
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

		
	

	

OS X as a Forensic Platform

GIAC (GCIA) Gold Certification

Author: David M. Martin, dmartin@mastersprogram.sans.edu
Advisor: Stephen Northcutt

Accepted:

Abstract

The Apple Macintosh and its OS X operating system have seen increasing adoption by
technical professionals, including digital forensic analysts. Forensic software support for
OS X remains less mature than that of Windows or Linux. While many Linux forensic
tools will work on OS X, instructions for how to configure the tool in OS X are often
missing or confusing. OS X also lacks an integrated package management system for
command line tools. Python, which serves as the basis for many open-source forensic
tools, can be difficult to maintain and easy to misconfigure on OS X. Due to these
challenges, many OS X users choose to run their forensic tools from Windows or Linux
virtual machines. While this can be an effective and expedient solution, those users miss
out on the much of the power of the Macintosh platform. This research will examine the
process of configuring a native OS X forensic environment that includes many open-
source forensic tools, including Bulk Extractor, Plaso, Rekall, Sleuthkit, Volatility, and
Yara. This process includes choosing the correct hardware and software, configuring it
properly, and overcoming some of the unique challenges of the OS X environment. A
series of performance tests will help determine the optimal hardware and software
configuration and examine the performance impact of virtualization options.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 2
	

Author Name, email@address

1. Introduction
The Apple Macintosh computer and its OS X operating system have become

increasingly popular among technical professionals since its introduction in 2001

(StackOverflow, 2016). It has steadily been gaining acceptance among computer forensic

analysts, who are now frequently seen utilizing the popular MacBook Pro laptops. Apple

hardware has always been one of its greatest selling points, boasting sleek, well-

engineered form factors and powerful, high quality components. Apple has also been an

early adopter of cutting edge technologies such as Firewire, Thunderbolt and USB-C.

While Macintosh hardware has been popular in the digital forensic community for some

time, OS X is a relative latecomer to the world of forensic software.

Many popular forensic suites such as Encase, FTK, and XWays only support

Windows, but others like Autopsy and BlackLight Forensics now offer OS X-native

versions. Most popular Linux forensic utilities like Bulk Extractor, Plaso, Rekall,

Sleuthkit, Volatility, and Yara will either run natively or can be compiled for OS X.

While some of these tools provide binaries or specific installation instructions for OS X,

many require the user to translate the dependencies and installation process. Rather than

engaging in this time-consuming process, many analysts choose to dual-boot a Mac

between OS X and Windows or even replace OS X entirely. Others use OS X as their

primary operating system, but run their forensic tools in a Windows or Linux virtual

machine. While this can be an effective and expedient solution, those users miss out on

much of the power of the Macintosh platform.

The aim of this research is to provide a guide for those who wish to create a

native OS X environment for computer intrusion forensics. This entails choosing the

correct hardware and software, configuring it properly, and finding solutions to some of

the unique challenges of adapting tools to the OS X environment. The forensic analysis

process generally consists of three stages: evidence acquisition; investigation and

analysis; and reporting results. Most forensic tools focus on the first two stages, as the

process of reporting results mostly depends on the analyst’s organization and writing

skills and is not tool-dependent. An effective forensics platform should provide tools that

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 3
	

Author Name, email@address

will allow an investigator to complete each of these stages as quickly and efficiently as

possible. Such a platform should be able to analyze all the kinds of evidence an

investigator is likely to encounter, including log files, disk, and memory images.

This guide will detail the process of configuring OS X 10.12 “Sierra” as a

forensic analysis platform. Beginning with the system setup and installation of software

dependencies, it will demonstrate the necessary steps to install a baseline of open-source

forensic tools. Along the way, it will highlight unique challenges presented by the OS X

environment and methods to overcome them. The guide will also explore the selection of

devices such as write blockers, drive docks and external drives that are used in forensic

response and how best to use them with Apple hardware. Several options for and the

performance implications of virtualization will be examined. It will also present the

results of hardware and software performance testing and options to optimize the

performance of the tested tools. By following the guide, a user will have built a fully-

functional, native OS X forensic analysis system.

2. System Setup
The first step in creating an OS X forensic environment is to install the software

necessary to conduct a forensic analysis. While many people will already have some of

these tools installed on their system, this guide will demonstrate the process using a

freshly installed copy of OS X. The same procedure should work equally well on a

system that has been in use for some time, assuming there are no configuration problems

that would prevent it. If a system has been installed for quite some time, particularly if

several failed installations or package conflicts have occurred, it may be best to install a

fresh copy of the OS. The system used for testing throughout the process was a 15-inch

MacBook Pro (Mid 2015) with a 2.8 GHz Core I7 processer, a 500GB PCIe M2 SSD and

16GB of RAM.

2.1. Developer Tools and Dependencies
Many familiar UNIX utilities such as dd, grep, awk, cut and sed come pre-

installed on OS X and require no further attention. Others, like the make, GCC, Perl, git,

strings, and libtool utilities that are required to compile and build UNIX software are not.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 4
	

Author Name, email@address

The Apple XCode development environment and the XCode command line tools provide

these capabilities and should be one of the first packages installed by any coder or

forensic analyst. XCode can be downloaded from the App Store. Once XCode is

installed, the command line tools can be installed with the command xcode-select –

install. Another piece of software required by several other tools is the Java Development

Kit (JDK). Users should download and install the latest OS X version from the Oracle

website. Once these development tools are installed, the next key piece of software to

install is a package management system.

2.2. Package Management
Perhaps the most frequently lamented feature missing from OS X is a package

management system like Debian’s Apt or RedHat’s Yum. While software installed from

the Apple App Store will work with little or no configuration and receive regular updates,

manually installed packages and programs compiled from source enjoy no such benefits.

None of the common open-source forensics tools are available through the App Store, so

users must find other mechanisms to install and maintain them. One option is to

download a precompiled OS X binary of a tool, if available, and if not, compile it from

source. At times this is the only option, but this approach has a number of drawbacks.

Plaso, for example, has a dizzying array of dependencies that must be installed before

even the pre-packaged version will work. Updating and maintaining standalone tools can

also be challenging, as it often requires manual effort and sometimes requires that

dependencies be updated manually.

To simplify this process, several groups have developed third-party package

management software for OS X, such as Fink, HomeBrew, and MacPorts. While Fink is a

promising project that aims to port the Debian Apt and Dpkg utilities and their packages

to OS X, it still lacks support for many of the required forensic packages (The Fink

Project, 2012). Homebrew and MacPorts offer similar functionality and packages but

take different approaches to providing them. Each has its own dedicated proponents and

many forensic analysts will likely already have one of these programs installed on their

Mac. Due to this fact, this guide will provide instructions for setting up available tools in

either system. It is possible to install both HomeBrew and MacPorts on the same

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 5
	

Author Name, email@address

computer, but doing so can result in conflicts or unpredictable behavior and is not

recommended.

2.2.1. MacPorts

MacPorts is descended from the Ports package manager for BSD, the Unix variant

on which OS X is based. It builds its own Unix directory structure under /opt/local/,

rather than relying on utilities provided by the operating system (Duling, Maibaum,

Barton, & Lang, 2014). While this results in some duplication, it does help avoid

difficult-to-diagnose version conflicts and prevents its tools from interfering with their

native counterparts. MacPorts’ website states that it currently includes 21,866 packages

in 84 categories, though that number includes multiple variants of some packages. As

with most package managers, root or sudo privileges are required to install or remove

packages. MacPorts is most easily installed by downloading and installing the correct

installer package from the macports.org website. MacPorts can be run by issuing the port

command, followed by the operation to be performed and the package(s) to which it

applies. The official MacPorts repository offers different major versions of some

packages, but not specific minor versions. As an example, users can choose between

Python 2.7 and 3.4, but not to install Python 2.7.6 rather than 2.7.13. Installing a specific

version of a package is somewhat complicated and requires checking out the correct

version from the MacPorts SVN repository. Users can create their own MacPorts

packages by creating a portfile, which is a simple TCL script that defines the properties

of the package. Portfiles can be stored in a local repository or submitted for inclusion in

the official repository. A complete set of MacPorts installation instructions for the

packages covered by this guide is available in Appendix G.

2.2.2. HomeBrew

HomeBrew is a package management system designed by a development team of

beer enthusiasts, as evidenced by its beer-related nomenclature and icons. Packages are

referred “formulae” and are stored in “kegs” in the “cellar” (/usr/local/Cellar). Users may

also ‘tap’ third-party repositories, called ‘taps’, which function much like Ubuntu PPA’s.

HomeBrew runs in user space, so root privileges are not required for package installation

or removal. Formulae installed with HomeBrew that would usually require root, function

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 6
	

Author Name, email@address

without it. This feature can occasionally be problematic when invoking tools that require

privilege elevation to perform tasks such as hardware access or capturing network traffic.

Homebrew installs its packages in its own directory structure in its “cellar” and creates

symbolic links in the /usr/local/bin directory. Unlike MacPorts, it will rely on system

provided dependencies, if available and those dependencies have not already been

installed through HomeBrew (McQuaid & Labinskiy). For example, HomeBrew

installed Python packages will use the built-in version of Python and will not install

HomeBrew’s version of Python as a dependency.

HomeBrew is called with the brew command followed by the operation to

perform and packages on which to perform the operation. Where multiple versions of a

formula are available they will be designated by <formula>@<version>, i.e. gcc@4.6.

The brew info <formula> will list useful information such as dependencies and optional

build parameters and is advisable to use prior to installing a formula. If the info page

indicates that there is a development version of a formula available, it can be selected

with the --devel flag. Users can easily create their own HomeBrew formulae from source

code tarballs using the brew create command without having to edit scripts or

configuration files. At the time of writing, there were 3661 formulae available through

HomeBrew (McQuaid & Labinskiy). It is a good idea to install the libtool, autoconf and

automake, and pkg-config packages immediately after installing HomeBrew.

