
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Implementing Active Defense Systems on Private Networks

GIAC (GCIA) Gold Certification

Author:(Josh(Johnson,(jcjohnson34@gmail.com(

Advisor:(Stephen(Northcutt(

Accepted:(TBD((
(

Abstract(

Adversaries(are(using(clientBside(attacks(and(malware(to(bypass(traditional(perimeter(
defenses(and(establish(footholds(on(internal(networks.((Preventive(controls(are(failing(to(
keep(attackers(out(of(private(networks,(and(media(outlets(publicize(another(breach(at(a(
major(organization(on(an(almost(regular(basis.(((More(needs(to(be(done(in(order(to(identify(
and(slow(down(attackers(who(have(established(pivot(points(into(private(networks(before(
data(exfiltration(occurs.((Active(defense(systems(implementing(active(deception(techniques(
can(provide(a(mechanism(to(hinder(an(attacker’s(ability(to(quickly(and(accurately(identify(
where(sensitive(data(resides(while(alerting(incident(response(teams(of(malicious(activity.(((
Furthermore,(these(systems(can(be(used(to(augment(the(effectiveness(of(IDS(and(SIEM(
strategies,(strengthening(the(overall(security(posture(of(organizations(deploying(them.((
Active(defenses(offer(another(effective(layer(of(security(that(can(be(used(to(protect(an(
organization’s(crown(jewels.(((

! !

Implementing*Active*Defense*Systems*on*Private*Networks*|*2*
*

Josh Johnson, jcjohnson34@gmail.com
*

1. Introduction

As attacks become increasingly complex due to the sophistication, organization and

motivation of adversaries, defensive strategies must mature in order to remain effective.

Looking at the anatomy of an intrusion using a kill chain approach allows defenders to assess

their ability to properly thwart an attack before the attacker reaches their end goal, which is

typically data exfiltration. (Hutchins, Cloppert & Amin) The term “kill chain” has been adapted

from a military context and can be used describe the progression and phases of an intrusion. The

associated approach involves an assessment of security posture as well as intelligence gathering

abilities at each individual phase of an intrusion. Various defensive techniques can be

implemented at each point in the kill chain to disrupt an attack, and as long as the successful

completion of the final phase – actions on the attacker’s objectives – is prevented, the overall

defense can be considered successful. Effective implementations of this model result in a more

robust security program that is constantly improving due to the intelligence gathering processes

at each phase of an attack.

With traditional antivirus solutions failing to keep pace and endpoint security being a

low-hanging fruit, attackers are afforded the ability to use malware and client-side attacks to

bypass some of the more established perimeter defenses, making endpoints the new perimeter

(Kadrich, 2007). Social engineering and phishing attempts are able to fool even technology-

savvy users into divulging sensitive information or browsing to malicious sites. For example,

social engineering played a significant role after the HB Gary attack and in the related

rootkit.com compromise in early 2011. (Bright, 2011) In this attack, aggressors were able to use

an already compromised email account to convince a skilled security administrator to provide

both a username and password to the targeted web server. If professionals working within the

field of information security can be fooled in this manner, it is almost unreasonable to expect less

technical end users to be able to identify and react appropriately to all social engineering attacks.

Furthermore, preventive controls cannot be relied upon to stop all malicious software from

making it onto endpoints. Antivirus and other signature-based defenses are routinely bypassed

using well-known obfuscation techniques. Laptops and mobile devices are able to leave secure

networks, connect to potentially less protected networks and then return, provided the same trust

and access as before they left. Because of the breadth of the attack surface as well as the current

Implementing*Active*Defense*Systems*on*Private*Networks*|*3*
*

Josh Johnson, jcjohnson34@gmail.com
*

deficiencies in preventive controls, successful attacks against endpoints allow adversaries to

accomplish several early phases of an intrusion while avoiding detection.

Mandiant’s “Anatomy of an Attack” identifies the steps in a Spear Phishing attack and

shows that, after a client-side attack is successful, much of the aggressor’s work occurs within

the victim’s private network. Once the initial attack vector allows a Remote Access Trojan or

backdoor to be installed on a victim’s endpoint, an attacker has a pivot point into the internal

network with several possibilities. (Skoudis & Liston, 2006) At this point, all reconnaissance

occurs behind the perimeter firewalls; command and control traffic can be encrypted and

tunneled within other legitimate protocols to bypass egress inspection and filtering systems.

SIEM and properly configured IDS devices are essential to detecting these types of attacks and

post-exploitation activities. However, even with these systems in place, attackers are still

successfully evading detection while locating and exfiltrating the data they desire. With the

implementation of active defense systems on non-Internet facing, private networks, defenders

can slow down and contain attackers who have already breached perimeter defenses.

Furthermore, these systems can be used to augment the effectiveness of internal IDS/IPS and

SIEM systems.

 Active defense systems can be defined as “any measures originated by the defender

against the attacker” and broken into categories of “counterattack, preemptive attack, and active

deception.” (Holdaway, 2001) Counterattack techniques and Pre-emptive attacks are outside the

scope of this paper due to the legal liabilities associated with these actions. However, these types

of defenses are emerging areas of research and could play an important role in future security

strategies as the legislation around cyber security changes and matures.

The active deception category of active defense systems can provide significant value

within most organizations. The basic idea behind these systems is to increase the “cost”

required for an attacker to successfully exfiltrate sensitive data. If defenders can cause their

adversaries to spend more time and resources to accomplish their goals, additional intelligence

can be gathered on the attackers’ capabilities at each observed phase of the intrusion. With this

intelligence, preventive and detective controls can be added or improved upon to better respond

to future incidents from these adversaries or others using similar techniques. Another benefit of

several active defense tools is the ability to “trap” or quarantine an attacker once malicious intent

Implementing*Active*Defense*Systems*on*Private*Networks*|*4*
*

Josh Johnson, jcjohnson34@gmail.com
*

is confirmed, affording defenders more time to eradicate the attacker before further damage can

occur. With the implementation of these tools on private networks as opposed to Internet-facing

systems, defenders are able to identify and as a result, isolate the compromised systems being

used as a pivoting point by the attacker.

1.1. Legal Considerations

A wide range of active defense utilities have become popular topics of discussion over

the past few years. The types of active defense utilities in public existence today range from

traditional honeypots which simply monitor attacker activity, to weaponized documents that

compromise attackers’ systems when opened. On the more aggressive end of this spectrum,

several legal issues arise when defenders consider using tools related to “hacking back” against

attackers. Instead, this paper focuses on the implementation of active deception based systems

on private networks in order to further reduce legal risks. In any case, it is important for network

security administrators to seek qualified legal counsel before considering the implementation of

any active defense systems on their networks.

1.2. Placement and Integration

The active defense tools discussed in this paper expand on traditional honeypot

functionality to actively entice and trap attackers. Through listening on well-known ports and

presenting tempting responses to attackers’ probes, these systems presume that any address that

is actually connecting to their services is suspicious. In every example presented in this paper,

the implementation of active defense tools occurs on private, non-Internet addressable networks.

