GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

An Analysis of Gameover Zeus Network Traffic
GIAC (GCIA) Gold Certification

Author: Daryl Ashley, Ashley@utexas.edu
Advisor: Dominicus Adriyanto Hindarto

Accepted: January 24 2015

Abstract

Malware is evolving to use encryption techniques to obfuscate network communication
to evade detection. This paper analyzes anomalies within network traffic generated by
Gameover Zeus. The anomalies result from the encryption methods used to obfuscate
network communications. However, even though the anomalies can be seen when
manually inspecting the network packets, the obfuscation techniques pose difficulties
when attempting to use signature based Intrusion Detection Systems (IDS) for detection.
While the anomalies may not be useful for constructing IDS signatures, they may be
useful in constructing custom detection algorithms.

An Analysis of Gameover Zeus Network Traffic | 2

1. Introduction

In September of 2011, a peer-to-peer variant of Zeus emerged on the internet
(Symantec, 2014). This version of Zeus, also known as Gameover or P2P Zeus, is not
susceptible to traditional takedown methods because the command and control
infrastructure is no longer centralized. Detection of this variant is also made more
difficult because communication between the peers is encrypted (Andriesse & Bos,
2014). Although the botnet has been significantly disrupted by a takedown effort
(Symantec, 2014), analysis of the malware can provide useful insights into the

effectiveness of signature based intrusion detection systems.

The protocol used for communication has been described in detail in research
papers written by Andriesse & Bos (2014) and Cert Polska (2013). This paper uses the
information from the research papers to decrypt and analyze the information in two
separate packet captures. In the first packet capture, the Zeus infected hosts use a simple
XOR based algorithm for encrypting its traffic. In the second packet capture, the RC4
algorithm is used for encryption. The two packet captures have interesting anomalies that

differ due to the encryption algorithm that was used.

The IP addresses shown in the figures in this paper have been converted to private

IP addresses. The packet captures are available on request from the author.

2. Zeus Communication Protocol

2.1. Overview

The protocol used by Gameover Zeus is described in detail in a research paper
published by Andriesse and Bos (2014). The protocol includes mechanisms for
exchanging binary and configuration updates, requesting peer lists, and requesting the IP
address of special members of the botnet referred to as “proxy bots” (Andriesse & Bos,
2014). The following sections outline a portion of the research that was used when

analyzing the packet captures.

Daryl Ashley, ashley@utexas.edu

2.2. Network Communication

An Analysis of Gameover Zeus Network Traffic | 3

Each infected host uses a unique UDP port for communication (Cert Polska,

2013). For hosts infected with a version of Zeus prior to June, 2013, the port was

selected from the range 10,000 to 30,000. For hosts infected after June, 2013, the range
was between 1024 and 10000 (Andriesse & Bos, 2014). Figure 1 shows the output of a

packet capture that was generated using the command tcpdump —nr zeus.pcap proto 17

and host 10.1.1.1. The network traffic of a host infected with Gameover Zeus was

captured to a file named zeus.pcap. The host that was infected with Gameover Zeus has

an IP address of 192.168.1.1. Since the infected host sends UDP packets to a number of

peers, the host filter was used to display traffic that was generated to a single peer, the

peer at IP address 10.1.1.1. The filtered output makes it easier to focus on the network

traffic generated between the two peers.

16:
16:
16:
16:
16:
16:
16:
16:

38
38
38
38
38
38
38
38

:40.
:40
:40
:40
:40
:40
:40
:40

382191

.433485
.433883
.485140
.486484
.487234
.488214
.488694

Figure 1: tcpdump Output of Zeus UDP Packets

IP
IP
IP
IP
IP
IP
19
IP

192.168.1.1.256b9 > 10.1.

10.1.1.1.10619

10.
10.
10.
10.

[

10.1

el
.

.1.

.
el e

[

e

> 192.168.
192.168.1.1.26609 > 10.1.
.10619
.10619
.10619
.10619
.10619

>

VVvVvVvy

192.

192

192.
192.
192.

168.
.168.
168.
168.
168.

b b b e b

.10619:
.26609:
.10619:
.26609:
.26609:
.26609:
.26609:
.26609:

UDP,
UDP,
UDP,
UDP,
UDP,
UDP,
UDP,
UDP,

length
length
length
length
length
length
length
length

The packet capture shows two hosts communicating with each other using the

UDP protocol. But, there is nothing that appears to be malicious about this network

traffic. The host with IP address 192.168.1.1 is using port 26609 for network

communication. Since this port is within the range 10000 to 30000, the infected host is

running a version of Zeus released prior to June, 2013. When the infected host sends a

packet, the source port is set to 26609. When the host at [P address 10.1.1.1 receives the

UDP packet, it will send replies to port 26609.

2.3. Message Header

Each UDP packet sent by a host infected with Zeus contains a Zeus message as its

UDP payload. The Zeus message can be broken up into two parts, a 44 byte message

header followed by a message payload. The message payload will vary in length

Daryl Ashley, ashley@utexas.edu

122
502
130
184
506
491
431
429

An Analysis of Gameover Zeus Network Traffic 4

depending on the type of message being sent (Andriesse & Bos, 2014). Figure 2 shows

the packet layout of a Zeus message, including the IP and UDP header sections.

ip header

ip payload

udp header

udp payload

Zeus message header Zeus message payload

rnd ‘ ttl ’ lop ’ type ‘ session ID | source ID

Figure 2: Zeus Packet Layout

Figure 3 summarizes the fields that are present in the Zeus message header, as

well as their position within the header and the length of each field. One field that is

particularly interesting is the lop field. Zeus appends a number of random bytes to each

message that is sent. The peer that receives the message discards the randomly generated

bytes after it decrypts the message. The lop field contains the number of random bytes

that have been appended to the message. Since a random number of bytes are appended

to each message, the length of each UDP packet sent between two infected hosts will

usually differ. The variable length packets may help infected hosts evade detection by

intrusion detection systems (Andriesse & Bos, 2014). Therefore, Zeus may use variable

length packets as well as encryption to evade detection.

| field length | description
rnd 1 randomly generated byte
TTL 1 time to live
LOP 1 length of padding
type 1 message type
session ID | 20 | randomly generated to tag session
source 1D 20 | used as unique identifier of infected host

Figure 3:

Daryl Ashley, ashley@utexas.edu

Zeus Protocol Header

An Analysis of Gameover Zeus Network Traffic | 5

The other header fields that are interesting are the type and source ID fields. The
type field will be discussed in the following section. The source ID field is a unique
identifier of the host sending the message. In versions of Zeus after June, 2013, RC4 is
used to encrypt messages. The source ID field is used as the RC4 key when encrypting
replies to the sending host (Andriesse & Bos, 2014).

