatico.ca 65.95.162.70 85

As the the 28t is a Sunday and students are at home, this supports the idea that file
uploads are responsible for most of these alerts. For a more detailed analysis of these events,
it is necessary to know the packet’'s payload.

46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

750

500 -

events

250

time (hours)

Figure 3.2.: Time distribution of EXPLOIT x86 NOOP events. There is a huge peak on
March, 28th.

3.4.4. SMB Name Wildcard

In general, most SMB Wildcard alerts are generated by windows machines surfing the net. If
one of those machines is accessing a web server, it also tries to build up an SMB (Windows
networking) connection.

In our university NIDS, all alerts are coming from MY.NET.0.0/16. This either means
that snort was configured in a way that only these attempts are logged or that the university
firewall is blocking SMB traffic from outside.

It is interesting to see traffic pointing to the 192.168.0.0/16 network. Depending on the
local network this might be normal. There might also be a problem with the university DHCP
server. We can conclude this from the traffic pointing towards the 169.254.0.0/16 network.
RFC 3330 defines this subnet as "link local” and states "Hosts obtain these addresses by
auto-configuration, such as when a DHCP server may not” be found.

Without further knowledge, we must assume that traffic from port 137 to 137 is acceptable.
Traffic from other source ports, however, might be active scanning. There are two source
addresses, which are generating at least 535 (MY.NET.150.44) and 437 (MY.NET.150.198)
alerts. In most cases the source port was between 1051 and 1119, but 137 packets had
source port 80. Chances are high that someone on these machines is doing active scanning.

3.4.5. TFTP - Internal UDP connection to external tftp server

TFTP (RFC1350) is an extremely simple, trivial file transfer protocol. Nowadays, TFTP is
used only in local communication. In most cases, it is only used for configuration exchange
with CISCO routers or for PXE network booting. However, lately the use of TFTP has
tremendously increased. Different worms like Nimda [27] or Blaster [28] are using this pro-

A7

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

tocol to download their core components to the victim’'s machine. If TFTP connections are
seen across the boundaries of the local network, chances are high that a worm is spreading.
We assume that the signature has the below structure.

alert udp any any <> $EXTERNAL_NET 69{
msg: "TFTP - Internal UDP connection to external tftp server"; }

Not having the payload or any other information, one cannot distinct, whether the rules
search for GET or PUT requests. 1157 contacts in 5 days seem too little to support the
suspicion of a new virus that successfully starts spreading. In our case, the connects are
equally distributed. By searching for IP addresses we see something interesting. 99% (1148)
of all alerts are coming from a single host 65.107.99.68 belonging to the network of XO
Communications, a telecommunication provider.

03/31-08:29:03.011350
[**x] TFTP - Internal UDP connection to external tftp server [*x]
65.107.99.68:69 -> MY.NET.1.3:123

This means, that someone is accessing the university NTP server from port 69. Start time
is 03/30-16:45:49.942108, stop time is 03/31-08:29:03.011350. As other alerts for these
signatures show packets coming from MY.NET and going to external addresses, we can be

sure that MY.NET.1.3 did not answer these requests.
Now we want to have a look at the 9 alerts not associated with 65.107.99.68.

03/27-06:39:58.336027 MY.NET.84.235:4672 -> 83.32.103.133:69
03/27-06:40:00.440533 MY.NET.84.235:4672 -> 83.32.103.133:69
03/28-21:11:07.045300 MY.NET.84.235:5877 -> 217.81.50.124:69
03/31-05:18:03.445148 MY.NET.84.235:5877 -> 213.37.180.145:69

If an external host can manipulate an internal host in such a way, that the internal host is
fetching data using TFTP, chances are very high that the local host is vulnerable for certain

worms. It is highly recommended that MY.NET.84.235 should be isolated from the network.
Even worse are the following alerts.

03/28-06:44:58.330847 221.10.89.48:69 -> MY.NET.1.115:53

03/31-05:18:03.440393 213.37.180.145:69 -> MY.NET.84.235:5877
03/31-07:47:44.292488 66.250.188.23:69 -> MY.NET.69.211:33477
03/31-10:57:21.517111 63.250.197.21:69 -> MY.NET.81.108:21186
03/31-12:09:07.883560 66.250.188.23:69 -> MY.NET.66.29:53957

Here, an external host tried to download something from a local host. This indicates an
already successful, now spreading infection of the local system.

Neither knowing details on the used snort signature nor the local network, we cannot judge
whether there is really a worm spreading. The internal hosts should be investigated, or maybe
even a forensic analysis might be done.

Al Williams found for TFTP network traffic analyzed by him, that it was associated with
known Peer to Peer ports [29]. The data analyzed here does not give any support for this
fact.

48

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.4.6. NIMDA - Attempt to execute root from campus host
NIMDA - Attempt to execute cmd from campus host

Apache logs next to always show expressions similar to the below example, were someone is
testing, whether he can execute a Windows shell to take over an IIS server [30].

"GET /scripts/..%255c%255c¢c. ./winnt/system32/cmd.exe?/c+dir"
"GET /scripts/root.exe?/c+dir HTTP/1.0"

For this kind of traffic, there are well known snort signatures.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-IIS CodeRed v2 root.exe access";
flow:to_server,established; uricontent:"/root.exe"; nocase;[...])

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-IIS cmd.exe access";
flow:to_server,established; content:"cmd.exe"; nocase; [...])

The problem with these signatures is, that they only trigger alerts for attacks against the
local network. This leads to an extremely high rate of alerts, which are unnecessary because
everybody knows that this kind of attacks is an ongoing thread. Much more interesting
is, whether a local host is attacking a remote host. This seems to be the mission of the
found alerts. Probably, they were generated by the original rules by exchanging source and
destination IP addresses.

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"NIMDA - Attempt to execute root from campus host";
flow:to_server,established; uricontent:"/root.exe"; nocase; [...])

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS

(msg:"NIMDA - Attempt to execute cmd.exe from campus host";
flow:to_server,established; content:"cmd.exe"; nocase; [...])

Five internal hosts were registered during the 5 day period.

| Addresses | Attacks |

MY.NET.97.242 37
MY.NET.97.12 9
MY.NET.97.248 3
MY.NET.97.16 2
MY.NET.97.28 1

False positives for this kind of rule are well known. If, for example, someone searches
google.com for cmd.exe, the above signature will trigger an alarm. In our case, no search
engine was targeted. The five systems need to be isolated from the network and should be
investigated in detail.

In order to achieve a more efficient distribution, worms generally prefer to infect machines
with an IP-address "similar” to the address of the host they are coming from. 39 out of 53
target systems are in network 130.0.0.0/8.

