
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Malware Analysis: Environment Design and Artitecture

GCIH Gold Certification

Author: Adrian Sanabria, adrian.sanabria@gmail.com

Adviser: Rick Wanner

Accepted: January 18th 2007

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Blueprints for a new age in Malware Analysis

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Abstract

At the software level, tools and methods for analyzing,

detecting, and disabling malware have been documented and

employed for several years now. However, the design and

architecture of malware analysis environments does not

often get publicly discussed. To be sure, commercial anti-

virus vendors and high-profile researchers most likely

employ the use of highly customized and specialized

environments to explore the goals and inner workings of

malware quickly and efficiently. The average security

researcher/analyst however, rarely experiments beyond the

use of an isolated virtual machine to quarantine the

malicious intent of a virus or trojan.

The goal of this paper is to discuss the architecture and

design necessary to create an effective malware analysis

lab environment, and to explore possibilities beyond the

traditional two or three system VM-based lab.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Table of Contents

Malware Analysis: Environment Design and Artitecture.................. 1
Abstract.. 3
1. Introduction.. 6
1.1 Background...6

1.2 Scope ...7

1.3 Assumptions ..7

2. Goals and the Nature of Malware................................... 8
2.1 Malware Defined ..8

2.2 Terms and Technologies...12

2.2.1 Malware Source..12

2.2.2 Honeypot...12

2.2.3 Entrance Point..12

2.2.4 Virtual Machine Environment (VME) ..12

2.2.5 Virtual Machine Monitor (VMM)...13

2.2.6 Dedicated Virtualization Server..13

2.3 Goals ...14

2.3.1 Guidelines..14

2.3.2 Desired Results ...14

2.3.3 Requirements...15

3. Design: Lab Components and Considerations......................... 19
3.1 Lab Components and Their Roles...19

3.1.1 “The Victim”...19

3.1.2 Primary Lab Services (Server1)..19

3.1.3 Secondary Lab Services (Server2)...20

3.1.4 VME Host and Dedicated Virtualization Server.......................20

3.1.5 Network Hub ...21

3.1.6 Honeypot...21

3.2 Virtual Machine Environments..22

3.2.1 Introduction: Why Virtualization is Important22

3.2.2 Problems and Considerations ...23

3.2.3 VME Technologies...24

3.2.4 Exploring Available VMEs...34

3.3 Malware Behavior..40

3.3.1 Dynamic Nature..40

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

3.3.2 Emulating Malware Needs ...40

3.4 Other Considerations..43

3.4.1 Where is malware stored prior to release into the lab?
..43

3.4.2 How is malware released into the lab? ..43

4. Lab Architecture (High Level)..................................... 46
4.1 Suggested Setups..46

4.1.1 Scenario One: Single PC Lab ...46

4.1.2 Scenario Two: The Expandable Multi-PC Test Lab..................47

4.1.3 Scenario Three: Dabbling in Malware Analysis Automation
..48

4.2 Procedural Examples ..50

4.2.1 The Malware Researcher as a Road Warrior.................................51

4.2.2 Automated Submission and Analysis for Antivirus Vendors

..51

5.1 Appendix A: VM Detection Results ..54

5.2 General References ...55

5.3 Referenced Notes ..55

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

1. Introduction

The malware landscape is changing. As the potential for

profit in computer crime has increased, so have trends

towards more complex, sophisticated, and higher quality

malware. In order to be able to analyze these new

generations of malware, security researchers’ lab

environments have needed to become more complex as well.

This paper focuses on providing the new and experienced

security researcher with the information necessary to build

a capable and effective lab. This paper also focuses more

on the system architecture, rather than analysis tools, as

that aspect has been documented more thoroughly already [1]

[9].

1.1 Background

In the olden days, analysis had to be done with shell

commands, built-in system utilities, and a text editor. Of

course, back then, the attack surface was small, and there

weren’t many places for malware to hide.

As malware really began to hit its stride, VMWare’s virtual

machine technology started to gain in popularity among

security analysts. Researchers could make a snapshot or

backup of a virtual machine, and proceed to hack it, infect

it, and trash it to their heart’s content. Afterwards, they

could restore the good copy in just a few short minutes.

This process could be repeated over and over, and

streamlined analysis in a big way.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

However, virtual machine detection appears to be1 trivial

nowadays [2] [3] [4] - a fact of which some malware authors

are well aware, and take advantage of [5]. Knowing that

researchers use virtual environments to analyze their code,

some malware authors now instruct their creations not to

run, or to run differently within these environments. The

goal is to make it more difficult for researchers that

employ the use of virtualized environments to analyze

samples of malware. This creates a dilemma that, in large

part, inspired this paper. What kind of lab does a security

researcher now need to handle malware analysis in the

present and future?

1.2 Scope

This paper will not go into the specifics of disassembling

and reverse-engineering malware. Its purpose is to define

and explore the components, design, and architecture

necessary to assemble malware analysis labs of varied

sizes.

1.3 Assumptions

This paper assumes the reader is at least familiar with the

following principles (not necessarily possessing expert

hands-on experience with them):

• Computers

• Malicious software

• Software analysis

• Reverse engineering

Network security (mainly firewalls and traffic sniffing)

1
 Note subtle use of foreshadowing…

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

2. Goals and the Nature of Malware

Most malware aim to achieve one of three things: to steal

something, destroy something, or compromise a system to

achieve some higher goal. Table 1 shows how each of these

properties affects the design and/or architecture of a lab.

2.1 Malware Defined

There are many different ways to classify malware. Most,

such as Antivirus vendors, tend to classify by intent

(Trojan, worm, mailer, etc…) and several aspects of

severity (damage potential, potential of outbreak, and

actual outbreak reports). These metrics are usually

averaged to create an overall risk rating. To the end user,

malware is usually just software they didn’t want or ask

for, doing nasty things to them or their computers.

However, a great deal of modern malware doesn’t want to

announce its presence to the average end user.

Enter the none-too-surprising evolution of malware and

spyware – malicious software silently installed, and

secretly tucked away for maximum profit and reusability.

Organized crime’s presence in the computing and Internet

age has guaranteed that malware would get the same

treatment as other industries favored by the Mafioso.

