GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

HTTP header heuristics for malware detection
GIAC (GCIA) Gold Certification

Author: Tobias Lewis, tobaslouis@gmail.com
Advisor: Antonios Atlasis

Accepted: 24th December 2013

Abstract
Sophisticated malware, such as those used by Advanced Persistent Threat (APT)
groups, will attempt to avoid detection wherever and whenever it can. However,
even the stealthiest malware will have to communicate at some point, and when it
does so, it provides an opportunity for detection. This paper looks at a number of
techniques to identify the presence of malware which attempts to masquerade as
legitimate web browsing activity, exploiting some of the occasionally inaccurate
attempts to mimic the HTTP protocol. This should provide network defenders with
greater opportunity to detect malicious activity, without the need for maintaining a
corpus of virus specific signatures that are vulnerable to change.

[v1.0 November 2013]

HTTP header heuristics for malware detection | 2

1. Introduction

Signature based detection is one of the most fundamental techniques for
identifying malicious activity on your network. However, these only really account for
the so called “known, knowns” (Rumsfeld, 2002), and with numerous commercial
offerings of threat indicators, it can be costly to maintain an up to date corpus of network

signatures.

Behavioural, or heuristic based detection, provides a broader capability by
attempting to identify malware from behaviour that is deemed to be, or at least associated
with, nefarious activity — including that which has potentially never been observed before
(“Heuristics”, Virus Bulletin Glossary, n.d.). This paper discusses the use of heuristics in
malware detection, focussing on the network traffic generated and specifically the
attempts to masquerade as legitimate web browsing traffic using the Hypertext Transfer

Protocol (HTTP).

HTTP is an application layer protocol that allows the transfer of data using the
client-server model. Typically used for web browsing, clients issue a request to a server
(such as a web server), which responds, either with the appropriate resource if available
or some form of information or error message. The latest operational version (version

1.1) is defined in RFC2616 (Fielding et al., 1999).

Like most network protocols, HTTP makes use of headers to transfer metadata
that provides the receiving entity with information on how best to treat the event. It may,
for example, provide information on the browser being used to view a webpage, that tells
the web server the best format to send back; or, which file types the client is expecting to
receive as part of the request. Some of the more common header options, and those which

I’ll refer to in this paper, are as follows:

* User-Agent; used to describe the specifics of the software application
making the HTTP request, for the purposes of ensuring compatibility and

usability statistics

Author Name, email@address

HTTP header heuristics for malware detection | 3

* Host; specifies the domain or IP address, where the requested resource is
located, although for externally bound network traffic it is unlikely to see

an [P address.

* Referer; a field used to indicate when a webpage visit is as a result of a
hyperlink being followed, and will specifically contain the source of that
link

A range of predefined headers (including those above) are listed in RFC2616

(Fielding et al., 1999), with most giving some indication of the expected format of the

entry. For example, the User-Agent option requires the following format:

"User-Agent" ":" 1*(product | comment)

Which may look something like:

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

RFC2616 (Fielding et al., 1999) only explicitly requires that the Host field is
present in a request; albeit with some edge cases, everything else is optional, including
the ordering. It is also worth noting that the RFC does not define or describe the specific
content of the header value, only the format or syntax it expects the individual options to
be in. As a result there can be significant variation between implementations - although
you would expect some consistency between products based upon the elements of the

same source code, for example between different versions of Internet Explorer.

At a basic level, HTTP offers the good majority of the functionality required by
malware, specifically referring to the ability to upload and retrieve data. Furthermore, due
to its fundamental use in web browsing, HTTP is one of the more common protocols
observed in networks both big and small. As a result, not only are source code libraries
and modules for HTTP widely available, HTTP traffic is often enabled by default on

security devices and network gateways.

Researching cyber crime botnets in 2009, it was identified that “...the majority
of...bots use HTTP to communicate with their C&C [command and control] server...”
(John, Moshchuk, Gribble & Krishnamurthy, 2009) and within the recent “APT1” report

(Mandiant, 2013) which discusses the use of malware by a specific, sophisticated

Author Name, email@address

HTTP header heuristics for malware detection = 4

“Advanced Persistent Threat” (APT) group, over 30 out of nearly 50 tools appear to

communicate using HTTP-like protocols.