With this configuration, all actions such as blocking, tar pitting, sink holing, etc. should be taken

against RFC1918 IP address space and machines already on a private network, limiting legal

liabilities for the defender. In this configuration, the sole purpose of these defenses is to identify

attackers who have already infiltrated past perimeter defenses and are attempting to perform

further reconnaissance and eventually data exfiltration.

DNS is an essential service frequently used within both public and private networks.

Legitimate use of this service is an easy way for attackers to conceal internal reconnaissance

activities through slow probing of private DNS servers. When implementing active defense

systems and honeypots on private networks, administrators can assign tempting DNS names to

Implementing*Active*Defense*Systems*on*Private*Networks*|*5*
*

Josh Johnson, jcjohnson34@gmail.com
*

these systems. Since no legitimate documentation, links, etc. should contain these names, it can

be assumed that anyone requesting addresses for them is malicious. Whenever a request for one

of these names occurs, the DNS servers will respond with an address of an active defense

system. As a result, attackers probing DNS servers for those names and then communicating

with the supplied IP addresses may trigger alerts of their presence. These techniques, as well as

some of the techniques implemented by several modern active defense systems serving the

purpose of active deception, are not necessarily new ideas in the field of information security.

For example, Fred Cohen’s Deception Toolkit performed many of the same functions in 1998 as

tools that are currently being developed. However, these systems and practices are still not

ubiquitous in environments even though they can be deployed at low costs and offer another

effective layer of detective controls.

While deception-based active defense systems are well-suited for identifying malicious

activity, they can provide even more value when integrated into a defender’s SIEM and IDS

strategies. IDS, although not a completely foolproof technology, is an important defensive layer

helping to reduce risk. (Northcutt & Novak, 2002) Since legitimate users will never connect to

active defense systems, IDS rules can be created to alert on any connections to their IP addresses

or specific ports. Furthermore, logging and forwarding these events to SIEM devices can allow

defenders to correlate these events with logs from other systems on the network. Analysts can

use a SIEM as a centralized location to review these logs, and additional IDS and active defense

data provides valuable and actionable information when investigating potential security

incidents. Because of these integration opportunities, active defense, IDS and SIEM systems

provide significantly more value together than when operating independently. When applied to a

kill chain model, each system has visibility into various phases of an intrusion, and, operating

cohesively, the intelligence provided by these systems can be the deciding factor between a

breach and a successfully mitigated attack.

2. Active Defense Utilities
 Several existing active defense systems falling into the active deception category are

available publicly. In fact, a Linux distribution called the Active Defense Harbinger Distribution

(ADHD) is available containing multiple installed and preconfigured active defense systems and

corresponding tutorials. (Robish, Johnson & Strand, 2013) A utility called Artillery, also

Implementing*Active*Defense*Systems*on*Private*Networks*|*6*
*

Josh Johnson, jcjohnson34@gmail.com
*

preinstalled on ADHD, is one example of an active defense system that is useful for active

deception.

2.1. Artillery

Artillery is an open-source Python application created by David Kennedy from

TrustedSec, also the developer of the popular Social Engineer Toolkit (SET). Artillery provides

defenders the ability to install this active defense utility directly on a system that needs to be

protected, and an important benefit of Artillery is the ability to install this utility on existing

servers without affecting their functionality on the network. The Python-based application runs

on Linux, Windows, and Mac OS X; however, the Linux version is the most full-featured. The

Linux version of Artillery provides several features, including honeypot functionality, file

system monitoring, brute-force and DoS protections, and threat intelligence feeds.

With all options enabled, Artillery provides a wealth of security information to system

administrators. Upon startup, SSH configuration options along with web directory permissions

are examined and any insecure settings are alerted to the administrator. File integrity monitoring

functionality can be implemented and user-defined directories can be monitored for changes to

any files within those directories. SSH login attempts to the server running Artillery are

monitored, and if a user-defined threshold for failed logins is met from a single IP address, the

offending address is blocked from any future communications. Connections to user-defined

ports can also be limited to a specific threshold in order to prevent denial of service attacks. A

threat intelligence feed is available and can be downloaded from TrustedSec, based on malicious

data gathered from several of their Artillery sensors. In public-facing Artillery instances, this

feature allows packet filtering rules to be created for known-malicious public IP addresses.

2.1.1. Artillery Configuration
After downloading and installing via the setup.py script, Artillery must be configured for

the environment in which it is running. The file named “config” within the installation directory

contains all configuration options for Artillery. For the most basic active deception setup, only

the “Honeypot” section needs to be configured and all other features may be disabled. When

both are set to “YES,” the HONEYPOT/HONEYPOT_BAN options direct Artillery to listen on

the ports identified in the PORTS configuration option. Whenever one of the defined honeypot

Implementing*Active*Defense*Systems*on*Private*Networks*|*7*
*

Josh Johnson, jcjohnson34@gmail.com
*

ports receives a connection, if the HONEYPOT_BAN option is enabled, Artillery will utilize a

feature within the operating system to disallow all future communications from the connecting IP

address. For example, if running on a Linux system, Artillery will create an iptables rule to

block any IP address connecting to these ports. The WHITELIST_IP option gives the defender

the ability to allow connections from certain addresses to ports on which Artillery is listening.

This option allows for network mapping, vulnerability scanners and other systems to connect to

the server running Artillery without triggering the utility to ban the whitelisted hosts. An excerpt

from sample config file is shown below, defining Artillery’s active defense behavior:

HONEYPOT=YES

HONEYPOT_BAN=YES

WHITELIST_IP=127.0.0.1,localhost

PORTS="1433,8080,21,5900,25,53,110,1723,1337,10000,5800,80,135,139,445"

 Artillery requires no command line arguments and can be run by typing:

python artillery.py

 When a Linux machine running Artillery takes action against an attacking host, it runs

the following iptables command, which results in all packets sourcing from the attacker’s current

IP address being dropped:

iptables -I ARTILLERY 1 -s <ATTACKER IP ADDRESS> -j DROP

Once Artillery bans an IP address, the local iptables firewall will drop any connection

attempts from the offending host and, as a result, all TCP connections will time out from the

attacker’s perspective. If the system running Artillery is being targeted, the attacker will need to

utilize a new IP address or compromise another host on the network in order to communicate

further with the target. Both options slow down the attacker and cause more “noise” that should

be identified by IDS and SIEM systems.

2.1.2. Artillery, IDS and SIEM
Another way defenders can augment their defenses using Artillery is to create specific

IDS rules to trigger whenever the Artillery ports receive a connection. Since there are no

legitimate services listening on the Artillery ports, all connections to these ports can be assumed

Implementing*Active*Defense*Systems*on*Private*Networks*|*8*
*

Josh Johnson, jcjohnson34@gmail.com
*

to be malicious. Of course, IP addresses that are in the Whitelist section of the Artillery config

file should be excluded from IDS rules so that Artillery and the IDS are consistently alerting on

only important events. If network devices are not already performing full packet captures, IDS

systems can provide added value if used to capture packets sourcing from suspicious hosts.