A unique feature of HomeBrew is its Cask extension which manages applications

in the same way HomeBrew manages command line BSD utilities. Cask automates the

installation process of downloading a .dmg image, extracting the application within and

copying it to the apps folder. It also allows users to upgrade all Cask-installed apps with a

single command. Users can also easily create casks for apps not already found in the cask

repository. Casks are available for most commonly used OS X applications, including

web browsers, text editors, virtualization platforms and more. Cask can be installed with

the commands brew tap caskroom/cask and brew install brew-cask, after which the

brew cask command will function similarly to brew. A complete set of HomeBrew

installation instructions for the tools presented in this guide is included in Appendix H.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 7
	

Author Name, email@address

2.3. Python
The Python scripting language and its many 3rd party libraries provide the

foundation for many open source forensic tools. Unfortunately, it can also one of the

most temperamental pieces of software to install, upgrade and maintain in OS X. Python

3 has been available for several years, but several critical forensic libraries are not yet

compatible, so forensic users must continue to use Python 2. It is possible to install both

Python 2 and 3 under different aliases. OS X Sierra comes with Python 2.7.10 installed

by default. While this version is over a year old and three versions behind the current

2.7.13 release, it is compatible with all required packages and using it is a viable option.

Users also have the option of installing an updated, external Python version,

which is recommended by many Python experts. Many Python experts recommend

installing a more current version, but users should be aware doing so will result in an

additional version of Python installed on their system (Reitz & Schlusser, 2016). Users

cannot and should not attempt to remove the built-in Python installation from OS X, as

this is an integral part of the operating system. Users who choose to install an external

version of Python can either download the official installer from Python or install Python

through MacPorts or HomeBrew. Whichever option is chosen, configuring Python

properly in OS X can be a challenging and easily botched process.

Version Location SymLink Package Location

Native /System/Library/Frameworks

/Python.framework

/usr/bin/python /Library/Python2.7/

site-packages

Official /Library/Frameworks/Python.

framework

/usr/local/bin/python /Library/Frameworks/Pyt

hon.framework/Versions/

2.7/lib/python2.7/site-

packages

MacPorts /opt/Library/Frameworks/

Python.framework

/opt/local/bin/python /opt/local/Library/Frame

works/Python.framework

/Versions/2.7/lib/python2

.7/site-packages

HomeBrew /usr/local/Cellar/python/

2.7/Frameworks/

Python.framework/

/usr/local/bin/python /usr/local/lib/python2.7/

site-packages/

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 8
	

Author Name, email@address

 Table	1:	Python	Installation	Locations

Python installations have three primary components: the main framework

directory, a symbolic link to the main Python executable and the site-packages directory

(Python Software Foundation, 2016). The locations of these three components depending

on how Python is installed and can create additional complexity when installing modules

when multiple versions are present. Another potential issue with multiple Python

installations is that scripts starting with #!/usr/bin/python rather than #!/usr/bin/env

python may use the wrong Python interpreter and lack required dependencies.

The System Integrity Protection (SIP) feature introduced in OS X 10.11 “El

Capitan” complicated the process of installing 3rd party modules for the native OS X

Python. SIP prevents the user, even running as root, from accessing the /System/ directory

where Python is installed. This is usually not a problem, as packages are installed in the

root-writable /Library/ directory, but a few packages come pre-installed in the protected

/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/ python/

directory and cannot be modified. Attempting to install packages that depend on these

packages, or that attempt to remove or modify them can result in difficult-to-diagnose

errors (mfripp, 2016). It can also cause some package installations to fail irretrievably if

they attempt to write to the documentation directory, which is within the protected

System directory. A full list of these packages is included in Appendix B.

Users who wish to install an external Python version can download the current

version of Python from the python.org website as an installer package. This will install an

additional Python instance and set it as the default Python interpreter by giving it

precedence in the $PATH order. This will also install the Python setuptools package and

the PIP package manager required to install other packages. Unlike older versions, the

Python 2.7.13 installer no longer shares the /Library/Python-2.7/site-packages directory

with OS X Python, which had tended to create package conflicts (Python Software

Foundation, 2016). The MacPorts version of Python is provided by the python27

package. Following installation, the MacPorts versions of Python must be set as default

using the command port select –set python python27. Homebrew provides both Python

and PIP in the python package. It should be noted that HomeBrew installs the Python

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 9
	

Author Name, email@address

executable symlink to /usr/local/bin/, so it will conflict with the installer version. In any

case, users should install only one external version of Python.

2.3.1. PIP

PIP is the officially recognized package manager for Python and allows users to

install and maintain the many libraries required by forensic tools (Python Packaging

Authority, 2016). While some Python packages are available through HomeBrew or

MacPorts, most are not and those that are tend to be older and less frequently updated

than their PIP equivalents. For the sake of consistency, it is best to install Python

packages from PIP rather than MacPorts or HomeBrew. The official Python installer and

HomeBrew both install PIP with Python by default. To install PIP using OS X-native

Python, use the legacy sudo easy_install pip command. In MacPorts, PIP can be installed

from the package py27-pip and, like Python, should be selected with the port select –set

pip py27-pip command.

Once installed, PIP can install, remove and update Python packages, including

itself. Unlike most package managers, it does not resolve dependencies, except those that

are explicitly specified by a package creator. PIP can install from the online Python

Package Index (PyPI), version control systems like Git or SVN, and local distribution

files. PIP’s default is to download a package from PyPI unless a specific URL or file path

is specified. PIP can also install a specific version of a package as designated by the

syntax pip install <package_name>==<version_number> (Python Packaging

Authority, 2016). Using PIP to install packages under the native OS X and MacPorts

versions of Python requires root permissions, while the installer and HomeBrew versions

can (and generally should) be run as a non-privileged user. Another feature that Pip lacks

is an upgrade-all option, but the command pip list --outdated | cut -d' ' -f1 | xargs pip

install –upgrade provides the same functionality.

2.3.2. Virtualenv

Virtualenv is a Python tool that can create and manage multiple, self-contained

Python environments, each with a different set of packages installed. Virtualenv works by

installing a new version of Python, Pip and Setuptools into a separate directory for that

environment (Reitz & Schlusser, 2016). When a virtual environment is active, any

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 1
0 	

Author Name, email@address

Python scripts will use that environment’s version of Python and Pip will install packages

into that directory structure. Virtualenv can be particularly useful for managing tools with

complex dependencies, some of which may need to be installed from source. It is also the

best option to avoid SIP problems when using PIP with the native OS X Python. As the

Plaso documentation notes, using Pip in the native OS X Python without Virtualenv is

highly inadvisable and will damage the site-packages directory (Metz, Gudjonsson, &

White, Plaso Wiki, 2016). Virtualenv is also helpful for managing tools that rely on

conflicting versions of the same dependency.

Like most Python packages, Virtualenv and its companion utilities in

VirtualenvWrapper can be installed using PIP. If using the native OS X version of

Python, the --ignore-installed option must be given or the installation will fail due to the

system-protected six package. After configuration options are added to the .bash_profile

file (see Appendix G or H), virtual environments can be created with the mkvirtualenv

<environment_name> command. This will also activate the environment, which can

thereafter be activated with workon <environment_name>, deactivated with the

deactivate command and removed with rmvirtualenv <environment_name> (Reitz &

Schlusser, 2016).

2.4. Virtualization
Virtualization is a useful and popular technique for digital forensics. It provides

the ability to run

multiple operating

systems, isolate

potentially dangerous

software for analysis and

the ability to revert

changes when things go

wrong. While

virtualization provides many benefits, the tradeoff is performance and resource usage. A

virtual machine can only be given a portion of the host operating system’s resources and

requires additional storage space for each virtual container. There are many types of

Figure	1:	Virtualization	vs.	Containerization	(Raj,	Chelladhurai,	&	Singh,	2015)

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 1
1 	

Author Name, email@address

virtualization available, but the two explored for use in an OS X forensic platform are

containerization and desktop virtualization.

2.4.1. Containerization

Containerization or micro-virtualization is an application virtualization technique

that creates an isolated environment for an application. Unlike traditional virtualization,

which virtualizes hardware in which guest operating systems run, containerization

virtualizes operating systems in which guest applications run. Provisioning lightweight

containerized environments is quicker and those environments consume less system

resources for virtualization overhead. The most popular containerization platform is

Docker, which is available for multiple platforms, including Linux, Windows and OS X

(Raj, Chelladhurai, & Singh, 2015). Docker can be downloaded and installed from its

website or installed from HomeBrew Cask. When Docker is running, a whale icon will be

visible in the OS X status bar. A Dockerized application and its environment are referred

to as an image and a running instance of an image is referred to as a container.

Dockerfiles are simple configuration scripts that describe the environment to be

built inside the Docker image. A dockerfile can import existing Docker images in much

the same manner as Python imports libraries. Most import an existing operating system

image, such as Ubuntu. Dockerfiles can also specify commands to be run, set

environment variables and manipulate the filesystem inside the container. Each container

contains an entrypoint that specifies the default program to be run when the image is

activated. The entrypoint can be overridden with a command line parameter. For

example, if the entrypoint into an Ubuntu image were bash, docker run ubuntu would

start bash inside the container, while docker run ubuntu top would start Ubuntu’s top

utility instead. Containers can either be interactive, or run a single process within the

container, then exit. Docker images contain a virtualized filesystem that can be mapped

to interact with the host filesystem with the docker run -v <host_path>:

/<container_path> option (Raj, Chelladhurai, & Singh, 2015). The host system

directories Docker allows to be mapped to the container are controlled through the

preferences menu in the Docker status bar app, but by default include /Users, /Volumes,

and /tmp.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 1
2 	

Author Name, email@address

The simplest way to use a Docker image is to find it on the Docker Store, which

contains thousands of prebuilt Docker images, including many forensic tools. Once the

correct image is located, it can be installed using the docker pull <image_name>

command. Alternately, some tools will include a dockerfile in their distribution source

code that can be used to create a Docker image. To do so, change to the directory

containing the dockerfile and run the command docker build -t <image_name> -f

<dockerfile_name>.dockerfile. Either method will add the image to the local Docker

repository, from where it can be run with the command docker run <image_name>.