Obviously, credit isn’t entirely due to organized crime,

but the result for the good guys was the same: the need for

a new method of identifying and classifying malware

according to how difficult it is to detect. Joanna

Rutkowska has proposed such a method, which she calls

Stealth Malware Taxonomy [6]. The intent is not to say this

categorization should replace currently used categories,

but that there is another set of criteria to consider when

analyzing malware.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Table 1: Brief Overview of Joanna’s Stealth Malware

Taxonomy

Malware Type Stealth

Characteristics

Analysis

Considerations

Type 0

Malware

Does not use

undocumented methods

to hide

Most standard malware

falls under this

category; Use

traditional tools to

analyze

Type 1

Malware

Modifies constant

resources to hide

itself (by patching

executables, inserting

into BIOS, etc…)

Compare hashes of

running memory with

equivalent values on

disk; Digitally sign

code

Type 2

Malware

Modifies dynamic

resources to hide

itself (using sections

of data within memory,

for example)

Currently no good

solution; Can’t

compare hashes of

application data, as

it is constantly

changing.

Type 3

Malware

Hides itself where the

operating system

cannot see it at all,

like a hypervisor.

Currently no good

solution; Being nearly

(if not totally)

undetectable from

within the Operating

System, detection,

prevention and

analysis would have to

be done at the

hypervisor level –

outside of the OS. The

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

only hope for analysis

is to compare the

timing of instructions

executed before and

after type 3 malware

is introduced.

This is all relevant to malware analysis and lab

architecture, because there always exists the opportunity

to specialize a lab or PC environment for the analysis of a

specific type or class of malware. One of the most common

recent examples is malware that refuses to run in

virtualized environments, as such environments are often

equated with malware analysis. A researcher hoping to

analyze such a class of malware must take this behavior

into account and make the necessary changes to their lab

design.

The result is several ways to categorize malware, and

several opportunities to specialize an analysis lab. This

is explored in table two.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Table 2: A few examples of how goals and specialization can

drive lab design

Malware Type Lab Specialty Goal

Mass

Mailer/Spambot

Tracking sources and

destination of spam

Identifying bot

owner; and means

of infection

Rootkits/Spyware Discovery of malware

using different

levels of stealth

Prevention and/or

Detection

All kinds Comprehensive malware

analysis

Analyze whatever

pops up

Worm Network traffic

capture and analysis

Identifying means

of propagation

Destructive Local resource

monitoring

Preventing

infection

Spyware/PhoneHome Network traffic

capture and analysis

Identifying data

recipient, means

of transmission,

and type(s) of

data targeted

Bots Static/Behavioral

Analysis; Network

traffic capture and

analysis

Identifying bot

owner and means of

infection

Combining two methods of categorization in table three,

shows some of the combinations possible. For example, Type

2 malware could be spread and infect hosts as a worm, or

Type 3 malware, the mother of all rootkits could be used as

spyware.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Table 3: Traditional and Stealth Categorization Combined

Traditional Types Type 0 Type 1 Type 2 Type 3

Mass

Mailer/Spambot

X X X X

Rootkits/Spyware X X X X

Worm X X X X

Destructive X X X X

Spyware/PhoneHome X X X X

Bots X X X X

2.2 Terms and Technologies

2.2.1 Malware Source

The source of infection by malware, whether intentional or

otherwise

2.2.2 Honeypot

In the world of information security, a system

intentionally set up to attract both malicious software

and/or attackers in order to study them.

2.2.3 Entrance Point

The point of infection by a particular example of malware.

The entrance point doesn’t matter for most kinds of

malware, as most don’t care, as long as they get the chance

to infect a system somehow.

2.2.4 Virtual Machine Environment (VME)

Virtualized environments that run as an application, which

allow for one or more operating systems to be run as if

they were installed on dedicated hardware.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

The “operating system within an operating system” concept

also creates the necessity for two more terms:

Host OS – The operating system that runs the VME, also

sometimes referred to as the VME host.

Guest OS(s) – The operating system(s) that run within

the VME host.

2.2.5 Virtual Machine Monitor (VMM)

The VMM is the component that controls the VME, and serves

as the point of interaction between guest OSs and the host

OS.

2.2.6 Dedicated Virtualization Server

A server functionally or physically dedicated to the task

of running Guest OSs. VMWare ESX is an example of the

latter, as the host software is custom-designed only to run

Guest OSs as quickly and efficiently as possible. ESX

benefits from the performance advantages of functioning as

both the VMM (Virtual Machine Monitor) and the host

operating system. However, a plain server running Windows

2000 Server that only has base necessities and VMWare

Server installed could also be considered a dedicated

virtualization server, although it won’t enjoy the benefits

of an OS customized and dedicated to the task of

virtualization.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

2.3 Goals

The goal of this paper is to get a reader that may be

interested in creating or improving a lab, thinking about

problems, options and solutions relevant to such a project.

2.3.1 Guidelines

Following are some of the most important things to keep in

mind when designing and implementing a malware analysis

environment:

• Simplicity – Each added bit of complexity can make it

more difficult to maintain.

• Containment is paramount when designing an environment

that may test the digital equivalents of plagues and

super flues. Maintaining control is preferred as well,

but cannot be guaranteed when dealing with new malware

specimens. Containment is the safety net when control

is lost.

• A flexible environment is essential. One that is too

fragile, or has too much downtime is of little use to

a malware researcher.

2.3.2 Desired Results

Several questions must first be considered and answered to

determine what one hopes to gain from their lab.

• How far to take the analysis - analyze network

behavior, local behavior, or all of the above?

• Will the analysis be:

o Informal (not shared with other people)

o Partially formal (share w/ public and community)

o Formal (write up for public on entity's behalf,

submission to company, government, 3rd party,

virus bulletin, AV Vendor)

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

• Will you perform only static (code) analysis, or

behavioral analysis as well?

• Do you plan to partially or fully reverse engineer

malware?

• Will the lab be specialized in a specific area of

malware analysis (see Table Two)?

• Learn only enough to better protect yourself or your

organization?

• Will the results be used in a legal case?

2.3.3 Requirements

Physical and/or Financial Constraints

Will the size of the lab include several machines, or just

a laptop? A researcher may need to do analysis on the road,

could do all of it in a fully funded data center, or could

employ a combination of both. A researcher without a large

(if any) budget may be restricted to a single machine for

analysis.

Malware Analysis

To be able to analyze any malware that comes along should

be the goal of any analysis lab, even more modest ones.

Until recently, this was a simple affair that could be

accomplished by a laptop with a large amount of RAM and

available disk space. See section 3 and 4 for more details

on how and why this has become more complicated.

Swift Recovery

No one likes their lab to be down for too long.

Traditionally, recovering a computer system to an earlier

state would be a tedious, time intensive operation. In the

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

past five years, however, VMEs have become popular in

malware analysis due in part to the ease and speed of

recovery possible with these environments. VMEs are not the

only option, however. Table 4 shows possible recovery

options and the pros and cons related to them.

