GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

WEB APPLICATION ATTACK ANALYSIS USING
BRO IDS

GIAC (GCIA) Gold Certification

Author: Ganesh Kumar Varadarajan, ganeshkumar.varadarajan@gmail.com
Advisor: Manuel Humberto Santander Peldez, manuel@santander.name

Accepted: 15 Oct 2012

Abstract

"The purpose of the paper is to analyze the effectiveness of Bro IDS in detecting web
application attacks. In order to detect known web-based attacks, intrusion detection
systems are usually equipped with a large number of signatures. They can however be
fooled by obfuscated input techniques and allow the query to pass unfiltered to the web
application. The paper will explore the use of application layer knowledge of data as
well as signatures to detect common web attacks using Bro IDS scripting language."

© 2012 The SANS Institute Author retains full rights.

1. Introduction

Bro is an open-source, Unix-based Network Intrusion Detection System (NIDS)
that passively monitors network traffic and looks for suspicious activity. Bro detects
intrusions by first parsing network traffic to extract its application-level semantics and
then executing event-oriented analyzers that compare the activity with patterns deemed
troublesome (Richard, 2005). Its analysis includes detection of specific attacks including
those defined by signatures, but also those defined in terms of events and unusual
activities (e.g., certain hosts connecting to certain services, or patterns of failed

connection attempts).

Bro uses a specialized policy language that allows a site to tailor Bro's operation,
both as site policies evolve and as new attacks are discovered. If Bro detects something of
interest, it can be instructed to either generate a log entry, alert the operator in real-time,
execute an operating system command (e.g., to terminate a connection or block a
malicious host on-the-fly) (Babbin, 2006). In addition, Bro's detailed log files can be

particularly useful for forensics.

2. Web Attack Intrusion Detection

The important feature of bro that differentiates it from other IDS systems such as
SNORT is that bro scripts could be written to understand application semantics and could
be trained to look for anomalies which can effectively eliminate attacks as compared to
pattern oriented rules found in systems such as SNORT(Jacob, 2006). SNORT is a
signature based intrusion detection system which relies on the availability of good
signatures (patterns) to detect intrusions. A pattern could be similar to a HTTP request
containing c:\boot.ini to a windows web server or /etc/passwd for a linux web server. In
a signature based detection system, the observed packets are matched using available
signatures using regular expressions. Thus the quality of detection is based on the quality
of the signature base whereas Bro is an anomaly based intrusion detection system that
matches the observed packets with the desired application profile. For example, an alert

could be triggered if multiple attempts are made by the user within a short time against

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

the application. This is an application profile. A bro script could be written to keep track
of user attempts against the application and trigger an alert if it exceeds a threshold
value. This requires the intrusion detection system to not only understand the protocol but
also keep track of failed user sessions against the application. This crucial feature of Bro
to understand the higher order application details gives it a distinct advantage against

signature based intrusion detection systems.

Most often attacks can sneak through Signature based detection systems. For
example, if XSS attacks are considered, IDS systems most often look for presence of start
of script characters. This could be easily fooled by using different encoding methods such
as encoding special characters using variety of encoding methods (URL, base64 etc) and
which would defeat the IDS filters and attack the application. A polymorphic XSS worm
is such an example and can defeat a signature based intrusion detection system. If Bro is
used as a intrusion detector, a script could potentially be written which would look for
non native characters to the application form field and send an alert notice indicating a
potential intrusion activity. Thus because of higher level knowledge of application
profile, complex intrusion activity such as polymorphic worms can be detected quickly

compared to traditional systems.

2.1. BRO Scripting

This section will give a basic introduction in to writing bro scripts using bro
scripting language. It is not intended as a complete reference and will serve to explain the

bro scripts used in attack detection in the later sections.

Bro can detect a large number of protocols, and the notice policy tells which of
them the user wants to be acted upon in some manner. In particular, the notice policy can
customize the specific actions that needs to be taken, such as sending an alert to the
Security Incident and Event Management (SIEM) framework or adding firewall rules to
block the offending IP’s. Bro ships with a large number of policy scripts which perform a
wide variety of analyses (Bro Documentation, 2012). Both network and application

attacks can be detected using Bro scripts though there is some customizing that is needed

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

to suit your environment. Bro gives a lot of tools that will simplify the task. But to

detect a actual attack, a local script needs to be written for your environment.