When serving this purpose, defenders are able to monitor suspicious hosts’ activities on the

network even if these activities don’t match a specific signature.

Snort, the widely used open source IDS, can perform this functionality when a rule is

created using the post-detection “tag” option. When this option is specified in a triggered rule,

Snort captures subsequent packets based on directives within the rule options. When creating the

rule, a user can specify that the Snort sensor should capture traffic either within the session in

which the rule was triggered or based on the source or destination host from the packet triggering

the rule.

 If a Snort sensor is monitoring traffic to and from a network on which Artillery is

running, a rule could be created to identify a connection to an Artillery port and then capture

subsequent activity from the offending source address. This provides tremendous value because

Snort will log all visible traffic even after Artillery blocks any further communications to the

target host. If the sensor is inspecting and logging traffic between the offending IP address and

other hosts or networks in this manner, incident response teams may be able to better follow and

understand the attacker’s activities after being blocked by the system running Artillery. The

definition of the IP and port variables preceding the rule and allowing for easier administration,

and located within the Snort configuration file, is shown below:

ipvar ARTILLERY_INSTANCES [192.168.78.131]

portvar ARTILLERY_PORTS [1433,8080,21,5900,25,53,110,1723,1337,10000,58000,80,135,139,445]

Within the rules file defined in the Snort configuration file, the following rule uses these

variables:

alert tcp any any -> $ARTILLERY_INSTANCES $ARTILLERY_PORTS (msg: "Internal IP connecting to

Artillery Port"; priority: 2;tag: host, 300, seconds, src; sid: 1000001;)

With this rule, Snort will alert whenever any host connects to one of the Artillery

instances over one of the TCP ports on which Artillery is listening. Furthermore, for 5 minutes

Implementing*Active*Defense*Systems*on*Private*Networks*|*9*
*

Josh Johnson, jcjohnson34@gmail.com
*

after the initial rule is triggered, this rule specifies that any other packets to or from the source

address that triggered the alert should be logged as well. For incident response teams, this

additional information can be crucial to successfully containing and eradicating an attacker who

has already breached perimeter defenses.

As another alerting opportunity, Artillery can also be configured to send emails to

administrators whenever a violation occurs. However, since its logs can be forwarded via

syslog, all alerts can be centrally managed by a SIEM with alerting capabilities. The

configuration file for Artillery contains an option,*SYSLOG_TYPE, to log to a remote syslog

server. Setting that option to “REMOTE” and defining the SYSLOG_REMOTE_HOST option

with an IP address of the log aggregator will allow for the following event to be analyzed by a

SIEM whenever one of the honeypot ports receives a connection:

2013-04-24 21:23:50.992204 [!] Artillery has blocked (and blacklisted the IP Address: <OFFENDING IP

ADDRESS> for connecting to a honeypot restricted port: 10000\x0a

A SIEM could identify this event and correlate it with any other anomalous activity to

provide administrators with visibility that may otherwise remain unseen. For example, a rule

could exist to look for connections from an individual IP address to Artillery ports as well as

anomalous outbound connections from the same address, either by volume of data or by number

of connections, to provide automated alerting and escalation capabilities. However, depending

on the sophistication and methodologies used in the attack, a skilled analyst reviewing all

available events and flows related to the source IP address blocked by Artillery may be necessary

to identify a potentially compromised system. In this case, the SIEM provides the convenience

and efficiency of having all known information regarding the suspicious IP address in a single

location and normalized format.

At the time of this writing, the current version of Artillery (0.7.1) has a bug where the

source code will need to be modified slightly in order for the logging functionality to work

correctly. Some portions of the script look for the HONEYPOT_BAN option to equal “YES”

while others look for it to equal “ON.” Before starting Artillery, this can be corrected by editing

the source of the “honeypot.py” script and editing all lookups to be consistent with the setting

configured in the config file.

Implementing*Active*Defense*Systems*on*Private*Networks*|*10*
*

Josh Johnson, jcjohnson34@gmail.com
*

Using Artillery or another active defense utility running directly on an existing system,

attackers on the internal network may be more easily identified. However, the intelligence

available when these systems are integrated with IDS and SIEM systems provides substantially

more value. Snort’s tagging and a SIEM’s correlation abilities, for example, allow incident

response teams to quickly and easily see relevant data surrounding the suspicious IP addresses

reported by Artillery. As a result, false positives can be more easily identified while true security

incidents can initiate incident response procedures more quickly and with higher confidence.

2.2. Nova – Network Obfuscation and Virtualized Anti-Reconnaissance

When running active defense systems like Artillery, additional software must be installed

on the protected system, which in some cases may not be an option. For example, installing

these utilities on embedded systems may not be feasible. In such cases, active defense systems

can achieve similar results when installed “nearby” on internal network segments. Several

instances of Artillery could be installed on separate, dedicated honeypot servers on the same

network as the embedded systems. A major downside of this specific approach is that there is

currently no centralized management console for deploying multiple Artillery instances. Instead,

a utility called Nova provides defenders the ability to spawn several virtualized honeypots from a

single management console.

Nova is an open source project developed by DataSoft, a technology company well known

for innovative products in the wireless communications space. The purpose of Nova is to

identify reconnaissance activity within private networks. It serves as a management console for

Honeyd, a separate open source project; Honeyd was developed by Niels Provos with a purpose

of creating virtual honeypots that run from a single machine. While Honeyd is dedicated to

building and deploying virtual honeypots, Nova extends its functionality by providing a utility

that classifies all connections to the running honeypots. The purpose of Nova is to create a

“haystack” of virtual hosts on the network, taking advantage of unused address space for anti-

reconnaissance purposes. Once several of these honeypots are up and running, attackers

attempting to map the network must weed through the haystack nodes in order to find the “real”

servers they are seeking. Since Nova is always classifying traffic, if the attacker performs any

port scans or other known reconnaissance techniques, the offending source address will be

flagged as suspicious and provide alerts to network administrators. Using Nova on internal

Implementing*Active*Defense*Systems*on*Private*Networks*|*11*
*

Josh Johnson, jcjohnson34@gmail.com
*

networks, defenders can identify attackers and quickly take action to quarantine compromised

systems and eradicate threats.

2.2.1. Nova Installation
The installation and setup of Nova is fairly straightforward, and it can be installed on

systems with only a single network interface since Honeyd virtualizes the haystack nodes. When

installing Nova, it is important to refer to the readme file and make sure all dependencies are

installed before starting the startup daemon. Ubuntu 12.04 (64-bit) is currently the

recommended platform for installation, and the developers have created a helper script, called

novaInstallHelper.sh to install the required applications before configuring Nova on this

distribution. The script can be run by navigating to the same directory, ensuring that the correct

permissions are set on the file, and then typing:

./novaInstallHelper.sh

Once the system is up and running, most of Nova’s functionality can be configured from

the web interface, although there is also a command line toolset that can also be used to quickly

administer the utility. The web server, which runs on the Node JS platform, can be started with

the following command:

 quasar

2.2.2. Nova Configuration
If configuring Nova using the web interface, a setup wizard is available to quickly get the

utility up and running. Initial options include changing default credentials, setting and

configuring alert and logging thresholds, and building the haystack of virtualized honeypots.