49

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.4.7. TCP SRC and DST outside network
ICMP SRC and DST outside network

The alert messages SRC and DST outside network suggest, that the person who set up
the NIDS for the university was trying to detect suspicious network traffic. Based on the
local router configuration, he expects that all packets are either directed to or coming from
the network MY.NET/16. Packets which do not have a university IP address as source or
destination are therefore suspicious. We assume that the signature has the below structure.

alert tcp $EXTERNAL_NET any -> $EXTERNAL_NET any
(msg:"TCP SRC and DST outside network";);

alert icmp $EXTERNAL_NET any -> $EXTERNAL_NET any
(msg:"ICMP SRC and DST outside network";);

It is interesting, that either no signature for UDP traffic was activated or no according
traffic exists. There might be different reasons for the above alert messages. The first idea
is, that someone is faking his source address to hide it's identity. This, however, is not very
likely, as the attacker will not get any answer to his request. Only fire-and-forget attacks
would make sense. Jamell Creque [31] found in his analysis more than 1.4 million alerts of
this kind. Our data, however, has a completely different profile with only 224 alerts. We do
not think that a DOS attack is on the run.

Daniel Martin raised another idea about this kind of traffic, which he described in his
posting to the incidents mailing list [32]. According to him, while connecting web-servers,
Windows tries to build SMB connections with every IP address the local machine is bound
to. In our case, none of the packets has a port 137.

It is very likely that most of these alerts are based on misconfigured computers. To
proove this theory, we will have a detailed look at the source addresses. 42 packets came
from the networks 192.168.0.0/32, 192.168.1.0/32, or 192.168.2.0/32. These are RFC 1918
addresses. Depending on point of view, these addresses are not really "outside network™. 46
addresses with 137 packets had a source IP-address in a 172.X.0.0/8 network. We performed
a reverse DNS lookup for each of these addresses, they all belong to AOL. Another 2 addresses
with 44 packets came from Comcast. Probably, some students had connected their laptop
to their home ISP (AOL or Comcast). Then, at the university, they possibly did not get an
address from the DHCP server (we had seen in one of the last sections, that the university
has problems with the DHCP server) and their system used the old address. Going more into

detail, we see rather different traffic profiles:
Here, an AOL user is (unsuccessfully?) connecting Bank of America's Online system:

03/31-06:45:59.154505 172.166.255.157:1431 -> 66.77.116.80:443
03/31-06:46:00.738000 172.166.255.157:1431 -> 66.77.116.80:443
03/31-06:46:04.981062 172.166.255.157:1431 -> 66.77.116.80:443
03/31-06:46:12.680059 172.166.255.157:1431 -> 66.77.116.80:443
03/31-06:46:28.674166 172.166.255.157:1431 -> 66.77.116.80:443

The following Comcast customer is trying to build connections to P2P servers. According
to IANA [33], this port number is mainly used by the gnutella network. 25 connects within
5 seconds with nearly sequential source ports are seen:

50

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

03/28-22:41:53.475518 67.160.
03/28-22:41:53.577277 67.160.
03/28-22:41:59.509779 67.160.
03/28-22:41:59.734260 67.160.
03/28-22:41:59.655603 67.160.
03/28-22:41:59.717945 67.160.
03/28-22:41:59.638144 67.160.
03/28-22:41:59.703119 67.160.
03/28-22:41:59.622833 67.160.
03/28-22:41:59.607098 67.160.
03/28-22:41:59.718273 67.160.
03/28-22:41:59.734417 67.160.
03/28-22:41:59.701894 67.160.
03/28-22:42:05.577241 67.160.
03/28-22:42:05.642378 67.160.
03/28-22:42:05.562617 67.160.
03/28-22:41:53.577298 67.160.
03/28-22:42:05.578839 67.160.
03/28-22:42:05.658749 67.160.
03/28-22:41:53.651231 67.160.
03/28-22:42:05.754915 67.160.
03/28-22:41:53.651301 67.160.
03/28-22:42:05.770197 67.160.
03/28-22:41:53.667205 67.160.
03/28-22:42:05.786977 67.160.

.251:1084 -> 65.163.60.244:6346
.251:1092 -> 140.192.175.165:6346
.251:1095 -> 68.70.174.229:6349
.251:1096 -> 24.7.169.9:6346
.261:1097 -> 68.38.67.133:6346
.251:1105 -> 69.137.102.4:6346
.251:1106 -> 24.44.200.190:6346
.251:1107 -> 209.152.84.103:6346
.251:1108 -> 64.231.120.32:6346
.251:1109 -> 68.12.35.4:6346
.261:1112 -> 217.233.223.3:6346
.251:1113 -> 64.146.145.228:6346
.2561:1114 -> 24.100.10.109:6348
.261:1117 -> 12.216.113.153:6346
.2561:1118 -> 80.180.70.100:6346
.2561:1120 -> 24.74.50.187:6346
.251:1121 -> 80.4.214.91:6346
.251:1121 -> 80.4.214.91:6346
.251:1122 -> 81.240.225.88:6346
.261:1124 -> 68.80.121.112:6346
.261:1124 -> 68.80.121.112:6346
.251:1125 -> 12.218.173.165:6346
.251:1125 -> 12.218.173.165:6346
.251:1126 -> 64.228.76.28:6346
.261:1126 -> 64.228.76.28:6346

N e e e e e e T o T e = S S e e S S N e N T

As defensive recommendation Glenn Larratt [22] suggests to use CISCO's "ip verify
unicast reverse-path" feature, an idea we emphatically support.

Using tcpdump with the command line option —e will give more information on this prob-
lem. Knowing the MAC addresses, it is easy to track this kind of traffic. Concluding, this
kind of traffic points more to network problems than to an attack.

3.4.8. IDS552/web-iis_IIS ISAPI Overflow ida INTERNAL nosize

The message belongs to a custom signature at our university. Most probably, this signature
is based on snort rule 1242 (see below) and not 1243, which is similar.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-IIS ISAPI .ida access"; uricontent:".ida"; nocase;
reference:arachnids,552;

reference:bugtraq, 1065;

reference:cve,2000-0071; sid:1242; [...]1)

Everybody, who reads his apache log files, has seen requests, which can trigger this alert.
GET /default.ida?XXX
[...]
%u8b00%u531b%ub53££%u0078%u0000%u00=a HTTP/1.0

Probably, the signature NIMDA - Attempt to execute * from campus host, which
triggered the alerts, was generated in the same intention as the above mentioned snort rule

51

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1242. The author of this signature was searching for computers on the local network infected
by worms which try to exploit Microsoft IIS UNC Path Disclosure Vulnerability [34, 35]. We
assume that the signature has the below structure.

alert tcp $INTERNAL_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"IDSSSQ/web—iis_IIS ISAPI Overflow ida INTERNAL nosize";
uricontent:".ida"; nocase;)

Only two addresses are responsible for 89 alerts. The hosts MY.NET.97.242 (68 alerts)
and MY.NET.97.12 (21 alerts) appeared also as top talkers for the NIMDA related signatures.
These two hosts must be isolated from the local network as fast as possible.

