
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

IP Masquerading Vulnerability for Linux 2.2.x -

CVE-2000-0289

(Version 1.4a)

Tanya Baccam, CISSP, CISA, MCSE, CCNA, CCSE, CCSA, Oracle DBA

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 2 of 25

IP Masquerading Vulnerability .. 3

Exploit Details... 3
Protocol Description.. 3
Description of Variants.. 5
How the Exploit Works ... 5
How to Use the Exploit.. 8
Signature of the Attack .. 12
How to Protect Against the Vulnerability... 12
Source Code/ Pseudo Code.. 13
Additional Information .. 13

Articles About this Vulnerability.. 13
UDP Protocol Information ... 14
Linux Information.. 14
Tools Documentation... 14
Denial of Service Attacks Information ... 14
Additional Security Resources ... 15

Appendix A... 16
UDP Scanning Code from SATAN.. 16

Sources ... 25

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 3 of 25

IP Masquerading Vulnerability
Exploit Details

This paper focuses on an IP Masquerading vulnerability that is present in multiple
Linux versions. The vulnerability is identified as CVE-2000-0289 in the Common
Vulnerabilities and Exposures database. The vulnerability can exploit the
masquerading feature in the Linux kernel where the masquerading code will
allow arbitrary backward connections to be opened. The vulnerability was first
posted on BugTraqs on March 27, 2000, under the title “Security Problems with
Linux 2.2.x IP Masquerading.” SUSE published the vulnerability on May 20,
2000, as a security hole in the kernel. This vulnerability does have the potential
to cause a Denial of Service (DOS) attack. At the time of this writing, no direct
variants of this vulnerability exist. The following operating systems can be
affected by this vulnerability:

• Debian Linux 2.2pre potato
• Debian Linux 2.2
• Debian Linux 2.1
• Linux kernel 2.2.14
• Linux kernel 2.2.12
• Linux kernel 2.2.10
• RedHat Linux 6.2 i386
• RedHat Linux 6.1 sparc
• RedHat Linux 6.1 i386
• RedHat Linux 6.1 alpha
• RedHat Linux 6.0 sparc
• RedHat Linux 6.0 i386
• RedHat Linux 6.0 alpha

This paper will focus specifically on this vulnerability as it relates to the UDP
protocol.

Protocol Description

The UDP protocol is documented in RFC768. UDP provides access to many services
which are supported by IP and assumes that IP is utilized as the underlying protocol.
UDP packets are very similar to IP packets and are delivered in the same manner as IP
packets. It should be noted that UDP is a connectionless protocol, unlike TCP which is
connection-oriented. UDP is typically used when TCP would be too complicated, too
slow or simply not necessary. In addition to the functions provide by IP, UDP also
provides 16-bit port numbers and checksums. The 16-bit port numbers can be used to
let multiple processes use UDP services on the same host. Data integrity can be
ensured by utilizing the checksum field of the UDP protocol. The UDP protocol is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 4 of 25

transaction oriented. Since UDP is connectionless, duplicated messages or messages
not received can not be verified by UDP. The UDP protocol has the following fields:

• Source Port
• Destination Port
• Length
• Checksums
• Data Octets

The source port field is not required. When it is utilized it will identify the port that sent
the packet. This port can be utilized to return any appropriate reply. If no value is
provided, a value of zero is inserted into this field. The destination port identifies a
particular Internet destination address. The length field identifies the length of the
datagram including both the header and the related data recorded in octets. The data
octets contain the actual data. The checksum is a count of the number of bits in a
given transmission that is included in the packet so the receiver can check whether the
same number of bits has arrived. Below, you will find a diagram of the UDP protocol:

Source Port Destination Port

Length Checksum

Data Octets ...
...

The following contains a sample listing of applications that are implemented utilizing
UDP, as well as the port number on which the application typically operates.