Since the Nova default credentials are well known, it is important to change the username and

password for the web interface if Nova is being used outside of a lab environment. If SIEM

integration is desired, the “Use RSyslog” option should be checked, and the remote log server

fields must be defined. Rsyslog is an open source utility improving on the syslog standard to

provide several advantages including TCP and encryption support, and this software is the

default logging utility used by Nova. Logging options can also be configured at a later time from

the “Basic Options” menu.

Implementing*Active*Defense*Systems*on*Private*Networks*|*12*
*

Josh Johnson, jcjohnson34@gmail.com
*

Once the initial wizard is completed, users are redirected to the status page, which will

show all suspected malicious hosts identified by Nova. Initially, the Packet Classifier and the

Haystack will both be disabled, but both can be started from anywhere within the web GUI.

Once started, the Packet Classifier will begin sniffing the network and capturing all available

traffic to determine if hosts are benign or may be malicious. Figure 1 shows the Nova web

interface when the packet classifier and haystack are started but have not yet seen enough

network traffic to classify hosts as malicious or benign.

Figure 1. Nova Web Interface

2.2.3. Nova Haystacks
Nova’s haystacks are comprised of modular profile components that make up the

personality of the various honeypots. The profiles designate the operating system emulation,

open TCP/UDP ports, and other configuration options which are assigned to the haystack nodes.

Once deployed, a haystack is made up of several nodes, each with an assigned profile. As

profiles are configured, Nova maintains the profile settings in the form of a configuration file

passed to Honeyd when the haystack is started.

When deciding how to deploy Nova’s haystacks, a few different options exist. First, a

pre-built, default haystack can be used. This default option includes unique profiles assigned to 3

different nodes, each emulating a different operating system. The three profiles include a

Implementing*Active*Defense*Systems*on*Private*Networks*|*13*
*

Josh Johnson, jcjohnson34@gmail.com
*

Windows 2003, Linux and BSD Server. The emulated Windows server listens on several well-

known Windows ports while the Linux and BSD servers also listen on several ports associated

with common services. All three honeypots also emulate network services that are typically

found running on these three operating systems. As a result, when an attacker performs active

reconnaissance against the network on which Nova’s haystack is deployed, these systems

respond in a way which indicates to the attacker that they are live systems on the network

running interesting services that may require further reconnaissance efforts.

 Nova administrators can also build their own custom haystacks with honeypots that

resemble real operating systems and services. Custom profiles can be created to deploy nodes

which emulate the operating system of one of thousands of possible operating systems. Each

profile can be configured to listen on any combination of user-defined TCP or UDP ports and

even emulate services on some ports based on service scripts from the Honeyd project. These

scripts, described in further detail below, imitate actual network services by presenting the same

banners upon receiving connections and even handling user interactions like their real-world

counterparts. Using custom haystacks, defenders can deploy a fleet of virtual honeypots

exhibiting fine-tuned and specific behaviors when responding to probes from attackers. Figure 2

shows the web-based profile configuration interface available when building a custom haystack

profile.

Implementing*Active*Defense*Systems*on*Private*Networks*|*14*
*

Josh Johnson, jcjohnson34@gmail.com
*

Figure 2. The available haystack profile configuration options

 When building a haystack, administrators can also use the makeup of existing systems on

their network to influence the composition of the haystack. Attributes of the real systems such as

operating system, open ports and listening services can be imitated by honeypots. As a result,

TCP/IP characteristics of the haystack nodes appear identical to the real systems from the

perspective of an attacker performing network based reconnaissance. Nova’s interface provides

a simple mechanism to do this using Nmap, a popular and widely used port scanner and security

utility. Through the web-based user interface, administrators can run Nmap and apply the results

to a haystack. As a result, attackers must waste time going deeper than simple port scans and

actually enumerating the services on each IP address in order to identify which systems on the

network are real.

Implementing*Active*Defense*Systems*on*Private*Networks*|*15*
*

Josh Johnson, jcjohnson34@gmail.com
*

2.2.4. Honeyd Service Scripts
The service scripts available for use in Nova’s haystacks are powerful tools to slow down

and confuse attackers who are performing reconnaissance. The scripts allow for defenders to

create their own network of Nova honeypots, all appearing to run specific versions of software

that may be a tempting target for brute-force login attacks or other exploitation by an attacker.

Furthermore, the Honeyd service scripts can cause attackers to waste time interacting with the

service, thinking that it is a real server. In the meantime, network administrators are alerted to

the attacker’s presence on the internal network. This technique was popularized by the

Deception Toolkit, whose author, Fred Cohen, insisted on the DTK’s website that an active

deception utility is successful when it affects how the attacker approaches reconnaissance. A full

list of the possible services is shown in Figure 3. Each service script can be configured to run as

specific version of that type of service. For example, a Linux FTP Service script offers the

opportunity to appear as five different FTPD versions, also shown in figure 3.

Figure 3. List of possible service scripts and the specific version options available

Nova also provides the ability to set up a “tarpit” on listening ports using Honeyd

directives. Tom Liston popularized the term, tarpit, when he developed Labrea in response to the

Code Red worm in 2001. His idea was that he could respond to malicious TCP SYN probes

from infected hosts with TCP packets that included the SYN/ACK flags and set the TCP

maximum segment size to a small number, but then never respond to further communications

Implementing*Active*Defense*Systems*on*Private*Networks*|*16*
*

Josh Johnson, jcjohnson34@gmail.com
*

from these hosts. (Haig, 2002) His technique was successful and the tarpit application caused

malicious hosts to wait until the TCP session timed out before continuing their attack. As a

result, the spread of the worm slowed and defenders had more time to isolate and eradicate the

infections. Nova and Honeyd’s implementation of tarpits serves the same purpose: slow down an

attacker by delaying responses to connection attempts and data transfers. These tarpits can be

applied to open ports when configuring haystack profiles and they can be utilized on both ports

that simply allow TCP connections as well as ports that emulate services. Several tarpits applied

to ports on a single node in a haystack can have a devastating impact on port scanners, causing

the utilities to take a significant amount of time to complete. This defensive technique can

provide defenders valuable time to contain and eradicate attackers from the network. Figure 4

shows the possible tarpit configuration options available for each port listening on a honeypot.

Figure 4. Tarpit configuration options

2.2.5. Nova’s Classification
Since Nova’s packet classifier is always sniffing traffic on available interfaces, whenever

traffic is visible, the associated data is processed through a classification algorithm to determine

if the connecting host is malicious. Nova uses the K-Nearest Neighbor algorithm to classify

traffic based on a database of previously classified training data. The algorithm compares values

such as average packet size, variation in packet sizes, distinct TCP and UDP ports contacted and

several other data points to accurately identify attackers performing known methods of

reconnaissance on the network. This implementation of the algorithm works by calculating

several summary statistics for connections from a specific IP address, comparing the summary

statistics to the training data, and using the results to identify whether the IP address is exhibiting

malicious or benign behavior.

