GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Network Security Analysis, Unseen University
5/19/2002 through 5/22/2002

GCIA Practical Assignment
Version 4.0
Andrew Magnusson
10/24/2004

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

1= T o1 (SN0 @] o] (=] o1 S 2
Y 0] 1 - Td S PP 3
[. EXECULIVE SUIMIMATIY ...ttt e e e e e e e e e e et r e e e e e e e e e eesanannaeaeeaeees 4
[I. Detailed ANAIYSIS. ..o et a e 6
I O 00 17=T o o= = o USSR 6
2. RelationShip ANAIYSES ... e 6
3. Network Detects and ANAIYSES.........oveuuiiiiiiie e e e e 7

1. OVEIVIEW Of DEEECES ...ceviiieeeiii e e e e 7

IR 1= (T o PSS 10

T 9 7= (= ox o | PSP 12

LY 28 5 1= (o | PSS 16

A, NEtWOTrK STAtISHICS ...oevviiiiiiiii e e e e e e e et eeeeaes 19
T o 1 =] =i 1 1S 22
6. Internal Dangers or ANOMALIESoouuiiiiiii e 23
7. Defensive ReCOMMENALIONS.......cccciiiiiiiiiii e e e e e e e e e e eeenene 23
[T, ANAIYSIS PrOCESS ... it e e e e ettt a e e e e e e e e eeeeaaa e e e e eeeeas 25
AppendiX A. Perl SOUICE lISTING......ccovveeiiiiie e e e e e e e e e e e 27
ST (=T =] o = PSP 30

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

The following document is a security analysis for an unknown university, henceforth
‘Unseen University’. | analyze four days’ of Snort RAW logs from
http://isc.sans.org/logs/raw/ and describe the various attacks found therein. Three of
these attacks are pulled out for further study, then | describe some general statistics of
the lodfiles, and do a small amount of research on the three most suspicious external IP
addresses. Finally, | describe for the university staff some internal anomalies that
should be investigated more thoroughly, and provide a series of recommendations to
improve their network’s security standing.

In a final section | describe my analysis procedure, and provide a Perl source listing
for a script | wrote to aid my analysis.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

|. Executive Summary

Introduction

This paper is a first attempt at a comprehensive network security audit of Unseen
University’. | was provided with the intrusion detection alert logs for four days in May,
2002, and carefully analyzed them in order to get a clear idea of the strengths and
weaknesses of the University’s network security framework. This paper details my
findings, and concludes with a list of substantive recommendations to improve overall
network security at the University.

The remainder of this executive summary is divided into two parts: an overview of
the vulnerabilities discovered in my analysis and a description of the specific technical
recommendations that | have assembled to address these and other vulnerabilities.

Findings

For this security review | analyzed four days’ of Snort intrusion detection system
(IDS) logs to compile a list of true attacks and false positives. The logs provided were
‘raw’ logs generated by the Snort IDS; these logs preserve the exact network traffic tha
caused alerts but do not record any other information, such as which Snort rule
captured them. Thus, some of my conclusions are unavoidably speculative, but I believe
that I've managed to get a fairly accurate picture of the attacks during this period. This
section describes some of the more important attacks I've analyzed in Part II.

First, and perhaps most importantly, there were a number of attacks indicating that
several machines on the University network may be infected with a Trojan, which
enables an external attacker to connect remotely and control the system. If this Trojan is
in fact on any of the University’s systems, it represents a significant danger to the
network and must be addressed immediately.

Second, there were a large number of reconnaissance attempts detected. There
were a number of ‘nmap’ scans, a well-known reconnaissance utility. It is likely that
these reconnaissance attempts succeeded and responses were sent by the targeted
machines. Likewise, there were a number of reconnaissance attempts by several
sources looking for open proxies, which are services that allow an attacker to ‘bounce’
his or her network connections (usually web, but sometimes other services) through the
proxy in order to mask their true source. While these recon packets made it through the
firewall, there is no danger unless any of these destinations are in fact running proxy
software. In both cases, however, the firewall can be configured to block
reconnaissance attempts like this. (This will be discussed further in the
‘recommendations’ section.)

A third category of attacks | discussed were web application attacks. For instance, a
large number of requests were made to the unseen.edu webserver, looking for an older
version of the ‘Formmail’ CGI script. If your server is running a vulnerable version of
Formmail, it will allow attackers to relay spam through your servers, which could create
a PR nightmare for Unseen University. (The remainder of the web attacks appear

! In this paper, | will refer to the institution as Unseen University, and replace all actual
DNS references with ‘unseen.edu’.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

directed at Windows servers, while the unseen.edu server is Linux.) I've recommended
carefully checking all software versions, including the formmail script, to ensure they are
all up to date in order to mitigate the risk of an attack like this succeeding.

The final type of anomaly | analyzed in detail was an unusual packet coming from
what appears to be a VPN server on the Internet. It was picked up because it is
destined to UDP port 0, which is an illegal destination port, and packets of this sort are
known to cause Checkpoint Firewall-1 firewalls to reboot. Whether or not this is a real
attack is immaterial; if the University is using a Checkpoint firewall this packet may have
caused a crash. Newer versions of FW-1 have resolved this particular vulnerability, so a
simple upgrade will render your FW-1 firewall, if you have one, immune.

By no means is this an exhaustive list of the attacks | looked at; for a more
comprehensive discussion please see 11.3.i below.

Recommendations

While few major attacks were detected in this four-day period, the breadth of
recorded alerts indicates many weaknesses in the University’s network security
standing. The University’s external firewall, if any, is not configured to block many sorts
of illegitimate network traffic, and the IDS that generated these alerts needs further
configuration and tuning before it will be truly effective in recording legitimate attacks
while keeping false positives to a minimum. Finally, some University servers could be
hardened somewhat against future attacks. This section summarizes the
recommendations that | have compiled for the University’s technical staff.

For the various hosts on the University network, I've recommended a three-pronged
approach. First, a host-based firewall should be installed, if possible, and configured to
allow in only legitimate traffic to services known to be running on the system. Second,
network and LAN staff should ensure that every machine is running the most recent
versions of their software and OS to minimize the effects of a network attack. (A patch
mangement system such as Patchlink might be very useful here, especially for
Windows-based systems.) They should also have up-to-date virus protection to protect
against most viruses and Trojans. In places where this is impossible to ensure, like
student workstations, a policy of restrictive firewall rules and careful IDS monitoring will
have to suffice to minimize the effect of any intrusion on those systems. Finally,
University servers can be further configured to give out less information about their
running configuration, making an attacker’s job more difficult.

The University firewall should have its ruleset reviewed and tuned for maximum
protection. While the most secure method is a ‘default deny’ policy, this may be
infeasible to implement in a university setting. In this case, I've described for network
staff several of the most important things to block through the firewall. At the very least,
however, the firewall should be configured to deny traffic that is by definition illegal.

When the firewall is in a ‘default allow’ mode, effective IDS functionality is more
important than ever. The current IDS setup appears fairly untuned, as it generates
inappropriate alerts (for instance, alerting on a Windows webserver attack when the
attacked machine is Linux and not vulnerable) and may not be capturing all of the
malicious traffic aimed at the University. | described a series of steps that the network
staff can take in order to tune the IDS and improve the IDS infrastructure, by tuning the
ruleset and, if possible, adding more IDS sensors. This will allow each sensor to be

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

customized to the network segment it’s listening to, and lead to a more effective IDS
alerting procedure.

ll. Detailed Analysis

1. Chosen Scenario

| have chosen to analyze a four-day period covered by the RAW files 2002.4.19,
2002.4.20, 2002.4.21, and 2002.4.22. These files were downloaded from
http://isc.sans.org/logs/Raw in August 2004. Notwithstanding the filenames, the data
contained therein actually covers the period of 5/19 through 5/22 (presumably still from
2002). These files were generated from Snort running in binary logging mode, which
records all packets that trigger one or more of its rules. This format is particularly useful
because it preserves all of the information of the original packet, allowing the analyst to
verify the event independently of Snort’s signature-based detection

The downside to this format is twofold, however. First, an external analyst is given
no hint of what rules triggered for each packet to be tagged. Second, there is no context
given for any packet. While there is certainly a large stream of data surrounding each of
these detects, none of this ancillary traffic is included. These two problems lead to a
difficulty in interpretation for the analyst, who is forced to look at packets with no context
and no hint why they were tagged. However, even in this situation it is possible to come
to a reasonably clear view of the network’s overall health, and such a thing | have
attempted. Interested parties may find a more complete description of my analysis
procedure in Section Il of this paper.

