GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Practical Attack Detection, Analysis, and Response
using Big Data, Semantics, and Kill Chains within
the OODA Loop

GIAC (GCIA) Gold Certification

Author: Brian Nafziger, brian (@ nafziger.net
Advisor: Barbara L. Filkins
Accepted: May 30 2015

Abstract

The traditional approach to using toolsets is to treat them as independent entities -
detect an event on a device with one tool, analyze the event and device with a second
tool, and finally respond against the device with a third tool. The independent
detection, analysis, and response processes are traditionally static, slow, and
disjointed.

The modern approach to using toolsets must leverage them in an adaptive,
synergistic, and agile manner. Colonel John Boyd’s decision cycle or OODA loop
(Observe-Orient-Decide-Act) “favors agility over raw power” and is potentially
apropos for synergistic, agile, and rapid incident detection, analysis, and response.
Layering Boyd’s OODA loop on a framework of Big Data, Semantics, and Kill Chains is
potentially, the choice for not only detecting modern attacks, but also for augmented,
analysis, and response in an adaptive, synergistic, and agile manner.

The objective is to show that Big Data, Semantics, Kill Chains, and the OODA loop offer
the ability to augment the human in detection, analysis, and response with adaptivity,
synergy, and agility.

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 2
Chains with OODA
1. Introduction

“What is strategy? A mental tapestry of changing intentions for harmonizing and
focusing our efforts as a basis for realizing some aim or purpose in an unfolding and often
unforeseen world of many bewildering events and many contending interests” (Boyd,
2006).

A groundswell of heterogeneous cyber security strategies, operations, tactics, and
tools now exist (Vincent, 2014). Navigating this complex ecosystem is a requirement for
security operations incident detection, analysis, and response (Flynn, 2012). Colonel John
Boyd’s decision cycle or OODA loop framework is often applied successfully in strategic
combat operations to augment human decision-making using the elements of observation,
orientation, decision, and action (Bailer, 2007). Boyd’s OODA loop favors agility or
adaptability over power (Bailer, 2007). Layering Boyd’s OODA loop on a framework of
Big Data, Semantics, and Kill Chains potentially offers, the tool, methods, model and
decision cycle of choice for augmented, adaptive, synergistic, and agile incident detection,
analysis, and response (Nafziger, 2014).

The simple adage “crawl, walk, run”, applies to the maturity of security operations.
Crawling and walking are akin to event data (observation) and the manual analysis and
response processes (Martin, 2014). Running, the next stage in maturity, is the ability to
contextualize the data (orient), decide based on that data (decide) and act based on that data
(act) in an augmented, adaptive, synergistic, and agile manner (Schneier, 2014). That next
stage in maturity is becoming necessary because of the complexity of the operational
ecosystem and the limited capacity of the human mind to cope with complexity (Heuer,
1999). We are at the beginning of the era of augmented, adaptive, synergistic, and agile
incident analysis and response (Schneier, 2014)

The objective of this paper is to show a practical framework for detection, analysis
and response across the ecosystem. The framework must allow for augmented, adaptive,
synergistic, and agile decisions and actions (Schneier, 2014). The objective of the paper is

to deliver that starting point.

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 3
Chains with OODA
1.1. Detection — Big Data, Semantics, and the Kill Chain

Nafziger’s proposed framework using Big Data, Semantics, and Kill Chains lays
the foundation for attack detection (Nafziger, 2014).

"Big Data is high volume, high velocity, and/or high variety information assets that
require new forms of processing to enable enhanced decision making, insight discovery
and process optimization" (Laney, 2012). Digital data abounds and capturing it in a useful
manner requires careful planning and execution (Duncan, 2014). Applying this concept to
security, Big Data captures and organizes this digital data, typically referenced as events,
from across diverse domains into a common information model (Splunk, 2014). In that
model, data is normalized into a lingua franca, for instance, a field named src or src_ip
references event source ip no matter its origination. Big Data also typically offers the ability
to search and manipulate events, especially in complex ways (Alspaugh, S., Ganapathi, A.,
Hearst, M., & Katz, R., 2013).

Semantics originate in grammar. Grammar consists of rules of syntax and
semantics. Syntax rules concern sentence structure and semantic rules concern sentence
meaning (Anderson, 1990, p.g. 352, 396). Applying this concept to security, syntax rules
detect an attack based on an event element such an ip or file hash while semantic rules
detect an attack based on events signifying the adversary’s tactics, techniques, and
procedures (Bianco, 2013). Semantic detection is the preferred form of detection since it
is easy for an adversary to change a file hash or an ip and increasingly difficult to change
tactics, techniques, and procedures (Bianco, 2013). Semantic detection uses a variety of
methods such as state, behavior, baseline, statistics, machine learning, and or data mining-
based methods including the use of disciplines outside the normal security realm (Talabis,
2007). Semantic detection may use a combination of methods known as an ensemble to
increase the reliability (Xin, 2013).

The Kill Chain originated with Air Force General Ronald Fogleman as a targeting
concept of Find, Fix, Track, and Target and was later amended with Engage and Assess —
fully known as F2T2EA (Tirpak, 2000). Applying a variation of this concept to security,
the Kill Chain signifies an adversary’s chain of progressive actions in an intrusion and the
defenders ability to not only detect the intrusion as it progresses along the chain but also

mitigate it (Hutchins, 2010). One of the critical Kill Chain ideas is that it is possible to stop

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 4

Chains with OODA
an attack by simply stopping the attack at a single point along the chain (Olesker, 2012).
Decomposing the Kill Chain steps into its processes - reconnaissance is target selection,
weaponization is exploit creation, delivery is exploit conveyance, exploitation is exploit
detonation, installation is exploit installation, command and control is exploit persistence,
and actions on objectives are the final actions on the target (Hutchins, 2010). The final
actions on objectives can include access to, disclosure of, modification of, destruction of,

or withholding of information (Benson, n.d.).

1.2. Analysis and Response — the OODA Loop

This proposed framework revision adds the potential for automated or augmented
(partially automated with a human in the loop) analysis and response using OODA.

The OODA Loop originated with Air Force Fighter Pilot Colonel John Boyd,
known for numerous contributions to military strategy and tactics (Cowan, 2000). Boyd’s
theories originated from his experience in air-to-air combat and his scientific and historical
research. The cornerstone of his theory is “Patterns of Conflict” which describes one of the
concepts used in idea air-to-air combat - “fast transients suggests that, in order to win, we
should operate at a faster tempo or rhythm than our adversaries - or, better yet, get inside
adversary’s observation-orientation-decision-action time cycle or loop” (Boyd, 2007). The
concept became known as the OODA loop or the larger theme of adaptability (Osinga,
2013). The rationale for the OODA loop: appear unpredictable and, therefore, generate
confusion as the adversary attempts to comprehend the events (Boyd, 2007). Boyd also
describes the concepts of ambiguity — creating competing views of events, deception —
creating views of events that are not, and novelty — creating views of events that have never
been seen before - the pay-off of these concepts being the disorientation, disruption, and
overload of the adversary (Richards, 2001).

Though born as a theory of combat, the OODA loop has migrated into varied domains
of decision-making. Decomposing the OODA Loop steps - Observation is the process of
understanding of one’s environment; Orientation is the process of analysis and synthesis
through understanding heritage, tradition, current circumstances, and previous experience;
Decision is the mental process of selecting an action from among the options presented in

observation and orientation; and Action is the process of performing the action (Cowan,

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 5

Chains with OODA
2000). Applying these concepts to security, Schneier suggests in “The Future of Incident
Response” that Observation means understanding our network including but not limited to
events and metadata from the boundary to the endpoint, Orientation means understanding
our network within the context of the company, Decision means determining the proper
action with the proper authority, and Action means performing the decision quickly and
effectively (Schneier, 2014). Keanini suggests the OODA loop is an essential component
of “A Holistic Approach to Cyber Security” where Observation and Orientation are the
intelligence providing situational awareness and Decision and Action are the execution

(Keanini, 2014).

