
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead: Which of the Most Common
IDS/IPS Tools Can Best Identify QUIC Traffic?

GIAC (GCIA) Gold Certification

Author: Lee Decker, deckerl@gmail.com
Advisor: David Hoelzer

Accepted: 04/03/2020

Abstract

The QUIC protocol created by Google for use in their popular browser Chrome has
begun to be adopted by other browsers. Some organizations have a robust strategy to
handle TLS with HTTP2. However, QUIC (HTTP/2 over UDP) lacks visibility via
crucial information security tools such as Wireshark, Zeek, Suricata, and Snort. Lack of
visibility is due to both its use of TLS 1.3 for encryption and UDP for communication.
The defender is at a disadvantage as selective blocking of QUIC isn’t always possible.
Moreover, some QUIC traffic may be legitimate, and so outright blocking of endpoints
that use QUIC is likely to cause more issues than it solves. To complicate matters further,
QUIC has begun to appear in Command and Control (C2) frameworks like Merlin as an
additional means of hiding traffic.

This paper seeks to establish the current state of open-source detection tools, identify
which tools detect the most metrics, and add to current detection capabilities by creating
a proof of concept Zeek script to enhance detection.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

2

	

Lee	Decker,	deckerl@gmail.com	 	 	

1. Introduction
The QUIC protocol was created in 2012 by Google engineer Jim Roskind. QUIC

improves the performance of web-based applications by using UDP instead of TCP. UDP

allows the connection to enhance the performance of web-based applications by reducing

the traditional TCP three-way handshake to a single UDP round-trip (Ghedini, 2018). In

addition to solving performance challenges, QUIC also supports encryption by default

using TLS 1.3. To further complicate matters, the IETF took the original Google QUIC

protocol (GQUIC) and improved it. This QUIC protocol expands and diverges from

GQUIC (Ghedini, 2018).

Both GQUIC and QUIC create new challenges for information security

practitioners. By utilizing both UDP which, is connectionless and TLS 1.3 for

encryption, many of the proven packet tools such as Wireshark, Zeek (formerly Bro),

Suricata, and Snort loose visibility or functionality. Most QUIC/GQUIC traffic may be

legitimate. Google uses it to speed up Youtube, and Microsoft has plans to use it to

accelerate SMB/file traffic (Pyle, 2020), so outright blocking of endpoint traffic is likely

to create more issues than it solves. To complicate matters further, GQUIC has begun to

appear in Command & Control (C2) frameworks to help obfuscate malicious traffic.

Russel Vay Tuly added support for GQUIC to the Merlin C2 framework in 2018 to aid

penetration testers and defenders.

Both QUIC & GQUIC protocols are works in progress, and implementations may

vary among applications. Different libraries support different versions and features (Shah,

2018). Both Wireshark and Zeek’s plugin Bro-Quic by Corelight support earlier versions

of GQUIC (Google QUIC). The GQUIC plugin by Salesforce supports the current

version of Q046 (Yu, 2019).

The lack of support for QUIC is found not only among open-source security

solutions but also among commercial proxy solutions like Cisco’s Web Security

Appliance. Many commercial firewall vendors currently recommend blocking QUIC

(Liebetrau, 2018). Chrome and other browsers will default to HTTP/HTTPS using TCP if

GQUIC/QUIC isn’t available.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

3

	

Lee	Decker,	deckerl@gmail.com	 	 	

Traditional web traffic over TCP requires a three-way handshake. QUIC uses

UDP instead of TCP. UDP speeds up web traffic by causing less delay and fewer packets

sent (Niroshan,2017). Using UDP instead of TCP provides several benefits, including

connection migration, forward error correction, improved establishment latency, and

better congestion control.

Various tools must decode QUIC’s packet structure to gain insight into its

contents. QUIC consists of two different packet types: special and regular.