2. Relationship Analyses

The internal network in this scenario is 78.37.0.0/16. Only two Ethernet addresses
appear in these packets, 00:00:0c:04:b2:33 (inside) and 00:03:e3:d9:26:c0 (outside). As
such, it appears as though the Snort IDS is listening to a wire between an internal router
(or firewall) and an external router (or firewall) with an Internet uplink somewhere
upstream. Both MAC addresses are Cisco devices, according to the IEEE
Organizationally Unique Identifier (OUI) list?.

Based upon the types of traffic observed in the captured packets in these files, the
function of a number of internal IP addresses can be determined. 78.37.212.165 is an
Apache web server (1.3.12) running on Redhat Linux, according to its server response
headers (probably version 6.2, as that version of Redhat included a prebuilt RPM of
Apache 1.3.12), and also appears to have a running FTP server of unknown
provenance. 78.37.212.173 is the mail server for unseen.edu. 78.37.212.28 is
something of a mystery; while there is a significant amount of web and Gnutella traffic
from this IP address, indicating a user’s workstation, it also may be listening on port 53
TCP, indicating a running DNS server. (Some packets were logged that are addressed
to TCP 53 on this machine with the ack flag set, indicating either an ongoing
conversation or an attempt to confuse the host or an intermediate device.) Perhaps this
IP address is a NAT device,; it is impossible to say for sure.

% |EEE OUI codes, http://standards.ieee.org/regauth/oui/oui.txt

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The remaining addresses on this network that exist in these capture files are
unknown devices. From the TTLs, the environment appears to be mixed
Windows/Linux. (Further analysis of several hosts on this network will be performed in

the three in-depth detects.)
Following is a link graph demonstrating one relationship discussed further on: an

NMAP scan sequence from 194.78.59.253 to various internal addresses.
@

TEITAET 6
194 7% B9 253 TEIT 145621
TEET 140153
TEITAEE164

TEET 229594 78.87.252.56

Following is a brief description of each network detect that appears to be an
accurate alert or at least worth brief discussion. For clarity, | have grouped closely
related alerts together, for instance listing scans for three different types of proxy under

NMAP scans from skynet.be 7437 40 251
IP address

(&l zource and destination ports are 20)

TEITEIA0Z

LOOLE

3. Network Detects and Analyses

i. Overview of Detects

e 166 packets were pulled from the alert logs which were indicative of the Q
Trojan. For more information, please see Detect 1 in Section ii below.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

e A large number of http packets — 798, to be exact — were recorded from
78.37.212.28. (“bare byte unicode encoding” — 771, all seem to be harmless,
though 740 of those are hits to hitbox.com, a spyware provider. 16 packets were
“apache whitespace”, and 11 packets “non-rfc http delimiter”, all of which to be
spyware or ad-related false positives as well.)

e 1195 Gnutella connect and data packets (search results, etc) were picked up.
Nearly all of this traffic is from or to 78.37.212.28, but a couple are from
78.37.250.214. While generally benign, Gnutella traffic can cause network
congestion and may be involved in copyright-infringing filesharing.

e 1 packet of UDP port 0 from 159.75.232.253 to 78.37.212.28. For more
information, please see Detect 2 in Section iii below.

e 156 UDP DNS packets were noted, all of which were BIND version queries to
various hosts on the Unseen University network. This was an untargeted scan,
and does not appear to have hit any real DNS servers.

e There were five TCP port 53 packets from various outside hosts to 78.37.212.28;
all were zone transfer queries for unseen.edu. This IP does not appear to be a
DNS server (in fact, its traffic pattern indicates that it is a workstation), so unless
it is actually a NAT device or firewall of some sort then this was a completely un-
or mis-targeted attack.

o 277 packets; TCP 21 to 78.37.212.165. All of these were FTP ‘anonymous’ user
login attempts. It is unknown whether or not these logins succeeded. These login
attempts were spread over all four days and from many source addresses.
164.164.60.11 (on two occasions) and 61.144.60.18 were particularly persistent
in their connection attempts.

e 85 packets attacking the webserver at 78.37.212.165 were logged. Three of
these were Code Red Il probes, and the rest were attempted privilege
escalations and other nastiness with FrontPage extensions (82 packets).
Because this is a Redhat web server, these IIS-reliant attacks are not particularly
concerning.

e Two packets from 24.217.114.34 to 78.37.233.40 port 80 were picked up, both
attempted directory traversal attacks against a Windows OS webserver. It is
unknown whether or not this target runs Windows, but since the packets detected
appear to be from a real TCP connection, it is certainly running a webserver on
port 80. If this is a Windows host, then it should be checked to see whether its
webserver software allows directory traversal commands like these.

e 34 packets containing Formmail script exploit attempts against 78.37.212.28
were noted. If Formmail is running on this server, it should be checked to verify
that it does not allow mail relaying in order that Unseen University not become an
unwitting spam relay. Please see Detect 3 in Section iv below for further analysis
of this automated attack.

e 110 packets in toto were recorded that appear to be NMAP scans. These scans
(generally picked up by the consistent ACK value of 0) were targeted at
78.37.161.181, 78.37.212.30, 78.37.11.210, 78.37.250.214, 78.37.212.165 (web
server), and 78.37.212.173 (mail server). These scans came from multiple
sources, and all apparently reached their destination. While it is troubling that
these packets were not blocked by the firewall, no harm was done beyond

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

reconnaissance. The recommendations that | outline below will be useful in
blocking this sort of traffic in future.

e One FIN scan packet was recorded, from 80.212.202.187:1638 to
78.37.11.210:6346. No further traffic was recorded in the alert files to or from
either of these IP addresses. The destination port is typical of Gnutella
connections, so this may just be a broken Gnutella packet, not an actual scan
attempt. If so, however, we would expect to see more Gnutella packets recorded
to or from this internal host.

e One packet from 192.16.19.42 to 78.37.100.225 matched the Snort rule ‘IP
reserved bit set’ (1:523). This is a badly out-of-spec packet with the reserved IP
bit set and a missing TCP header. Its fragment offset is very high (17184). This is
most likely a crafted reconnaissance packet of unknown provenance. No further
packets were recorded to or from the source of this alert.

e One packet from 61.125.134.88 to 78.37.250.214 matched the Snort rule ‘misc
tiny fragment’ (1:522). This is a small fragmented packet with the ‘more
fragments’ flag set, which is unusual traffic to say the least. Generally only the
last packet in a fragment train is particularly small. It also has a very high
fragment offset (61816), so either this is traffic fragmented over an exceedingly
tiny link, or, far more likely, this is a packet crafted for reconnaissance or attack.
Unfortunately, since the rest of the traffic was not recorded it is impossible to say
for certain what the situation is here.

e Four truncated packets were noted, from two external sources (3 from
193.100.10.5, 1 from 210.15.18.8) to the internal network. These may be
reconnaissance attempts, or may be harmless, but the external university router
should be configured to drop packets like this regardless.

e Atotal of 111 packets were found that are scans for open proxies. 67 of these
were scans for SOCKS proxies on port 1080, 10 for Squid on port 3128, and 34
for a generic proxy on port 8080. These are all SYN packets, so most likely it's a
series of untargeted scans.

e 46 packets were found in the capture logs, all http replies from a webserver at
78.37.212.165. Specifically, all of these packets are ‘403 forbidden’ notices. Most
of the 403 replies were for PDF and Powerpoint files, and a few requests for the
server root. While it might be informative to follow up on these denied requests if
time permits, this is not a high priority.

e 162 packets were picked up by Snort as potential shellcode exploits. All but one
of them are to or from 78.37.212.28 and seem to be all either gnutella or FTP
data false positives. (All of the seeming FTP traffic to this host is to legitimate
FTP servers on the Internet.) The exception is 202.140.159.50:3579 ->
78.37.212.173:25. The NOOP sled found in this packet, part of an email, appears
to be a false positive, since there doesn’t seem to be a payload following the
NOOPs. As it is part of an email, though, it is possible that there is an exploit in
the next packet, to be triggered when the mail server reassembles the message
for processing. Because no other packets from this session were captured,
however, it's impossible to say.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10

Ii. Detect |

Description

Over four days, there were 166 packets detected with the source address of
255.255.255.255 and multiple destination addresses on the local (78.37.0.0/16)
network. The packets all have a source port of 31337, and a destination port of 515,
which is typically used for printer communication. Two representative packets follow:

20: 26: 35. 754488 | P (tos Ox0, ttl 13, id 0, offset O, flags [none], length: 43,
bad cksum 5fcb (->1884)!) 255.255. 255. 255. 31337 > 78.37.71.37.515: R [bad tcp ck
sum 12f 3 (->cbab)!] 0:3(3) ack 0 win 0 [RST cko]

0x0000: 4500 002b 0000 0000 0d06 5fcb ffff ffff E. .+ _e O

0x0010: 4e25 4725 7a69 0203 0000 0000 0000 0000 MNU&F&@i..........