2.4.2. Desktop Virtualization

There are three main desktop virtualization platforms available for OS X:

Parallels, VMWare Fusion, and Oracle VirtualBox. The free, open-source VirtualBox

provides largely the same features as its commercial counterparts, though it tends to be

somewhat less polished and user-friendly. A 2015 performance comparison showed that

while VirtualBox lagged badly in graphics-intensive tasks, it performed similarly in most

CPU-bound tasks, except multi-core integer operations. VirtualBox excelled at disk I/O,

both within the Virtual Machine (VM) and between the host and guest operating systems,

outperforming both commercial platforms. However, it performed poorly in transfers to

and from attached USB3 devices (Tanous, 2015). There are a few excellent pre-built

Linux-based forensic VM’s available on the internet, including SANS’ SIFT Workstation

and Carnegie Mellon CERT’s ADIA. These VM’s provide a forensic environment with a

wide selection of forensic tools configured and ready to run. The latest version of the

SIFT Workstation available at the time of writing was used for all performance

functionality comparisons (SANS Institute, 2014).

Attaching evidence items to Virtual Machines can be accomplished in several

ways. All the virtualization platforms allow certain folders to be shared between the host

and guest operating system. If working with evidence files, such as disk or memory

images, this is the easiest and recommended option to get evidence into the VM. USB

devices can also be passed directly into VM’s though there is some performance

overhead, particularly in VirtualBox. There is currently no support for directly attaching

thunderbolt devices to VM’s in any of the platforms, though Parallels can attach

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 1
3

Author Name, email@address

partitions from any physical device. Parallels provides the easiest to use interface for

attaching non-USB physical devices like IDE, SATA and ThunderBolt hard drives,

though the support is limited to individual partitions. Virtualbox allows access to raw

devices using the VBoxManage internalcommands createrawvmdk -filename

"</path/to/file>.vmdk" -rawdisk </dev/disk#> command. In this case, the vmdk file

essentially serves as a symbolic link to the actual device and can be attached to the

VirtualBox VM. VMWare Fusion provides similar functionality through the

/Applications/VMware\ Fusion.app/Contents/Library/vmware-rawdiskCreator

create /dev/disk# fullDevice <full-path-to-.vmwarevm-file>/<filename>.vmdk ide

command. In order to attach the vmdk, however, the user must show the contents of the

.vmwarevm package and directly edit the .vmx file inside to add the following lines:

- ide1:0.present = "TRUE"
- ide1:0.fileName = "<filename>.vdmk"

- ide1:0.redo = ""
If an ide1:0 is already present in the file, the identifier must be changed to prevent a

conflict.

2.4.3. Performance Comparison

The performance impact of virtualization varies somewhat in both scope and

significance depending on the task being performed, the level of virtualization and the

platform being used. A ten-second task that takes 10% longer in a VM will be nearly

imperceptible, where the same level of overhead can be considerably more significant for

a multi-hour process. To test the impact of virtualization on performance, several

common forensic tools were run in each environment with the same parameters and

timed using the GNU ‘time’ utility. A fully updated copy of the SIFT Workstation VM

was used for the Parallels, VMWare and VirtualBox testing. The VM’s and Docker were

each given 4 cores and 8GB of RAM of the test system’s 8 virtual (4 physical) cores and

16GB RAM. The first test was running the Volatility imageinfo plugin against an 8GB

Windows Server 2008 memory image. The htop system monitoring tool indicated that

this task was using only a single processor core. The second test ran the multi-threaded

bulk extractor tool against the same memory image. The third ran a Yara scan, looking

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 1
4 	

Author Name, email@address

for the string “foo” in a large directory tree of source code (also multi-threaded). Finally,

the Plaso mft (single-thread) and winxp (multithreaded) parsers, were run against the xp-

tdungan hard drive image of SANS 408 fame.

 As expected, the native OS X versions of the tools were nearly always the fastest,

particularly in the case of Yara, which was more than three times faster than its nearest

competitor. The one exceptions were that running Plaso with only the single mft parser

was 7-8% faster in two of the VM’s and Bulk Extractor was 1% faster in VirtualBox.

Performance was mostly similar between the virtualization platforms, though there were

some notable outliers, such as Volatility in VMWare and Yara in VMWare and

VirtualBox. Docker performed comparably to the traditional virtualization platforms

though it was usually one of the slower performers. The full test results are included in

Appendix F.

3. Evidence Acquisition
The first step in the forensic process is to acquire a reliable copy of the evidence

to be analyzed. This evidence can take several different forms, as can the acquisition

process. In some cases, particularly in the case of memory captures, the evidence must be

acquired directly on the subject system. In other cases, such as hard drives from desktop

computers, the analyst’s computer may be used to acquire the evidence. In order to

preserve the integrity of the evidence, an analyst must be able to make an exact copy of

the original evidence and be able to prove that it is identical. They must also ensure that

they do not alter the original evidence in the process of acquisition and analysis. The

standard procedure for acquiring disk-based evidence is to connect the drive using a

write-blocking device, then make an exact copy using imaging software. A hash

“fingerprint” of the disk image should be computed at the time of acquisition so that the

integrity of the image can be confirmed. Any subsequent analysis should be performed on

the image, rather than the original evidence.

The simplest format for disk images is the raw or “dd” format, which is simply a

bit-by-bit copy of the original. Any metadata like hash values, date/time information, and

notes must be stored in an external file. There are also several dedicated formats for

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 1
5 	

Author Name, email@address

forensic images, including SMART, Expert Witness (EWF) and the Advanced Forensic

Format (AFF). Newer versions of several formats such as the EWF2/Ex01format are

beginning to gain acceptance. Others, like the under-development AFF4 format promise

significant improvements over previous formats, but are not yet widely supported by

open source tools. (Schatz, 2016) Currently, the most common of these is the EWF

format, also known by its extension of E01. It was first introduced by the EnCase

forensic suite and is now considered the de facto standard for forensic images. Due to its

prevalence and nearly universal support in forensic tools, this was the default image file

format used for all testing.

3.1. Hardware
The most common and reliable way to image a hard

disk is to attach the evidence drive to the analysis system

through a hardware write blocker, then write the image to an

external hard drive. Modern hard drives are quite large and

obtaining a forensic image can require a significant amount

of time, so imaging performance is a major concern. One

unique feature of Macintosh computers is their early

adoption of I/O technologies like FireWire, Thunderbolt and

USB C. These interfaces have always been on the cutting

edge of performance, but support among write blockers and

external drive docks has lagged. The generation of Mac Pro

desktops and MacBook Pro laptops available at the time or

writing supported only two types of ports: USB 3.0 and

Thunderbolt 2. The most recent generation of MacBooks

has abandoned both types of ports in favor of a single port

that supports both the USB-C and Thunderbolt 3 standards.

Unfortunately, none of these new MacBooks were available

for testing.

Table 2 lists the theoretical maximum speed of

various interfaces, though real-life performance will vary

Interface Speed

(MB/s)

USB 2.0 60

USB 3.0 525

USB 3.1

(USB-C)

1250

FireWire 400 49

FireWire 800 98

ThunderBolt 1250

ThunderBolt 2 2500

ThunderBolt 3 5000

SATA 150

SATA 2 300

SATA 3 600

PCI Express

3.0 x4 (M2)

3938

Table	2:	Maximum	Interface	Speeds	
(Wikipedia,	2016)	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 1
6 	

Author Name, email@address

0 500 1000 1500

Local	SSD	(M2)

External	HDD	USB3

External	RAID	…

External	SSD	USB3

External	SSD	…

HDD	Thunderbolt	Dock

HDD	USB3	Dock

SSD	Thunderbolt	Dock

SSD	USB3	Dock

Disk	I/O	(MB/s)

Write

Read

based on a number of factors. For example, while ThunderBolt 3 is capable of transfers

up to 5 GB/s, there are currently no flash storage devices capable of that high a transfer

rate. Additionally, the overhead imposed by communications protocols will reduce the

real throughput achievable through a given interface. In any data transfer, the actual

speed will be determined by the slowest interface in the transfer. Baseline transfer speeds

for each tested device were measured using the BlackMagic Disk Speed Test tool

available in the OS X App Store. To test imaging speed, the 16GB xp-tdungan image was

restored to a source drive and imaged to a file on the destination drive using the dd utility

with a 1MB block size.

3.1.1. Write Blockers

While OS X allows drives to be mounted in read-only mode, hardware write

blockers are more reliable, as they prevent data from being written to a drive regardless

of how it is mounted. These devices connect an IDE or Serial ATA hard drive to the

analysis computer through one of several interfaces. Most write blockers support USB,

FireWire and eSATA connections, though the speed of these interfaces varies depending

on the age of the device. The performance of two commonly used write blockers was

tested during this research. The WiebeTech Forensic Ultradock v5 is the current model

distributed with the SANS FOR408 course and supports USB 2.0/3.0, FireWire 400/800

and eSATA interfaces. An older Tableau Digital T35 that was tested has the same ports

available, except that its USB interface only supports USB 2.0. With only USB 3 and

Thunderbolt 2 ports available on the MacBook Pro, testing the other write blocker ports

required adapters. Apple makes FireWire 800 to ThunderBolt adapters, while several

aftermarket adapters are

available to convert eSATA to

either ThunderBolt or USB 3.

There were no

appreciable performance

differences between the two

write blockers when connected

through USB 2.0 or FireWire

Figure	2:	Measured	Read/Write	Speed	of	Tested	Devices

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 1
7 	

Author Name, email@address

800, interfaces. The eSATA interface on the Tableau, however, was limited to

approximately 125MB/s, indicating that it likely uses the older SATA 1.5GB/s interface.

It was not used in further testing as this was significantly slower than either source drives

tested. The tests quickly illuminated the limitations of spinning hard drives, particularly

the slower 5400 rpm drives, which were limited to approximately 100 MB/s. The

Western Digital Blue WD10EZEX (7200rpm/64MB cache) drives used for testing had a

maximum transfer rate of approximately 190MB/s read and 180MB/s write. By

comparison, an older Western Digital Green WD10EADS (5400rpm/32MB Cache) drive

was limited to approximately 100MB/s read and write. The Samsung 850 EVO SATA III

SSD’s used for testing demonstrated a 500MB/s read speed and 400MB/s write speed in

tests. Overall, the tests indicated that both write blockers were limited to approximately

225MB/s, even when reading from the faster SSD, but during actual imaging, their speed

was closer to 200MB/s. There were minor variations between tests, but the USB 3 and

eSATA (with both adapters) interfaces performed nearly identically with a throughput of

approximately 200 MB/s. The USB2 and FireWire 800 interfaces were predictably

limited to approximately 40 and 80 MB/s, respectively and should not ordinarily be used,

as better options are available.