Implementing*Active*Defense*Systems*on*Private*Networks*|*17*
*

Josh Johnson, jcjohnson34@gmail.com
*

When Nova is running, every time a haystack node is contacted by a new source IP

address, a SQLite database is populated with summarized data based on all connections from

each unique IP address. That data is then compared to the training data using Nova’s

classification algorithm. User-defined thresholds, configured in the Advanced Options settings,

allow users to adjust how closely traffic to the haystack must match the training data in order to

be considered benign or malicious.

Although Nova is not designed to detect specific Nmap use on the network, since Nmap

implements some of the most well-known, well-documented and widely used active

reconnaissance techniques, Nova has great success identifying the use of this utility. For

example, a TCP half-open scan, executed by using the “-sS” flag when running Nmap, is easily

identified as malicious behavior due to the high percentage of packets with only the SYN flag set

versus the number of packets containing the other flags (SYN+ACK, ACK, etc.) necessary for

proper TCP communication to occur. Since Nova can be trained to identify reconnaissance

activities based on statistical summaries of traffic known to be malicious, observing and

summarizing Nmap scans provides effective training data that encompasses many port scanning

methods. In fact, the default training data that comes packaged with Nova provides accurate

identification of many popular Nmap scans with no further training needed.

2.2.6. Nova’s Doppelganger
 When used in non-technical conversation, the term doppelganger is often used to describe

a body double or someone who looks very similar to another person. Nova implements the idea

of a doppelganger as an active defense mechanism, allowing defenders to conceal the system

running Nova from IP addresses it has deemed malicious. This feature provides administrators

with confidence that once an attacker is identified on the network, the Nova interface and

management console cannot be accessed by the attacker’s IP address. Instead, an additional

honeypot, the Doppelganger, is deployed and listens on a separate interface when the haystack is

started. Once an attacker is identified and classified as malicious, all packets from the attacker’s

IP address to the Nova management interface IP address are forwarded to the Doppelganger.

Using this feature, an attacker will not be able to directly attack the Nova console from any IP

addresses that have been classified as malicious.

Implementing*Active*Defense*Systems*on*Private*Networks*|*18*
*

Josh Johnson, jcjohnson34@gmail.com
*

2.2.7. Nova, IDS and SIEM
Once Nova is installed, configured and running on a private network, administrators can

create Snort rules to also identify when Nova’s honeypots receive connections from unauthorized

sources. IP ranges can be defined and classified in the Snort configuration file so that Nova-

related alerts will not be triggered when connections are made to the real servers on the network.

For example, if the Nova Haystack uses the 192.168.78.132-192.168.78.135 IP addresses, the

following declaration could allow the haystack to be utilized in Snort rules:

ipvar NOVA_HAYSTACK [192.168.78.132-192.168.78.135]

Once the addresses of the Nova haystack are defined, a rule can be created to alert and

tag sources coming from any IP address to the haystack. This provides defenders with a better

picture of what an attacker is doing on the network.

alert tcp any any -> $NOVA_HAYSTACK any (msg: "Internal IP connecting to Nova Haystack node";

priority: 2;tag: host, 300, seconds, src; sid: 1000002;)

 With the above declaration and associated rule, Snort can be used to tag all connections

to nodes within the haystack. This results in packet captures for any subsequent network

communications from the offending source address, even if the communications do not match

another Snort signature.

Similar to Artillery, logs from Nova can be correlated with events from disparate systems

in order to identify attackers on the network and build a better picture for defenders to analyze an

attack. Nova has the ability to forward its logs to a SIEM using Rsyslog, and exactly what is

forwarded can be configured in the “Basic Options” section within Nova. Logging options

include 7 different classifications of events, so administrators can log events ranging from

debugging notifications up to only critical incidents and alerts. Given the above Snort

configuration and rules, SIEM correlation rules can be defined to alert whenever a Snort rule is

matched and a corresponding Nova alert identifies the same source IP address as hostile.

Figure 5 shows a sample log event generated by Nova whenever an offending IP address

is deemed as hostile based on the Nova’s classification algorithm.

Implementing*Active*Defense*Systems*on*Private*Networks*|*19*
*

Josh Johnson, jcjohnson34@gmail.com
*

<81>Apr 29 15:42:09 ubuntu Nova[17268]: ALERT File ../src/Novad.cpp at line 850: Detected potentially hostile

traffic from: Suspect: 192.168.78.1#012 Suspect is hostile#012 Classification: 1#012 Hostile neighbors:

2#012Classification notes: #012k=0:d=0.0756927:c=0:i=87#012:o 0.500375 0.109864 45.6108 18.095 2 1000 2

500.5 2 0.993171 0 0 0 0 #012:n 0.500375 0.109864 0.525279 0.391617 0.18718 1 0.149684 0.89996 0.159017

0.997144 0 0 0 0 #012#012k=1:d=0.0855165:c=1:i=185#012:o 0.504487 0.112332 46.0603 23.1512 2 1000 1 1000

1 0.996016 0 0.00298805 0 0 #012:n 0.504487 0.112332 0.526591 0.422808 0.18718 1 0.0944402 1 0.100329 1 0

0.00299105 0 0 #012#012k=2:d=0.0864056:c=1:i=191#012:o 0.504487 0.112332 46.1433 23.6369 2 1000 1 1000 1

0.996016 0 0.00298805 0 0 #012:n 0.504487 0.112332 0.526832 0.425451 0.18718 1 0.0944402 1 0.100329 1 0

0.00299105 0 0 #012#012#012IP Traffic Distribution: 0.516071#012Port Traffic Distribution:

0.0572391#012Packet Size Mean: 44.9643#012Packet Size Deviation: 5.89038#012Protected IPs Contacted:

2#012Distinct TCP Ports Contacted: 560#012Distinct UDP Ports Contacted: 1#012Average TCP Ports Per Host:

560#012Average UDP Ports Per Host: 1#012TCP Percent SYN: 0.979021#012TCP Percent FIN: 0#012TCP

Percent RST: 0.0192308#012TCP Percent SYN ACK: 0#012Haystack Percent Contacted: 0.2#012TCP RST

Packets: 11#012TCP ACK Packets: 0#012TCP SYN Packets: 560#012TCP FIN Packets: 0#012TCP SYN/ACK

Packets: 0#012Total TCP Packets: 571#012Total UDP Packets: 18#012Total ICMP Packets: 0#012Total other

protocol packets: 0

Figure 5. Example log event generated by Nova

 Several interesting facts about the traffic classified as malicious can be learned from this

output. First, the “Suspect: 192.168.78.1” and “Suspect is hostile” sections show that Nova has

indeed seen enough from this source address to apply the classification algorithm and flag this

host as hostile. Also, in this case, the “Percent SYN,” “Percent RST,” “Percent FIN” and

“Percent SYN ACK” section shows that the attacker sent mostly TCP packets with only the SYN

flag set, and no packets with the SYN and ACK flags set. Based on this information, it can be

assumed that the attacker performed a TCP half-open port scan against the haystack nodes since

there was never a complete TCP connection built.