0x0020: 5014 0000 12f3 0000 636b 6f00 0000 P cko. ..
21:48:05.794488 | P (tos 0x0, ttl 13, id O, offset O, flags [none], length: 43,
bad cksum 499d (->256)!) 255.255.255. 255. 31337 > 78.37.93.83.515: R [bad tcp cks
um fccd (->b57d)!] 0:3(3) ack 0 win 0 [RST cko]

0x0000: 4500 002b 0000 0000 0d0O6 499d ffff ffff E .+ [

0x0010: 4e25 5d53 7a69 0203 0000 0000 0000 0000 NAGSzi..........

0x0020: 5014 0000 fcc4 0000 636b 6f00 0000 RN cko. ..

Please note that although these packets were picked up by Snort’'s ‘BACKDOOR Q’
rule, it is impossible to say for certain that they were generated by the Q Trojan.
Certainly Q is capable of creating TCP packets of this sort, but the rule (described
below) is vague enough that it could be almost any sort of crafted traffic. The following
discussion is predicated on the assumption that this is indeed Q traffic, but the
defensive recommendations are the same no matter the provenance of these packets.

Reason selected

This detect was selected due to the shamelessly crafted nature of the packets in
guestion. Additionally, these packets are likely to be control commands for the Q Trojan
which, if present on any systems on the local network, represents a significant intrusion
that must be further investigated and resolved by the local network administrators.

Generated by

This alert was generated by Snort running in binary logging mode. The configured
ruleset is unknown, however the following rule is in the default Snort ruleset and was
the most likely trigger:

alert tcp 255.255.255.0/24 any -> $HOME_NET any (nsg:"BACKDOOR Q access"; dsize:>1; flags:At;
flow statel ess; reference: arachni ds, 203; classtype: m sc-activity; sid:184; rev:6;)

This rule is in the backdoor.rules file.

Probability spoofed

These packets were certainly spoofed. First, 31337 is a very suspicious source port.
It is often associated with the BackOrifice Trojan, and in ‘leet speak’ (script kiddie slang)
‘31337’ is supposed to mean ‘elite’. Second, 255.255.255.255 is not a valid source
address. RFC 919, “Broadcasting Internet Datagrams”, describes this address as “a

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11

broadcast on a local hardware network, which must not be forwarded.” (emphasis

mine) 255.255.255.255 is not a valid source address; it is used only as a broadcast
destination. What’'s more, broadcasts of this sort are used only with UDP (stateless)
traffic, as the TCP protocol does not allow for simultaneous broadcast connections. As
such, this packet is by definition invalid and therefore crafted”. Finally, if any more
evidence of crafting were needed, the TTL (13), IP ID (0), and acknowledgement
numbers (0) are all fairly suspicious. A TTL (time to live) of 13 means either that the
source host is very far from the destination or it has a very low initial TTL. While some
systems have initial TTLs as low as 30, most are 64 or 128. The IP ID field helps the
TCP/IP stack uniquely identify the packet. While 0 is valid, it should be very rare, and all
of these have that value. The same goes for the acknowledgement number — 0 isn’t
illegal, but shouldn’t be in all of the packets either.

Mechanism

The Q Trojan is a family of backdoor processes written starting in 1999 by Mixter as
‘proof-of-concept’ backdoor code. Notwithstanding his stated intentions, however, they
were quickly adopted by the script-kiddie contingent and have been plaguing networks
ever since®. Q is a client-server pair, both of which are available on multiple platforms
including most versions of Unix and Windows. The server, ‘qd’, is installed on the
system to be controlled remotely, and the client program ‘gs’ sends commands to it via
raw IP packets which are crafted to look like TCP or UDP. Q is capable of encrypting its
commands, though the current packets don’t appear to contain any encrypted data. In
fact, the only apparent payload is the string ‘cko’, which is interpreted by tcpdump as
data on reset, a legitimate option to a RST packet. It's unknowable what, if anything, the
attacker has configured the Q daemon to do upon receiving this command.

Correlations

The Q Trojan has been extensively discussed by Gordon® in his SANS FAQ on the
Trojan. The Q source code is available from Mixter’s site, mixter.void.ru’. Elsewhere on
his site, Mixter has papers discussing Trojan detection and removal®, and crafting raw
IP packets in C°. The ‘correlations’ section below also lists several GCIA practicals that
also discuss this alert activity.

®*RFC919,5

* As a side note, these packets originate from outside the local network — the Ethernet
address on all of these packets matches the external router address — so the local
router broke the broadcast RFC by even allowing it in.

® This section owes much to the excellent analysis of this family of Trojans by Les
Gordon. (see References)

® ibid.

’ http://mixter.void.ru/Q-2.4.tgz

8 http://mixter.void.ru/trojans.txt

® http://mixter.void.ru/rawip.txt

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12

Active targeting?

There is some evidence of active targeting of these packets. They are sent to
multiple addresses on the internal network, in no apparent pattern. With no other
information available, and no knowledge of the payload that may be contained in these
connections, it is impossible to tell whether this is an attempt at subtlety, and other
ranges will be scanned later, or if it is commands sent only to hosts on the university
network that are known by the attacker to be running the Q Trojan.

Severity
(2+5)-(1+2)=4

Criticality: 2. None of these systems appear to be critical to network functionality.
Further information about the network architecture might be cause to revise this number
in either direction.

Lethality: 5. If this attack is against systems already infected with this Trojan, the
attacker could cause them to do anything, from opening a shell to ping-flooding a third
party. A workstation or server running the Q Trojan is completely controllable by the
attacker.

System Countermeasures: 1. No defensive measures are known to be running on the
target systems. If this attack is targeted, as speculated above, then the systems are
already compromised. Otherwise, it is possible that the target machines are running
some sort of host-based firewall; it is impossible to say. If host-based protection exists,
this number may be revised upward.

Network Countermeasures: 2. If the routers to this point have not stopped this clearly
RFC-breaking traffic, it's unlikely that any others before the target system will. What’s
more, if these packets are part of a targeted attack, then the attacker has already had
access to these machines at least once, to find that they were running Q daemons. It
has, however, been detected as an attack by Snort.

iii. Detect Il

Description

One packet was found in the analyzed alert files with a UDP destination port of O.
Port 0 is reserved, and should not be a valid destination. The source port is 10000,
which is often used by Cisco VPN devices. The packet follows:

15:04:47.094488 I P (tos OxO, ttl 48, id 49454, offset 0, flags [none], length: 464, bad cksum
62ac (->1d64)!) 159.75.232.253.10000 > 78.37.212.28.0: [no cksun] UDP, |ength: 436

0x0000: 4500 01d0 c12e 0000 3011 62ac 9f4b e8fd E.......0.b..K. .
0x0010: 4e25 d4lc 2710 0000 Olbc 0000 4f86 426f MNw.'....... QO Bo
0x0020: 0000 0001 0101 0101 0101 0101 a955 bebc (U
0x0030: 2e53 4dff 34b3 9bl1 3fd9 1alOb 8668 a8f0 .SM4...?....h..
0x0040: 9a8e 9b25 c889 daaf 34ba c5c4 bdf4 b6d7 ...%...4.......
0x0050: 5bc6 2f6d a9a5 b9d8 eb73 fe2a 31d2 3434 [./m....s.*1.44
0x0060: 0c62 e540 17ba 00bb 4ef3 b810 elle 9e6b .b.@...N...... k
0x0070: 7fc9 12al 3e2a 9bd2 dbf7 1a05 3e89 dbf9>*...... > .

0x0080: 6257 9b7d 9c60 6415 70bf 338c f97d 3765 bw}. d.p.3..}7e

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

13

0x0090: 4f5d 4829 3d52 4bab 6ec9 bb4c 5562 9dd8 CJ H)=RK.n..LUb.

