GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Snort and SSL/TLS Inspection

GIAC (GCIA) Gold Certification

Author: Yousef Bakhdlaghi, bakhdlaghi@gmail.com
Advisor: Sally Vandeven

Accepted: April 14™, 2017

Abstract

An intrusion detection system (IDS) can analyze and alert on what it can see, but
if the traffic is tunneled into an encrypted connection, the IDS cannot perform its analysis
on that traffic. The difficulty of looking into the packet payload makes the encrypted
traffic one of the challenging issues to IDS. In Snort, the encrypted traffic inspector is
available optionally and can only inspect connections’ handshakes with no further
inspection of the payload after the connection has established. However, encrypted traffic
can be entirely decrypted using the private key (decryption key), but there are some
issues associated with SSL/TLS key exchanges that could increase the difficulty of
decrypting traffic provided the private key.

This work discusses SSL/TLS protocols, and the issues of key exchange methods
in addition to providing solutions for inspecting SSL/TLS traffic with the demonstration
of two methods to inspect SSL/TLS traffic.

2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 2

Table of Contents

1. INTRODUCTION ...ccoiiittieiiiiiisnenereesssssssesere e s sasssees s s s s aasss e s s ssssssssssnsnensses 3
1.1, SNORTIDS ittt st et et e sat e et esbe e et e nbeeeaneenee 3
1.1.1. SNOIt COMPONEGNLS .ccceveeeeeeeeiiieeee ettt e e eeesee e e ettsee e e e e eetaseseeseaasaaeeaenes 3
1.1.2. SSL Dynamic Pre-proCessor (SSLPP)ooueeeeeeecieeeeeeciieeeeeciieaeeesciea e 4

1.2. SSL/TLS ettt ettt b e et ettt bbbt sat e b eatas 5
1.2.1. TLS Authentication and key eXChANGecouueeeeeececiiiiiiiieiaaeeeesssciiivnennn 6
1.2.2. SSL/TLS CIPREE SUILES ... e eee ettt eetaeeevaeseenaeesaaens 6

1.3, WAYS TO INSPECT ENCRYPTED CONNECTIONS....cuvteteerureereerireenteesireeseesseeenseensesenneennes 7
1.3.1. Perform the inspection on the server itSelf...........cccoeeeevvvvvvveviieeeevsieciirvnnnn, 7
1.3.2. SSL/TLS termination Proxy (F€Verse-proXy).......ccccceeeeeeveeeeieeeevuvesiienesaiananns 7
1.3.3. The IDS performs the decryptionccccvueeeeeieeeeeeeieiiiiiiiieeeaeeeeesseciissenes 7
1.3.4. Standalone tool performs the decryption............cccceeeeevcvvveveviieeeeesieciirvnenn, 7

2. DEMONSTRATION ...ccciiiiiiiunnieeiiiiiiiinnieeesisssisssassreess s sssssssssesssssssssssssssnesssssssnns 8
2.1, SSL/TLS TERMINATION PROXY (REVERSE-PROXY) ...erueetiruierieeienieenieseesieeneesneeneesneesseenes 8
2.1.1. Server CONfIQUIALIONceeeieeeeeeeeeeiiiiieeieeeeeeeeesssesteearaaaaeeeessssssssananeraaaanes 8
2.1.2. Creating a self-signed RSA certificate using lIS..........cccccceeeeveeeeecvivvvvenennaannnn. 9
2.1.3. Creating a self-signed ECDSA USiNG ADCS............ccvveeerieieeeeeeiseiiiiiennenaaaann 9
2.1.4. Binding the self-signed certificate to the web site...........ccccecevvvrvvvvvvennannnn. 10
2.1.5. Configuring the SSL/TLS termination proxy server (reverse-proxy) 11
2.1.6. Sniffing the traffic on the public and the internal virtual networks............ 14

2.2. DECRYPTING SSL/TLS USING VIEWSSLDeeuviteenrerueenteetesetestesneesseensesueessesneesseensesanes 16
2.2.1. Creating a self-signed RSA certificate using OpenSSL............ccccvvvvvvevaannn. 16
2.2.2. Setting WiINnAdOWS IS SEIVEIcccueueveiieiiieeeeeeeesecciiieeeeaa e e e e esssecviaaanaaaaaeees 17
2.2.3. Configuring and running VieWssIdcccoeveeeevuiieeeiiieeeessiiciiiiiinnenaaaenn, 18
2.2.4. FINAINGS wovvveevaeeeeeeeeeeeeete ettt e e e e e e e ettt a e e e e e s s s ssssrtttanaaaaeeees 19

2 JRN o 0 [of I U] [20
REFERENCESouueiiiiiiiiiiiineieeiiinsiinseree s sssasssee s s s s s sasasese s s ssssssssssssnessssssssssnnnnnns 21

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2017 The SANS Institute

Author retains full rights.