3.4.9. Conflicting DNS registration information

Searching the oos_report.files we found the following packet:

03/29-03:05:10.608065 66.218.55.183:4649 -> MY.NET.82.55:80

TCP TTL:112 T0S:0x0 ID:30244 IpLen:20 DgmLen:338 DF

*xxkkkkk Seq: OxADD78D73 Ack: Ox6EE1CA61 Win: 0xC418 TcpLen: O
0C 43 CO 00 00 00 02 38 70 00 00 00 00 62 OC 00 .C..... 8p....b..
00 00 00 OC 41 80 00 00 65 73 2F 70 72 6F 6A BFA...es/proj_
41 2E 6A 70 67 20 48 54 54 50 2F 31 2E 31 OD OA A.jpg HTTP/1.1..
41 63 63 65 70 74 3A 20 2A 2F 2A OD OA 52 65 66 Accept: */*..Ref
65 72 65 72 3A 20 68 74 74 70 3A 2F 2F 77 65 62 erer: http://web
2E 6B 69 6C 6C 65 72 68 65 61 64 2E 6E 65 74 2F .killerhead.net/
6C 61 76 65 6E 64 61 72 74 69 6E 74 65 64 2F 70 lavendartinted/p
72 6F 6A 65 63 74 73 2E 68 74 6D 6C OD OA 41 63 rojects.html..Ac
63 65 70 74 2D 4C 61 6E 67 75 61 67 65 3A 20 65 cept-Language: e
6E 2D 75 73 OD OA 41 63 63 65 70 74 2D 45 6E 63 n-us..Accept-Enc
6F 64 69 6E 67 3A 20 67 7A 69 70 2C 20 64 65 66 oding: gzip, def
6C 61 74 65 OD OA 55 73 65 72 2D 41 67 65 6E 74 late..User-Agent
3A 20 4D 6F 7A 69 6C 6C 61 2F 34 2E 30 20 28 63 : Mozilla/4.0 (c
6F 6D 70 61 74 69 62 6C 65 3B 20 4D 53 49 45 20 ompatible; MSIE

36 2E 30 3B 20 57 69 6E 64 6F 77 73 20 4E 54 20 6.0; Windows NT

35 2E 31 29 OD OA 48 6F 73 74 3A 20 77 65 62 2E 5.1)..Host: web.
6B 69 6C 6C 65 72 68 65 61 64 2E 6E 65 74 0D OA killerhead.net..
43 6F 6E 6E 65 63 74 69 6F 6E 3A 20 4B 65 65 70 Connection: Keep
2D 41 6C 69 76 65 OD OA OD OA -Alive....

This packet was alerted, because not flags were set (NULL SCAN). But the real value of
these packet lies in the payload. We see an HTTP/1.1 GET-request. These requests must
always have the HOST: header. In this case the host is web.killerhead.net.

host> nslookup web.killerhead.net
[...]

Non-authoritative answer:

Name: web.killerhead.net
Address: MY.NET.82.55

[...]

52

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This IP-address is resolved into a university address. But, as killerhead.net is not a likley
name for a university, we try a reverse lookup for MY.NET.82.55:

host> nslookup MY.NET.82.55 MY.NET.edu

[...]

Server: MYNET3.MY.NET

Address: MY.NET.1.3#53

55.82.NET.MY.in-addr.arpa name = 0it-82-55.pooled.MY.NET.

The fact that nslookup MY.NET.82.55 returns the name oit-82-55.pooled.MY.NET
means, that someone registered a new domain for one of the university computers. Looking
up killerhead.net, using whois at dnsstuff.com, we can even get name and mail address of

this person.

domain: killerhead.net

status: production

organization: Studio Psychowerks

owner: Kendrick Hernandez

email: khernal@MYNET.edu

address: 7208 Johnnycake Road

city: Baltimore

postal-code: 21228

country: Us

admin-c: khernal@MYNET . edu#0

tech-c: khernal@MYNET . edu#0
billing-c: khernal@MYNET. edu#0

nserver: a.ns.joker.com 194.176.0.2
nserver: b.ns.joker.com 194.245.101.19
nserver: c.ns.joker.com 194.245.50.1
registrar: JORE-1

created: 2003-09-24 21:25:03 UTC JORE-1
modified: 2004-06-29 14:11:55 UTC JORE-1
expires: 2006-09-24 17:24:49 UTC
source: joker.com

Asking the whois database for the IP address MY.NET.82.55 returns the university we did

investigate:

OrgName: University of MY.NET
OrgID: MYNET

Address: sk 3k ok ok ok ok 3k ok ok ok sk 3 ok ok ok 3k ok ok K
City: sk ok ok sk ok ok ok K

StateProv: *x
PostalCode: *x***x
Country: Us

NetRange: MY.NET.0.0 - MY.NET.255.255

CIDR: MY.NET.0.0/16
NetName: MYNETET
NetHandle: NET-130-85-0-0-1
Parent: NET-130-0-0-0-0
[...]

53

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This means Mr. Kendrick Hernandez registered www.killerhead.com at the authorized
registrar joker.com using a university IP address. Another look in the alert log file shows,
that this host is also responsible for a certain number of EXPLOIT x86 NOOP, Possible
trojan server activity, and Null scan! alerts. We think, that this behavior is against
the policy of the university and should be investigated.

3.5. A "top talkers” list

As only parts of the network traffic can be reconstructed, it is hard to decide which host is
victim or target. Thus, in calculating the top ten talkers from the alert and oos_report files,
we decided to treat source and destination address as equivalent.

Alert 00S

Address ‘ Hits Address ‘ Hits

1. MY .NET.30.3 28210 MY.NET.6.7 | 1244
2. MY .NET.30.4 21298 68.54.84.49 1204
3. 80.181.112.186 | 10485 || MY.NET.12.6 553
4. MY.NET.97.82 | 10484 | MY.NET .42.7 359
5. 68.55.174.94 7590 || MY.NET.24.44 | 355
6. 67.31.152.200 6635 || MY.NET .42.5 287
7. || MY.NET.153.176 | 5180 | 66.75.122.52 280
8. 68.55.178.168 3127 || 68.5.196.199 247
0. 140.142.8.73 3074 || 66.225.198.20 145
10. 69.136.228.63 2088 || 24.48.220.79 122

Analyzing the port scan log file, source and destination were treated separately. Here, the
role of the victim and of the attacker is much clearer.

Source Destination

Address ‘ Hits Address ‘ Hits

1. 69.6.57.7 87774 || MY.NET.190.92 | 10262212
2. 69.6.57.9 87672 || MY.NET.111.51 3895474
3. 192.26.92.30 86777 MY.NET.1.3 3811712
4. 192.48.79.30 71308 MY.NET.1.4 752202
5.1 MY.NET.25.68 | 71164 | MY.NET.84.235 472229
6. | MY.NET.190.92 | 63602 MY.NET.34.14 217639
7. 192.5.6.30 57163 || MY.NET.110.72 203591
8. 4.13.52.66 56418 || MY.NET.153.174 188530
9. 203.20.52.5 54350 || MY.NET.97.108 133766
10. 128.194.254.5 | 47847 | MY.NET.97.103 87814

It is also possible to check other categories than IP addresses. The participating ports tell
us, which service is most threatened. It is quite unusual, that port 80 (http) is not the top
port.