0x00a0: faa8 ff3c 8bc2 bf9f 519a ca29 244f 1230 ...<....Q.)$00
0x00b0: 1632 2869 b426 b7ba aeel ac24 leda ellb .2(i.& $.J.
0x00c0: 98b9 6¢cd6 bc28 d820 2ba6 4474 779e bbcc ..I1..(..+.Diw ..
0x00d0: aldb lab7 405f 7fea 6555 9c43 5d7d 6151@..eU.C}aQ
0x00e0: b437 ael0O 5f89 a9e3 f25f 35da 1a29 9d70 .7.._...._5..).p
0x00f 0: 1b6d a9c4 el42 36la 201d 1ceO f010 4f46 .m..B6....... oF
0x0100: 9382 e3b5 f6¢c7 5f4a 598d 0b27 8d60 8536 Jy..'.".6
0x0110: f2da 81a8 ccOa 0282 d648 1351 68al 990a H Ch. .
0x0120: 9ale 1796 0d6d 1a96 18d8 37ac 7a47 1352 m...7.z2GR
0x0130: fa50 9089 aabl 5ee8 28le 0917 590b b4fb .P....~A (...Y..
0x0140: bc3d dalOe e303 e3db 83ce edld c059 a5d9 .=........... Y.
0x0150: a042 13bf c¢847 2ac9 c95a ced7 5e99 Oea8 .B...G..Z .~..
0x0160: 7615 be80 38e5 f136 36dd dc98 b4ll 9b38 v...8..66...... 8
0x0170: 1lab7 4c4a 5690 7c01 096d 08cd 35f4 cf64 ..LJV.|..m.5..d
0x0180: 10e5 2753 bbef 62al fd59 72b8 d963 bf42 ..'S..b..Yr..c.B
0x0190: 884a d09e 43dc 2ba2 cbd7 db24 16a3 3e2e .J..C +....$..>
0x01a0: 58f0 b5f4 b2a2 026b 4e74 816f 70a8 5f81 X...... kNt . op. _
0x01b0: baee cel7 0d8c 6279 b8c8 12ef dbe6 ba83 by........

0x01c0: dd59 2352 8e0Oc 8cd8 3218 e58a f128 ee2a .Y#R ...2....(.*

There is one attack known that utilizes VPN packets on UDP port 0 to attack Checkpoint
Firewall-1 devices and cause a denial of service (DoS) condition. While it is not known
whether Unseen University uses FW-1 firewalls, this potential attack deserves further
investigation.

Reason selected

This detect was selected because it is potentially a very interesting attack and, while
it is more than likely a false positive (more on this later) the fact that it arrived through
the external defenses into the network points out at least one important configuration
change that needs to be made to Unseen University’s defenses.

Generated by

This alert was generated by Snort running in binary logging mode. The configured
ruleset is unknown, however the following rule is in the default Snort ruleset and was
the most likely trigger:

alert udp $EXTERNAL_NET any <> $HOVE_NET O (nsg: "BAD- TRAFFI C udp port O traffic";
ref erence: bugtraq, 576; reference: cve, 1999-0675; reference: nessus, 10074; cl asstype: m sc-activity;
sid:525; rev:9;)

This rule is in the bad-traffic.rules file.

Probability spoofed

The probability that this packet was somehow spoofed is fairly low, but not
insignificant. The source address, 159.75.232.253, resolves to ww-vpn.ltx.com, which
appears to be a legitimate VPN device at LTX, a corporation that provides electronics
testing equipment. Other traffic from the destination address, 78.37.212.28, reveals a
pattern of traffic to electronics-related websites, so it seems reasonable that this user
might have a business relationship with LTX requiring a VPN connection. UDP port
10000 is a typical Cisco VPN source port, lending more credence to the belief that this
packet is part of a VPN connection. However, the destination port of 0 is not a valid port,
which means that either this VPN is misconfigured, the packets are getting mangled in
transit, or this is a crafted packet.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

14

If there is a Firewall-1 firewall on the network, however, then this packet is likely to
have caused it problems whether or not it was crafted expressly for that purpose.

Mechanism

The attack under discussion occurs when an ISAKMP (VPN) packet is sent through
a Checkpoint FW-1 firewall with a destination UDP port of 0. The final destination does
not matter; as long as it goes through the FW-1 device then the attack succeeds. When
this packet passes through an affected implementation of the FW-1 firewall, it causes
the firewall to reboot itself, bringing about a temporary denial of service condition while
the system reloads. While the specific packet we are examining may be legitimate, it will
in any case still succeed in rebooting affected FW-1 systems.

It is believed that Solaris systems running FW-1 will reboot, however, details are
sketchy for other host operating systems. | have seen no further study on this
vulnerability to determine whether or not other operating systems are as vulnerable.
Versions 3 and 4 of FW-1 are believed to be vulnerable to this attack.

Though the initial Bugtraq report (see below, in Correlations, for details on this
posting) did not specify a mechanism, nor did any of the follow-ups, it is possible to
speculate about how this sort of packet is capable of crashing firewalls running FW-1
software. Lance Spitzner has an article describing Firewall-1’s state table functionality,
and his following discussion of UDP state tables is illuminating:

When a UDP packet is allowed through the firewall (based on the rulebase) a
entry is added to the connections table. Any UDP packet can return within the
timeout period (default 40 seconds) as long as both the SRC/DST IP addresses
and SRC/DST ports match. For example, below is a DNS query.

Src_IP Src_Prt Dst_IP Dst _Prt |P_prot Kbuf Type Fl ags Ti meout
192. 168. 1. 10 1111 136.1.1.20 53 17 0 16386 ff01ff00 34/ 40
192. 168. 1. 10 1111 136.1.1.20 0 17 0 16386 ff01ff00 34/ 40

Here you see the system 192.168.1.10 doing a dns query to the server
136.1.1.20. For 40 seconds (Timeout) that system can return as many UDP
packets as it wants, as long as both the SRC/DST IPs match, and the SRC/DST
ports match. Notice how there is [sic] two entries, both are identical except for the
Dst_Prt, which is 53 and 0. | do not know why FW-1 creates a second entry for a
Dst_Plrct) of 0. However, this is common for most, if not all UDP traffic that FW-1
filters.

As such, then, a FW-1 system encountering a packet with an actual destination port
of O will probably attempt to create two identical state table entries, which may be the
cause of the crash.

| was unable to find any discussion of this vulnerability on Checkpoint’s support site,
however a recent knowledge base article claims'* that FW-1 drops all traffic with source

19 Spitzner
1 Checkpoint Knowledge Base,
https://secureknowledge.checkpoint.com/sk/public/idsearch.jsp?id=sk27109

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

15

or destination port 0, so as of at least 9/16/2004 this vulnerability may be resolved by
the simple expedient of ignoring all packets like this.

Correlations

This attack was first described on August 9, 1999 on the Bugtrag mailing list*2. There
isn’t a whole lot of information available about this exact vulnerability, but some
discussion can be found at http://www.securityfocus.com/bid/576 and
http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-0675. The discussions on those
pages, however, seem almost completely based upon the original Bugtraqg posts by
‘Malikai’, and don’t contain much further information.

Active targeting?

Because this vulnerability is against a firewall, not an endpoint, the destination
address of this packet is not the actual destination of the intended attack, if any. If
Unseen University uses a firewall running the FW-1 system, then the attacker may know
this and is actively attempting to break it. If the University is not running FW-1, or if the
attacker doesn’t know, then if this is an attack it's a shot in the dark.

Severity
4+2)-(1+2)=3

Criticality: 4. The attacked device is a firewall. If it is brought down or caused to reboot,
it may cause widespread network outages within the organization.

Lethality: 2. If Unseen University has a Checkpoint FW-1 device, and if it is running an
affected version of the operating system, then this packet would likely cause a DoS.
While dangerous, however, it would cause no lasting damage to the network
environment. It is also by no means certain that there is a FW-1 firewall on this network,
hence the lowered lethality score. This number may be revised upward or downward
once the make and model of firewall are known.

System Countermeasures: 1. The Checkpoint firewall, if any, has permitted this packet
and hence has no defense against it if in fact it is an attack.

Network Countermeasures: 2. This packet has not been blocked thus far, and if it has
made it this far into the network, then whatever damage it may be capable of doing to
the perimeter firewall has already occurred. It has, however, been detected as an attack
by Snort.

12 Malikai

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

16

iv. Detect Il

Description

Over four days, thirty-four attempts were made to exploit the Formmail perl script.
Formmail is a widely installed script that is used to power online ‘contact’ pages,
sending site visitors’ messages in email to a server-defined recipient. While the most
recent version of this script is secure, older versions (1.9 and earlier*®) allowed an
unscrupulous web client to use the script to send email anywhere. Not surprisingly, this
discovery was quickly put to very effective use in sending spam from various
unsuspecting websites. These attempts come from many locations, but they all seem to
use small variations of the same exploit tool, which apparently connects to vast
numbers of websites and attempt to send email to a predefined address. If the
command succeeds, then the attacker merely has to check his email to find a list of
vulnerable Formmail scripts ready to exploit in a spam-sending campaign.
Unfortunately, since only Snort-tagged packets show up in the lodfiles, it is impossible
to tell whether any of these attacks succeeded in causing the webserver to send email
to any of the attackers’ addresses.

