
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

WEB APPLICATION ATTACK ANALYSIS USING

BRO IDS

GIAC (GCIA) Gold Certification

Author: Ganesh Kumar Varadarajan, ganeshkumar.varadarajan@gmail.com
Advisor: Manuel Humberto Santander Peláez, manuel@santander.name

Accepted: 15 Oct 2012

Abstract

"The purpose of the paper is to analyze the effectiveness of Bro IDS in detecting web
application attacks. In order to detect known web-based attacks, intrusion detection
systems are usually equipped with a large number of signatures. They can however be
fooled by obfuscated input techniques and allow the query to pass unfiltered to the web
application. The paper will explore the use of application layer knowledge of data as
well as signatures to detect common web attacks using Bro IDS scripting language."

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 2
	

Author	
 Name,	
 email@address	
 	
 	

1. Introduction
Bro is an open-source, Unix-based Network Intrusion Detection System (NIDS)

that passively monitors network traffic and looks for suspicious activity. Bro detects

intrusions by first parsing network traffic to extract its application-level semantics and

then executing event-oriented analyzers that compare the activity with patterns deemed

troublesome (Richard, 2005). Its analysis includes detection of specific attacks including

those defined by signatures, but also those defined in terms of events and unusual

activities (e.g., certain hosts connecting to certain services, or patterns of failed

connection attempts).

Bro uses a specialized policy language that allows a site to tailor Bro's operation,

both as site policies evolve and as new attacks are discovered. If Bro detects something of

interest, it can be instructed to either generate a log entry, alert the operator in real-time,

execute an operating system command (e.g., to terminate a connection or block a

malicious host on-the-fly) (Babbin, 2006). In addition, Bro's detailed log files can be

particularly useful for forensics.

2. Web Attack Intrusion Detection
The important feature of bro that differentiates it from other IDS systems such as

SNORT is that bro scripts could be written to understand application semantics and could

be trained to look for anomalies which can effectively eliminate attacks as compared to

pattern oriented rules found in systems such as SNORT(Jacob, 2006). SNORT is a

signature based intrusion detection system which relies on the availability of good

signatures (patterns) to detect intrusions. A pattern could be similar to a HTTP request

containing c:\boot.ini to a windows web server or /etc/passwd for a linux web server. In

a signature based detection system, the observed packets are matched using available

signatures using regular expressions. Thus the quality of detection is based on the quality

of the signature base whereas Bro is an anomaly based intrusion detection system that

matches the observed packets with the desired application profile. For example, an alert

could be triggered if multiple attempts are made by the user within a short time against

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 3
	

Author	
 Name,	
 email@address	
 	
 	

the application. This is an application profile. A bro script could be written to keep track

of user attempts against the application and trigger an alert if it exceeds a threshold

value. This requires the intrusion detection system to not only understand the protocol but

also keep track of failed user sessions against the application. This crucial feature of Bro

to understand the higher order application details gives it a distinct advantage against

signature based intrusion detection systems.

Most often attacks can sneak through Signature based detection systems. For

example, if XSS attacks are considered, IDS systems most often look for presence of start

of script characters. This could be easily fooled by using different encoding methods such

as encoding special characters using variety of encoding methods (URL, base64 etc) and

which would defeat the IDS filters and attack the application. A polymorphic XSS worm

is such an example and can defeat a signature based intrusion detection system. If Bro is

used as a intrusion detector, a script could potentially be written which would look for

non native characters to the application form field and send an alert notice indicating a

potential intrusion activity. Thus because of higher level knowledge of application

profile, complex intrusion activity such as polymorphic worms can be detected quickly

compared to traditional systems.

2.1. BRO Scripting
	

This section will give a basic introduction in to writing bro scripts using bro

scripting language. It is not intended as a complete reference and will serve to explain the

bro scripts used in attack detection in the later sections.

Bro can detect a large number of protocols, and the notice policy tells which of

them the user wants to be acted upon in some manner. In particular, the notice policy can

customize the specific actions that needs to be taken, such as sending an alert to the

Security Incident and Event Management (SIEM) framework or adding firewall rules to

block the offending IP’s. Bro ships with a large number of policy scripts which perform a

wide variety of analyses (Bro Documentation, 2012). Both network and application

attacks can be detected using Bro scripts though there is some customizing that is needed

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 4
	

Author	
 Name,	
 email@address	
 	
 	

to suit your environment. Bro gives a lot of tools that will simplify the task. But to

detect a actual attack, a local script needs to be written for your environment.