2. Growing the Framework

The objective of this paper is to revise the Big Data, Semantic, and Kill Chain
framework hereafter known as the Framework. Observation, the first letter in OODA,
exists in the original and revised Frameworks - defining events, utilizing semantic methods
to detect potential attack patterns, and utilizing kill chains to detect potential chain
traversal. Orientation, the second letter in OODA, exists in the original and revised
Frameworks — enriching events, adding context to determine the relevance and impact of
events. Decision, the third letter in OODA, is new to the Framework — augmenting human
decision or automating decisions by recommending potential actions. Action, the fourth
and final letter is new to the Framework — performing the approved actions across a set of
varied tools. The Decision and Action stages offer feedback into the original Observation
and Orientation stages thereby allowing or completing the OODA loop. The resulting sum
of new features augments human decisions, allows automated decisions, allows adaptive
actions, allows for synergy across toolsets, and creates agility for moving from observation
to action - the pay-off of these being disorientation, disruption, and overload of the

adversary.

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 6
Chains with OODA

Practical Attack Detection, Analysis, and Response Objective

Figure 1: Objective

This paper strives to focus solely as a proof of concept of the value of combining
big data, semantics, kill chains and the OODA loop into a framework. The individual
components alone are topics of past and continuing future research. This paper strives to
present the case for future integration methodologies. WARNING Splunk queries and
Python code presented throughout this paper are derived from working framework queries
and code, however, they are proof of concept (and both simplified and obfuscated) and as
such, do not follow best practices. In production, please ensure proper design and coding

including but not limited to security, logging, and error handling.

2.1. Observation and Orientation aka Detection

The Observation and Orientation steps build on the Data Mining concepts of
Knowledge Discovery and Feature Selection (Brownlee, 2014). The Framework starts with
events, detects potential features or indicators using semantic methods and then detects
potential chains across semantic indicators. (Nafziger, 2014)

Observation requires events. “Event[s] can be defined as any detectable or
discernable occurrence that has significance” (UCISA, n.d.). Events originate across the
enterprise landscape from the web sites that customers use to the laptops that employees
use. Domains, models, and elements organize events. Domains organize collections of

models in similar operational spaces such as boundary, identity, and endpoint domains

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 7
Chains with OODA
(Robb, 2011). Models organize collections of elements such as a boundary filtering model
consisting of a network firewall or proxy. Elements are a precise unit of knowledge such
as an ip address or bytes or time. Splunk as the Big Data environment naturally organizes
these events (Splunk, 2014). Reviewing from Nafziger’s prior work, Figure 2 in the
appendix shows a simple proxy query.

Orientation requires context - understanding our network within the context of the
company (Schneier, 2014). Context associates an event with a proper understanding of the
event value and significance. Context often begins with assets, identities, and
vulnerabilities but can and will include a multitude of contexts (Chuvakin, 2010). Figure 3
in the appendix shows the creation of the dynamic asset context table periodic query
capturing DHCP events and then the resulting value added to previous simple proxy query
by deriving context from the dynamic asset context table (Nafziger, 2014). Figure 4 in the
appendix shows several suggested contexts (Nafziger, 2014).

Orientation also requires semantics — understanding what is normal and what is not
normal — using methods such as base lining length of connections, number of packets, or
amount data (Cole, 2013). Figure 5 in the appendix shows the creation of a semantic
method identifying abnormally large outbound proxy traffic (and using the dynamic asset
context table) which then saves the results as a trigger for a Kill Chain table (Nafziger,
2014). Figure 6 in the appendix shows several suggested semantics and where the semantic
resides within the Kill Chain (Nafziger, 2014).

Observation and Orientation - events, contexts, and semantics — culminates in a Kill
Chain table. Mining the Kill Chain table provides a list of potential attacks. Figure 7 in the
appendix shows a complete Kill Chain query of the events, contexts, and semantics (which
are continuously populating the Kill Chain table) to identify potential attacks (Nafziger,
2014).

2.2. Decision aka Analysis

The Decision step builds on the Data Mining concept of Decision Trees. The
Framework starts with events, contexts, and semantics detecting potential chains across the
semantics. The Framework now focuses on mapping these semantics to decisions for the

purpose of driving analysis and response.

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 8
Chains with OODA

Decision trees are a common modeling technique easily incorporated into the
Framework. Simplistically described, decision trees are models which input variables and
predict results. The model organizes into a tree structure consisting of nodes and leaves
where variables are iteratively compared against nodes resulting in a leaf (Shalizi, 2009).
Decision trees are classification trees that use finite values or regression trees that use
continuous variables. Decision trees use data with known or expected results to train the
tree.

The Framework uses the CART (Classification and Regression Tree) algorithm
from the popular book, “Programming Collective Intelligence®, by Toby Segaran (Segaran,
2007). Figure 8 quickly shows how to download and use the CART decision tree that is
available on GitHub (Matt, 2014). The steps are: 1) download and install the PIL library;
2) download the decision tree. Viewing treepredict.py shows the training data. Loading
python, importing treepredict, and then loading the training data allows simple testing of
data against the decision tree and simple printing of the decision tree. The decision tree

works as expected.

$ wget http://effbot.org/media/downloads/PIL-1.1.7 .tar.gz
$ tar zxf PIL-1.1.7 tar.gz

$cd PIL-1.1.7

$ python setup.py install

$ wget https://github.com/sirMackk/collective_intelligence_examples/archive/master.zip
$ unzip master.zip

$ cd collective_intelligence_examples-master/chap7

$ more treepredict.py

Referrer, Location, Read FAQ, Pages Viewed, Service Chosen
my_data=[['slashdot’, 'USA', 'yes', 18, 'None'],

['google’, 'France', 'yes', 23, 'Premium’],

['digg’, 'USA', 'yes', 24, 'Basic'],

['kiwitobes', 'France', 'yes', 23, 'Basic,

['google’, 'UK', 'no’, 21, 'Premium’],

['(direct)’, 'New Zealand', 'no', 12, 'None'],

['(direct)’, 'UK', 'no’, 21, 'Basic'],

['google’, 'USA', 'no', 24, 'Premium’],

['slashdot’, 'France', 'yes', 19, 'None'],

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 9
Chains with OODA

['digg', 'USA', 'no', 18, 'None'],

['google’, 'UK', 'no’, 18, 'None'],
['kiwitobes', 'UK’, 'no’, 19, 'None'],
['digg', 'New Zealand', 'yes', 12, 'Basic'],
['slashdot’, 'UK', 'no’, 21, 'None'],
['google’, 'UK', 'yes', 18, 'Basic],

['kiwitobes', 'France', 'yes', 19, 'Basic']

$ python
>>> import treepredict
>>> tree = treepredict.build_tree(treepredict.my_data)
>>> treepredict.classify(['google’, 'USA', 'no', 23], tree)
{'Premium": 3}
>>> treepredict.print_tree(tree)
0:google?
T->3:21?
T-> {'Premium": 3}
F-> 2:yes?
T-> {'Basic": 1}
F-> {'None'": 1}
F-> 0:slashdot?
T->{'None": 3}
F-> 2:yes?
T-> {'Basic": 4}
F->3:21?
T-> {'Basic": 1}
F-> {'None": 3}

>>>

Figure 8: Installing and Using CART (Matt, 2014).