2. Analysis of HTTP heuristics

2.1. General heuristics

2.1.1. User-Agents

In enterprise environments, it is common for IT infrastructure to be centrally
coordinated and managed. As a result, you could expect a fairly static I'T build across the
estate and thus minimal variation in the operating system and browser versions reported
in the User-Agent. It could therefore be possible to rely on this relative predictability to
help identify alien network traffic.

Figure 1 mimics what this could look like in a web proxy log. Whilst there is
some slight variation amongst the other User-Agents, the anomalous entry is clear to see.
Appreciating that in the specific example, the difference in line length makes it stand out;
an observant network administrator should also be able to note the different operating

system and browser version.

10:14:10.0257 192.168.1.14 google. co.uk Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.3.69573; WOw64; en-us)
10:14:10.0345 192.168.0.153 youtube.com Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.2.4903; wOw64; en-uUs)
10:14:10.0399 192.168.3.209 youtube.com Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.2.4903; wow64; en-US)
10:14:10.0822 192.168.4.132 outube. com Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.2.4903; wow64; en-US)
10:14:10.0852 192.168.1.120 acebook. com Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.3.69573; WOw64; en-us)
10:14:10.1153 192.168.4.115 hotmail.com Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.3.69573; wWow64; en-us)
10:14:10.3123 192.168.4.132 baddomain.com Mozilla/4.0 (compatible; MSIE 6.0; windows NT 5.1)

10:14:10.3187 192.168.4.168 wikipedia.org Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.2.4903; wow64; en-uSs)
10:14:10.3289 192.168.1.92 youtube. com Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.2.4903; wow64; en-US)
10:14:10.3728 192.168.0.154 Eoog]e.co.uk Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.2.4903; wWOw64; en-Us)
10:14:10.398 192.168.1.186 otmail.com Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.3.69573; wow64; en-uSs)
10:14:10.4794 192.168.0.34 yahoo. co. uk Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.1.1443; wow64; en-us)
10:14:10.5391 192.168.2.143 yahoo. co.uk Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.2.4903; wWOw64; en-uUs)
10:14:10.5685 192.168.4.126 yahoo. co.uk Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.2.4903; wow64; en-US)
10:14:10.6005 192.168.3.229 wikipedia.org Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.2.4903; wow64; en-uSs)
10:14:10.6739 192.168.2.232 Tinkedin.com Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.3.69573; wWow64; en-us)
10:14:10.6981 192.168.0.221 youtube.com Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.2.4903; wow64; en-US)
10:14:10.8478 192.168.3.29 google. com Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.2.4903; wWOw64; en-uUs)
10:14:10.9095 192.168.2.153 yahoo. co.uk Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.1.1443; wow64; en-Us)
10:14:10.9878 192.168.2.254 google.co.uk Mozilla/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.2.4903; wOw64; en-Us)
10:14:10.9979 192.168.3.140 yahoo. co.uk Mozil1a/5.0 (compatible; MSIE 8.0; windows NT 6.1; Trident/4.0; .NET CLR 3.2.4903; wOw64; en-Us)

Figure 1 - Sample web log showing an infected host

However, when we look at the network traffic generated by just a single host, it is
possible for a large number of User-Agents to be present. From Windows Services to
browsers built into applications such as iTunes, they all act to raise the noise floor. It
could also be argued that this would not be an unexpected result given the propensity for

legacy systems to remain on enterprise networks for support, contractual or backward

Author Name, email@address

HTTP header heuristics for malware detection | 5

compatibility reasons. The increasing popularity of “Bring Your Own Device” (BYOD)
and also guest users, could increase the likelihood of apparently anomalous User-Agents

even further.

Despite this, it may still be possible to detect suspicious activity. Whilst we can
look to defeat or white list User-Agents associated to Windows services such as
Microsoft Update, these applications are subject to change and could lead to false
positives. What may be more practical is looking for User-Agents that simply contain
incorrect or false information and regardless of the browser or HTTP client being used;
the Operating System for a specific platform should remain constant. This is a reminder

that heuristics work best when fine-tuned to their environment.