3.1.2. Destination Media

The second part of the imaging equation is the destination drive to which the

image file is written. Relatively small images can be stored on the internal SSD if enough

space is available. This approach makes use of the extremely high transfer speed of the

internal PCIe M2 SSD used in the MacBook. The downside to this approach is that the

data is being written to the same drive housing the operating system and applications,

which will be competing for I/O bandwidth. A more common approach, that is often

necessary when imaging the 500GB – 2 TB hard drives commonly encountered, is to

image to an external drive. In the field, it can be convenient to use a portable hard drive

as an imaging destination. These drives are typically self-contained, reasonably durable

and powered from either the USB or ThunderBolt cable, eliminating the need for

additional power adapters. Three different external hard drives were tested: a 2TB

Western Digital USB3 HDD and two ruggedized LaCie ThunderBolt drives, one SSD

and one portable HDD RAID0. The other common approach, which is the standard in

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 1
8 	

Author Name, email@address

situations where the destination drive must be checked into evidence for long-term

storage, is to connect an internal SATA hard drive to an external dock. A HighPoint

RocketStor Thunderbolt drive dock and a StarTech USB3 drive dock were tested with

both SSD and HDD destination drives.

The external USB hard drive was easily the slowest of the lot, with its transfer

speed limited to the neighborhood of 85 MB/s, likely due to its use of a 5400 RPM HDD.

The ThunderBolt HDD RAID was somewhat faster with transfer rates around 135 MB/s.

The external SSD boasted read speeds of 380 MB/s and write speeds of 250 MB/s.

Speeds between the two hard drive docks were identical for the HDD at 180 MB/s and

similar for the SSD, between 210 and 220 MB/s. While the MacBook’s internal M2 SSD

boasted raw speeds of nearly 650MB/s read and 400MB/s write. However, its speed

during imaging tests fluctuated wildly from less than 10MB/s to over 200MB/s and was

eliminated from testing due to its inconsistent performance. The other drive combinations

were consistently limited to the slowest of the two devices, though most combinations

were at or near the write blockers’ 200MB/s limit. The full test results are contained in

Appendix B.

3.2. Software
The third piece of the imaging process is the software used to create and later

mount a forensic image. While the image creation process is the same regardless of the

filesystem on the device being images, the ability to mount images is dependent on file

system support. In many cases, the same tools or suites of tools are used both for

collecting and mounting images and libraries for the necessary filesystems must be

installed first. OS X has full read-write support for its native HFS/HFS+ filesystems, as

well as FAT, FAT32, and exFAT. It also provides Read-only support for the Windows

native NTFS, but does not support the ext2/3/4 or xfs filesystems used in common

Debian and RedHat-based Linux distributions. The OSXFuse compatibility framework

provides kernel drivers and user-land interfaces that allow developers to add support for

other filesystems (Fleischer & Larsson, 2016).

OSXFuse can be installed from MacPorts with the package name osxfuse, though

it lacks the legacy MacFuse compatibility layer required by some filesystems like

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 1
9 	

Author Name, email@address

ext2/3/4. MacPorts users requiring this feature must install OSXFuse from the installer on

the GitHub page. Homebrew users can install from the osxfuse Cask, which does install

the MacFuse compatibility layer. Users who require support for the ext2/3/4 filesystems

will need to download and install the fuse-ext2 driver from the project’s GitHub page.

The driver and its dependencies must be compiled using the instructions there, as no

package installer is yet available on GitHub. There are, indeed, several ext filesystem

drivers for Fuse and it is easy to become confused about which to install. The older

Ext2fuse and Ext4fuse packages available in both HomeBrew and MacPorts are not

actively being maintained and neither works with OS X 10.11 and above. Similarly,

Fuse-xfs is not available through either package manager, but does provide an OS X

installer on the Fuse-xfs SourceForge page. It is currently in Alpha and provides read-

only support for xfs volumes. The Fuse Ntfs-3g driver provides read-write support for

NFTS, but its performance is limited due to fact it can only access block devices and not

raw devices. It is available under the names ntfs-3g for MacPorts and

homebrew/fuse/ntfs-3g for HomeBrew. Users who need frequent read-write access to

NTFS or ext filesystems are probably best off investing in a commercial solution such as

those offered by Tuxera or Paragon. Unfortunately, there is no commercial driver for

XFS at this time.

3.2.1. Image Creation

The original and still widely used UNIX imaging utility is Dd, which is built into

OS X and will make an identical, bit-by-bit copy of any addressable UNIX filesystem

object and write it to a given destination. Since all UNIX variants, including OS X

address disks as filesystem objects, Dd can be used to copy a drive or partition to another

drive or an image file in another location. In OS X, disks are listed by the naming

convention of /dev/diskXpY, where X is the disk number and Y is the partition number,

both starting from 0. The diskutil list command will display information about the

attached disks and partitions. The dd command takes two parameters: an input file or

device specified by if= and an output file or device specified by of=. Users may also

designate several options, the most important of which is the block size, specified by bs=.

As it directly accesses hardware devices, Dd must be run with root privileges. This also

allows the utility to overwrite important data if the wrong output destination is specified,

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 2
0 	

Author Name, email@address

so great care should be taken when running this command. Once invoked, Dd does not

show any indication it is running except a blinking cursor until it completes its copy. At

that time, it will display the number of bytes transferred, the amount of time taken and

transfer rate in bytes/second. To compute a hash for later verification at the same time,

some command line gyrations are in order. The command dd if=/dev/rdisk1 bs=1m

conv=sync,noerror | tee evidence.001 | md5sum > evidence.md5 will send one copy of

the drive to the image file and another to the Md5sum utility, which will compute the

md5 hash and write it to a separate file when the image completes.

The original dd utility has since been improved for forensic use by Dcfldd and

Dc3dd. Dcfldd was created by the U.S. Department of Defense Computer Forensics Lab

as a fork of the original Dd utility. Dcfldd supports a variety of useful forensic features

such as computing hashes on the fly, splitting output files and displaying a progress

indicator while imaging. The downsides of Dcfldd are that it is based on an older version

of Dd and has difficulty handling corrupted source drives (Forensics Wiki, 2015). Dc3dd

is a patch to Dd released by the Department of Defense Cyber Crime Center (CD3). Like

Dcfldd, Dc3dd supports piecewise hashing without an external utility, split output and

progress indicators. Unlike Dcfldd, it is based on the most current version of Dd and

updated whenever Dd is (Forensics Wiki, 2015). Both Dcfldd and Dc3dd are easily

installed with no additional configuration from the HomeBrew or MacPorts packages of

the same names.

Dd and its descendants can only create uncompressed, raw disk images. Creating

EWF images requires either the open source Libewf library and its Ewfacquire utility or

the older, closed source command line version of FTK Imager. Libewf is available from

both package managers, and includes the Ewf-Tools suite, that includes ewfacquire as

well as ewfmount, ewfinfo and ewfverify. Libewf is still under active development and

while the latest stable version is 20140608, newer experimental versions are available on

GitHub (Metz, libewf Wiki, 2016).

While it was expected that all three utilities would perform similarly, the first set

of performance data indicated that all the utilities performed surprisingly poorly.

Regardless of the interface, block size or even compression level, Dd, Dcfldd, Dc3dd,

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 2
1 	

Author Name, email@address

and Ewfacquire all transferred at approximately 32 MB/s, below even USB 2.0 speeds. A

mention of a “raw disk” device in the manpage for the Hdiutil hard disk utility proved the

key to this behavior (HDIUTIL(1), 2016). Raw disk devices are not displayed by

Diskutil, Mount or other monitoring utilities, but can be addressed with the rdiskXpY

notation. When an rdisk device was specified as the source, all the Dd variants and

Libewf tools performed as expected.

The various imaging programs were tested using a variety of different options to

determine the most efficient settings. The most important from a performance perspective

was the block size, particularly with Dd. With its default setting of a 512-byte block, Dd

could only image at 3.6MB/s, where at the optimal setting of a 1MB block, it ran at

nearly 190MB/s. Dcfldd and Dc3dd default to larger block sizes, which results in faster

speeds, but it is still worthwhile to set them to use the optimal 1MB block size, as can be

seen in Appendix D. Ewfacquire was somewhat slower than the Dd variants, even when

creating uncompressed E01 files, possibly due to the fact it computes the image’s md5

hash during creation. Ewfacquire performance was optimized with values of 8192 or

more sectors at once (-b). Compression had a significant effect on Ewfacquire

performance, with “fast compression” reducing the maximum imaging speed from

166MB/s to 67MB/s, while reducing the image size from 16GB to 7GB. Selecting “best

compression” reduced the imaging speed to 16MB/s, while only reducing the image size

by 100MB. These results are contained in Appendix E.

3.2.2. Image Mounting

Some forensic tools will work directly on an image file without the need to mount

it, however many others require the image to be mounted on the examiner’s computer. It

is always advisable to mount images in read-only mode to preserve the integrity of the

evidence. Most forensic examiners are familiar with the classic mount –t <filesystem> –

o ro,loop image.001 /mnt/destination syntax for mounting Dd images in Linux. In OS X,

while the mount command is present, it lacks the loop and offset options and does not

properly mount dd images. The exception to this rule is that dd images of single partitions

containing filesystems supported by OSXFuse drivers can be mounted with the mount –t

<filesystem> image.001 /path/to/mountpoint command. OS X users can mount images

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 2
2 	

Author Name, email@address

containing natively supported filesystems (HFS+/FAT/NTFS) with the hdiutil attach –

readonly -imagekey diskimage-class=CRawDiskImage /path/to/image.001 command.