Figure	1	-	QUIC	Packet	Types	(Niroshan,	2017)	
	
	

Both types of QUIC packets begin with a public header between 1 and 51 bytes

that provides details concerning the rest of the packet.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

4

	

Lee	Decker,	deckerl@gmail.com	 	 	

Figure	2	-	QUIC	Public	Header	(Niroshan,	2017)	

Special packets consist of two types: version negotiation packets or public reset

packets. Regular packets consist of frame packets with type and payload information

(2017, Niroshan). The researcher’s focus will primarily be on these packets, which are

un-encrypted and can provide critical information.

The first communication between a client and a new server consists of a helo packet,

followed by a rejection response packet containing the information needed to establish

the connection. The helo packet is then resent with the new parameters, and an encrypted

channel created. On further communications, the client can use cached information to

establish encryption, thus bypassing the un-encrypted packets which are necessary to

fingerprint and gather information (2019, Yu).

These HeloInfo packets contain up to twenty-eight tags that can be analyzed to gather

information about the connection, including user-agent header and server information.

Server rejection packet – RejInfo contains up to seventeen tags that provide additional

information to aid in the profiling of the packet.

The diagram below illustrates how GQUIC handles the initial handshake and all

further handshakes that follow.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

5

	

Lee	Decker,	deckerl@gmail.com	 	 	

Figure	3	-	GQUIC	Handshake	(Yu,2019)	
	

 A study published in 2019 by Jan Ruth and others, shows GQUIC accounts for as

much as 40% of Google’s traffic. With the more recent adoption of QUIC in Firefox and

support from Cloudflare (Ghendi, 2018) and other providers, these numbers will only

increase.

While this is good for the public due to speed increases, reduced latency, and easier

maintenance in the userspace instead of the operating system (Pearce,2019), it presents

challenges in the corporate space.

Information security professionals will need to adapt old tools and develop new

techniques to address this blind-spot in corporate systems.

The researcher’s goal is to see what commonly available tools have the best

support for the current version of GQUIC/QUIC and create a Zeek script to provide

additional intelligence. By analyzing the state of the existing open-source tools, the

researcher will gather additional information to aid security professionals in both

controlling known “good” traffic and identifying and blocking malicious traffic.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

6

	

Lee	Decker,	deckerl@gmail.com	 	 	

2. Research Method
2.1. Lab Design
2.1.1. Overview of Lab

 The researcher chose to use Vmware Workstation 15.5.1 build-15018445 to

virtualize the infrastructure. Data gathering and analyzation workspaces consist of Virtual

machines of KALI Linux 2019.4 and Security Onion 16.04.6.3. These distributions are

both readily accessible and stable. To the KALI workspace (based on Debian Linux), the

researcher added the following applications – Chrome version 79.0.3945.130 (Official

Build) (64-bit), and Firefox version 72.0.2 (64bit).

 Security Onion contains the following version of tools: Snort 2.9.15, Suricata 4.15

Bro/Zeek 2.6.4, and Wireshark 2.6.10. Two plugins were then added to Bro/Zeek:

corelight/bro-quic and salesforce/GQUIC_Protcol_Analyzer.

 Two additional VM’s were built based on Kali 2019.4, one to act as the Merlin C2

client and one to serve as the Merlin C2 server. Merlin is currently in beta, version 0.8.0.

2.1.2. “Good” versus “Bad” packets
After being configured to enable QUIC, Google Chrome & Firefox are each used

for ten packet captures using tcpdump. These packet captures are “good” or potentially

“legitimate” traffic that will be analyzed using various tools.

GQUIC is the default with the current version of Google Chrome. But to ensure

GQUIC was enabled, the researcher toggled QUIC under chrome://flags/ (Liebert, 2018).