Table 4: Recovery Options

Method Pros Cons TTR2 Complexit

y

Action

System

Backup

Software

(e.g.

Ghost)

Relativel

y Quick

Costs

money,

not

quick

30

minute

s

Medium Restore from

Backup

System

Backup (to

Tape)

Works Slow,

costs

money

~2

hours

Medium Restore

from

Backup

System

Backup

(using

RAID)

Works Slow,

costs

money

~2

hours

Medium

Virtual

Machine

and

Emulation

Environmen

ts

Very

Quick

Can be

detected

Minute

s

Easy Restore

from

Snapshot

2
 Time to Recover (TTR)

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Windows

System

Restore

Quick May not

remove

malware

Minute

s

Easy Restore

from

Snapshot

Windows

"Live" CD

Very

quick and

easy

Untested

- may

not be

feasible

Boot

time

of the

system

Very Easy Reboot

Multiple

Isolated

Labs

No wait Expensiv

e

Instan

t

Very Easy Switch

environmen

ts

As an example, say a researcher’s job is to perform malware

analysis in response to outbreaks. In a scenario such as

this, the only viable option may be to have multiple

isolated labs, and a staff that restores them as soon as a

researcher completes analysis.

Most of the options in Table 4 represent more modest

methods, however. Many are currently in use, but none is

used or preferred more than the VME methods. Some VME

products have a feature that allows the user to create a

snapshot of their current environment, and revert to that

snapshot at any time. This can also be done manually in

most (if not all) VME products by simply creating a backup

or copy of the VME files at a particular point. To restore,

the researcher only has to shut down the VME, delete the

infected copy of the files, copy the clean snapshot over,

and start the VME back up. In most cases, this can be done

in less than 10 minutes.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Other methods listed in Table 4 represent untested

theories, such as the Windows “Live” CD concept. Although

it is technically feasible, it could face detection

problems, as with VMEs. With this Windows “Live CD”,

resetting everything to defaults would be as simple as

rebooting, as with Linux Live CDs. Research [7] has shown

that a Windows Live CD is possible [8], although it too has

its problems. It may still be detectable, and the legality

of hacking Windows to run as a Live bootable OS is unclear.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

3. Design: Lab Components and Considerations

3.1 Lab Components and Their Roles

3.1.1 “The Victim”

Whether a physical host or a virtual one, very careful

attention must be paid to setting up the computer that will

be infected. The level of scrutiny is at the researcher’s

discretion, depending on their goals. A pre-built image is

recommended, and should be as stripped-down and basic as

possible, only adding software and/or services after a

baseline has been completed with a bare system. The primary

purpose of “The Victim” is to study malware behavior while

it is running.

3.1.2 Primary Lab Services (Server1)

Unless only very basic static or behavioral analysis is

going to be performed, at least one other system is

necessary to run support services for the victim. Some of

these are necessary for mundane reasons, as with a DHCP

server, but others will have more clandestine roles. Most

of the necessary support services can be provided by a

server running Linux, BSD, or other UNIX-like operating

system. Most, if not all malware that will pass through the

average researcher’s hands will not infect these operating

systems, hence their desirability. However, it is still

advisable to keep an image or backup of any support systems

just in case. The primary purpose of “Server1” is to

provide support services to supplement behavioral analysis

on “The Victim”. A secondary, or alternate primary purpose

is to perform manual or automated static (code) analysis.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

See Table 5 for a list of services that may be useful in a

malware analysis lab.

3.1.3 Secondary Lab Services (Server2)

In all examples, the system providing secondary services is

Windows-based, and provides network shares, but these roles

are completely at the discretion of the researcher. See

table 5 for a list of services that may be useful in a

malware analysis lab.

Table 5: Support Services

Service Useful for… Run on…

DNS Redirecting malware attempts to access

sites on the Internet

Server1

DHCP Necessary for lab systems to get an IP,

and to set Server1 as a gateway, so

that malware attempts are redirected

and trapped

VMHost or

Server1

HTTP Capture redirected malware traffic Server1

FTP Capture redirected malware traffic Server1

SMTP Capture redirected malware traffic or

spam attempts

Server1

SMB

(Windows

File

Shares)

Bait malware with sensitive files,

seemingly left unguarded on “corporate”

network shares.

Server2

3.1.4 VME Host and Dedicated Virtualization Server

In all the examples, the VME Host is isolated from the

Virtual Machine Network, as described in Richard Wanner’s

work on reverse engineering malware [9]. As a precaution,

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

the VME Host should also be isolated from any other

networks as well. The idea is to avoid infecting and having

to rebuild more systems than necessary, as this could be an

enormous time constraint for a busy or full-time

researcher. The Dedicated Virtualization Server is only

different from the VME Host in that:

1. It is more robust, and can support more virtual

machines

2. It is a dedicated resource, whereas the VME Host could

be the researcher’s workstation, personal laptop, etc…

3. It could also be completely dedicated to the task of

hosting virtual machines, like the VMWare ESX product.

3.1.5 Network Hub

The purpose of using a network hub is necessary for the

simple reason that it greatly simplifies the task of

sniffing and recording as much network traffic as possible.

This is a crucial step in analyzing and reverse-engineering

malware.

3.1.6 Honeypot

Different researchers have different sources for obtaining

malware, and their own reasons for analyzing it, but

Honeypots can be a novel (and safer) way to collect malware

for research and analysis. Automating the mundane and

repetitive tasks in malware analysis is the next logical

step.

There are a few ways to deploy a honeypot as a malware

source for the lab. In a manual scenario, the Honeypot is

isolated from all other internal networks, connected to the

Internet solely by a firewall and a router. Malware samples

are collected manually using local storage, which will then

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

be used to manually inject the malware into the lab, with

the specific entrance point being the “The Victim”. In

light of recent (to this writing) malware incidents that

have taken place [10], this is an ironically appropriate

entrance point for malware.

In an automated scenario, one of the service machines in

the lab could check the Honeypot on a regular basis, and

begin analysis as soon as a piece of malware is discovered.

SSH would be the ideal method for transferring the malware

files, as it is simple to implement through a firewall,

secure, and easy to deploy on nearly any operating system.

A very simple deny all rule would be put in place on the

firewall separating the honeypot from the lab, with just

one additional rule, allowing only SSH (TCP 22) in. Do not

allow traffic to be initiated out (from the honeypot into

the lab network).

3.2 Virtual Machine Environments

Will the ability to detect VMEs from within ruin a good

thing for malware researchers?

