
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

!! ! !

An Analysis of Gameover Zeus Network Traffic

GIAC (GCIA) Gold Certification

Author: Daryl Ashley, Ashley@utexas.edu
Advisor: Dominicus Adriyanto Hindarto

Accepted: January 24 2015

Abstract

Malware is evolving to use encryption techniques to obfuscate network communication
to evade detection. This paper analyzes anomalies within network traffic generated by
Gameover Zeus. The anomalies result from the encryption methods used to obfuscate
network communications. However, even though the anomalies can be seen when
manually inspecting the network packets, the obfuscation techniques pose difficulties
when attempting to use signature based Intrusion Detection Systems (IDS) for detection.
While the anomalies may not be useful for constructing IDS signatures, they may be
useful in constructing custom detection algorithms.

An Analysis of Gameover Zeus Network Traffic! 2
!

Daryl!Ashley,!ashley@utexas.edu! ! !

1. Introduction
In September of 2011, a peer-to-peer variant of Zeus emerged on the internet

(Symantec, 2014). This version of Zeus, also known as Gameover or P2P Zeus, is not

susceptible to traditional takedown methods because the command and control

infrastructure is no longer centralized. Detection of this variant is also made more

difficult because communication between the peers is encrypted (Andriesse & Bos,

2014). Although the botnet has been significantly disrupted by a takedown effort

(Symantec, 2014), analysis of the malware can provide useful insights into the

effectiveness of signature based intrusion detection systems.

The protocol used for communication has been described in detail in research

papers written by Andriesse & Bos (2014) and Cert Polska (2013). This paper uses the

information from the research papers to decrypt and analyze the information in two

separate packet captures. In the first packet capture, the Zeus infected hosts use a simple

XOR based algorithm for encrypting its traffic. In the second packet capture, the RC4

algorithm is used for encryption. The two packet captures have interesting anomalies that

differ due to the encryption algorithm that was used.

The IP addresses shown in the figures in this paper have been converted to private

IP addresses. The packet captures are available on request from the author.

2. Zeus Communication Protocol
2.1. Overview

The protocol used by Gameover Zeus is described in detail in a research paper

published by Andriesse and Bos (2014). The protocol includes mechanisms for

exchanging binary and configuration updates, requesting peer lists, and requesting the IP

address of special members of the botnet referred to as “proxy bots” (Andriesse & Bos,

2014). The following sections outline a portion of the research that was used when

analyzing the packet captures.

An Analysis of Gameover Zeus Network Traffic! 3
!

Daryl!Ashley,!ashley@utexas.edu! ! !

2.2. Network Communication
Each infected host uses a unique UDP port for communication (Cert Polska,

2013). For hosts infected with a version of Zeus prior to June, 2013, the port was

selected from the range 10,000 to 30,000. For hosts infected after June, 2013, the range

was between 1024 and 10000 (Andriesse & Bos, 2014). Figure 1 shows the output of a

packet capture that was generated using the command tcpdump –nr zeus.pcap proto 17

and host 10.1.1.1. The network traffic of a host infected with Gameover Zeus was

captured to a file named zeus.pcap. The host that was infected with Gameover Zeus has

an IP address of 192.168.1.1. Since the infected host sends UDP packets to a number of

peers, the host filter was used to display traffic that was generated to a single peer, the

peer at IP address 10.1.1.1. The filtered output makes it easier to focus on the network

traffic generated between the two peers.

!

Figure'1:'tcpdump'Output'of'Zeus'UDP'Packets'
!

The packet capture shows two hosts communicating with each other using the

UDP protocol. But, there is nothing that appears to be malicious about this network

traffic. The host with IP address 192.168.1.1 is using port 26609 for network

communication. Since this port is within the range 10000 to 30000, the infected host is

running a version of Zeus released prior to June, 2013. When the infected host sends a

packet, the source port is set to 26609. When the host at IP address 10.1.1.1 receives the

UDP packet, it will send replies to port 26609.