You can then confirm the visited website is using GQUIC and the version used while in

developer mode. Then while Google, Youtube, and other sites known to use

GQUIC/QUIC are visited, tcpdump -i eth0 -w filename is running in an additional

terminal window to capture the packets.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

7

	

Lee	Decker,	deckerl@gmail.com	 	 	

QUIC is the default with the current build of Firefox. But to confirm this, the

researcher goes to about:config and search for network.http.http3.enabled. After

making the change, restarting Firefox applies the setting. HTTP3 is another name for the

newer QUIC protocol, not the GQUIC protocol. Tcpdump captures packets while various

sites are visited.

Merlin C2 client and the Merlin C2 server run on separate VM’s and ten packet

captures are created from the client-side, while various commands run. These packet

captures are considered “bad” or potentially “malicious” traffic.

2.2. Tools used for Analysis & Packet Generation
The researcher reviewed the current state of open-source packet analysis tools and

frameworks to determine which was best for dealing with the GQUIC/QUIC protocol.

2.2.1. Suricata
Suricata is an open-source network threat detection framework. The engine can

act as both an IDS, IPS, and NSM. Packets can also be processed offline, which is the

primary use case demonstrated for this research. Although UDP and TLS are both

supported by the protocol parser, QUIC is not currently supported. The researcher

suspects the information obtained from our packet captures will be limited. Suricata’s

latest stable version is 5.0.2

2.2.2. Snort
Snort is an open-source IPS, IDS framework. The engine can also process packets

offline. Suricata does not support decoders for QUIC, but decoders for UDP and TLS do

exist.

Snort is the bases of enterprise products like Cisco Firepower. Cisco’s latest

recommendation is to block QUIC traffic, forcing browsers back to TCP/TLS. (Maynard,

2018).

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

8

	

Lee	Decker,	deckerl@gmail.com	 	 	

2.2.3. Zeek
Zeek is the open-source network security monitor formerly know as Bro. It is a

popular framework for extract meta-data from packets, providing analysis, and acting on

that meta-data. Zeek contains protocol plugins for both UDP and TLS. Third-party

plugins are available to provide additional information on the QUIC protocol. The

researcher found plugins from both Corelight and Salesforce via Github. The Corelight

plugin is two years old and only supports up to version Q043 of QUIC. Due to the

various capabilities listed above, the researcher feels it will be the best tool to identify

malicious QUIC/GQUIC packets. Zeek’s latest version is 3.0.1

When analyzing packet capture files the -c flag ignores any checksum errors that

may occur, and the -r flag is used to read the .pcap file.

2.2.4. Zeek with Salesforce Plugin
This plugin for Zeek was developed in 2019 to provide additional visibility into

GQUIC packets. Using BinPAC, the plugin focuses on the non-encrypted packets of

GQUIC – the client hello and server rejection packets. The plugin allows the gathering of

certificates, user-agent strings, and other valuable data used for fingerprinting “good”

versus “bad” traffic (Yu, 2019). The researcher expects this tool to the most useful for

dealing with QUIC packets currently.

The plugin is first downloaded from Github using the command git clone

https://github.com/salesforce/GQUIC_Protocol_Analyzer. It can then be configured

and installed into Bro using sudo and the following commands - ./configure, make,

make install. The plugin is installed in the /opt/bro/lib/bro/plugins directory. Bro -N

verifies a successful installation. The output should look like the following.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

9

	

Lee	Decker,	deckerl@gmail.com	 	 	

	
Figure	4	-	Validating	Bro	Plugin	

2.2.5. Merlin C2 Framework
Merlin is a command and control framework written in the Go programming

language by Russel Van Tuyl to aid in red team exercises. It was designed from the start

to use HTTP/2 for communications and then updated to allow the use of the GQUIC

protocol. This use of encryption creates challenges for IPS/IDS solutions, and the

inclusion of GQUIC made it the perfect candidate for the researcher to generate “bad

packets” for testing (Villarreal, 2019).

The Merlin framework consists of an agent and a server. The server and agent

both must use the command-line switch -proto hq to use GQUIC as the communication

protocol. Merlin uses the GOQUIC library, which currently supports version Q044 of the

protocol.

