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Abstract 

A network baseline allows for the identification of malicious activity in real time. 
However, a baseline requires that every listed action is known and accounted, presenting 
a nearly impossible task in any production environment due to an ever-changing 
application footprint, system and application updates, changing project requirements, and 
not least of all, unpredictable user behaviors. Each obstacle presents a significant 
challenge in the development and maintenance of an accurate and false positive free 
network baseline. To surmount these hurdles, network architects need to design a 
network free from continuous change including, changing company requirements, 
untested systems or application updates, and the presence of unpredictable users. 
Creating a static, never-changing environment is the goal. However, this completely 
removes the functionality of a production network. Or does it? Within this paper, I will 
detail how this type of static environment, referred to as the Labyrinth, can be placed in 
front of a production environment and provide real time defensive measures against 
hostile and dispersed attacks, from both human actors and automated machines. I expect 
to prove the Labyrinth is capable of detecting changes in its environment in real time. It 
will provide a listing of dynamic defensive capabilities like identifying attacking IP 
addresses, rogue-process start commands, modifications to registry values, alterations in 
system memory and recording the movements of an attacker's tactics, techniques, and 
procedures. At the same time, the Labyrinth will add these values to block list, protecting 
the production network lying behind. Successful accomplishment of these goals will 
prove the viability and sustainability of a Labyrinth defending network (Revelle, 2011) 
environments.  
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1. Introduction 

The Labyrinth is a virtual network housed within a hypervisor architecture. 

Hypervisors are often called Virtual Machine Monitors (VMMs) and allow one physical 

machine to manage the functionality of multiple Operating Systems (OSs). Don Revelle, 

the author of the whitepaper Hypervisors and Virtual Machines, states that for a single 

machine to operate multiple virtual OSs, “The	hypervisor	must	work	with	minimal 

overhead and maintain supervisory privileges over the entire machine at all times” 

(Revelle, 2011). The Labyrinth manages the functionality of a network designed to 

perform in a similar manner to a production network. Each system within the Labyrinth 

has a role within the environment. Depending upon the available resources provided by 

the hypervisor, several subnets can be configured and maintained, each representing an 

aspect of an enterprise environment, a DMZ, an internal server bank, user workstations, 

or even entire departments like IT, or Human Resources departments. The joining of 

these separated networks into a single virtual medium creates the illusion of a complete 

enterprise environment. 

The Labyrinth adds a hidden layer of security within this virtual network as a built 

in multifaceted security monitoring system that is employed to record every action and 

function on each system in the Labyrinth. Anchoring the security layer is a centralized 

correlation engine used to measure each action within the Labyrinth and compare these 

values against a listing of Known-Good actions. This listing is a static baseline of normal 

operations for each system, user, application, and subnet housed within the Labyrinth. 

CERN defines a baseline as “a set of basic objectives which must be met by any given 

service or system” (CERN Computer Security, 2010). Within the Labyrinth, the "basic 

objectives" are the actions of the individual systems, processes, and users, which must 

follow a prescribed list of values. Table 1, illustrates how baselines are compared against 

a known good set of values. 
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Table	1:	Baseline:	XOR	Baseline	Checksum	

 
 

The advantage of leveraging static baselines against the virtual environment is the 

identification of any action performed outside of the static baseline. Since the Labyrinth 

is a static environment, each system, as well as each of its subsequent actions, should 

only function in a predictable manner. The correlation engine analyzes the values given 

from the live Labyrinth and compares these values against the Known-Good values listed 

within the static baseline. If there is a difference both the live Labyrinth and the baseline 

Labyrinth, it is undeniable evidence that a third party modified the Labyrinth. 

2. SIEM Management versus Labyrinth Network 

As mentioned within the previous section, the purpose of the Labyrinth is a 

security monitoring system, which directs every recorded action to a centralized 

correlation engine. The correlation engine is responsible for collecting network and 

system data and comparing it against a predetermined baseline to ensure Labyrinth 

validity. A centralized correlation engine appliance within the computer security industry 

is known as a Security Information Event Management (SIEM) tool. As illustrated within 

Figure 1, the SIEM receives data from several security tools like network security 

appliances providing IDS, Proxy, and NetFlow collection, as well as system specific 

event logging, process executions, registry, and memory alteration functionality. 
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Figure	1:	SIEM	Topology 

The network security layer targets network traffic, specifically Network Intrusion 

Detection Systems (NIDS), Network Traffic Proxy systems, and Network Flow Analysis. 

These technologies perform specific network traffic analysis and are essential in building 

a detailed picture of how an attacker may move and pivot within a network. The 

Labyrinth architecture should use a Snort integration along with firewall logs, and 

NetFlow sources to identify the specific types of traffic moving through the Labyrinth. 

The data from these systems is routed to the SIEM for further contextualization. Where 

the network data is correlated alongside log data, active directory information, and 

endpoint detection systems to develop a holistic picture of activity within the Labyrinth. 