54

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

total Source Destination

Port ‘ Hits Port ‘ Hits Port ‘ Hits
1. 524 | 21135 || 65535 | 7887 524 | 21135
2. || 65535 | 14799 || 1078 | 5488 || 51443 | 13582
3. | 51443 | 13582 || 1122 | 5098 80 | 10801
4. 80 | 11908 137 | 4192 || 65535 | 6912
5. 1122 | 10558 | 1033 | 2126 || 3019 | 6730
6. 137 | 9356 69 | 1403 1122 | 5460
7. 3019 | 6756 53 | 1388 137 | 5164
8. 1078 | 5488 | 1077 | 1254 123 | 2326
0. 123 | 2334 80 | 1107 110 | 1457
10. 1033 | 2129 | 3658 | 862 || 3658 | 1228

In addition, it might be interesting, where the participating attackers are from. Here, only

IP addresses not from the MY.NET.0.0/16 subnet are counted.

‘ ‘ Country ‘ Hits
1. | US United States | 76233
2. | IT ltaly 10609
3. | BE Belgium 1051
4. | CN China 044
5. | DE Germany 891
6. | FI Finland 782
7. | GB Great Britain 774
8. | JP Japan 730
9. | SE Sweden 723

10. | CA Canada 465

3.6. Five selected external source addresses and
registration information

The host 65.107.99.68 is heavily contributing to the TFTP - Internal UDP connection
to external tftp server alerts.

OrgName: X0 Communications
OrglID: X0X0

Address: Corporate Headquarters
Address: 11111 Sunset Hills Road
City: Reston

StateProv: VA

PostalCode: 20190-5339

Country: Us

ReferralServer: rwhois://rwhois.eng.xo0.com:4321/

© SANS Institute 2004,

95

As part of GIAC practical repository.

Author retains full rights.

NetRange: 65.104.0.0 - 65.107.255.255

CIDR: 65.104.0.0/14
NetName: X0X0-BLK-15
NetHandle: NET-65-104-0-0-1
Parent: NET-65-0-0-0-0
NetType: Direct Allocation

NameServer: NAMESERVER1.CONCENTRIC.NET
NameServer: NAMESERVER2.CONCENTRIC.NET
NameServer: NAMESERVER3.CONCENTRIC.NET
NameServer: NAMESERVER.CONCENTRIC.NET
Comment :

RegDate:

Updated: 2003-08-08

OrgAbuseHandle: XCNV-ARIN

OrgAbuseName: X0 Communications, Network Violations
OrgAbusePhone: +1-866-285-6208

OrgAbuseEmail: **¥***@xo0.com

OrgTechHandle: XCIA-ARIN

OrgTechName: X0 Communications, IP Administrator
OrgTechPhone: +1-703-547-2000

OrgTechEmail: **¥*x**Q@eng.xo.com

GeolP Information
TARGET: 65.107.99.68
CITY: SAN JOSE
STATE: CALIFORNIA

COUNTRY: US
LAT: 37.32
LONG: -121.92

The top #1 scanning host 69.6.57.7 was chosen to get more detailed information.

OrgName: WholesaleBandwidth, Inc.
OrgID: WHOLE

Address: 1416 S Main St.

Address: 220-152

City: Adrian

StateProv: MI
PostalCode: 49221
Country: Us

NetRange: 69.6.0.0 - 69.6.79.255

CIDR: 69.6.0.0/18, 69.6.64.0/20
NetName: WHOLE-2

NetHandle: NET-69-6-0-0-1

Parent: NET-69-0-0-0-0

NetType: Direct Allocation

NameServer: NS1.WHOLESALEBANDWIDTH.COM
NameServer: NS2.WHOLESALEBANDWIDTH.COM

56

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Comment:
RegDate: 2002-11-21
Updated: 2004-02-03

OrgAbuseHandle: ABUSE71-ARIN

OrgAbuseName: Abuse Department
OrgAbusePhone: +1-866-444-8419
OrgAbuseEmail: *****Qwholesalebandwidth.com

OrgNOCHandle: NOC197-ARIN

OrgNOCName : Network Operations Center
OrgNOCPhone: +1-866-444-8419
OrgNOCEmail: ***@wholesalebandwidth.com

OrgTechHandle: SUPP014-ARIN

OrgTechName: Customer Support

OrgTechPhone: +1-866-444-8419

OrgTechEmail: *¥*****@wholesalebandwidth.com

GeolP Information
TARGET: 69.6.57.7
CITY:
STATE:
COUNTRY: AU
LAT: -25.00
LONG: 135.00

For the alerts, the first two talkers are from the internal network. The first external address
appearing is 80.181.112.186.

inetnum: 80.181.112.0 - 80.181.141.255

netname: TELECOM-ADSL

descr: Telecom Italia

descr: Accesso ADSL

country: IT

admin-c: BS104-RIPE

tech-c: BS104-RIPE

status: ASSIGNED PA

remarks: Please send abuse notification to *****Qtelecomitalia.it

notify: fkkkkkkkkkQtelecomitalia. it

mnt-by: TIWS-MNT

changed: *xxkkkQtelecomitalia.it 20030805

source: RIPE

route: 80.181.0.0/16

descr: INTERBUSINESS

origin: AS3269

notify: ***¥xx%x*xQcgi.interbusiness.it

mnt-by: TIWS-MNT

mnt-routes: INTERB-MNT

changed: **xkkxxQtelecomitalia.it 20021001
57

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

source:

person:
address:
address:
address:
phone:
e-mail:
nic-hdl:
notify:
changed:
source:

RIPE

BBBEASYIP STAFF

Via Val Cannuta, 250

I-00100 Roma

Italy

+39 06 36881
*kkxkkxkkxk@Qtelecomitalia.it
BS104-RIPE
*xkxkkkkkkQtelecomitalia.it
*x*x*x*Qtelecomitalia.it 20001019
RIPE

GeolP Information

TARGET: 80.181.112.186
CITY: AMSTERDAM

COUNTRY: NL
LAT: 5235
LONG: 4.90

STATE: NORTH HOLLAND (province)

The next two external hosts were chosen, because, according to the IDS, they were talking
to each other. 172.166.255.157 is trying to connect 66.77.116.80 on port 443 (https).

OrgName:
OrgID:
Address:
City:
StateProv:
PostalCode:
Country:

NetRange:
CIDR:
NetName:
NetHandle:
Parent:
NetType:
NameServer:
NameServer:
NameServer:
Comment :
RegDate:
Updated:

TechHandle:
TechName:
TechPhone:
TechEmail:

America Online
AOL

22000 AOL Way
Dulles

VA

20166

Us

172.128.0.0 - 172.191.255.255
172.128.0.0/10

AOL-172BLK

NET-172-128-0-0-1
NET-172-0-0-0-0

Direct Allocation
DAHA-01.NS.AQL.COM
DAHA-02.NS.AQL.COM
DAHA-07.NS.AOL.COM

ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
2000-03-24

2003-08-08

AOL-NOC-ARIN
America Online, Inc.
+1-703-265-4670
**x*xx*k*x*Qaol .net

OrgAbuseHandle: AOL382-ARIN

© SANS Institute 2004,

o8

As part of GIAC practical repository.