2.3. Message Header
Each UDP packet sent by a host infected with Zeus contains a Zeus message as its

UDP payload. The Zeus message can be broken up into two parts, a 44 byte message

header followed by a message payload. The message payload will vary in length

An Analysis of Gameover Zeus Network Traffic! 4
!

Daryl!Ashley,!ashley@utexas.edu! ! !

depending on the type of message being sent (Andriesse & Bos, 2014). Figure 2 shows

the packet layout of a Zeus message, including the IP and UDP header sections.

!

Figure'2:''Zeus'Packet'Layout'

Figure 3 summarizes the fields that are present in the Zeus message header, as

well as their position within the header and the length of each field. One field that is

particularly interesting is the lop field. Zeus appends a number of random bytes to each

message that is sent. The peer that receives the message discards the randomly generated

bytes after it decrypts the message. The lop field contains the number of random bytes

that have been appended to the message. Since a random number of bytes are appended

to each message, the length of each UDP packet sent between two infected hosts will

usually differ. The variable length packets may help infected hosts evade detection by

intrusion detection systems (Andriesse & Bos, 2014). Therefore, Zeus may use variable

length packets as well as encryption to evade detection.

!

Figure'3:''Zeus'Protocol'Header'
!

An Analysis of Gameover Zeus Network Traffic! 5
!

Daryl!Ashley,!ashley@utexas.edu! ! !

The other header fields that are interesting are the type and source ID fields. The

type field will be discussed in the following section. The source ID field is a unique

identifier of the host sending the message. In versions of Zeus after June, 2013, RC4 is

used to encrypt messages. The source ID field is used as the RC4 key when encrypting

replies to the sending host (Andriesse & Bos, 2014).

2.4. Message Types
!

There are a number of different message types that are used by Gameover Zeus

(Andriesse & Bos, 2014). Figure 4 provides a summary of some of the message types.

The length of the payload of each message type is of interest because it can be used to

calculate the expected length of the message. The message length should be equal to 44

bytes (header) + payload length + lop.

!

Figure'4:''Zeus'Message'Types'

3. Packet Analysis
3.1. tcpdump

The!packet!captures!were!created!using!tcpdump.!!The!initial!analysis!of!the!

encrypted!packets!was!also!performed!with!tcpdump.!!The!–X!flag!can!be!used!to!

display!the!packet!in!hexadecimal!format,!along!with!an!ASCII!conversion!on!the!

right!hand!side!of!the!output.!!The!output!can!be!filtered!using!the!host,!port,!and!

An Analysis of Gameover Zeus Network Traffic! 6
!

Daryl!Ashley,!ashley@utexas.edu! ! !

proto!keywords!(“Manpage!of!TCPDUMP”,!2014).!!Use!of!these!keywords!to!filter!the!

output!can!significantly!reduce!the!amount!of!data!that!needs!to!be!analyzed.!!!!

!

3.2. Automated Analysis of Packet Captures
!

Several python scripts are included in the appendix of this paper. The scripts

were used to automate the decryption and decoding of the UDP packets used by Zeus for

communication. The dpkt Python module can be used to read a packet capture that was

produced by tcpdump (Oberheide, 2008). For example, the code snippet shown in figure

5 will open a packet capture file and iterate through each of the packets, printing the

source port of any UDP packets in the packet capture.

!

!
'

Figure'5:'Using'dpkt'to'Parse'Packet'Capture'
!
!

3.3. XOR Decryption
Prior to June of 2013, Gameover Zeus used a “rolling XOR” algorithm to encrypt

its messages (Andriesse & Bos, 2014). An example of the rolling XOR algorithm is as

follows. Suppose the message payload is the sequence of bytes “0x11 0x2e 0x54 0x9d”.

The first byte is left as is in the cipher text. The second byte is encrypted by XORing the

An Analysis of Gameover Zeus Network Traffic! 7
!