With this information, along with the Snort alert and additional tagged traffic, defenders

may be able to better understand their adversaries’ capabilities and intents. Nova, combined with

strong IDS and SIEM implementations, can be a powerful tool to detect attackers performing

reconnaissance on private networks.

Implementing*Active*Defense*Systems*on*Private*Networks*|*20*
*

Josh Johnson, jcjohnson34@gmail.com
*

3. Putting it all Together

The tools demonstrated below are configured based on the following network design and

scenario. Consider the network layout where an attacker has used malware or a client-side

attack to compromise a PC on a company’s internal network. The internal PC user network

(172.20.10.0/24) is not segmented from an internal server network (192.168.78.0/24) with a

firewall, but a Snort IDS sensor is inspecting all connections between the two networks. The

server network consists of several Windows and Linux-based systems. The attacker on the

network has installed a Remote Access Trojan on the PC with the address 172.20.10.128 as

shown in Figure 6.

Implementing*Active*Defense*Systems*on*Private*Networks*|*21*
*

Josh Johnson, jcjohnson34@gmail.com
*

Figure 6. Example network layout

In this scenario, network administrators have implemented Artillery on one of the Linux

servers ending in .131 as well as three Nova honeypots using 192.168.78.132-192.168.78.134.

The entire range of active IP addresses in this scenario is 192.168.78.129-192.168.78.134. IDS

rules using Snort’s tag option have been implemented to detect and log any connections to the

Artillery ports or Haystack IP addresses. As such, once the attacker triggers a Snort signature,

all future traffic from the offending IP address will be logged for the next 300 seconds. If an

attacker runs a simple Nmap SYN scan against this range, the results will appear as the

following:

Nmap scan report for 192.168.78.129

Host is up (0.023s latency).

Not shown: 991 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

49152/tcp open unknown

49153/tcp open unknown

49154/tcp open unknown

49155/tcp open unknown

49156/tcp open unknown

49157/tcp open unknown

Nmap scan report for 192.168.78.130

Host is up (0.0018s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

3306/tcp open mysql

Nmap scan report for 192.168.78.131

Host is up (0.0026s latency).

Not shown: 983 closed ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

25/tcp open smtp

53/tcp open domain

80/tcp open http

110/tcp open pop3

111/tcp open rpcbind

135/tcp open msrpc

445/tcp open microsoft-ds

1433/tcp open ms-sql-s

1723/tcp open pptp

3389/tcp open ms-wbt-server

5800/tcp open vnc-http

5900/tcp open vnc

8080/tcp open http-proxy

10000/tcp open snet-sensor-mgmt

44443/tcp open coldfusion-auth

Nmap scan report for 192.168.78.132

Host is up (0.0049s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

80/tcp open http

Nmap scan report for 192.168.78.133

Host is up (0.0048s latency).

Not shown: 995 closed ports

Implementing*Active*Defense*Systems*on*Private*Networks*|*22*
*

Josh Johnson, jcjohnson34@gmail.com
*

PORT STATE SERVICE

20/tcp open ftp-data

21/tcp open ftp

23/tcp open telnet

80/tcp open http

135/tcp open msrpc

Nmap scan report for 192.168.78.134

Host is up (0.0015s latency).

Not shown: 998 closed ports

PORT STATE SERVICE

22/tcp open ssh

23/tcp open telnet

The Nova honeypots are implementing tarpit functionality on open ports, so the port

scanning process was extremely slow from the attacker’s perspective. Since the attacker has

scanned IP addresses within the Nova Haystack, an IDS alert has been triggered. Furthermore,

since the Snort tag option was used in this rule, all traffic from the attacker’s source address

traversing the IDS sensor will be logged for the next five minutes. Throughout the course of the

port scan, Nova has examined enough traffic from this address to classify the source IP address

as hostile as shown in Figure 7.

Figure 7. Nova classifying an IP address as malicious

Nova has also forwarded a log event to the log aggregator identifying this classification

so the SIEM now has IDS and Nova alerts pointing to the attacker’s IP address. The attacker has

not yet been actively blocked for any of the reconnaissance activities, but several events of

interest are available to defenders.

Now that the attacker understands which ports are open on these systems, complete TCP

connections are needed in order to further identify which services are listening on these ports.

Nova provides even greater value in this scenario, since the Honeyd service scripts and tarpits

Implementing*Active*Defense*Systems*on*Private*Networks*|*23*
*

Josh Johnson, jcjohnson34@gmail.com
*

can be used to slow down the attacker. For example, the attacker may decide to probe the

honeypot emulating a Linux-based operating system running an FTP service on TCP/21, SSH

service on TCP/22 and HTTP service on TCP/80. The service scripts respond to connections on

each of these ports, emulating their respective services and allowing seemingly normal

interaction, even though they’re not really FTP, SSH and HTTP daemons. From an attacker’s

standpoint, running an Nmap service/version scan against live this live Nova host results in the

following output:

root@kaliLinux:~# nmap -sV 192.168.78.132

Starting Nmap 6.25 (http://nmap.org) at 2013-05-03 16:09 EDT

Nmap scan report for 192.168.78.132

Host is up (0.0036s latency).

Not shown: 997 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp WU-FTPD wu-2.6.0

22/tcp open ssh OpenSSH 2.1.1 (protocol 1.99)

80/tcp open http Apache httpd 2.2.20

MAC Address: A4:BA:DB:7D:27:5E (Dell)

Service Info: Host: 192.168.78.226; OS: Unix

Service detection performed. Please report any incorrect results at http://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 13.58 seconds

Based on this output, an attacker may notice that the advertised service banners reflect

versions of software which not been upgraded in some time and may be vulnerable. In fact, a

Google search would yield several possible exploits to use against these versions of the services.

If the attacker tries to interact with one of the services that are running a script, the Honeyd script

will generate responses that appear to be consistent with the service they are probing. For

example, in the case of the FTP server above, the attacker can connect and “log in” as an

anonymous user to the FTP server:

root@kaliLinux:~# ftp 192.168.78.132

Connected to 192.168.78.132.

220 serv.local.mynet Cyrus IMAP4 v1.3.1 Fri May 3 00:42:57 EDT 2013) ready.

Implementing*Active*Defense*Systems*on*Private*Networks*|*24*
*

Josh Johnson, jcjohnson34@gmail.com
*

Name (192.168.78.132:root): anonymous

331 Guest login ok, send your complete e-mail address as a password.

Password:

230-Hello User at 172.20.10.128,

230-we have 62 users (max 100) logged in in your class at the moment.

230-Local time is: Fri May 3 00:42:57 EDT 2013

230-All transfers are logged. If you don't like this, disconnect now.