Snort and SSL/TLS Inspection 3

1. Introduction

An intrusion detection system (IDS) can analyze and alert on what it can see, but
if the traffic is tunneled through an encrypted connection, an IDS can only perform
limited inspection based on packet headers. The difficulty of looking into the packet
payload makes the encrypted traffic one of the challenging issues for an IDS. From Snort
point’s of view, the encrypted traffic inspector, SSL Dynamic Pre-processor (SSLPP), is
available optionally in Snort and can only inspect connections’ handshakes, but once the
encrypted connection has established, Snort will not perform any inspection on data for
that connection (Snort FAQ, 2016). However, encrypted traffic can be entirely decrypted
using the private key (decryption key) to decrypt and inspect the payloads (Juniper,
2010). But there are some issues associated with SSL/TLS key exchanges that could
increase the difficulty of decrypting traffic provided the private key. The rest of this
section briefly discusses Snort and its components as well as SSL/TLS key exchange and

the possible ways to inspect encrypted connections.

1.1. Snort IDS

Snort is a free open-source IDS solution that offers intrusion detection and
prevention capabilities (IDS/IPS) for firms as a cost-effective solution. It has the ability
to perform real-time traffic analysis that attempts to detect malicious activity, in addition

to content analysis and packet logging.

1.1.1. Snort Components
Snort consists of several components (Kannan, 2011) (Caswell, Beale, & Baker,
2007): packet sniffer, pre-processor, detection engine, and logging/alerting module as

shown in Figure I.

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 4

g ~N
~_ == _
Network % | Sniffer Preprocessor Detection f\|en's/ —
— Engine ogging
Backbone , g - Log i/
N 4 Packets w Database

\ Rulesets /

Figure 1: Snort Architecture (Caswell, Beale, & Baker, 2007)

Packet sniffer/decoder: Allows Snort to eavesdrop on the network interface and decodes

all captured network traffic to be sent to the pre-processor.

Pre-processor: It operates on the decoded packet and performs a variety of
transformations simplifying the data to be easier for Snort to process. It has several plug-
ins that have the option to be enabled or disabled. For example, frag3 pre-processor that
defragments packets prior to sending the data on to the detection engine. This allows the
detection engine to analyze the full packet stream for malicious behavior that might

otherwise go unnoticed if passed through in smaller fragments.

Detection engine: It is the most important component of Snort that utilizes the
rules/signatures to determine whether or not a packet matches a rule/signature. The rule is
divided into two parts. The first part is the rule header that has the details about the action
that Snort needs to execute for matching the incoming packets, while the second part is
the options field that has additional information for rule matching to determine which

portion of the packet should be used to fire an alert.

Logging and alerting: After detecting a malicious packet or activity, Snort triggers an
alert. Depending on the alert configuration, Snort can send the alert using a variety of

options such as: log file, database, and e-mail.

1.1.2. SSL Dynamic Pre-processor (SSLPP)
This pre-processor enables Snort to inspect SSL/TLS handshakes of each
connection with no further data inspection, which is by default disabled. It inspects the

unencrypted portion of the connection (headers) for faulty encrypted traffic to ensure two

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 5

things: “the last client-side handshake packet was not crafted to evade Snort, and that the
traffic is legitimately encrypted” (Snort FAQ, n.d.).

1.2. SSL/TLS

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are
cryptographic protocols that were developed to secure communications on computer
networks. Both are very similar protocols; however, TLS is the successor of SSL, which
has been deprecated by IETF (RFC6176, 2011) (RFC7568, 2015). Currently, TLS is most
commonly used to secure connections, however, many people still use the old name, SSL
to refer to TLS (Risti¢, 2015). Figure 2 shows how the TLS handshake takes place to
agree on algorithms, exchange cryptographic parameters and certificates, and then start

the encrypted connection.

Client Server
ClientHello
>
ServerHello
Certificate*
ServerKeyExchange*
CertificateRequest*
ServerHelloDone
-
Certificate¥*
ClientKeyExchange
CertificateVerify¥*
ChangeCipherSpec
Finished
>
ChangeCipherSpec
Finished
-
Application Data < > Application Data

* Indicates optional or situation-dependent messages that are
not always sent.