The primary requirement and challenge in creating a training tree or ruleset is
creating a cohesive, comprehensive, and consistent taxonomy across the environment of
events, contexts, semantics, kill chains (detection), decision tree training data (analysis)
and actions (response). Figure 9 shows how to create a ruleset test environment. Quite
simply, create the training and test csv files, load python, import treepredict and then load
the training ruleset and testing data. Testing should include classifying ad-hoc test data and
printing the trained decision tree. To best create the ruleset a bit of analysis and response
foreknowledge must exist. The basic ruleset states, if the asset is in the exploit kill chain
with any semantic (it is blank) and newly online (determined from the dynamic asset

context table), then run the autorunsc tools as an action, if the asset has autorunsc results,

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 1
Chains with OODA
then run an endpoint scan, etc. Once again, the decision tree works as expected, this time
using contexts, semantics, and kill chains to produce the autorunsc action and the endpoint

scan action.

training data

$ cat treepredict-train.csv

chain, semantic, recentOnline, recentVMscan, recentEPscan, recentEPautoruns, action
NO,NO,NO,NO,NO,NO,noop

11355, NOOP

Exploit,,YES,,,,autorunsc

Exploit,,YES,,,YES,epscan

Exploit,,YES,,YES,YES,vmscan

Exploit,,YES,YES,YES,YES,inform

testing data

$ cat treepredict-test.bsn.csv
chain, semantic, recentOnline, recentVMscan, recentEPscan, recentEPautoruns, action
Exploit,,YES,,,,

training and testing in action

$ python

>>> jmport treepredict

>>> train=[line.split(",") for line in file("./treepredict-train.csv')]
>>> for c, r in enumerate(train):

train[c]=[s.strip() for s in r]

>>> print train

[['chain’, 'semantic’, 'recentOnline’, 'recentVMscan', 'recentEPscan’, 'recentEPautoruns', ‘action],
[NO','NO', 'NO', 'NO', 'NO', 'NO', '‘comment’], [*, ", ", ", ", ", 'comment'], [Exploit’, ", "YES', ", ", ",
‘autorunsc'], ['Exploit’, ", 'YES', ", ", 'YES', 'epscan'], [Exploit', ", 'YES', ", 'YES', 'YES', 'vmscan],
[Exploit', ", 'YES', 'YES', 'YES', 'YES', 'inform"]

>>> tree = treepredict.build_tree(train)
>>> test=[line.split(",") for line in file('../lookups/treepredict-test.bsn.csv')]
>>> for c, r in enumerate(test):

test[c]=[s.strip() for sin r]

>>> treepredict.classify(test[0],tree)

{'autorunsc": 1}

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 1

Chains with OODA 1
>>> treepredict.classify([™, ™, ™, ™, ™. ™ tree)
{'noop": 2}
>>> treepredict.classify(["Exploit", ", "YES", ", "", "], tree)

{'autorunsc": 1}

>>> treepredict.classify(["Exploit", ", "YES", ", ", "YES"], tree)
{'epscan": 1}

>>>

>>> treepredict.print_tree(tree)
5:YES?
T->3:?
T->4:?
T-> {'epscan": 1}
F-> {'vmscan': 1}
F-> {!inform": 1}
F-> 0:Exploit?
T-> {"autorunsc": 1}
F-> 0:chain?
T-> {"action": 1}

F-> {'comment": 2}

Figure 9: Decision Tree Testing Results

As previously stated, to best create the ruleset a bit of analysis and response
foreknowledge must exist to grow the necessary contexts, semantics, and kill chains.
Knowing the upcoming actions for a response, figure 10, 11, and 12 show new and old
suggested contexts for the Framework. The context data will be populated later by the

action command. Figure 13 shows the updated suggested semantics list.

create an autorunsc context table periodic query

earliest=-1h index=autorunsc

| stats min(_time) as firstTime max(_time) as lastTime by

hostname ip Time EntryLocation Entry Enabled Category Profile Description Publisher ImagePath
Version LaunchString MD5 SHA-1 PESHA-1 PESHA-256 SHA-256

| table firstTime lastTime
hostname ip Time EntryLocation Entry Enabled Category Profile Description Publisher ImagePath
Version LaunchString MD5 SHA-1 PESHA-1 PESHA-256 SHA-256

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill
Chains with OODA

N —

| inputlookup append=T INFOSEC-CTX-ENDPOINT-AUTORUNS-DYNAMIC.csv

| where lastTime > relative_time(now(), "-30d")

| stats min(firstTime) as firstTime max(lastTime) as lastTime by

hostname ip Time EntryLocation Entry Enabled Category Profile Description Publisher ImagePath
Version LaunchString MD5 SHA-1 PESHA-1 PESHA-256 SHA-256

| table firstTime lastTime

hostname ip Time EntryLocation Entry Enabled Category Profile Description Publisher ImagePath
Version LaunchString MD5 SHA-1 PESHA-1 PESHA-256 SHA-256

| outputlookup INFOSEC-CTX-ENDPOINT-AUTORUNS-DYNAMIC.csv

query the content of autorunsc context table (populated later)

| inputlookup INFOSEC-CTX-ENDPOINT-AUTORUNS-DYNAMIC.csv

| table firstTime lastTime

hostname ip Time EntryLocation Entry Enabled Category Profile Description Publisher ImagePath
Version LaunchString MD5 SHA-1 PESHA-1 PESHA-256 SHA-256

e

igure 20: Autorunsc Context Query

create a virus scan context table periodic query

earliest=-1h index=antivirus
| stats min(_time) as firstTime max(_time) as lastTime last(message) as lastMessageScan by host

| table host lastMessageScan firstTime lastTime

| inputiookup append=T INFOSEC-CTX-ENDPOINT-VIRUSSCAN-DYNAMIC.csv

| where lastTime > relative_time(now(), "-30d")

| stats min(firstTime) as firstTime max(lastTime) as lastTime last(lastMessageScan) as
lastMessageScan by host

| table host firstTime lastTime lastMessageScan

| outputlookup INFOSEC-CTX-ENDPOINT-VIRUSSCAN-DYNAMIC.csv

query the content of the virus scan context table (populated later)

| inputlookup INFOSEC-CTX-ENDPOINT-VIRUSSCAN-DYNAMIC.csv

| table firstTime lastTime host lastMessageScan

-

igure 31: Virus Scan Context Query

create a vuln scan context table periodic query

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 1
Chains with OODA 3

earliest=-1h index=vulnerabilities
| stats min(_time) as firstTime max(_time) as lastTime last(status) as status by id ip dns host os
type severity signature cve cvss

| table firstTime lastTime status ip host os type severity signature cve cvss

| inputlookup append=T INFOSEC-CTX-VULNERABILITY-DYNAMIC.csv

| where lastTime > relative_time(now(), "-30d")

| stats min(firstTime) as firstTime max(lastTime) as lastTime last(status) as status by ip host os
type severity signature cve cvss

| table firstTime lastTime status ip host os type severity signature cve cvss

| outputiookup INFOSEC-CTX-VULNERABILITY-DYNAMIC.csv

query the content of the virus scan context table (populated later)

| inputiookup INFOSEC-CTX-VULNERABILITY-DYNAMIC.csv

| table firstTime lastTime status id ip dns host os type severity signature cve cvss

Figure 42: Vulnerability Scan Context Query
Context # Description
Assets 1 Asset DB Connection
2 Assets Dynamic Collection
Endpoint 3 Endpoint Autoruns Dynamic Collection
4 Endpoint Virus Scan Dynamic Collection
Identity 5 Identity DB Connection
6 Identity Dynamic Collection
Vulnerability 7 Vulnerability DB Connection
8 Vulnerability Dynamic Collection

Figure 53: Updated Suggested Contexts

Integration into the Framework is accomplished using a Splunk custom command
pattern. The Splunk command selects the ruleset, trains using the ruleset, parses the
incoming search data, classifies the search data, and finally returns the classification to the
search stream. Figure 14 shows how to create the Splunk command: 1) copy the previously
created training and testing dataset to the lookups directory; 2) copy the treepredict code
to the bin directory; 3) append the command stanzas and execute a debug refresh; 4) modify
the treepredict algorithm to provide a reference the external PIL library; 5) create the proof

of concept decision tree command; 6) validate the command.