Author retains full rights.

OrgAbuseName: Abuse
OrgAbusePhone: +1-703-265-4670
OrgAbuseEmail: *****Qaol.net

OrgNOCHandle: AOL236-ARIN

OrgNOCName :
OrgNOCPhone:
OrgNOCEmail:

NOC
+1-703-265-4670
*%*Qaol.net

OrgTechHandle: AOL-NOC-ARIN

OrgTechName:

America Online, Inc.

OrgTechPhone: +1-703-265-4670
OrgTechEmail: ****x*x*xQaol.net

CustName:
Address:
City:
StateProv:
PostalCode:
Country:
RegDate:
Updated:

NetRange:
CIDR:
NetName:
NetHandle:
Parent:
NetType:
Comment :
RegDate:
Updated:

TechHandle:
TechName:
TechPhone:
TechEmail:

GeolP Information
TARGET: 172.166.255.157
CITY: VIENNA
STATE: VIRGINIA
COUNTRY: US
LAT: 38.93
LONG: -77.26

Douglas-Danielle.com

226 W. Ontario St. Suite 500B
Chicago

IL

60601

Us

2003-04-18

2003-04-18

66.77.116.64 - 66.77.116.127
66.77.116.64/26
QWEST-CEC-DDNIE
NET-66-77-116-64-1
NET-66-77-0-0-1

Reassigned

2003-04-18
2003-04-18

DW820-ARIN

Wysocki, David
+1-201-770-4133
*kkkkkkkQqis.qwest.net

OrgAbuseHandle: QIA2-ARIN
OrgAbuseName: Quwest IP Abuse
OrgAbusePhone: +1-877-886-6515
OrgAbuseEmail: *****Qqwest.net

© SANS Institute 2004,

59

As part of GIAC practical repository.

Author retains full rights.

OrgTechHandle: QIA-ARIN
OrgTechName: Qwest IP Admin
OrgTechPhone: +1-877-886-6515
OrgTechEmail: **x****x@qwest.com

GeolP Information
TARGET: 66.77.116.80
CITY: CAMBRIDGE
STATE: MASSACHUSETTS

COUNTRY: US
LAT: 42.36
LONG: -71.10

3.7. Link graph

For representation of an interesting link graph (figure 3.3), we chose to plot a part of the
traffic from the analysis of the TCP SRC and DST outside network events. Only source
addresses in the networks 192.168.0.0/24, 192.168.1.0/24, or 192.168.2.0/24 were chosen
for plotting. The source addresses were grouped by these /24 networks. For each destination
the number of hits and the destination ports were added to the link. The arrow shows the
direction of the alerted communication.

3.8. Defensive recommendations

"Intellectuals solve problems; geniuses prevent them.”
Albert Einstein

The investigated university has several acute problems we have to solve soon, but we must
also think about the future. Many of the detected problems will reappear sooner or later if no
fundamental changes are performed. Different actions are necessary to achieve an improved
security for the network.

Short-term actions These kind of actions should take place as soon as this report is avail-
able to the IT department. It should be in the authority of the administrators to start
such actions without additional instances.

Mid-term actions Within the next 3-6 months different actions should be taken to increase
the overall security. Also, different policies should be worked out to reach the long term
goals.

Long-term actions Basic changes to the university infrastructure should take place to in-
crease the overall security. These changes can be realized only in collaboration with
the university management.

The defensive recommendations are not only based on the problems described in the above
report, but are also based on other insights gained by working with the log files.

60

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

207.46.107.35
3 hits
207.46.106.39
3 hits 1863 207.46.106.79
7 hits
1863 1863

212.179.207.93
1hit
192.168.2. 0/24
6881 64 1226124
! h'ts 80,22 12 120,69.20
6882 2 hlts
80.185.180.10 204 91.240.100
1 hit 886 68. 4211?t7 212 3 hlts
6883
0 192.168.0, 0/24
66.250,68.112 / o 207.96104.20
1 hit 6882
1863
1863 6881
217.132.248.81 s886
Lhit 192.168.1.0/24
24.76.245.21
207.46.106.113 68 235.174.73
g

81 218.34.199
1 hlt

205.188.7.132
1 hit

Figure 3.3.: Link graph for a part of the traffic from the analysis of the TCP SRC and DST
outside network events

3.8.1. Short-term actions

Most of these actions will be simple (e.g., removal of a worm) but will have limited effects
(another worm will appear).

1. Check all computers, which might be infected by different worms or viruses.
MY .NET.97.242, MY.NET.97.12 and MY.NET.84.235 should be isolated from the
network. If one of these machines is really infected, possible victims of the machines
should be contacted, too.

2. Talk to Mr. Kendrick Hernandez about killerhead.net.

3. If Peer-to-Peer networking is not allowed at the university, typical ports should be
blocked at the perimeter router. A first step would be to block packets to the
ports tcp/1214 (Kazaa), TCP/6346, UDP /6346, TCP /6347, UDP/6347(gnutella),
and TCP/[6881:6889] (BitTorrent).

4. Normally, Windows networking is not needed across the Internet. Connections going
to the typical Windows ports 135, 137, 139, 445, and 5000 should be blocked.

61

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5. Check if the DHCP server is running. Use a program which is simple to setup (e.g.,
monit http://www.tildeslash.com /monit/) to check and restart this service.

6. Block traffic from RFC 1918 address on the perimeter.

3.8.2. Mid-term actions

Normally, many of these actions must be authorized by the IT-department manager. These
actions can solve many of the university's problems and prevent some new ones.

1. The installed IDS shows, that network security is a topic at the university. However,
the system is not used optimally. Signatures like MY.NET.30.3 activity are good
for traffic analysis but not for intrusion detection. Changing the log format so that
detailed information is stored will make analysis much more efficient.

2. Check the IDS for signatures like External FTP to HelpDesk MY.NET.53.29. In-
stead of detecting this kind of traffic, just prevent it. Use iptables, /etc/hosts.deny,
bridging firewalls, or Router ACLs, whichever is the easiest fix.

3. Replacing rules like MY.NET.30.3 activity, Nagios might help to monitor the net-
work and critical services like DHCP.

4. Push the use of virus scanners, personal firewalls, and other kind of security software
at the university. A local mirror for this kind of software, good instructions on how to
install and use it, and an article in the university’s newspaper can help.

5. A simple announced security scan with Nessus might show up many vulnerabilities.
Then issue an ultimatum to the owners of these possible targets: Either they fix their
computers within 5 days or they will be disconnected.

6. Get official statements from university management whether Peer-to-Peer networking,
IRC, instant messaging, etc. are allowed. If not, block them on the perimeter routers
or firewalls.

7. Allow sending of mail to the outside only from certain, well known hosts.

8. Setup network policies which must be signed by the university officials.

3.8.3. Long-term actions

These actions are the most vague ones. Depending on the sort of policy, on the willingness
to collaborate and the available money, different goals can be reached. Many problems can
be prevented or detected very early.