One representative packet follows (identifiable host information redacted):

01: 37:43.854488 I P (tos 0x0, ttl 112, id 33715, offset O, flags [DF], length: 420)

65.58.238.117. 4176 > 78.37.212.165.80: P [tcp sum ok] 243206 7773:2432068153(380) ack 2893207797

w n 8160
0x0000: 4500 0la4 83b3 4000 7006 3326 413a ee75 E..... @p. 3&A: . u
0x0010: 4e25 d4a5 1050 0050 90f6 68bd ac72 d8f5 N%..P.P..h..r..
0x0020: 5018 1feO fb52 0000 4745 5420 2f63 6769 P....R .CGET./cg
0x0030: 2d62 696e 2f66 6f72 6d6d 6169 6Cc2e 706Cc -bin/formmil.p
0x0040: 3f72 6563 6970 6965 6e74 3d66 6f 72 6d6d ?reci pi ent =f ornm
0x0050: 6169 6c69 6e66 6f40 7961 686f 6f2e 636f ailinfo@ahoo.co
0x0060: 6d26 7375 626a 6563 743d 6874 7470 3a2f nm&subject=http:/
0x0070: 2f78 7878 2e78 7878 782e 7878 782f 6367 [XXX.XXXX.XXX/cg
0x0080: 692d 6269 6e2f 666f 726d 6d61 696¢c 2e70 i-bin/formmil.p
0x0090: 6¢26 626f 6479 3d4a 7570 5a26 656d 6169 | &ody=JupZ&ena
0x00a0: 6¢3d 6574 7540 616f 6c2e 636f 6d20 4854 | =etu@ol.com HT
0x00b0: 5450 2f31 2e31 0dOa 4163 6365 7074 3a20 TP/ 1.1..Accept:
0x00c0: 696d 6167 652f 6769 662c 2069 6d61 6765 image/gif,.inage
0x00d0: 2f78 2d78 6269 746d 6170 2c20 696d 6167 /x-xbitmap,.img
0x00e0: 652f 6a70 6567 2c20 696d 6167 652f 706a e/jpeg,.imge/p]
0x00f 0: 7065 672c 202a 2f2a 0dOa 4163 6365 7074 peg,.*/*..Accept
0x0100: 2d4c 616e 6775 6167 653a 2065 6e2d 7573 -Language:.en-us
0x0110: 0dOa 4163 6365 7074 2d45 6e63 6f 64 696e .. Accept-Encodin
0x0120: 673a 2067 7a69 702c 2064 6566 6¢c61 7465 g:.gzip,.deflate
0x0130: 0dOa 5573 6572 2d41 6765 6e74 3a20 4d6f .. User-Agent:.M
0x0140: 7a69 6¢c6¢c 612f 342e 3020 2863 6f6d 7061 =zillal/4.0.(conpa
0x0150: 7469 626c 653b 204d 5349 4520 352e 303b tible;.MSIE 5.0
0x0160: 2057 696e 646f 7773 2039 383b 2044 6967 .W ndows.98;.Dig
0x0170: 4578 7429 0dOa 486f 7374 3a20 7878 782e Ext)..Host:.xxx.
0x0180: 7878 7878 2e78 7878 0dOa 436f 6e6e 6563 xxxx.xxx..Connec
0x0190: 7469 6f6e 3a20 4b65 6570 2d41 6¢c69 7665 tion:.Keep-Alive
0x01a0: 0dOa 0dOa -

13 While Snort’s rule description claims that only 1.6 and prior are vulnerable, the
changelogs for 1.8 and 1.9 note several more anti-spam functions, indicating that at
least 1.7 and 1.8 are also vulnerable. Coincidentally, the most recent version of
Formmail, 1.92, was released on the third day of the present analysis range. See
http://www.scriptarchive.com/readme/formmail.html#history for more information.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

17

Reason selected

While attacks of this sort have been widespread since at least early 2001, many
webservers are still running vulnerable versions of Formmail. Due to the significant
potential damage, both technical and political, of Unseen University sending large
amounts of spam, it is important to verify that the targeted server is not running a
version of the Formmail script that is susceptible to being controlled in this way.

Generated by

This alert was generated by Snort running in binary logging mode. The configured
ruleset is unknown, however the following rule is in the default Snort ruleset and was
the most likely trigger:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (nsg: "WEB-CGE formmail access"”;

flow to_server,established; uricontent:"/formmail"; nocase; reference: arachnids, 226;

ref erence: bugtraq, 1187; reference: bugtraq, 2079; reference: cve, 1999-0172; reference: cve, 2000- 0411;
ref erence: nessus, 10076; reference: nessus, 10782; cl asstype: web-application-activity; sid:884;

rev: 14;)

This rule is in the web-cgi.rules file.

Probability spoofed

It is very unlikely that this traffic is spoofed, since making a valid web request
requires at the minimum an active TCP connection. While TCP sessions can sometimes
be hijacked by a determined attacker, it seems like overkill to do so in this situation,
where the attackers are merely trolling for open spam relays.

Mechanism
The attack is performed by a specially formatted request to the Formmail script on
the webserver. One example follows:

GET /cgi-bin/formmuil.pl ?recipi ent=f ormai |l i nfo@ahoo. com
&subj ect=http://ftp. smsc. com cgi -bin/formmil.pl\
&body=JupZ&emai | =et u@ol . com

This is an http GET request that passes four variables to the formmail.pl script:
recipient (formmailinfo@yahoo.com), subject (URL of the script attacked), body
(“JupZ”), and return address (etu@aol.com). While an attacker can manually create
URLSs like this, it is much more likely that this one is using an automated tool of some
sort to quickly send these URLSs to a long list of websites, in the hopes that one or more
will allow the request and send the email. At this point, the attacker just has to watch his
email box (formmailinfo@yahoo.com or perhaps etu@aol.com if he is being a little bit
sneakier) for the emails to come in, with the subject lines being the exact URLSs that are
vulnerable to the exploit.

This request takes advantage of the fact that older versions of the script had no
mechanism for verifying the ‘recipient’ field in the GET request for the script. While
under normal circumstances the web developer would hard-code the recipient’s name
into the form that called Formmail, an attacker could simply call the script manually and
pass any values to it, including any recipient at all. Thus, spam can be relayed through
a formmail script simply by encoding it into a GET request like the one above. Later
versions of Formmail introduced an ‘allowed recipients’ configuration value which

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18

mitigates this risk, but it took several more versions before the script was protected from
more subtle attacks.

Correlations

A good overview of the 1.6 Formmail vulnerability can be found at http://www.net-
security.org/article.php?id=503. There is a detailed paper circulating online describing in
detail several attacks against Formmail 1.9; an example is at
http://www.monkeys.com/anti-spam/formmail-advisory.pdf. (Versions 1.91 and 1.92
appear to have resolved these issues.) Automated attacks against Formmail scripts,
much like the one apparently responsible for the present alerts, can be found in many
places, such as http://www.ezgoal.com/security/f.asp?fid=61962. Finally, Formmail
exploitation was third (of ten) in the SecurityFocus Top Attacks for the 1%' Quarter
2002, approximately the time period of these alert logs.

Active targeting?

There is no evidence of active targeting, beyond the strong likelihood that these
attackers are working from a list of known webservers. The attack was aimed at a URL,
not an IP, which strengthens this hypothesis significantly. The various scripts that hit the
webserver are looking for different names (FormMail.pl, formmail.PL, Formmail.cgi and
so on) and sending to different addresses, so it appears to simply be a large number of
‘script kiddies’ blasting these attacks at large numbers of websites in an attempt to find
some servers willing to relay anonymous email.

Severity
4+3)-(2+2)=3

Criticality: 4. The attacked system is a webserver, apparently the main webserver for
unseen.edu.

Lethality: 3. The attack will do no harm to the server beyond eating up bandwidth with
the floods of spam that are sure to follow a successful attack. As mentioned above,
however, there may be significant PR consequences if the University is shown to be a
source of spam.

System Countermeasures: 2. This attack will only succeed if the server is running a
vulnerable Formmail with one of the names that the attackers used in their various
attacks. Once this is determined, this value may be revised upward or downward.
Another mitigating factor, if it is installed, might be an Apache module like Mod_security
which can be configured to block queries of this sort.

Network Countermeasures: 2. As this is a valid web request, it is not surprising that the
perimeter firewall, if any, has permitted it in to the web server. It has, however, been
detected as an attack by Snort.

14 SecurityFocus, “Top Attacks for the 1 Quarter 2002”,
http://www.securityfocus.com/corporate/research/topl0attacks_ql 2002.shtml

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

19

4. Network Statistics

The list of top five attacked ports was determined purely by packet count. However,
‘attack’ is a subjective term here. For instance, the number two port on the list, 64507,
appears to be a very extended false positive in the form of a large binary file (perhaps
an image) downloaded from an IEEE site.