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill
Chains with OODA

copy files to /opt/splunk/etc/apps/search

cp treepredict-train.csv/opt/splunk/etc/apps/search/lookups
cp treepredict-test.csv/opt/splunk/etc/apps/search/lookups

cp treepredict.py /opt/splunk/etc/apps/search/bin/

append to file name/location /opt/splunk/etc/apps/search/local/commands.conf

[decision]

filename = _decision.py
streaming = false
retainsevents = true

overrides_timeorder = false

replace within file name/location /opt/splunk/etc/apps/search/bin/treepredict.py

since PIL is not installed under Splunk’s Python, append and import it

from PIL import Image, ImageDraw
import sys
sys.path.append("/usr/lib64/python2.6/site-packages/PIL")

import Image, ImageDraw

create file name/location /opt/splunk/etc/apps/search/bin/_decision.py
proof of concept implementation of a Splunk CART Decision Tree Command
dependent on Toby Segaran. 2007. Programming Collective Intelligence

dependent on https://github.com/sirMackk/collective_intelligence_examples/tree/master/chap7

import os,csv,sys,time,string,logging,splunk.Intersplunk

import treepredict

fwnull = open(os.devnull, "w"

frnull = open(os.devnull, "r")

LOG_FILENAME = '/opt/splunk/etc/apps/search/bin/_decision.log'
LOG_FORMAT = "[%(asctime)s] %(name)s %(levelname)s: %(message)s"”

try:
logging.basicConfig(filename=LOG_FILENAME, \
level=logging.DEBUG,format=LOG_FORMAT)
logging.info(sys.argv)

keywords, options = splunk.Intersplunk.getKeywordsAndOptions()
ruleset = options.get('tree’, 'default’)

logging.info(ruleset)

Brian Nafziger, brian @ nafziger.net

o=

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 1
Chains with OODA

results,dummy,settings = splunk.Intersplunk.getOrganizedResults()

logging.info(results)

training data

filt = lambda s: s.replace(\",").replace(\",")

fill = lambda s: s or

f = open("/opt/splunk/etc/apps/search/lookups/"+str(ruleset),"r")
data = f.read()

f.close()

keys = "\n'.join(data.split("\n")[:1])

keys = filt(keys).replace(' ', ").replace(\r',").split(",")
logging.info(keys)

train = '\n".join(data.split("\n")[1:data.count("\n")])
logging.info(train)

train=[line.split(",') for line in train.split('\n")]

logging.info(train)

for col, row in enumerate(train):
train[col]=[s.strip() for s in row]

logging.info(train)

tree = treepredict.build_tree(train)

for rin results:

logging.info(r)
application data
row =]
forkeyinr:
if key in keys:

row.append(r[key].strip())

decision = treepredict.classify(row, tree)

logging.info(decision)

r["result"] = decision

splunk.Intersplunk.outputResults(results)

logging.info("exiting")

Brian Nafziger, brian @ nafziger.net

© 2015 The SANS Institute Author retains full rights.

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 1
Chains with OODA

except:
import traceback
stack = traceback.format_exc()

results = splunk.Intersplunk.generateErrorResults("Error : Traceback: " + str(stack))
execute the newly created command
| inputlookup treepredict-test.csv
| decision tree=treepredict-train.csv

| table chain, recentOnline, result

chain recentOnline result
Exploit YES {'autorunsc": 1}

Figure 64: Splunk Decision Tree Command with Results

2.3. Action aka Response

The Action step builds on typical response tools. All that is necessary is to integrate
the tools into the Framework. Many tools were available, and several tools were integrated.
These few tools documented reflect a variety of methods to demonstrate the ease and
flexibility of integration.

Integration into the Framework is accomplished using a Splunk custom command
pattern. The logic, in particular, is inspired by Mark Baggett and the Impacket Collection
of Python classes from Core Labs (Baggett, 2013; CoreLabs, 2013). The first Splunk
command copies autorunsc to the remote asset using smbclient.py and then executes
autorunsc using wmiexec.py. The results are syslogged as key-value pairs for easy capture
and extraction by the previously defined autorunsc context query. Figure 15 shows how to
create the Splunk command: 1) download and install the asn, crypto and impacket classes;
2) define the command via the commands stanza and execute a debug refresh; 3) create the

proof of concept autorunsc command; 4) validate the command.

inspired by
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Impacket
https://isc.sans.edu/forums/diary/Automating+Incident+data+collection+with+Python/19025/

http://pen-testing.sans.org/blog/2013/03/27/psexec-python-rocks

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill
Chains with OODA

$ wget http://sourceforge.net/projects/pyasn/files/pyasn1/0.1.8/pyasn1-0.1.8rc1.tar.gz
$ tar -xvf pyasn1-0.1.8rc1.tar.gz

$ cd pyasn1-0.1.8rc1

$ python setup.py install

$ wget http://pypi.python.org/packages/source/p/pycrypto/pycrypto-2.6.tar.gz
$ tar xzf pycrypto-2.6.tar.gz

$ cd pycrypto-2.6

$ python setup.py install

$ wget --mirror http://impacket.googlecode.com/svn/trunk/ #impacket-0.9.13-dev
$ cd impacket.googlecode.com/svn/trunk

$ python setup.py install

$ wget https://download.sysinternals.com/files/Autoruns.zip

$ unzip Autoruns.zip

file name/location /opt/splunk/etc/apps/search/local/commands.conf
refresh via https://splunk01.company.com:8443/en-US/debug/refresh
[autorunsc]

filename = _autorunsc.py

streaming = true

retainsevents = true

overrides_timeorder = false

proof of concept implementation of a Splunk Autoruns Command

file name/location /opt/splunk/etc/apps/search/bin/_autorunsc.py

import os,sys,csv,string,socket,StringlO,splunk.Intersplunk
import shlex,subprocess

import logging

LEVEL ={
‘emerg": 0, 'alert:1, 'crit": 2, 'err": 3,

‘'warning': 4, 'notice": 5, 'info": 6, 'debug": 7 }

FACILITY = {
'kern': 0, 'user": 1, 'mail": 2, 'daemon': 3,
‘auth': 4, 'syslog': 5, 'lpr': 6, 'news": 7,
'uucp": 8, 'cron': 9, 'authpriv': 10, 'ftp: 11,
'local0': 16, 'local1": 17, 'local2": 18, 'local3": 19,
'local4’: 20, 'local5": 21, 'local6': 22, 'local7'": 23 }

FILENAME = "/opt/splunk/etc/apps/search/bin/_autorunsc.log'

FORMAT = "[%(asctime)s] %(name)s %(levelname)s: %(message)s"”

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill
Chains with OODA

filt = lambda s: s.replace(\",").replace(\",")

fill = lambda s: s or

fwnull = open(os.devnull, "w")

frnull = open(os.devnull, "r"

try:
logging.basicConfig(filename=FILENAME,level=logging.DEBUG,format=FORMAT)

logging.info("entering")

get options
keywords, options = splunk.Intersplunk.getKeywordsAndOptions()

get results
results,dummy,settings = splunk.Intersplunk.getOrganizedResults()

logging.info(results)

f = open('./_autorunsc.put','w")
f.write('use admin$\nput autorunsc.exe\nexit\n')

f.close()

for rin results:

