GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

QUIC & The Dead: Which of the Most Common
IDS/IPS Tools Can Best Identify QUIC Traffic?

GIAC (GCIA) Gold Certification

Author: Lee Decker, deckerl@gmail.com
Advisor: David Hoelzer

Accepted: 04/03/2020

Abstract

The QUIC protocol created by Google for use in their popular browser Chrome has
begun to be adopted by other browsers. Some organizations have a robust strategy to
handle TLS with HTTP2. However, QUIC (HTTP/2 over UDP) lacks visibility via
crucial information security tools such as Wireshark, Zeek, Suricata, and Snort. Lack of
visibility is due to both its use of TLS 1.3 for encryption and UDP for communication.
The defender is at a disadvantage as selective blocking of QUIC isn’t always possible.
Moreover, some QUIC traffic may be legitimate, and so outright blocking of endpoints
that use QUIC is likely to cause more issues than it solves. To complicate matters further,
QUIC has begun to appear in Command and Control (C2) frameworks like Merlin as an
additional means of hiding traffic.

This paper seeks to establish the current state of open-source detection tools, identify
which tools detect the most metrics, and add to current detection capabilities by creating
a proof of concept Zeek script to enhance detection.

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 2

1. Introduction

The QUIC protocol was created in 2012 by Google engineer Jim Roskind. QUIC
improves the performance of web-based applications by using UDP instead of TCP. UDP
allows the connection to enhance the performance of web-based applications by reducing
the traditional TCP three-way handshake to a single UDP round-trip (Ghedini, 2018). In
addition to solving performance challenges, QUIC also supports encryption by default
using TLS 1.3. To further complicate matters, the IETF took the original Google QUIC
protocol (GQUIC) and improved it. This QUIC protocol expands and diverges from
GQUIC (Ghedini, 2018).

Both GQUIC and QUIC create new challenges for information security
practitioners. By utilizing both UDP which, is connectionless and TLS 1.3 for
encryption, many of the proven packet tools such as Wireshark, Zeek (formerly Bro),
Suricata, and Snort loose visibility or functionality. Most QUIC/GQUIC traffic may be
legitimate. Google uses it to speed up Youtube, and Microsoft has plans to use it to
accelerate SMB/file traffic (Pyle, 2020), so outright blocking of endpoint traffic is likely
to create more issues than it solves. To complicate matters further, GQUIC has begun to
appear in Command & Control (C2) frameworks to help obfuscate malicious traffic.
Russel Vay Tuly added support for GQUIC to the Merlin C2 framework in 2018 to aid

penetration testers and defenders.

Both QUIC & GQUIC protocols are works in progress, and implementations may
vary among applications. Different libraries support different versions and features (Shah,
2018). Both Wireshark and Zeek’s plugin Bro-Quic by Corelight support earlier versions
of GQUIC (Google QUIC). The GQUIC plugin by Salesforce supports the current
version of Q046 (Yu, 2019).

The lack of support for QUIC is found not only among open-source security
solutions but also among commercial proxy solutions like Cisco’s Web Security
Appliance. Many commercial firewall vendors currently recommend blocking QUIC
(Liebetrau, 2018). Chrome and other browsers will default to HTTP/HTTPS using TCP if
GQUIC/QUIC isn’t available.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 3

Traditional web traffic over TCP requires a three-way handshake. QUIC uses

UDP instead of TCP. UDP speeds up web traffic by causing less delay and fewer packets

sent (Niroshan,2017). Using UDP instead of TCP provides several benefits, including

connection migration, forward error correction, improved establishment latency, and

better congestion control.

Various tools must decode QUIC’s packet structure to gain insight into its

contents. QUIC consists of two different packet types: special and regular.

QUIC Packet

o

Special Packets

7N

Server Negotiation

Packets Public Reset Packets

Figure 1 - QUIC Packet Types (Niroshan, 2017)

N

Regular Packets

|

Frame Packets

T

Frames

Both types of QUIC packets begin with a public header between 1 and 51 bytes

that provides details concerning the rest of the packet.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute

Author retains full rights.

QUIC & The Dead 4

Public header

Public Flags (8 bits) Connection ID (64 bits)

QUIC version (32 bit)
(Optionat)

Diversification nonce (32 bytes)
(Optional)

X

Packet Number (8, 16, 32 or 48)

; 6 bytes
(Variable length) (max)

Figure 2 - QUIC Public Header (Niroshan, 2017)

Special packets consist of two types: version negotiation packets or public reset
packets. Regular packets consist of frame packets with type and payload information
(2017, Niroshan). The researcher’s focus will primarily be on these packets, which are

un-encrypted and can provide critical information.

The first communication between a client and a new server consists of a helo packet,
followed by a rejection response packet containing the information needed to establish
the connection. The helo packet is then resent with the new parameters, and an encrypted
channel created. On further communications, the client can use cached information to
establish encryption, thus bypassing the un-encrypted packets which are necessary to
fingerprint and gather information (2019, Yu).