The security network provides the base architecture for the Labyrinth; as such, the 

Labyrinth lacks believability from the perspective of a functioning enterprise 

environment. The core aspects of the network, e.g. the firewalls, servers, endpoint 

systems, and network connections, still need to be installed and configured. While the 

security framework contains the structure for the continuity of network traffic, the role of 

the Labyrinth is designed to be a virtual recreation of a production environment. 

Honeypots have long been used to emulate live systems because they “simulate the 

characteristics and vulnerabilities of common operating systems and record all the 

operations and behaviors” (Du, Zhang, Zhou, & Bai, 2013). The Labyrinth network needs 

to provide features an attacker would expect from a standard enterprise or business 

network. The use of honeypots allows the defenders to deceive the attackers by creating 

the perception of a believable environment. This truly deceptive state will allow "a more 

active defense ability, learning ability, and dynamic interaction ability, than a traditional 
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defense system [alone]” (Du, Zhang, Zhou, & Bai, 2013). The Labyrinth takes this a step 

further by integrating not just one honeypot, but a series of honeypots into what is called 

a honeynet. 

3. Labyrinth Traffic 

3.1. Log and Traffic Collection 

Detection of potentially malicious traffic begins at the system and device level 

within the Labyrinth. The placement of sensors throughout the Labyrinth in a variety of 

formats delivers a unique set of data to the SIEM. Traffic sensors like those employed by 

firewalls, the Intrusion Detection System (IDS), or the proxy systems, are commonplace 

within security network architecture. Firewalls provide a robust capability for displaying 

all inbound and outbound connections within an environment, as Figure 2 shows. 

	

Figure	2:	Firewall	Connection	Panel 

Each of these sensors allows network traffic communication protocols and traffic 

patterns to identify malicious patterns within network traffic, providing the ability to 

detect malicious network traffic as it happens. The security industry considers IDS to be a 

dying security tool due to its relative weakness in deciphering between good and bad 

traffic:“The bane of IDS has been the inability to weed out false positives and false 

negatives” (Wickman, 2003). Given this currently accepted state, the Labyrinth does 

employ IDS sensors. The Labyrinth has already created a level baseline, and all action 

within the Labyrinth are judged by the SIEM, not by the IDS or web proxy devices 

themselves. IDS logs collected by the SIEM are also held against a baseline to determine 

legitimate or suspicious behavior. 
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Figure	3:	Snort	logs	displayed	within	a	SIEM 

As displayed in the Snort collection logs within Figure 3, the Labyrinth employs 

additional agent variants designed to capture a holistic threat detection spectrum. The 

term holistic is most commonly used within the medical industry but is defined "as 

relating to or concerned with complete systems rather than with individual parts” 

(Merriam-Webster, 2016). Windows event logs, syslog data, endpoint registry, command, 

and resource usage events, firewall traffic metadata, netflow traffic metadata, and third-

party security appliance collection should all be collected, creating a board spectrum of 

information. The following graphics display a raw TCPDump traffic dump, Figure 4, 

which details network packets from and to a Linux system and Figure 5, displaying a 

Windows Security Log detailing a logon event.  

	

Figure	4:	TCPDump	Example	

	
Figure	5:	Windows	Security	Event	Log	



© 2016 The SANS Institute Author retains full rights. 

Nathaniel	Quist,	nathanielquist1@gmail.com	 	

Each of these data sources should be collected directly from the endpoint systems on 

which they were created, and delivered to the SIEM for further analysis. Each system 

within the Labyrinth can give critical information benefiting the network at large. Each of 

these unique sources needs to be collected by Labyrinth sensors to form a complete 

picture of an incident. Within the SIEM, each of the unique logs is displayed within a 

single pane of glass, as seen in Figure 6. This method of viewing network events gives 

the analyst a deeper understanding of events within a holistic approach to security events 

and offers correlative capabilities based on specific event types. 

	

Figure	6:	SIEM	printout	of	holistic	collection 

If an event alters the events designed to take place within the Labyrinth, the 

SIEM's capabilities to correlate known good actions against the recorded live actions, 

allowing the SIEM to accurately identify any delta between the whitelist and the live data 

sets. Should a change be recorded signifying the alteration of the Labyrinth, the SIEM 

will document the difference between the two states, as illustrated within Figure 7. The 

delta is instantly written to disk by services in the SIEM, and this information can be used 

to block the continued actions from the same unknown patterns. 

	

Figure	7:	Traffic	Detection	to	Blacklist 
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 Human analysts will be forwarded all post-analyzed data, allowing them to 

quickly determine the exact anomalous action that took place in the Labyrinth, thus, 

affording the analyst time to prepare and defend the production environment rather than 

react to incidents as they occur.  