Figure 2: TLS Full Handshake (RFC5246, 2008)

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 6

1.2.1. TLS Authentication and key exchange

The process of key exchange in a TLS handshake is to create a pre-master secret
known to both parties (client and server) and then use it to generate the master secret. Our
concern here is how this pre-master secret is shared. There are two ways to do that: RSA
key exchange and Diffie-Hellman (DH) key exchange. In RSA key exchange, the pre-
master secret is transmitted (encrypted) over the network. With DH, it is not transferred
over the network — instead it is generated on both sides so it cannot be intercepted.
However, it is possible for an analyst to decrypt TLS connections when RSA key
exchange used if he has the server’s private (decryption) key. But in the ephemeral form
of Diffie-Hellman (DHE) key exchange, different DH keypairs will be generated for
multiple handshakes, which provide the Perfect Forward Secrecy that makes the DHE
highly recommended over the simple DH (RFC5246, 2008).

1.2.2. SSL/TLS Cipher Suites

A cipher suite is a combination of cryptographic algorithms that is used for key
exchange, encryption, and message authentication in SSL/TLS connection as shown in
Figure 3. Different operating systems and servers can have different cipher suites and

different priority ordering (MSDN, n.d.).

Message Elliptic

Key
Bulk Encryption Authentication Curve

Exchange Signature

I | | l l

I LI | 1 I T LI} 1

TLS_ECDHE_ECDSA_WITH_AES 256 _GCM_SHA384 P384

Cipher Suite

Figure 3: Cipher Suite (MSDN, n.d.)

Examples of cipher suites that use RSA or DH for key exchange:

- TLS RSA WITH AES 256 CBC SHA
- TLS ECDHE RSA WITH AES 256 CBC SHA384 P384
- TLS ECDHE ECDSA WITH AES 256 _CBC SHA384 P521

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 7

1.3. Ways to Inspect Encrypted Connections

1.3.1. Perform the inspection on the server itself

The simplest way to inspect the encrypted traffic is by employing a Host-Based
IDS (HIDS) on the server itself, where the traffic belonging to that server is decrypted.
An HIDS can monitor the server’s activities and look for unusual behaviors,
modifications to databases, system files, or any critical data. Installing the HIDS could

add extra load that can negatively affect performance especially for a busy server:

1.3.2. SSL/TLS termination proxy (reverse-proxy)

A reverse-proxy is a server that acts as an intermediary between backend servers
and clients. It accepts client requests and retrieves resources effectively hiding the
backend servers from the clients (Villanueva, 2012). The reverse-proxy server can be
configured to perform SSL/TLS encryption acting as an SSL/TLS termination proxy,
which takes the load off decrypting SSL/TLS connections passing the unencrypted traffic
to the associated servers. However, using an SSL/TLS termination proxy allows us to

employ the IDS inside the internal network of the servers (Romero, 2016).

1.3.3. The IDS performs the decryption

In this case, the IDS is given the capability of performing the decryption process
provided the private key. It could be a pre-processor or plug-in that supports decrypting
and normalizing the traffic before goes to detection engine. Currently, there is no
available pre-processor for Snort to perform the decryption process although it is
theoretically possible to develop such pre-processor or plug-in (Snort FAQ, n.d.).
However, the decryption feature is available in some propriety IDS devices like Juniper

IDP (Juniper, 2013).

1.3.4. Standalone tool performs the decryption

Software or hardware that performs the SSL/TLS decryption process provided the
private key then passes the decrypted traffic to the IDS. Viewssld is an example of
standalone tool (free open-source) that can decrypt SSL/TLS traffic. It works by listening
to an interface on a particular IP address, decrypting the encrypted traffic using the
server’s private key, and outputting the decrypted traffic to the listening port of the IDS.

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 8

2. Demonstration
This section demonstrates two approaches for decrypting SSL/TLS connections:

termination proxy, and standalone tool to decrypt the connection.

2.1. SSL/TLS termination proxy (reverse-proxy)

Four virtual machines were used to conduct this demonstration: one Windows 7
(client), two Windows Server 2012 (SSL/TLS termination proxy server and backend
server), and one Ubuntu (for sniffing and detection purposes). Also, two virtual networks

were created to connect these virtual machines as shown in Figure 4.

Sniffing & Detection

s

Public URL: Public URL:
https://r-proxy.gcia.local http://web-main.gcia.local:80

. d
1< HTTP

Private Network

a
<F HTTPS

Public Network / Internet

Client SSL/TLS Backend
Termination Web Server
Proxy Server

Figure 4: Servers and virtual networks setup

2.1.1. Server configuration

The SSL/TLS termination proxy server was configured with two interfaces: one
serves clients on the public network over an SSL/TLS connection (HTTPS) and the
second is connected to the backend web server over an unencrypted connection (HTTP)
on the internal network. Both servers (r-proxy and web-main) were members of a domain
called gcia.local. The backend server was configured as a web server running Internet
Information Services (IIS) to host the site with no additional settings. In the proxy server,
there are three important settings required to act as reverse-proxy: An SSL/TLS
certificate (a self-signed certificate), URL Rewrite, and Application Request Routing
(ARR). URL Rewrite and ARR are an extension to enable IIS to function as an SSL/TLS
termination proxy (both are available through Web Platform Installer (Sfanos, 2015)).