The –readonly flag should be omitted for ntfs volumes, as this will produce an error

saying the volume is already read-only. Hdiutil will mount any partitions in the dd image

containing readable filesystems under the standard OS X /Volumes/<Volume Name>

directory (HDIUTIL(1), 2016).

Mounting EWF images is a two-step process that involves first mounting the ewf

container, then the filesystems contained on the partitions within. The most common way

to mount an E01 image is with the ewfmount utility which should have already been

installed as part of the libewf package (Metz, libewf Wiki, 2016). The syntax ewfmount

<image> <destination> will mount the image in the specified directory as raw (dd)

image file named “ewf1”. This file can be treated in the same manner as any other dd

image and mounted using hdiutil or mount, as appropriate.

4. Investigation and Analysis
4.1. Disk Forensics

One of the best known open-source forensic tools is The Sleuth Kit (TSK) suite of

command line utilities. TSK can directly access and analyze forensic images and the

filesystems within, even those the host operating system does not support. Its tools can be

run individually, scripted or integrated into larger forensic tools. Many other common

Unix forensic tools rely on TSK, so it should be installed even if the user does not plan to

use TSK tools directly. It can be installed from the sleuthkit package in either package

manager. The Python bindings for TSK should also be installed from the PIP pytsk3

package. One of the most common TSK utilities is mmls, which is used to show partition

information for a disk image file and is often necessary for disk mounting. Others include

ifind and icat to locate and extract files, fls to list filenames and directories and jls to list

the filesystem journal. A great more documentation is available on the TSK website

(Carrier, The Sleuth Kit, 2017).

Another commonly used and valuable open-source forensic tool is Bulk Extractor,

which is designed to parse image files looking for interesting strings and patterns. Unlike

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 2
3 	

Author Name, email@address

TSK, it is filesystem agnostic and instead parses the image in 16MB pages, looking for a

variety of patterns, including IP and email addresses, domain names and URL’s. It

exports the artifacts it finds to a series of “feature files” in the specified output directory

(Garfinkel, 2015). It is installed from bulk_extractor package using either package

manager. MacPorts installs afflib and libewflib as dependencies and enables EXIF, AFF,

and EWF support by default. HomeBrew users should have exiv2, afflib and libewf

installed and set the --with-exiv2, --with-afflib, and --with-libewf flags during installation.

The Java-based BEViewer GUI is also included with the package and can be run from the

command line with the beview command. It can be used to view the feature files output

by Bulk Extractor, which can also be launched directly from the GUI. There is no Bulk

Extractor Docker container available in the Docker Store, but several dockerfiles to build

one are available on GitHub.

VirusTotal’s Yara pattern matching utility is an indispensable tool for any

forensic analyst who needs to look for malware. It uses rule files that define a set of

binary and text strings and the conditions in which those strings appear, then searches for

files that match the defined parameters. Yara does not have image file support, so the

evidence image must be mounted before Yara is run against it (Alvarez, 2015). Yara can

be installed from either package manager under the package name yara. Its Python

bindings can be installed from the PIP yara-python package, but the openssl package

must be installed prior to installing the Python bindings. HomeBrew users must also use

the command ln -s /usr/local/Cellar/openssl/<version>/include/openssl

/usr/local/include/ to create a symbolic link or the yara-python install will fail. An

updated Docker container for Yara is available from the Docker store and can be installed

using docker pull blacktop/yara.

The only free, open-source forensic suite and one of only two suites available for

OS X is Autopsy, which is based on the Sleuth Kit. There is no packaged release for OS

X yet, but it can be installed from source. Several 3rd party plugins for Autopsy are

written for Windows only, and as such, incompatible with OS X. Like many tools, there

are no OS X-specific instructions provided, and several installation pitfalls were

discovered that are not mentioned in the documentation. Autopsy requires the latest Java

8 JDK, which should be installed and the Apache Ant compiler, which can be installed

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 2
4 	

Author Name, email@address

from HomeBrew or MacPorts. The JAVA_HOME and JDK_HOME variables must be set

to /Library/Java/JavaVirtualMachines/jdk<version>.jdk/Contents/Home/ in the shell

prior to installation. Autopsy depends on the SleuthKit, which should have already been

installed and HomeBrew’s version of SleuthKit can be used to build Autopsy.

Unfortunately, MacPorts’ version of SleuthKit does not provide the necessary Java

bindings for Autopsy, so they must downloaded be built from source. The latest TSK

source code should be downloaded and decompressed, then the TSK_HOME variable

should be set to the directory where it is decompressed. TSK should be set up using the

standard ./configure … make … make install procedure. The SleuthKit Java bindings

should then be built, but the existing file bindings/java/dist/Tsk_DataModel.jar must first

be deleted. The correct bindings may then be built by running ant dist-PostgreSQL from

the bindings/java subdirectory of the source code. Once these prerequisites are met, the

Autopsy source code can be downloaded and decompressed into the directory of choice,

keeping in mind that it will run from that directory. Autopsy can be built by running the

command ant from its root directory after which executing ant run from the same

location will launch the GUI (Carrier, Autopsy, 2016).

4.2. Timeline Analysis
The Plaso/Log2Timeline tool revolutionized the intrusion forensics field by

extracting timestamps a multitude of forensic artifacts and organizing them into a single

timeline. It is often one of the first steps in forensic analysis and can help to identify areas

that need closer manual inspection and provide context about the origin and significance

of artifacts. The two main Plaso utilities are log2timeline.py, which parses image files or

directory structures for artifacts and outputs them to a binary .plaso file and psort.py that

converts .plaso file to more human-readable formats (Metz, Gudjonsson, & White, Plaso

Wiki, 2016). While this tool is extremely valuable, its many included parsers and

staggering list of dependencies make it notoriously tricky to install. A current Docker

image for Plaso is available from the Docker store and can be installed with the command

docker pull jbeley/plaso.

The recommended first step to install Plaso is to download the latest OS X release

.dmg image from the Plaso Github page. Once mounted, the install.sh script should be

run from the root directory of the mounted image. This script will install 54 Python

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 2
5 	

Author Name, email@address

dependencies and Plaso from OS X .pkg installers. The .pkg installers are designed to

work with the native OS X Python and will install to its site-packages directory. Users

using a different Python installation must install Plaso and its dependencies using a

different method. Due to a version conflict with the untouchable system version of

pyparsing, Plaso must be run using the log2timeline.sh and psort.sh scripts rather than

their .py versions. This does cause one notable issue in that the .sh scripts cannot parse

file paths containing spaces, even when quoted or escaped. Attempting to run

log2timeline after the installer script completes will produce an error complaining that it

is missing the pefile module. It is tempting to use pip to install the missing libraries, but

the Plaso OS X troubleshooting page includes a dire warning against using PIP outside of

a virtual environment. This warning is confirmed by the fact that installing pefile through

pip will cause Plaso to no longer recognize IPython, which was installed by the script.

Users can choose to install the missing dependencies from source or abandon the release

installer altogether and install using pip inside a virtual environment.

Installing the dependencies inside of a virtual environment presents a different

challenge, as the .pkg files will only install the packages in the system default site-

packages directory. Instead, the dependencies and Plaso itself must be installed using

PIP. After much trial and many errors, the package dependencies in the installer script

were translated into PIP dependencies. These were combined with the requirements.txt

file on the Plaso GitHub page to create a comprehensive requirements.txt file, which is

contained in Appendix I. Once inside the virtual environment, simply issue the command

pip install –r requirements.txt to install a working version of Plaso and its dependencies.

Once installed, Plaso can be run against an image file with the command

log2timeline.py <output_file.plaso> </path/to/image>. If no parsers are specified with

the --parsers <parser1,parser2…> flag, Plaso will choose the best meta-parser, such as

win7 or winxp based on the operating system detected. It is both more efficient and

reliable to specify a list of parsers for the artifacts of interest, rather than rely on the

autodetection, which may be incorrect. The selected meta-parser also may not include

important artifacts, such as the Master File Table (MFT). A list of parsers can be

displayed with the --parsers list command (Metz, Gudjonsson, & White, Plaso Wiki,

2016).

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 2
6 	

Author Name, email@address

By default, log2timeline runs in “kitchen sink mode”, which recursively parses

the image, including volume shadow copies, and attempts to parse every file with the

specified parsers. This approach can be highly inefficient, as demonstrated by the mft

parser, which will parse every file in a filesystem, attempting to determine if it is the

MFT. This file is only ever located in the root directory of NTFS volumes, so the parser

will needlessly check hundreds of thousands of files. A better approach from a

performance standpoint is to limit the search using the -f <filter_file> option. A filter file

contains a list of paths to search and can make use of regular expressions and reserved

words like {systemroot}. A filter file is included in Appendix J that will locate the

majority of Windows artifacts, including the registry, event logs, MFT and prefetch files.

The performance advantages of this approach are evident as a test running the mft and

winxp parsers against the xp-tdungan image unfiltered took 54:35 and extracted 548,429

events. Processing the same image using the winxp and mft parsers using a filter file took

4:42 and found 647,857 events.

 After log2timeline has created a .plaso file, the psort.py utility can be used to

convert the binary file into multiple formats, including several varieties of CSV, JSON,

XLSX and SQLite. Users with Elasticsearch or TimeSketch installed can output to those

platforms as well. The problem with many of these formats is that they can be difficult to

search due to the large number of artifacts often extracted by Plaso. Long-time

log2timeline users will remember importing CSV files into the timeline color template

that exceeded Excel’s maximum number of lines. Psort allows users to limit the number

of results by filtering on a time range or other criteria, as described in the Plaso

documentation (Metz, Gudjonsson, & White, Plaso Wiki, 2016).

 TimeSketch provides a convenient front end to view, sort and visualize

log2timeline data. It requires the Elasticsearch and PostgreSQL databases be installed.