1. Install a system performing security scans and automatically inform the user of the
results.

62

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2. Install proxies and reverse proxies for different protocols. Whenever possible, try to re-
duce the number of hosts either reachable from the Internet or communicating directly
with the Internet. Remember: to perform good science work, gnutella is not necessary.

3. Start segmentation of the network. Define and control traffic between the different
segments.

4. Enforce the policies.

3.9. Description of the analysis process

Certain steps were performed before the data was analyzed.

1. The log files were downloaded and the local size was compared to the one seen on the
server. Unfortunately, no md5sums or similar are available.

2. Where necessary, we unzipped the log files and concatenated them. So we ended with
three files alert.all, oos_report.all and scans.all.

3. Presumably, due to the sanitizing process, some lines of the log file were corrupted.
We removed these lines.

4. Information on portscans were redundant in the scans.all and alert.all files. We removed
the protscans from alert.all and generated a new file alert.noscan.

Having read many warnings in other GCIA alumni’s papers [36], we decided not to use
tools like snortsnarf for the analysis. Instead we wanted to use a database. To import
the data to MySQL, we used some modified versions of the script found in Daniel Clarks
practical [37] which is originally based on the work of Jeremy Chartier. We added some
simple error checking and switched to Perl::DBI. For the oos_event, we added some fields for
further analysis.

CREATE TABLE alert_event (aid INT UNSIGNED NOT NULL,
timestamp DATETIME NOT NULL,
signature VARCHAR(255) NOT NULL,
ip_src INT UNSIGNED NOT NULL,
ip_dst INT UNSIGNED NOT NULL,
14_sport INT UNSIGNED NOT NULL,
14_dport INT UNSIGNED NOT NULL,
PRIMARY KEY (aid),

INDEX ip_src (ip_src),

INDEX ip_dst (ip_dst),

INDEX signature (signature));

CREATE TABLE oos_event (aid INT UNSIGNED NOT NULL,
timestamp DATETIME NOT NULL,

ip_src INT UNSIGNED NOT NULL,
ip_dst INT UNSIGNED NOT NULL,

63

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

14_sport INT UNSIGNED NOT NULL,
14_dport INT UNSIGNED NOT NULL,
ttl INT UNSIGNED NOT NULL,

tos INT UNSIGNED NOT NULL,

id INT UNSIGNED NOT NULL,
ip_len INT UNSIGNED NOT NULL,
dgm_len INT UNSIGNED NOT NULL,
flags CHAR(8) NOT NULL,
PRIMARY KEY (aid),

INDEX ip_src (ip_src),

INDEX ip_dst (ip_dst));

While trying to import the data for the scan log files, the computer became heavily
overloaded. Therefore, we split the data into three tables: UDP scans, SYN scans and the
rest. Now, the database could handle this huge amount of data and was answering fast
enough for efficient working.

CREATE TABLE scan_event_udp (aid INT UNSIGNED NOT NULL,
CREATE TABLE scan_event_syn (aid INT UNSIGNED NOT NULL,

CREATE TABLE scan_event_other (aid INT UNSIGNED NOT NULL,
timestamp DATETIME NOT NULL,

ip_src INT UNSIGNED NOT NULL,

ip_dst INT UNSIGNED NOT NULL,

14_sport INT UNSIGNED NOT NULL,

14_dport INT UNSIGNED NOT NULL,

PRIMARY KEY (aid),

INDEX ip_src (ip_src),

INDEX 14_dport (ip_src)

);

Then, most of the analysis was done using SQL commands on the command line, combined
with certain small helpers. Of course, tools like awk, grep, and perl are essential for this

work, too.
This following script tries to replace ip addresses, coming from the database, with the
dotted notation:

#!/usr/bin/perl -p

filename ip.pl

BEGIN{ use Socket; }
s/(\d{6,})/inet_ntoa(pack "N",$1)/ge;

host> mysql -B -e "select ip_src from alert_event limit 2" sans

ip_src

67356234

67359336

host> mysql -B -e "select ip_src from alert_event limit 2" sans | ip.pl
ip_src

4.3.198.74

4.3.210.104

Having the ip address, we often want to know the DNS name.

64

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

#!/usr/bin/perl -p

filename dns.pl

BEGIN{ use Socket; }
s/(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) /gethostbyaddr (inet_aton($1), AF_INET)."($1)"/ge;

We use this script in combination with ip.pl.

host> mysql -B -e "select ip_src from alert_event limit 2" sans | ip.pl | dns.pl
lsancal-ar54-4-3-198-074.1sancal.dsl-verizon.net(4.3.198.74)
lsanca2-ar35-4-3-210-104.1sanca2.dsl-verizon.net(4.3.210.104)

Using geoip, we get the country, the ip is located in.

#!/usr/bin/perl -p

filename geo.pl

BEGIN{ use Geo::IP;

$gi = Geo::IP->new(GEOIP_STANDARD) ;

}

s/(\d{1,33\.\d{1,3¥\.\d{1,3¥\.\d{1,3}) /$gi->country_code_by_addr($1) /ge;

In combination with another short script, which calculates the frequency of lines from the
input, we can generate very simple top talker lists.

#!/usr/bin/perl
filename cu.pl
use strict;
my %count;

while (<>){
s/[\s\nl//g;
$count{$_}++;
}

foreach my $key (sort {$count{$p} <=> $count{$al};} (keys(Vcount))) {
print "$key \t $count{$key} \n";

}

host> mysql -B -e "select ip_src from alert_event" sans | ip.pl | geo.pl | cu.pl | head -10
Us 80294
IT 5520
FI 762
DE 754
SE 701
CN 699
JP 555
BE 538
GB 503
BR 297

For the time plots, we used the following script. It expects two input parameters. The
first is the database and the second is an SQL snippet.

65

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

#!/usr/bin/perl
#filename timeprofile.pl
use Mysql;

use DBI;

use Socket;

use strict;

my $arg = QARGV([0];

my $arg2 = GARGV[1];
my $dbh =
DBI->connect(’DBI:mysql:’ . ’database’ . ’:’ . ’host’, ’user’, ’passwd’,

{ RaiseError => 1, AutoCommit => 1 });
my $timestampl;
my $timestamp?2;

exit if (!defined $dbh);

ny $select =
$dbh->prepare(
"select count(*) from $arg where timestamp between 7 and 7 $arg2 ");

for (my $day = 27 ; $day <= 31 ; $day++) {
for (my $hour = 0 ; $hour < 24 ; $hour++) {
for (my $quarter = 0 ; $quarter < 4 ; $quarter++) {

if ($quarter == 0) {
$timestampl = "2004-03-$day $hour:00:00";
$timestamp2 = "2004-03-$day $hour:14:59";

} elsif ($quarter == 1) {
$timestampl = "2004-03-$day $hour:15:00";
$timestamp2 = "2004-03-$day $hour:29:59";

} elsif ($quarter == 2) {
$timestampl = "2004-03-$day $hour:30:00";
$timestamp2 = "2004-03-$day $hour:44:59";

} else {
$timestampl = "2004-03-$day $hour:45:00";
$timestamp2 = "2004-03-$day $hour:59:59";
}

$select->execute($timestampl, $timestamp2);

my Q@sum = $select->fetchrow_array;

print 1.0 * ($hour + 24.0 * ($day - 27)) + 0.25 * $quarter, " ",
$sum[0], "\n";

}
exit O;
A time profile of the traffic towards port 80 can be obtained by:

host> timeprofile.pl alert_event "and 14_dport=’80’" > profile.dat

All the scripts are without error checking and are far from bullet proof. However, they are
fast enough and if one knows how to use them, they can be very efficient and comfortable.