These Helolnfo packets contain up to twenty-eight tags that can be analyzed to gather

information about the connection, including user-agent header and server information.

Server rejection packet — Rejlnfo contains up to seventeen tags that provide additional

information to aid in the profiling of the packet.

The diagram below illustrates how GQUIC handles the initial handshake and all
further handshakes that follow.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 5

GQUIC handshake using info

Normal GQUIC handshake from previous connections

Client Server Client Server

. Client Hello Client Hello
using cached
__ server values

Server .
Rejection_—
" Serverreply
(encrypted) —
Client Hello with s
{_server values b

Figure 3 - GQUIC Handshake (Yu,2019)

A study published in 2019 by Jan Ruth and others, shows GQUIC accounts for as
much as 40% of Google’s traffic. With the more recent adoption of QUIC in Firefox and
support from Cloudflare (Ghendi, 2018) and other providers, these numbers will only

increase.

While this is good for the public due to speed increases, reduced latency, and easier
maintenance in the userspace instead of the operating system (Pearce,2019), it presents

challenges in the corporate space.

Information security professionals will need to adapt old tools and develop new

techniques to address this blind-spot in corporate systems.

The researcher’s goal is to see what commonly available tools have the best
support for the current version of GQUIC/QUIC and create a Zeek script to provide
additional intelligence. By analyzing the state of the existing open-source tools, the
researcher will gather additional information to aid security professionals in both

controlling known “good” traffic and identifying and blocking malicious traffic.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 6

2. Research Method
2.1. Lab Design

2.1.1. Overview of Lab

The researcher chose to use Vmware Workstation 15.5.1 build-15018445 to
virtualize the infrastructure. Data gathering and analyzation workspaces consist of Virtual
machines of KALI Linux 2019.4 and Security Onion 16.04.6.3. These distributions are
both readily accessible and stable. To the KALI workspace (based on Debian Linux), the
researcher added the following applications — Chrome version 79.0.3945.130 (Official
Build) (64-bit), and Firefox version 72.0.2 (64bit).

Security Onion contains the following version of tools: Snort 2.9.15, Suricata 4.15
Bro/Zeek 2.6.4, and Wireshark 2.6.10. Two plugins were then added to Bro/Zeek:
corelight/bro-quic and salesforce/GQUIC Protcol Analyzer.

Two additional VM’s were built based on Kali 2019.4, one to act as the Merlin C2

client and one to serve as the Merlin C2 server. Merlin is currently in beta, version 0.8.0.

2.1.2. “Good” versus “Bad” packets
After being configured to enable QUIC, Google Chrome & Firefox are each used
for ten packet captures using tcpdump. These packet captures are “good” or potentially

“legitimate” traffic that will be analyzed using various tools.

GQUIC is the default with the current version of Google Chrome. But to ensure
GQUIC was enabled, the researcher toggled QUIC under chrome://flags/ (Liebert, 2018).
You can then confirm the visited website is using GQUIC and the version used while in
developer mode. Then while Google, Youtube, and other sites known to use
GQUIC/QUIC are visited, tcpdump -i ethQ -w filename is running in an additional

terminal window to capture the packets.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 7

QUIC is the default with the current build of Firefox. But to confirm this, the
researcher goes to about:config and search for network.http.http3.enabled. After
making the change, restarting Firefox applies the setting. HTTP3 is another name for the
newer QUIC protocol, not the GQUIC protocol. Tecpdump captures packets while various

sites are visited.

Merlin C2 client and the Merlin C2 server run on separate VM’s and ten packet
captures are created from the client-side, while various commands run. These packet

captures are considered “bad” or potentially “malicious” traffic.

2.2. Tools used for Analysis & Packet Generation
The researcher reviewed the current state of open-source packet analysis tools and

frameworks to determine which was best for dealing with the GQUIC/QUIC protocol.

2.2.1. Suricata

Suricata is an open-source network threat detection framework. The engine can
act as both an IDS, IPS, and NSM. Packets can also be processed offline, which is the
primary use case demonstrated for this research. Although UDP and TLS are both
supported by the protocol parser, QUIC is not currently supported. The researcher
suspects the information obtained from our packet captures will be limited. Suricata’s

latest stable version is 5.0.2

2.2.2. Snort
Snort is an open-source IPS, IDS framework. The engine can also process packets
offline. Suricata does not support decoders for QUIC, but decoders for UDP and TLS do

exist.

Snort is the bases of enterprise products like Cisco Firepower. Cisco’s latest
recommendation is to block QUIC traffic, forcing browsers back to TCP/TLS. (Maynard,
2018).

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 8

2.2.3. Zeek

Zeek is the open-source network security monitor formerly know as Bro. It is a
popular framework for extract meta-data from packets, providing analysis, and acting on
that meta-data. Zeek contains protocol plugins for both UDP and TLS. Third-party
plugins are available to provide additional information on the QUIC protocol. The
researcher found plugins from both Corelight and Salesforce via Github. The Corelight
plugin is two years old and only supports up to version Q043 of QUIC. Due to the
various capabilities listed above, the researcher feels it will be the best tool to identify

malicious QUIC/GQUIC packets. Zeek’s latest version is 3.0.1

When analyzing packet capture files the -c flag ignores any checksum errors that

may occur, and the -r flag is used to read the .pcap file.