2.4. Message Types

There are a number of different message types that are used by Gameover Zeus
(Andriesse & Bos, 2014). Figure 4 provides a summary of some of the message types.
The length of the payload of each message type is of interest because it can be used to
calculate the expected length of the message. The message length should be equal to 44
bytes (header) + payload length + lop.

type | payload length | description

0x0 |0 or12 version request
Ox1 |22 version reply
0x2 | 28 peer list request
0x3 | 450 peer list reply
0x6 | 304 proxy reply
0x32 | 304 proxy announce

Figure 4: Zeus Message Types

3. Packet Analysis
3.1. tcpdump

The packet captures were created using tcpdump. The initial analysis of the
encrypted packets was also performed with tcpdump. The -X flag can be used to
display the packet in hexadecimal format, along with an ASCII conversion on the

right hand side of the output. The output can be filtered using the host, port, and

Daryl Ashley, ashley@utexas.edu

An Analysis of Gameover Zeus Network Traffic | 6

proto keywords (“Manpage of TCPDUMP”, 2014). Use of these keywords to filter the

output can significantly reduce the amount of data that needs to be analyzed.

3.2. Automated Analysis of Packet Captures

Several python scripts are included in the appendix of this paper. The scripts
were used to automate the decryption and decoding of the UDP packets used by Zeus for
communication. The dpkt Python module can be used to read a packet capture that was
produced by tcpdump (Oberheide, 2008). For example, the code snippet shown in figure
5 will open a packet capture file and iterate through each of the packets, printing the
source port of any UDP packets in the packet capture.

import dpkt
filename = "infected.pcap"
def main():
for ts, pkt in dpkt.pcap.Reader(ocpen(filename, 'r')):
eth = dpkt.ethernet.Ethernet(pkt)
if eth.type!=dpkt.ethernet.ETH_TYPE_ IP:
continue
ip = eth.data
if ip.p == dpkt.ip.IP PROTO UDP:
udp = ip.data
print "UDP source port", udp.sport

Figure 5: Using dpkt to Parse Packet Capture

3.3. XOR Decryption

Prior to June of 2013, Gameover Zeus used a “rolling XOR” algorithm to encrypt
its messages (Andriesse & Bos, 2014). An example of the rolling XOR algorithm is as
follows. Suppose the message payload is the sequence of bytes “0Ox11 0x2e 0x54 0x9d”.
The first byte is left as is in the cipher text. The second byte is encrypted by XORing the

Daryl Ashley, ashley@utexas.edu

An Analysis of Gameover Zeus Network Traffic | 7

second byte of the original message with the first byte of the cipher text: Ox11 XOR 0x2e
= 0x3f. This is the second byte of the cipher text. The third byte is encrypted by
XORing the unencrypted third byte of the original message with the second byte of the
cipher text: 0x3f XOR 0x54 = 0x6B. Finally, 0x6B, the third byte of the cipher text, is
XORed with the last byte of the original message. The cipher text is “Ox11 0x3f 0x6B
0xF6”.

Decryption is the opposite of encryption. First, the last byte of the cipher text is
XORed with the preceding byte of the cipher text: 0xF6 XOR 0x6B = 0x9d. This
recovers the last byte of the original message. This process is repeated for all the

remaining bytes in the cipher text except the first byte, which was not encrypted.

There are a couple of interesting observations about this algorithm. First, in order
to determine the value of a specific byte in the original message, it is not necessary to
decrypt the entire message. For example, to determine the original value of the second
byte, XOR it with the preceding byte: 0x3F XOR 0x11 = 0x2E. It is not necessary to
decrypt the third and fourth bytes before jumping to this step.

The second observation is that any value XORed with 0 is equal to the value
itself. For example 0x4 XOR 0x0 = 0x4. Suppose that the rolling XOR algorithm is used
to encrypt the message “Ox11 0x2e 0x00 0x00 0x00 0x00. It can be shown that the
corresponding cipher text is “Ox11 0x3F 0x3F 0x3F 0x3F 0x3F”. Note that the encrypted
byte at position 2 is repeated each time it is XORed with 0x00. This observation will be

used when analyzing Zeus messages encrypted using the rolling XOR algorithm.

The python snippet shown below was used to decrypt messages that were

encrypted using the rolling XOR algorithm.

def xordecrypt(payload):
decrypted = []
decrypted.append(ord(payload[0]))
for i in range(l, len(payload)):
decrypted.append(ord(payload[i])
return decrypted

-~

ord(payload[i=1]))

Figure 6: Python Subroutine to Decrypt Rolling XOR

Daryl Ashley, ashley@utexas.edu

An Analysis of Gameover Zeus Network Traffic | 8

3.4. RC4 Decryption

After June of 2013, Zeus started using RC4 to encrypt its traffic (Andriesse &
Bos, 2014). RC4 is a widely used software stream cipher. The cipher generates a psecudo
random sequence of bytes that is XORed with the message to produce a cipher text. The
same pseudo random sequence of bytes is needed to decrypt the cipher text. The cipher
text is XORed with the pseudo random sequence of bytes to recover the original message

(Paul, 2012).