 The policy scripts are prewritten scripts that are included for variety of protocols

such as HTTP, SSH, FTP, DNS, SMTP etc and a variety of scripts for filtering and post

processing such as for logging, reporting and alerting. By default, these will be installed

into $PREFIX/share/bro and can be identified by the use of a .bro file name extension

(Bro Documentation, 2012). The main entry point for a standalone Bro instance managed

by BroControl is the $PREFIX/share/bro/site/local.bro script. This script can be

modified to suite the environment.

 The local configuration file (local.bro) needs to specify which activity is

actionable based on the results of the analysis flagged by the policy scripts. A very simple

bro script is as follows

Global attack_count = 0;
event connection_established(c: connection)
{
if (cidorig_h == 1.1.1.1 &&
cidresp_p == 313/tcp &&
++attack_count == 5)
 NOTICE([$note=Attack,
 $conn=c,
 $msg=fmt("Attack from %s to destination: %s", cidorig_h, cidresp_h)]);
}

The above script basically generates a notice (A custom log message generated by

Bro to indicate events of interest) whenever a host 1.1.1.1 makes 5 successful

connections to port 313/tcp.

 One of the common entries used in a bro script is the “redef enum Notice::Type

+= {“. The “+= “operator allows to add onto an already defined variable. In the case a

value is added to the enumerable constant Notice::Type (Ryesecurity, 2012). Different

Notice types such as “XSS Injection Attack” or “SQL Injection Attack” thus can be

added to customize the Bro Notice for easier readability.

Attributes occur at the end of type/event declarations and change their behavior.

The syntax for declaring attributes is &var or &var=val. Some of the major attributes in

Bro language are

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 5
	

Author	
 Name,	
 email@address	
 	
 	

&redef: Allows for redefinition of initial object values. This is typically used

with constants, for example, const clever = T &redef; would allow the constant to be

redefined at some later point during script execution (Bro Documentation, 2012).

 &default: Uses a default value for a record field or container elements. For

example, table[int] of string &default="foo" } would create a table that returns the string

"foo" for any non-existing index (Bro Documentation, 2012).

 &persistent: Makes a variable persistent, i.e., its value is writen to disk (per

default at shutdown time) (Bro Documentation, 2012).

The Bro scripting language supports different built-in types such as void, bool,

int, count, counter, double, time, interval, string, pattern, enum, timer, port, addr, subnet,

any, table, set, vector, record ,file, func and event(Bro Documentation 2012). Function

types in Bro are declared using “function (argument*): type”. The argument is a

(possibly empty) comma-separated list of arguments, and type is an optional return type.

Event handlers are nearly identical in both syntax and semantics to a function, with the

differences being that event handlers have no return type since they never return a value,

and you cannot call an event handler. An event handler is usually executed either from a

event engine or from a event statement in the script or from the schedule statement in the

script.

A simple HTTP analysis script in Bro language is shown below

module HTTP;

export {
 redef enum Notice::Type += {
 ## Generated if a Command injection takes place using URL
 URI_Injection
}

event http_header(c: connection, is_orig: bool, name: string, value: string)
 {
 if (/AUTHORIZATION/ in name && /Basic/ in value)
 {
 local parts: string_array;

 parts = split1(decode_base64(sub_bytes(value, 7, |value|)), /:/);

 NOTICE([$note=HTTP::Basic_Auth_Server,
 $msg=fmt("username: %s password: %s", parts[1],
 HTTP::default_capture_password == F ? "Blocked" : parts[2]),
 $conn=c
]);

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 6
	

Author	
 Name,	
 email@address	
 	
 	

 }
 }

In the script above, the appearance of HTTP basic Authentication in the HTTP

request header is detected and flagged to the alert log. The key point is the availability of

events such as event http_header(c: connection, is_orig: bool, name: string, value: string),

event http_request(c: connection, method: string, original_URI: string, unescaped_URI:

string, version: string), event http_entity_data(c: connection, is_orig: bool, length: count,

data: string) which can be used for creating very targeted notices of interest to the

user. Within these event handlers, customized pattern matching can take place to detect

events or variables can be used to rank the pattern against a database to give a score to the

pattern. By using such techniques an advanced detection script can be developed which

can be used in detecting attacks. Bro can also be used for detecting other forms of

authentication such as digest authentication and form authentication. In digest

authentication, the client sends the GET request as follows

GET /dir/index.html HTTP/1.0
Host: localhost
Authorization: Digest username=”admin",
 realm="admin@test.com",
 nonce="deefgeghf36594373131",
 uri="/dir/test.html",
 qop=auth,
 nc=00000001,
 cnonce="0e4f323c",
 response="48845fae49393f05355450972504c4abc",
 opaque="48593ehff23336773t"	

To detect this type of authentication, the event handler script could be written as follows

event http_header(c: connection, is_orig: bool, name: string, value: string)
 {
 if (/AUTHORIZATION/ in name && /Digest/ in value)
 {
 // filter response values and Server response
 }	

Bro relies primarily on its scripting language for detecting events of interest.