2.2.4. Zeek with Salesforce Plugin

This plugin for Zeek was developed in 2019 to provide additional visibility into
GQUIC packets. Using BinPAC, the plugin focuses on the non-encrypted packets of
GQUIC — the client 4ello and server rejection packets. The plugin allows the gathering of
certificates, user-agent strings, and other valuable data used for fingerprinting “good”
versus “bad” traffic (Yu, 2019). The researcher expects this tool to the most useful for

dealing with QUIC packets currently.

The plugin is first downloaded from Github using the command git clone

https://github.com/salesforce/GQUIC Protocol Analyzer. It can then be configured

and installed into Bro using sudo and the following commands - ./configure, make,
make install. The plugin is installed in the /opt/bro/lib/bro/plugins directory. Bro -N

verifies a successful installation. The output should look like the following.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 9

Bro::SSH - Secure Shell analyzer (built-in)

Bro::SSL - SSL/TLS and DTLS analyzers (built-in)

Bro::SteppingStone - Stepping stone analyzer (built-in)

Bro::Syslog - Syslog analyzer UDP-only (built-in)

Bro::TCP - TCP analyzer (built-in)

Bro::Teredo - Teredo analyzer (built-in)

Bro::UDP - UDP Analyzer (built-in)

Bro::Unified2 - Analyze Unified2 alert files. (built-in)

Bro::X509 - X509 and OCSP analyzer (built-in)

Bro::XMPP - XMPP analyzer (StartTLS only) (built-in)

Bro::ZIP - Generic ZIP support analyzer (built-in)

Bro::AF _Packet - Packet acquisition via AF Packet (dynamic, version 1.3)
ESalesforce::GQUIC - Google QUIC (GQUIC) protocol anglyzer for Q039-Q046 (dynamic, version 1.0)

Figure 4 - Validating Bro Plugin

2.2.5. Merlin C2 Framework

Merlin is a command and control framework written in the Go programming
language by Russel Van Tuyl to aid in red team exercises. It was designed from the start
to use HTTP/2 for communications and then updated to allow the use of the GQUIC
protocol. This use of encryption creates challenges for IPS/IDS solutions, and the
inclusion of GQUIC made it the perfect candidate for the researcher to generate “bad

packets” for testing (Villarreal, 2019).

The Merlin framework consists of an agent and a server. The server and agent
both must use the command-line switch -proto hq to use GQUIC as the communication
protocol. Merlin uses the GOQUIC library, which currently supports version Q044 of the

protocol.

The latest version of Merlin C2, v0.8.0 beta, contains a known bug, in which the
server will die if told to use the GQUIC protocol and the built-in certificate. After a
discussion with the author, the researcher learned that if you create a self-signed

certificate, this problem is corrected. The following commands generate this certificate.
openssl genrsa -out privatekey.pem 1024

openssl req -new -x509 -key privatekey.pem -out publickey.cer -days 1825

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 10

openssl pkes12 -export -out public_privatekey.pfx -inkey privatekey.pem -in
publickey.cer

LICENSE merlinServer-Linux-x64 privatekey.pem publickey.cer public privat
./merlinServer-Linux-x64 -1 192.168.189.132 -proto hq -x509cert publickey.cer -x509key privatekey.pem

Figure 5 - Merlin C2 server using GQUIC

Then the server can be started with flags pictured in Figure 5 above. Tecpdump

performs packet captures between agent and server for later analysis.

2.3. Wireshark

Wireshark is an established GUI used for packet analysis. The researcher will use
Wireshark to examine GQUIC/QUIC packets for information. Wireshark will act as a
control to validate what each open-source tool produces. The current stable version of
Wireshark is 3.2.1. Versions of Wireshark, as recent as 3.0.3, had challenges examining
version Q046 GQUIC packets, which represent most of the traffic currently seen (Yu,
2019).

Security Onion currently provides an older version of Wireshark by default. The
researcher will use the more current version installed on Kali when conducting an

analysis.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 11

3. Findings and Analysis

Each tool processes the packet captures. The resulting output or data extracted
provides information and insight for the researcher to help differentiate legitimate traffic
from malicious traffic. It also further illustrates the differences between GQUIC and

QUIC and highlights the strengths and weaknesses of each tool.

3.1. Suricata

Suricata is capable of reading .pcap files offline using the -r switch. The
researcher updated the installed Suricata rules (sudo suricata-update) and downloaded
the emerging threats rule set.

Suricata found no concerns in the “good” .pcap files containing chrome traffic.

ta -r chrome newtestl.pcap
- <Notice> - This is Suricata version 4.1.5 RELEASE

- [ERRCODE: (306)] -

- [ERRCODE: (306)] -

- [ERRCODE: (306)] -

- [ERRCODE: (306)] -

- [ERRCODE: (306)] -

- [ERRCODE: (306)] -

- [ERRCODE: (306)] -

- [ERRCODE: (306)] -

- [ERRCODE: (306)] -

- - [ERRCODE: (306)] -

- <Notice> - all 5 packet processing threads, 4 management threads initialized, engine started.
- <Notice> - Signal Received. Stopping engine.