A software based stream cipher has two components. The first is a key
scheduling component that uses a secret key to initialize the internal state of the RC4
instance. Once initialized, a pseudo-random generation algorithm is used to generate the
sequence of bytes that is used for encryption and decryption (Paul, 2012). If a different
key is used to initialize the RC4 instance, a different stream of bytes will be generated,

and decryption of the cipher text will not succeed.

Figure 7 shows RC4 encryption of the plain text “john smith” when the RC4
instance is initialized with the key “darylashley”. The figure shows the byte stream
produced by the pseudo-random generation algorithm. The figure also shows the
hexadecimal representation of “john smith”. Each byte of the plain text is XORed with
the corresponding byte in the byte stream. Figure 8 shows the RC4 encryption of the

plain text “abcdesmith” using the same key.

byte stream 0x35 Ox5c Oxab O0xf9 Oxle 0x55 Oxaa Ox7e Oxdd Oxee

plain text & Oxba O0x6f 0x68 Oxbe 0x20 0x73 Ox6d 0x69 0x74 0x68

cipher text O0x3f 0x33 Oxce 0x97 O0x3c¢ 0x26 Oxc7 0x15 0x39 0x86

Figure 7: RC4 Encryption of "john smith"

Daryl Ashley, ashley@utexas.edu

An Analysis of Gameover Zeus Network Traffic | 9

byte stream 0x55 Oxbc Oxab 0xf9 Oxlc 0xb5 Oxaa O0x7c 0Ox4d Oxee
plain text @ 0x61 0x62 0x63 O0x64 O0x65 0x73 0x6d O0x69 0x74 0x68

cipher text 0x34 0x3e Oxcb 0x9d 0x79 0x26 Oxc7 O0x15 0x39 0x&86

Figure 8: RC4 Encryption of "achdesmith"

If the same key is used to encrypt multiple messages, the RC4 algorithm is
susceptible to cryptographic attacks. Even though each message has been encrypted, the
last 5 bytes of each cipher text are identical because the 5 bytes at offset 6 of each
message is “smith”. Since each RC4 instance was in an identical state when encrypting
the messages, the same pseudo random byte sequence was used to encrypt each of the
messages at this offset. Although it may not be possible to recover the original messages
from the above cipher text, an attacker would know that the two messages contained
identical data in the last 5 bytes of each message. This observation will be used when

analyzing Zeus packets encrypted using the RC4 algorithm.

The Python Cryptography Toolkit is a python package that contains various
cryptographic functions. It is available at https://www.dlitz.net/software/pycrypto. The
package provides an ARC4 module that can be used to perform RC4 encryption of a
message. The new() function can be passed a key parameter that can be used to initialize
the internal state of the RC4 instance. The encrypt and decrypt functions can be used to
encrypt and decrypt messages after the RC4 instance has been created and initialized
(Litzenberger, 2012). Figure 9 shows a code snippet that uses the package to encrypt the
plain text “abcdesmith” after initializing the RC4 instance with the key “darylashley”.

Daryl Ashley, ashley@utexas.edu

An Analysis of Gameover Zeus Network Traffic | 10

from Crypto.Cipher import ARC4 as rc4

Secret key used to initialize RC4 state
KEY = "darylashley"

Messages to encrypt
msg = "abcdesmith"

Create RC4 Instance
r = rc4.new(KEY)

Encrypt message 1
cipher = r.encrypt(msg)

Display the message
print " ".join(hex(ord(n)) for n in cipher)

Figure 9: RC4 Python Snippet

4. XOR Packet Capture

Figure 10 shows a UDP packet for a host infected with a version of Zeus that uses
the rolling XOR algorithm to encrypt its traffic. The UDP ports used to communicate are
between 10000 and 30000, so this is a version of Zeus prior to June 2013.

The —X tcpdump flag was used to generate a hexadecimal output of the packet
payload. Based on the IP header length field, the length of the IP header is 20 bytes.
Since the protocol field is set to 0x11, this is a UDP packet. So, there will also be a UDP
header which is 8 bytes in length. The UDP payload should start at offset 0x1C of the
packet. The first four bytes at this offset are circled in figure 10. These represent the
encrypted rnd, ttl, lop, and type field of the Zeus header. The length of the UDP payload

is 378 bytes, and is also circled in the figure.

Daryl Ashley, ashley@utexas.edu

© 2015 The SANS Institute Author retains full rights.

An Analysis of Gameover Zeus Network Traffic | 11

l4:05:09.768633 IP 10.1.1.1.16503 > 192.168.1.1.17973: UDP,
0x0000: 4500 0196 fce3 0000 7311 9fc7 @01 010 E..otrrrerrr¥. .0
0x0010: cOa8 0101 4077 4635 0182 279 ceec@WF5.."caeee
0x0020: e2cf 4e5b 6cd4a ecf2 7ff4 le2d™ ¥ ..N[lJ.....=- L..4

0x0030: dldl 815d da02 500a ec45 e6be 7cc4 ad8d ...]..P..E..|...
0x0040: 82b5 laed4 £742 190a Oal0a 0ala 894c 4cleB.......LL.
0x0050: 9424 10fd c98b 9605 57f2 afd0 a410 d0fe .$......Weeu....
0x0060: 4clé 70el 2352 5252 5252 5252 5252 5252 L.p.¥RRRRRRRRRHR
0x0070: 5252 5252 5252 5252 60c9 f8f3 46ec 8a9d RRRRRRRR ...F...
0x0080: 5a79 a78c 3c76 6460 342f 15dc 0309 6c5b 2Zy..<wd 4/....1[
0x0090: 1d28 8797 d29c 6138 0179 3cc6é d7b6 40al .(....a8.y<...€.