Daryl!Ashley,!ashley@utexas.edu! ! !

second byte of the original message with the first byte of the cipher text: 0x11 XOR 0x2e

= 0x3f. This is the second byte of the cipher text. The third byte is encrypted by

XORing the unencrypted third byte of the original message with the second byte of the

cipher text: 0x3f XOR 0x54 = 0x6B. Finally, 0x6B, the third byte of the cipher text, is

XORed with the last byte of the original message. The cipher text is “0x11 0x3f 0x6B

0xF6”.

Decryption is the opposite of encryption. First, the last byte of the cipher text is

XORed with the preceding byte of the cipher text: 0xF6 XOR 0x6B = 0x9d. This

recovers the last byte of the original message. This process is repeated for all the

remaining bytes in the cipher text except the first byte, which was not encrypted.

There are a couple of interesting observations about this algorithm. First, in order

to determine the value of a specific byte in the original message, it is not necessary to

decrypt the entire message. For example, to determine the original value of the second

byte, XOR it with the preceding byte: 0x3F XOR 0x11 = 0x2E. It is not necessary to

decrypt the third and fourth bytes before jumping to this step.

The second observation is that any value XORed with 0 is equal to the value

itself. For example 0x4 XOR 0x0 = 0x4. Suppose that the rolling XOR algorithm is used

to encrypt the message “0x11 0x2e 0x00 0x00 0x00 0x00”. It can be shown that the

corresponding cipher text is “0x11 0x3F 0x3F 0x3F 0x3F 0x3F”. Note that the encrypted

byte at position 2 is repeated each time it is XORed with 0x00. This observation will be

used when analyzing Zeus messages encrypted using the rolling XOR algorithm.

The python snippet shown below was used to decrypt messages that were

encrypted using the rolling XOR algorithm.

!

Figure'6:''Python'Subroutine'to'Decrypt'Rolling'XOR

An Analysis of Gameover Zeus Network Traffic! 8
!

Daryl!Ashley,!ashley@utexas.edu! ! !

!
!!!

3.4. RC4 Decryption
After June of 2013, Zeus started using RC4 to encrypt its traffic (Andriesse &

Bos, 2014). RC4 is a widely used software stream cipher. The cipher generates a pseudo

random sequence of bytes that is XORed with the message to produce a cipher text. The

same pseudo random sequence of bytes is needed to decrypt the cipher text. The cipher

text is XORed with the pseudo random sequence of bytes to recover the original message

(Paul, 2012).

A software based stream cipher has two components. The first is a key

scheduling component that uses a secret key to initialize the internal state of the RC4

instance. Once initialized, a pseudo-random generation algorithm is used to generate the

sequence of bytes that is used for encryption and decryption (Paul, 2012). If a different

key is used to initialize the RC4 instance, a different stream of bytes will be generated,

and decryption of the cipher text will not succeed.

Figure 7 shows RC4 encryption of the plain text “john smith” when the RC4

instance is initialized with the key “darylashley”. The figure shows the byte stream

produced by the pseudo-random generation algorithm. The figure also shows the

hexadecimal representation of “john smith”. Each byte of the plain text is XORed with

the corresponding byte in the byte stream. Figure 8 shows the RC4 encryption of the

plain text “abcdesmith” using the same key.

!

Figure'7:''RC4'Encryption'of'"john'smith"'

An Analysis of Gameover Zeus Network Traffic! 9
!

Daryl!Ashley,!ashley@utexas.edu! ! !

!

Figure'8:'RC4'Encryption'of'"acbdesmith"
!

If the same key is used to encrypt multiple messages, the RC4 algorithm is

susceptible to cryptographic attacks. Even though each message has been encrypted, the

last 5 bytes of each cipher text are identical because the 5 bytes at offset 6 of each

message is “smith”. Since each RC4 instance was in an identical state when encrypting

the messages, the same pseudo random byte sequence was used to encrypt each of the

messages at this offset. Although it may not be possible to recover the original messages

from the above cipher text, an attacker would know that the two messages contained

identical data in the last 5 bytes of each message. This observation will be used when

analyzing Zeus packets encrypted using the RC4 algorithm.