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

© 2017 The SANS Institute Author retains full rights.

2.1.2. Creating a self-signed RSA certificate using IIS

Snort and SSL/TLS Inspection 9

Creating a self-signed certificate is a built-in feature in IIS that allows issuing a

self-signed certificate as shown in Figure 5. This feature generates an RSA certificate

(2048 Bits).

Connections
€ &
-5 Start Page
-85 RP-PROXY (GCIA\A(

q‘g' Server Certificates

wehsites confioured far GSI

Actions

Use this feature to request and manage certificates that the Web server can use with

Create Self-Signed Certificate

Specify Friendly Name

o

Specify a file name for the certificate request. This infermation can be sent to a certificate authority for

signing:

Specify a friendly name for the certificate:

|scia_coLp

Select a certificate store for the new certificate:

|Personal v

B

[o

Cancel ‘

Import...

Create Certificate Request...

Complete Certificate Request...
Create Domain Certificate...

Create Self-Signed Certificate..,

Enable Automatic Rebind of
Renewed Certificate

Help

Figure 5: Creating an RSA self-signed certificate

2.1.3. Creating a self-signed ECDSA using ADCS

One way to create a self-signed ECDSA certificate to be used with the DH key

exchange is through Active Directory Certificate Services (ADCS) role in Windows 2012

Server. After installing 4ADCS, a post-deployment configuration is required. It offers

various cryptographic options to create certificates. As illustrated in Figure 6,

ECDSA_P256#Microsoft Software Key Storage Provider was selected. At the end of this

configuration, a self-signed ECDSA certificate was generated.

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

© 2017 The SANS Institute

Author retains full rights.

Snort and SSL/TLS Inspection 10

AD CS Configuration

Cryptography for CA

Credentials

Role Services

CA Type

Privats Key

Cryptography
CA Name
Validity Period

Certificate Database

Confirmation

Specify the cryptographic options

Select a cryptographic provider:

DEST
RP-PR(

Key length:

ECDSA_P256#Microsoft Software Key Storage Provider

[256

Microsoft Base Smart Card Crypto Provider

Microsoft Enhanced Cryptographic Provider v1.0
ECDSA_P256#Microsoft Smart Card Key Storage Provider
ECDSA_P521#Microsoft Smart Card Key Storage Provider
RSA#Microsoft Software Key Storage Provider

Microsoft Base Cryptographic Provider v1.0
ECDSA_P521#Microsoft Software Key Storage Provider

ECDSA_P256#Microsoft Software Key Storage Provider

Microsoft Strong Cryptographic Provider
ECDSA_P384#Microsoft Software Key Storage Provider
Microsoft Base D55 Cryptographic Provider
RSA#Microsoft Smart Card Key Storage Provider
DSA#Microsoft Software Key Storage Provider
ECDSA_P384#Microsoft Smart Card Key Storage Provider

More about Cryptography

| < Previous || Next > |

y the CA.

Configur

Figure 6: Creating a self-signed ECDSA certificate for DH key exchange

2.1.4. Binding the self-signed certificate to the web site

The actions column (when the website is selected) offers a bindings feature that

allows binding the website to a cryptographic certificate. Figure 7 illustrates the steps to

bind the website to a certificate.

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

© 2017 The SANS Institute

Author retains full rights.

Snort and SSL/TLS Inspection 11

Gi Sites
4 & Add Website..

Filter: - W Go - gk Show All | Group by: Set Website D
Mame * ID Status Binding Efl't T"ute
Q Default Web Site | 1 Started (ht... *:443 (https)
m] re by
Site Bindings ?| X

Type Host Name Port IP Address Binding Inf
https 443 *

Type: IP address: Port:
Ihttps l v| ’AII Unassigned v| |443 |

Host name:

[] Require Server Name Indication

S5L certificate:
Mot selected o | Select... | ‘ View... ‘

ECDSA (GCIA_GOLD)
RSA (GCIA_GOLD) [oK ‘ | Cancel |

Figure 7: Binding the cryptographic certificate to a website

2.1.5. Configuring the SSL/TLS termination proxy server (reverse-proxy)
To add a reverse-proxy rule template, click on Add rule(s) from URL Rewrite then
select Reverse-Proxy rule template as shown in Figure 8. The final step in configuring

the reverse-proxy server is illustrated in Figure 9.