0x00a0: e9%b2 1f62 1llfe Oead 05e8 0325 edde 1149 ...D....... $...1
0x00b0: d842 94cc 31l6e 6£76 c453 7859 c65b 8898 .B..inov.SxY.[..
0x00c0: ecOf £907 ade9 a85f 5880 7aed a3eb cf3a XeZaaaal

0x00d0: cc4c 5f91 4922 4bf7 28e7 le0d 9d02 b332 .L_ .I"K.(.e....2
0x00e0: 9676 1la4 c00a 349b 6d22 4020 cedf 56f0 .v....4.m"€...V.
0x00£0: Ob50 £d25 3cf6 55dc 620b alc4 e331 3eff .P.%<.U.b....1>.
0x0100: 6912 f90e ed32 697d 61fe 6586 0714 dcab i....2i}a.e.....
0x0110: ba76 9c8a 54al 8f2f 3c6l c7fa ilel 323e .v..T../<a....2>
0x0120: 2443 cl70 121a 07cd 07af 99bb dddf 4adf $C.Pececceccsad.
0x0130: 9035 ce2b 505c el09 £675 ed4ba 7710 lled .5.+P\...uU..W...
0x0140: dalb 317f 85ef a097 6b02 aec0f 4dcé 5207 ..l..... KaaaMaRe
0x0150: 2311 c525 all7 d9£f6 5002 b79b b3c0 068c #..%....P.......
0x0160: e73c £7f5 44ff 8ac3 0803 aa2b 8066 5ea8 .<..D......+.f".
0x0170: 3809 4bee 4c51 Sefc d5ed4 le87 8230 a9%976 8.K.IQ"......0.v
0x0180: 2d77 9acc 3686 8fi4 b6le 69a7 2d2b 4603 -w..6..... i.=+F.
0x0190: 2bl0 0b81 8£f23 *eeoo

Figure 10: First 4 bytes of Message

The lop field is located at offset Ox1e of the packet, and the type field is located at
offset Ox1f of the packet. The fields can be decrypted by XORing them with the
preceding byte in the UDP payload. The lop = 0xd8 XOR 0xc6 = 0Oxle. This means that
the number of random bytes appended to this message was 30 bytes. The type = Oxde
XOR 0xd8 = 0x6. Based on the summary of message types shown in figure 3, this is a
proxy reply packet and should have a payload of length 304 bytes. The expected length
of the packet is 44 (header bytes) + 304 (payload bytes) + 30 (lop) = 378 bytes. This
matches the payload length displayed by tcpdump.

This approach to identifying a potential Zeus UDP packet is fairly
straightforward. However, creating a rule to detect this type of packet for a signature
based IDS, such as Snort, may not be possible. Instead, this approach could possibly be
implemented as a dynamic preprocessor in Snort because a dynamic preprocessor can be

used to perform more complex analysis of the packets inspected by Snort (Ashley, 2008).

Daryl Ashley, ashley@utexas.edu

© 2015 The SANS Institute Author retains full rights.

An Analysis of Gameover Zeus Network Traffic | 12

However, this approach is more time consuming than writing a signature because custom

code must be written.

Figure 11 shows the first 92 bytes of the Zeus payload after it has been decrypted
and decoded. The python scripts used to decrypt and decode the packet are included in
the appendix. The information used to decode the packet is based on the proxy struct

describe in (Andriesse & Bos, 2014).

rnd: 148

ttle 82

lop: 30

type: 6

session id: 0x3c 0x2d 0x81 0x15 0x37 0x26 Oxa6 Oxle O0x8d Ox8b Oxea 0x33 0x61 0x58 0x0 0x20 Oxe5 0x0 0x50 Oxdc
source id: 0x87 0xd8 0x52 Ox5a Oxe6 O0xa%9 0Oxa3 0x58 Oxc2 0xb8 0x69 0x20 0xf 0x37 Oxaf Oxfe 0x13 Oxb5 0x5b 0x13
ip type: 0x0 0x0 0x0 0x0

peer id: 0x83 Oxc5 0x0 0x52 0x8a Oxb0 0x34 Oxed 0x34 0x42 Oxld 0x33 0x52 0xa5 0x5d 0x7f 0x74 Oxb4 Oxc0 Ox2e
ipv4 address: 10.2.2.2

ipv4 port: 29122

ipv6 address: 0x0 0x0 0x0 0x0 0x0 0x0 O0x0 0x0 0x0 O0x0 0x0 0x0 0x0 O0x0 0x0 0x0

ipvé port: 0x0 0x0

Figure 11: Decrypted Packet Contents

The portion of the decoded packet that is of interest is the ipv6 address and ipv6
port. The ipv6 address contains a sequence of sixteen 0x00 values, and the ipv6 port
contains a sequence of two 0x00 values. This sequence of bytes produces the anomaly
shown in the figure 12. The cighteen bytes in the UDP payload starting at offset 0x66 are
identical to the byte located at offset 0x65 of the packet. The reason for the anomaly is
described in section 3.3 of this paper. Code to check for this anomaly could potentially

be added as a sanity check when writing the dynamic preprocessor.

Daryl Ashley, ashley@utexas.edu

An Analysis of Gameover Zeus Network Traffic | 13

I4:05:09.768633 IP 10.1.1.1.16503 > 192.168.1.1.17973: UDP, length 378
0x0000: 4500 0196 fce3 0000 7311 9fc7 0al0l 0101 E.......S...1l..0

0x0010: cO0a8 0101 4077 4635 0182 2792 94c6 d8de8BwF5..'.....
0x0020: e2cf 4e5b 6cd4a ecf2 7ff4 le2d 4cl4 1434 ..N[1lJ.....- L..4
0x0030: dldl 815d da02 500a ec45 e6be 7cc4 ad8d ...]..P..E..|...
0x0040: 82b5 laed4 £742 190a Oal0a 0ala 894c 4cleB.......LL.
0x0050: : = a4 3
0x0060: __4cl16 70el 235285252 5252 5252 5252 5252 | L.p.¥RRRRRE
0x0070: 4 B 8. P, 4
0x0080: B] Z2¥..<vd 4/....1[
0x0090: 1d28 8797 d29c 6138 0179 3cc6é d7b6 40al .(....a8.y<...€.
0x00a0: e9%b2 1f62 1llfe Oead 05e8 0325 edde 1149 ...D....... $...1
0x00b0: d842 94cc 316e 6£76 c453 7859 c65b 8898 .B..1lnov.SxY.[..
0x00c0: ecOf £907 ade9 a85f 5880 7aed a3eb cf3a XeZaaant