3.1.1 Snort as a Log Source 

Snort is an industry standard IDS platform used throughout the network security 

industry. The usage of Snort within the Labyrinth functions in the same manner as Snort 

within an enterprise network. Network defenders use Snort to monitor traffic 

transmissions across the virtual network and employ Snort functionality within a 

distributed and load balanced architecture. The physical location of Snort sensors is 

architected into the foundation of the Labyrinth itself, with a sensor located in each of the 

Labyrinth’s subnets, as well as directly behind the Labyrinth’s boundary firewall. Each 

sensor will relay suspect network events to a dedicated Snort manager, which in turn 

confirms or denies the event and ultimately delivers a positive IDS alert to the 

Labyrinth’s SIEM appliance for further correlation. 

The configuration of a Snort platform follows industry standard guidelines. This 

example of Snort was created on a Linux Debian 7.0 system and used the command 'sudo 

apt-get install snort' to install the tool. See Figure 8. 

	

Figure	8:	Snort	Installation 
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Snort requires configuration for the environment to perform efficiently. The 

following configurations assist Snort in the task: the home network IP address range, 

known as HOME_NET, the Snort rule directories, as well as the Snort decoders, and 

Snort Preprocessors. The configuration of these settings is within the snort.conf file, 

located in the /etc/Snort directory. Figure 9 presents a graphic display of the Snort 

configuration file, beginning at the top of the snort.conf file. All configuration changes to 

the snort.conf file must be performed using Linux’s ‘nano’ or ‘vi’ editing tools. 

	

Figure	9:	Snort	Configuration	File	

Figure 10 displays the use of the editor to add the Snort Home Network under 

section 1 of the snort.conf file.	
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Figure	10:	Snort	Home/External	Network	Configuration	

Configuration of the path location for Snort Rules is seen within Figure 11. This 

is information is also found within section 1 of the snort.conf file.	

	

Figure	11:	Configuring	Snort's	Rule	Directory	

Figure 12 illustrates the configuration of decoders used by Snort is performed 

within section 2 of the snort.conf file. 
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Figure	12:	Assigning	Snort	Decoders	

The configuration of each preprocessor implemented by Snort is seen within 

Figure 13. Configuration of the preprocessors is located under section 4 of the snort.conf 

file.	

	

Figure	13:	Configure	Snort's	Preprocessors 

Once the Snort decoders and preprocessors are configured, enabling the syslog 

feature will allow for the passage of detected events to flow from Snort to the Labyrinth's 

SIEM. Located within section 6, illustrated in Figure 14, the addition of string ‘output 

alert_syslog: host:<SIEM IP>:514, LOG_AUTH LOG_ALERT' directly below the 

‘#syslog' header forces Snort to pass all its events to the SIEM via syslog. 
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Figure	14:	Configuring	Snort's	Syslog	Feed 

The base configuration of Snort does not include a full set of Snort signatures. 

Signatures are used by Snort to trigger alerts when malicious traffic passes across a 

network. The configuration of Snort includes custom Snort signatures used for highly 

configured settings, or the use of pre-generated signatures typically used in generic 

environments. For this example, I will demonstrate the process of configuring the Snort 

signatures using pre-generated rules pulled from the “Registered” version of Snort 2.9. 

The “Registered” version of Snort Rules v2.9 is an open source list of signatures, and it is 

available upon approval from Snort.org. This version does require an active membership 

in which to download the signatures. There is a community version containing an open 

source collection of Snort signatures, available to any user who wishes to stand up a 

Snort environment without requiring registration through the Snort website. There is also 

an additional Snort signature package, called “Subscription” signatures. Subscription 

signatures are only available through the purchase of this specific package. 

“Subscription” signature rule sets traditionally contain more targeted sets of signatures, 

focused up trending threats within the security industry, where the free packages such as 

the “Community” or the “Registered” signature sets contain only a basic listing of 

signatures.  
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Snort v3.0 does contain a listing of Community signature rules by default. 

However, to install the “Registered” or “Subscription” version of Snort signatures you 

will need to have a registration code, called an OinkCode, to download specific 

signatures. To download these signature rules, the user can directly download the rules 

via a terminal session from the Snort appliance using the following wget command. See 

Figure 15.  

	

Figure	15:	wget	call	for	Registered	Snort	Signatures 

After	the	user	has	downloaded	the	rule	set,	the	rules	need	to	be	added	to	the	

/etc/snort/rules	directory,	so	they	are	available	to	Snort.	The	command	to	

uncompress	and	move	the	rules	is	displayed	within	Figure	16.	

	

Figure	16:	Installing	Snort's	Registered	Signatures 

Now that Snort is configured, tuned, and has a complete set of signatures, the user 

can begin the process of starting Snort. Snort requires the use of the‘–s’ switch within the 

Snort start-up command to relay Snort Alerts via syslog to the waiting SIEM appliance. 