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 12

Comections :
FEETEI) e URL Rewrite
95 Start Page
85 RP-PROXY (GCIA\AdmMI
@ Application Pools
(@] Sites

b €D Default Web Site
b 45 Server Farms

Add Rule(s)...

Revert to Parent

Provides rewriting capabilities based on rules for the requested URL address and

Select a rule template:

Inbound rules
E Blank rule

[Rule with rewrite map
2 Request blocking
Inbound and Qutbound Rules
[2 User-friendly URL
Qutbound rules
Ej Blank rule

Search Engine Optimization (SEO)

@ Enforce lowercase URLs 2] Canonical domain name

b Append or remove the trailing slash symbol

Select this template to create a rule that will forward incoming HTTP requests to a back-end Web server,

[T | I

Figure 8: Adding a reverse-proxy rule template

Inbound Rules

Enter the server name or the [P address where HTTP requests will be forwarded:
|http://web-main.gcia.local:&ﬂ |

The backend server |

Example: contentserverl

|[¥] Enable S5L Offloading |

Selecting this option will forward all HTTPS requests over HTTP.

Qutbound Rules

|[¥] Rewrite the domain names of the links in HTTP responses |

Responses that are generated by applications that are behind a reverse proxy can have

HTTP links that use internal domain names. These links must be updated to use external
domain names.

From:

Ihttp:/!web-main.gcia.local:&ﬂ | The backend server |

Example: contentserver]

To:
Ihttps:/lrp-proxy.rp.gcia.local | The SSL/TLS termination server V|
Example: www.contoso.com (reverse proxy)

[ok || canca |

Figure 9: Configuring reverse-proxy rules

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 13

Enforcing various cipher suites

To force IIS to use specific cipher suites, the Local Group Policy Editor can be
utilized (Computer Configuration — Administrative Templates — Network — SSL
Configuration Settings). The SSL Cipher Suite Order needs to be enabled first, then the
specific cipher suite selected. Normally, the cipher suite agreed upon by the client and
server during the TLS handshake is the supported client cipher suite that ranks highest in
the server's cipher suite order. For the purposes of this demonstration, the server was
configured to support a single cipher suite at a time, cycling through all the entries in the

client’s ordered list.

Several cipher suites are tested in this demonstration; all of them are supported
and decrypted by the reverse-proxy rules in IIS:
e TLS RSA WITH AES 128 CBC SHA
e TLS RSA WITH AES 256 CBC SHA
e TLS ECDHE RSA WITH AES 128 CBC SHA
e TLS ECDHE ECDSA WITH AES 128 GCM SHA256
e TLS ECDHE ECDSA WITH AES 256 GCM SHA384

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 14

2.1.6. Sniffing the traffic on the public and the internal virtual networks
Below are screenshots captured by Wireshark after the connection has been made
between the client and the reverse-proxy. Figure 10 and Figure 11 show the exchanged

messages when TLS ECDHE RSA WITH AES 128 CBC SHA cipher was used.

Source Destination IProtoco |Length Info
192.168.2.222 192.168.2.100 |[TLSv1.2 252 Client Hello

o .2 92.168.2. 1247 Server Hello, Certificate, Server Key Exchange,
192.168.2.222 192.168.2.100 204 Client Key Exchange, Change Cipher Spec, Encryp
192.168.2.100 192.168.2.222 797 New Session Ticket, Change Cipher Spec, Encrypt
192.168.2.222 192.168.2.100 427[Application Data
192.168.2.100 192.168.2.222 427
192.168.2.222 192.168.2.100 347|Application Data

]
w Secure Sockets Layer
w TLSv1.2 Record Layer: Handshake Protocol: Multiple Handshake Messages
Content Type: Handshake (22)
Version: TLS 1.2 (0x0303)
Length: 1188
w Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)

Length: 81
Version: TLS 1.2 (@x0303)
» Random

Se351on ID Length 32

Elpher aultw

Exten51ons Length: 9
p Extension: SessionTicket TLS

» Extension: renegotiation_info

~ Handshake Protocol: Certificate Reverse Proxy Server IP:

Handshake Type: Certificate (11)
Length: 762 192.168.2.100
Certificates Length: 759
p Certificates (759 bytes) . ;
~ Handshake Protocol: Server Key Exchange 19(2“?6"8" |2P'222

Handshake Type: Server Key Exchange (12)
Length: 329
» | EC Diffie-Hellman Server Params |

Figure 10: Part of a TLS handshake (TLS ECDHE RSA)

Source Destination Protocol |Lengtl Info
192.168.1.50 192.168.1.10 TCP 60 53625 — 80 [ACK] Seq=1 Ack=1 Win=525568 Len=0@
192. 168 50 192. 168.1.10 HTTP 585 GET / HTTP/1.1

355 HTTP/1.1 200 OK

192.168.