Whilst the data in figure 1 is presented in a log format, network administrators
could deploy SNORT based signatures to identify this behaviour. Taking into account
some of the additional requirements to reduce the amount of False Positives, two sample
SNORT rules are provided below. The first will hit on activity that doesn't present the
User-Agent of a possible standard build (in this case, Internet Explorer version 9.0 on
Windows 7), the second will hit on HTTP activity that doesn’t contain the correct

Operating System (Windows 7):

alert tcp SHOME NET any —-> SEXTERNAL NET any (msg: "HTTP activity
using non-standard User-Agent"; flow:to server,established;
content:"User-Agent: Mozilla”; http header; content:!"User-Agent:
Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)";
http header; classtype:bad-unknown; sid:1000000; rev:1;)

alert tcp SHOME NET any —-> SEXTERNAL NET any (msg: "HTTP activity
using User-Agent with non-standard Operating System";
flow:to_server,established; content:"User-Agent: Mozilla”;

http header; content:"Windows"; http header; content:!"Windows NT
6.1;"; http header; classtype:bad-unknown; sid:1000001; rev:1;)

2.1.2. Typographic Errors
Much of the malware examined for this paper appears to use explicitly hardcoded
header options and these could be prone to simple typographic or syntactical errors which

can be used to identify malicious activity.

Author Name, email@address

HTTP header heuristics for malware detection = 6

In the MEDIANA sample below (Parkour, 2013), there is surplus white space
(ASCII character 0x20) at the end of a number of options before the carriage return and
line feed:

GET http://firewall.happytohell.com:80/1index.htm?
n763t40Pm*rsbfXg7fXp7ujlee-r&testid HITP/1.0

Accept: */%

Accept-Language: en-us

Pragma: no-cache

User-Agent: Mozilla- 4.0 (compatible; MSIE 6.0; Windows NT 5.0)
Host: firewall.happytohell .com:80

X-HOST: n763t40Pm*rsbfXgq7fXp7ujlbe-1

Content-Length: 0

Proxy-Connection: Keep-Alive

This doesn’t contravene RFC2616 (Fielding et al., 1999), which indicates that the
presence of trailing “Linear White Space” in a header value can be removed without
altering the meaning. However, for network efficiency, it would be unlikely for surplus
“Linear White Space” to be included. This assumption is supported when looking at

legitimate network traffic.

The following snort rule could be used to detect HTTP headers with similar
superfluous white space:
alert tcp SHOME NET any -> $EXTERNAL NET any (msg: "Extra white

space in HTTP Header"; flow:to server,established; content:" |20
0d Oal|"; http header; classtype:bad-unknown; sid:1000002; rev:1;)

The PROTUX (Parkour, 2013) sample also has surplus white space, in this case
between the URL and the URL arguments shown and highlighted below:

GET http://veveveve.dyndns.org:8080/index.pl 71d=21378 HITP-1.1

This is counter to the URL syntax prescribed by RFC2396 (Berners-Lee, Fielding,
Irvine & Masinter, 1998), which treats white space in URLs as an “excluded character”

and is thus disallowed.

A sample as discussed by the Kaspersky Global Research & Analysis Team
(branded as “GReAT”) further demonstrates typographic errors in HTTP headers.

Author Name, email@address

HTTP header heuristics for malware detection = 7

QUARIAN (GReAT, 2012) is identifiable by incorrect' use of an underscore (“ *)
instead of a hyphen (“-*) in the Content-Length header option, and further more by a
misspelling of “Connection” in the Proxy-Connection option (although it’s worth noting

that this is not a header field predefined by RFC2616 (Fielding et al., 1999)):

CONNECT sureshreddyl.dns05.com:443 HITP/1.0
User-Agent: Mozilla~-4.0
Host: sureshreddyl.dns05.com
Content_length: 0O
Proxy- : Keep-Alive
Pragma: no-cache
The PROTUX and QUARIAN samples both demonstrate errors with specific
respect to the formal RFC. As a result, we can assume that this would not be present in
HTTP traffic generated by a commercial browser, and that the risk of false positives

would be low.

2.1.3. URL Complexity

When a user wishes to visit a specific website, they type the URL into the address
bar of their browser and hit enter. It would be considered unlikely that a real user would
be willing to type in a long or complex URL directly, although you might expect a more
complex or long URL if it was being reached by the following of a link such as in the
results of a search engine. In this case there should be a sensible referer field indicating
this. RFC2616 (Fielding et al., 1999) doesn’t formally limit URL length, although it does
recommend that genuine web servers shouldn’t rely on lengths greater than 255

characters, to allow backward compatibility with older clients.