• Echo 7
• Discard 9
• Daytime 13
• Quote 17
• Chargen 19
• Nameserver 53
• Bootps 67
• Bootpc(DHCP) 68
• TFTP 69
• SunRPC 111
• NTP 123

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 5 of 25

• NetBios 137
• SNMP 161
• SNMP 162
• CORBA IIOP 535

Description of Variants

No direct variants of this vulnerability exist; however, there are multiple Denial of
Service vulnerabilities. To find more information about Denial of Service attacks,
please refer to the listing in the “additional information” section.

How the Exploit Works

To understand how this exploit works, an understanding of IP masquerading is
required. IP masquerading is a NAT (Network Address Translation)
implementation specific to the Linux OS. IP masquerading allows multiple
internal machines to connect to an external network (i.e. Internet) via a single IP
address. The packets, whose source is the internal network, go through a
gateway where their packet is rewritten to contain the IP address and port
number, which the gateway will utilize to handle the connection to the external
network. By default, the kernel on the gateway reserves 4096 ports for UDP and
TCP connections. Specifically, ports 61000 to 65096 are reserved to handle
these masqueraded connections. The diagram below outlines this process.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 6 of 25

Linux Masquerading Gateway
192.168.0.1 / 111.222.121.212

Internal Host
192.168.0.100

Firewall

DNS Server
111.222.121.213

2) The packet goes through the gateway where it is
rewritten to use port 61001 on the gateway. A

masquerading entry is created from this transaction.

Masquerading entry:
Internal Host:1035 (61001) -> DNS Server:53

1) The Internal Host attempts to contact
the DNS Server from port 1035 to port 53

on the DNS Server

MASQUERADING DIAGRAM

Source Port Destination PortGateway Port

Internal Network is 192.168.0.x

Public IP address which is utilized
to contact external networks is

111.222.121.212

The UDP protocol requires a source and destination port and address. The
source port for a given UDP connection is typically selected from the first port
available between 1024 and 65535 on the internal machine. When the packet is
sent from the internal machine to an external address via the masquerading
machine, an entry is entered into the masquerading table. The entries are in the
following format:

• Internal Host: Internal port (masquerading port) -> External Host: External port

This exploit takes advantage of the lack of checking prevalent in the kernel code
for masquerading. The masquerading code only checks the destination port in
order to determine whether a packet should be forwarded into the network. A
potential attacker can rewrite the UDP masquerading entries for a Linux
masquerading gateway to make the external host and port whatever they may
choose. This will create a tunnel from the attackers machine, or whatever host
and port they specify, and the internal machine whose connection is being
masqueraded. The exploit takes advantage of the fact that UDP is a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 7 of 25

connectionless protocol, since the only way to determine whether or not a
connection is still being utilized for a UDP connection is by the lack of activity or
ICMP messages indicating that the port is closed. A five minute default time-out
for the UDP a masqueraded connection is built in. During this five minute time-
out, the attacker can find and exploit a given connection.

Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 8 of 25

Linux Masquerading Gateway
192.168.1.1 / 10.0.0.1

Internal Host
192.168.1.100

Firewall

DNS Server
10.0.0.25

Attacker Machine
10.10.187.13

3) The internal host will send an ICMP
unreachable reply back to the attacker's

machine when port 63000 is scanned. The
returned reply will have an IP ID which is from

either the masquerading machine or the internal
host. Since IP ID's are supplied in sequence in

a TCP/IP stack, the IP ID's returned from the
gateway will be in ascending order. When an IP
ID is out of sequence, this signals that the IP ID

came from an different machine, which
identifies a masqueraded connection.

4) By sending the packet with a source IP
address and port from the attacker machine, the
masquerading entry gets modified with this new
information. The masquerading entry has been

changed to "UDP 04:35.12 192.168.1.100
10.10.187.13 1035 (63000) -> 12000" which is

the destination IP address and port for the
attacker's machine.