66

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A. ipanalyze

The obvious choice for analyzing network traffic is tcpdump. But have a look at the typical
output of tcpdump and imagine you have to plot the destination port versus time.

20:30:41.171711 IP 127.0.0.1.32771 > 127.0.0.1.22: S
2155951624:2155951624(0) win 32767
<mss 16396,sack0K, timestamp 787190 O,nop,wscale 0>
20:30:41.171731 IP 127.0.0.1.22 > 127.0.0.1.32771: S
2159986720:2159986720(0) ack 2155951625 win 32767
<mss 16396,sack0K,timestamp 787190 787190,nop,wscale 0>
20:30:41.171752 IP 127.0.0.1.32771 > 127.0.0.1.22:
ack 1 win 32767 <nop,nop,timestamp 787190 787190>
20:30:41.198703 IP 127.0.0.1.22 > 127.0.0.1.32771: P
1:44(43) ack 1 win 32767 <nop,nop,timestamp 787217 787190>

For gnuplot, xmgr and similar tools you need an input file of the following structure:

1094063441 .171711 22
1094063441.171731 32771
1094063441.171752 22
1094063441.198703 32771

In order to get such an input file, we could either isolate the necessary data from the
tcpdump output by using some quickly written but lengthy regular expressions or write a
specific program for this task. We have decided to do the latter, and wrote ipanalyze, a
small Perl program, which can produce nearly every tabular output format. The program
accepts a subset of the command line options of tcpdump. Additionally, there is the option -o
for the description of the output format. For the example above, the following command
line will generate a table with comma separated values.

alex@host> ipanalyze -i input.dmp -o ’"%E","%D"’
"1094063441.171711" ,"22"
"1094063441.171731","32771"

1094063441 .171752" ,"22"
"1094063441.198703","32771"

A.1. Name

ipanalyze - dump traffic on a network in tabular format

67

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A.2. Synopsis

ipanalyze [-pdh] [-c count] [-i interface]
[-w file] [-r file] [-n string]
[-s snaplen] [-o output format]
[expression]

A.3. Description

The program ipanalyze prints a tabular view of packets on a network interface that match
the boolean expression. An optional output format can be specified, so that different table
formats can be generated. The program can also be run with the -w flag, in which case the
table is saved to a file for later analysis with gnuplot or other tools. Please note that the
output will not be readable by tcpdump any more. The -r flag causes the program to read
from a saved packet file rather than to read packets from a network interface. In all cases,
only packets that match expression will be processed by ipanalyze. If not run with the -c
flag, ipanalyze will continue capturing packets until it is interrupted.

A.4. Options

-c Exit after receiving count packets

-p Do not put the interface into promiscuous mode

-r Read packets from file (e.g., created by tcpdump)

-s Snarf snaplen bytes of data from each packet rather than the default of 135

-w Write the output to file rather than printing it to standard output

-i Listen on interface

-n Specify a string which is printed for missing header values. Default is -

-h Hide prefixes for hexadecimal, octal and binary numbers

-d Lead zeros can be disabled with this option. Warning: In combination with -h this

may give confusing results.
-0 Define output format. Default is

"%Z: %E\t %s:%S \t->%d:%D \tLength: %1 \tProtocol: ¥%p"

A.5. Examples
Below, you see the default behavior of ipanalyze.

host> ./ipanalyze not port 22

1: 1094409296.161171 10.0.0.10:34266 -> 10.0.0.11:25 Length: 54 Protocol: 6
2: 1094409296.162161 10.0.0.11:25 -> 10.0.0.10:34266 Length: 78 Protocol:
3: 1094409296.162299 10.0.0.10:34266 -> 10.0.0.11:25 Length: 52 Protocol: 6

(e}

Use the following commands, if you want to plot time vs. destination port for host 10.0.0.1.

68

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

host> ./ipanalyze -c 100 -w outputl.dat -o "%E %D" dst host 10.0.0.1
host> gnuplot
gnuplot> plot "outputl.dat"

If you want to create a CSV file, you must escape the quotation marks.

host> ./ipanalyze -o ’\"%E\",\"%D\"’ src host 10.0.0.1
"1094410109.784112","22"
"1094410109.784802","22"
"1094410110.164480","22"

If the output should have more than one line, you can use \n. Using this feature, we can
easily determine unique MAC addresses for a tcpdump file.

host> ./ipanalyze -c 1000 -o "/m\n%M" | sort -u
00:04:57:2e:93:fb
00:04:67:dd:££:29
08:00:64:63:a6:d6

A.6. Output format

A.6.1. Meta Information

Format Default Format Description

%Z decimal Packet Counter
%z decimal Time, relative to first packet
%E decimal Time

A.6.2. Layer 2

Format Default Format Description

%M 11:22:33:44:55:66 Source MAC
%m 11:22:33:44:55:66 Destination MAC
Yoe hexadecimal Type

69

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A.6.3. Layer 3

Format

%H
%I
%0
%T
%d
%f
%i
%l
%n
%p
%s
%t
%v
%x

Default Format

hexadecimal
hexadecimal
decimal
decimal
192.168.1.1
decimal
hexadecimal
decimal
decimal
decimal
192.168.1.1
hexadecimal
hexadecimal
decimal

A.6.4. Layer 4

Format

%A
%C
%D
%F
%L
%P
%Q
%R
%S
%U
%Y
%a
%c
%o
%r
%u
%w
%oy

Default Format

decimal
decimal
decimal
decimal
decimal
decimal
hexadecimal
decimal
decimal
decimal
decimal
hexadecimal
hexadecimal
decimal
hexadecimal
decimal
decimal
decimal

Description

Header Checksum

IHL

Fragment Offset

TTL

Destination Address
Fragmentation (More Fragments)
Identification

Total Length

Fragmentation (Don't Fragment)
Protocol

Source Address

TOS

Version

Fragmentation (Reserved)

Description

A

Code

Destination Port
F

Length

P

Sequence Number
R

Source Port

V)

S
Acknowledgment Number
Checksum

Offset

Reserved

Urgent Pointer
Window

Type

Nearly all output formats can be changed using modifiers.

© SANS Institute 2004,

70

As part of GIAC practical repository.

Author retains full rights.

16 hexadecimal output
10 decimal output
8 octal output
2 binary output
For example, the following command lines will print the destination port with the four
different modifiers. Depending on the flag -h you will see prefixes, —d will remove lead zeros.

host> ipanalyze -c 1 -o "%16D %10D %8D %2D"

0x0019 25 0031 0bOO0OO0O00000000000000000000011001

host> ipanalyze -c¢ 1 -h -o "%16D %10D %8D %2D"

0019 25 31 00000000000000000000000000011001

host> ipanalyze -c¢ 1 -d -o "%16D %10D %8D %2D"

0x19 25 0031 0b11001

host> ipanalyze -c¢ 1 -d -h -o "%16D %10D %8D %2D" port 25
19 25 31 11001

Only MAC addresses, times and the counter do not have these modifiers.