The Python Cryptography Toolkit is a python package that contains various

cryptographic functions. It is available at https://www.dlitz.net/software/pycrypto. The

package provides an ARC4 module that can be used to perform RC4 encryption of a

message. The new() function can be passed a key parameter that can be used to initialize

the internal state of the RC4 instance. The encrypt and decrypt functions can be used to

encrypt and decrypt messages after the RC4 instance has been created and initialized

(Litzenberger, 2012). Figure 9 shows a code snippet that uses the package to encrypt the

plain text “abcdesmith” after initializing the RC4 instance with the key “darylashley”.

An Analysis of Gameover Zeus Network Traffic! 10
!

Daryl!Ashley,!ashley@utexas.edu! ! !

!

Figure'9:'RC4'Python'Snippet

4. XOR Packet Capture
Figure 10 shows a UDP packet for a host infected with a version of Zeus that uses

the rolling XOR algorithm to encrypt its traffic. The UDP ports used to communicate are

between 10000 and 30000, so this is a version of Zeus prior to June 2013.

The –X tcpdump flag was used to generate a hexadecimal output of the packet

payload. Based on the IP header length field, the length of the IP header is 20 bytes.

Since the protocol field is set to 0x11, this is a UDP packet. So, there will also be a UDP

header which is 8 bytes in length. The UDP payload should start at offset 0x1C of the

packet. The first four bytes at this offset are circled in figure 10. These represent the

encrypted rnd, ttl, lop, and type field of the Zeus header. The length of the UDP payload

is 378 bytes, and is also circled in the figure.

An Analysis of Gameover Zeus Network Traffic! 11
!

Daryl!Ashley,!ashley@utexas.edu! ! !

!

Figure'10:''First'4'bytes'of'Message

The lop field is located at offset 0x1e of the packet, and the type field is located at

offset 0x1f of the packet. The fields can be decrypted by XORing them with the

preceding byte in the UDP payload. The lop = 0xd8 XOR 0xc6 = 0x1e. This means that

the number of random bytes appended to this message was 30 bytes. The type = 0xde

XOR 0xd8 = 0x6. Based on the summary of message types shown in figure 3, this is a

proxy reply packet and should have a payload of length 304 bytes. The expected length

of the packet is 44 (header bytes) + 304 (payload bytes) + 30 (lop) = 378 bytes. This

matches the payload length displayed by tcpdump.

This approach to identifying a potential Zeus UDP packet is fairly

straightforward. However, creating a rule to detect this type of packet for a signature

based IDS, such as Snort, may not be possible. Instead, this approach could possibly be

implemented as a dynamic preprocessor in Snort because a dynamic preprocessor can be

used to perform more complex analysis of the packets inspected by Snort (Ashley, 2008).

An Analysis of Gameover Zeus Network Traffic! 12
!

Daryl!Ashley,!ashley@utexas.edu! ! !

However, this approach is more time consuming than writing a signature because custom

code must be written.

Figure 11 shows the first 92 bytes of the Zeus payload after it has been decrypted

and decoded. The python scripts used to decrypt and decode the packet are included in

the appendix. The information used to decode the packet is based on the proxy struct

describe in (Andriesse & Bos, 2014).

!

Figure'11:''Decrypted'Packet'Contents

The portion of the decoded packet that is of interest is the ipv6 address and ipv6

port. The ipv6 address contains a sequence of sixteen 0x00 values, and the ipv6 port

contains a sequence of two 0x00 values. This sequence of bytes produces the anomaly

shown in the figure 12. The eighteen bytes in the UDP payload starting at offset 0x66 are

identical to the byte located at offset 0x65 of the packet. The reason for the anomaly is

described in section 3.3 of this paper. Code to check for this anomaly could potentially

be added as a sanity check when writing the dynamic preprocessor.

An Analysis of Gameover Zeus Network Traffic! 13
!

Daryl!Ashley,!ashley@utexas.edu! ! !

!

Figure'12:''18'Consecutive'Identical'Bytes'

5. RC4 Packet Capture
For versions of Zeus after June 2013, the encryption algorithm was changed to

RC4. The key used to initialize the RC4 state is the source ID of the recipient host

(Andriesse & Bos, 2014). Since the source ID of the sending host is included in the

message header, the receiving host will have the sending host’s RC4 key, and will be able

to encrypt the reply packet.