0x00d0: cc4c 5f91 4922 4bf7 28e7 le0d 9d02 b332 .L_ .I"K.(.e....2
0x00e0: 9676 1la4 c00a 349b 6d22 4020 cedf 56f0 .v....4.m"€...V.
0x00£0: Ob50 £d25 3cf6 55dc 620b alc4 e331 3eff .P.%<.U.b....1>.
0x0100: 6912 f90e ed32 697d 61fe 6586 0714 dcab i....2i}a.e.....
0x0110: ba76 9c8a 54al 8f2f 3c6l c7fa ilel 323e .v..T../<a....2>
0x0120: 2443 cl70 121a 07cd 07af 99bb dddf 4adf $C.Pececceccsad.
0x0130: 9035 ce2b 505c el09 £675 ed4ba 7710 lled .5.+P\...uU..W...
0x0140: dalb 317f 85ef a097 6b02 ac0f 4dcé 5207 ..l..... k...M.R.
0x0150: 2311 c525 all7 d9£f6 5002 b79b b3c0 068c #..%....P.......
0x0160: e73c £7f5 44ff 8ac3 0803 aa2b 8066 5ea8 .<..D......+.f".
0x0170: 3809 4bee 4c51 Sefc d5ed4 le87 8230 a9%976 8.K.IQ"......0.v
0x0180: 2d77 9acc 3686 8fi4 b6le 69a7 2d2b 4603 -w..6..... i.=+F.
0x0190: 2bl0 0b81 8£f23 *eeoo

Figure 12: 18 Consecutive Identical Bytes

5. RC4 Packet Capture

For versions of Zeus after June 2013, the encryption algorithm was changed to
RC4. The key used to initialize the RC4 state is the source ID of the recipient host
(Andriesse & Bos, 2014). Since the source ID of the sending host is included in the
message header, the receiving host will have the sending host’s RC4 key, and will be able

to encrypt the reply packet.

Since the packet is encrypted using RC4, the key used to perform the encryption
is required to decrypt the packet (Paul, 2012). This is an improvement over the rolling
XOR algorithm because no key was required to decrypt packets encrypted using the
rolling XOR algorithm. Because the source ID of the receiving host is required to
decrypt a packet, it is no longer possible to decrypt the lop and type fields to determine if
the UDP payload length matches the predicted length of a Zeus message.

Daryl Ashley, ashley@utexas.edu

© 2015 The SANS Institute Author retains full rights.

An Analysis of Gameover Zeus Network Traffic | 14

Figure 13 shows a decrypted proxy announce packet. The RC4 key was obtained

by reverse engineering a binary used to infect the virtual host that produced the network

traffic in the RC4 packet capture. Note that the ipv6 address and port each contain a

sequence of 0x00 values as was the case for the proxy reply shown in the XOR section.

rnd:
ttl:
lop:
type:

session id:
source id:
ip type:

peer
ipvd
ipv4d
ipvé
ipvé

id:
address:
port:
address:
port:

89

0

72

50

Oxa6 0xf4 Oxba 0x78 0x31 Oxd Oxal 0x29 0x74 Ox2a 0x61 Oxc3 0x40 0x9b 0x34 0xb2 Oxa2 0xf9 Oxaé 0x12
0x98 0x51 Oxee 0x64 OxcO O0x£f3 0x5f 0x48 Ox5a 0x1 Oxd7 Ox1ll 0x9c Oxcé 0x6l Ox6b Oxe6 0x9f Oxdc Oxcc
0x0 0x0 0x0 0x0

Ox4e Oxce 0x9f O0x9a Oxa4 Oxcl Oxdf Ox7e 0x86 Oxa Oxa4 0x79 Oxb5 Oxed4 Oxa2 0x0 Oxld O0x£f2 0x36 0x39
95.104.97.205

6341

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 O0x0 0x0 0x0 0x0 0x0 Ox0

0x0 0x0

Figure 13: Decrypted Proxy Reply Packet

Figure 14 shows the encrypted packet as displayed via tcpdump. Note that the 18

bytes at offset 0x66 are no longer identical. This is a result of the strengthened

encryption that this version of Zeus is using. So, the two methods outlined in section 4 of

this paper are no longer able to detect Zeus traffic.

Daryl Ashley, ashley@utexas.edu

An Analysis of Gameover Zeus Network Traffic | 15

08:54:53.122241 IP 192.168.1.1.9358 > 10.1.1.1.8029: UDP, length 420
0x0000: 4500 0lcO 060e 0000 8011 887f cl0a8 0101 E......ccee.. S..
0x0010: 0a0l 0101 248e 1f5d 0Olac clf9 36c7 0915 Y...$..]....6...
0x0020: 4709 6b6f d3f5 2545 a254 8654 37d4 37ed G.ko..%E.T.T7.7.
0x0030: 78al 84d4 a301 6ef3 0a39 8831 ab2b cc86 x..... N..9%.1.+..
0x0040: e573 bedc 3b02 a8b5 2a37 2e8a ea68 4f56 .s..;...*7...hOV

0x0050: 689f £52c 0133 38ae .-h.h\.,.3..8..
0x0060: I+ fececcaaan IG..

0x0070: 10ef 2564 cb%0 .J..3....>..%d..
0x0080: adb7 8342 b5a8 ...nW..2..... B..