The policy scripts are prewritten scripts that are included for variety of protocols
such as HTTP, SSH, FTP, DNS, SMTP etc and a variety of scripts for filtering and post
processing such as for logging, reporting and alerting. By default, these will be installed
into $SPREFIX/share/bro and can be identified by the use of a .bro file name extension
(Bro Documentation, 2012). The main entry point for a standalone Bro instance managed
by BroControl is the SPREFIX/share/bro/site/local.bro script. This script can be

modified to suite the environment.

The local configuration file (local.bro) needs to specify which activity is

actionable based on the results of the analysis flagged by the policy scripts. A very simple

bro script is as follows

The above script basically generates a notice (A custom log message generated by
Bro to indicate events of interest) whenever a host 1.1.1.1 makes 5 successful

connections to port 313/tcp.

One of the common entries used in a bro script is the “redef enum Notice:: Type
+={“. The “+=“operator allows to add onto an already defined variable. In the case a
value is added to the enumerable constant Notice:: Type (Ryesecurity, 2012). Different
Notice types such as “XSS Injection Attack” or “SQL Injection Attack™ thus can be

added to customize the Bro Notice for easier readability.

Attributes occur at the end of type/event declarations and change their behavior.
The syntax for declaring attributes is &var or &var=val. Some of the major attributes in

Bro language are

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

5

&redef: Allows for redefinition of initial object values. This is typically used
with constants, for example, const clever = T &redef; would allow the constant to be

redefined at some later point during script execution (Bro Documentation, 2012).

&default: Uses a default value for a record field or container elements. For
example, table[int] of string &default="foo" } would create a table that returns the string

"foo" for any non-existing index (Bro Documentation, 2012).

&persistent: Makes a variable persistent, i.e., its value is writen to disk (per

default at shutdown time) (Bro Documentation, 2012).

The Bro scripting language supports different built-in types such as void, bool,
int, count, counter, double, time, interval, string, pattern, enum, timer, port, addr, subnet,
any, table, set, vector, record ,file, func and event(Bro Documentation 2012). Function
types in Bro are declared using “function (argument*): type”. The argument is a
(possibly empty) comma-separated list of arguments, and type is an optional return type.
Event handlers are nearly identical in both syntax and semantics to a function, with the
differences being that event handlers have no return type since they never return a value,
and you cannot call an event handler. An event handler is usually executed either from a
event engine or from a event statement in the script or from the schedule statement in the

script.

A simple HTTP analysis script in Bro language is shown below

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

| (@)

In the script above, the appearance of HTTP basic Authentication in the HTTP
request header is detected and flagged to the alert log. The key point is the availability of
events such as event http_header(c: connection, is_orig: bool, name: string, value: string),
event http_request(c: connection, method: string, original URI: string, unescaped URI:
string, version: string), event http entity data(c: connection, is_orig: bool, length: count,
data: string) which can be used for creating very targeted notices of interest to the
user. Within these event handlers, customized pattern matching can take place to detect
events or variables can be used to rank the pattern against a database to give a score to the
pattern. By using such techniques an advanced detection script can be developed which
can be used in detecting attacks. Bro can also be used for detecting other forms of

authentication such as digest authentication and form authentication. In digest

authentication, the client sends the GET request as follows

To detect this type of authentication, the event handler script could be written as follows

Bro relies primarily on its scripting language for detecting events of interest.

However there is also a pattern matching template called signatures which is similar to

Snort-style pattern matching.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

A typical signature looks as follows

Signature testsig {
ip-proto == tcp
dst-port == 80
http-request /. *(boot.ini)/
event "Found windows boot!"

}

Each individual signature has the format signature <id> { <attributes> }. <id>is a
unique label for the signature. There are two types of attributes: conditions and actions.
The conditions define when the signature matches, while the actions declare what to do in

the case of a match.

In the above signature, the protocol and destination port are the header conditions,
http-request is a content condition and the action (event) defines what to do if the
signature matches. The content conditions perform pattern matching on elements
extracted from an application protocol dialogue. For example, http-request /.*boot.ini/
scans http request headers requested within HTTP sessions. Note that for TCP
connections, header conditions are only evaluated for the first packet from each endpoint.