Ann Ao

192.168

Ann Arn

(text/html)
eq= AC

P S i BT - = WY

60 53625 — 80 [ACK]

A= _ACT

=302 Win=525056 Len=0

dvyvywvww =

1sfer Protocol

Lne basd text data: text/html

Frame 57: 355 bytes on wire (2840 bits), 355 bytes captured (2840 bits) on interface @
Ethernet II, Src: Vmware bf:05:3c (©0:0c:29:bf:05:3c), Dst: Vmware_f3:df:73 (00:0c:29:73:df:]
Internet Protocol Version 4, Src: 192.168.1.10@, Dst: 192.168.1.50

Transmssmn Control Protocol, Src Port: 80 (8@), Dst Port: 53625 (53625), Seq: 1, Ack: 532,

<html=%n
N

N
N

<title>test</title=\n

<body> <hl> Hello World</hl> </body=\n

Reverse Proxy Server IP:
192.168.1.50

Backend Web Server IP:
192.168.1.10

</html>\n

Figure 11: The HTTP response from the backend web server to the reverse-proxy (unencrypted)

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

© 2017 The SANS Institute

Author retains full rights.

Snort and SSL/TLS Inspection 15

Figure 12 and Figure 13 show the exchanged messages when
TLS ECDHE ECDSA WITH AES 128 GCM_SHA256 cipher was used.

Source Destination Protocol Length Info

192.168.2.222 192.168.2.100 TLSv1.2 252 Client Hello

192.168.2.222 192.168.2.100 DNS 73 Standard query ©xd939 A rp.gcia.local

192.168.2.100 192.168.2.222 DNS 185 Standard query response 8xd939 A rp.gc
.168.2.16 .168.2. .2 829 Server Hello, Certificate, Server Key

192.168.2.222 192.168.2.100 |TLSv1.2 1860 Client Key Exchange, Change Cipher Spe

192.168.2.222 192.168.2.100 |TLSv1.2| 4@5|Application Data |

192.168.2.100 192.168.2.222 |TCP 60 443 = bUI36 [ACK] Seq=776 Ack=676 Win=

192.168.2.100 192.168.2.222 |TLSv1.2 ?73ngu_ﬁﬂssinn_Ii;kgi, Change Cipher Spec

192.168.2.100 192.168.2.222 |TLSvi.2 487|Application Data

w Secure Sockets Layer
w TLSv1.2 Record Layer: Handshake Protocol: Multiple Handshake Messages
Content Type: Handshake (22)
Version: TLS 1.2 (0x0303)
Length: 770
w Handshake Protocol: Server Hello
Handshake Type: Server Hello (2)

Length: 81
Version: TLS 1.2 (0x0303)
» Random

Session ID Length: 32
Session ID: 9a2700803018470934a94c4639h0TTT5d3d37d7e18524207. ..

Cipher Suite: TLS_ECDHE_ECDSA WITH_AES_128_GCM_SHA256 (0xc02b)

Compression Method: null (@)

) Extencion: SescionTicket TLS Reverse Proxy Server IP:
p Extension: renegotiation_info 192.168.2.100

w Handshake Protocol: Certificate
Handshake Type: Certificate (11) . .
Length: 528 Client IP:

Certificates Length: 525 192.168.2.222
p Certificates (525 bytes)

w Handshake Protocol: Server Key Exchange
Handshake Type: Server Key Exchange (12)
Length: 145

|» EC Diffie-Hellman Server Params |

Figure 12: Part of a TLS handshake (TLS ECDHE ECDSA)

Source Destination Protocol |Length Info
192. 168.1.5@ 192, 168 1.10 HTTP 622 GET / HTTP/1.1
] 355 HTTP/1.1 200 OK

(text/html)
Seq 569 Ack

» Frame 34: 355 bytes on wire (2840 bits), 355 bytes captured (2840 bits)
» Ethernet II, Src: Vmware bf:05:3c (@0:0c:29:bf:05:3c), Dst: Vmware_T3:d
p Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.50
3
3
-

Transm1551on Control Protocol Src Port: 80 (89), Dst Port: 49249 (4924

L1ne based'text data text/html
‘;‘:t"‘l;’\“ Reverse Proxy Server IP:
<title>test</title>\n 192.168.1.50
“n
“n
\n Backend Web Server IP:
:body;a <hl> Hello World</hl> </body3'n 192.168.1.10

n

“n
l</html>\n

Figure 13: The HTTP response from the backend web server to the reverse-proxy (unencrypted)

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 16

2.2. Decrypting SSL/TLS using Viewssld

As mentioned earlier, there are two ways for key exchange: RSA key exchange
and DH key exchange. In RSA key exchange, a static keypair is used for the exchange
and could enable a standalone tool to decrypt all the encrypted connections to that server
if the private key is provided. But it is different with the ephemeral form of DH. DHE
was introduced to provide Perfect Forward Secrecy. It uses different DH keypairs for
multiple handshakes. Even if a DH keypair were provided, it would be possible to

decrypt one connection only.