There are a number samples, which by their inclusion of complex URL arguments
and an absent referer field, would be deemed unlikely to have been manually typed in by

a user:
IXESHE (Parkour, 2013):

GET /AWS96.jsp?baQMyZrdISRojs9Khs9fhnjwj BmIOm9;0Ky jnxKjQJa
HTTP/1.1

LIncorrect in terms of RFC2616 (Fielding et al., 1999), which specifically states that the field name
should be of the format: “"Content-Length”

Author Name, email@address

HTTP header heuristics for malware detection | &

TAIDOOR (Parkour, 2013):

GET /gmzlk.php?id=031870111D309GE67E HITP-1.1

However, there are some even more extreme examples, such as the MONGALL sample

(Parkour, 2013):

GET
~3010850A0000F0FDOF0032313744374432453631363433383338004445
4C4C5854000
0oo0o00O00OOOOOOOOOOOOOODOOOOOO0OOO0OO0O00O000000000000C0OG000000
01000007014C61757261000000000000000000000000000000000000000
0oo0o00O00O0OOOOOOOOOO0OO0O0O000O000 HITP-1.1

Or worse, NETTRAVELER (Parkour, 2013):

GET -fly-2013-2011/nettraveler.asp?
hostid=E81B9088&hostname=Del 1XT&hostip=172.16.253.130&filename
=travlerbackinfo-2013-1-14-29.dl1&filestart=0&filetext=begin::
tCvUBC2vGMy 3Gu300GKz 1EXQaCuRHQg ThF ThMLBUMNNhrt TsN9yvhTLITKhFJs 4
STgtWwwllvSDELjIXDELC4ZDUZ3IzGESWIZa73Z6 1ZgzmhNNJ jORvOZvMxz DEBXHN
JuMhvOSzEBYKAgKFTMz10ZzNJvNxhNyskplOR2qJ1shhMZrEAZEACIR INIsMyy
GQ2GAWFIKkRaMVisxftVeOSTmu305F nKodDMekchCx 1 KNpuDxnRkN6gFFhDYex
4MxKKaPIZQKtMkeymbhDeZESh joZTY IDwOBs ICMYThQpSEFvk03mINoa jicrZ0
BwtQziAcSEDkZkOKFgZLOd 72drEbS e 2pnwy 4xGExShEt fsmD 3EXhvk fkDMAL j
A2XDYbaxbeFtevhZsxgtBYu3AWIBAIBgIC2UzycS6G3ITIJHINXNIGkSuKknlhGY 4n
1czhV4XGUBGXLdIgquZ jOZyvE8buMS0He fBsNSn jb 11 RvmRO£ J07xA3G1g jYezD4Y
cejCex2NsfDoal¥e09/Dgix2MZoiod0-kOKn -dGIxGVyPZ7xv703PbMvd 7RqOR
kIKLThMucpgOosG2wgcDehSujt 1HE91EZyOsLhsNygzg 461 LHanKOmyYZ05kxpJ
zIMbfBmtyg8gwpHk 2TV9Dn 1IRFEXtEeH7P-ZTWcubHGeTYa j j 23wzGl1VRtMht6tA
ajabyg7mSoQz9RSMEXL 7zeNBrRgVCyQTrX406h jelUbrebzylobzPz jUHUPZC-Y 4
Y42DMeesoG2WV44aZagusbpisxMdb fWEBDfFyNhh j S50GD5zsAzGusD 3rwzGellyd
D1b¥Yc7a75e4-NrMod4zhUSNPzy2p4Aabd j 2LRITh jz5zMaT0db jTpy 2Z2mefix56
t6plysEATo40eRd fNvzd N4 fZgRQ7TZgGvEF bcVkOxySStACCfFnOpmninigV 7y
®80Dk7B1zRDycPriKVTcazd07153c0cd-Uj fNIODfBFg3GI 2GWcBSEVKIP 1 Gwrk
knFPSsHigx-LIIi1ZKrgqD0pggt HITP-/1.1

However, we can identify examples of long and complex URLSs in legitimate
traffic. For example, events generated by the Microsoft-CryptoAPI service, are often
significantly longer than you would expect a legitimate user to be willing to enter — often
over 100 characters in length with no Referer entry. Equally as prevalent are events

associated to in page banner advertisements that your browser will send separate direct

(non-referred) requests for.

Without any form of fine-tuning, in many cases this heuristic would only be

sufficiently reliable when looking for URLs that exceed the recommended 255

Author Name, email@address

© 2013 The SANS Institute Author retains full rights.

HTTP header heuristics for malware detection = 9

characters. However, given knowledge of the environment, the ability to defeat events
associated with certain User-Agents and/or domains, it may be possible to reduce the

threshold.