3.2.1 Introduction: Why Virtualization is Important

Virtualization is an important tool for malware researchers

and as such, is a large focus in this paper. The fact that

some samples of malware are now refusing to run in

researchers’ labs is an important issue, and one without a

simple solution. The aim of this section is to dissect the

problem and clarify the solutions available.

Apologies, if the Matrix analogy is getting old, but it

really is a perfect example, and a very effective way to

explain the relationships between hosts and guests in the

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

world of VMEs. Most important to VM detection is the

difference between different types of VMEs, specifically

between native virtualization/ paravirtualization and

emulation. This section aims to explain these differences,

and why they matter.

3.2.2 Problems and Considerations

Detection - VMEs are fantastically useful tools for malware

researchers. This is no secret, and most malware authors

are likely aware of this fact. At least a few are aware of

this, as there several examples of malware in the wild

today that will refuse to run in a VME.

At first, it may seem strange that all current malware

doesn’t have VME-avoidance code built in now, but there are

potential reasons.

1. The target could be a VME, or could include a VME.

With thousands of companies using dedicated VMEs to

consolidate their data centers, instructing malware

not to run in these environments would exclude a large

number of tempting targets.

2. The detection code is not a good fit for the malware

payload.

3. Script kiddies have not yet found a place to copy the

detection code from.

Cost – Overall, it is usually much less expensive to deploy

a virtualized lab, than deploying one-to-one physical

systems for all the same reasons large organizations have

been doing so in their data centers. Additionally, many of

the VMEs explored in this paper are free to download and

use.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Flexibility – Probably the most important reason

researchers employ the use of VME’s the ability to restore

virtual machines to their original form in mere minutes is

essential.

Network Isolation – VMWare is specifically well suited to

allow for network isolation, as described in Richard

Wanner’s work on reverse engineering malware [9]. Isolation

can also be achieved using VLANs or firewalling techniques

also.

3.2.3 VME Technologies

3.2.3.1 Native Virtualization

In Native Virtualization, the VMM executes guest code on

the underlying hardware. Because the host and guest

operating systems are sharing the same hardware, certain

resources must be relocated by the VMM to prevent

conflicts. One of these resources is the interrupt

descriptor table register (IDTR). When this resource is

relocated by the VMM, the address of the table changes.

Using the SIDT instruction, one could write some simple

code that will return the location of this table, and thus

show whether code is being executed inside the matrix

(inside a VME guest), or in “the world of the real” (within

the host OS).

Pros: Fast; Easy; Flexible; Convenient

Cons: Easy for malware to detect; VME host software is

limited to running on x86 architectures.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Figure 1: Native Virtualization

“Apps are red, hosts are blue.

Malware goes into a green guest,

And hopefully does not eschew…”

3.2.3.2 Paravirtualization

Paravirtualization is similar to Native Virtualization,

except that there is a unique relationship between the host

and the guest. The host presents an interface, similar to a

software API, to the guest. This interface is called an ABI

[11] (Application Binary Interface), is used by the guest

to speak indirectly to the hardware.

Pros: Is claimed to be potentially even faster [12] than

Native Virtualization, due to the unique “shortcut”

paravirtualization provides for the guest.

Cons: The guest must be modified to work with the host’s

specific ABI. This generally means that paravirtualization

is an approach that generally won’t work with commercial

operating systems, such as Microsoft Windows. The fact that

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

other virtualization approaches require no changes to the

guest OS make it unlikely that commercial OS vendors will

support paravirtualization products in the future.

Figure 2: Paravirtualization

3.2.3.3 Native Virtualization and Paravirtualization

Detection

The IDTR Detection Technique

Tools and code demonstrating VM detection techniques are

freely available. Joanna Rutkowska’s Red Pill [2] is

probably the most well known of these, though Tobias

Klein’s Scoopy [3] tool is a bit more informative. When Red

Pill.exe is executed within an OS running directly on

hardware, Red Pill informs us that we are “Not inside the

Matrix”. When executed within an OS running in a VME like

VMWare, Red Pill informs us that we are, indeed, “Inside

the Matrix” (see figure 3 and 4). Malware authors have

taken advantage of the fact that VM detection can be done

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

with a line, or just a few lines of code. It is

increasingly common to find malware that will refuse to run

in virtualized environments, as their authors know that

VMEs commonly used by malware researchers.

Figure 3: Red Pill running on a Windows 2000 VMWare guest

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Figure 4: Scoopy running on a Windows 2000 VMWare guest

To counter this, it is possible that a VME could fake the

results of a query for IDT values, but it is unlikely that

commercial vendors would take much interest in making these

changes. It is also not clear whether such changes would

cause detrimental effects on operating systems running

within the modified VME.

Other Detection Techniques

Most commercial VMEs create many artifacts that allow for

easy VM detection. One such example is Tobias Klein’s Doo

vbscript, included in the Scoopy Doo release. This vbscript

simply looks for VME artifacts in the Windows registry.

These are extremely easy to find if a VME toolset, such as

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

VMWare Tools, or Parallels Tools have been installed on the

Guest OS. Even if VME toolsets have not been installed,

artifacts can still be found, as Doo shows. Doo

specifically looks for the names of hardware components,

which usually contain the word “virtual” or the name of the

VME vendor. Tobias Klein calls this a “very stupid” method

for VM detection, but it is effective all the same when one

can just look at the video card, and see that it is a

“VMWare SVGA” device.

Further detection techniques are more thoroughly explored

in On the Cutting Edge: Thwarting Virtual Machine

Detection, a paper by Ed Skoudis and Tom Liston. However,

keep in mind that most of these alternative detection

techniques are based on commercial VME vendors’ tendencies

to advertise themselves whenever and wherever possible.

3.2.3.3 Emulation

Emulation is a different matter altogether. Computer

emulators emulate the underlying hardware using code,

rather than by sharing the actual physical hardware. As a

result, SIDT/IDTR detection techniques do not work within

emulated VMEs. Another advantage of emulation is that the

emulated hardware can potentially run on top of any other

hardware architecture. For example, Bochs running on MacOS

X could run x86 versions of Windows XP.

Pros: x86 emulators such as QEMU and Bochs can run on any

architecture the code is ported to; Can evade current

detection techniques

Cons: Emulation is generally much s-l-o-w-e-r than native

virtualization or paravirtualization. If planning to use an

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

emulator such as Bochs, be sure to test it briefly before

choosing it, to ensure that performance is within

acceptable levels.