Since the packet is encrypted using RC4, the key used to perform the encryption

is required to decrypt the packet (Paul, 2012). This is an improvement over the rolling

XOR algorithm because no key was required to decrypt packets encrypted using the

rolling XOR algorithm. Because the source ID of the receiving host is required to

decrypt a packet, it is no longer possible to decrypt the lop and type fields to determine if

the UDP payload length matches the predicted length of a Zeus message.

An Analysis of Gameover Zeus Network Traffic! 14
!

Daryl!Ashley,!ashley@utexas.edu! ! !

Figure 13 shows a decrypted proxy announce packet. The RC4 key was obtained

by reverse engineering a binary used to infect the virtual host that produced the network

traffic in the RC4 packet capture. Note that the ipv6 address and port each contain a

sequence of 0x00 values as was the case for the proxy reply shown in the XOR section.

!

Figure'13:'Decrypted'Proxy'Reply'Packet'
!

Figure 14 shows the encrypted packet as displayed via tcpdump. Note that the 18

bytes at offset 0x66 are no longer identical. This is a result of the strengthened

encryption that this version of Zeus is using. So, the two methods outlined in section 4 of

this paper are no longer able to detect Zeus traffic.

An Analysis of Gameover Zeus Network Traffic! 15
!

Daryl!Ashley,!ashley@utexas.edu! ! !

!

Figure'14:'Proxy'Announcement'Encrypted'Using'RC4

In order to find an anomaly in the network traffic, several packets transmitted

between the same hosts must be inspected. Recall that the source ID of the sending host

will be included at a specific location of the Zeus message header. Also recall that the

RC4 key used to encrypt the message is the source ID of the recipient of the message. If

the same source ID is reused to initialize the RC4 state prior to encryption of each packet,

the sender’s encrypted source ID will be identical. Figure 15 shows this anomaly in the

packet capture.

Although it may not be possible to recover the unencrypted source IDs of the two

infected hosts from this packet capture, this anomaly may be useful in identifying

potential Zeus messages. For example, in the packet capture shown in Figure 15, the

An Analysis of Gameover Zeus Network Traffic! 16
!

Daryl!Ashley,!ashley@utexas.edu! ! !

lengths of the four packets are different, and the packet contents are encrypted. But, the

20 bytes within the packet sent by IP address 192.168.1.1 highlighted in red are identical.

Similarly, the 20 bytes sent by IP address 10.1.1.1 highlighted in blue are identical. This

does not definitively prove that the two hosts are infected with Zeus. However, this may

be useful for identifying hosts that are good candidates for further investigation.

!

Figure'15:''Encrypted'Source'Identifiers'
!

A Snort preprocessor may be used to detect this type of traffic as well. However,

detection has been made more difficult because the information needed to find a potential

Zeus packet is no longer available in a single UDP packet. Instead, the preprocessor

would need to maintain enough information for each UDP packet received so that future

An Analysis of Gameover Zeus Network Traffic! 17
!

Daryl!Ashley,!ashley@utexas.edu! ! !

packets could be analyzed for matching encrypted source IDs. This may not be practical

on a network that generates a large amount of traffic.

6. Conclusion
It can be argued that the encryption methods used by Gameover Zeus are a

weakness that can be exploited by security analysts. For example, the use of the rolling

XOR algorithm appears to violate several ideas that are central to the idea of modern

cryptography.

Modern cryptography considers the notion of “security through obscurity” to be a

bad idea. History has shown that this approach has failed many times (Klein, 2014).

This paper shows that reverse engineering efforts were useful in identifying some

weaknesses that can be leveraged to help detect the malware. However, this is not an

optimal solution. For example, suppose 1000 new malware variants are written, and each

uses a custom encryption algorithm that has some sort of weakness. The task of reverse

engineering all of the executables and writing 1000 dynamic preprocessors does not seem

practical.