Snort rules could be written for this characteristic, making use of the “urilen”

keyword, with the following example using a threshold of 255 characters in the URL:

alert tcp SHOME NET any -> SEXTERNAL NET any (msg: "URL length
exceeds 255 characters"; flow:to server,established; urilen:>255;
classtype:bad-unknown; sid:1000003; rev:1;)

2.2. Using pOf for generic malware detection

2.2.1. Introduction to pOf for malware detection
Assuming that network traffic generated by malware effectively calls on the TCP
library of the host operating system, we can use the structure of the OSI model to identify

malicious software.

Using a passive fingerprinting tool such as pOf (Zalewski, 2012) we can look to
characterise the host operating system by transport layer artefacts such as Time to Live
(TTL) values, Window Size and Sequence numbers and referencing it to a known
fingerprint library. We can then compare this result with the Operating System value as
reported in the malware controlled application layer, such as the User-Agent field within

a HTTP header.

The latest version of pOf goes further in attempting to identify the client used to
generate the HTTP request, based upon the inclusion, exclusion and ordering of certain
HTTP header options. This can be used to additionally identify fake User-Agent
information, when, for example, an application purporting to be Microsoft Internet

Explorer version 6.0 doesn't present the expected header options of a real IE6.0 browser.

2.2.2. Demonstration of p0f for malware detection

To demonstrate the effect of this, traffic was generated using two methods:
1. A Windows version of the popular Unix tool wget.

2. Mozilla Firefox v24.0 with a plug-in allowing custom User-Agents

Author Name, email@address

a fixed User-Agent that claimed to be Microsoft Internet Explorer 6.0 running on

HTTP header heuristics for malware detection

Windows XP:

Mozilla~-4.0

(compatible; MSIE 6.0; Windows NT 5.1)

10

In both cases, this was conducted from a Windows 7 host operating system, using

Data was captured using Fakenet (Honig & Sikorski, 2012) to avoid unnecessary

interaction with external web servers. As you can see below, pOf was able to correctly

identify both the real host operating system and the application used to generate the

application layer content.

--- pOf 3.06b by Michal Zalewski <lcamtuf@coredump.cx> ---

[+] Closed 1 file descriptor.

[+] Loaded 314 signatures from '/etc/pOf/pOf.fp'.

[+] Will read pcap data from file 'Win51on7wget.pcap'.
[+] Default packet filtering configured [+VLAN].

[+] Processing capture data.

[XXX XXX XXX XXXS 1472 - > XXX XXX XXX XXX/80 (syn) 1-
|
| client = xxx.xxx.xxx.xxx/1472

| os = Windows 7 or 8

| dist =0

| params = none

| raw_sig =4:128+0:0:1460:8192,2:mss,nop,ws,nop,nop,sok:df,id+:0
|

o [XXX 000 XXX. XXX/ 1472 - > XXX.XXX.XXX.XXX/80 (http request) -

| client = xxx.xxx.xxx.xxx/1472

| app = wget

| lang = none

| params = dishonest
| raw_sig =

0:User-Agent,Accept=[*/*],Host,Connection=[Keep-Alive]:Accept-Encodin
g,Accept-Language,Accept-Charset,Keep-Alive:Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT 5.1)

|

All done. Processed 47 packets.

Figure 2 - Results using WGET
(sanitized and snipped to show pertinent results)

Author Name, email@address

© 2013 The SANS Institute

Author retains full rights.

HTTP header heuristics for malware detection | 11

--- pOf 3.06b by Michal Zalewski <lcamtuf@coredump.cx> ---

[+] Closed 1 file descriptor.

[+] Loaded 314 signatures from '/etc/pOf/pOf.fp'.

[+] Will read pcap data from file 'Win51on7withFF.pcap'.
[+] Default packet filtering configured [+VLAN].

[+] Processing capture data.

[XXX XXX XXX XXX/ 1620 - > XXX XXX.XXX.XX%/80 (syn) 1-

| client = xxX.XXX.XxX.Xxx/1620

| os = Windows 7 or 8
| dist =0
| params = none

| raw_sig = 4:128+0:0:1460:8192,2:mss,nop,ws,nop,nop,sok:df,id+:0
|

L0060 XXX XXX XXX/ 1620 - > XXX.XXX.XXX.XxX/80 (http request)]-

| client = XxX.XXX.XXX.XxX/1620

| app = Firefox 10.x or newer
| lang = English

| params = dishonest

| raw_sig =

1:Host,User-Agent,Accept=[image/png,image/™;q=0.8,*/*;q=0.5],Accept-L
anguage=[en-gb,en;q=0.5],Accept-Encoding=[gzip,
deflate],?Referer,Connection=[keep-alive]:Accept-Charset,Keep-Alive:Mozill
a/4.0 (compatible; Windows NT 5.1 MSIE 6.0)

|

IAll done. Processed 118 packets.