0x0090: 8cd8 3281 d192 d459 4998 ca5c d078 4830 ..2....¥I..\.xHO
0x00a0: a72b 6823 24b3 70a4 c0f0 ef6f 63b5 813b .+h¥#5.p....0C..;

0x00b0: 562 cbba 7db3 c491 42e8 0Obb2 lblc 6e26 .b..}...B..... n&
0x00c0: Ocb9 £148 cal09 6£ff0 883f 3418 4laa cf26 ...H..0..74.A..&
0x00d0: 2f8e 3ebd4 dde4 0a3b f2cc d4fb f28d €584 /.>...ujeceannns
0x00e0: da06 94f3 £926 ecb4 3076 0145 3blf 3fl8 &..0v.E;.?2.
0x00£0: 3de0 ee9f 3ec6 b08b 622c cbde 7e2a 2a33 =...>...b,.N~**3
0x0100: 2b%a f4f7 1560 7al4 91fb c783 891b 9728 +.... Zieeeeaas (
0x0110: f£9df Obel bf0f ell0 4£f78 9ab9 41c3 15€C .cceee.. OX..A...
0x0120: 025f e767 8525 £990 8aaa 6cef Sbda 2b69 ._.g.%....l.[J+i
0x0130: d7be 6986 0a74 Obeb a3bb e721 9574 2708 ..i..t..... et
0x0140: 6ede e91b 0150 75d9 72da df46 70ac e7f6 n....Pu.r..Fp...
0x0150: ed34 ccb3 86c6 879a 594b 2827 4bal 3f33 .4...... YK('K.?3
0x0160: 00de eb8c e25b £596 038b 1690 81fl1 3cl9 [eeaaneaa <o

0x0170: 7187 b9c7 5327 507d 3f4l 58ce 3248 552b q...S'P}?AX.2HU+
0x0180: 7940 c3fe 870f 764f c520 2139 a038 b8c5 y€....v0..!9.8..
0x0190: 7£f1 9647 9b49 888 d9la 63ad 4979 flel ...G.I....c.Iy..
0x01a0: 6c79 2eld4 8518 S8ad f7c7 66aa 20c5 9758 l¥..ceee.n. fouaaX
0x01b0: d996 7186 d7ca 3952 b42a 5cla 36e0 6a22 ..g...9R.*\.6.3"

Figure 14: Proxy Announcement Encrypted Using RC4

In order to find an anomaly in the network traffic, several packets transmitted
between the same hosts must be inspected. Recall that the source ID of the sending host
will be included at a specific location of the Zeus message header. Also recall that the
RC4 key used to encrypt the message is the source ID of the recipient of the message. If
the same source ID is reused to initialize the RC4 state prior to encryption of each packet,
the sender’s encrypted source ID will be identical. Figure 15 shows this anomaly in the

packet capture.

Although it may not be possible to recover the unencrypted source IDs of the two
infected hosts from this packet capture, this anomaly may be useful in identifying

potential Zeus messages. For example, in the packet capture shown in Figure 15, the

Daryl Ashley, ashley@utexas.edu

© 2015 The SANS Institute Author retains full rights.

An Analysis of Gameover Zeus Network Traffic | 16

lengths of the four packets are different, and the packet contents are encrypted. But, the

20 bytes within the packet sent by IP address 192.168.1.1 highlighted in red are identical.

Similarly, the 20 bytes sent by IP address 10.1.1.1 highlighted in blue are identical. This

does not definitively prove that the

two hosts are infected with Zeus. However, this may

be useful for identifying hosts that are good candidates for further investigation.

08:38:16.815674 IP 192.168.1.1.9358 > 10.1.1.1.8029: UDP, length 239
0x0000: 4500 010b 0543 0000 8011 89ff cl0a8 010l E....Civvvens Sae
0x0010: 0a0l 0101 248e 1f5d 00f7 88aa 43ff 9623 YeeaPealanaaCual
0x0020: 323a 76b 23N atata Italc e I T ata O
0x0030: a301 6ef3 0a39 8831 abZb cc86 | #E)b..n..9.1.+..
0x0040: § e573 bedc 3b02 a8b5s aBlaaflaaaaaae ZN.G

08:38:16.980156 IP 10.1.1.1.8029 > 192.168.1.1.9358: UDP, length 508
0x0000: 4500 0218 ead8 0000 6911 ba5c 0all 0101 E....... Fata\Yalala
0x0010: 008 0101 1£f5d 248~ 0204 de6éc 9d6b 9dcc .S...]1$....l.k..
0x0020: 604b 2a ST 19SS a6 T TITT ThUS) "K*..2._M..qq...
0x0030: 4967 9882 8058 2738 b9%bc £730 §.<#.Ig...X'8...0
0x0040:§ £129 fc3d af68 998c tﬁiﬁ—eezo—teﬁt—ﬁcfQ—-.).=.h...&...Q\.

08:50:03.215328 IP 192.168.1.1.9358 > 10.1.1.1.8029: UDP, length 164
0x0000: 4500 00c0O 05d2 0000 8011 89bb 8053 188 E....eveevass S..
0x0010: 0a0l Q0101 248e 1f5d 00ac ale0 c0a8 0101 Y...$..]....P.9'
0x0020: 211d bd laatdaaaaanaaa e
0x0030 d a301 6ef3 0a39 8831 ab2b cc86 J...]..n..9.1.+..
0x0040 2573 bedc 3b02 a8b5s aBaeleaeXlaaleW

08:50:03.641173 IP 10.1.1.1.8029 > 192.168.1.1.9358: UDP, length 68
0x0000: 4500 0060 dOde 0000 6911 dé60e 0all 0101 E..i...Y¥...
0x0010: c008 0101 1f5d 248e 004c b772 8e4c 91ce aSeee]BaelieaLaliae
0x0020: 736c el2p LK. iaaannaana
0x0030 : ae=1GaaaX Baaa

0x0040

5524 4967 9882 8058 2738 b9bc f730
£129 fc3d af68 998c pevE

<).=.h..f..4a.W.

Figure 15:

Encrypted Source Identifiers

A Snort preprocessor may be used to detect this type of traffic as well. However,

detection has been made more difficult because the information needed to find a potential

Zeus packet is no longer available in a single UDP packet. Instead, the preprocessor

would need to maintain enough information for each UDP packet received so that future

Daryl Ashley, ashley@utexas.edu

© 2015 The SANS Institute

Author retains full rights.

An Analysis of Gameover Zeus Network Traffic = 17

packets could be analyzed for matching encrypted source IDs. This may not be practical

on a network that generates a large amount of traffic.