Top five attacked ports, by packet count

Port Service Count Datal
80T http 9366 13275994
64507T unknown 654 912636
6347T Gnutella 549 46116
21T FTP 277 12850
1863T MSN Messenger 180 35221

The ‘top talkers’ list was also determined by total packet count. While the most
important list here is those five most talkative sources, it is also useful to know the top
five listeners, that is, the top five destinations for this suspect traffic. Like above, the
second IP address is almost certainly the victim of mistaken identification, as it is an
IEEE IP address and is the source of the aforementioned large binary file.

Top five source and destination IPs, by packet count

Sources Count Datal |Destinations Count Datal
78.37.212.28 10454| 13340815| |64.154.80.51 6192 8909262
63.84.220.222 660 921008| |64.154.80.50 1606/ 2939079
255.255.255.255 166 5478|178.37.212.28 1394 1940530
128.9.176.20 112 166552||78.37.212.165 440 69425
61.144.60.18 99 5127(|206.132.132.199 210 104142

Suspicious external hosts

61.144.60.18 was the source of 97 anonymous login attempts to the University

webserver between 2:38 and 2:55 AM on 5/21, and two attempts to access Frontpage
extensions on the server at 3:47 that same morning. While nothing seems to have come
of these access attempts, this is still a suspicious source. The TTL of packets arriving
from this IP is 104, so the initial TTL is likely 128, which indicates that this IP is probably
running Windows 9X, NT, or 2000*°. The window size, 17457, makes it most likely that
the source is running Windows 2000. This IP address has no reverse DNS configured,
but here are the most specific portions of a whois lookup. This host is an IP address in
Guangzhou, China, and almost certainly has no legitimate reason to be attempting to

access the University’s webserver:

ARIN WHO S dat abase, |ast updated 2004-10-23 19:10

Enter ? for additional hints on searching ARIN' s WHO S dat abase.

% [whoi s. apni c. net node- 2]

% Whoi s data copyright terms http://ww. apni c. net/db/ dbcopyri ght. ht m

15 Northcutt/Novak, Table 11.1, p. 211

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

i net num
net nane:
descr:
country:
adm n-c:
tech-c:
mt - by:
stat us:
changed:
changed:
sour ce:

per son:
addr ess:
country:
phone:

f ax- no:
e-mail:
ni c-hdl :
mt - by:
changed:
sour ce:

61.144.60.0 - 61.144.60. 255
GUANGZHOU- JS- BUI LDI NG- CO-

JI NSHAN BUI LDI NG

CN

G.217- AP

G.217- AP

MAI NT- CHI NANET- GD

ASS| GNED NON- PORTABLE

i padm@ddc. com cn 20011024
hm changed@pni c. net 20040927
APNI C

& LEE

NO. 11, RO. TI YUDONG, GUANGZHOU
CN

+86- 20- 38883360

+86- 20- 38883360

i puser @ddc. com cn

G.217- AP

MAI NT- CHI NANET- GD

i padm@ddc. com cn 20011024
APNI C

20

200.181.137.39 was the most persistent of the proxy scanners that hit the University
network, probing 78.37.186.120 for SOCKS, Squid, and generic 8080 web proxies. Why
it only hit this IP address is unknown. Its TTL upon hitting the IDS is 44, so it most likely
had an initial TTL of 64, which is likely a Linux or other Unix system*®. While its window
size of 5808 is indicative of an HP JetDirect device, this isn't likely to be the case.
Packets from this source also have DF set, and a TOS of 0, which matches Linux,
Solaris, and OS/400. Of these, Linux is by far the most likely culprit. This IP resolves to
1-039.ctame701-1.telepar.net.br, which is probably a dynamic IP address from an ISP

in Brazil. Relevant portions of its WHOIS record follow:

% Copyri ght LACNI C | acni c. net

% The data below is provided for information purposes
% and to assist persons in obtaining information about or

% related to AS and | P nunbers registrations

% By subnitting a whois query, you agree to use this data

% only for |awful purposes.
% 2004-10-24 13:36:15 (BRT -03:00)

i net num 200. 128/ 9

st at us: al | ocat ed

owner : Comite Gestor da Internet no Brasi
owneri d: BR-CA N- LACNI C

responsi bl e: Frederico A C Neves

addr ess: Av. das Na??es Unidas, 11541, 7? andar
addr ess: 04578-000 - S?0 Paulo - SP
country: BR

phone: +55 11 9119-0304 []

owner - C: CGEB

tech-c: CGB

i netrev: 200. 128/ 9

nserver: NS. DNS. BR

nsstat: 20041023 AA

nsl ast aa: 20041023

nserver: NS1. DNS. BR

nsstat: 20041023 AA

nsl ast aa: 20041023

nserver: NS2. DNS. BR

nsstat: 20041023 AA

nsl ast aa: 20041023

remar ks: These addresses have been further assigned to Brazilian users
18 ibid.

© SANS Institute 2004,

As part of GIAC practical repository.

Author retains full rights.

remar ks:
remar ks:
created:
changed:

ni c- hdl :
per son:
e-mail:
addr ess:
addr ess:
country:
phone:
created:
changed:

Contact information can be found at the WHO S server | ocated

at whois.registro.br and at http://whois.nic.br
19950104
20020902

CGB

Comte Gestor da Internet no Brasil

bl kadm@Nl C. BR

Av. das Na??es Unidas, 11541, 7? andar
04578-000 - S?0 Paulo - SP

BR

+55 19 9119-0304 []

20020902

20020902

21

Finally, 194.78.59.253 was one of the most active nmap scanners during this time

period, scanning nine internal hosts between 3:08 AM and 6:43 PM on 5/19.

Unfortunately little can be determined from the packet information since nmap crafts
almost every field, but it is likely a Unix host since nmap, while available on Windows, is
far more commonly found on Linux and other Unix systems. This IP address has no
reverse DNS mapping, but a WHOIS query reveals that it is an IP from the Skynet

network in Belgium:
ARIN WHO S dat abase, |ast updated 2004-10-23 19: 10

Enter ? for additional hints on searching ARIN s WHO S dat abase.

% This is the RIPE Whoi s secondary server.
% The objects are in RPSL format.

%

% Ri ghts restricted by copyright.
% See http://ww.ripe.net/db/copyright.htn

i net num
org:

net nane:
descr:
descr:
country:
adm n-c:
tech-c:
st at us:
mt - by:
mt - | ower :
changed:
changed:
changed:
changed:
sour ce:

route:
descr:
origin:
notify:
mt - by:
changed:
changed:
sour ce:

organi sation:

or g- nane:

org-type:
addr ess:

phone:

f ax-no:
e-mail:
adm n-c:

© SANS Institute 2004,

194.78.0.0 - 194.78. 255. 255
ORG- BS2- Rl PE

BE- SKYNET- 960213

PROVI DER

Skynet Bel gi um

BE

Bl EC1- RI PE

Bl EC1- Rl PE

ALLOCATED PA

RI PE- NCC- HV IWNT

SKYNETBE- MNT

host naster @i pe. net 19960213
host naster @i pe. net 19980916
host naster @i pe. net 19990301
host naster @i pe. net 20040830
RI PE

194.78.0.0/ 16

SKYNETBE- CUSTOVERS
AS5432

noc@kynet . be

SKYNETBE- MNT

j ef @nterpac. be 19960506
j fs@kynet. be 19990420
Rl PE

ORG- BS2- Rl PE
Bel gacom Skynet
LIR

Bel gacom Skynet SA/ NV
Rue Carli 2

B- 1140 Brussels
Bel gi um
+3225407507
+3225135425

ri pe@kynet. be
JFS1- R PE

As part of GIAC practical repository.

Author retains full rights.

22

adni n-c: PDH16- Rl PE

adni n-c: PXA71- Rl PE

adm n-c: PD448- Rl PE

admi n-c: M\1190- RI PE

mt -ref: SKYNETBE- MNT

mt -ref: RI PE- NCC- HM+ IWNT

mt - by: RI PE- NCC- HM+ IMNT

changed: host naster @i pe. net 20040415

changed: bi t bucket @i pe. net 20040830

changed: bi t bucket @i pe. net 20040830

sour ce: RI PE

rol e: Bel gacom I nternet Expertise Center
addr ess: Bel gacom SA de droit public

addr ess: ANS/ ROC/ RNO' | EC - Bati ment TGX

addr ess: Boul evard du Roi Al bert 11, 27

addr ess: B- 1030 Bruxel l es

addr ess: Bel gi um

phone: +32 2 202-4111

f ax-no: +32 2 203-6593

e-mail: noc@kynet . be

adni n-c: M\1190- Rl PE

admi n-c: PD448- Rl PE

tech-c: PDH16- Rl PE

tech-c: NV179- Rl PE

tech-c: SVDS1- Rl PE

tech-c: PD756- Rl PE

tech-c: P&71- Rl PE

ni c- hdl : Bl EC1- Rl PE

FeMBrKS: c-mmmemo oo
remar ks: Net wor k probl ens to: noc@kynet. be
remar ks: Peering requests to: peeri ng@kynet. be
remar ks: Abuse notifications to: abuse@kynet. be
remar ks: abuse requests sent to another address
remar ks: will be ignored.

remarks: s o e
notify: noc@kynet . be

mt - by: SKYNETBE- MNT

changed: j fs@kynet . be 20040806

sour ce: RI PE

5. Correlations

Under most circumstances, the alert histories available at the Internet Storm Center
(isc.sans.org) are particularly useful in correlating local attacks with more global trends.
Unfortunately, however, the ISC doesn’t keep port histories as far back as May 2002.
More detailed correlation information can be found in the relevant analyses above, but
following are a few notes regarding these attacks as viewed by other GCIA candidates.