In this section, the Viewssld tool was used to decrypt an SSL/TLS connection that
used RSA key exchange. Viewssld is a free open-source tool that can decrypt SSL/TLS
traffic for an IDS. It works by listening to an interface on a particular IP address,
decrypting the encrypted traffic using the server’s private key, and outputting the
decrypted traffic to the listening port of the IDS. It does not support DHE key exchange;
It only supports RSA key exchange (Plashchynski, 2015).

To illustrate the process, a self-signed RSA certificate was generated using
OpenSSL, then the certificate was bound to the website in Windows Internet Information
Services (IIS). Two virtual machines were used to conduct this demonstration: Windows

7 (server) and Ubuntu (client). Snort and Viewssld were running on the client machine.

2.2.1. Creating a self-signed RSA certificate using OpenSSL
A self-signed RSA certificate was created using the following command in

OpenSSL:

openssl req -x509 -nodes -newkey rsa:2048 -keyout pkey.pem -out

cert.pem

Then the private key and certificate were exported to pfx format to be used in Microsoft

IIS:

openssl pkcsl2 -inkey pkey.pem -in cert.pem -export -out

cert.pfx

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 17

2.2.2. Setting Windows IIS server
After installing IIS, a simple HTML page was created in the local site. Then, the

site was bound to the self-signed RSA certificate after importing it in IIS as shown in

Figure 4.
QQl Sites
Filter: - Go - 5#Show All | Group by: No Grouping <
Name D Status Binding
& main 2 Started (ht... *:443 (https)
Site Bindings
Ve
Type Host Name Port IP Address Binding Informa... I Add... I me
https 443 * Applications
P Edit... .HAM_ t\.L,n_
Edit Site Binding m@ Virtual Directories

Web Site

Type: IP address: Port: N
19
https All Unassigned v 443 I Browse

vse Web Site

SSL certificate: Close se %1443 (https)

nced Settings...

lleaacown | <[view.. ¥
Configure

] Limits...

Figure 14: Binding self-signed certificate to the web site

To force Windows IIS to use specific cipher suites, the Local Group Policy Editor
can be utilized (Computer Configuration -> Administrative Templates -> Network ->
SSL Configuration Settings). The SSL Cipher Suite Order needs to be enabled first, then
the specific cipher suite selected, namely RSA (since RSA uses the public key and
private key for the key exchange). The list of the supported TLS cipher suites in
Windows 7 can be obtained from (MSDN, n.d.).

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 18

2.2.3. Configuring and running Viewsslid

Viewssld uses a configuration file that contains all the necessary information to
run the command. Below are the settings used in the configuration file:
daemonize? on/off (default: off)

daemon = off

#serverl configuration

[serverl]
src = enl #the interface where the encrypted traffic can be found
dst = en2 #destination interface for passing the decrypted traffic to

ip = 192.168.100.135 #the server’s IP address to monitor

port = 443 #the port to listen on
dsslport = 80 #the destination port for the decrypted traffic
key = ~/.ssh/id rsa/pkey.pem #provides the private key

Now, we can run Viewssld using the following command:

sudo Viewssld --config Viewssld.conf -v

What follows is a sample of the output of Viewssld when it captured an SSL/TLS

connection that could be decrypted:

=> New Session: 192.168.100.135:443<->192.168.100.133:49223
C->S: 301 bytes
S->C: 301 bytes
C->S: 302 bytes
S->C: 1382 bytes

<= Session closing: 192.168.100.135:443<->192.168.100.133:49223
pkts recv: 336 pkts drop: 0

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

© 2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 19

2.2.4. Findings

In Windows 7 IIS, several cipher suites have been tested in this experiment,
unfortunately, Viewssld was only able to decrypt one cipher suite
“TLS RSA WITH RC4 128 MD5”. After checking [libdssl-master (Viewssld
dependency library), only the cipher suites below were listed in the source code and are

currently supported by Viewssld.

TLS SSL3

- AES 128 CBC,SHA1 - NULL,MD5

- AES 256 CBC,SHAI1 - NULL,SHA1
- RC4,MD5

S5L2 - RC4,MD5

- RC4,MD5 - RC4,SHA1

- RC4,MD5 - RC2,MD5

- RC2,MD5 - IDEA,SHAI

- RC2,MD5 - DES,SHA1

- IDEA,MD5 - DES,SHAI

- DES,MD5 - DES3,SHAI

- SN _DES EDE3 CBC,MDS5

Unfortunately, this tool supports old cipher suites that are insecure and rarely used
by servers today. However, the capability here is limited to the tool and what it supports.
It is possible to enhance the open source tool’s cipher suite support, but that would take

development effort.