6. Conclusion

It can be argued that the encryption methods used by Gameover Zeus are a
weakness that can be exploited by security analysts. For example, the use of the rolling
XOR algorithm appears to violate several ideas that are central to the idea of modern
cryptography.

Modern cryptography considers the notion of “security through obscurity” to be a
bad idea. History has shown that this approach has failed many times (Klein, 2014).
This paper shows that reverse engineering efforts were useful in identifying some
weaknesses that can be leveraged to help detect the malware. However, this is not an
optimal solution. For example, suppose 1000 new malware variants are written, and each
uses a custom encryption algorithm that has some sort of weakness. The task of reverse
engineering all of the executables and writing 1000 dynamic preprocessors does not seem

practical.

Another idea of modern cryptography is the development of encryption
algorithms that are computationally expensive to attack (Goldreich, 2001). For example,
suppose an attacker has access to encrypted ecommerce data. The attacker may have
many months and a large number of computers to try to extract information from the

encrypted data. Modern cryptographic algorithms attempt to thwart this type of attack.

The rolling XOR algorithm used by Zeus is trivial to decrypt once the algorithm is
known. This custom algorithm would not be considered an acceptable form of
encryption from the standpoint of modern cryptography. So, why does this algorithm
pose problems for signature based intrusion detection systems? The answer may be that
the task of encryption and evasion are significantly different. An intrusion detection
system does not have many months to decrypt the network packets that it analyzes. If the
goal of Zeus’s encryption is simply to evade detection, it may not need to use an
encryption algorithm that will protect data against a brute force attack that will last

several months and will be run on a number of computers. It simply needs to evade

Daryl Ashley, ashley@utexas.edu

An Analysis of Gameover Zeus Network Traffic | 18

detection from a device that is potentially responsible for analyzing gigabits of data each
second. Taken in this context, the weakness in Zeus’s encryption may not be as glaring

after all.

Daryl Ashley, ashley@utexas.edu

An Analysis of Gameover Zeus Network Traffic | 19

References

Andriesse D & Bos H. (2014). An Analysis of the Zeus Peer-To-Peer Protocol. Retrieved

from: http://www.few.vu.nl/~da.andriesse/papers/zeus-tech-report-2013.pdf

Ashley, D. (2008). Developing a Snort Dynamic Preprocessor. Informally published
manuscript, Retrieved from http://www.sans.org/reading-
room/whitepapers/tools/developing-snort-dynamic-preprocessor-32874

Cert Polska. (2013). Technical Report Zeus-P2P monitoring and analysis. Retrieved from
http://www.cert.pl/PDF/2013-06-p2p-rap_en.pdf

Goldreich, O. (2001). Foundations of cryptology: Vol. 1. Cambridge: Cambridge
University Press.

Klein, P. N. (2014). A cryptography primer: Secrets and promises. New York:
Cambridge University Press.

Litzenberger, Dwayne. (2012 May 24). Crypto.Cipher.ARC4. Retrieved from:

https://www.dlitz.net/software/pycrypto/api/current/Crypto.Cipher. ARC4-

module.html

Manpage of TCPDUMP. (2014, July 11). Retrieved November 25, 2014, from
http://www.tcpdump.org/manpages/tcpdump.1.html

Oberheide, Jon. (2008 October 15). dpkt Tutorial #2: Parsing a PCAP File. Retrieved
from: https://jon.oberheide.org/blog/2008/10/15/dpkt-tutorial-2-parsing-a-pcap-
file/

Paul, G., & Maitra, S. (2012). RC4 stream cipher and its variants. Boca Raton: Taylor &

Francis.

Symantec. (2014, June 2). International Takedown Wounds Gameover Zeus
Cybercrime Network | Symantec Connect. Retrieved from
http://www.symantec.com/connect/blogs/international-takedown-wounds-

gameover-zeus-cybercrime-network

Daryl Ashley, ashley@utexas.edu

An Analysis of Gameover Zeus Network Traffic | 20

Appendix 1: ZeusHost Python Library

import struct
from Crypto.Cipher import ARC4 as rc4

HEADER_LENGTH =44
PEERLISTREQUEST_LENGTH = 28
PEERLISTREPLY_LENGTH =450
PROXYREPLY_LENGTH = 304
PEER_STRUCT_LENGTH =45
TYPE_PEERLISTREQUEST = 2
TYPE_PEERLISTREPLY =3
TYPE_PROXYREPLY =6
TYPE_PROXYANNOUNCE = 50

def rc4decrypt(key, payload):
decrypted =]
r = rc4.new(key)
dec = r.decrypt(payload)
for cin dec:
decrypted.append(ord(c))
return decrypted

def xordecrypt(payload):
decrypted =]
decrypted.append(ord(payload[0]))
foriin range(1, len(payload)):
decrypted.append(ord(payload[i]) # ord(payload[i-1]))
return decrypted

def print_header(rnd, ttl, lop, type, header):
sessionid = header[4:24]
sourceid = header[24:44]

print "rnd: " rnd
print "ttl: "ot
print "lop: " lop
print "type: ", type

print "session id: " + " ".join(hex(n) for n in sessionid)
print "source id: " + " ".join(hex(n) for n in sourceid)

def verify _packet_length (lop, type, length):
if type == TYPE_PEERLISTREQUEST:
expected_length = HEADER_LENGTH + PEERLISTREQUEST_LENGTH +
lop
if expected_length == length:
print "*** Peer List Request Packet - lop is correct **