Figure 3 - Results using Firefox with a User-Agent changing plug-in
(sanitized and snipped to show pertinent results)

When we look at the full HTTP headers presented by samples from the Parkour
(2013) dataset, pOf is unable to match the vast majority to the browser fingerprint they
should have fired on. In fact we find that of the 11 samples that use a legitimate® looking
User-Agent, 10 of them do not use or present the options as expected by pOf. In most
cases, this is because the samples have an overly simplistic HTTP header, omitting a
significant number of header options that would have otherwise have been included in a

legitimate request.

Figure 4 shows the output of pOf when ran against the NETTRAVELER sample
(Parkour, 2013). Whilst it is unable to identify the host operating system (instead only

assessing that is using a Windows NT based Kernel), under the “app” field we can see

2 Legitimate in that it appears to mimic a genuine operating system, starting with the Mozilla version
token and then Operating System and Browser tokens followed in parentheses

Author Name, email@address

HTTP header heuristics for malware detection | 12

that the HTTP Headers do not fire on any of existing browser fingerprints, and certainly

not Microsoft Internet Explorer version 6.0.

--- pof 3.06b by Michal zalewski <lcamtuf@coredump.cx> ---

[+] Closed 1 file descriptor.

[+] Loaded 314 signatures from '/etc/pOf/pOf.fp’.

+] will read pca? data from file

' /APT/BIN_Nettravler_DA5832657877514306EDD211DEF61AFE_2012-10.pcap”.
[+] pefault packet filtering configured [+VLAN].

[+] Processing capture data.

L=[XXX. XXX, XXX. XXX/1060 -> XXX.XXX.XXX.XXxX/80 (syn)]-

client = XXX.XXX.XXX.XXX/1060

0s = windows NT kernel

dist =0

params = generic

raw_sig = 4:128+0:0:1460:ms5%44,0:mss,nop,nop,sok:df,id+:0

L =[XXX, XXX, XXX. XXX/1060 -> XXX.XXX.XXX.XxX/80 (http request)]-

client = XXX.XXX.XXX.XXX/1060
app = 777

lang = English

params = none

raw_sig 1:Accept=[image/qgif, image/x-xbitmap, image/jpeg,
image/pjpeg, application/x-shockwave-flash, */%],Accept-Language=[en-
us],Connection=[Keep-Alive],Pragma=[no-cache],User-Agent,Host,?Cache-
control,?Cookie:Accept-Encoding,Accept-Charset,Keep-Alive:Mozilla/4.0
?compatib]e; MSIE 6.0; windows NT 5.0)

Figure 4 - Sample pOf response for NETTRAVELER (Parkour, 2013)
(Sanitized and snipped to show pertinent results)

Author Name, email@address

© 2013 The SANS Institute Author retains full rights.

HTTP header heuristics for malware detection | 13

L =[XXX, XXX. XXX. XXX/1587 -> XXX.XXX.XXX.XxX/80 (http request)]-

|

| client = XXX.XXX.XXX.XXX/1587

| app = MSIE 8 or newer

| Tang = English

| params = none

| raw_sig = l:Accept=[text/html, app11cat1on/xhtm1+xm1 % /%] ,Accept-
Lan?uage [en-gb],user-Agent, Acce?t Encod1nE [gzip,

deflate],Host connect1on—[Keep Alive],?cookie:Accept-Charset,Keep-

Alive: Moz111a/5 0 (compatible; MSIE 9.0; windows NT 6.0; Tr1dent/5 0)
|

L-[XXX. XXX, XXX, XXX/1685 -> XXX.XXX.XXX.Xxx/80 (http request)]-

|

| client = XXX.XXX.XXX.XXX/1685

| app = safari 5.1 or newer

| Tang = English

| params = dishonest

| raw_sig = 1l:Host,User-Agent,Accept=[¥%/%],Accept-Language=[en-gb, en-

us;q=0.67, en;qg=0.33],X-Apple-Store-Front=[143444,17] ,X-Apple-Tz=
[0],Accept-Encoding=[gzip, deflate],Connection=[keep-alive]:Accept-
Charset,Keep-Alive:iTunes/11.1.3 (windows; Microsoft windows vista Home
Tremium Edition Service Pack 2 (Build 6002)) ApplewebKit/536.30.1