The latest version of Merlin C2, v0.8.0 beta, contains a known bug, in which the

server will die if told to use the GQUIC protocol and the built-in certificate. After a

discussion with the author, the researcher learned that if you create a self-signed

certificate, this problem is corrected. The following commands generate this certificate.

openssl genrsa -out privatekey.pem 1024

openssl req -new -x509 -key privatekey.pem -out publickey.cer -days 1825

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

10

	

Lee	Decker,	deckerl@gmail.com	 	 	

openssl pkcs12 -export -out public_privatekey.pfx -inkey privatekey.pem -in

publickey.cer

Figure	5	-	Merlin	C2	server	using	GQUIC	

Then the server can be started with flags pictured in Figure 5 above. Tcpdump

performs packet captures between agent and server for later analysis.

2.3. Wireshark
Wireshark is an established GUI used for packet analysis. The researcher will use

Wireshark to examine GQUIC/QUIC packets for information. Wireshark will act as a

control to validate what each open-source tool produces. The current stable version of

Wireshark is 3.2.1. Versions of Wireshark, as recent as 3.0.3, had challenges examining

version Q046 GQUIC packets, which represent most of the traffic currently seen (Yu,

2019).

Security Onion currently provides an older version of Wireshark by default. The

researcher will use the more current version installed on Kali when conducting an

analysis.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

11

	

Lee	Decker,	deckerl@gmail.com	 	 	

3. Findings and Analysis
Each tool processes the packet captures. The resulting output or data extracted

provides information and insight for the researcher to help differentiate legitimate traffic

from malicious traffic. It also further illustrates the differences between GQUIC and

QUIC and highlights the strengths and weaknesses of each tool.

3.1. Suricata
Suricata is capable of reading .pcap files offline using the -r switch. The

researcher updated the installed Suricata rules (sudo suricata-update) and downloaded

the emerging threats rule set.

Suricata found no concerns in the “good” .pcap files containing chrome traffic.

Figure	6	-	Suricata	-	Chrome	Packets	
	 	
	 	

Suricata runs against the packet capture contain the Merlin C2 traffic, and no rules

were triggered.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

12

	

Lee	Decker,	deckerl@gmail.com	 	 	

Figure	7	-	Suricata	Merlin	C2	Packets	
	 	
	 Suricata was unable to provide any additional information concerning

GQUIC/QUIC traffic since neither the legitimate nor the malicious traffic triggered any

of the signatures or rules.

 The remaining Google Chrome, Firefox, and Merlin C2 packets showed similar

findings when processed with Suricata.

3.2. Snort
	

Snort is capable of reading .pcap files offline using the -r switch.

Snort processed eleven thousand four hundred eighty-three packets processed from the

chrome_newtest1.pcap. No signatures or rules matched, and the GQUIC traffic appears

as UDP packets mixed in with TCP packets of regular traffic. Nine additional Chrome

packet captures processed with similar results. The ten Firefox packet captures yielded

comparable results.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

13

	

Lee	Decker,	deckerl@gmail.com	 	 	

	
Figure	8	-	Snort	Chrome	Packet	
	
	 Snort processed the Merlin C2 capture containing 247 packets. No rules were

triggered, and all the traffic seen is UDP. An additional nine packet captures from Merlin

C2 were processed with similar results. 	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

14

	

Lee	Decker,	deckerl@gmail.com	 	 	

	
Figure	9	-	Snort	Merlin	C2	Packet	
	
 Snort was unable to provide additional meaningful information from either packet

capture for similar reasons as Suricata. Neither legitimate nor malicious traffic triggered

any rules or signatures.