- <Notice> - Pcap-file module read 1 files, 11483 packets, 13349342 bytes

I
=S
SsS
=
S
=
R
=T
I

<

VOENE NS A N NS N NEONENE

Figure 6 - Suricata - Chrome Packets

Suricata runs against the packet capture contain the Merlin C2 traffic, and no rules

were triggered.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 12

-r merlin bad.pcap

- <Notice> - This is Suricata version 4.1.5 RELEASE

- [ERRCODE: (306)] -

- [ERRCODE: (306)] -

- [ERRCODE: (306)] -

- [ERRCODE:

- [ERRCODE:

- [ERRCODE:

- [ERRCODE:

- [ERRCODE:

- [ERRCODE: -

- [ERRCODE: 3 -

- <Notice> - all 5 packet processing threads, 4 management threads initialized, engine sta
- <Notice> - Signal Received. Stopping engine.

- <Notice> - Pcap-file module read 1 files, 247 packets, 123541 bytes

=
=
=
- <
O
- <
- <
= <
=]
=

V VV V V V VYV VYV

Figure 7 - Suricata Merlin C2 Packets

Suricata was unable to provide any additional information concerning
GQUIC/QUIC traffic since neither the legitimate nor the malicious traffic triggered any
of the signatures or rules.

The remaining Google Chrome, Firefox, and Merlin C2 packets showed similar

findings when processed with Suricata.

3.2. Snort

Snort is capable of reading .pcap files offline using the -r switch.
Snort processed eleven thousand four hundred eighty-three packets processed from the
chrome newtestl.pcap. No signatures or rules matched, and the GQUIC traffic appears
as UDP packets mixed in with TCP packets of regular traffic. Nine additional Chrome
packet captures processed with similar results. The ten Firefox packet captures yielded

comparable results.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 13

Filtered:
Outstanding:
Injected:

Breakdown by
Eth:
VLAN:
IP4:
Frag:
ICMP:
UDP:

TCGP:

IP6:

IP6 Ext:
IP6 Opts:
Frag6:
ICMP6:
UDP6:
TCP6:
Teredo:

protocol (includes rebuilt packets):
11483 (100.000%)

0 (0.000%)
11451 (99.721%)
0 (0.000%)

0 (0.000%)
10167 (88.540%)
1280 (11.147%)
14 (0.122%)

14 (0.122%)

0 (0.000%)

0 (0.000%)

2 (0.017%)

12 (0.105%)

0 (0.000%)

0 (0.000%)

Figure 8 - Snort Chrome Packet

Snort processed the Merlin C2 capture containing 247 packets. No rules were

triggered, and all the traffic seen is UDP. An additional nine packet captures from Merlin

C2 were processed with similar results.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute

Author retains full rights.

QUIC & The Dead 14

Total free space (fordblks):
Topmost releasable block (keepcost):

108496
102368

Packet I/0 Totals:

Received: 247
Analyzed: 247 (100.000%)
Dropped: O (0.000%)
Filtered: O (0.000%)
Dutstanding: 0 (0.000%)

Injected: 0

Eth: 247 (100.000%)
VLAN: O (0.000%)
IP4: 220 (89.069%)
Frag: O (0.000%)
ICMP: O (0.000%)
UDP: 220 (89.069%)
TCP: O (0.000%)
IP6: 2 (0.810%)

Breakdown by protocol (includes rebuilt packets):

Figure 9 - Snort Merlin C2 Packet

Snort was unable to provide additional meaningful information from either packet

capture for similar reasons as Suricata. Neither legitimate nor malicious traffic triggered

any rules or signatures.

3.3. Zeek

Zeek, by default, generates the standard set of log files. These log files show the
UDP traffic on 443 but can’t identify it as GQUIC/QUIC. The IP source and destination

information may help map known malicious IP addresses that the traffic is going to. The

remaining nine Google Chrome packet captures yielded similar results as did the Firefox

traffic.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute

Author retains full rights.

QUIC & The Dead 15
:~/testl$ cat conn.log | bro-cut | grep udp | grep 443

[1581659755.152907 COquwsPYOSAlel 192.168.189.130 37241 216.58.199.109 443 udp =
9 Dd 7 3369 6 5126 -
[1581659755.940853 C879wv2Hp70qT4v4Y1l 192.168.189.130 55407 172.217.24.195 443 udp -
9 Dd 5 4254 3 4134 -
1581659757 .689428 CVO5vVd4p9kVIjHBUK7 192.168.189.130 34217 216.58.220.196 443 udp -
9 Dd 35 7474 36 11542 -
[1581659761.734125 C5jhF323fv2Wk5VKzb 192.168.189.130 52550 216.58.220.195 443 udp -
P Dd 34 5007 56 75743 %
[1581659765.134226 CoTd6gXoYkqymhBA2 192.168.189.130 37515 172.217.163.227 443 udp -
P Dd 9 5926 7 5621 =
[1581659770.489050 CPnVvh2xIUomQ4clKa 192.168.189.130 54020 172.217.161.163 443 udp -
P Dd 11 6585 11 9874 -
[1581659771.723965 CSi01NDjVvQAgqk6pE7 192.168.189.130 56972 216.58.200.78 443 udp -
P Dd 6 3004 7 9646 -
[1581659785.488005 CDYfjelTFL3GLzzSJb 192.168.189.130 42580 216.58.199.109 443 udp