L[XXX, XXX, XXX. XXX/1782 -> XXX.XXX.XXX.XxX/80 (http request)]-

|

| client = XXX.XXX.XXX.XXX/1782
| app = Firefox 10.x or newer
| Tang = English

| params = none

raw_sig 1:Host,User-Agent,Accept=
[text/htm] app11cat1on/xhtm1+xm1 application/xml;q=0.9,%/%; q =0. 8] ,Accept
-Language= [en—gb en; q=0.5] ,Accept-Encoding= [gz1p, def1ate]
cookie,Connection= [keep a11ve] Accept-Charset,Keep-Alive: Moz111a/5 0
(W1ndows NT 6.0; rv:25.0) Gecko/20100101 F1refox/25 0

L-[XXX, XXX, XXX, XXX/1833 -> XxX.xxXX.XXX.Xxx/80 (http request)]-

|

| client = XXX.XXX.XXX.XXX/1833

| app = ???

| Tlang = none

| params = none

| raw_sig = l:Accept=[*/%],User-Agent,Host,Connection=[Keep-

Alive] :Accept-Encoding,Accept-Language,Accept-Charset,Keep-
Alive:Microsoft-CryptoAPI/6.0
|

Figure 5 - Samples of legitimate HTTP activity
(Sanitized and snipped to show pertinent results)

In Figure 5, we see the results of pOf when compared to samples of legitimate
traffic. Most notably is that pOf is not able to identify the application in all cases. This is
ultimately because the pOf fingerprint library does not contain a fingerprint for every
possible HTTP client (the Microsoft-CryptoAPI service in this example) — and nor should
we expect it to. The way in which we can use pOf for malware detection is crucial to

avoid unnecessary false positives.

Only where the User-Agent indicates a client or browser, for which pOf has an
existing fingerprint for, we can rely on the results of the app field to identify cases where
the User-Agent contains false or incorrect information and the event itself is likely to be

malicious.

Author Name, email@address

© 2013 The SANS Institute Author retains full rights.

HTTP header heuristics for malware detection | 14

Furthermore, there is nothing to stop network administrators from developing
their own fingerprints for pOf, which adds an additional detection mechanism beyond

SNORT based intrusion detection rules.

2.2.3. Deployment options

There are a number of deployment options for pOf, and although I have used it in
a purely offline mode, network administrators could deploy pOf to gateway devices
passively sniffing live network traffic or could even incorporate it into a larger suite of

network monitoring tools using a built in API.

2.2.4. Considerations to note when using pOf

Based upon expected behaviour and the inaccurate attempts to spoof it, we can
use pOf to identify malicious behaviour based upon discrepancies in two areas - the
application layer and the transport layer. However, they do not present equal

opportunities for detection.

In the first case, we are reliant on the host operating system differing from that
referenced in the User-Agent field; if the two were the same, it would clearly not be
possible to identify malicious behaviour using this technique. We can attempt to quantify
this, albeit simplistically, by looking at the frequency of certain operating systems in
spoofed User-Agents, with the market share of that operating system. 9 of the 11 Parkour
(2013) samples are for operating systems that account for over 30% of the current market
share (NetMarketShare, 2013) - the other two refer to "Win32" which is not possible to

categorise at this time.

Furthermore, in the samples presented, pOf struggled to reliably detect the host
operating system beyond the core kernel (Windows NT in this case). This could be due to
lack of sufficient network traffic for pOf to make a thorough assessment, but equally it
could be due to the dynamic nature of an operating systems kernel over its lifetime, as

patches and hot-fixes from the manufacturer are installed.

In the second method (the use of HTTP header options), this is entirely dependent
on the malware itself, and more specifically how well the malware author is able to spoof

genuine browser activity. As a result, this method has a broader application and would

Author Name, email@address

HTTP header heuristics for malware detection | 15

have a higher chance of detecting malicious activity (around a 90% success rate, albeit

based on the limited number of samples discussed in this paper).

3. Recommendations

This paper has focussed on the content of the HTTP header, but techniques
involving the timing of human generated versus automated events could provide further
opportunity for detection. Likewise with flow profiles, such as upload/download ratios,
top talkers, variance of domains and URLs could give some statistical methods for
malware detection. These will require a better understanding of the “norms” of your
network, and so is something for individual network administrators and security teams to

explore the merits of in their own enterprise.