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 20

3. Conclusion

SSL/TLS inspection is an important and desired feature for security analysts, but
it has its costs. Choose the method to decrypt traffic based on the needs and the design of
the network: on the server itself, an SSL/TLS termination proxy, or using a standalone
tool or capability added to the IDS. If the HIDS is installed on the server itself, it could
add some extra load that can negatively affect performance especially for a busy server.
The standalone tool option is limited to the tool’s ability and what it supports. It may be
possible to enhance the tool, since its open source, but it would take an effort to develop
the needed capability (cipher suite support). Also, having both encrypted and decrypted
traffic could have a serious disk utilization impact, especially if a tool like Viewssld is
used. Among the two options that are demonstrated here, the most feasible option is the
SSL/TLS termination proxy (reverse-proxy). It can terminate the encrypted connections
then pass the decrypted traffic to the associated servers over a normal HTTP connection
(on the internal network). This allows the IDS to be installed and function inside the

internal network.

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 21

References

Caswell, B., Beale, J., & Baker, A. (2007). Snort IDS and IPS Toolkit (Jay Beale's Open
Source Security). SYNGRESS.

Juniper. (2010). Inspection of SSL Traffic Overview. Retrieved Mar 3, 2017, from Juniper
Networks:
https://www juniper.net/techpubs/en_US/idp5.0/topics/concept/intrusion-

detection-prevention-ssl-decryption-overview.html

Juniper. (2013). Juniper TechLibrary: IDP SSL Overview. Retrieved Apr 7, 2017, from
Juniper Networks:
https://www .juniper.net/documentation/en _US/junos12.1x44/topics/concept/idp-

ssl-overview.html

Kannan, R. D. (2011). An Experimental Study of Detecting and Correlating Different
Intrusions. SANS Reading Room.

MSDN. (n.d.). Cipher Suites in TLS/SSL (Schannel SSP). Retrieved Mar 15, 2017, from
Microsoft MSDN: https://msdn.microsoft.com/en-
us/library/aa374757(VS.85).aspx

MSDN. (n.d.). TLS Cipher Suites in Windows 7. Retrieved Mar 15, 2017, from Microsoft
MSDN: https://msdn.microsoft.com/en-us/library/mt767780(v=vs.85).aspx

Plashchynski, D. (2015). viewssld README. Retrieved 3 10, 2017, from github.com:
https://github.com/plashchynski/viewssld

RFC5246. (2008). The Transport Layer Security (TLS) Protocol Version 1.2. Retrieved
Feb 14, 2017, from The Internet Engineering Task Force (IETF):
https://datatracker.ietf.org/doc/rfc5246/

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2017 The SANS Institute Author retains full rights.

Snort and SSL/TLS Inspection 22

RFC6176. (2011). Prohibiting Secure Sockets Layer (SSL) Version 2.0. Retrieved Feb 25,
2017, from Internet Engineering Task Force (IETF):
https://tools.ietf.org/html/rfc6176

RFC7568. (2015). Deprecating Secure Sockets Layer Version 3.0. Retrieved Feb 25,
2017, from Internet Engineering Task Force (IETF):
https://tools.ietf.org/html/rfc7568

Risti¢, 1. (2015). BULLETPROOF SSL AND TLS: Understanding and Deploying
SSL/TLS and PKI to Secure Servers and Web Applications. Feisty Duck.

Romero, R. (2016). Scaling Open Source Network Proxy.: Leveraging Hitch For Ssl/Tls
Terminations . Retrieved Mar 14, 2017, from Varnish Software:
https://info.varnish-software.com/blog/scaling-open-source-network-proxy-

leveraging-hitch-ssl-tls

Stanos, C. (2015). Web Platform Installer Direct Downloads. Retrieved Mar 27, 2017,
from The Official Microsoft IIS Site: https://www.iis.net/learn/install/web-

platform-installer/web-platform-installer-direct-downloads

Snort FAQ. (n.d.). Retrieved Nov 7, 2016, from Snort Official Website:

https://www.snort.org/fag/readme-ssl

Villanueva, J. C. (2012, Aug 6). Forward Proxy vs Reverse Proxy. Retrieved Feb 20,
2017, from JSCAPE: http://www .jscape.com/blog/bid/87783/Forward-Proxy-vs-

Reverse-Proxy

Yousef Bakhdlaghi, bakhdlaghi@gmail.com

2017 The SANS Institute Author retains full rights.