Dd 29 7875 46 57958 -

© 2020 The SANS Institute

Figure 10 - Zeek - Good Packets - Conn Log

Zeek is unable to provide much information from the Merlin C2 packet. No
certificate information is processed, and only standard connection information supplied.
Merlin traffic has far fewer packets compared to legitimate QUIC web traffic, and there
is none of the associated HTTP/HTTPS traffic surrounding it as part of the transaction.
The malicious C2 traffic did not generate ssl.log’s or x509.log’s usually seen with

standard TCP encrypted traffic.

:~/merlin bad zeek

CfZUlG33Td6peY18a4
63078 107 34927

~/nerlin bad zeeks |

k$ cat conn.log | bro-cut | grep udp | grep 443
1582134598.911759 192.168.189.131 32856 192.168.189.132 443

0 Dd 108

udp

Figure 11 - Zeek - Merlin C2 Packet

3.4. Zeek with Salesforce module
Zeek, with the Salesforce plugin installed, identifies the GQUIC packets and creates
an additional log file. This log file includes GQUIC version information, browser head
information, as well as an MD5 fingerprint based on the version and tags in the client
hello packets. This fingerprint can help identify “good” versus known “bad” packets.
Zeek produced similar results for the remaining Google Chrome packet captures but

was unable to process the data from the Firefox packets using the newer QUIC format.

Lee Decker, deckerl@gmail.com

Author retains full rights.

QUIC & The Dead 16

gfields ts wid idorigh idorigp idresph idrespp version server name user agent tag count
6
ftypes time string addr port addr port count string string count string string

1561650755.152987 CIknEfdbdrYIYjuFyh 192.166.19.130 37241 216.56.199.109 443 46 accounts.qoogle.con Chrome/79.0.3
10417 910a5e3a4d515930d59a44611544f209 46, PAD- NI - VER-CS-UALD- TCTD- POMD- SHHL- ICSL-NONP-MIOS- SCLS - CSCT-COPT- IRTT - CFCH-SFCW
1561650755.167029 CuzcJ42WrFUrSFIRG 192.166.19.130 42531 216.56.20.196 443 46 www.google.com Chrome/79.9.3945. 13
I 910a5e3add51593bd59add115441209 46, PAD- SNT - VER-CS-UALD- TCTD- POMD- SHHL.- ICSL- NONP-MIOS- SCLS - CSCT- COPT- IRTT - CFCH-SFCW
1561659755.769413 CUMStbdfhCDldLCc2 192.166.189.130 50483 216.56.220.202 443 46 fonts.qoogleapis.com Chrome/79.0.3
6417 910aSe3add51593bd59a44611544209 46, PAD- SNT - VER- CS-UALD- TCTD- POMD- SMHL.- LCSL- NONP-MIOS- SCLS - CSCT- COPT- IRTT - CFCH-SFCW
1561659755.940853 COtUTLLUKCGGJSUAXD 192.166.189.130 55407 172.217.24.195 443 46 fonts.gstatic.com Chrome/79.0.3
104 17 910a5e3a4d515930d59a44611544f 209 46, PAD- NI - VER-CCS-UALD- TCTD- POMD- SHHL- ICSL-NONP-MIOS- SCLS - CSCT-COPT- IRTT - CFCH-SFCW
1561650757.669426 CUTLI2K@ndyjyrvCi 192.168.189.130 34217 216.56.20.196 443 46 www.google.com Chrome/79.9.3945. 13
1 910a5e3add51593bd59add115441209 46, PAD- SNT - VER- CS-UALD- TCTD- POMD- SHHL.- ICSL- NONP-MIOS- SCLS - CSCT-COPT-IRTT - CFCH-SFCW
1501659757.837817 CUBTLI2KOndyjyrvCi 192.166.189.130 34217 216.56.20.196 443 46 www.google.com Chrome/79.0.3945.130

Figure 12 - Zeek - SalesForce Plugin - Good Packets - Gquic Log

The Salesforce plugin extracts the same data from the Merlin C2 packet capture,
but there is minimal information to differentiate the regular browsing traffic from the bad
C2 traffic. Web browsing has a mix of TCP & UDP connections, whereas the C2
framework does not. The CYU tags found here match the ones mentioned by the
Salesforce GitHub site as being associated with Merlin C2. The researcher's use of a self-

signed certificate did not result in different CYU tags for Merlin C2.