3.3. Zeek
Zeek, by default, generates the standard set of log files. These log files show the

UDP traffic on 443 but can’t identify it as GQUIC/QUIC. The IP source and destination

information may help map known malicious IP addresses that the traffic is going to. The

remaining nine Google Chrome packet captures yielded similar results as did the Firefox

traffic.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

15

	

Lee	Decker,	deckerl@gmail.com	 	 	

	
Figure	10	-	Zeek	-	Good	Packets	-	Conn	Log	
	
	 Zeek is unable to provide much information from the Merlin C2 packet. No

certificate information is processed, and only standard connection information supplied.

Merlin traffic has far fewer packets compared to legitimate QUIC web traffic, and there

is none of the associated HTTP/HTTPS traffic surrounding it as part of the transaction.

The malicious C2 traffic did not generate ssl.log’s or x509.log’s usually seen with

standard TCP encrypted traffic.

	
Figure	11	-	Zeek	-	Merlin	C2	Packet

	

3.4. Zeek with Salesforce module
Zeek, with the Salesforce plugin installed, identifies the GQUIC packets and creates

an additional log file. This log file includes GQUIC version information, browser head

information, as well as an MD5 fingerprint based on the version and tags in the client

hello packets. This fingerprint can help identify “good” versus known “bad” packets.

Zeek produced similar results for the remaining Google Chrome packet captures but

was unable to process the data from the Firefox packets using the newer QUIC format.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

16

	

Lee	Decker,	deckerl@gmail.com	 	 	

 Figure	12	-	Zeek	-	SalesForce	Plugin	-	Good	Packets	-	Gquic	Log

	
The Salesforce plugin extracts the same data from the Merlin C2 packet capture,

but there is minimal information to differentiate the regular browsing traffic from the bad

C2 traffic. Web browsing has a mix of TCP & UDP connections, whereas the C2

framework does not. The CYU tags found here match the ones mentioned by the

Salesforce GitHub site as being associated with Merlin C2. The researcher's use of a self-

signed certificate did not result in different CYU tags for Merlin C2.

	
Figure	13	-	Zeek	-	Salesforce	Plugin	-	Merlin	C2

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

17

	

Lee	Decker,	deckerl@gmail.com	 	 	

	

3.5. Wireshark
Wireshark needs to be a version greater than 3.0.3 to help decode the latest

version of QUIC packets. Wireshark 3.05 was installed on Kali to examine the

researcher's packet captures. QUIC profiles from Cellstream were tested but did not

provide additional information with the researcher’s setup.

When examining the known “bad” packets from the Merlin C2 capture, only the

initial client hello packets are unencrypted and provide information like what has been

extracted by the Zeek Salesforce plugin.

The data field contains multiple tags, including version, encryption algorithm,

padding, and many others. These fields help establish how the server and client will

handle the traffic stream.

	
Figure	14	-	Wireshark	-	Merlin	C2	packet	
	
	 Using Wireshark to examine the “good” traffic from Google & YouTube yields

DNS traffic, HTTP and HTTPS traffic, andG QUIC traffic.		GQUIC	appears	sporadically	

as	some,	but	not	all	Chrome	sites	use	it.	The	client	helo	packets	contain	similar	

information	to	the	“bad”	traffic.		

	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

18

	

Lee	Decker,	deckerl@gmail.com	 	 	

	
Figure	15	-	Wireshark	-	Chrome	packet	
	
	

4. Future Research
While collecting data for this research, challenges arose with the third-party plugins

and the latest version of Zeek. The researcher was unable to get either Bro-quic or the

GQUIC plugin to work with the current version of Zeek.

GQUIC is an evolving standard, and the Salesforce plugin has supported up to the

current version of Q046. Additional work may be needed to update the plugin as well as

any related scripts as the protocol continues to evolve.

The Salesforce plugin was unable to process QUIC traffic used by Firefox. Further

research is required to adapt the plugin to QUIC, as it is the newer standard seen from

non-Google browsers.