HomeBrew provides both these packages, though users should install the

elasticsearch@2.4 package rather than the standard Elasticsearch 5.1, as it is not yet

supported. MacPorts users can install postgresql96, but must download and install

Elasticsearch from its website. After installing both programs, follow the installation

steps in Appendix G. Note that the configuration files will be in different locations

depending on how the packages were installed. HomeBrew users can start both as

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 2
7 	

Author Name, email@address

background services with the brew services start <service> command, while MacPorts

users must start them manually. Once both databases are configured and running, run pip

install psycopg2 timesketch to install TimeSketch and its Python dependencies. This

should be installed into the same virtual environment used for Plaso. Once TimeSketch is

installed, the command tsctl runserver -h 0.0.0.0 -p 5000 will start the server on port

9000. The interface can be accessed through a web browser at http://localhost:5000.

While the TimeSketch server is running, psort.py will have the option to write directly to

the TimeSketch database with the -o timesketch flag. Users can also upload CSV or

JSON files through the interface or set TimeSketch to automatically ingest and process

.plaso files, though this requires additional configuration.	

4.3. Memory Forensics
Memory forensics is a critical and growing discipline, particularly when intruders

have covered their tracks on disk or used “diskless” malware that resides only in

memory. There are currently two open-source memory analysis platforms in common

use, Volatility and Rekall, and this guide will cover both. Rekall is a newer Python-based

memory forensic framework that has been gaining in popularity. It should be installed

with pip install rekall in its own virtual environment, which will also install all its

dependencies. Once installed, its syntax is rekal --plugin <plugin> -f <memory-image>.

Rekall includes a GUI frontend, which can be installed from the PIP rekall-gui package.

The GUI can be launched with the rekal webconsole --browser --worksheet

</path/to/empty/dir> command (Google, 2015).

Volatility is the more established of the two products and is available as either a

Python package or a standalone executable for OS X. The standalone version can be

downloaded from the Volatility Foundation website and will run with no additional

configuration after it is unzipped. It is advisable to add the executable to a location in the

path and change its name to an easier-to-type filename than its default

volatility_2.6_mac64_standalone. It is also available from both package managers and

PIP, though the version provided by PIP is over four years old and should be avoided.

Once installed, Volatility can be executed with (vol.py|volatility_standalone) <plugin>

-f <memory_image>. There are many plugins available for exploring various memory

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 2
8 	

Author Name, email@address

artifacts, but the first to run is invariably the imageinfo plugin that determines the

memory profile, which is needed by many plugins (Volatility Foundation, 2016).

Volatility does not have include a GUI, however a third-party GUI called

VolUtility is available on GitHub. As it depends on Volatility, it should be installed into

the same virtual environment where the Python version of Volatility is installed. It also

requires MongoDB to be installed and running. MongoDB is which is available from the

HomeBrew package mongodb, but MacPorts users must install it manually. The

VolUtility source code should be downloaded and unzipped to a directory of choice and

pip should be used to install the requirements.txt file in the root directory of the package.

Once the dependencies are installed, VolUtility can be started using a script in the

VolUtility root with the syntax manage.py runserver <ip>:<port> and accessed through

a web browser (kevthehermit, 2017).

5. Conclusion
Configuring open-source forensic tools in OS X can be a delicate and time-

consuming process, but if done correctly, it can be a worthwhile one. Virtualization has

its place in forensics, but for involved and time-consuming tasks, the performance

advantages of running tools in the native operating system are significant. Given the

power of the MacBook hardware and the OS X operating system, it seems to a waste to

only use it as a VM host while conducting forensic analysis. As has been demonstrated

herein, it is possible to possible to install a set of forensic tools natively in OS X that will

handle nearly any forensic task. The hope is that this guide will provide a resource for

forensic analysts who use OS X and eliminate much of the guesswork and frustration

from the configuration process.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 2
9 	

Author Name, email@address

References
Akcan, A. (2017, January 17). fuse-ext2. Retrieved from GitHub:

https://github.com/alperakcan/fuse-ext2

Alvarez, V. M. (2015). Yara Documentation. Retrieved from Read the Docs:

http://yara.readthedocs.io/en/latest/gettingstarted.html

Berggren, J. (2016, December 19). TimeSketch. Retrieved from GitHub:

https://github.com/google/timesketch/wiki

Carrier, B. (2016, March 15). Autopsy. Retrieved from GitHub:

https://github.com/sleuthkit/autopsy

Carrier, B. (2017). The Sleuth Kit. Retrieved from

http://wiki.sleuthkit.org/index.php?title=Help_Documents

Duling, M., Maibaum, M. A., Barton, W., & Lang, C. (2014). MacPorts Guide. Retrieved

12 16, 2016, from https://guide.macports.org

Fleischer, B., & Larsson, E. (2016, February 16). OSXFuse. Retrieved from GitHub:

https://github.com/osxfuse/osxfuse/wiki

Forensics Wiki. (2015, March 14). Dcfldd. Retrieved from

http://www.forensicswiki.org/wiki/Dcfldd

Garfinkel, S. L. (2015, March 23). Bulk Extractor User Manual. Retrieved from

http://digitalcorpora.org/downloads/bulk_extractor/BEUsersManual.pdf

Google. (2015). Rekall Manual. Retrieved from http://www.rekall-

forensic.com/docs/Manual/overview.html

Hardy, A. (2016, August 15). fuse-xfs. Retrieved from SourceForge:

https://sourceforge.net/projects/fusexfs/

HDIUTIL(1). (2016, June 13). BSD General Commands Manual.

kevthehermit. (2017, January 2). VolUtility Wiki. Retrieved from GitHub:

https://github.com/kevthehermit/VolUtility/wiki

McQuaid, M., & Labinskiy, N. (n.d.). HomeBrew Documentation. Retrieved December

16, 2016, from https://git.io/brew-docs

Metz, J. (2016, September 11). libewf Wiki. Retrieved from GitHub:

https://github.com/libyal/libewf/wiki

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 3
0 	

Author Name, email@address

Metz, J., Gudjonsson, K., & White, D. (2016). Plaso Wiki. Retrieved January 1, 2017,

from GitHub: https://github.com/log2timeline/plaso/wiki

mfripp. (2016, April 25). How to Use pip After the OS X El Capitan Upgrade. Retrieved

from StackExchange: http://apple.stackexchange.com/questions/209572

Python Packaging Authority. (2016). Pip Docs. Retrieved December 16, 2016, from

https://pip.pypa.io/en/stable/

Python Software Foundation. (2016). Python Packaging User Guide. Retrieved

December 16, 2016, from https://packaging.python.org/current/

Raj, P., Chelladhurai, J. S., & Singh, V. (2015, September 14). Learning Docker.

Birmingham, UK: Packt. Retrieved January 1, 2017, from Jaxenter:

https://jaxenter.com/containerization-vs-virtualization-docker-introduction-

120562.html

Reitz, K., & Schlusser, T. (2016). The Hitchhiker’s Guide to Python. Sebastopol, CA:

O’Reilly Media.

SANS Institute. (2014). SANS Investigative Forensics Toolkit Documentation. Retrieved

January 7, 2017, from SANS DFIR: http://sift.readthedocs.io/en/latest/

Schatz, B. (2016, October 26). AFF4: The New Standard in Forensic Imaging and Why

You Should Care. OSDFCon 2016. Reston VA: Basis Technology.

StackOverflow. (2016, December). Developer Survey Results 2016. Retrieved from

StackOverflow: http://stackoverflow.com/research/developer-survey-

2016#technology-desktop-operating-system

Tanous, J. (2015, September 4). 2015 VM Benchmarks: Parallels 11 vs. Fusion 8 vs.

VirtualBox 5. Retrieved from TekReview: https://www.tekrevue.com/2015-vm-

benchmarks-parallels-11-vs-fusion-8

The Fink Project. (2012, November 11). Fink - Documentation. Retrieved December 16,

2016, from http://www.finkproject.org/doc/index.php?phpLang=en

Volatility Foundation. (2016, December 29). Volatility Wiki. Retrieved from GitHub:

https://github.com/volatilityfoundation/volatility/wiki

Wikipedia. (2016, December 20). List of Device Bit Rates. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/List_of_device_bit_rates

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 3
1 	

Author Name, email@address

Appendix A – Package Support
Package

Latest
Version

Port
Name

Port
Version

Brew
Name

Brew
Version PIP name

PIP
version

Python 2.7.13 python27 2.7.13 python 2.7.13 N/A N/A

pip 9.0.1 py27-pip 9.0.1
installed
w/python 9.0.1 pip 9.0.1

virtualenv 15.1.0
py27-
virtualenv 15.1.0 N/A N/A virtualenv 15.1.0

Virtualenv
wrapper 4.7.2

py27-
virtualenv
wrapper 4.7.1 N/A N/A

virtualenv
wrapper 4.7.2

dcfldd 1.3.4-1 dcfldd 1.3.4-1 dcfldd 1.3.4-1 N/A N/A

dc3dd 7.2.641 dc3dd 7.2.641 dc3dd 7.4.646 N/A N/A

libewf 20140608 libewf 20140608 libewf 20140608 N/A N/A
libewf
Python
Bindings 20160802 N/A N/A N/A N/A

libewf-
python 20160802

osxfuse 3.5.4 osxfuse 3.5.3
cask
osxfuse 3.5.3 N/A N/A

Fuse
NTFS-3G 2016.2.22 ntfs-3g 2015.3.14 ntfs-3g 2016.2.22 N/A N/A

Afflib 3.7.15 afflib 3.7.4 afflib 3.7.15 N/A N/A

Sleuthkit 4.4.0 sleuthkit 4.3.1-5 sleuthkit 4.3.1 N/A N/A
Sleuthkit
Python
Bindings 20161109 py27-tsk 20150111 N/A N/A pytsk3 20161109
Bulk
Extractor 1.5.5

bulk_extra
ctor 1.5.5_1

bulk_extra
ctor 1.5.5_1 N/A N/A

Yara 3.5.0 yara 3.4.0_1 yara 3.5.0 N/A N/A
Yara
Python
Bindings 3.5.0 py27-yara 3.4.0_1 N/A N/A

yara-
python 3.5.0

Volatility 2.6 volatility 2.5 volatility 2.6 volatility 2.1

VolUtility 1.1 N/A N/A N/A N/A N/A N/A

Rekall 1.6.0 rekall 1.0.2 N/A N/A rekall 1.6.0
Rekall
GUI 1.5.0 N/A N/A N/A N/A rekall_gui