If a header condition does not match the initial packets, the signature will not trigger.

2.2. Test Setup

All the packet captures that were used in this paper were obtained through
attacking a Virtual machine running Damn Vulnerable Web application and Web Goat (
Refer Fig 1a). The request and responses from the virtual machine was captured using
sniffer tool such as wireshark and analysis was performed using Bro IDS. The Virtual
router in the diagram is a Linux host which is running virtual Box virtualization software.
WebGoat and DVWA are run as Virtual box guests. Wireshark is made to run on the
Linux host and this serves as a network tap station. An attacker system is present on a
separate station and the packets sent to the VirtualBox guest has to pass the network
interface on the Linux host. Thus packets destined for the Attacked system can be

captured by wireshark.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

Q

NETWORK/TAP STATION

ATTACKING
SYSTEM U

Virtual Router e

/a

WebGoat
DVWA Application
Server

Fig la. Test setup.

To perform an attack, the attacking system uses a web attack tool BURP intruder and
Tamper Data(Firefox addon) which can be used to send customized HTTP request to the
application. A sniffer tool is run on a separate system in the same VLAN as the
Webgoat/DVWA application to capture all the request/responses. To perform an XSS
attack, the attacker modifies the GET / POST request to exploit server side code to steal
information from the client browsers. In SQL injection attack, the attacker modifies the
GET/POST requests so that SQL scripts could be run on the server side system so that
sensitive information could be dumped from that system. In both cases, the method of
attack involves modifying the HTTP GET/POST parameters and this can be fully

captured in the network sniffer that is running on a separate station.

The attack dumps for Webgoat and DVWA application are shown below

vo. ‘ T\me‘ Source ‘ Destination Protocol ‘ Length| Info
38 2012- 192.168.2 192.168.245.128 HTTP 633 GET /dvwa/vulnerabilities/xss_r/?name=0%27Mallory%3C HTTP/1.1
41 2012- 192.168.2 192.168.245.1 HTTP 418 HTTP/1.1 200 OK (text/html)
406 2012- 192.168.2 192.168.245.128 HTTP 678 GET /dvwa/vulnerabilities/xss_r/?name=Hello+0%27Mallory%253Cscript%3Ealert%280%29%3C%2Fscript%3E HTTP/1.1
448 2012- 192.168.2 192.168.245.128 HTTP. 720 GET /dvwa/vulnerabilities/xss_r/?name=Hello+0%27Mallory%3Cscript%3Ealert%280%29%3C%2Fscript3E HTTP/1.1
451 2012- 192.168.2 192.168.245.1 HTTP. 429 HTTP/1.1 200 OK (text/html)
523 2012- 192.168.2 192.168.245.128 HTTP 712 GET /dvwa/vulnerabilities/xss_r/?name=0%27Mallory%3Cscripti3Ealert%s280%29%3C%2Fscripts3E HTTP/1.1
526 2012- 192.168.2 192.168.245.1 HTTP 428 HTTP/1.1 200 OK (text/html)
564 2012- 192.168.2 192.168.245.128 HTTP 640 GET /dvwa/security.php HTTP/1.1
. 5712012-192.168.2.192.168.245.1 HTTP. 512 HTTP/1.1 200 0K (text/html)

Figure 1: XSS attack in DVWA (Get request)

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

Host: 192.168.245.128

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:12.0) Gecko/20100101 Firefox/12.6
ccept: text/html,application/xhtml+xml,application/xml;q=6.9,*/%;q=6.8
ccept-Language: en-us,en;q=0.5

ccept-Encoding: gzip, deflate

IConnection: keep-alive

Referer: http://192.168.245.128/WebGoat/attack?Screen=40&menu=900

ICookie: PHPSESSID=4t56i3mql8meb41lcivv9s303n4; acopendivids=phpbb2,redmine; acgroupswithpersist=nada; JSESSIONID=FC4B42A5BF6AD1D71FEC2D245
uthorization: Basic cm9vdDpvd2FzcGI3YQ==

IContent-Type: application/x-www-form-urlencoded

IContent-Length: 70

search_name=%3Cscript%3Ealert%280%29%3C%2Fscript%3E&action=FindProfileHTTP/1.1 266 0K
Date: Fri, 15 Jun 2012 ©5:43:52 GMT