230-

230-tar-on-the-fly and gzip-on-the-fly are implemented; to get a whole

230-directory "foo", "get foo.tar" or "get foo.tar.gz" may be used.

230-Please use gzip-on-the-fly only if you need it; most files already

230-are compressed, and I will kill your processes if you waste my

230-ressources.

230-

230-The command "site exec locate pattern" will create a list of all

230-path names containing "pattern".

230-

230 Guest login ok, access restrictions apply.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp>

Also, if the web server is targeted, the attacker can interact with the “Apache” service script

which returns a web page and even HTTP 404 errors if “unknown” files are requested:

root@kaliLinux:~# nc -v 192.168.78.132 80

Connection to 192.168.78.132 80 port [tcp/www] succeeded!

GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Wed May 8 13:59:48 EDT 2013

Server: Apache/1.3.23 (Unix) (SuSE/Linux) ApacheJServ/1.2.2 mod_fastcgi/2.2.2 mod_perl/1.34 PHP/4.1.0

mod_ssl/2.8.7 OpenSSL/0.9.6c

Last-Modified: Wed, 25 Jan 2012 21:57:56 GMT

ETag: "581ea2-b1-4b7615b37f7aa"

Accept-Ranges: bytes

Content-Length: 263

Vary: Accept-Encoding

Connection: close

Content-Type: text/html

Implementing*Active*Defense*Systems*on*Private*Networks*|*25*
*

Josh Johnson, jcjohnson34@gmail.com
*

<html><head>

<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1"></head><body><h1>It works!</h1>

<p>This is the default web page for this server.</p>

<p>The web server software is running but no content has been added, yet.</p>

 root@kaliLinux:~# nc -v 192.168.78.132 80

Connection to 192.168.78.132 80 port [tcp/www] succeeded!

GET /index.php HTTP/1.0

HTTP/1.1 404 Not Found

Date: Wed May 8 14:01:14 EDT 2013

Server: Apache/1.3.23 (Unix) (SuSE/Linux) ApacheJServ/1.2.2 mod_fastcgi/2.2.2 mod_perl/1.34 PHP/4.1.0

mod_ssl/2.8.7 OpenSSL/0.9.6c

Vary: Accept-Encoding

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>404 Not Found</title>

</head><body>

<h1>Not Found</h1>

<p>The requested URL /index.php was not found on this server.</p>

<hr>

<address>Apache/2.2.20 (Ubuntu) Server at 192.168.78.132 Port 80</address>

</body></html>

Further interrogation of these services will allow the attacker to realize these are not

functional daemons. However, wasting time with actions such as brute-force password guessing

or exploitation may trigger additional IDS alerts while allowing defenders more time to identify

and eradicate the attacker.

If the attacker makes a connection to any of the honeypot ports on the Linux system

running Artillery, the active defense system will permit the initial connection, send garbage data

back to the attacker as shown in below, and then close the connection:

root@kaliLinux:~# nc -v 192.168.78.132 135�6���m

���LT/C��@ j�)

]~O"��

Implementing*Active*Defense*Systems*on*Private*Networks*|*26*
*

Josh Johnson, jcjohnson34@gmail.com
*

ǃ�u���9���Ŧ���I���Rn�+D%X�l1��l���$ ̬${�P�uJ����4�J���{9l�

Connection to 192.168.78.132 135 port [tcp/loc-srv] succeeded!

�a�i��rLE�"�!�"&�_������1�[I����������*��xh�˒���G�8��

�E1�ɊP�P��*�/��ID��<��ʑ�����n�Z�yf�-

6�

u�c�#

�8T�Љ ����I�>���b}�)d��nˉ���}E� iGC

%q^C���X�C���a�>����y��-���Sx���.��q�1�0���9��:SM?G��

Artillery will also log the event and forward it to the remote log aggregator as well as

create an iptables rule that drops any future connections from the attacker’s IP address. Yet

another IDS alert will be triggered because of this connection as well. Since Snort’s tag option

was used in the rule, future traffic from the attacker’s address will be logged. If the attacker

attempts to perform a vulnerability scan against the legitimate web server on one of the Linux

servers within 5 minutes after triggering one of these alerts, defenders will be afforded the ability

to see the additional malicious traffic within this window. For example, Figure 8 shows a packet

capture, logged by Snort, of the attacker scanning the web application running on the Linux

server.

Figure 8. Packet capture showing all traffic logged as a result of the Snort “tag” option

Since the attacker has triggered IDS alerts as well as alerts on both the Artillery and the

Nova hosts, log review should allow incident responders to accurately identify the source of the

Implementing*Active*Defense*Systems*on*Private*Networks*|*27*
*

Josh Johnson, jcjohnson34@gmail.com
*

malicious traffic. The log events in Figure 9 include a sample of the events generated by Nova,

Artillery and Snort during the course of the attacker’s reconnaissance.

ALERT File ../src/Novad.cpp at line 850: Detected potentially hostile traffic from: Suspect: 172.20.10.128#012 Suspect is

hostile#012 Classification: 1#012 Hostile neighbors: 3#012Classification notes: #012k=0:d=0.351803:c=1:i=197#012:o

0.995722 0.432286 59.881 1.53793 3 1000 0 1000 0 0.993723 0 0.00297324 0 1 #012:n 0.995722 0.432286 0.561797 0.123662

0.236194 1 0 1 0 0.997698 0 0.00297623 0 1 #012#012k=1:d=0.705239:c=1:i=198#012:o 0.888347 0.133096 59.863 1.65254 22

1000 1 949.048 1 0.993083 0 0.00377747 0 0.95 #012:n 0.888347 0.133096 0.561757 0.129527 0.53422 1 0.0944402 0.992438

0.100329 0.997055 0 0.00378126 0 0.95 #012#012k=2:d=0.779816:c=1:i=196#012:o 1 0.5025 43.9801 0.281436 1 1000 0 1000

0 0.994036 0 0.00497018 0 0.333333 #012:n 1 0.5025 0.52041 0.0329263 0.118097 1 0 1 0 0.998012 0 0.00497517 0 0.333333

#012#012#012IP Traffic Distribution: 0.830285#012Port Traffic Distribution: 0.830285#012Packet Size Mean:

43.8766#012Packet Size Deviation: 0.69156#012Protected IPs Contacted: 6#012Distinct TCP Ports Contacted: 164#012Distinct

UDP Ports Contacted: 0#012Average TCP Ports Per Host: 136.167#012Average UDP Ports Per Host: 0#012TCP Percent SYN:

0.968009#012TCP Percent FIN: 0#012TCP Percent RST: 0.0308057#012TCP Percent SYN ACK: 0#012Haystack Percent

Contacted: 1#012TCP RST Packets: 26#012TCP ACK Packets: 0#012TCP SYN Packets: 817#012TCP FIN Packets: 0#012TCP