As with traditional TCP encrypted traffic, analysis of the connection information, and

meta-data is key to finding malicious traffic. Additional research will be needed to adapt

reputation, beaconing, and other methods to QUIC/GQUIC traffic analysis.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

19

	

Lee	Decker,	deckerl@gmail.com	 	 	

As Microsoft moves QUIC beyond HTTP traffic, incorporating it into the SMB

protocol in future builds of Windows (Pyle, 2020), additional analysis and tools will be

needed.

4.1. Developing a proof on concept Zeek script
Zeek is a collection of scripts and can be extended and customized as needed. The

Salesforce GQUIC plugin adds four new events. Gquic_packet, gquic_client_version,

gquic_helo, and gquic_rej. It also adds two new constants: PublicHeader and HelloInfo.

The researcher will create a script using these elements to more reliably identify

Merlin C2 traffic when it is mixed in with legitimate traffic.

After looking at the various data sets gathered, two identifying features of

malicious GQUIC traffic, like Merlin C2 are relevant.

1) Malicious traffic showed up far less frequently than legitimate traffic.

2) Google’s GQUIC tags were consistent in the limited sample set.

From this premise, the pseudo-code followed: Building on the Salesforce plugin,

when Zeek identifies a new GQUIC packet, it adds the ip address (id_orig.h), and tag set

(CYU) tag to an array and a counter starts. The counter increments the next time the

same ip and CYU appear. By looking at both variables, we can account for an infected

machine that is generating both legitimate and malicious packets.

The researcher can then filter the common Google tags or sort for least seen tags,

which could aid an investigator in identifying infected machines.

A sample of the Merlin C2 packet capture was merged with a Google Chrome packet

capture using mergecap. The script uses this packet capture to count each combination ip

address and GQUIC tag.

	

4.2. Zeek Script Proof of Concept
@load base/protocols/conn
@load base/protocols/http

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

20

	

Lee	Decker,	deckerl@gmail.com	 	 	

There is likely a far more elegant way to do this

type GQUIC_Hosts:record {
 host_ip: addr;
 gquic_tags: string;
 number_seen: count;

};

global profiles: table[string] of GQUIC_Hosts;
global x = 1;
global start = 1;

event gquic_hello(c:connection,
is_orig:bool,hdr:GQUIC::PublicHeader,hello:GQUIC::HelloInfo)
{
 local packet_match = 0;
 if (start == 1) {
 profiles[c$uid] = [
 $host_ip=c$id$orig_h,
 $gquic_tags = hello$tag_list,
 $number_seen = x
];
 start +=1;
}
Test new packet to increment counter if source and tags match ##
 for (keys in profiles) {
 if (profiles[keys]$host_ip == c$id$orig_h && profiles[keys]$gquic_tags ==
hello$tag_list) {
 local y = 1;
 y = profiles[keys]$number_seen;
 y +=1;
 print "match found";
 print c$uid;
 profiles[keys] = [
 $host_ip = c$id$orig_h,
 $gquic_tags = hello$tag_list,
 $number_seen = y
];
 packet_match = 1;
 }
for loop
 }

 if (packet_match == 0) {

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

21

	

Lee	Decker,	deckerl@gmail.com	 	 	

 print "add new packet";
 print c$uid;
 profiles[c$uid] = [
 $host_ip = c$id$orig_h,
 $gquic_tags = hello$tag_list,
 $number_seen = 1
];

 }

print c$uid;
print c;
print x;
x+=1;

print start;
print x;
 print profiles[c$uid];
GQUIC event
}
	
	

5. Conclusion
As hypothesized, most open-source tools tested provided minimal or no information

on QUIC/GQUIC packets, and as a result, could not detect malicious versus non-

malicious packets. Third-party plugins for Zeek proved to be the most valuable at

extracting data from the non-encrypted GQUIC packets. The researcher was able to

create an initial proof of concept Zeek script to help identify the malicious packets among

the legitimate Google traffic, using the work previously done by Salesforce.