Server: Apache-Coyote/1.1

IContent-Type: text/html;charset=IS0-8859-1

YRR

. T Figure 2: XSS Attack in WebGoat (POST request)

The Figures 1 and 2 shows the attack against IP 192.168.245.1 from the attacking system 192.168.2.x. It can be seen that name
parameter is fuzzed with javascript input which will cause client side code to execute on 192.168.2.x

Stream Content

POST /WebGoat/attack?Screen=213&menu=1100 HTTP/1.1

Host: 192.168.245.128

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:13.0) Gecko/20100101 Firefox/13.0.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/%;q=0.8
Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Referer: http://192.168.245.128/WebGoat/attack?Screen=213&menu=1100&stage=1
Cookie: JSESSIONID=8D3A461DB8397AE835DOC79C19A929BA; acopendivids=phpbb2, redmine;
acgroupswithpersist=nada

Authorization: Basic cm9vdDpvd2FzcGI3YQ==

Content-Type: application/x-www-form-urlencoded

Content-Length: 48

employee id=112&password=x'or'a’'='a&action=LoginHTTP/1.1 200 OK

Nata-. Cun 17 Tan 2QA1TD AT-AD-AQ CMT

Figure 3: SQL Injection Attack in WebGoat (POST request)

Stream Content

ET /dvwa/vulnerabilities/sqli/?id=1%27+0r+%271%27%3D%271&Submit=Submit HTTP/1.1
Host: 192.168.245.128

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:13.0) Gecko/20100101 Firefox/13.0.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/%;0=0.8
Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Referer: http://192.168.245.128/dvwa/vulnerabilities/sqli/?id=efefe&Submit=Submit
Cookie: security=low; JSESSIONID=8D3A461DB8397AE835D0C79C19A929BA;
acopendivids=phpbb2, redmine; acgroupswithpersist=nada;
PHPSESSID=fg71m4bp9spbofqi29kqngmpr4

HTTP/1.1 200 OK
Date: Sun, 17 Jun 2012 ©7:06:51 GMT
Figure 4: SQL Injection Attack in DVWA (Get request)

GET /dvwa/vulnerabilities/sqli/?id=%27+union+all+select+1%2C%40%40VERSION--+
+&Submit=Submit HTTP/1.1

Host: 192.168.149.128

User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:11.0) Gecko/20100101 Firefox/11.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/%;0=0.8
Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Referer: http://192.168.149.128/dvwa/vulnerabilities/sqli/

Cookie: security=low; PHPSESSID=tklke8emvkjnkvdecb3va69u85; acopendivids=phpbb2, redmine;
acgroupswithpersist=nada

HTTP/1.1 200 OK

Figure 5: SQL Injection Attack in DVWA (Get request)

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

47 2012- 192.168.1192.168.149.1
105 2012- 192.168.1 192.168.149.128

HTTP

462 HTTP/1.1 200 OK (text/ntmL)
609 GET /dvwa/vulnerabilities/sqli/?id=%27+union+all+select+1%2C%40%40VERSION- - ++&Submit=Submit HTTP/1.1

108 2012- 192.168.1192.168.149.1

155 2012- 192.168.1 192.168.149.128

158 2012- 192.168.1192.168.149.1

196 2012- 192.168.1 192.168.149.128

201 2012- 192.168.1192.168.149.1

10 2012- 192.168

13 2012- 192.168.2 192.168.245.1

15 2012- fe80::e18 ffO2::c
16 2012- fe80::e18 ffO2::c

17 2012- 192.168.2 192.168.245.128
19 2012- 192.168.2 192.168.245.1

21 2012- fe80::e18 ffO2::c
22 2012- fe80::e18 ff02::c

23 2012- 192.168.2 192.168.245.128
25 2012- 192.168.2 192.168.245.1

27 2012- fe80::e18 ff02::c
28 2012- fe80::e18 ff02::c

29 2012-192.168.2 192.168.245.128
31 2012- 192.168.2 192.168.245.1

23 7817 £a0a..n10 ££a0. .~

168.245.128

HTTP
HTTP
HTTP
HTTP
HTTP

534 HTTP/1.1 200 OK (text/html)

679 GET /dvwa/vulnerabilities/sqli/?id=%2' 1l+sel dat t=Submit HTTP/1.1
524 HTTP/1.1 200 OK (text/html)
688 GET /dvwa/vulnerabilities/sqli/?id=%2’ L+sel d+from+users- - ++&Submit=Submit HTTP/1.1