IMPACKET classes can be imported and directly used

cmd = "wmiexec.py USER:PASSWORD@"+filt(r['ip'])+" \"hostname\""

cmd = subprocess.Popen(shlex.split(cmd), stdin=frnull,
stdout=subprocess.PIPE, stderr=fwnull)

data, err = cmd.communicate()

hostname = "\n'.join(data.split(\n')[3:4])

logging.info(data)

cmd = "smbclient.py USER:PASSWORD @"+filt(r['ip"])+" -f _autorunsc.put"

cmd = subprocess.Popen(shlex.split(cmd), stdin=frnull,
stdout=subprocess.PIPE, stderr=fwnull)

data, err = cmd.communicate()

logging.info(data)

cmd = "wmiexec.py USER:PASSWORD @"+filt(r['ip'])+" \"autorunsc.exe
/accepteula -acfv\""
cmd = subprocess.Popen(shlex.split(cmd), stdin=frnull,
stdout=subprocess.PIPE, stderr=fwnull)

data, err = cmd.communicate()

data = data.decode('utf-16','ignore').encode(‘ascii','ignore’)

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill
Chains with OODA

keys = "\n'.join(data.split("\n")[:1])

keys = filt(keys).replace(' ', ").replace('\r',").split(’,")

body = "\n'.join(data.split(\n')[1:data.count(\n")])

reader = csv.DictReader(StringlO.StringlO(body), fieldnames=keys,
skipinitialspace=True, delimiter=b',', quoting=csv.QUOTE_MINIMAL, quotechar=b"")

sock = socket.socket(socket.AF_INET, socket. SOCK_DGRAM)

for value in reader:

kvtext = "hostname="+hostname.replace(\r',")+" "+"ip="+filt(r['ip'])+"

for key in keys:
kvtext += filt(key) + '=\"' + filt(value[key]).replace("\n","\\n")
O\
data = '<%d>%s:
%s'%(LEVEL['notice'l+FACILITY['daemon']*8,"autorunsc" kvtext)
sock.sendto(data, (“10.1.1.254", 514))

sock.close()

output results

splunk.Intersplunk.outputResults(results)
logging.info("exiting")
except:
import traceback
stack = traceback.format_exc()
results = splunk.Intersplunk.generateErrorResults("Error : Traceback: "+str(stack))
execute the newly created command
$ cat test.csv
host,ip
HOST1,10.1.1.1
| inputlookup test.csv | search ip=10.1.1.1 | autorunsc

query the autorunsc context table

| inputiookup INFOSEC-CTX-ENDPOINT-AUTORUNS-DYNAMIC.csv
| table firstTime lastTime

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill
Chains with OODA 0

[\

hostname ip Time EntryLocation Entry Enabled Category Profile Description Publisher ImagePath
Version LaunchString MD5 SHA-1 PESHA-1 PESHA-256 SHA-256

firstTime lastTime hostnameip Time EntryLocation Entry Enabled
Category Profile Description Publisher ImagePath Version
LaunchString MD5 SHA-1 PESHA-1 PESHA-256 SHA-256

1428890237 1428976502 HOST1 10.1.1.1 10/26/2011 12:23 PM

HKLM\Software\Wow6432Node\Classes\CLSID\{083863F 1-70DE-11d0-BD40-
00A0C911CE86)\Instance ~ AVI Decompressor enabled Codecs System-wide

DirectShow Runtime. (Verified) Microsoft Windows
c:\windows\syswow64\quartz.dll 6.6.7601.17713 HKCR\CLSID{CF49D4EO-

1115-11CE-B03A-0020AF0BA770} 0ae0c4955e1de29ccdc9dalb816feSee NULL NULL
NULL NULL

Figure 75: Splunk Autoruns Command with Results

The next Splunk command executes an antivirus scan application on the remote
asset using wmiexec.py. The results are naturally logged via the endpoint application and
captured by the previously defined virus scan context query. Figure 16 shows how to create
the Splunk command. The steps are: 1) download and install the asn, crypto, and impacket
classes; 2) define the command via the commands stanza and execute a debug refresh; 3)

create the proof of concept virus scan command; 4) validate the command.

#inspired by
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Impacket
https://isc.sans.edu/forums/diary/Automating+Incident+data+collection+with+Python/19025/

http://pen-testing.sans.org/blog/2013/03/27/psexec-python-rocks

$ wget http://sourceforge.net/projects/pyasn/files/pyasn1/0.1.8/pyasn1-0.1.8rc1.tar.gz
$ tar -xvf pyasn1-0.1.8rc1.tar.gz

$ cd pyasn1-0.1.8rc1

$ python setup.py install

$ wget http://pypi.python.org/packages/source/p/pycrypto/pycrypto-2.6.tar.gz
$ tar xzf pycrypto-2.6.tar.gz

$ cd pycrypto-2.6

$ python setup.py install

$ wget --mirror http://impacket.googlecode.com/svn/trunk/ #impacket-0.9.13-dev
$ cd impacket.googlecode.com/svn/trunk

$ python setup.py install

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill
Chains with OODA

file name/location /opt/splunk/etc/apps/search/local/commands.conf
refresh via https://splunk01.company.com:8443/en-US/debug/refresh
[virusscan]

filename = _virusscan.py

streaming = true

retainsevents = true

overrides_timeorder = false

proof of concept implementation of a Splunk Virus Scan Command

file name/location /opt/splunk/etc/apps/search/bin/_virusscan.py

import os,csv,sys,string,socket,splunk.Intersplunk
import shlex,subprocess

import logging

fwnull = open(os.devnull, "w")

frnull = open(os.devnull, "r"

LOG_FILENAME = '/opt/splunk/etc/apps/search/bin/_virusscan.log'

LOG_FORMAT = "[%(asctime)s] %(name)s %(levelname)s: %(message)s"”

try:
logging.basicConfig(filename=LOG_FILENAME,level=logging.DEBUG,format=LOG_FO
RMAT)

logging.info("entering")

get options
keywords, options = splunk.Intersplunk.getKeywordsAndOptions()
mode = options.get('mode’, 'unknown')

logging.info(mode)

get results
results,dummy,settings = splunk.Intersplunk.getOrganizedResults()

logging.info(results)

for rin results:

IMPACKET classes can be imported and directly used

cmd = "wmiexec.py USER:PASSWORD@"+r['ip"1+" \"wmic process call create
\'C:\Progra~1\Endpoint\Scan.exe /drive c\'\""
cmd = subprocess.Popen(shlex.split(cmd),
stdin=frnull, stdout=subprocess.PIPE, stderr=fwnull)

data,err = cmd.communicate()

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 2
Chains with OODA 2

logging.info(cmd)
logging.info(data)

output results

splunk.Intersplunk.outputResults(results)
logging.info("exiting")
except:
import traceback
stack = traceback.format_exc()
results = splunk.Intersplunk.generateErrorResults("Error : Traceback: " + str(stack))
execute the newly created command
$ cat test.csv
host,ip
HOST1,10.1.1.1
| inputlookup test.csv | search ip=10.1.1.1 | virusscan

query the virus scan context table

| inputiookup INFOSEC-CTX-ENDPOINT-VIRUSSCAN-DYNAMIC.csv

| table firstTime lastTime host lastMessageScan

firstTime lastTime host lastMessageScan
1427566743 1427566743 HOST1 Scan Complete: Risks: 0 Scanned: 123788

Figure 86: Splunk Virus Scan Command with Results

The next Splunk command executes a vulnerability scan application on the remote
asset using a REST API call. The results are naturally logged via the vulnerability
application logging and captured by the previously defined vulnerability scan context
query. Figure 17 shows how to create the Splunk command: 1) define the command via the
commands stanza and execute a debug refresh; 2) create the proof of concept virus scan

command; 3) validate the command.