Security professionals will better be able to defend their networks in the future from

malicious GQUIC traffic, by understanding the current state of the security tools, where

QUIC is going, and how tools like Zeek plugins perform.

However, the recommendation of the researcher would be to block and monitor

GQUIC/QUIC traffic from enterprise networks until further tools develop. These

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

22

	

Lee	Decker,	deckerl@gmail.com	 	 	

protocols work in the consumer space but create challenges in the enterprise security

space.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

23

	

Lee	Decker,	deckerl@gmail.com	 	 	

References
Adams, Tommy. (2018, August 7th). Processing experimental protocols against IDS.

Retrieved from URL https://www.sans.org/reading-
room/whitepapers/detection/processing-experimental-protocols-ids-38565

Liebert, Etienne (2018, June 22nd) How Google’s QUIC Protocol Impacts Network
Security and Reporting.

Retrieved from URL https://www.fastvue.co/fastvue/blog/googles-quic-protocols-
security-and-reporting-implications/

Lynegar, J / Thomson M. (2019, December 16th). QUIC:A UDP-Based Multiplexed and
Secure Transport.

Retrieved from URL https://quicwg.org/base-drafts/draft-ietf-quic-transport.html

Maynard, Jason. (2018, April 22nd). Cisco Firepower Threat Defense 6.2.3: Block QUIC
force TCP TLS/SSL Decryption.

Retrieved from URL https://www.youtube.com/watch?v=QYgE7TDoWlM	

Niroshan, Anuradaha. (2017,Oct 1st). Understanding the QUIC wire protocol.

Retrieved from URL https://medium.com/@nirosh/understanding-quic-wire-
protocol-d0ff97644de7

(2017, October 2nd). How to Block QUIC.

Retrieved from URL
http://community.lightspeedsystems.com/documentation/how-to-block-quic/

Ghedini, Alessandro. (2018, July 26). The Road to QUIC.

Retrieved from URL https://blog.cloudflare.com/the-road-to-quic/	

Google QUICK analyzer/detector for Bro.

 Retrieved from URL https://github.com/corelight/bro-quic

Pearce, Catherine / Vincent, Carl. HTTP/2 & QUIC. Teaching Good Protocols to do bad
things.

Retrieved from URL https://www.blackhat.com/docs/us-16/materials/us-16-
Pearce-HTTP2-&-QUIC-Teaching-Good-Protocols-To-Do-Bad-Things.pdf

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead

24

	

Lee	Decker,	deckerl@gmail.com	 	 	

Pyle, Ned. (2020, March 3rd). SMB over QUIC: Files Without the VPN.

Retrieved from URL https://techcommunity.microsoft.com/t5/itops-talk-
blog/smb-over-quic-files-without-the-vpn/ba-p/1183449

Ruth, Jan, / Poese, Ingmar / Dietzel, Christoph / Hohlfeld, Oliver. (2019, February 24th).
A First Look at QUIC in the Wild.

Retrieved from URL https://arxiv.org/pdf/1801.05168.pdf

Shah, Urvekkumar Chandravadan. (2018). Flow-based Analysis of QUIC Protocol.

Retrieved from URL https://is.muni.cz/th/q69ug/Shah_Thesis.pdf

Tuyl, Russel Van. (2018, July 31st). Merlin Adds Support for the QUIC protocol.

Retrieved from URL https://medium.com/@Ne0nd0g/merlin-adds-support-for-
the-quic-protocol-ee5f8a1e8955

Villarreal,	Ryan	(2019,	January	15th).	Merlin	the	(C2)	Wizard!		

Retrieved	from	URL	https://bestestredteam.com/2019/01/16/merlin-the-
c2-wizard/	

Yu, Caleb. (2019. August 13th). GQUIC Protocol Analysis and Fingerprinting in Zeek.

Retrieved from URL https://engineering.salesforce.com/gquic-protocol-analysis-
and-fingerprinting-in-zeek-a4178855d75f

	