726 HTTP/1.1 200 0K (text/html)

Figure 6: SQL Injection Attack in DVWA (Get request)

cvo n st s
689 GET /dvwa/vulnerabilities/sqli blind/?id=1&Submit=Submit HTTP/1.1

475 HTTP/1.1 200 OK (text/html)

208 M-SEARCH * HTTP/1.1

208 M-SEARCH * HTTP/1.1

654 GET /dvwa/vulnerabilities/sqli blind/?id=1+and+1%3D2&Submit=Submit HTTP/1.1

449 HTTP/1.1 200 OK (text/html)

208 M-SEARCH * HTTP/1.1

208 M-SEARCH * HTTP/1.1

699 GET /dvwa/vulnerabilities/sqli blind/?id=5+and: i i 1%2C it=Submit HTTP/1.1
449 HTTP/1.1 200 OK (text/html)

208 M-SEARCH * HTTP/1.1

208 M-SEARCH * HTTP/1.1

734 GET /dvwa/vulnerabilities/sqli blind/?id=5+and: ing: i 1%2C it=Submit HTTP/1.1
504 HTTP/1.1 200 0K (text/html)

Figure 7: Blind SQL Injection Attack in DVWA (Get request)

2.3. Signature detection

In signature-based detection alarms are generated based on specific attack

signatures. These attack signatures encompass specific traffic or activity that is based on

known intrusive activity.

2.3.1. Reflected XSS Injection

In the DVWA application, the name parameter is susceptible to XSS injection

requests. In figure 1, packets 406,448 and 523 malicious input being sent to the DVWA

application. Packet 38 even though having character “<” is not malicious and is a normal

input to the application. In Web Goat application, the POST parameter “search name” is

susceptible to XSS attack as shown in figure 2.

A typical Bro signature to detect XSS attack is as follows

Figure 8: XSS Bro Signature

Author Name, email@address

© 2012 The SANS Institute

Author retains full rights.

1

The signature for the http-request is pretty broad with a pattern match looking for
any start of script character while for the http request body; it is more directed to catch
URL encoded characters. The http-request body is purposely kept more directed as it is
pretty easy to flag a variety of input as XSS vectors whereas actually it would be

harmless input.

If the above signature is tested with the packet capture shown in figure 1 and 2,
the result obtained is as shown in figure 9 and 10. The result in figure 1 shows that all the
requests have been identified as potential XSS vectors. The first request is clearly a name
which has been entered incorrectly with an additional symbol and which has been flagged
as XSS vector by the Bro IDS signature. For the Web goat application, the correct vector
has been identified. The problem with the signature is that, it is looking for a particular
signature namely URL encoded characters. Not all applications will have the same

characteristics and it would be pretty simple to defeat this signature by encoding in other

formats such as base64 or plain ascii text.

Figure 9: Signature alert for DVWA application

Figure 10: Signature alert for Webgoat application

2.3.2. SQL Injection
SQL injection is a code injection technique that exploits security vulnerabilities in
website's software. The vulnerability happens when user input is either incorrectly

filtered for string literal escape characters embedded in SQL statements or user input is

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

1

not strongly typed and unexpectedly executed. SQL commands are thus injected from the
web form into the database of an application (like queries) to change the database content

or dump the database information like credit card or passwords to the attacker.

The characteristic feature that is found in SQL injection requests (See figures 3,4 and 5)

is the presence of SQL escape character " '". This can be used in SQL detection

signature in Bro as follows

Figure 11: SQL injection Bro Signature

The signature basically looks for presence of the literal escape character usually used to

injection to add additional SQL statements to web forms. The effectiveness of the

signatures is shown in figures below.