However there is also a pattern matching template called signatures which is similar to

Snort-style pattern matching.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 7
	

Author	
 Name,	
 email@address	
 	
 	

A typical signature looks as follows

Signature testsig {
 ip-proto == tcp
 dst-port == 80
 http-request /.*(boot.ini)/
 event "Found windows boot!"
}

Each individual signature has the format signature <id> { <attributes> }. <id> is a

unique label for the signature. There are two types of attributes: conditions and actions.

The conditions define when the signature matches, while the actions declare what to do in

the case of a match.

In the above signature, the protocol and destination port are the header conditions,

http-request is a content condition and the action (event) defines what to do if the

signature matches. The content conditions perform pattern matching on elements

extracted from an application protocol dialogue. For example, http-request /.*boot.ini/

scans http request headers requested within HTTP sessions. Note that for TCP

connections, header conditions are only evaluated for the first packet from each endpoint.

If a header condition does not match the initial packets, the signature will not trigger.

2.2. Test Setup
All the packet captures that were used in this paper were obtained through

attacking a Virtual machine running Damn Vulnerable Web application and Web Goat (

Refer Fig 1a). The request and responses from the virtual machine was captured using

sniffer tool such as wireshark and analysis was performed using Bro IDS. The Virtual

router in the diagram is a Linux host which is running virtual Box virtualization software.

WebGoat and DVWA are run as Virtual box guests. Wireshark is made to run on the

Linux host and this serves as a network tap station. An attacker system is present on a

separate station and the packets sent to the VirtualBox guest has to pass the network

interface on the Linux host. Thus packets destined for the Attacked system can be

captured by wireshark.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 8
	

Author	
 Name,	
 email@address	
 	
 	

 Fig 1a. Test setup.

To perform an attack, the attacking system uses a web attack tool BURP intruder and

Tamper Data(Firefox addon) which can be used to send customized HTTP request to the

application. A sniffer tool is run on a separate system in the same VLAN as the

Webgoat/DVWA application to capture all the request/responses. To perform an XSS

attack, the attacker modifies the GET / POST request to exploit server side code to steal

information from the client browsers. In SQL injection attack, the attacker modifies the

GET/POST requests so that SQL scripts could be run on the server side system so that

sensitive information could be dumped from that system. In both cases, the method of

attack involves modifying the HTTP GET/POST parameters and this can be fully

captured in the network sniffer that is running on a separate station.

The attack dumps for Webgoat and DVWA application are shown below

	

Figure 1: XSS attack in DVWA (Get request)

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 9
	

Author	
 Name,	
 email@address	
 	
 	

Figure 2: XSS Attack in WebGoat (POST request)

The Figures 1 and 2 shows the attack against IP 192.168.245.1 from the attacking system 192.168.2.x. It can be seen that name
parameter is fuzzed with javascript input which will cause client side code to execute on 192.168.2.x

Figure 3: SQL Injection Attack in WebGoat (POST request)

Figure 4: SQL Injection Attack in DVWA (Get request)

Figure 5: SQL Injection Attack in DVWA (Get request)

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 1
0 	

Author	
 Name,	
 email@address	
 	
 	

Figure 6: SQL Injection Attack in DVWA (Get request)

Figure 7: Blind SQL Injection Attack in DVWA (Get request)

2.3. Signature detection
In signature-based detection alarms are generated based on specific attack

signatures. These attack signatures encompass specific traffic or activity that is based on

known intrusive activity.

2.3.1. Reflected XSS Injection

In the DVWA application, the name parameter is susceptible to XSS injection

requests. In figure 1, packets 406,448 and 523 malicious input being sent to the DVWA

application. Packet 38 even though having character “<” is not malicious and is a normal

input to the application. In Web Goat application, the POST parameter “search_name” is

susceptible to XSS attack as shown in figure 2.

A typical Bro signature to detect XSS attack is as follows
	

signature xss-sig {
 ip-proto == tcp
 dst-port == 80
 http-request /.*([<>])/
 event "Found XSS!"
}
signature xss-sig2 {
 ip-proto == tcp
 dst-port == 80
 http-request-body /.*([^a-zA-Z0-9=&<>_])/
 event "Found XSS in BODY!"
}	

Figure 8: XSS Bro Signature

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 1
1 	

Author	
 Name,	
 email@address	
 	
 	

The signature for the http-request is pretty broad with a pattern match looking for

any start of script character while for the http request body; it is more directed to catch

URL encoded characters. The http-request body is purposely kept more directed as it is

pretty easy to flag a variety of input as XSS vectors whereas actually it would be

harmless input.