These same raw logfiles, along with many others, have been pored over by a large
number of other GCIA students, and several of those analyses have dealt with the same
attacks from the same or different alert files. The Q Trojan was ably discussed by Craig
Baltes®’, Al Maslowski-Yerges'®, and Rob McBee'®, among others. Formmail is a
perennial favorite subject for analysis, described in at least several dozen practicals,
including Thomas Harbour®® and Barbara Morgan®'.

7 http://ww.giac.org/practical/GCIA/Craig_Baltes_GCIA.doc

18 http://www.giac.org/practical/GCIA/Al_Maslowski-Yerges_GCIA.pdf
19 http://mww.giac.org/practical/GCIA/Rob_McBee GCIA.pdf

20 http://www.giac.org/practical/GCIA/Thomas_Harbour_GCIA.pdf

2L http://www.giac.org/practical/GCIA/Barbara_Morgan_GCIA.doc

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

23

Strangely enough, it appears that nobosy has discussed the FW-1 DoS vulnerability
in a GCIA practical exam. The relevant Snort rule was mentioned in several, but always
in the context of a bad TCP packet, not UDP. This is likely because this attack is rare,
and because the detect discussed above was more than likely a false positive.
Nonetheless, as | argued above, it is worth analyzing if only for the danger that even an
innocent port 0 packet might cause to a Checkpoint firewall.

6. Internal Dangers or Anomalies

There are two main internal anomalies that deserve some follow-up. First, as
discussed in Detect 1 above, the list of Q Trojan destination addresses might not be a
random scan for hosts, but in fact a command to already-infected machines. The
systems corresponding to these IP addresses should be carefully checked to verify that
none of them are in fact running the ‘qd’ process.

Second, in performing this analysis | noticed a large amount of unusual http traffic
recorded from 78.37.212.28. All, or nearly all, http packets from this source appear to be
doubled, albeit imperfectly. First a packet comes from this host with a TTL of 128, then
less than a second later an almost identical packet is seen, but with a TTL of 240, an IP
ID of 0 (no matter what the original ID was), usually a TOS (type of service) of 0x10,
and a different sequence number. The final byte in the packet is also always truncated.
I've been entirely unable to come up with a consistent explanation for this behavior,
though on its own it appears harmless. This IP address was also by far the highest-
trafficked IP in the alerts file, with a large amount of Gnutella and MSN Messenger
traffic as well as Hitbox and Gator spyware. As such, this system deserves a further
look.

7. Defensive Recommendations

| have compiled a list of recommendations for the network and hosts at Unseen
University, divided into three main categories: Host, Firewall, and IDS.

Host

e For hosts running network services, configure them to give away less
information. | was able to find out a great deal about the University webserver
because it volunteers a tremendous amount of information with every
response it sends. This information can be extremely useful to an attacker,
and should be restricted as much as possible.

e Install and configure a host-based firewall on servers and workstations. Linux
machines can use iptables, while Windows servers and workstations have a
number of commercial and free software available such as Black Ice and
Zone Alarm. Use the recommended firewall settings below to configure these
host-based defenses.

e Verify that workstations and servers are running the latest software and OS
versions and have up-to-date virus protection. The last and best defense
against any network attack is to be running a software or OS version that isn’t
susceptible to that attack.

e In a university environment the previous requirement can be impossible for
students’ computers. In this case, carefully segregate these network

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Firewall
[]

IDS

© SANS Institute 2004,

24

segments from the rest of the university’s network to minimize their access to
critical systems, and pay close attention to IDS alerts coming from those
segments.

At a minimum, the firewall should be configured to drop invalid packets, both
from the inside and the outside. These include:

o Packets with invalid source addresses: private ranges (192.168.0.0/16,
172.16.0.0/24, 10.0.0.0/8), network addresses (e.g. 204.60.0.0), and
broadcast addresses (e.g., 255.255.255.255)

o Externally sourced packets with internal source addresses. Your
firewall should not accept packets from the outside that claim to
originate from inside your network.

o Packets that are somehow ‘broken’ and not RFC-compliant: bad
checksum, bad flag combinations (e.g., SYN and FIN on a single
packet), invalid fragmentation, etc.

o Otherwise invalid packets: source or destination port of 0, unknown
protocol (not TCP, UDP, ICMP, or any other protocols that you are
known to be using like GRE or IGRP)

While it is common to use a firewall as a default-allow device, permitting
everything except for known bad traffic, please consider making your firewall
default-deny, at least for inbound traffic. By allowing only specified traffic to
specified hosts, you will never be surprised by traffic coming in to unexpected
hosts on obscure ports. If for technical or political reasons this is not possible,
then your job will be much more difficult as you will have to carefully monitor
all traffic and implement blocking for the network connections that prove to be
illegitimate or dangerous.

Likewise, | advise at least a limited default-deny policy on outbound traffic. If
academic freedom and research concerns preclude a policy as draconian as
this, then | suggest blocking at least the following traffic.

o Known bad ports, like 31337 (Back Orifice) and 12345 (Netbus).

o If network congestion or intellectual property laws are a concern,
strongly consider blocking P2P application port ranges, like 6346
(Gnutella) and 1214 (Kazaa). Unfortunately Kazaa and Gnutella are
able to port-hop until it finds an open port, however, so you’d probably
need an application-level filtering device to fully detect and block this
traffic. Closing the default ports for these applications is a start,
however.

Tune Snort ruleset. Make a list of all available services on each host, and its
OS, and configure Snort accordingly. This will cut down on false positives,
and reduce the processor load on your IDS. For instance, why perform
checks for Windows worms such as Code Red on traffic for a webserver
running Linux?

As part of GIAC practical repository. Author retains full rights.

25

e Consider setting up several IDS sensors on different network wires. This will
allow you to customize the rulesets on each sensor to best match the
monitoring needs of each network segment. You can then use an IDS
aggregator like ACID to collect and analyze the alerts coming from the
separate sensors.

lll. Analysis Process

| used an Apple Powerbook running Mac OS X 10.3 for the analysis of these logs
and to compose the present report. Initial analysis of the packets was performed by a
cursory glancethrough using tcpdump piped through less; much more detail and high-
level statistics were obtained using a Perl script | custom wrote for the purpose.

This script uses the Perl NetPacket and Net::PCAP packages to read and sort
through the vast sea of data, then print a large number of useful statistics in CSV
format. (See Appendix A for a source listing.) These statistics enabled me to focus my
efforts upon the most promising source and destination IP addresses and ports, and
provided a first look at the overall network traffic profile.

As a side note, there appears to be a limitation on the time resolution detail on the
Snort IDS that generated these logs. Past the second decimal point, all timestamps end
in 4488. At first | noticed this in one detect and thought it was a part of the attack, but
then | had a look at the rest of the packets and noticed that every one of them had these
timestamps.

| attempted to use Snort to duplicate the alerts that must have been triggered on
each of these packets. Unfortunately, however, none of the current Snort rules triggered
for most of the packets in the four days | chose to analyze, so | was left to my own
devices to determine why each packet was tagged as unusual and logged.

Eventually | was able to get Snort to properly evaluate the majority of these packets;
by using the Netdude packet crafting tool to fix the checksums | created a capture file
that Snort was glad to produce alerts for. Even then, however, not all of the packets
triggered alerts, so the motivation of the IDS remains obscure even now for some of the
detects. | am not sure why Snort did not alert for these packets; perhaps the older Snort
ruleset was more prone to false positives than is the current one.

Once Snort had created its log file, | correlated my own analyses with the Snort
alerts and found a high degree of agreement, a few surprises, and as mentioned above
a few unexpected omissions. (Some packets were almost certainly triggered by the
‘zone transfer’ Snort rule, for instance, but were not picked up as such by my own Snort
scan.) For most of the alerts generated, | looked at the rule descriptions and references
on the snort site in an attempt to understand why the alerts were generated and
whether or not they were likely to be false positives. From the remaining list of likely-
accurate detects, | chose the three that seemed the most important for further analysis
in the ‘Three Detects’ section.