Figure 5: Emulation

3.2.3.4 Emulation Detection

Execute Red Pill.exe within an OS running in an emulated

VME like Bochs [13] or QEMU [14], and the result returned

is “Not inside the Matrix”.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Figure 6: Red Pill running on a Windows 2000 Bochs guest

So, the IDTR technique doesn’t work, what about other

techniques? Tobias Klein’s Jerry tool doesn’t work, as it

tells us our OS under Emulation is a “Native System”. When

we run Doo however:

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Figure 7: Tobias Klein’s “Doo” script running on a Windows

2000 Bochs Guest

Uh-oh, it seems our cover is blown. However, remember this

is a non-commercial open-source emulator, so there may be

hope. A quick look at the Bochs configuration file reveals

an elegant solution. A simple config change allows the user

to control the hard drive label:

ata0-master: type=disk, path="hd10meg.img", cylinders=306,

heads=4, spt=17, Model="FUJITSU MHK2060AT"

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Note this change must be in place before Windows is

installed. Windows appears to cache this information in the

registry, so a change to the Bochs config after Windows is

already installed won’t be enough.

So far, it looks like all current VM detection techniques

used by malware fail. Also, all the proof-of-concept

detection tools tested failed (after minor changes). See

Appendix A for a full results listing of VME detection

tools within different environments.

At this point, it looked like Emulators were nearly

undetectable. Then Peter Ferrie released a paper detailing

several effective methods of detecting an emulator from

within [15]. Although Ferrie points out several ways to

perform detection, most, if not all, appear to be fixable

with somewhat modest code changes. There exists the

possibility that, with a few bug fixes to the main

branches, or with an Information Security-specific fork,

the emulators reviewed in this paper could be made

undetectable.

3.2.3.5 Dynamic Recompilation

This method is similar to emulation, in that it can be used

to run guests that require different processor architecture

than what the host is using. In other words, MacOS running

on a PowerPC chip could run 32-bit x86-based Windows XP.

Rather than recreating hardware with code, however, in

dynamic recompilation, the code is executed in its native

format, captured, recompiled to the host format, and

executed on the host processor.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Pros: Similar to the advantages of using emulation, but

generally with faster results.

Cons: No products that use dynamic recompilation were

tested, as the test environment was comprised only of x86-

based machines, which had no need for such products.

Performance and ability to evade detection are not known.

3.2.3.6 Dedicated Virtualization Server

A server, functionally, or physically dedicated to the task

of running Guest OSs. VMWare ESX is an example of the

latter, as the host software is custom-designed only to run

Guest OSs as quickly and efficiently as possible. ESX

functions as both the VMM (Virtual Machine Monitor) and the

host operating system. However, a plain server running

Windows 2000 Server that only has base necessities and

VMWare Server installed could also be considered a

dedicated virtualization server.

3.2.4 Exploring Available VMEs

3.2.4.1 Overview

Seven VMEs were reviewed in an effort to find the product

best suited for use in malware analysis labs. All VMEs were

installed on a Compaq Proliant DL380 (first generation)

running Windows 2000 as the host OS. The hardware is modest

by today’s standards, having twin 750Mhz Pentium III

processors, One gigabyte of RAM, and 75 gigabytes of RAID 5

storage.

Table 6: Notable Emulators and VMEs (more complete list on

Wikipedia [16]):

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Product Type Pros Cons

VMWare Server

1.0

Native Can be remotely

controlled and

configured; Easy

setup; Free

Easily detected by

malware

Virtual PC

2004

Native Fast, easy

setup

Commercial; Costs

money; Easily detected

by malware

Parallels

Workstation

2.2

Para Easy setup

and

configuration

Commercial; Costs

money; Easily detected

by malware

Bochs 2.3 Emu Free; Open

Source; Cannot

be easily

detected by

malware

Operating systems run

much more slowly in

emulation; Need a fast

processor (2Ghz+) for

emulated Windows OSs

to be usable

QEMU 0.8.2 Emu Free; Fast;

Open Source;

Can evade

detection

Can be confusing to

configure and get

running

3.2.4.2 VMWare Server 1.0

VMWare Workstation enjoyed a long reign as the premier VME

for malware analysis. It allowed the user to take

snapshots, begin testing, and revert to the snapshot when

testing was completed. When VMWare Server was released for

free, it quickly became one of the most valuable free tools

in many computing areas – especially information security.

The ability to detect VMWare from within a guest, however,

has hurt its effectiveness in malware analysis. Even

without installing VMWare Tools on a Windows guest,

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

detecting the virtualized environment is trivial with tools

made available by Joanna Rutkowska [2] and Tobias Klein

[3].

VMWare could still be a fantastic tool for malware

analysis, provided the malware being analyzed doesn’t use

VM detection. However, analysis is necessary because the

malware’s behavior is not known. Even if analysis on VMWare

is partially effective, who is to say that the unknown

sample being analyzed isn’t using VM detection to hide at

least part of its behavior?

Pros: Fast, convenient, enterprise features, ability to

create an isolated guest network

Cons: Pointless to use as long as it can be easily detected

without feasible means to evade detection

Bottom Line: Can still be used to run support servers, but

should no longer be used for malware analysis.

VMWare Server can be downloaded here (registration is

necessary to receive license key):

http://www.vmware.com/products/server/

3.2.4.3 Virtual PC 2004

Virtual PC, like VMWare, is fast, flexible, and easy to

use. However, as it uses Native Virtualization, it is also

easy for malware to detect. Also like VMWare, its

popularity also makes it a likely target for malware VM

detection.

Pros: Fast, easy to use, now offered for free

Cons: Same as VMWare

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Bottom Line: Same as VMWare

Microsoft’s Virtual PC 2004 can be downloaded from here:

http://www.microsoft.com/Windows/virtualpc/default.mspx

3.2.4.4 Parallels Workstation 2.2

Although Parallels approaches virtualization differently,

the result is the same. Malware will be able to employ the

same detection techniques that work on VMWare and

VirtualPC.

Pros: Fast, easy to use

Cons: Same as VMWare; Is the only product tested that is

not free

Bottom Line: Same as VMWare

Parallels is available for Windows and MacOS hosts here:

http://www.parallels.com/

3.2.4.5 Bochs 2.3

With Bochs, the first emulator tested, things began to get

interesting. First and foremost, this emulator’s biggest

drawback is lack of speed. Installing a Windows 2000 guest

took several days of clicking and waiting. Once it was

finally installed and booted, it was fast enough to run

some VM detection tools, but the slowness of the mouse

cursor was reminiscent of using VNC to remotely control a

desktop over a 28.8k dial-up modem link. Bochs is likely

usable on faster processors (2Ghz+), but on an older 750Mhz

Pentium, it could not be used for malware analysis on a

day-to-day basis.