If the above signature is tested with the packet capture shown in figure 1 and 2,

the result obtained is as shown in figure 9 and 10. The result in figure 1 shows that all the

requests have been identified as potential XSS vectors. The first request is clearly a name

which has been entered incorrectly with an additional symbol and which has been flagged

as XSS vector by the Bro IDS signature. For the Web goat application, the correct vector

has been identified. The problem with the signature is that, it is looking for a particular

signature namely URL encoded characters. Not all applications will have the same

characteristics and it would be pretty simple to defeat this signature by encoding in other

formats such as base64 or plain ascii text.

1339731292.108612 192.168.245.1 49508 192.168.245.128 80 Signatures::Sensitive_Signature xss-sig
192.168.245.1: Found XSS! /dvwa/vulnerabilities/xss_r/?name=O'Mallory< - -

1339731510.099221 192.168.245.1 49509 192.168.245.128 80 Signatures::Sensitive_Signature xss-sig
192.168.245.1: Found XSS! /dvwa/vulnerabilities/xss_r/?name=Hello+0'Mallory%3Cscript>alert(0)</script> -
-

1339731528.847472 192.168.245.1 49510 192.168.245.128 80 Signatures::Sensitive_Signature xss-sig
192.168.245.1: Found XSS! /dvwa/vulnerabilities/xss_r/?name=Hello+0'Mallory<script>alert(0)</script> - -

1339731565.722829 192.168.245.1 49511 192.168.245.128 80 Signatures::Sensitive_Signature xss-sig
192.168.245.1: Found XSS! /dvwa/vulnerabilities/xss_r/?name=0'Mallory<script>alert(0)</script> - -

1339731587.691317 192.168.245.1 49513 192.168.245.128 80 Signatures::Sensitive_Signature xss-sig
192.168.245.1: Found XSS! /dvwa/vulnerabilities/xss_r/?name=0'Mallory<script>alert(0)</script> - -

Figure 9: Signature alert for DVWA application

Signatures::Sensitive_Signature xss-sig3 192.168.245.1: Found XSS in BODY!
search_name=%3Cscript%3Ealert%280%29%3C%2Fscript%3E&action=FindProfile - -

Figure 10: Signature alert for Webgoat application

2.3.2. SQL Injection

SQL injection is a code injection technique that exploits security vulnerabilities in

website's software. The vulnerability happens when user input is either incorrectly

filtered for string literal escape characters embedded in SQL statements or user input is

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 1
2 	

Author	
 Name,	
 email@address	
 	
 	

not strongly typed and unexpectedly executed. SQL commands are thus injected from the

web form into the database of an application (like queries) to change the database content

or dump the database information like credit card or passwords to the attacker.

The characteristic feature that is found in SQL injection requests (See figures 3,4 and 5)

is the presence of SQL escape character " ' ". This can be used in SQL detection

signature in Bro as follows

signature sql-sig {
 ip-proto == tcp
 dst-port == 80
 http-request /.*(['])/
 event "Found SQLinjection!"
}

signature sql-sig3 {
 ip-proto == tcp
 dst-port == 80
 http-request-body /.*([^a-zA-Z0-9=&<>_])/
 event "Found sqlinjection in BODY!"
}

Figure 11: SQL injection Bro Signature

The signature basically looks for presence of the literal escape character usually used to

injection to add additional SQL statements to web forms. The effectiveness of the

signatures is shown in figures below.

#types time string addr port addr port enum enum string string addr addr port count string
table[enum] table[count] interval bool string string string double double addr string subnet
1339916569.727439 9FzqCSOfuj8 192.168.245.1 51245 192.168.245.128 80 tcp
Signatures::Sensitive_Signature 192.168.245.1: Found sqlinjection in BODY!
employee_id=112&password=x'or'a'='a&action=Login 192.168.245.1 192.168.245.128 80 - bro
Notice::ACTION_LOG 6 3600.000000 F - - - -
 - - - -
1339916613.969753 xIIddz1ltB3 192.168.245.1 51254 192.168.245.128 80 tcp
Signatures::Sensitive_Signature 192.168.245.1: Found sqlinjection in BODY!
employee_id=112&password=neville%27&action=Login 192.168.245.1 192.168.245.128 80 - bro
Notice::ACTION_LOG 6 3600.000000 F - -

Figure 12: SQL Signature alert for Web Goat application

#types time string addr port addr port enum enum string string addr addr port count string
table[enum] table[count] interval bool string string string double double addr string subnet
1339916791.542641 FONjgHMjw2b 192.168.245.1 51279 192.168.245.128 80 tcp
Signatures::Sensitive_Signature 192.168.245.1: Found SQLinjection!
/dvwa/vulnerabilities/sqli/?id=1'&Submit=Submit 192.168.245.1 192.168.245.128 80 - bro
Notice::ACTION_LOG 6 3600.000000 F - - - - - -
 - -