1.5.0.post
4

Plaso 1.5.1
log2timeli
ne 0.65_6 N/A N/A plaso 1.5.2

TimeSketc
h 2016.7 N/A N/A N/A N/A

timesketc
h 2016.7

Elastic
search 2.4.2 N/A N/A

elasticsea
rch@2.4 2.4.2 N/A N/A

PostgreS
QL 9.6.1

Postgresql
96 9.6.1 postgresql 9.6.1 N/A N/A

MongoDB 3.4.1 N/A N/A Mongodb 3.4.1 N/A N/A

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 3
2 	

Author Name, email@address

Appendix B – Python System Packages

- altgraph-0.10.2
- bdist_mpkg-0.5.0
- bonjour_py-0.3
- macholib-1.5.1
- matplotlib-1.3.1
- modulegraph-0.10.4
- numpy-1.8.0rc1
- py2app-0.7.3
- pyOpenSSL-0.13.1
- pyparsing-2.0.1
- python_dateutil-1.5
- pytz-2013.7
- scipy-0.13.0b1
- setuptools-18.5
- six-1.4.1
- xattr-0.6.4
- zope.interface-4.1.1

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 3
3 	

Author Name, email@address

40

41

82

82

183

225

183

220

211

211

91

88

89

91

90

89

168

172

166

174

163

194

183

191

182

186

179

195

170

188.6

162

178

163

197

176

190

179

184

174

182

184

204

184

197

179

204

176

168

168

170

172

170

184

193

172

188

184

196

0 50 100 150 200 250

Appendix C – Imaging Performance
	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 3
4 	

Author Name, email@address

			Destination	
	
	
	
	
	
	
	
Source	 R

aw
 R

ea
d

R
at

e
(M

B
/s

)

 E
xt

er
na

l H
D

D
 U

SB
3

 E
xt

er
na

l S
SD

 U
SB

3

 E
xt

er
na

l H
D

D

 T
hu

nd
er

bo
lt

 E
xt

er
na

l S
SD

 T
hu

nd
er

bo
lt

H
D

D
 U

SB
3

D
oc

k

SS
D

 U
SB

3
D

oc
k

 H
D

D
 T

hu
nd

er
bo

lt
D

oc
k

 S
SD

 T
hu

nd
er

bo
lt

D
oc

k

HDD - USB2 40 40 40 40 40 40 40 40 40

SSD - USB2 41 40 40 40 40 40 40 40 40

HDD - USB3 183 91 168 183 170 176 184 176 184

SSD - USB3 225 88 172 191 188 190 204 168 193

HDD - FW800
to Thunderbolt 82 82 82 82 82 82 82 82 82

SSD - FW800

to Thunderbolt 82 82 82 82 82 82 82 82 82

HDD - eSATA

to USB3 183 89 166 182 162 179 184 168 172

SSD - eSATA

to USB3 220 91 174 186 178 184 197 170 188

HDD - eSATA

to Thunderbolt 183 90 163 179 163 174 179 172 184

SSD - eSATA

to Thunderbolt 211 89 194 195 197 182 204 170 196

	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 3
5 	

Author Name, email@address

Appendix D – DD Performance - Block Size

Appendix E – EWF Performance (Buffer Size and Compression)

512 1	KB 2	KB 4	KB 8	KB 16	
KB

32	
KB

64	
KB

128	
KB

256	
KB

512	
KB

1	
MB

2	
MB

4	
MB

8	
MB

16	
MB

32	
MB

64	
MB

dd 3.6 7 13.8 25.9 46.3 74.7 110 146 168 165 169 184 183 159 148 142 140 139

dcfldd 3.5 108 108 92.2 108 108 108 108 108 108 108 182 177 156 145 140 138 137

dc3dd 3.6 7 14 26 48 78 116 148 171 172 179 192 190 185 183 184 180 180

0

50

100

150

200

250

16 32 64 128 256 512 1024 2048 4096 8192 1638
4

3276
8

uncompressed(16GB) 45 74 99 124 142 124 142 142 153 166 166 166

fast	compression(7GB) 25 47 69 65 67 64 65 65 65 64 61 60

best	compression(7GB) 16 16 16 16 16 16 16 16 16 16 16 16

0

20

40

60

80

100

120

140

160

180

uncompressed(16GB) fast	compression(7GB) best	compression(7GB)

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 3
6 	

Author Name, email@address

Appendix F – Virtualization Performance

0:00.0 7:12.0 14:24.0 21:36.0 28:48.0 36:00.0

volatility	- imageinfo

bulk	extractor

yara

Plaso	– mft

Plaso	- winxp

volatility	-
imageinfo bulk	extractor yara Plaso	– mft Plaso	- winxp

SIFT	Paralells 3:04.0 0:34.0 0:35.3 3:54.6 21:37.0

SIFT	VirtualBox 4:04.0 0:32.1 1:19.0 3:33.7 20:34.0

SIFT	VMWare 12:16.0 0:36.9 1:45.0 3:32.3 20:46.0

Docker 5:26.0 0:39.9 0:38.9 4:02.9 32:53.0

Native 2:04.0 0:32.5 0:08.2 3:51.0 10:58.0

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 3
7 	

Author Name, email@address

Appendix G – MacPorts Install Process

1. Install OS X
2. Install XCode

a. Install from Apple AppStore
3. Install XCode

a. xcode-select --install
4. Install Oracle JDK 8

a. Download from
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html

5. Install MacPorts
a. Download from https://www.macports.org/install.php
b. sudo port selfupdate

6. Install Dev Tools
a. sudo port install libtool autoconf automake pkg-config

7. Install Python/PIP
a. If using native OS X Python

i. sudo easy_install pip
b. If using installer Python

i. Download from https://www.python.org/downloads/
c. If using MacPorts Python

i. sudo port install python27 py27-pip py27-readline
ii. sudo port select --set python python27

iii. sudo port select --set pip pip27
8. Install VirtualEnv/VirtualEnvWrapper

a. If using native OS X Python:
i. pip install –ignore-installed virtualenv virtualenvwrapper

ii. Add to ~/.bash_profile:
export WORKON_HOME=~/.virtualenvs
source /usr/local/bin/virtualenvwrapper.sh

b. Else, if using installer Python:
i. pip install virtualenv virtualenvwrapper

ii. Add to ~/.bash_profile:
export WORKON_HOME=~/.virtualenvs
source /Library/Frameworks/Python.framework/ Versions/2.7/bin/
virtualenvwrapper.sh

c. Else, if using MacPorts Python:
i. sudo port install py27-virtualenv py27-virtualenvwrapper

ii. sudo port select --set virtualenv py27-virtualenv
iii. Add to ~/.bash_profile:

export PATH=/opt/local/bin:$PATH
export WORKON_HOME=~/.virtualenvs
source /opt/local/bin/virtualenvwrapper.sh-2.7

9. InstallOSXFuse
a. sudo port install osxfuse

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 3
8 	

Author Name, email@address

b. OR Download installer from https://osxfuse.github.io/
10. Install dcfldd/dc3dd

a. sudo port install dcfldd dc3dd
11. Install libewf/afflib

a. sudo port install libewf afflib
b. sudo pip install libewf-python

12. (Optional)	Install	Fuse	NTFS-3G
a. sudo	port	install	ntfs-3g

13. (Optional) Install Fuse-EXT2
a. Download from https://github.com/alperakcan/fuse-ext2/releases
b. Follow directions on GitHub – must make several tools from source

14. (Optional) Install Fuse-XFS
a. Download from https://sourceforge.net/projects/fusexfs/
b. Install package

i. Unrecognized developer – must allow to run from security menu
15. Install SleuthKit (TSK)

a. sudo port install sleuthkit
b. sudo pip install pytsk3

16. Install BulkExtractor
a. sudo port install bulk_extractor

17. Install Yara
a. sudo port install yara
b. sudo pip install yara-python

18. (Optional) Install Autopsy
a. sudo port install apache-ant
b. edit ~/.bashrc and add the following lines:

i. export
JAVA_HOME=‘/Library/Java/JavaVirtualMachines/jdk<version>.
jdk/Contents/Home/’

ii. export
JDK_HOME=‘/Library/Java/JavaVirtualMachines/jdk<version>.jd
k/Contents/Home/’

c. Download SleuthKit from: https://github.com/sleuthkit/sleuthkit/releases
d. cd ~/Downloads
e. tar –xzvf sleuthkit-<version>.tar.gz
f. cd sleuthkit-<version>
g. export TSK_HOME=’~/Downloads/sleuthkit-<version>’
h. ./configure
i. make
j. make install
k. cd bindings/java
l. rm dist/Tsk_DataModel.jar
m. ant dist-PostgreSQL
n. Download Autopsy from https://github.com/sleuthkit/autopsy/releases
o. mkdir ~/Tools (you can place Autopsy in whatever directory you want)
p. mv ~/Downloads/autopsy-<version>.tar.gz ~/Tools

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 3
9 	

Author Name, email@address

q. cd ~/Tools
r. tar -xzvf autopsy-<version>.tar.gz
s. cd autopsy-<version>
t. ant
u. ant run

19. Install Plaso (Log2Timeline)
a. mkvirtualenv plaso (will also activate the virtualenv)
b. Create a ‘requirements.txt’ file from Appendix I
c. pip install -r requirements.txt

20. Install TimeSketch
a. plaso virtualenv should be activated, if not:

i. workon plaso
b. Install Postgre SQL

i. sudo port install postgresql96-server
ii. sudo port select --set postgresql postgresql96

c. Configure and Launch PostgreSQL
i. sudo mkdir -p /opt/local/var/db/postgresql96/defaultdb

ii. sudo chown postgres:postgres
/opt/local/var/db/postgresql96/defaultdb

iii. cd /opt/local
iv. sudo su postgres -c '/opt/local/lib/postgresql96/bin/initdb -D