file name/location /opt/splunk/etc/apps/search/local/commands.conf
refresh via https://splunk01.company.com:8443/en-US/debug/refresh
[vulnscan]

filename = _vulnscan.py

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill
Chains with OODA

streaming = true
retainsevents = true

overrides_timeorder = false

proof of concept implementation of a Splunk Vuln Scan Command

file name/location /opt/splunk/etc/apps/search/bin/_vulnscan.py

import os,sys,csv,string,socket,datetime,StringlO,splunk.Intersplunk
import shlex,subprocess

import logging

filt = lambda s: s.replace(\",").replace(\",")

fill = lambda s: s or

fwnull = open(os.devnull, "w")

frnull = open(os.devnull, "r"

try:
logging.basicConfig(flename=FILENAME level=logging. DEBUG,format=FORMAT)

logging.info("entering")

get options
keywords, options = splunk.Intersplunk.getKeywordsAndOptions()
mode = options.get('mode’, 'unknown')

logging.info(mode)

get results

results,dummy,settings = splunk.Intersplunk.getOrganizedResults()
logging.info(results)

scanlist=""

for rin results:

scanlist += r['ip]+","

scanlist = scanlist[:-1]
scannerlist = "VULNSCANNERO1"

logging.info(scanlist)

logging.info(scannerlist)

setupScan = "curl -H 'X-requested-With: curl' -X 'POST' -u USER:PASSWORD
'https://SCANMGR/definegroup.php?action=edit&title=DynamicScan&ips=" + scanlist +

"&scanners=" + scannerlist +

cmd = subprocess.Popen(shlex.split(setupScan), stdin=frnull,

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill
Chains with OODA

stdout=subprocess.PIPE, stderr=fwnull)

data, err = cmd.communicate()

logging.info(setupScan)
logging.info(data)

startScan = "curl -H 'X-Requested-With: curl' -X 'POST' -u USER:PASSWORD
'https://SCANMGR/scan.php?action=launch&group=DynamicScan™

cmd = subprocess.Popen(shlex.split(startScan), stdin=frnull,
stdout=subprocess.PIPE, stderr=fwnull)

data, err = cmd.communicate()

logging.info(startScan)
logging.info(data)

output results

splunk.Intersplunk.outputResults(results)
logging.info("exiting")
except:
import traceback
stack = traceback.format_exc()
results = splunk.Intersplunk.generateErrorResults("Error : Traceback: "+str(stack))
execute the newly created command
$ cat test.csv
host,ip
HOST1,10.1.1.1

| inputlookup test.csv | search ip=10.1.1.1 | vulnscan

query the vuln scan context table

firstTime lastTime status ip host 0s type severity signature cve
cvss
1428568576 1429007194 Active 10.x.xx HOST2 Windows 7
Confirmed 2 Internet Explorer Vulnerability CVE-20XX-XXXX 5
1428564792 1428564792 Active 10.x.xx HOST2 Windows 7
Confirmed 2 Internet Explorer Vulnerability CVE-20XX-XXXX 5

Figure 97: Splunk Vulnerability Scan Command with Results

Brian Nafziger, brian @ nafziger.net

[\

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 2
Chains with OODA 5

2.4. OODA in Action

The original Kill Chain logic detects multiple events completing a kill chain by
using transactions. Figure 18 shows remnants of the original Kill Chain logic with the new
created and appended decision and action logic. The decision logic resulting actions feed
into the Splunk map command thereby executing the selected actions using the Splunk
custom action commands called dynamically via the Splunk script command. Figure 18
shows commentary, and the results of each stage interspersed throughout the singular

query. The kill chain with decisions and actions works as expected.

create a kill chain trigger event with decision and actions!

read existing events
linputlookup INFOSEC-CHAIN.csv | sort - lastTime

null incomplete fields for transitive transactions

| eval host=upper(host) | eval user=upper(user)

| eval host = if(host="-","NULL",host) | eval user = if(user="-","NULL",user)

| eval host = if(host="None","NULL",host) | eval user = if(user="None","NULL",user)

| eval thost = if(isnull(host),"NULL",host) | eval tuser = if(isnull(user),"NULL",user)

create raw event
| eval _time=lastTime | eval _raw = "time=\""+strftime(lastTime , "%Y-%m-%d %H:%M:%S")+"\"

host="+thost+" user="+tuser+" semantic=\""+semantic+"\" chain=\""+chain+"\""

simplified single transaction with search to find chain
| transaction host user connected=f mvlist=t mvraw=t delim="\n\n" maxspan=-1

| search *Delivery*Exploit*Exfiltrate®

| table _time _raw chain semantic host user closed_txn eventcount field_match_sum duration

kill chain trigger events containing bundled events

time chain semantic host user

semantic="Mai

e i

semantic="Mail

filtrate

singularize host and user

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill
Chains with OODA

| eval host= mvindex(host, 0)

| eval user= mvindex(user, 0)

perform context lookups

| lookup INFOSEC-CTX-IDENTITY-DB.csv user OUTPUT name department

| lookup INFOSEC-CTX-ASSET-DYNAMIC.csv host OUTPUT lastTime AS assetTime

| lookup INFOSEC-CTX-VULNERABILITY-DYNAMIC.csv host OUTPUT lastTime AS vmscanTime
| lookup INFOSEC-CTX-ENDPOINT-VIRUSSCAN-DYNAMIC.csv host OUTPUT lastTime AS
epscanTime

| lookup INFOSEC-CTX-ENDPOINT-AUTORUNS-DYNAMIC.csv host OUTPUT lastTime AS

epautorunsTime

| table _time user host ip assetTime vmscanTime epscanTime autorunsTime

context added to kill chain trigger event

time uzer hest Ip aszerTime vmscanTime = | epscanTime sunonunzTime

binarize the context for decision-making

| eval recentOnline=if (floor((now()-assetTime)/60/60) <= 12,"YES","NQO")

| eval recentVMscan=if (floor((now()-vmscanTime)/60/60) <= 24,"YES","NO")

| eval recentEPscan=if (floor((now()-epscanTime)/60/60) <= 24,"YES","NO")

| eval recentEPautoruns=if (floor((now()-epautorunsTime)/60/60) <= 24,"YES","NO")

execute the decision

| table _time user host ip recentOnline recentVMscan recentEPscan recentEPautoruns

| decision tree=treepredict-train.csv

| table _time user host ip recentOnline recentVMscan recentEPscan recentEPautoruns result
| rex field=result "'(?P<cmd>[""+)"

loop the decision command to the script command to execute the action

| map search="| stats count

| eval _time=now() | eval user=\"$user$\" | eval host=\"$host$\" | eval ip=\"Sip$\"

| eval recentOnline=\"$recentOnline$\" | eval recentVMscan=\"$recentVMscan$\"

| eval recentEPscan=\"$recentEPscan$\" | eval recentEPautoruns=\"$recentEPautoruns$\"
| eval result=\"$result$\" | eval cmd=\"cmd\" | script cmd

" maxsearches=10

| table _time user host ip recentOnline recentVMscan recentEPscan recentEPautoruns result cmd

resulting binarized decision context and resulting action

Figure 108: Splunk Kill Chain with OODA Decisions and Actions

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 2
Chains with OODA 7

3. Conclusion

Several noteworthy challenges occurred. As previously noted dirty data and latent
data was always present and required correction (Nafziger, 2014). Challenges unique to
this investigation were many: fickleness of the decision logic — the original ID3 decision
algorithm did not handle missing data; fickleness of the action logic — occasionally tools
broke due to conditions in the environment beyond control emphasizing the need for agility
with multiple available actions (and the need for error handling); abstractions of the action
logic — the desire to abstract the actions lead to several competing approaches. The first
approach was a pass-through action command --a Splunk command directly called the OS
command line. This approach was unwieldy passing a variety of arguments. The second
approach was a remote action command --a Splunk command pushed (via psexec.py) a
compiled Python script (via Pyinstaller) bundled with any necessary binaries to the target
for execution. This approach, though successful, was complex. The chosen approach was
using the Splunk map and script commands along with Splunk custom commands. The
final and primary challenge as noted ecarlier was complexity - creating a cohesive,
comprehensive, and consistent taxonomy across the environment.