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 1
3 	

Author	
 Name,	
 email@address	
 	
 	

1339916811.243118 Z0z50sTVSGb 192.168.245.1 51284 192.168.245.128 80 tcp
Signatures::Sensitive_Signature 192.168.245.1: Found SQLinjection!
/dvwa/vulnerabilities/sqli/?id=1'+or+'1'='1&Submit=Submit 192.168.245.1 192.168.245.128 80 - bro
Notice::ACTION_LOG 6 3600.000000 F

Figure 13: SQL injection Alert for DVWA application

1335930732.614115 tBwwYdB8F1j 192.168.149.1 56142 192.168.149.128 80 tcp
Signatures::Sensitive_Signature 192.168.149.1: Found SQLinjection!
/dvwa/vulnerabilities/sqli/?id='+union+all+select+1,@@VERSION--++&Submit=Submit 192.168.149.1
192.168.149.128 80 - bro Notice::ACTION_LOG 6 3600.000000 F - -
 - - - - - -
1335930753.759023 ysdIWo5nvii 192.168.149.1 56143 192.168.149.128 80 tcp
Signatures::Sensitive_Signature 192.168.149.1: Found SQLinjection!
/dvwa/vulnerabilities/sqli/?id='+union+all+select+user(),database()--++&Submit=Submit 192.168.149.1
192.168.149.128 80 - bro Notice::ACTION_LOG 6 3600.000000 F -
 - - - - - - -
1335930768.479527 Jox3U2DyWOb 192.168.149.1 56145 192.168.149.128 80 tcp
Signatures::Sensitive_Signature 192.168.149.1: Found SQLinjection!
/dvwa/vulnerabilities/sqli/?id='+union+all+select+user,password+from+users--++&Submit=Submit 192.168.149.1
192.168.149.128 80 - bro Notice::ACTION_LOG 6 3600.000000 F

Figure 14: SQL injection Alert for DVWA application

But the same signature would not be able to detect Blind sql injection example shown in

figure 7 because of the absence of SQL escape character. As shown in figure 7, the blind

sql injection statement used is “5+and+substring(@@version,1,1)=5”. Thus to detect this

injection, further drilling down is required. The signature could be further tuned to detect

such type of attacks, but it may prove to be ineffective in a enterprise environment

containing hundreds of applications requests containing different data inputs which may

match the SQL injection statements or characters used in the signature.

2.4. Anomaly detection
With anomaly detection, a profile is created of each input on your system. These

profiles can be built automatically or created manually. How the profiles are created is

not important as long as the profiles accurately define the characteristics for each input of

the web application being monitored. These profiles are then used as a baseline to define

normal user activity. If any network activity deviates too far from this baseline, then the

activity generates an alarm. Because this type of IDS is designed around profiles, it is

also sometimes known as profile-based detection (Ryan, 2009).

2.4.1. Reflected XSS Injection
The attack can be detected by writing an application aware script shown in figure 6.

Parameters of interest can be profiled for this request. If string length and presence of

alphanumeric characters is taken as a measure of anomaly for this request, The

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 1
4 	

Author	
 Name,	
 email@address	
 	
 	

application can have two parameters of interest that would characterize if the input is

valid. One if the string length and another is the presence of character “<” or “>” in the

parameter of interest which is used to inject client side script.

Anamoly detection of XSS attacks (RyeSecurity, 2012)

@load base/frameworks/notice
@load base/protocols/ssh
@load base/protocols/http

module HTTP;

export {
 redef enum Notice::Type += {
 XSS_URI_Injection_Attack,
 XSS_Post_Injection_Attack,
 };

 ## URL message input
 type UMessage: record
 {
 text: string; ##< The actual URL body
 };

 const match_xss_uri = /[<>]/ &redef;
 const match_xss_uri1 = /[<>]/ &redef;
 const match_xss_body = /[3C3E]/ &redef;
 global ascore:count &redef;
 global http_body:string &redef;

 redef record Info += {
 ## Variable names extracted from all cookies.
 post_vars: vector of string &optional &log;
 };

}

parse body

function parse_body(data: string) : UMessage
{

 local msg: UMessage;
 local array = split(data, /search_name=/);
 for(i in array)
 {
 local val = array[i];
 msg$text = val;
 }

 if(i == 2)
 {
 return msg;
 }
 else
 {
 msg$text = "";
 return msg;
 }

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 1
5 	

Author	
 Name,	
 email@address	
 	
 	