Finally, because these logs are over two years old they have already been used and
picked clean by several generations of GCIA students, and several versions of the
GCIA practical. As such, just about everything of interest in these logs has already been
analyzed within an inch of its life, and these analyses often show up as the first or

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

26

second result in Google. | have done my best to perform my own analyses, but it is
inevitable that this paper be colored by these previous excellent works.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix A. Perl source listing

#! [usr/ bi n/ perl

use
use
use
use
use

Net : : PCAP;

Net Packet :: Et hernet qw(:strip);
Net Packet: : 1 P;

Net Packet : : TCP;

Net Packet : : UDP;

functions

sub

sub

}

tcp_decode {

ny ($pkt) = @;
$t cp_packet = Net Packet :: TCP- >decode($pkt - >{dat a});

popul ate TCP hashes
ny $tcp_length = $pkt->{len} - $pkt->{hlen} - $tcp_packet->{hlen};

$t cp_sour ces{ $pkt - >{src_i p} }{count } ++;

$t cp_sour ces{$pkt->{src_i p}}{data} += $tcp_l ength;

$t cp_desti nati ons{ $pkt - >{dest _i p} }{count} ++;

$t cp_desti nati ons{$pkt ->{dest _i p}}{data} += $tcp_|l ength;

popul ate ALL hashes

$al | _sources{$pkt->{src_i p}}{count}++;

$al | _sources{$pkt->{src_i p}}{data} += $tcp_Il ength;

$al | _destinati ons{$pkt - >{dest _i p}}{count } ++;

$al | _destinati ons{$pkt - >{dest_ip}}{data} += $tcp_l ength;

port hashes

$source_ports{$tcp_packet->{src_port} "T }{count}++;
$source_port s{$tcp_packet->{src_port} 'T'}{data} += $tcp_| ength;
$dest _ports{$tcp_packet->{dest_port} . 'T }{count}++;

$dest _port s{$tcp_packet->{dest_port} . 'T }{data} += $tcp_| ength;

udp_decode {

ny ($pkt) = @;
$udp_packet = Net Packet: : UDP- >decode($pkt - >{dat a});

popul ate UDP hashes

$udp_sour ces{ $pkt - >{src_i p}}{count } ++;

$udp_sour ces{ $pkt ->{src_i p}}{data} += $udp_packet->{l en};
$udp_desti nati ons{ $pkt - >{dest _i p} }{count } ++;

$udp_desti nati ons{ $pkt - >{dest _i p}}{data} += $udp_packet - >{I| en};

popul ate ALL hashes

$al | _sources{$pkt->{src_i p}}{count}++;

$al | _sources{$pkt->{src_i p}}{data} += $udp_packet->{l en};

$al | _destinati ons{$pkt - >{dest _i p}}{count } ++;

$al | _destinati ons{$pkt - >{dest _i p}}{data} += $udp_packet->{l en};

port hashes

ouch!

$sour ce_port s{$udp_packet - >{src_port} "U }{count}++;

$source_port s{$udp_packet - >{src_port} 'U }{data} += $udp_packet->{len};
$dest _ports{$udp_packet ->{dest _port} . 'U }{count}++;

$dest _port s{$udp_packet ->{dest _port} . 'U }{data} += $udp_packet->{len};

sorting functions

sub

byip {
($al, %$a2, $a3, %ad4) = split /\./, $a;

© SANS Institute 2004, As part of GIAC practical repository.

27

Author retains full rights.

28

($b1, $b2, $b3, $b4) = split /\./, $b;

$al <=> $bl or $a2 <=> $b2 or $a3 <=> $b3 or $ad4 <=> $b4;
}

use these files
@ile_list = qw2002.4.19 2002. 4.20 2002.4.21 2002. 4. 22);
foreach $file (@ile_list) {

open file

$pcap_obj ect = Net::Pcap::open_offline("$file", \S$err);
unl ess (defined $pcap_object) {

die("Unable to open file! - ", S$err);
}
whil e ($packet = Net::Pcap::next($pcap_object, \%eader)) ({

$i p_obj ect = NetPacket::|P->decode(eth_strip($packet));

choose the decoder

if ($ip_object->{proto} eq 6) { tcp_decode($ip_object); }

elsif ($ip_object->{proto} eq 17) { udp_decode($i p_object); }

el se { die "Unexpected protocol found: ", $ip_object->{proto}; }
}

Net : : Pcap: : cl ose($pcap_obj ect);
}

print statistics
print "TCP\n";

print "SOURCES\n";
foreach $i p_address (sort byip keys % cp_sources) {

print $ip_address, ",", $tcp_sources{$i p_address}{count}, ",",
$tcp_sources{$i p_address}{data}, "\n";

}

print "\ nDESTI NATI ONS\ n";
foreach $i p_address (sort byip keys % cp_destinations) {

print $ip_address, ",", $tcp_destinations{$i p_address}{count}, ",",
$t cp_destinati ons{$i p_address}{data}, "\n";
}
print "\n\n";

print "UDP\n";

print "SOURCES\n";
foreach $i p_address (sort byip keys %udp_sources) {

print $ip_address, ",", $udp_sources{$i p_address}{count}, ",",
$udp_sour ces{ $i p_address}{data}, "\n";

}

print "\ nDESTI NATI ONS\ n";
foreach $i p_address (sort byip keys %udp_destinations) {

print $ip_address, ",", $udp_destinations{$i p_address}{count}, ",",
$udp_desti nati ons{$i p_address}{data}, "\n";
}
print "\n\n";

print "ALL\n";
print "SOURCES\n";
foreach $i p_address (sort byip keys %l | _sources) {
print $ip_address, ",", $all_sources{$i p_address}{count}, ",",
$al | _sources{$i p_address}{data}, "\n";

}

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

29

print "\ nDESTI NATI ONS\ n";
foreach $ip_address (sort byip keys %l _destinations) {

print $ip_address, ",", $all_destinations{$i p_address}{count}, ",",
$al | _destinations{$i p_address}{data}, "\n";

}

print "\ n\nPORTS";

print "\ nSOURCE\n";

foreach $port (sort { $source_ports{$b} <=> $source_ports{$a} } keys %ource_ports) {
print $port, ",", $source_ports{$port}{count}, ",", $source_ports{$port}{data}, "\n";

}

print "\ nDESTI NATI O\\ n";

foreach $port (sort { $dest_ports{$b} <=> $dest_ports{$a} } keys %lest_ports) {
print $port, ",", $dest_ports{$port}{count}, ",", $dest_ports{$port}{data}, "\n";

}

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

30

References

Baltes, Craig. “GCIA Certified Intrusion Analyst (GCIA) Practical Assignment, Version
3.27, http://www.giac.org/practical/GCIA/Craig_Baltes_ GCIA.doc

Checkpoint Knowledge Base, “TCP/UDP port 0 verifications performed by VPN-
1/FireWall-1 NG with "any any any accept" rule”,
https://secureknowledge.checkpoint.com/sk/public/idsearch.jsp?id=sk27109

Gordon, Les. “What is the Q Trojan?”, http://www.sans.org/resources/idfag/gtrojan.php

Harbour, Thomas. “GCIA Certified Intrusion Analyst (GCIA) Practical Assignment,
Version 3.4”, http://www.giac.org/practical/GCIA/Thomas_Harbour_GCIA.pdf

IEEE OUI codes, http://standards.ieee.org/regauth/oui/oui.txt

Malikai, “FW1 Port 0 UDP DoS”, Bugtrag 9 August 2000,
http://www.securityfocus.com/archive/1/23615

Maslowski-Yerges, Al. “GCIA Certified Intrusion Analyst (GCIA) Practical Assignment,
Version 3.3”, http://www.giac.org/practical/GCIA/Al_Maslowski-Yerges_GCIA.pdf

McBee, Rob. “GIAC GCIA Practical (version 3.3),
http://www.giac.org/practical/ GCIA/Rob_McBee GCIA.pdf

Mogul, J.C. “Broadcasting Internet Datagrams” (RFC 919), ftp://ftp.rfc-editor.org/in-
notes/rfc919.txt

Morgan, Barbara. “GCIA Certified Intrusion Analyst (GCIA) — Practical Assignment
Version 3.17, http://www.giac.org/practical/GCIA/Barbara_Morgan_GCIA.doc

Northcutt, Stephen and Novak, Judy. Network Intrusion Detection, 39 Edition. Boston:
New Riders, 2003.

SecurityFocus, “Top Attacks for the 1% Quarter 20027,
http://www.securityfocus.com/corporate/research/topl0attacks_ql 2002.shtml

Spitzner, Lance. “Understanding the FW-1 State Table”,
http://www.spitzner.net/fwtable.html

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