A.7. See also

tcpdump(8), perl(1)

A.8. Authors

The original authors is: Alexander Schinner
The man-page was inspired by the tcpdump man page.

A.9. Bugs

Bugs? Yes!

71

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

B. Patch for driftnet

The program driftnet written by Chris Lightfoot! is a nice tool to sniff pictures directly
from the net. However, the program is missing a feature to read the network traffic from
a tcpdump file. This simple patch extends the program with this feature. The patch has
already been mailed to the author.

*** driftnet.c Tue Jul 9 21:26:41 2002
--- driftnet-patched.c Sun Sep 5 19:46:00 2004
sk ok ok ok ok ok ok ok ok ok ok ok ok ok oK
*x**k 51,56 *kxx
--- 51,67 ---—-
int tmpdir_specified;
char *tmpdir;
int max_tmpfiles;
+ char *input_filename=NULL;

enum mediatype extract_type = m_image;

skokk ok ok ok ok ok ok ok ok ok
*xx 458,464 **xx
/* main:
* Entry point. Process command line options, start up pcap and enter capture
* loop. */
! char optstring[] = "hi:psSMvam:d:x:";

int main(int argc, char *argv([]) {
char *interface = NULL, *filterexpr;

--- 459,465 ----
/* main:
* Entry point. Process command line options, start up pcap and enter capture
* loop. */

! char optstring[] = "hi:psSMvam:d:x:r:";

int main(int argc, char *argv([]) {
char *interface = NULL, *filterexpr;

koK ok sk ok ok ok ok ok ok
*x%x 523,528 *kk%
--- 524,533 ----
tmpdir = optarg;
tmpdir_specified = 1; /* so we don’t delete it. */
break;
+
+ case ’r’:
+ input_filename = optarg;
+ break;

#ifndef NO_DISPLAY_WINDOW
case ’x’:
ok ok ok ok ok ok ok ok ok ok ok ok ok oK
*kk 662,678 *kkx
#endif /* !NO_DISPLAY_WINDOW */

‘http://www.ex-parrot.com/~chris/

72

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

/* Start up pcap. */

pc = pcap_open_live(interface, SNAPLEN, promisc, 1000, ebuf);
if (lpc) {
fprintf (stderr, PROGNAME": pcap_open_live: %s\n", ebuf);

if (getuid() !'= 0)
fprintf (stderr, PROGNAME": perhaps you need to be root?\n");
else if (!interface)

return -1;

}
if (pcap_compile(pc, &filter, (char*)filterexpr, 1, 0) == -1) {
-—- 667,690 --—-
#endif /* !NO_DISPLAY_WINDOW */

/* Start up pcap. */

fprintf (stderr, PROGNAME": perhaps try selecting an interface with the -i option?\n");

+ if (input_filename){
+ pc = pcap_open_offline(input_filename, ebuf);
+ if (!pc) {
+ fprintf (stderr, PROGNAME": pcap_open_live: %s\n", ebuf);
+ return -1;
+ }
+ Yelse{
+ pc = pcap_open_live(interface, SNAPLEN, promisc, 1000, ebuf);
+ if (!pe) {
+ fprintf (stderr, PROGNAME": pcap_open_live: %s\n", ebuf);
+
+ if (getuid() !'= 0)
+ fprintf (stderr, PROGNAME": perhaps you need to be root?\n");
+ else if (!interface)
+ fprintf (stderr, PROGNAME": perhaps try selecting an interface with the -i option?\n");
! return -1;
! }
}
if (pcap_compile(pc, &filter, (char*)filterexpr, 1, 0) == -1) {

73

© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

Bibliography

(1]
(2]
(3]
(4]

(5]

(6]

(7]

(8]

(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

© SANS Institute 2004, As part of GIAC practical repository.

W. Richard Stevens. TCP/IP illustrated (vol. 1): the protocols. Addison-Wesley Longman Publishing Co., Inc., 1993.

Judy Novak Stephen Northcutt. IDS: Intrusion Detection-Systeme. mitp-Verlag, Bonn, 2001.

H. Stécker. Taschenbuch mathematischer Formeln und moderner Verfahren. Verlag Harri Deutsch, 1995.

Steven M. Bellovin. A technique for counting natted hosts. In Proceedings of the second ACM SIGCOMM Workshop on

Internet measurment, pages 267-272. ACM Press, 2002.

Traditional ip network address translator (traditional nat)
http://www.fags.org/rfes/rfc3022.html.

http://httpd.apache.org/docs-2.0/logs.html .
http://www.scriptarchive.com/formmail.html .
http://iandu.s7.xrea.com/unimama/fm_scanners/200309.html .
http://www.softwolves.pp.se/internet /formmail_hall_of_shame /0309 .
http://www.attrition.org/postal /verizon/ .
http://www.modsecurity.org/documentation/ .
http://www.k-otik.com/exploits/09.21.0x333hztty.c.php.
http://www.security-corporation.com/articles-20030718-001.html.
http://www.incidents.org/logs/raw,/2002.10.13.
http://www.sans.org/resources/idfaq/ring_zero.php.
http://www.sans.org/y2k/050300-1100.htm.
http://help.undernet.org/proxyscan/.
http://support.novell.com/cgi-bin/search/searchtid.cgi? /10056600.htm.
http://www.europe.f-secure.com/v-descs/adore.shtml.
http://www.sans.org/y2k/adore.htm.

http://www.giac.org/practical /gcia/doug_kite_gcia.pdf.
http://is.rice.edu/ glratt/practical/glenn_larratt_gcia.html.
http://cert.uni-stuttgart.de/archive/intrusions/2002/08 /msg00300.html.
nearly each issue of phrack http://www.phrack.org/.
http://www.mmshannon.net/docs/mike_shannon_gcia.pdf.

http://www.giac.org/practical /david_oborn_gcia.html.

74

Author retains full rights.

[27] http://us.mcafee.com /virusinfo/default.asp?id=description&virus_k=99209.

[28] http://www.microsoft.com/germany/technet/servicedesk/bulletin/blaster.mspx.

[29] http://www.whitehats.ca/main/members/herc_man/files/al_williams_gciapractical.pdf.
[30] http://www.cert.org/advisories/ca-2001-19.html.

[31] http://www.giac.org/practical /gcia/jamell_creque_gcia.pdf.

[32] http://lists.jammed.com/incidents/2001/05/0034.html.

[33] http://www.iana.org/assignments/port-number.

[34] http://www.securityfocus.com/bid/1065/credit/.

[35] http://www.whitehats.com/cgi/arachnids/show? _id=ids552.

[36] http://www.giac.org/gcia.php.

[37] http://www.giac.org/practical /gcia/daniel_clark_gcia.pdf.

75

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