Speed aside, the major breakthrough with Bochs is that, due

to the fact that the processor is fully emulated, all

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

current VM detection techniques but one fail. Red Pill (see

Figure 6), Jerry, and Scoopy all reported that the Windows

2000 Bochs guest was running directly on hardware.

The one exception was Tobias Klein’s “Doo” tool, which is a

small VBScript that looks for a few key hardware

descriptions within the Windows registry. On Bochs, Doo

revealed that the hard disk was named “Generic 1234” (see

Figure 7), which is obviously not a physical drive. This

problem was quickly eliminated after discovering that all

drive names are user configurable in the Bochs

configuration script.

Pros: Evades most popular detection techniques, relatively

simple (for a non-commercial product) to download and

configure, solid, well-tested code

Cons: Very slow; Can still be detected, due to “bugs” in

the code

Bottom Line: Feasible for malware analysis on faster hosts.

Could potentially completely evade detection with some code

changes.

The main Bochs website is here:

http://bochs.sourceforge.net

3.2.4.6 QEMU 0.8.2

The best was unintentionally saved for last. QEMU also uses

emulation, is free and is open-sourced. After using a menu-

based console tool to create a disk image, it was somewhat

difficult to determine how to use the main qemu.exe

executable to launch the VME (this task is perfectly

straightforward in Linux, though). After some brief

research, the following command launched QEMU set to boot

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

off of a Windows 2000 cd. The difficulty was figuring out

how to reference the physical cdrom drive using the Windows

drive letter.

qemu –L ./bios –boot d –cdrom //./d: –hda win2000.img

Once the Windows 2000 guest was installed (in much less

time than in Bochs) and working in QEMU, a speed difference

was immediately apparent. QEMU ran almost as quickly as

VMWare or Virtual PC on the same 750Mhz Pentium. QEMU also

evaded all but one of the VM Detection techniques, just as

Bochs did.

As with Bochs, however, Doo revealed the presence of QEMU

HARDDISK and QEMU CD-ROM in the registry. These values are

hard-coded in the QEMU binary, but since QEMU is open

source, changing two strings in the code and recompiling

should be a trivial task. A simple find/replace on “QEMU

HARDDISK” and “QEMU CD-ROM” to more realistic sounding disk

labels should be sufficient.

Note that a “QEMU Accelerator” is available, but it should

not be used in a malware analysis environment, as it will

use Native Virtualization in place of Emulation within

QEMU, which will make VM detection again possible.

The Windows version of QEMU is reportedly in alpha stages

of development, but testing revealed no bugs or issues that

would prevent its daily use in a malware analysis lab.

Pros: Fast, easy to use, relatively simple to set up, and,

most importantly, evades detection techniques known to be

in use.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Cons: Windows version is still considered to be in alpha

stages; Source code must be modified to completely evade

detection.

Bottom Line: QEMU is, without a doubt, now the ideal VME

for malware analysis, and with some code changes, has the

potential to completely evade detection.

The Windows version of QEMU is available here:

http://www.h7.dion.ne.jp/~qemu-win/

And the main website is here:

http://fabrice.bellard.free.fr/qemu/

3.3 Malware Behavior

3.3.1 Dynamic Nature

Although more sophisticated attacks are currently on the

decline [17], they have by no means disappeared, and less

sophisticated attacks are increasing in variety.

Increasing variety of malware will likely require a larger

variety of test machines in an analysis lab. Scenario two

and three in section three should scale nicely to

accommodate expanded labs.

3.3.2 Emulating Malware Needs

Early malware was spread for fun, out of anger, to prove

points, and for various other reasons, but, as mentioned in

this paper’s introduction, the landscape is changing. The

time for commissioned malware, malware seeking sensitive

personal data, and malware-enabled corporate espionage is

upon us. In the old days, simply providing a juicy,

unpatched system was all that was necessary to observe

malware execute all their carefully crafted behavior and

functionality. Nowadays, many varieties, especially malware

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

customized to exploit a specific target, must be baited.

This must be taken into account when creating and

configuring test lab components.

• Is the malware looking for sensitive data locally or

on file shares?

• What kind of files is it looking for? Powerpoint,

Excel, Word, address books, password files/databases,

or something else?

• What kind of data is it looking for, credit cards,

social security numbers, or driver’s license numbers?

Finding the reason why it is collecting this data, and

how it is being used can uncover other hidden aspects

of its purpose and mission. Understanding its purpose

and mission is a large step towards defeating it.

• Do any of these files or data need to be staged3 in

order for the malware to “show its hand”?

• How does the malware communicate to its owner, if at

all?

• What if malware uses authentication and encryption to

hide and protect the data it is sending or receiving?

Table 7: Files and/or Conditions Malware is Interested In

Interest Reasoning

Outlook/Outlook

Express

Address Books for Spamming or propagation

Firefox Password manager vulnerabilities

LAN Most malware assumes LAN connectivity,

but older examples refused to run

otherwise.

3
 False sensitive data is sometimes available for testing use. Although it is not real or functional, it will

pass basic tests as the real deal, and may fool automated attempts by malware to steal the real thing.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

WAN Same as LAN, except refuses to run

without Internet connectivity

Sensitive Data Sell for profit

Table 8: Data Malware May be Interested In

Data Black-Market Value

Credit Card

Information

Worth $20 to $75 USD per #, depending

on source

Social Security

Numbers4

Identity Theft, individually worth

substantially more money than credit

card information.

TaxIDs Like with identity theft, a TaxID,

when obtained along with other

important pieces of information can

be used for many kinds of fraud

Banking Information The amount available in the accounts,

should they be drained.

Local Passwords Passwords could be used to protect

any of a number of things.

Website Passwords Many people use websites to interact

with financial services.

Corporate/Proprietary

Data

Corporate espionage can be quite

lucrative, especially when the right

data is offered to the right company

at the right time.

Confidential Data Some malware could be used to gather

confidential data, which could then

be ransomed to the data’s owner,

4
 SSNs are US-specific, but any international personal identification numbers that contribute to identity

theft can be substituted.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

should it be an individual or a

company.

LAN

Configuration/Maps

May aid in more serious, directed

attacks; Some custom targeted malware

may be used to gather information for

a focused attack or theft.

3.4 Other Considerations

3.4.1 Where is malware stored prior to release into the

lab?