SYN/ACK Packets: 0#012Total TCP Packets: 843#012Total UDP Packets: 0#012Total ICMP Packets: 0#012Total other

protocol packets: 0

[1:4000001:0] Snort Alert [1:4000001:0][Priority: 2]: {TCP} 172.20.10.128:43573 -> 192.168.78.132:135

10:12:01.312210 [!] Artillery has blocked (and blacklisted the IP Address: 172.20.10.128 for connecting to a honeypot restricted

port: 25

[1:4000001:0] Snort Alert [1:4000001:0][Priority: 2]: {TCP} 172.20.10.128:43573 -> 192.168.78.132:5900

[1:4000000:0] Snort Alert [1:4000000:0][Priority: 2]: {TCP} 192.168.78.131:5900 -> 172.20.10.128:43573

[1:4000001:0] Snort Alert [1:4000001:0][Priority: 2]: {TCP} 192.168.78.130:135 -> 172.20.10.128:43573

[1:4000000:0] Snort Alert [1:4000000:0][Priority: 2]: {TCP} 172.20.10.128:43573 -> 192.168.78.131:5900

[1:4000001:0] Snort Alert [1:4000001:0][Priority: 2]: {TCP} 172.20.10.128:43573 -> 192.168.78.133:5900

Figure 9. Log events generated by Nova, Artillery and Snort

 With this data, incident response teams should be able to clearly identify the

compromised host on the 172.20.10.0/24 network. Several SIEM correlation rules could alert

further based on these events, helping automate the start of an incident response process and

prioritizing the event. For example, a SIEM could alert if logs are received from both Artillery

and Nova classifying a single IP address as malicious. With this information as well as the

captured Snort logs, incident responders could quickly review pertinent information to the attack.

Reviewing all events and flows associated with the malicious IP address, other compromised

systems may be identified through the resulting investigation. Furthermore, the indicators of

Implementing*Active*Defense*Systems*on*Private*Networks*|*28*
*

Josh Johnson, jcjohnson34@gmail.com
*

compromise identified in this investigation can be used to augment preventive controls to stop

similar attacks from succeeding in the future.

A skilled attacker would not make as much clumsy “noise” on the network as shown in

the above examples, but active defense systems limit the amount of reconnaissance and number

of mistakes an attacker can make before being detected. They also slow down an attacker’s

ability to accurately map an internal network using active reconnaissance techniques after

breaching perimeter defenses. Since these systems can be implemented on spare hardware and

have limited to no negative impact on production networks, they can be a quick and easy win for

network administrators to augment their defenses.

4. Conclusion

Although active defense techniques can be used on Internet-facing systems, their value

may be limited since Internet-facing hosts are expected to be on the receiving end of continuous

reconnaissance. On the other hand, active defense systems provide substantial value when

placed in locations such as private networks where reconnaissance activities are less common,

but are potentially more dangerous. Attackers using malware and client-side attacks do not need

to assault public-facing systems directly, and once the initial exploit is successful, additional

reconnaissance occurs within internal networks. Utilizing endpoints as a pivot point into private

networks, attackers are able to use tunneling techniques in order to bypass egress filtering

systems and conceal their presence. Acting as yet another layer of security, active defense

systems can be implemented to specifically identify, alert on, and hinder this type of activity.

Internal systems providing active deception capabilities can increase the cost and time

required for an attacker to successfully exfiltrate data. However, active defense, SIEM and IDS

systems are significantly more useful when integrated together than when operating individually.

When IDS alerts for honeypot IP addresses and ports are triggered, a single alert does not

provide significant value and could be caused by a misconfigured system or a simple typo. On

the other hand, when a SIEM can present one of these alerts with output from an active defense

system as well as any other events associated with the potential offender, an analyst can quickly

and efficiently begin researching and analyzing the event.

Implementing*Active*Defense*Systems*on*Private*Networks*|*29*
*

Josh Johnson, jcjohnson34@gmail.com
*

Applied to a kill chain model, active defense systems on private networks exist as an

additional control within the phases of an intrusion in which attackers have already breached

perimeter defenses. These systems provide defenders the additional ability to identify threats

and prevent adversaries from taking actions on their objectives and exfiltrating data.

Furthermore, the observation of internal reconnaissance activities can provide valuable

intelligence on attackers’ capabilities and motives as well as identifying the failures of other

defenses and preventive controls. With this information, organizations can make better informed

decisions on exactly where their security programs must improve in order to prevent similar

attacks from succeeding in the future. The implementation of active defense systems and the

integration of these systems into existing SIEM and IDS strategies can be the difference between

a successful breach and a thwarted attack.

Implementing*Active*Defense*Systems*on*Private*Networks*|*30*
*

Josh Johnson, jcjohnson34@gmail.com
*

References

Bright, P. (2011, February 15). Anonymous speaks: the inside story of the hbgary hack.

Retrieved from http://arstechnica.com/tech-policy/2011/02/anonymous-speaks-the-

inside-story-of-the-hbgary-hack/

Deception toolkit. (n.d.). Retrieved from http://www.all.net/dtk/dtk.html

Haig, L. SANS Institute, (2002). Labrea - a new approach to securing our networks. Retrieved

from website: http://www.sans.org/reading_room/whitepapers/attacking/labrea-approach-

securing-networks_36

Holdaway, E. J. (2001). Active Computer Network Defense: An Assessment

(No.AU/ACSC/055/2001-04). AIR UNIV MAXWELL AFB AL.

Hutchins, E.M., Cloppert, M. J., & Amin, R. M. Lockheed Martin Corporation,

(n.d.). Intelligence-driven computer network defense informed by analysis of adversary

campaigns and intrusion kill chains. Retrieved from website:

http://www.lockheedmartin.com/content/dam/lockheed/data/corporate/documents/LM-

White-Paper-Intel-Driven-Defense.pdf

Kadrich, M. (2007). Endpoint security. (pp. 13-17). Upper Saddle River, NJ: Addison-Wesley.

Northcutt, S., & Novak, J. (2002). Network intrusion detection. (3rd ed., p. 159). Indianapolis:

New Riders.

Robish, E., Johnson, K., & Strand, J. (2013, February 07).Active defense harbinger distribution.

Retrieved from http://sourceforge.net/projects/adhd

Implementing*Active*Defense*Systems*on*Private*Networks*|*31*
*

Josh Johnson, jcjohnson34@gmail.com
*

Skoudis, E., & Liston, T. (2006). Counter hack reloaded, a step-by-step guide to computer

attacks and effective defenses. (2nd ed., pp. 559-561). Upper Saddle River, NJ: Prentice

Hall.

Anatomy of an attack from spear phishing attack to compromise in ten steps. (n.d.). Retrieved

from https://www.mandiant.com/threat-landscape/anatomy-of-an-attack/

Developments of the honeyd virtual honeypot. (n.d.). Retrieved from http://www.honeyd.org/

Project artillery - the most advanced threat intelligence solution. (n.d.). Retrieved from

https://www.trustedsec.com/downloads/artillery/

The nova project. (n.d.). Retrieved from http://www.projectnova.org/