Figure 17 demonstrates what Snort looks like after supplying the Snort start-up 

command, ‘snort –c snort.conf –s –A fast.’  
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Figure	17:	Running	Snort 

Upon seeing this screen, Snort will not display further messages in the terminal 

screen, as all Snort events are written via syslog and sent to the Labyrinth’s SIEM. Snort 

messages are used as another layer of monitoring and detection, providing network data 

to the SIEM. Correlating this data against Known-Good baseline network data, the SIEM 

can identify acceptable and unacceptable connections inside the Labyrinth. Figure 18 

details a Snort event from Labyrinth system, 192.168.1.168, attempting to perform and 

RDP connection to another Labyrinth system, 192.168.1.235. 

	

Figure	18:	Snort	example	of	an	RDP	attempt 
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Since Snort is sending data to the SIEM, defenders can also witness the same 

event within the SIEM. See Figure 19. In this case, Snort had initially flagged the event 

as suspicious, and the SIEM has maintained that same correlation. 

	

Figure	19:	Listing	of	all	Snort	events	within	the	SIEM 

Diving further, it is inferred that the SIEM is capable of displaying both the raw 

Snort log itself, as well as any accompanying metadata values associated with such an 

event. Within Figure 20, the raw data is displayed, while Figure 21 shows the metadata 

that is associated with the collected raw data. 

 

Figure 20: Drill down on suspicious Snort event 
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Figure 21: Listing of all known metadata from the Snort event 

The power of integrating Snort data into the Labyrinth is that each packet within 

the Labyrinth can be collected and shipped to the centralized SIEM where it is integrated 

with data from other systems and network devices. The SIEM performs correlation 

against the Known-Good network traffic from the live network traffic, providing 

immediate understanding as to whether the Labyrinth itself generated that event, or if a 

third party performed the action, indicating malicious intent. If this example were live, 

the SIEM would flag the originating IP address, 192.168.1.168, and flag all traffic from 

that system as suspicious. The SIEM could also perform several automated actions 

against that system, such as capturing a live snapshot of memory to be used for forensic 

investigation, isolating and extracting a currently running process, and generating a list of 

user accounts currently logged into that system.  

	
3.2. Firewalls 

As in production environments, firewalls hold an important role within the 

Labyrinth. The Labyrinth assumes the role as the boundary firewall, serving as both an 

external and internal boundary for traffic entering and leaving the production network. 

Like edge firewalls within a production environment, the Labyrinth's firewall is subject to 

large quantities of connection attempts from the Internet like network or system 

vulnerability probing, potential large-scale denial of service attacks, and malformed 

packet attacks. Each attempt is designed to either compromise, overwhelm, or penetrate 

network boundary defenses. These types of events bombard external firewalls with 
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verbose quantities of data and consistently test the network’s firewall defensive 

capabilities. As Figure 22 shows, the Labyrinth is placed in the direct line of attack from 

these types of attacks and events. 

	

Figure	22:	Labyrinth	Placement 

The Labyrinth is not immune to these malicious patterns of traffic, and 

precautions need to be taken within the Labyrinth to ensure the configuration of the 

firewall is conducive to boundary firewall functionality. Standard industry practices for 

firewall administration and maintenance are requirements even within the Labyrinth. 

Requirements for these two separate firewalls include that industry standard firewall rule 

configurations must be configured, and that a distinct separation between true boundary 

firewall and the Labyrinth's boundary firewall must be employed. 

A network containing a Labyrinth technically consists of two boundary firewalls. 

A firewall housed within the Labyrinth, and the external firewall situated in front of the 

production network. The Labyrinth's firewall essentially mimics the functionality of the 

external firewall, and the Labyrinth's firewall should not be trusted to the same extent nor 

given the same firewall rules as the boundary firewall. The Labyrinth firewall’s design 

must allow for resetting, alteration or modification on a dynamic basis. This requirement 

forces the Labyrinth firewalls to protect the Labyrinth while not making any allowances 

for the production network. The Labyrinth’s virtual landscape is designed to be re-

deployed at a moment’s notice, if the Labyrinth’s firewall contained custom firewall rules 

for the production network, those rules would be removed when the Labyrinth was re-

deployed. Additionally, if the Labyrinth firewall is configured with the same rules as the 
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true boundary firewall, attackers could glean information detailing the layout of the 

production environment, or at least the types of services offered within the network. 

The Labyrinth contains several internal firewalls, which behave in the same 

manner as network segment firewalls within a production network. Segment firewalls are 

the traditional method for elevating a flat network topology into a multilayered topology. 

The Labyrinth should mimic a production network in almost every facet. By using a 

tiered topology, the Labyrinth maintains its deception, and "successfully causing the 

target to accept as true, a specific incorrect version of reality, with the intent of causing 

the target to act in a way that benefits the deceiver” (Rowe & Custy, 2007). Successful 

network deception will make the Labyrinth more believable to attackers and will assist 

defenders in the identification and analysis of an attacker’s actions. Figure 23 illustrates 

the flow of traffic through the Labyrinth, as data traverses each of the Labyrinth’s subnets 

before continuing its passage to the true boundary firewall. 