Another idea of modern cryptography is the development of encryption

algorithms that are computationally expensive to attack (Goldreich, 2001). For example,

suppose an attacker has access to encrypted ecommerce data. The attacker may have

many months and a large number of computers to try to extract information from the

encrypted data. Modern cryptographic algorithms attempt to thwart this type of attack.

The rolling XOR algorithm used by Zeus is trivial to decrypt once the algorithm is

known. This custom algorithm would not be considered an acceptable form of

encryption from the standpoint of modern cryptography. So, why does this algorithm

pose problems for signature based intrusion detection systems? The answer may be that

the task of encryption and evasion are significantly different. An intrusion detection

system does not have many months to decrypt the network packets that it analyzes. If the

goal of Zeus’s encryption is simply to evade detection, it may not need to use an

encryption algorithm that will protect data against a brute force attack that will last

several months and will be run on a number of computers. It simply needs to evade

An Analysis of Gameover Zeus Network Traffic! 18
!

Daryl!Ashley,!ashley@utexas.edu! ! !

detection from a device that is potentially responsible for analyzing gigabits of data each

second. Taken in this context, the weakness in Zeus’s encryption may not be as glaring

after all.

An Analysis of Gameover Zeus Network Traffic! 19
!

Daryl!Ashley,!ashley@utexas.edu! ! !

References
!
Andriesse D & Bos H. (2014). An Analysis of the Zeus Peer-To-Peer Protocol. Retrieved

from: http://www.few.vu.nl/~da.andriesse/papers/zeus-tech-report-2013.pdf

Ashley, D. (2008). Developing a Snort Dynamic Preprocessor. Informally published

manuscript, Retrieved from http://www.sans.org/reading-

room/whitepapers/tools/developing-snort-dynamic-preprocessor-32874

Cert Polska. (2013). Technical Report Zeus-P2P monitoring and analysis. Retrieved from

http://www.cert.pl/PDF/2013-06-p2p-rap_en.pdf

Goldreich,!O.!(2001).!Foundations*of*cryptology:*Vol.*1.!Cambridge:!Cambridge!

University!Press.

Klein,!P.!N.!(2014).!A*cryptography*primer:*Secrets*and*promises.!New!York:!

Cambridge!University!Press.!!

Litzenberger, Dwayne. (2012 May 24). Crypto.Cipher.ARC4. Retrieved from:

https://www.dlitz.net/software/pycrypto/api/current/Crypto.Cipher.ARC4-

module.html

Manpage of TCPDUMP. (2014, July 11). Retrieved November 25, 2014, from

http://www.tcpdump.org/manpages/tcpdump.1.html

Oberheide, Jon. (2008 October 15). dpkt Tutorial #2: Parsing a PCAP File. Retrieved

from: https://jon.oberheide.org/blog/2008/10/15/dpkt-tutorial-2-parsing-a-pcap-

file/

Paul, G., & Maitra, S. (2012). RC4 stream cipher and its variants. Boca Raton: Taylor &

Francis.

Symantec.!(2014,!June!2).!International*Takedown*Wounds*Gameover*Zeus*

Cybercrime*Network*|*Symantec*Connect.!Retrieved!from!

http://www.symantec.com/connect/blogs/internationalYtakedownYwoundsY

gameoverYzeusYcybercrimeYnetwork

An Analysis of Gameover Zeus Network Traffic! 20
!

Daryl!Ashley,!ashley@utexas.edu! ! !

Appendix 1: ZeusHost Python Library

import struct
from Crypto.Cipher import ARC4 as rc4

HEADER_LENGTH = 44
PEERLISTREQUEST_LENGTH = 28
PEERLISTREPLY_LENGTH = 450
PROXYREPLY_LENGTH = 304
PEER_STRUCT_LENGTH = 45
TYPE_PEERLISTREQUEST = 2
TYPE_PEERLISTREPLY = 3
TYPE_PROXYREPLY = 6
TYPE_PROXYANNOUNCE = 50