/opt/local/var/db/postgresql96/defaultdb'
v. edit /opt/local/var/db/postgresql96/defaultdb/pg_hba.conf to add:

local all timesketch md5
vi. sudo port load postgresql96-server

vii. sudo -u postgres createuser -d -P -R -S timesketch
viii. sudo -u postgres createdb -O timesketch timesketch

d. Install Elasticsearch
i. Download latest Elasticsearch 2.X (doesn’t yet work with 5.X)

from: https://www.elastic.co/downloads/past-releases
ii. Copy to directory of choice

iii. tar –xzvf elasticsearch-2.<version>.tar.gz
e. Start Elasticsearch

i. /<elasticsearch_directory>/bin/elasticsearch
f. Install and Configure TimeSketch

i. pip install psycopg2 timesketch
ii. copy .virtualenvs/plaso/share/timesketch/timesketch.conf to /etc/

(must sudo)
iii. generate a key with openssl rand -base64 32

1. paste key into /etc/timesketch.conf
2. add timesketch username and password to

“SQLALCHEMY_DATABASE_URI” line (chosen in step
c.vii)

3. tsctl add_user -u <username>
g. Start TimeSketch

i. tsctl runserver -h 0.0.0.0 -p 5000

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 4
0 	

Author Name, email@address

21. Install Rekall and GUI
a. mkvirtualenv rekall
b. pip install rekall recall-gui

22. Install Volatility
a. sudo port install volatility
b. To build from source for latest version:

i. Download latest Volatility source code from
http://www.volatilityfoundation.org/releases

ii. mkvirtualenv volatility
iii. pip install pycrypto distorm3
iv. pip install ~/Downloads/volatility-<version.zip>

23. Install VolUtility (should be in same virtualenv if Volatility built from source)
a. Install MongoDB

i. Download from: https://www.mongodb.com/download-
center#community

b. Copy to location of choice (/bin/ subdirectory should be in $PATH)
i. mkdir ~/Tools/mongodb

ii. cp -R -n mongodb-osx-x86_64-<version>/ ~/Tools/mongodb
c. Create data directory

i. mkdir -p /data/db
ii. sudo chown –R <your_username> /data

d. Start MongoDB
i. mongod

e. Download VolUtility from:
https://github.com/kevthehermit/VolUtility/releases

f. Move to location of choise
i. mv Volutilility-<version>.tar.gz ~/Tools

ii. cd ~/Tools
iii. tar –xzvf Volutilility-<version>.tar.gz
iv. pip install –r Volutilility-<version>/requirements.txt

g. Run from ~/Tools/Volutility<version>
i. ./manage.py migrate

ii. ./manage.py runserver 0.0.0.0:8000

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 4
1 	

Author Name, email@address

Appendix H – HomeBrew Install Process

2. Install OS X
3. Install XCode

a. Install from Apple AppStore
4. Install XCode

a. xcode-select –install
5. Install Oracle JDK 8

a. Download from
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html

6. Install HomeBrew
a. /usr/bin/ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"
7. Install HomeBrew Cask

a. brew	tap	caskroom/cask
8. Install Dev Tools

a. brew install libtool autoconf automake pkg-config
9. Install Python/PIP

a. If using native OS X Python
i. sudo easy_install pip

b. If using installer Python
i. Download from	https://www.python.org/downloads/

c. brew install python
d. (optional) brew brew linkapps python

10. Install VirtualEnv/VirtualEnvWrapper
a. If using native OS X Python

i. pip install –ignore-installed virtualenv virtualenvwrapper
ii. Add to ~/.bash_profile:

export WORKON_HOME=~/.virtualenvs
source /usr/local/bin/virtualenvwrapper.sh

b. Else if using installer Python
i. pip install virtualenv virtualenvwrapper

ii. Add to ~/.bash_profile:
export WORKON_HOME=~/.virtualenvs
source /Library/Frameworks/Python.framework/ Versions/2.7/bin/
virtualenvwrapper.sh

c. Else if using HomeBrew Python:
i. pip install virtualenv virtualenvwrapper

ii. Add to ~/.bash_profile:
export WORKON_HOME=~/.virtualenvs
source /usr/local/bin/virtualenvwrapper.sh

11. InstallOSXFuse
a. brew cask install osxfuse

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 4
2 	

Author Name, email@address

12. Install dcfldd/dc3dd
a. brew install dcfldd dc3dd

13. Install libewf/afflib
a. brew install libewf
b. brew install afflib –with-osxfuse
c. pip install libewf-python

14. (Optional)	Install	Fuse	NTFS-3G
a. sudo	brew	install	ntfs-3g

15. (Optional) Install Fuse-EXT2
a. Download from https://github.com/alperakcan/fuse-ext2/releases
b. Follow directions on GitHub – must make several tools from source

16. (Optional) Install Fuse-XFS
a. Download from https://sourceforge.net/projects/fusexfs/
b. Install package

i. Unrecognized developer – must allow to run from security menu
17. Install SleuthKit (TSK)

a. brew install sleuthkit --with-afflib --with-jni --with-libewf
b. pip install pytsk3

18. Install BulkExtractor
a. brew install bulk_extractor --with-afflib --with-exiv2 --with-libewf

19. Install Yara
a. brew install yara
b. pip install yara-python

20. (Optional) Install Autopsy
a. brew install ant
b. edit ~/.bash_profile and add the following lines:

i. export JAVA_HOME=$(/usr/libexec/java_home)
ii. export JAVA_HOME=$(/usr/libexec/java_home)

iii. export TSK_HOME=/usr/local/Cellar/sleuthkit/<version>/
c. cd /usr/local/Cellar/sleuthkit/<version>/bindings/java
d. rm dist/Tsk_DataModel.jar
e. ant dist-PostgreSQL
f. Download Autopsy from https://github.com/sleuthkit/autopsy/releases
g. mkdir ~/Tools (you can place Autopsy in whatever directory you want)
h. mv ~/Downloads/autopsy-<version>.tar.gz ~/Tools
i. cd ~/Tools
j. tar -xzvf autopsy-<version>.tar.gz
k. cd autopsy-<version>
l. ant
m. ant run

21. Install Plaso (Log2Timeline)
a. mkvirtualenv plaso (will also activate the virtualenv)
b. Create a ‘requirements.txt’ file from Appendix I
c. pip install -r requirements.txt

22. Install TimeSketch
a. plaso virtualenv should be activated, if not:

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 4
3 	

Author Name, email@address

i. workon plaso
b. Install Postgre SQL

i. brew install postgresql
c. Configure and Launch PostgreSQL

i. edit /usr/local/var/postgres/pg_hba.conf to add:
local all timesketch md5

ii. brew services start postgresql
iii. createuser -d -P -R -S timesketch
iv. createdb -O timesketch timesketch

d. Install Elasticsearch
i. brew install elasticsearch@2.4

e. Start Elasticsearch
i. brew services start elasticsearch@2.4

f. Install and Configure TimeSketch
i. pip install psycopg2 timesketch

ii. sudo cp .virtualenvs/plaso/share/timesketch/timesketch.conf /etc/
iii. generate a key

1. openssl rand -base64 32
iv. edit /etc/timesketch.conf

1. paste key into “SECRET_KEY” line
2. add timesketch username and password to

“SQLALCHEMY_DATABASE_URI” line (chosen in step
c.vii)

v. tsctl add_user -u <username>
g. Start TimeSketch

i. tsctl runserver -h 0.0.0.0 -p 5000
23. Install Rekall and GUI

a. mkvirtualenv rekall
b. pip install rekall recall-gui

24. Install Volatility
a. brew install volatility

25. Install VolUtility
a. Install MongoDB

i. brew install mongodb
b. Start MongoDB

i. brew services start mongodb
c. Download VolUtility from:

https://github.com/kevthehermit/VolUtility/releases
d. Move to location of choice

i. mv Volutilility-<version>.tar.gz ~/Tools
ii. cd ~/Tools

iii. tar –xzvf Volutilility-<version>.tar.gz
iv. pip install –r Volutilility-<version>/requirements.txt

e. Run from ~/Tools/Volutility<version>
i. ./manage.py migrate

ii. ./manage.py runserver 0.0.0.0:8000

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 4
4 	

Author Name, email@address

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 4
5 	

Author Name, email@address

Appendix I – Plaso requirements.txt

artifacts >= 20150409
bencode
binplist >= 0.1.4
construct >= 2.5.2,<= 2.5.3
python-dateutil >= 1.5
dfdatetime >= 20160319
dfvfs >= 20160803
dfwinreg >= 20160320
dpkt >= 1.8
efilter >= 1-1.5
guppy >= 0.1.10
hachoir-core >= 1.3.3
hachoir-metadata >= 1.3.3
hachoir-parser >= 1.3.4
IPython >= 1.2.1
libbde-python >= 20140531
libesedb-python >= 20150409
libevt-python >= 20120410
libevtx-python >= 20141112
libewf-python >= 20131210
libexe-python >= 20160418
libfsntfs-python >= 20151130
libfvde-python >= 20160719
libfwnt-python >= 20160418
libfwsi-python >= 20150606
liblnk-python >= 20150830
libmsiecf-python >= 20150314
libolecf-python >= 20151223
libqcow-python >= 20131204
libregf-python >= 20150315
libscca-python >= 20161031
libsigscan-python >= 20150627
libsmdev-python >= 20140529
libsmraw-python >= 20140612
libvhdi-python >= 20131210
libvmdk-python >= 20140421
libvshadow-python >= 20160109
libvslvm-python >= 20160109
libwrc-python >= 20160419
mock
pbr >= 1.10.0
pefile >= 1.2.10-139
pip >= 7.0.0

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

OS X as a Forensic Platform	 4
6 	

Author Name, email@address

psutil >= 1.2.1
pycrypto >= 2.6.0
pyparsing >= 2.0.3
pysqlite >=2.8.3
future >=0.15.2
pytest
pytsk3 >= 20160721
pytz
PyYAML >= 3.10
pyzmq >= 2.1.11
requests >= 2.2.1
six >= 1.1.0
XlsxWriter >= 0.9.3
yara-python >= 3.4.0
plaso

Appendix J – Plaso filterfile

/\$MFT
/\$LogFile
/\$Extend/$UsnJrnl
{systemroot}/system32/config/.+
{systemroot}/winevt/.+evtx
{systemroot}/prefetch/.+
/(Users|Documents And Settings)/.+/NTUSER.DAT