	

Figure	23:	Firewall	Data	Flow 

The internal firewalls within the Labyrinth are not expected to process large 

volumes of traffic. Only the virtual systems of the Labyrinth will be producing traffic, 

and in a static Labyrinth, this will be the only traffic crossing the network boundary. As 

such, these firewalls should not be the targets of heavy network traffic or the recipients of 
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a sustained bombardment of attacks. If the firewalls do experience this style of traffic,  

the Labyrinth will detect the event. The internal firewalls will not require a significant 

amount of resources to provide functionality and virtual firewall applications like those 

provided by the open-source providers, pfSense, IPFire, and OPNsense, provide many of 

the features required to process and detect any suspicious action. 

As stated above, the production network still maintains its boundary firewall, 

which employs the originally designed function of protecting the internal network. Even 

with the presence of the Labyrinth, the boundary firewall still maintains the functionality 

by blocking external communications, which could find a way through the Labyrinth. 

Due to the presence of the Labyrinth, the quantity of data the boundary firewall must now 

process should now be much smaller due to the Labyrinth detecting and blocking the vast 

majority of unwarranted communications. 

The Labyrinth also provides the boundary firewall an extra set of eyes which 

detect and prevent unwarranted activity. Due to the Labyrinth’s heavily censored and 

static environment, it can quickly and accurately uncover potentially malicious 

connections and forward any identified external IP addresses to the production boundary 

firewall for blocking. Any communication to or from that same external IP address will 

instantly be flagged as suspicious and blocked from communication for all production 

endpoints. In essence, the boundary firewall is given an early warning detection system 

via the Labyrinth, allowing for the real-time blocking of malicious traffic before endpoint 

systems connect to the suspicious external systems. 

3.3. Attaching Third Party Appliances 

The design of the Labyrinth contains several segmented networks used to alter the 

network topology and aid in the believability of the Labyrinth. These network segments 

provide defenders an opportunity to increase their data analytic surface area by 

connecting physical third-party security appliances. Third party security appliances can 

provide additional insight into both suspicious and legitimate network traffic traversing 

the Labyrinth by performing both inline and tapped network analytics pulled directly 

from the Labyrinth’s own network choke points. These devices include Anti-Virus 

detection sensors, web proxy sensors, deep packet analytic devices, as well as Intrusion 
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Detection and Prevention Systems. The appliances use the Labyrinth’s structured 

network as an intermediate monitoring zone, analyzing data before any suspicious traffic 

can pass through into the production network or exit out of the Labyrinth environment. 

This integration with the Labyrinth enhances the functionality of these appliances 

by providing a single routable pathway in which to collect data, and assists with the 

management of the appliances’ resources in a more structured and efficient manner. This 

efficiency is achieved by using physical NICs to pass network traffic out of the 

Labyrinth's hypervisor architecture to physical systems outside of the Labyrinth. The 

Labyrinth reduces its strain on performing constant network analysis on internal network 

traffic and allows for the security appliances to maintain a more granular analysis of 

network traffic entering and leaving the production environment. The diversion of traffic 

out of the Labyrinth is architected into the Labyrinth's network structure between the 

virtual network segments. The segments within the Labyrinth provide an avenue for 

network traffic to be routed out of the Labyrinth to the designated appliances. The 

network traffic pulled from the Labyrinth is then passed to the specified security 

appliance where the appliance is able to perform the designed functionality. Upon 

completion of the analysis, the security appliance sends the traffic back into the Labyrinth 

to complete its journey. This process is seen in Figure 24:  

	

Figure	24:	Connection	of	Third	Party	Security	Appliances 
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The capability of the Labyrinth to allow third-party appliances to receive traffic 

from and return traffic to the Labyrinth dramatically increases the security capabilities of 

the production network. By allowing for a technique called “distributed scanning" the 

Labyrinth saves resources and distributes the network’s monitoring load to several third-

party systems. The offensive equivalent of distributed scanning was explained within the 

whitepaper “Tracking Darkports for Network Defense” as, “scanning that occurs when 

multiple systems act in unison using a divide and conquer strategy to scan a network or 

host of interest” (Whyte, van Oorschot, & Kranaki, 2007). To use this same tactic as a 

defensive technique, the Labyrinth provides an avenue to perform a higher density of 

analytic operations, and a means for each packet crossing the Labyrinth to undergo 

multiple passes across several security sensors, the Labyrinth can bolster the detection 

capabilities against all traffic moving through the Labyrinth. Security appliances and 

applications can achieve a more granular analysis of all network traffic by segmenting the 

analytic requests and by allowing multiple stages of detection from the same analytic 

system across the length of the Labyrinth. 