def rc4decrypt(key, payload):
 decrypted = []
 r = rc4.new(key)
 dec = r.decrypt(payload)
 for c in dec:
 decrypted.append(ord(c))
 return decrypted

def xordecrypt(payload):
 decrypted = []
 decrypted.append(ord(payload[0]))
 for i in range(1, len(payload)):
 decrypted.append(ord(payload[i]) ^ ord(payload[i-1]))
 return decrypted

def print_header(rnd, ttl, lop, type, header):
 sessionid = header[4:24]
 sourceid = header[24:44]
 print "rnd: ", rnd
 print "ttl: ", ttl
 print "lop: ", lop
 print "type: ", type
 print "session id: " + " ".join(hex(n) for n in sessionid)
 print "source id: " + " ".join(hex(n) for n in sourceid)

def verify_packet_length (lop, type, length):
 if type == TYPE_PEERLISTREQUEST:
 expected_length = HEADER_LENGTH + PEERLISTREQUEST_LENGTH +
lop
 if expected_length == length:
 print "*** Peer List Request Packet - lop is correct ***"

An Analysis of Gameover Zeus Network Traffic! 21
!

Daryl!Ashley,!ashley@utexas.edu! ! !

 return 1

 if type == TYPE_PEERLISTREPLY:
 expected_length = HEADER_LENGTH + PEERLISTREPLY_LENGTH + lop
 if expected_length == length:
 print "*** Peer List Reply Packet - lop is correct ***"
 return 1

 if type == TYPE_PROXYREPLY:
 expected_length = HEADER_LENGTH + PROXYREPLY_LENGTH + lop
 if expected_length == length:
 print "*** Proxy Reply Packet - lop is correct ***"
 return 1

 if type == TYPE_PROXYANNOUNCE:
 expected_length = HEADER_LENGTH + PROXYREPLY_LENGTH + lop
 if expected_length == length:
 print "*** Proxy Announce Packet - lop is correct ***"
 return 1
return 0

def decode_peerlistrequest(payload):

 print "Decoded Peer List Request:"
 identifier = payload[HEADER_LENGTH:HEADER_LENGTH+ 20]
 random = payload[HEADER_LENGTH+20:HEADER_LENGTH+28]
 print "identifier: " + " ".join(hex(n) for n in identifier)
 print "random: " + " ".join(hex(n) for n in random)

def decode_peerstruct(peerstruct):
 iptype = peerstruct[0]
 peerid = peerstruct[1:21]
 ipv4addr = peerstruct[21:25]
 ipv4port = peerstruct[25:27]
 ipv6addr = peerstruct[27:43]
 ipv6port = peerstruct[43:45]

 print "ip type: ", iptype
 print "peer id: " + " ".join(hex(n) for n in peerid)
 print "ipv4 address: " + ".".join(str(n) for n in ipv4addr)
 print "ipv4 port: ", struct.unpack("<h", struct.pack("BB", ipv4port[0],
ipv4port[1]))[0]
 print "ipv6 address: " + " ".join(hex(n) for n in ipv6addr)
 print "ipv6 port: " + " ".join(hex(n) for n in ipv6port)

def decode_peerlistreply(payload):

An Analysis of Gameover Zeus Network Traffic! 22
!

Daryl!Ashley,!ashley@utexas.edu! ! !

 print "Decoded Peer List: "
 for i in range(0, 10):
 begin = i * PEER_STRUCT_LENGTH + HEADER_LENGTH
 end = begin + PEER_STRUCT_LENGTH
 decode_peerstruct(payload[begin:end])

def decode_proxyreply(payload):
 iptype = payload[HEADER_LENGTH:HEADER_LENGTH+4]
 proxyid = payload[HEADER_LENGTH+4:HEADER_LENGTH+24]
 ipv4addr = payload[HEADER_LENGTH+24:HEADER_LENGTH+28]
 ipv4port = payload[HEADER_LENGTH+28:HEADER_LENGTH+30]
 ipv6addr = payload[HEADER_LENGTH+30:HEADER_LENGTH+46]
 ipv6port = payload[HEADER_LENGTH+46:HEADER_LENGTH+48]

 print "ip type: " + " ".join(hex(n) for n in iptype)
 print "peer id: " + " ".join(hex(n) for n in proxyid)
 print "ipv4 address: " + ".".join(str(n) for n in ipv4addr)
 print "ipv4 port: ", struct.unpack("<h", struct.pack("BB", ipv4port[0],
ipv4port[1]))[0]
 print "ipv6 address: " + " ".join(hex(n) for n in ipv6addr)
 print "ipv6 port: " + " ".join(hex(n) for n in ipv6port)

An Analysis of Gameover Zeus Network Traffic! 23
!