Behavioural detection takes time to fine tune and some of the techniques shown
will not work on all networks. Policies allowing Bring Your Own Device or Local
Administration rights, not to mention networks with a significant number of application
developers could reduce the signal to noise ratio and increase the amount of False
Positives. This paper only discusses techniques in a relatively vanilla environment, and

anyone wishing to implement them, should do so with the understanding of these risks.

Based on the techniques discussed in this paper and the experiences in
implementing similar methods, the following steps are recommended to help detect

malicious activity on a network:
1. Baseline your network — understand what is unusual and what stands out.

2. A clear, delineated and compartmentalised network, helps to simplify network

activity.

3. Look to lower the “noise” floor wherever possible — if something doesn’t need

to be installed or connected to the internet, then make sure it isn’t.
4. Heuristics work best when fine-tuned to the environment.

5. Above all, don’t be reliant on a single method for detection — each has its

weaknesses.

Author Name, email@address

HTTP header heuristics for malware detection | 16

4. Conclusion

This paper has demonstrated how seemingly minor spelling, typographic and
syntactical errors provide network administrators opportunities for the detection of
malware. It has also illustrated how the lack of variance in a network can aid detection by
making alien traffic stand out more and how consideration for real world user behaviour

could be exploited as well.

One of the most successful techniques was the use of passive fingerprinting tools
and the comparison with real world browser software, which the malware is ultimately
trying to mimic. Presenting error free headers is one thing. Presenting them in the right
order, with the correct inclusion and omission of specific options is another thing

altogether, and one that seems to be a fairly common trait across the samples tested.

No one technique was able to detect all samples, even in the limited collection.
This should serve as a reminder that heuristics is only one tool in the armoury and should
be used as a complimentary addition to other detection methods, such as signature based
Intrusion Detection Systems or host based techniques. In combination, these will only
increase the likelihood of being able to detect malicious activity so security teams can

respond appropriately, but obviously, prevention is better than the cure!

Author Name, email@address

HTTP header heuristics for malware detection | 17

5. References
Berners-Lee, T., Fielding, R., Irvine, U. C., & Masinter, L. (1998). Uniform Resource
Identifiers (URI): General Syntax (otherwise known as RFC2396)

Fielding, R., Irvine, U.C., Gettys, J., Mogul, J., Frystyk, J., Masinter, L., Leach, P., &
Berners-Lee, T. (1999). Hypertext Transfer Protocol (otherwise known as
RFC2616).

GReAT (2012). A Targeted Attack Against The Syrian Ministry of Foreign Affairs.
Available from

https://www.securelist.com/en/blog/774/A_Targeted Attack Against The Syrian

_Ministry of Foreign Affairs

Heuristics (n.d.). Virus Bulletin Glossary. Available from

http://www.virusbtn.com/resources/glossary/heuristics.xml

Honig, A. & Sikorski, M. (2012). FakeNet version 1.0c [computer software]. Available

from http://sourceforge.net/projects/fakenet/files/latest/download

John, J. P., Moshchuk, A., Gribble, S. D., Krishnamurthy, A. (2009). Studying Spamming
Botnets Using Botlab. Available from
https://www.usenix.org/legacy/event/nsdi09/tech/full papers/john/john.pdf

Mandiant (2013). APT1: Exposing One of China’s Cyber Espionage Units. Available
from http://intelreport.mandiant.com/Mandiant APT1_ Report.pdf

NetMarketShare (2013). Desktop Operating System Market Share [live data as of 20"
October 2013]. Obtained from http://www.netmarketshare.com/operating-system-

market-share.aspx?gprid=10&gpcustomd=0

Parkour, M. (2013). Collection of Pcap files from malware analysis. Available from

http://contagiodump.blogspot.co.uk/2013/04/collection-of-pcap-files-from-

malware.html

Author Name, email@address

HTTP header heuristics for malware detection | 18

Rumsfeld, D. (2002). US Department of Defense News Briefing, originally presented 12™
Feburary 2002. Transcript available from

http://www.defense.gov/transcripts/transcript.aspx?transcriptid=2636

Zalewski, M. (2012). pOf version 3.0beta [computer software]. Available from
http://lcamtuf.coredump.cx/p0f3/

Author Name, email@address