It may be helpful to think of the style of defense provided by the Labyrinth being 

akin to the gatehouse within medieval castles. The gatehouse contained two doorways on 

either side of an enclosed hallway: the entrance being the castle gates and the exit being 

the portcullis. In the hallway between the two doorways was a long inspection point in 

which all persons and cargo awaited inspection before access to, or withdraw from, the 

castle. These hallways were holding zones used to inspect persons and cargo before 

allowed to continue the journey. Should something be suspected, the portcullis would 

drop, and the castle gates would close trapping whoever was inside the enclosed hallway. 

The same concept appears today in data centers and with their use of mantraps. All 

persons are required to successfully meet the authentication requirements before being 

allowed to enter or leave the data center. This concept is moved into the realm of the 

network as the Labyrinth behaves like the mantrap, or rather the castle gatehouse, 

inspecting, questioning, and authenticating all activities taking place within its 

boundaries. While it is impossible to prevent and stop all malicious attempts against a 

network, the Labyrinth provides the gatehouse architecture required to give every packet, 
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connection, session, and byte, an additional layer of inspection to ensure that best effort 

analysis of all data occurs. 

4. Test Labyrinth 

The purpose of the Labyrinth is to detect anomalous activity while still 

maintaining a deceptive trait of being a fully functional production network. Every action 

within the Labyrinth is weighed and measured against a baseline of the same type, 

comparing IP addresses against a legitimate listing of IP addresses, system processes 

weighed against a known good process list, and user actions weighed against the known 

actions of Labyrinth user accounts. The whitelists used as the control list are taken from 

the legitimate actions themselves before the Labyrinth has "gone live." Otherwise stated 

as all actions and baselines are taken from a Labyrinth before placed in its final position, 

the listing of IP addresses, processes, system and networking behaviors, and user 

activities represent all accepted and normal behavior for that entity. Gordon Fraser, 

author of ‘Creating a baseline of process activity for memory forensics,' explained the 

procedure for creating a process baseline involves, “needing a basic understanding of the 

core processes loaded by the operating system upon boot and the processes that are 

loaded when a user logs on” (Fraser, 2014). The recording of minutia processed by a 

system as a service starts presents the Labyrinth with the core foundation of the process 

baseline. This data then becomes available to compare future service starting operations 

to ensure the service executed as designed or if it had been modified to fulfill a separate 

purpose. 

To achieve the truly dynamic deception qualities, yet still maintain quantitative 

dataset requirements, all network traffic within the Labyrinth data is required to be pre-

recorded and looped to ensure continuous action. The Labyrinth recording needs to be 

recorded in a way so that it prevents the direct perception of recorded traffic. Imagine 

viewing a looped animated image, if the first sequence of frames and the last sequence of 

frames do not perfectly align the video will appear to ‘jump.' This same effect should be 

taken into account when a system or a user account refreshes their looped action. One 

technique employed to hide the jump effect within the looped action is to stagger the 

recorded tracks. By beginning each recorded endpoint system and each user account on a 
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separate cycle, the obscurity of network traffic will provide cover for a recording which 

contains a jumping event 

The actions of the Labyrinth itself, those being the systems, users, and processes, 

will not need an external stimulus to produce believable production value. Internal file 

servers will be called upon by virtual user accounts to deliver specified virtual data from 

requested virtual systems within the virtual network. Data will be deleted, created, and 

modified on all Labyrinth systems as it normally would within a standard environment. 

To ensure the deception of the Labyrinth, creating external requests should be made from 

specified Labyrinth systems to aid in the illusion should anyone witness the network 

traffic within the Labyrinth. Seeing external web traffic emanating from the Labyrinth 

itself will assist in maintaining the illusion. Recording and then replaying live collected 

network traffic from a production environment can assist in creating a more believable 

network profile. 

5. Labyrinth Analytics 

The analytics process within the Labyrinth falls into three categories: data 

collection, baseline comparison, and block list creation. These three categories make up 

the key aspects for how the Labyrinth will determine malicious actions. Figure 25 

illustrates this process. The log sources generate logs, which are collected and shipped to 

the SIEM. Inside the SIEM, a baseline comparison is performed against the live data to 

ensure validity. Finally, actions that do not match the baseline will be flagged and written 

to block lists. The SIEM sends these block lists to the appropriate security appliance 

responsible for blocking the suspicious traffic within the production environment. 

	

Figure	25:	Labyrinth	Process	Flow 

A series of network sensors and data collectors provide data collection through 

each endpoint system and network device within the Labyrinth. The hypervisor housing 

the Labyrinth is also capable of collecting data from the Labyrinth systems and shipping 
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these logs to the SIEM for further analysis. Endpoint systems will collect registry, 

process, and command-line activities; network devices will collect network traffic, 

session creations, and connection activities; and the hypervisor collects memory and hard 

drive resource requests from all virtual system resource requests. 