}

Parse URI
function parse_uri(data: string) : UMessage
{
 local msg: UMessage;
 local array = split(data, /name=/);
 for (i in array)
 {
 local val = array[i];
 msg$text = val;
 }

 if(i == 2)
 {
 return msg; # returns msg
 }
 else
 {
 msg$text = "";
 return msg;
 }
 }

event http_entity_data(c: connection, is_orig: bool, length: count, data: string) &priority=5
{
 local msg:UMessage;
 ascore = 1;
 if(c$http$first_chunk)
 {
 http_body = data;
 ## GET XSS IN REQUEST BODY
 msg = parse_body(http_body);
 if(byte_len(msg$text) > 10)
 ++ascore;
 if(match_xss_body in msg$text)
 {
 ++ascore;
 if(match_xss_uri1 in msg$text)
 ++ascore;
 }
 if (ascore >= 3)
 {
 NOTICE([$note=XSS_Post_Injection_Attack,
 $conn=c,
 $msg=fmt("XSS Attack from %s to destination: %s with Attack string %s and post data %s",
cidorig_h, cidresp_h, c$http$uri, http_body)]);
 }
 }

}

event http_request(c: connection, method: string, original_URI: string,
 unescaped_URI: string, version: string) &priority=3
{
 local msg:UMessage;
 local body:UMessage;
 ascore = 1;

 # GET XSS IN HTTP REQUEST HEADER

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 1
6 	

Author	
 Name,	
 email@address	
 	
 	

 msg = parse_uri(c$http$uri);

 # Test for string length
 if (byte_len(msg$text) > 10)
 ++ascore;
 if(match_xss_uri in msg$text)
 {
 ++ascore;
 if(match_xss_uri1 in msg$text)
 ++ascore;
 }

 if (ascore >= 3)
 {
 NOTICE([$note=XSS_URI_Injection_Attack,
 $conn=c,
 $msg=fmt("XSS Attack from %s to destination: %s with Attack string %s", cidorig_h, cidresp_h,
c$http$uri)]);
 }
}	

Figure 15: Bro script for detecting XSS
When the XSS detection script is run against DVWA application, bro generate a notice

log detailing the attack vector in the log.

/usr/local/bro/bin/bro -r XSS-dvwa-lowsecurity.pcap xssdetecta2.bro
cat notice.log
1335932451.038475 RYyyaLw0YT 192.168.149.1 56420 192.168.149.128 80 tcp
HTTP::XSS_Injection_Attack XSS Attack from 192.168.149.1 to destination: 192.168.149.128 with Attack string
/dvwa/vulnerabilities/xss_r/?name=<script>alert(1)</script> - 192.168.149.1 192.168.149.128 80 - bro
Notice::ACTION_LOG 6 3600.000000 F - - - - - - - -

Figure 16: notice log for DVWA

With WebGoat, the following result was obtained,

1339739032.905723 j53yksjOUSc 192.168.245.1 49634 192.168.245.128 80 tcp
HTTP::XSS_Post_Injection_Attack XSS Attack from 192.168.245.1 to destination: 192.168.245.128 with Attack string
/WebGoat/attack?Screen=40&menu=900 and post data
search_name=%3Cscript%3Ealert%280%29%3C%2Fscript%3E&action=FindProfile - 192.168.245.1
192.168.245.128 80 - bro Notice::ACTION_LOG 6 3600.000000 F - - -
 - - - - -
1339739044.782021 j53yksjOUSc 192.168.245.1 49634 192.168.245.128 80 tcp
HTTP::XSS_Post_Injection_Attack XSS Attack from 192.168.245.1 to destination: 192.168.245.128 with Attack string
/WebGoat/attack?Screen=40&menu=900 and post data search_name=%3Ctest%3E&action=FindProfile -
192.168.245.1 192.168.245.128 80 - bro Notice::ACTION_LOG 6 3600.000000 F - - -
- - - -
 -

Figure 17: notice log for WebGoat

	

Notice that in both cases, the attack vector has been correctly identified. The advantage of

anomaly detection lies in the fact that the IDS rule can be tuned for the application by

looking at parameters of interest and alerts the admin against such attacks.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 1
7 	

Author	
 Name,	
 email@address	
 	
 	

2.4.2. SQL Injection
The attack can be detected by writing an application aware script shown in figure 6.

Parameters of interest can be profiled for this request. If string length and presence of

SQL escape character is taken as a measure of anomaly for this request, the application

can have two parameters of interest that would characterize if the input is valid. One if

the string length and another is the presence of character “ ‘ ” in the parameter of interest

which is used to inject client side SQL. We have seen that the characterizing based on

presence of SQL escape character alone would lead to missing blind SQL injection

scenarios as seen in figure. To detect those injections, a combination metric which can

increase the anomaly score if the byte length is greater than a minimum value and

presence of numeric characters could be used to detect more complex injections.