2) The attacker
machine will send UDP

packets from their
machine to the

masquerading gateway
machine on ports
61000 to 65096 to

identify masqueraded
connections. The
source port and

destination in the
packets will be from the
attacker's machine. For

illustration purposes,
the source port will be
12000 in this example.

EXPLOITATION DIAGRAM

1) The internal host sends a request from port 1035 to the DNS server on port 53 that
goes through the masquerading gateway. The masquerading gateway uses port
63000 to forward this request. The following entry is made on the masquerading

gateway: "UDP 03:39.21 192.168.1.100 10.0.0.25 1035 (63000) -> 53"

How to Use the Exploit

The following example was taken from www.securityfocus.com/bid/1078:

[tcpdump from attacker's machine]

(we picked source port 12345 for our packets just so the trace would be
easier to follow)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 9 of 25

[snip -- this starts at port 61000]

10.0.0.1 > 10.10.187.13: icmp: 10.0.0.1 udp port 63762 unreachable [tos
0xd8] (ttl 245, id 13135)
10.10.187.13.12345 > 10.0.0.1.63763: udp 0 (DF) [tos 0x18] (ttl 254, id
23069)
10.0.0.1 > 10.10.187.13: icmp: 10.0.0.1 udp port 63763 unreachable [tos
0xd8] (ttl 245, id 13136)
10.10.187.13.12345 > 10.0.0.1.63764: udp 0 (DF) [tos 0x18] (ttl 254, id
23070)
10.0.0.1 > 10.10.187.13: icmp: 10.0.0.1 udp port 63764 unreachable [tos
0xd8] (ttl 245, id 13137)
10.10.187.13.12345 > 10.0.0.1.63765: udp 0 (DF) [tos 0x18] (ttl 254, id
23071)
10.0.0.1 > 10.10.187.13: icmp: 10.0.0.1 udp port 63765 unreachable [tos
0xd8] (ttl 245, id 13138)
10.10.187.13.12345 > 10.0.0.1.63766: udp 0 (DF) [tos 0x18] (ttl 254, id
23074)
10.0.0.1 > 10.10.187.13: icmp: 10.0.0.1 udp port 63766 unreachable [tos
0xd8] (ttl 245, id 13139)
10.10.187.13.12345 > 10.0.0.1.63767: udp 0 (DF) [tos 0x18] (ttl 254, id
23083)

10.0.0.1 > 10.10.187.13: icmp: 10.0.0.1 udp port 63767 unreachable [tos
0xd8] (ttl 244, id 17205)
^^
^^^
The above packet's ID is substantially different, we may have found a
masq'd connection !!!

10.10.187.13.12345 > 10.0.0.1.63768: udp 0 (DF) [tos 0x18] (ttl 254, id
23084)
10.0.0.1 > 10.10.187.13: icmp: 10.0.0.1 udp port 63768 unreachable [tos
0xd8] (ttl 245, id 13140)
10.10.187.13.12345 > 10.0.0.1.63769: udp 0 (DF) [tos 0x18] (ttl 254, id
23088)
10.0.0.1 > 10.10.187.13: icmp: 10.0.0.1 udp port 63769 unreachable [tos
0xd8] (ttl 245, id 13141)
10.10.187.13.12345 > 10.0.0.1.63770: udp 0 (DF) [tos 0x18] (ttl 254, id
23090)
10.0.0.1 > 10.10.187.13: icmp: 10.0.0.1 udp port 63770 unreachable [tos
0xd8] (ttl 245, id 13142)
10.10.187.13.12345 > 10.0.0.1.63771: udp 0 (DF) [tos 0x18] (ttl 254, id
23091)
10.0.0.1 > 10.10.187.13: icmp: 10.0.0.1 udp port 63771 unreachable [tos
0xd8] (ttl 245, id 13143)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 10 of 25

10.10.187.13.12345 > 10.0.0.1.63771: udp 0 (DF) [tos 0x18] (ttl 254, id
23092)
10.0.0.1 > 10.10.187.13: icmp: 10.0.0.1 udp port 63772 unreachable [tos
0xd8] (ttl 245, id 13144)