pfields ts ud ddorigh iderlgp dresph ddrespp version server name user agent tag count
;
fyes tine string addr port addr port count string string count string string
(02030508, 910759 (uBaudZIRoXoRAD 100.168,100.130 3836 10.168.10.10 48 4 1GR9
D1{095f56 44, PAD-SNT-VER- CS- POND-TCSL-MDS. CFOH- SFCW
felose 2020-00-16-03-30-01
1»[nerlin badS cat gquic.Log | bro-cut cju cyutags
97fc27484cbf1ec48be2f99dlf@95f5d 44,PAD -SNL-VER- (S PDMD I(SL WIS CFOH-SFCH
Inerlin bad

Figure 13 - Zeek - Salesforce Plugin - Merlin C2

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 17

3.5. Wireshark

Wireshark needs to be a version greater than 3.0.3 to help decode the latest
version of QUIC packets. Wireshark 3.05 was installed on Kali to examine the
researcher's packet captures. QUIC profiles from Cellstream were tested but did not
provide additional information with the researcher’s setup.

When examining the known “bad” packets from the Merlin C2 capture, only the
initial client hello packets are unencrypted and provide information like what has been
extracted by the Zeek Salesforce plugin.

The data field contains multiple tags, including version, encryption algorithm,
padding, and many others. These fields help establish how the server and client will

handle the traffic stream.

File Edit View Go Capture Analyze Stat Tele

aDﬂ@il-Q QA € >0 « >A E nrnnﬂ
n

[No. Time Source Destination Protocol Length Info
1 0.000000 192.168.189.131 192.168.189.132 ubpP 1114 32856 — 443 Len=1072
2 0.001147 192.168.189.132 192.168.189.131 307 443 —~ 32856 Len=265
3 0.001169 192.168.189.132 192.168.189.131 78 443 —~ 32856 Len=36
4 0.001512 192.168.189.131 192.168.189.132 78 32856 — 443 Len=36
5 0.001898 192.168.189.131 192.168.189.132 1116 32856 — 443 Len=1074
6 0.002917 192.168.189.132 192.168.189.131 78 443 — 32856 Len=36
7 0.003133 192.168.189.132 192.168.189.131 948 443 —~ 32856 Len=906
8 0.003676 192.168.189.131 192.168.189.132 1116 32856 — 443 Len=1074
9 0.003739 192.168.189.131 192.168.189.132 78 32856 — 443 Len=36

Frame 1: 1114 bytes on wire (8912 bits), 1114 bytes captured (8912 bits)

Ethernet II, Src: Vmware_8c:01:57 (00:0c:29:8c:01:57), Dst: Vmware_! 112 (00:0c:29:8a:c4:12)
Internet Proto rsion 4, Src: 192.168.189.131, Dst: 192.168.189.132
User Datagram 1, Src Port: 32856, Dst Port: 443

Source Port:

Destination Por 443

sum: 0x@0a3 [unverified]

[Check: Status: Unverified]

[Stream index: ©]

[Timestamps]
00 Oc 29 8a c4 1200 ¢ 29 8c 01 57 08 06 45 06
04 4c a5 e7 40 00 40 11 94 60 cO a8 bd 83 co a8
bd 84 80 58 01 bb 64 38 00 a3 ff 5113034134150
77 1b f0 50 bc 5b fd e9 00 00 60 61 47 38 14 ff
c8 d3 db 67 e3 46 74 16 80 01 43 48 4c 4 09 00
90 00 50 41 44 60 89 03 00 00 53 de 49 00 98 03
00 00 56 45 52 0 9c 63 00 00 43 43 53 00 ac 63
90 00 50 44 4d 44 bo 03 00 00 49 43 53 4c b4 63
90 00 4d 49 44 53 b8 03 00 00 43 46 43 57 bc 63
00 00 53 46 43 57 cO 03 00 60 60 60 00 00 00 00
90 00 00 60 60 60 00 00 00 00 60 60 00 00 00 00
90 00 00 60 60 B0 00 00 00 00 60 60 00 00 00 60

Ethernet (eth), 14 bytes Packets: 247 - Displayed: 247 (100.0%)

Figure 14 - Wireshark - Merlin C2 packet

Using Wireshark to examine the “good” traffic from Google & YouTube yields
DNS traffic, HTTP and HTTPS traffic, andG QUIC traffic. GQUIC appears sporadically
as some, but not all Chrome sites use it. The client helo packets contain similar

information to the “bad” traffic.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 18

ephony

BB a¢>ne>BE

BB - Expression...