Anamoly detection of SQL attacks (Ryesecurity, 2012)
@load base/frameworks/notice
@load base/protocols/ssh
@load base/protocols/http

module HTTP;
export {
 redef enum Notice::Type += {
 SQL_URI_Injection_Attack,
 SQL_Post_Injection_Attack,
 };

 ## URL message input
 type UMessage: record
 {
 text: string; ##< The actual URL body
 };

 const match_sql_uri = /[']/ &redef;
 const match_sql_uri1 = /[']/ &redef;
 const match_sql_uri2 = /[0-9]/ &redef;
 const match_sql_body = /[']/ &redef;

 global ascore:count &redef;
 global http_body:string &redef;

 redef record Info += {
 ## Variable names extracted from all cookies.
 post_vars: vector of string &optional &log;
 };
}

parse body

function parse_body(data: string) : UMessage
{ local msg: UMessage;

 local array = split(data, /password=/);

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 1
8 	

Author	
 Name,	
 email@address	
 	
 	

 for(i in array)
 {
 local val = array[i];
 msg$text = val;
 }

 if(i == 2)
 {
 return msg;
 }
 else
 {
 msg$text = "";
 return msg;
 }
 }

Parse URI
function parse_uri(data: string) : UMessage
{
 local msg: UMessage;

 local array = split(data, /id=/);
 for (i in array)
 {
 local val = array[i];
 msg$text = val;
 }

 if(i == 2)
 {
 return msg; # returns msg
 }
 else
 {
 msg$text = "";
 return msg;
 }

}

Event http_entity_data(c: connection, is_orig: bool, length: count, data: string) &priority=5
{
 local msg:UMessage;
 ascore = 1;
 if(c$http$first_chunk)
 {
 http_body = data;

 ## GET SQL IN REQUEST BODY

 msg = parse_body(http_body);

 if(byte_len(msg$text) > 10)
 ++ascore;

 if(match_sql_body in msg$text)
 {
 ++ascore;
 if(match_sql_uri1 in msg$text)

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 1
9 	

Author	
 Name,	
 email@address	
 	
 	

 ++ascore;
 }

 if (ascore >= 3)
 {
 NOTICE([$note=SQL_Post_Injection_Attack,
 $conn=c,
 $msg=fmt("SQL Attack from %s to destination: %s with Attack string %s and post data %s",
cidorig_h, cidresp_h, c$http$uri, http_body)]);

 }
 }
}

event http_request(c: connection, method: string, original_URI: string,
 unescaped_URI: string, version: string) &priority=3
{
 local msg:UMessage;
 local body:UMessage;

 ascore = 1;

 # GET SQL IN HTTP REQUEST HEADER
 msg = parse_uri(c$http$uri);

 # Test for string length
 if (byte_len(msg$text) > 2)
 ++ascore;

 if(match_sql_uri in msg$text)
 {
 ++ascore;

 if(match_sql_uri1 in msg$text)
 ++ascore;
 }

 if(match_sql_uri2 in msg$text && byte_len(msg$text) > 2)
 {

 ++ascore;
 }

 if (ascore >= 3)
 {

 NOTICE([$note=SQL_URI_Injection_Attack,
 $conn=c,
 $msg=fmt("SQL Attack from %s to destination: %s with Attack string %s", cidorig_h, cidresp_h,
c$http$uri)]);

 }

}	

Figure 18: Bro Script for detecting SQL injection

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 2
0 	

Author	
 Name,	
 email@address	
 	
 	

The result of applying the SQL detection script to the four SQL injection vectors are

shown in figures 19,20,21 and 22. Notice that the SQL blind injection vector attempt has

been detected because of the use of combination metrics used in detecting anamolies.

1339916569.727439 YJfjLhYWLA9 192.168.245.1 51245 192.168.245.128 80 tcp
HTTP::SQL_Post_Injection_Attack SQL Attack from 192.168.245.1 to destination: 192.168.245.128 with
Attack string /WebGoat/attack?Screen=213&menu=1100 and post data
employee_id=112&password=x'or'a'='a&action=Login - 192.168.245.1 192.168.245.128 80 - bro	
 	
 	
 	
 	
 	

Figure 19: Notice log for WebGoat application (SQL injection)

1339916791.542641 q5z39ByqpB1 192.168.245.1 51279 192.168.245.128 80 tcp
HTTP::SQL_URI_Injection_Attack SQL Attack from 192.168.245.1 to destination: 192.168.245.128 with Attack
string /dvwa/vulnerabilities/sqli/?id=1'&Submit=Submit - 192.168.245.1 192.168.245.128 80 - bro
Notice::ACTION_LOG 6 3600.000000