Generally, the malware should be where could do the least

damage, should it be mishandled, or an accident occur. A

linux system is generally a good place for malware, as most

is written to run only on Windows operating systems. Even

then, malware should be compiled into an archive or

compressed format, along with a checksum of the malware

itself. Tar and Zip are available on most UNIX-like

systems, and Zip is available natively on Windows XP, 2003

and Vista.

For extra security, consider password protecting and even

encrypting the archive to protect it from misuse. TrueCrypt

[18] and PGP/GPG [19] are good tools for protecting files

in this manner.

3.4.2 How is malware released into the lab?

Automatic Entrance Points - The primary entrance point for

automatic release of malware into the lab would be via

honeypot. There are other potential automated entry points,

however:

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

• Via a dedicated email that malware can be forwarded to

for analysis, such as with the Internet Storm Center

handlers [20].

• Upload form on a website dedicated to analyzing

malware, such as with the Offensive Computing website

[21].

• Custom NAP or NAC-based controls that, in the process

of quarantining a system on a corporate or private

network, forward a copy of any discovered malware to a

predetermined drop-off point in the analysis lab.

• Custom scripting, either standalone, or working with

antivirus software to send samples to the lab, also in

a corporate or private network.

• Commercial or open source software (most likely

antivirus or anti-spyware related) configured to send

samples of newly discovered malware to their labs.

o This could be particularly useful if

antivirus/malware software techniques continue to

focus more on heuristic scanning as opposed to

signature-based scanning.

• Once in, malware samples should be restricted as much

as possible to prevent leakage back out into the wild.

Manual Entrance Points – Manually introducing malware to a

test environment is likely to be a simple file copy from a

quarantine server, or some sort of portable media that can

be stored off the network. The “defense-in-depth” principle

is highly recommended in this situation to prevent

accidental execution of malicious software in environments

that may not be segregated or quarantined.

Store on:

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

• Read-only media (CD or DVD)

• Portable disks (USB drives)

• File Server

Protect with:

• Access permissions

• Password protected archive

• Encrypted file store

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

4. Lab Architecture (High Level)

4.1 Suggested Setups

4.1.1 Scenario One: Single PC Lab

The single PC lab is one of the most commonly used

environments, especially for researchers. It is easy to

deploy on a single workstation, and travels easily if

deployed on a laptop. If using emulators, such as Bochs or

QEMU, rather than VMWare, keep in mind that it will be more

difficult to isolate guest networks. The easiest way to do

this is using the VLAN features of QEMU [22], and then

blocking all incoming traffic from that VLAN using a host-

based firewall on the host itself.

Figure 8: Single PC Lab

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

4.1.2 Scenario Two: The Expandable Multi-PC Test Lab

At first glance, the Multi-PC test lab appears to just add

a physical environment to the existing virtual one in

Scenario one, but it opens up several new possibilities.

• The environment can be combined to make additional

resources available for malware testing.

• Split apart, each part of the environment (physical

and virtual) can each be dedicated to its own separate

analysis.

• One can serve as an immediate backup for the other.

• This lab can be capable of processing all known

malware, including those that detect and refuse to run

in VMEs.

• This model of several small segregated environments

can be replicated easily and inexpensively, to create

a larger analysis lab that could scale to support a

team of researchers working full time on analysis.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Figure 9: Multi-PC Lab

4.1.3 Scenario Three: Dabbling in Malware Analysis

Automation

This environment is modeled after scenario two, except that

a honeypot and some automation has been added. As displayed

here, malware analysis automation could be integrated into

any carefully designed malware analysis lab model.

Highlights include:

• Type of Honeypot is not important, as long as it

collects malware samples

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

• Honeypot uses a different link to the outside world

(read: Internet) than what the lab uses for

maintenance, research and software updates

• Honeypot is contained in a DMZ, positioned between the

Internet and the malware analysis lab, and contained

by two firewalls.

• External firewall has a normal ruleset, as would befit

a Honeypot.

• Internal firewall has a strict “deny all” ruleset,

only allowing SSH (TCP 22) into the Honeypot from the

lab.

• Linux Server within the Lab (Services1) can be

scheduled to check the Honeypot for newly collected

malware on a regular basis. Each malware sample is

transferred from the honeypot to the linux server and

is then analyzed and stored.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Figure 10: A Partially Automated Lab

4.2 Procedural Examples

Note that more work needs to be done on the software side

in these examples, such as baselining the environments, and

setting up the necessary analysis tools. This is out of

scope for this paper, and although may be mentioned, will

not be discussed in detail here.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

4.2.1 The Malware Researcher as a Road Warrior

1. Researcher is on the road, and learns of a need for

quick analysis on some malware.

2. The sample is obtained in a secure manner (malware

contained within a ZIP, RAR or TAR file where it

cannot execute, and then emailed to the researcher, or

posted on a website).

3. The researcher creates two new VMEs on his/her laptop.

The researcher has several pre-built systems for

various purposes, zipped up and ready for deployment.

A Windows XP-based “Victim” and a Linux-based support

system are unzipped into place.

4. Both systems are powered on, the malware samples are

copied into the VMEs using a USB thumbdrive or

harddrive, and the researcher completes the necessary

short term analysis.

5. After analysis is complete, the researcher either

saves the VMEs for further analysis in a more complete

lab, or if they have served their purpose, they are

permanently deleted.

4.2.2 Automated Submission and Analysis for Antivirus

Vendors

Such a process could yield quick and efficient turnaround

on protection and outbreak prevention for many antivirus

users.

1. Commercial or open-source antivirus software asks the

user whether or not they would like to participate in

an automatic virus/malware submission program. The

user will be warned that any host-based or network

firewalls may need to be configured to allow antivirus

products to upload files over the Internet.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

2. The antivirus software detects, heuristically, a piece

of new software with potentially malicious properties

and behavior.

3. Checksums of the related files are created, and

checked against vendor and/or community malware

databases.

4. If no matches are found, the software is considered

POTENTIAL NEW, and is uploaded securely, either to a

staging point, or directly to the analysis lab.

5. All subsequent submissions of software with the same

checksums are not uploaded. Rather, a count is kept of

how many subsequent copies of the same potential

malware are discovered.

6. If the count increases significantly over a short

period of time, the software is then considered LIKELY

NEW, and is analyzed by automated tools.

7. Upon completion of automated analysis, a report is

emailed to appropriate researchers for review and

approval of corrective actions (most likely, a new

virus definition update with removal instructions).

Also Note:

• Currently, ClamAV requests new malware be submitted

via a web-based form.