==}
Source Destination Protocol Length Info

179 34.514171 192.168.189.130 192.168.189.2 79 Standard query 0xfa3b A clients4.google.com

180 34.540266 192.168.189.130 192.168.189.2 79 Standard query 6x6d12 A accounts.google.com

181 34.543045 192.168.189.130 192.168.189.2 74 Standard query @xec69 A www.google.com

182 34.612044 192.168.189.2 192.168.189.130 114 standard query response 0x6d12 A accounts.google.com A 216.58.199.169
183 34.616822 192.168.189.130 216.58.199.109 1392 37241 -~ 443 Len=1350

184 34.650395 192.168.189.2 192.168.189.130 104 Standard query response 0xec69 A www.google.com A 216.58.220.196

185 34.650944 192.168.189.130 216.58.220.196 1392 42531 ~ 443 Len=1350

186 34.702640 216.58.199.109 192.168.189.130 1392 443 - 37241 Len=1350

187 34.702688 216.58.199.109 192.168.189.130 1392 443 - 37241 Len=1350

Frame 185: 139:
9 (00:50:56:20:62:49)
Internet Protocol Ver:
User Datagram Protocol,
Data (1350 bytes)
Data: ¢35130343650567012777f21c5ca00000001b5c6f6007a6C..
[Length: 1350]

76"dc"cA a6 23 61 bb 05 4™ 38"6a G361 30734 36756
56 70 12 77 7f 21 c5 ca 00 00 00 01 b5 c6 f6 00
7a 6¢ 10 ¢5 74 8f 5 b a0 01 04 00 43 48 4c 4f
11 00 00 60 50 41 44 60 e9 62 0@ 00 53 4e 49 60 -
7 62 00 00 56 45 52 60 fb 62 60 00 43 43 53 00 -
0b 63 00 00 55 41 49 44 2c 03 06 00 54 43 49 44 ...
30 63 00 00 50 44 4d 44 34 03 00 00 53 4d 48 4c
38 03 00 60 49 43 53 4c 3c 03 60 00 de 4f de 50
5c 63 00 00 4d 49 44 53 60 63 00 00 53 43 4c 53
0b0 64 63 60 00 43 53 43 54 64 03 00 00 43 4f 50 54
J0c0 64 03 00 00 49 52 54 54 68 03 00 00 43 46 43 57
O 6c 83 00 00 53 46 43 57 76 03 00 00 2d 2d 2d 2d

@ & Data(data.data), 1350 bytes Packets: 11483 - Displayed: 10179 (88.6%) Profile: Default|

Figure 15 - Wireshark - Chrome packet

4. Future Research

While collecting data for this research, challenges arose with the third-party plugins
and the latest version of Zeek. The researcher was unable to get either Bro-quic or the
GQUIC plugin to work with the current version of Zeek.

GQUIC is an evolving standard, and the Salesforce plugin has supported up to the
current version of Q046. Additional work may be needed to update the plugin as well as
any related scripts as the protocol continues to evolve.

The Salesforce plugin was unable to process QUIC traffic used by Firefox. Further
research is required to adapt the plugin to QUIC, as it is the newer standard seen from
non-Google browsers.

As with traditional TCP encrypted traffic, analysis of the connection information, and
meta-data is key to finding malicious traffic. Additional research will be needed to adapt

reputation, beaconing, and other methods to QUIC/GQUIC traffic analysis.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 19

As Microsoft moves QUIC beyond HTTP traffic, incorporating it into the SMB
protocol in future builds of Windows (Pyle, 2020), additional analysis and tools will be

needed.

4.1. Developing a proof on concept Zeek script

Zeek is a collection of scripts and can be extended and customized as needed. The
Salesforce GQUIC plugin adds four new events. Gquic_packet, gquic_client_version,
gquic_helo, and gquic_rej. It also adds two new constants: PublicHeader and HelloInfo.

The researcher will create a script using these elements to more reliably identify
Merlin C2 traffic when it is mixed in with legitimate traffic.

After looking at the various data sets gathered, two identifying features of
malicious GQUIC traffic, like Merlin C2 are relevant.

1) Malicious traffic showed up far less frequently than legitimate traffic.

2) Google’s GQUIC tags were consistent in the limited sample set.

From this premise, the pseudo-code followed: Building on the Salesforce plugin,
when Zeek identifies a new GQUIC packet, it adds the ip address (id_orig.h), and tag set
(CYU) tag to an array and a counter starts. The counter increments the next time the
same ip and CYU appear. By looking at both variables, we can account for an infected
machine that is generating both legitimate and malicious packets.

The researcher can then filter the common Google tags or sort for least seen tags,
which could aid an investigator in identifying infected machines.

A sample of the Merlin C2 packet capture was merged with a Google Chrome packet
capture using mergecap. The script uses this packet capture to count each combination ip

address and GQUIC tag.