1339916811.243118 8CtiEfN7jG9 192.168.245.1 51284 192.168.245.128 80 tcp
HTTP::SQL_URI_Injection_Attack SQL Attack from 192.168.245.1 to	
 destination: 192.168.245.128 with Attack
string /dvwa/vulnerabilities/sqli/?id=1'+or+'1'='1&Submit=Submit - 192.168.245.1 192.168.245.128 80 -
bro Notice::ACTION_LOG 6 3600.000000 F	

Figure 20: Notice log for DVWA application (SQL injection)

1339916791.542641 q5z39ByqpB1 192.168.245.1 51279 192.168.245.128 80 tcp

HTTP::SQL_URI_Injection_Attack SQL Attack from 192.168.245.1 to destination: 192.168.245.128 with Attack

string /dvwa/vulnerabilities/sqli/?id=1'&Submit=Submit - 192.168.245.1 192.168.245.128 80 - bro

Notice::ACTION_LOG 6 3600.000000

1339916811.243118 8CtiEfN7jG9 192.168.245.1 51284 192.168.245.128 80 tcp

HTTP::SQL_URI_Injection_Attack SQL Attack from 192.168.245.1 to destination: 192.168.245.128 with Attack

string /dvwa/vulnerabilities/sqli/?id=1'+or+'1'='1&Submit=Submit - 192.168.245.1 192.168.245.128 80 -

bro Notice::ACTION_LOG 6 3600.000000 F

Figure 21: Notice log for DVWA application (SQL injection)

1339919061.825546 MgaH1dgw96c 192.168.245.1 51684 192.168.245.128 80 tcp

HTTP::SQL_URI_Injection_Attack SQL Attack from 192.168.245.1 to destination: 192.168.245.128 with Attack

string /dvwa/vulnerabilities/sqli_blind/?id=1&Submit=Submit - 192.168.245.1 192.168.245.128 80 - bro

Notice::ACTION_LOG 6 3600.000000

1339919068.746155 MgaH1dgw96c 192.168.245.1 51684 192.168.245.128 80 tcp

HTTP::SQL_URI_Injection_Attack SQL Attack from 192.168.245.1 to destination: 192.168.245.128 with Attack

string /dvwa/vulnerabilities/sqli_blind/?id=1+and+1=2&Submit=Submit - 192.168.245.1 192.168.245.128 80

- bro Notice::ACTION_LOG 6 3600.000000 F - - - - - - - -

1339919075.934222 MgaH1dgw96c 192.168.245.1 51684 192.168.245.128 80 tcp

HTTP::SQL_URI_Injection_Attack SQL Attack from 192.168.245.1 to destination: 192.168.245.128 with Attack

string /dvwa/vulnerabilities/sqli_blind/?id=5+and+substring(@@version,1,1)=4&Submit=Submit -

192.168.245.1 192.168.245.128 80 - bro Notice::ACTION_LOG 6 3600.000000 F - - -

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

	
 2
1 	

Author	
 Name,	
 email@address	
 	
 	

- - - - -

1339919082.299954 MgaH1dgw96c 192.168.245.1 51684 192.168.245.128 80 tcp

HTTP::SQL_URI_Injection_Attack SQL Attack from 192.168.245.1 to destination: 192.168.245.128 with Attack

string /dvwa/vulnerabilities/sqli_blind/?id=5+and+substring(@@version,1,1)=5&Submit=Submit -

192.168.245.1 192.168.245.128 80 - bro Notice::ACTION_LOG 6 3600.000000 F

Figure 22: Notice log for DVWA application (SQL blind injection)

3. Conclusion
Through these tests using Bro IDS, what has been shown is that Bro IDS is able to

perform application level deep packet inspection and it would be pretty easy to tune the

application to generate alert logs for web vectors. It is a known fact that IDS signatures

would generate false positives and this can be further fine tuned by generating notices by

using Bro’s application inspection capability to a event monitoring systems such as

splunk, sguil etc which can generate meaningful alerts regarding web attacks.

4. References
Babbin, Jacob. Security Log Management: Identifying Patterns in the Chaos. Rockland,

MA: Syngress, 2006. Print.

Bejtlich, Richard. The Tao of Network Security Monitoring: Beyond Intrusion Detection.

Boston: Addison-Wesley, 2005. Print.

"Bro Documentation." Bro 2.0 Documentation. N.p., n.d. Web. 16 June 2012.

<http://www.bro-ids.org/documentation/index.html>.

"Ryesecurity." : Solving Network Forensic Challenges with Bro. N.p., n.d. Web. 16 June

2012. <http://ryesecurity.blogspot.com.au/2012/04/solving-network-forensic-

challenges.html>.

Trost, Ryan. Practical Intrusion Analysis Prevention and Detection for the Twenty-first

Century. [United States]: Addison-Wesley Professional, 2009. Print.