Figure 12: SQL Signature alert for Web Goat application

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

Figure 13: SQL injection Alert for DVWA application

Figure 14: SQL injection Alert for DVWA application

But the same signature would not be able to detect Blind sql injection example shown in
figure 7 because of the absence of SQL escape character. As shown in figure 7, the blind
sql injection statement used is “5S+and+substring(@@version,1,1)=5". Thus to detect this
injection, further drilling down is required. The signature could be further tuned to detect
such type of attacks, but it may prove to be ineffective in a enterprise environment
containing hundreds of applications requests containing different data inputs which may

match the SQL injection statements or characters used in the signature.

2.4. Anomaly detection

With anomaly detection, a profile is created of each input on your system. These
profiles can be built automatically or created manually. How the profiles are created is
not important as long as the profiles accurately define the characteristics for each input of
the web application being monitored. These profiles are then used as a baseline to define
normal user activity. If any network activity deviates too far from this baseline, then the
activity generates an alarm. Because this type of IDS is designed around profiles, it is

also sometimes known as profile-based detection (Ryan, 2009).

2.4.1. Reflected XSS Injection
The attack can be detected by writing an application aware script shown in figure 6.
Parameters of interest can be profiled for this request. If string length and presence of

alphanumeric characters is taken as a measure of anomaly for this request, The

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

application can have two parameters of interest that would characterize if the input is

valid. One if the string length and another is the presence of character “<” or “>" in the

parameter of interest which is used to inject client side script.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

Figure 15: Bro script for detecting XSS
When the XSS detection script is run against DVWA application, bro generate a notice

log detailing the attack vector in the log.

Figure 16: notice log for DVWA

With WebGoat, the following result was obtained,

Figure 17: notice log for WebGoat

Notice that in both cases, the attack vector has been correctly identified. The advantage of
anomaly detection lies in the fact that the IDS rule can be tuned for the application by

looking at parameters of interest and alerts the admin against such attacks.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

2.4.2. SQL Injection

The attack can be detected by writing an application aware script shown in figure 6.
Parameters of interest can be profiled for this request. If string length and presence of
SQL escape character is taken as a measure of anomaly for this request, the application
can have two parameters of interest that would characterize if the input is valid. One if

¢ ¢

the string length and another is the presence of character in the parameter of interest
which is used to inject client side SQL. We have seen that the characterizing based on
presence of SQL escape character alone would lead to missing blind SQL injection
scenarios as seen in figure. To detect those injections, a combination metric which can

increase the anomaly score if the byte length is greater than a minimum value and

presence of numeric characters could be used to detect more complex injections.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

Figure 18: Bro Script for detecting SQL injection

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

The result of applying the SQL detection script to the four SQL injection vectors are
shown in figures 19,20,21 and 22. Notice that the SQL blind injection vector attempt has

been detected because of the use of combination metrics used in detecting anamolies.

Figure 19: Notice log for WebGoat application (SQL injection)

Figure 20: Notice log for DVWA application (SQL injection)

Figure 21: Notice log for DVWA application (SQL injection)

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

Figure 22: Notice log for DVWA application (SQL blind injection)

3. Conclusion

Through these tests using Bro IDS, what has been shown is that Bro IDS is able to
perform application level deep packet inspection and it would be pretty easy to tune the
application to generate alert logs for web vectors. It is a known fact that IDS signatures
would generate false positives and this can be further fine tuned by generating notices by
using Bro’s application inspection capability to a event monitoring systems such as

splunk, sguil etc which can generate meaningful alerts regarding web attacks.

4. References

Babbin, Jacob. Security Log Management: Identifying Patterns in the Chaos. Rockland,
MA: Syngress, 2006. Print.

Bejtlich, Richard. The Tao of Network Security Monitoring: Beyond Intrusion Detection.
Boston: Addison-Wesley, 2005. Print.

"Bro Documentation." Bro 2.0 Documentation. N.p., n.d. Web. 16 June 2012.
<http://www.bro-ids.org/documentation/index.html>.

"Ryesecurity." : Solving Network Forensic Challenges with Bro. N.p., n.d. Web. 16 June
2012. <http://ryesecurity.blogspot.com.au/2012/04/solving-network-forensic-
challenges.html>.

Trost, Ryan. Practical Intrusion Analysis Prevention and Detection for the Twenty-first

Century. [United States]: Addison-Wesley Professional, 2009. Print.

Author Name, email@address

© 2012 The SANS Institute Author retains full rights.