• Symantec has used a “digital immune” system [23] in

enterprise products in the past. Developed by IBM with

Symantec’s assistance, these systems only performed

analysis and provided solutions for the environment

they were deployed in, rather than for the entire

community of users using the product. One would

imagine, however, that a customized version of this

system in Symantec’s lab assists in the creation of

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

solutions for users of their personal antivirus

product as well.

• The design of an “Automated Virus Analysis Center” is

described in a now ancient (by computer industry

standards) paper from an IBM Research Team, Anatomy of

a Commercial-Grade Immune System[24].

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

5. References and Appendices

5.1 Appendix A: VM Detection Results

 Redpill Jerry Scoopy Doo Speed

Win2000 0x8782f7e8
Not in
Matrix.

You are
on a
native
system.

IDTBase:
0x80036400
Win2000

No virtual devices Native

 LDTBase:
0xdead0000
Win2000/XP

 GDTBase:
0x80036000
Win2000

VMWare

Server

1.0

0xffc18000
Inside
Matrix!

You are
inside
of
VMWare.
Product
Version:
GSX

IDTBase:
0xffc18000
Unknown
VMWare

NECVMWar VMWare IDE CDR10 Near
Native

 LDTBase:
0xdead4060
Unknown
VMWare

VMWare, VMWare Virtual S1.0

 GDTBase:
0xffc07000
VMWare
Version 4:
100%

VMWare SVGA II

 VMWare, Inc.

Parallels 0xeb110000
Inside
Matrix!

You are
on a
native
system

IDT Base:
0xeb110000
Unknown
VMWare

Virtual HDD [0] (Target ID0) Near
Native

 LDT Base:
0xdeadff5b
Unknown
VMWare

Script Error

 GDT Base:
0xeb153000
Unknown
VMWare

Script Error

 Script Error

 Found also:
HKLM\HARDWARE\DESCRIPTION\System
VideoBiosVersion = 2Parallels(2)
VGA-Compatible BIOS Version
1.05...

 And: PRL Virtual CD-ROM (Target
ID1)

Bochs 0x80036400
Not in

You are
on a

IDTBase:
0x80036400

Generic 1234 Slow

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Matrix. native
system.

Win2000

 LDTBase:
0xdead0000
Win2000/XP

Script Error

 GDTBase:
0x80036000
Win2000

Script Error

 Script Error

QEMU 0x80036400
Not in
Matrix.

You are
on a
native
system.

IDTBase:
0x80036400
Win2000

QEMU HARDDISK Near
Native

 LDTBase:
0xdead0000
Win2000/XP

QEMU QEMU CD-ROM

 GDTBase:
0x80036000
Win2000

Cirrus Logic 5446 Compatible
Graphics Adapter

 Microsoft

5.2 General References

• Skoudis, E., & Liston, T. (2006) Thwarting Virtual

Machine Detection, from

http://handlers.sans.org/tliston/ThwartingVMDetection_

Liston_Skoudis.pdf

• Skoudis, E., & Liston, T. (2005, December). Counter

Hack Reloaded. Prentice Hall.

5.3 Referenced Notes

[1] Skoudis, E., & Liston, T. (2003). Malware: Fighting

Malicious Code. Prentice Hall.

[2] Rutkowska, J. (2004, November). Red Pill... or how to

detect VMM using (almost) one CPU instruction, from

http://www.invisiblethings.org/papers/redpill.html

[3] Klein, T. (2003). Scoopy Doo - VMware Fingerprint

Suite. from

http://www.trapkit.de/research/vmm/scoopydoo/index.h

tml

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

[4] Klein, T. (2003). Jerry – A(nother) Vmware

Fingerprinter

http://www.trapkit.de/research/vmm/jerry/index.html

[5] Zeltser, L. (2006, November 11). Virtual Machine

Detection in Malware via Commercial Tools. Retrieved

January 18, 2007, from SANS Internet Storm Center

Web site:

http://isc.sans.org/diary.html?storyid=1871&rss

[6] Rutkowska, J. (2006, November). Stealth Malware

Taxonomy, from

http://invisiblethings.org/papers/malware-

taxonomy.pdf

[7] Lagerweij, B. (2006, February). Bart’s Preinstalled

Environment (BartPE) bootable live windows CD/DVD,

from http://www.nu2.nu/pebuilder/

[8] Lagerweij, B. (2003, January). Run Winxp from Cd, Run

bare Windows XP from CD, from

http://www.911cd.net/forums//index.php?showtopic=3&h

l=

[9] Wanner, R. (2004, July). Reverse Engineering msrll.exe,

from Web site:

http://www.giac.com/certified_professionals/practica

ls/grem/32.php

[10] Caton, M. (2006, December). eWEEK Labs’ Stupid

Technology Tricks of 2006, from Slide 3 Web site:

http://www.eweek.com/slideshow_viewer/0,1205,l=&s=70

0&a=196323&po=3,00.asp

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

[11] Web site:

http://en.wikipedia.org/wiki/Application_Binary_Interface

[12] Barham, P., Dragovic, B., Fraser K., Hand, S., Harris,

T., Ho, A., Neugebauer, R., Pratt, I., & Warfield,

A. (2003). Xen and the Art of Virtualization, from

http://www.cl.cam.ac.uk/netos/papers/2003-

xensosp.pdf.

[13] Web site: http://bochs.sourceforge.net/

[14] Web site: http://fabrice.bellard.free.fr/qemu/

[15] Ferris, P. (December, 2006). Attacks on Virtual

Machine Emulators, from

http://pferrie.tripod.com/papers/attacks.pdf

[16] Web site:

http://en.wikipedia.org/wiki/Comparison_of_virtual_machines

[17] Kirk, J. Malware quality falls but hassle rises.

Retrieved January 18, 2007, from Techworld.com

Security News Web site:

http://www.techworld.com/security/news/index.cfm?new

sID=7636&pagtype=samechan

[18] Web site: http://www.truecrypt.org/

[19] Web site: http://www.pgpi.org/

[20] Web site: http://isc.sans.org/contact.php

[21] Web site: http://www.offensivecomputing.net

[22] Web site: http://fabrice.bellard.free.fr/qemu/qemu-

doc.html#SEC24

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

[23] Web site:

http://www.symantec.com/press/1999/n990511.html

[24] White, S.R., Swimmer, M., Pring, E.J., Arnold, W.C.,

Chess, D.M, & Morar, J.F. (1999). Anatomy of a Commercial-

Grade Immune System, from

http://www.research.ibm.com/antivirus/SciPapers/White/Anato

my/Anatomy.PDF.