The SIEM compares each activity against a listing of known good actions for that 

entity category to determine the validity of the action. For example, comparing all current 

external IP address connections against the listing of known good external IP addresses 

connections. All collected entity fields follow the same procedure, system processes, 

services, user command-line and network activities, system registry alterations, 

application changes or configurations, and network flow statistics, among others. Any 

action performed within the Labyrinth, which does not contain a correlating entry on the 

accompanied whitelist, will be written to a blacklist. The blacklist will then have its 

contents delivered to their respective security appliance, via a scheduled task. The 

scheduled task is programmed to monitor for changes in the blacklist file. Upon recording 

a change, the scheduled task will initiate a script performing the action of delivering the 

contents to the appropriate security appliance. 

The following use-case will assist in describing the functionality of the Labyrinths 

analytics. A malicious actor scans a suspected production environment. They discover a 

susceptible endpoint. Upon successful exploitation of the endpoint, the actor downloads 

their Remote Access Tool (RAT) onto the exploited system, successfully hooking the 

system for continued operations into the network. Given these details, the following 

pieces of metadata would be collected by the Labyrinth and sent to the internal SIEM. 

1. The external IP address(es) performing the reconnaissance scan(s). 

2. The external IP address launching the exploit against the internal system. 

3. The exploit used to compromise the endpoint. 

4. Compromised user accounts used before, during, and after the exploitation. 

5. The external system housing the actor’s toolkit. 

6. The RAT itself, containing the following pieces of metadata: 

a) The malware name. 

b) The malware’s hash values: MD5, SHA1, and SHA256. 
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c) System registry modifications and configurations. 

d) Dropper files created by the RAT. 

e) Beacon data sent from the RAT to the Command and Control (C2) 

node. 

f) The IP address(es) of the C2 node(s). 

g) Specific beacon patterns of the RAT. 

7. All subsequent actions by the actors after the placement of the RAT to be 

identified following these same steps listed above, across other endpoints and 

network devices within the Labyrinth. 

With each attack against the network, specific metadata values can be gathered to 

identify the action. The Labyrinth allows for each of these values to be analyzed by the 

SIEM. The Labyrinth then delivers each value to an appropriate security appliance, 

designed to prevent internal production systems from falling victim to the same attack, 

which affected the Labyrinth. Following an attack of this nature, the Labyrinth can revert 

to a golden image. Meaning the Labyrinth is wiped clean of all malicious activities and 

reverted to a state free from the compromise that just encountered. All objects recovered 

from the compromise are still on record and activity being blocked by production security 

appliances, thus leaving the Labyrinth able to detect and identify the next attack on the 

network. 

6. Labyrinth Limitations 

The Labyrinth offers many beneficial features for detecting unknown activity by 

providing indicators of compromise to production security systems. However, the 

Labyrinth is not fully capable of protecting every aspect of the production network. 

Perhaps one of the greatest threats facing businesses today is compromised employee 

accounts. Employee account traffic is, by default, allowed to pass through the Labyrinth 

unhampered. The function of the Labyrinth is to detect direct action against the static 

environment, not to analyze traffic leaving the production environment. The Labyrinth 

does offer the capability to integrate with third-party security appliances to provide a 

deeper insight into the analysis of legitimate traffic passing across the Labyrinth 

threshold. The process of analyzing raw network traffic will remain in the same state as it 
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currently stands within traditional networks, and is subject to the speed and viability of 

the security products currently performing those actions. 

To expound upon how traffic can be sent undetected through the Labyrinth, the 

Labyrinth functions in the same manner as an NAT’ed environment, meaning that traffic 

originating from an internal location will have its origin IP address removed from the 

packet and replaced with an IP address designated by the NAT firewall. This traffic is 

allowed to cross an untrusted network without fear of exposing the systems or networks 

behind the firewall. The firewall will then await the return traffic from the packet's 

original destination. When presented with the return traffic, the firewall compares the 

packet session IDs, namely the packet’s ACK and SYN values. These values are unique 

to the return packet and will only be accepted by the firewall if they match. If the packets 

do meet the firewall's criteria, the firewall replaces the original the IP address given to the 

original outgoing packets with the original source IP address and the return packet is 

allowed to enter the internal network. 

The Labyrinth does not inspect the traffic originating from internal systems, and, 

as such, is not able to perform baseline operations against this traffic. The door is left 

open for potentially malicious traffic targeting user accounts to pass through the 

Labyrinth as if it requested by a legitimate means. Examples of these types of user-

focused attacks are, SpearPhishing, a legitimate user clicking on a malicious link from a 

received email, solutions regarding how to mitigate these attacks range from email and 

web filtering, payload analysis, Phishing awareness training, and network traffic analysis 

(Phishlabs, 2015). Waterhole attacks are another style of attack not inherently being 

blocked by the Labyrinth. Waterhole attacks happen when, “The attacker injects the 

malicious code by downloading it into the client system, once the client requests for a 

service from the web server” (Sarala, Kayalvizhi, & Zayaraz, 2014). Web proxy analysis 

tools would be a more logical choice to prevent this style of attack. Poor downloading 

habits are another user-based behavior which the Labyrinth will not be able to prevent. 