*n

Daryl Ashley, ashley@utexas.edu

An Analysis of Gameover Zeus Network Traffic = 21

return 1

if type == TYPE_PEERLISTREPLY:
expected length = HEADER LENGTH + PEERLISTREPLY_LENGTH + lop
if expected_length == length:
print "*** Peer List Reply Packet - lop is correct ***"
return 1

if type == TYPE_PROXYREPLY:
expected length = HEADER LENGTH + PROXYREPLY_LENGTH + lop
if expected_length == length:
print "*** Proxy Reply Packet - lop is correct ***"
return 1

if type == TYPE_PROXYANNOUNCE:
expected length = HEADER LENGTH + PROXYREPLY_LENGTH + lop
if expected_length == length:
print "*** Proxy Announce Packet - lop is correct ***"
return 1
return O

def decode_peerlistrequest(payload):

print "Decoded Peer List Request:"

identifier = payload[HEADER _LENGTH:HEADER_LENGTH+ 20]
random = payload[HEADER_LENGTH+20:HEADER_LENGTH+28]
print "identifier: " + " ".join(hex(n) for n in identifier)

print "random: " +" ".join(hex(n) for n in random)

def decode_peerstruct(peerstruct):
iptype = peerstruct[0]
peerid = peerstruct[1:21]
ipvdaddr = peerstruct[21:25]
ipv4port = peerstruct[25:27]
ipv6addr = peerstruct[27:43]
ipveport = peerstruct[43:45]
print "ip type: ", iptype
print "peerid: " + " ".join(hex(n) for n in peerid)
print "ipv4 address: " + ".".join(str(n) for n in ipv4addr)
print "ipv4 port: ", struct.unpack("<h", struct.pack("BB", ipv4port[0],
ipv4port[1]))[0]
print "ipv6 address: " + " ".join(hex(n) for n in ipv6addr)
print "ipv6 port: " + " ".join(hex(n) for n in ipv6port)

def decode_peerlistreply(payload):

Daryl Ashley, ashley@utexas.edu

An Analysis of Gameover Zeus Network Traffic = 22

print "Decoded Peer List: "

foriin range(0, 10):
begin =i * PEER_STRUCT_LENGTH + HEADER_LENGTH
end = begin + PEER_STRUCT_LENGTH
decode_peerstruct(payload[begin:end])

def decode_proxyreply(payload):
iptype = payload[HEADER_LENGTH:HEADER_LENGTH+4]
proxyid = payload[HEADER _LENGTH+4:HEADER_LENGTH+24]
ipvd4addr = payload[HEADER_LENGTH+24:HEADER_LENGTH+28]
ipv4port = payload[HEADER_LENGTH+28:HEADER_LENGTH+30]
ipv6addr = payload[HEADER_LENGTH+30:HEADER_LENGTH+46]
ipvbport = payload[HEADER_LENGTH+46:HEADER_LENGTH+48]

print "ip type: " + " ".join(hex(n) for n in iptype)

print "peerid: "+ " ".join(hex(n) for n in proxyid)

print "ipv4 address: " + ".".join(str(n) for n in ipv4addr)

print "ipv4 port: ", struct.unpack("<h", struct.pack("BB", ipv4port[0],
ipv4port[1]))[0]

print "ipv6 address: " + " ".join(hex(n) for n in ipv6addr)

print "ipv6 port: "+ " ".join(hex(n) for n in ipv6port)

Daryl Ashley, ashley@utexas.edu

An Analysis of Gameover Zeus Network Traffic

Appendix 2: XOR Packet Python Script

import ZeusHost as zeus
import dpkt

filename = "xor.pcap"
def main():
for ts, pkt in dpkt.pcap.Reader(open(filename, 'r')):
eth = dpkt.ethernet.Ethernet(pkt)
if eth.type!=dpkt.ethernet.ETH_TYPE_IP:
continue
ip = eth.data

if ip.p == dpkt.ip.IP_PROTO_UDP:
udp = ip.data
print "UDP source port", udp.sport
if udp.sport == 16503:
payload = udp.data
Decrypt the packet payload
decrypted = zeus.xordecrypt(payload)
Map the first 4 bytes
rnd = decrypted[0]
ttl = decrypted[1]
lop = decrypted[2]
type = decrypted[3]
length = len(decrypted)
Use lop and type fields to verify that this is possibly a Zeus packet
if zeus.verify packet_length(lop, type, length):
print "Length of UDP packet: ", length
Print the Zeus packet header
zeus.print_header(rnd, ttl, lop, type, decrypted)
Decode Peer List Requess
if type == zeus. TYPE_PEERLISTREQUEST:
zeus.decode_peerlistrequest(decrypted)
Decode replies to peer list requests
if type == zeus. TYPE_PEERLISTREPLY:
zeus.decode_peerlistreply(decrypted)
Decode replies to proxy requests
if type == zeus. TYPE_PROXYREPLY:
zeus.decode_proxyreply(decrypted)
if __name__=="_main__"
main()

Daryl Ashley, ashley@utexas.edu

23

An Analysis of Gameover Zeus Network Traffic

Appendix 3: RC4 Packet Python Script

import ZeusHost as zeus
import dpkt

CLIENTKEY="darylashley"
filename = "rc4.pcap"

def main():
for ts, pkt in dpkt.pcap.Reader(open(filename, 'r')):
eth = dpkt.ethernet.Ethernet(pkt)
if eth.type!=dpkt.ethernet. ETH_TYPE IP:
continue
ip = eth.data
if ip.p == dpkt.ip.IP. PROTO_UDP:
udp = ip.data
if udp.dport > 0:
payload = udp.data
Decrypt the packet payload
decrypted = zeus.rc4decrypt(CLIENTKEY, payload)
Map the first 4 bytes
rnd = decrypted[0]
ttl = decrypted[1]
lop = decrypted[2]
type = decrypted[3]
length = len(decrypted)
Use lop and type fields to verify that this is possibly a Zeus packet
if zeus.verify packet length(lop, type, length):
print "Length of UDP packet: ", length
Print the Zeus packet header
zeus.print_header(rnd, ttl, lop, type, decrypted)
Decode Peer List Requess
if type == zeus. TYPE PEERLISTREQUEST:
zeus.decode peerlistrequest(decrypted)
Decode replies to peer list requests
if type == zeus. TYPE_PEERLISTREPLY:
zeus.decode peerlistreply(decrypted)
Decode replies to proxy requests
if type == zeus. TYPE PROXYANNOUNCE:
zeus.decode proxyreply(decrypted)

if name ==" main_ ":

main()

Daryl Ashley, ashley@utexas.edu

24