Several excellent growth areas exist. There are additional concepts that need
integrated such as F3EAD. There are additional events, contexts, and semantics that need
integration such as firewalls and intrusion systems. There are additional interrogation and
interdiction actions (scripts) that need to be integrated. There are Splunk architecture
abstractions that need integrated such as event types, models, summaries, and macros.
Moreover, finally, rigorous testing needs to be completed.

In the end Practical Attack Detection, Analysis, and Response with Big Data,
Semantics, Kill Chains, and OODA appears viable in small controlled scenarios. The
Framework shows the potential to augment, to be adaptive, to be synergistic, and to be

agile.

4. References

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 2
Chains with OODA 8

Alspaugh, S., Ganapathi, A., Hearst, M., & Katz, R. (2013). Building Blocks for
Exploratory Data Analysis Tools. Retrieved March, 2015, from
http://www.eecs.berkeley.edu/~alspaugh/papers/Isa_idea 2013.pdf

Anderson, J. R. (1990). Cognitive psychology and its implications (3rd edition). New
York: W. H. Freeman & Co.

Bagget, M. (2015). Automating Incident Collection. Retrieved April, 2015,
https://isc.sans.edu/forums/diary/Automating+Incident+data+collection+with+Pyt
hon/19025/

Bailer, J. (2007, June). Army Business Transformation: The Utility of Using Corporate
Business Models within the Institutional Army. Retrieved January, 2015, from
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA471102

Benson, C. (n.d.). Security Threats. Security Threats. Retrieved March, 2015, from
http://technet.microsoft.com/en-us/library/cc723507.aspx

Bianco, D. (2013, March 1). Enterprise Detection & Response: The Pyramid of Pain.
Retrieved March, 2015, from http://detect-respond.blogspot.com/2013/03/the-
pyramid-of-pain.html

Boyd, J. (2005, February). Organic Design. Retrieved March, 2015, from
http://www.dnipogo.org/boyd/organic_design.pdf

Boyd, J. (2006, June). Strategy of ? and ?. Retrieved March, 2015, from
http://www.dnipogo.org/boyd/strategic game.pdf

Boyd, J. (2007, November). Patterns of Conflict. Retrieved March, 2015, from
http://www.dnipogo.org/boyd/patterns_ppt.pdf

Boyd, J. (2010, November). The Essence of Winning and Losing. Retrieved March,
2015, from
http://pogoarchives.org/m/dni/john_boyd compendium/essence of winning losi
ng.pdf

Brownlee, J. (2014, January). What is Data Mining and KDD. Retrieved April, 2015,
from http://machinelearningmastery.com/what-is-data-mining-and-kdd/

Chuvakin, A., Knapp, E. (2010, January). Content Aware Siem Define. Retrieved April,
2015, from http://www.enterprisemanagement360.com/wp-

content/files_ mf/white paper/content aware siem defined.pdf

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 2
Chains with OODA 9

Cole, E. (2012). Advanced Persistent Threat: Understanding the Danger and How to
Protect your Organization. Waltham, MA: Syngress.

Core Labs. (2003). What is Impacket? Retrieved April, 2015,
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=to
ol&name=Impacket

Cowan, J. (2000). From Air Force Fighter Pilot to Marine Corps Warfighting: Colonel
John Boyd, His Theories on War, and their Unexpected Legacy. Retrieved March,
2015, from http://www.dnipogo.org/fcs/boyd thesis.htm

Duncan, A. (2014, February 1). The ABC of Data Governance: Driving Information
Excellence. Retrieved March, 2015, from
http://www.slideshare.net/ AlanDDuncan/the-abc-of-data-governance

Flynn, J. (2012, July). Intrusions along the Kill Chain. Retrieved January, 2015, from
https://media.blackhat.com/bh-us-12/Briefings/Flynn/bh-us-12-Flynn-intrusion-
along-the-kill-chain-WP.pdf

Heuer, R. (1999). Psychology of Intelligence Analysis (2nd ed.). Washington, D.C.:
Center for the Study of Intelligence, Central Intelligence Agency.

Hutchins, E. M., Cloppert, M. J., & Amin, R. M. (2010, November 21). Intelligence-
Driven Computer Network Defense Informed by Analysis of Adversary
Campaigns and Intrusion Kill Chains. . Retrieved March, 2015, from
http://www.lockheedmartin.com/content/dam/lockheed/data/corporate/documents/
LM-White-Paper-Intel-Driven-Defense.pdf

Keanini, T. (2014, March). The OODA Loop: A Holistic Approach to Cyber Security.
Retrieved March, 2015, from http://www.slideshare.net/Lancope/ooda-loop-
webinar2

Laney, D. (2012, June). 3D Data Management: Controlling Data Volume, Velocity, and
Variety. Retrieved February, 2015, from
https://www.gartner.com/doc/2057415/importance-big-data-definition

Martin, G. (2014, August). The Security Operations Holy Grail. Retrieved January, 2015,
from http://threatstream.com/blog/socholygrail

Matt. (2014, April). Collective Intelligence Examples. Retrieved April, 2015,

https://mattscodecave.com/posts/programming-collective-intelligence-chapter-7-

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 3
Chains with OODA 0
notes &
https://github.com/sirMackk/collective intelligence examples/tree/master/chap7

Nafziger, B. (2014, October). Practical Attack Detection using Big Data, Semantic-based
methods, and the Kill Chain model. Retrieved January, 2015, from
http://www.sans.org/reading-room/whitepapers/warfare/practical-big-data-kill-
chain-framework-35487

Olesker, A. (2012, August) Questing the Offense — Defense Balance in Cyberspace.
Retrieved January, 2015, from
http://www.oodaloop.com/technology/2012/08/06/questioning-the-offense-
defense-balance-in-cyberspace/

Osinga, F. (2006). Science, Strategy and War: The Strategic Theory of John Boyd.
London ; New York, N.Y.: Routledge.

Osinga, F. (2013). ‘Getting” A Discourse on Winning and Losing: A Primer on Boyd’s
‘Theory of Intellectual Evolution’. Retrieved March, 2015, from
http://www.contemporarysecuritypolicy.org/assets/CSP-34-3%200singa.pdf

Richards, C. (2001). A swift, elusive sword: What if Sun Tzu and John Boyd did a
national defense review? Washington, D.C.: Center for Defense Information.

Robb, C. (2011, October 1). The Heart of the Matter A Core Services Taxonomy for
State IT Security Programs. . Retrieved March, 2015, from
http://www.nascio.org/publications/documents/NASCIO CoreSecuritySevices.pd
f

Schneier, B. (2014, August). The State of Incident Response. Retrieved March, 2015,
from https://www.youtube.com/watch?v=u54Radu2bF0

Schneier, B. (2014, November). The Future of Incident Response. Retrieved January,
2015, from http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6924685

Segaran, T. (2007). Programming collective intelligence: Building smart web 2.0
applications. O'Reilly.