Proper user training and vigilant endpoint security monitoring tools would be more 

suitable tools in the prevention of malicious file downloads. Finally, physical access to 

user systems from a malicious actor is also not preventable by the Labyrinth, as the 
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Labyrinth cannot be knowledgeable of the actions from a user account performed by 

someone other than the account owner. 

7. Conclusion 

In review, the Labyrinth has the advantage of leveraging a static baseline analysis 

of pre-recorded actions to determine unwarranted actions against a network. The creation 

of baseline comes from each Labyrinth user action, process execution, and network 

connection through a series of scripted actions. Each system within the Labyrinth is a 

unique data source and feeds data to an internal SIEM. The SIEM compares all collected 

traffic against a baseline and determines the validity of the action based upon the 

successful matching of events. 

The Labyrinth allows for the integration of third-party security devices to provide 

a more granular analysis of legitimate ingress and egress traffic. The analytic processes 

performed within Labyrinth are subsequently reduced due to the integration, leaving 

additional resources available to the Labyrinth’s SIEM to perform more granular baseline 

comparisons across its environment. The SIEM further reduces analytic resource usage 

by not having to perform advanced User Behavior Analytics or Network Behavior 

Analytics, as the SIEM only requires the usage of baseline comparison analysis to detect 

anomalous activity. With the reduction in required processing, the Labyrinth's ability to 

detect anomalous activity is better equipped to discover malicious activity in real-time. 

With the detection of this malicious activity, the Labyrinth can automatically direct the 

activity to systems capable of preventing the traffic from affecting the production system. 
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Appendix 
	

The Labyrinth used for testing throughout this paper was created on a Dell 

PowerEdge R710 equipped with two, eight-core 2.53 GHz Intel Xeon Processors, 24GB 

RAM, 1 TB of hard disk space, and four NetXtreme II Gigabit Network Interface Cards 

(NICs). The hypervisor software running on the server is XenServer 7.0.1 64-bit, using 

Dell 6.4.0 BIOS. 

The Labyrinth is connected to the ISP gateway via a standalone modem, set to the 

bridge setting. This setting forces the modem to provide ISP connectivity but will not 

interfere with any traffic moving across the device by routing or altering any of the 

packets. The Labyrinth is then directly attached to the modem via a standard Cat5e cable 

and connected to the eth0 NIC. The Labyrinth connects to an integrated firewall/router 

device, via eth1, distributing network connectivity to a small home office. Finally, the 

management port, eth3, is connected to a standard 5-port switch, which allows for the 

control of the Labyrinth's hypervisor architecture via an external laptop. The management 

port is also connected to the firewall/router providing an avenue for the SIEM to send 

blacklisted IP addresses to the firewall. 

The hypervisor architecture used within the test Labyrinth is XenServer 7, which 

currently manages the following virtual systems and devices: 

Table	2:	Listing	of	Managed	Virtual	Machines	

	

I used two different SIEM deployments to test the functionality of the dynamic 

list creation for the Labyrinth. The Windows deployment used LogRhythm version 7.1.7 
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with no special modifications, and the Ubuntu deployment used an ELK stack 

(ElasticSearch, LogStash, Kibana) paired with the Watcher module. Both SIEM 

deployments functioned as expected after the creation of the appropriate whitelist 

baselines. At this point, there is no reason to say one SIEM is more apt in performing 

whitelist correlation functions as LogRhythm, ELK stack, Splunk, and IBM’s QRadar all 

support this functionality. 

To test the Labyrinth’s external IP detection functionality, I used a paid VPN 

proxy service connected via a mobile hotspot simulating external IP addresses attempting 

to connect to the Labyrinth. The IP addresses in which I connected were as follows: 
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Table	3:	Listing	of	Chosen	External	IP	Addresses	

	

	 Both	SIEM	appliances	were	successful	in	identifying	the	external	connections	

from	two	of	the	Labyrinth’s	data	sources,	the	external	firewall,	and	one	of	the	

Ubuntu	systems	configured	as	a	Web	Server.	Both	SIEM	solutions	successfully	wrote	

the	external	IP	addresses	to	their	respective	blacklists.	My	firewall	currently	uses	

iptables,	so	I	was	not	able	to	make	a	direct	direction	to	the	firewall	using	Window’s	

PowerShell.	Plink.exe	could	be	an	option	to	make	this	functional.	However,	my	

Ubuntu	machine	was	able	to	use	a	bash	script	to	execute	the	IP	Block	Script	via	a	

cron	job.	Scripts	for	Cisco	ASA,	Juniper,	and	Palo	Alto	firewalls	can	also	be	utilized	

via	the	command	line.	

	

Figure	26:	Block	IP	Bash	Script	