4.2. Zeek Script Proof of Concept

@load base/protocols/conn
@load base/protocols/http

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 20

There is likely a far more elegant way to do this

type GQUIC Hosts:record {
host ip: addr;
gquic_tags: string;
number_seen: count;

¥
global profiles: table[string] of GQUIC Hosts;
global x = 1;

global start = 1;

event gquic_hello(c:connection,
is_orig:bool,hdr: GQUIC::PublicHeader,hello: GQUIC::HelloInfo)

{
local packet match = 0;
if (start==1) {
profiles[c$uid] = [
$host_ip=cS$idSorig h,
$gquic_tags = hello$tag_list,
$number seen = x
I;
start +=1;
}
Test new packet to increment counter if source and tags match
for (keys in profiles) {
if (profiles[keys]$host ip == c$id$orig_h && profiles[keys]$gquic_tags ==
hello$tag_list) {

localy = 1;
y = profiles[keys]$number_seen;
y+=1;

print "match found";

print c$uid;

profiles[keys] = [
$host_ip = c$idSorig_h,
$gquic_tags = hello$tag_list,
$number_seen =y
I;

packet match = 1;

}
for loop

}

if (packet _match == 0) {

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 21

print "add new packet";
print c$uid;

profiles[c$uid] = [

$host_ip = c$idSorig_h,
$gquic_tags = hello$tag_list,
$number seen = 1

}

print c$uid;
print c;
print x;
x+=1;

= FH H

print start;

print x;

print profiles[c$uid];
GQUIC event

}

5. Conclusion

As hypothesized, most open-source tools tested provided minimal or no information
on QUIC/GQUIC packets, and as a result, could not detect malicious versus non-
malicious packets. Third-party plugins for Zeek proved to be the most valuable at
extracting data from the non-encrypted GQUIC packets. The researcher was able to
create an initial proof of concept Zeek script to help identify the malicious packets among
the legitimate Google traffic, using the work previously done by Salesforce.

Security professionals will better be able to defend their networks in the future from
malicious GQUIC traffic, by understanding the current state of the security tools, where
QUIC is going, and how tools like Zeek plugins perform.

However, the recommendation of the researcher would be to block and monitor

GQUIC/QUIC traffic from enterprise networks until further tools develop. These

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 22

protocols work in the consumer space but create challenges in the enterprise security

space.

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 23

References
Adams, Tommy. (2018, August 7™). Processing experimental protocols against IDS.

Retrieved from URL https://www.sans.org/reading-
room/whitepapers/detection/processing-experimental-protocols-ids-38565

Liebert, Etienne (2018, June 22" How Google’s QUIC Protocol Impacts Network
Security and Reporting.

Retrieved from URL https://www.fastvue.co/fastvue/blog/googles-quic-protocols-

security-and-reporting-implications/

Lynegar, J / Thomson M. (2019, December 16™). QUIC:A UDP-Based Multiplexed and
Secure Transport.

Retrieved from URL https://quicwg.org/base-drafts/draft-ietf-quic-transport.html

Maynard, Jason. (2018, April 22™). Cisco Firepower Threat Defense 6.2.3: Block QUIC
force TCP TLS/SSL Decryption.

Retrieved from URL https://www.youtube.com/watch?v=QYgE7TDoWIM

Niroshan, Anuradaha. (2017,0ct 1%). Understanding the QUIC wire protocol.

Retrieved from URL https://medium.com/(@nirosh/understanding-quic-wire-
protocol-d0ff97644de7

(2017, October 2"%). How to Block QUIC.

Retrieved from URL
http://community.lightspeedsystems.com/documentation/how-to-block-quic/

Ghedini, Alessandro. (2018, July 26). The Road to QUIC.

Retrieved from URL https://blog.cloudflare.com/the-road-to-quic/

Google QUICK analyzer/detector for Bro.

Retrieved from URL https://github.com/corelight/bro-quic

Pearce, Catherine / Vincent, Carl. HTTP/2 & QUIC. Teaching Good Protocols to do bad
things.

Retrieved from URL https://www.blackhat.com/docs/us-16/materials/us-16-
Pearce-HTTP2-&-QUIC-Teaching-Good-Protocols-To-Do-Bad-Things.pdf

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

QUIC & The Dead 24

Pyle, Ned. (2020, March 3™). SMB over QUIC: Files Without the VPN.

Retrieved from URL https://techcommunity.microsoft.com/t5 /itops-talk-
blog/smb-over-quic-files-without-the-vpn/ba-p/1183449

Ruth, Jan, / Poese, Ingmar / Dietzel, Christoph / Hohlfeld, Oliver. (2019, February 24™).
A First Look at QUIC in the Wild.

Retrieved from URL https://arxiv.org/pdf/1801.05168.pdf

Shah, Urvekkumar Chandravadan. (2018). Flow-based Analysis of QUIC Protocol.

Retrieved from URL https://is.muni.cz/th/q69ug/Shah Thesis.pdf

Tuyl, Russel Van. (2018, July 31%). Merlin Adds Support for the QUIC protocol.

Retrieved from URL https://medium.com/@Ne0Ond0g/merlin-adds-support-for-
the-quic-protocol-ee5f8al1e8955

Villarreal, Ryan (2019, January 15t). Merlin the (C2) Wizard!

Retrieved from URL https://bestestredteam.com/2019/01 /16 /merlin-the-

c2-wizard/
Yu, Caleb. (2019. August 13™"). GQUIC Protocol Analysis and Fingerprinting in Zeek.

Retrieved from URL https://engineering.salesforce.com/gquic-protocol-analysis-
and-fingerprinting-in-zeek-a4178855d75f

Lee Decker, deckerl@gmail.com

© 2020 The SANS Institute Author retains full rights.