Daryl!Ashley,!ashley@utexas.edu! ! !

Appendix 2: XOR Packet Python Script

import ZeusHost as zeus
import dpkt

filename = "xor.pcap"
def main():
 for ts, pkt in dpkt.pcap.Reader(open(filename, 'r')):
 eth = dpkt.ethernet.Ethernet(pkt)
 if eth.type!=dpkt.ethernet.ETH_TYPE_IP:
 continue
 ip = eth.data

 if ip.p == dpkt.ip.IP_PROTO_UDP:
 udp = ip.data
 print "UDP source port", udp.sport
 if udp.sport == 16503:
 payload = udp.data
 # Decrypt the packet payload
 decrypted = zeus.xordecrypt(payload)
 # Map the first 4 bytes
 rnd = decrypted[0]
 ttl = decrypted[1]
 lop = decrypted[2]
 type = decrypted[3]
 length = len(decrypted)
 # Use lop and type fields to verify that this is possibly a Zeus packet
 if zeus.verify_packet_length(lop, type, length):
 print "Length of UDP packet: ", length
 # Print the Zeus packet header
 zeus.print_header(rnd, ttl, lop, type, decrypted)
 # Decode Peer List Requess
 if type == zeus.TYPE_PEERLISTREQUEST:
 zeus.decode_peerlistrequest(decrypted)
 # Decode replies to peer list requests
 if type == zeus.TYPE_PEERLISTREPLY:
 zeus.decode_peerlistreply(decrypted)
 # Decode replies to proxy requests
 if type == zeus.TYPE_PROXYREPLY:
 zeus.decode_proxyreply(decrypted)

if __name__=="__main__":
 main()

An Analysis of Gameover Zeus Network Traffic! 24
!

Daryl!Ashley,!ashley@utexas.edu! ! !

Appendix 3: RC4 Packet Python Script

import ZeusHost as zeus
import dpkt

CLIENTKEY="darylashley"
filename = "rc4.pcap"

def main():
 for ts, pkt in dpkt.pcap.Reader(open(filename, 'r')):
 eth = dpkt.ethernet.Ethernet(pkt)
 if eth.type!=dpkt.ethernet.ETH_TYPE_IP:
 continue
 ip = eth.data
 if ip.p == dpkt.ip.IP_PROTO_UDP:
 udp = ip.data
 if udp.dport > 0:
 payload = udp.data
 # Decrypt the packet payload
 decrypted = zeus.rc4decrypt(CLIENTKEY, payload)
 # Map the first 4 bytes
 rnd = decrypted[0]
 ttl = decrypted[1]
 lop = decrypted[2]
 type = decrypted[3]
 length = len(decrypted)
 # Use lop and type fields to verify that this is possibly a Zeus packet
 if zeus.verify_packet_length(lop, type, length):
 print "Length of UDP packet: ", length
 # Print the Zeus packet header
 zeus.print_header(rnd, ttl, lop, type, decrypted)
 # Decode Peer List Requess
 if type == zeus.TYPE_PEERLISTREQUEST:
 zeus.decode_peerlistrequest(decrypted)
 # Decode replies to peer list requests
 if type == zeus.TYPE_PEERLISTREPLY:
 zeus.decode_peerlistreply(decrypted)
 # Decode replies to proxy requests
 if type == zeus.TYPE_PROXYANNOUNCE:
 zeus.decode_proxyreply(decrypted)

if __name__=="__main__":
 main()