Shalizi, C. (2009, November). Data Mining 26-350. Classification and Regression Trees
Lecture. Retrieved April, 2015, from
http://www.stat.cmu.edu/~cshalizi/350/1lectures/22/lecture-22.pdf

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill 3
Chains with OODA 1

Splunk. (2014). Common Information Model. Retrieved March, 2015, from
http://docs.splunk.com/Documentation/CIM/latest/User/Overview

Talabis, M. (2007). Security Analytics Project. Retrieved March, 2015, from
https://www.blackhat.com/presentations/bh-usa-
07/Del_Moral Talabis/Presentation/bh-usa-07-del moral talabis.pdf

Tirpak, J. (2000, July 1). Find, Fix, Track, Target, Engage, Assess. Retrieved March,
2015, from
http://www.airforcemag.com/magazinearchive/pages/2000/july%202000/0700fin
d.aspx

UCISA. (n.d.). ITIL — A Guide to Event Management. Retrieved March, 2015, from
https://www.ucisa.ac.uk/~/media/Files/members/activities/ITIL/service operation
/eventm_management/ITIL a%20guide%20t0%20event%20management%20pdf.
ashx

Vincent, A. (2014, April). What is a Threat Intelligence Platform. Retrieved January,
2015, from http://www.threatconnect.com/news/threat-intelligence-platform-2-2/

Xin, Kai, (2013, October). Good Enough Analytics. Retrieved March, 2015, from
http://www.slideshare.net/KaiX/good-enough-analyticsfinal

Yen, T. F., Oprea, A., Onarlioglu, K., Leetham, T., Robertson, W., Juels, A., & Kirda, E.
(2013, December). Beehive: Large-Scale Log Analysis for Detecting Suspicious
Activity in Enterprise Networks. In Proceedings of the 29th Annual Computer
Security Applications Conference (pp. 199-208). ACM.

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill
Chains with OODA

4.1. Appendix

simple proxy query

index=proxy | table _time src dest bytes_in bytes_out

_time src dest bytes_in bytes_out
2015-04-01 13:55:17 10.x.x.x mail.yahoo.com 39 228

Figure 2: Proxy Event Query (Nafziger, 2014)

create a dynamic asset context table periodic query

earliest=-1h index=dhcp GrantLease OR RenewlLease

| stats min(_time) as firstTime, max(_time) as lastTime by host ip mac

| table firstTime lastTime host ip mac

| inputlookup append=T INFOSEC-CTX-ASSET-DYNAMIC.csv

| where lastTime > relative_time(now(), "-7d")

| stats min(firstTime) as firstTime max(lastTime) as lastTime by host ip mac
| table firstTime lastTime host ip mac
| outputlookup INFOSEC-CTX-ASSET-DYNAMIC.csv

query the proxy using the dynamic asset context table
index=proxy
| lookup INFOSEC-CTX-ASSET-DYNAMIC ip as src OUTPUT host mac

| table _time src dest host mac

_time src dest host mac
2015-04-12 15:43:44 10.x.x.x ssl.gstatic.com HOST1 dd241dd368dd

Figure 3: Proxy Context Query (Nafziger, 2014)

Context # Description
Assets 1 Asset DB Connection

2 Assets Dynamic Collection
Identity 3 Identity DB Connection

4 Identity Dynamic Collection

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill

Chains with OODA
Vulnerability Vulnerability DB Connection
Vulnerability Dynamic Collection
Figure 4: Suggested Contexts (Nafziger, 2014)

earliest=-1h index=proxy

| bucket _time span=1m

| eval notable=avg + 3*stdev

| where bytes_out > notable

create an abnormal proxy semantic event for the kill chain table

| stats sum(bytes_out) as bytes_out by _time src dest
| eventstats min(_time) as firstTime max(_time) as lastTime

avg(bytes_out) as avg stdev(bytes_out) as stdev

| lookup INFOSEC-CTX-ASSET-DYNAMIC ip as src OUTPUT host

| table _time host dest bytes_out notable

| eval chain = "Exfiltrate" | eval semantic = "Proxy Large Outbound"
| stats min(firstTime) as firstTime max(lastTime) as lastTime by host semantic chain

| table firstTime lastTime host semantic chain

| inputlookup append=t INFOSEC-CHAIN.csv

| where lastTime > relative_time(now(), "-24h")

| stats first(firstTime) as firstTime last(lastTime) as lastTime by host semantic chain
| table firstTime lastTime host semantic chain

| outputlookup INFOSEC-CHAIN.csv

query the abnormal proxy semantic event within the kill chain table

| inputlookup INFOSEC-CHAIN.csv

| table firstTime lastTime host semantic chain

firstTime lastTime host semantic chain
1428861600 1428797700 HOST1 Proxy Large Outbound Exfiltrate
1428839100 1428842700 HOST8 Proxy Large Outbound Exfiltrate

e

igure 5: Proxy Semantic Query - Abnormal Outbound Traffic (Nafziger, 2014)

Kill Chain #

Description

Delivery

Mail Recipient Vulnerable

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill
Chains with OODA

Mail Sender Unique
Exploit Endpoint Load Unique

Endpoint Risk Found
Exfiltrate Proxy Long Connect

Proxy Frequent Connect

Proxy Large Outbound

@ Nl O O] M W N

Proxy Destination IP

>

igure 6: Suggested Semantics (Nafziger, 2014)

create a kill chain trigger event

read existing events
linputiookup INFOSEC-CHAIN.csv

null incomplete fields for transitive transactions
| eval host=upper(host) | eval user=upper(user)

| eval host = if(host="-","NULL",host)

| eval user = if(user="-","NULL",user)

| eval host = if(host="None","NULL",host)

| eval user = if(user="None","NULL",user)

| eval thost = if(isnull(host),"NULL",host)
| eval tuser = if(isnull(user),"NULL",user)

| eval _time=lastTime

create raw event from chain event
| eval _raw = sirftime(lastTime , "%Y-%m-%d %H:%M:%S")+" host="+thost+" user="+tuser+"

semantic="+semantic+" chain="+chain

transactions to find chain

| transaction host user connected=f mvraw=t delim="\n\n" maxspan=-1 keepevicted="t"
startswith="Delivery" endswith="Exploit"

| transaction host user connected=f mvraw=t delim="\n\n" maxspan=-1 keepevicted="t"
startswith="Exploit" endswith="Exfiltrate"

| transaction host user connected=f mvraw=t delim="\n\n" maxspan=-1 startswith="Delivery"
endswith="EXxfiltrate"

| table _time _raw chain semantic host user closed_txn eventcount field_match_sum

| search closed_txn=1

perform context lookups

| lookup INFOSEC-CTX-ASSET-DYNAMIC host OUTPUT lastTime ip mac

| eval lastAssetTime = strftime(lastTime , "%Y-%m-%d %H:%M:%S")

| lookup INFOSEC-CTX-IDENTITY-DYNAMIC host OUTPUT lastTime src_host src_ip

Brian Nafziger, brian @ nafziger.net

Practical Attack Detection, Analysis and Response using Big Data, Semantics, and Kill
Chains with OODA

| eval lastldentTime = strftime(lastTime , "%Y-%m-%d %H:%M:%S")
| lookup INFOSEC-CTX-VULNERABILITY-DYNAMIC host OUTPUT lastTime signature status
| eval lastScanTime = strftime(lastTime , "%Y-%m-%d %H:%M:%S")

| table _time _raw host user
lastAssetTime ip mac
lastldentTime src_host src_ip

lastScanTime signature status

the triggered kill chain event

_time
2015-04-12 13:18:05

_raw
2015-04-12 13:18:05 host=HOST1 user=NULL semantic=Mail Sender Unique chain=Delivery
2015-04-12 13:19:35 host=HOST1 user=NULL semantic=Endpoint Risk Found chain=Exploit
2015-04-12 14:38:32 host=HOST1 user=USER1 semantic=Proxy Dest Unique chain=Exfiltrate

host user

HOST1 USER1

lastAssetTime ip mac
2015-04-12 13:17:18 10.X.X.X dd241dd368dd
lastldentTime src_host src_ip
2015-04-12 13:19:22 SERVER99 10.x.x.99
2015-04-12 13:20:23 SERVER23 10.x.x.23
lastScanTime signature status
2015-04-09 16:36:27 Microsoft - Zero Day Active
2015-04-09 16:36:27 Adobe Multiple Vulns Active

Figure 7: Kill Chain combining Events, Contexts, and Semantics (Nafziger, 2014).

Brian Nafziger, brian @ nafziger.net