[snip -- all the way to the upper end of our masq ports]

The example above illustrates how a masqueraded connection can be identified
and exploited. The attacker, here located at machine 10.10.187.13 sends
packets to the gateway machine which is located at 10.0.0.1. A tool such as
nmap can be utilized to scan the appropriate ports. For each packet that is sent,
an ICMP reply is sent from the gateway to the attacker’s machine noting that the
port is unreachable. Included in each of these ICMP replies is a packet ID and ttl
(time to live) field. Typically, the IP ID field on the gateway will be at least 1000
digits away from the IP ID field on the internal host machine, since each host’s
TCP/IP stack will sequentially increment the IP ID field. When the masqueraded
port is scanned, an IP ID field will be returned from the internal machine, since
this connection will be forwarded due to the masquerading entry. Another factor
that can identify a masqueraded connection is that the time to live field will be
one less when it is from the internal machine, since it had one additional hop to
make. By observing the IP ID field or the ttl field, an attacker will be able to
determine which ports are being masqueraded.

Because the UDP masquerading code only checks the destination port to
determine whether a packet should be forwarded to the internal network, the
source port can be modified. The code sets the remote host and port to that of
the incoming connection. Therefore, the attacker only needs to know the port
number on the gateway to be able to rewrite the masquerading entries. Noted in
the discussion earlier, by default, ports 61000 to 65096 are utilized for this
activity and are the only ports the attacker needs to scan.

Before the scan is conducted, an entry on the masqueraded gateway such as the
following is present:

• UDP 03:39.21 192.168.1.100 10.0.0.25 1035 (63767) -> 53

This entry can be retrieved by executing “ipchains –L –M –n on the masqueraded
gateway. After the scan is conducted, an entry such as the following will exist on
the gateway:

• UDP 04:35.12 192.168.1.100 10.10.187.13 1035 (63767) -> 12345

In the second entry, the destination IP address and destination port number has
been changed. This was accomplished by sending a packet to the masqueraded
gateway containing a source IP address and source port from the attacker’s
machine.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 11 of 25

Nmap can be used to implement this scan. Nmap allows the following type of
scans to be conducted per the nmap documentation located at
http://www.insecure.org/nmap/nmap_doc.html:

• Vanilla TCP connect() scanning
• TCP SYN (half open) scanning
• TCP FIN (stealth) scanning
• TCP ftp proxy (bounce attack) scanning
• SYN/FIN scanning using IP fragments (bypasses packet filters)
• UDP recvfrom() scanning
• UDP raw ICMP port unreachable scanning
• ICMP scanning (ping-sweep)
• Reverse-ident scanning

By conducting UDP raw ICMP port unreachable scans, the results above should
be returned and can be captured by tcpdump. To implement a UDP raw ICMP
port unreachable scans with nmap, the ‘-u’ command should be utilized. During
UDP ICMP port unreachable scanning, the UDP protocol is utilized to scan
requested ports. The UDP protocol itself is a simpler protocol, but this makes
scanning more difficult, since UDP open ports do not have to send an
acknowledgement and closed ports are not required to reply with an error packet.
However, most hosts do send an ICMP_PORT_UNREACH error when a packet
is sent to a closed UDP port. Therefore, the ports that do not respond with an
ICMP_PORT_UNREACH error are assumed to be open. This scan is
retransmitted multiple times by nmap to ensure that open ports, are in fact open
since both UDP packets and ICMP errors are not guaranteed to be returned to
the host. It should be noted that this type of scan is actually quite slow. In the
case of the Linux kernel, it limits destination unreachable message generation to
80 per 4 seconds. It should also be noted that root access is required to access
the raw ICMP socket to read the port unreachable packets.

During this process, utilize tcpdump or windump, which is the Windows version of
tcpdump, to capture all the packets which are being sent during this
transmission. For example, the command “tcpdump host hostname”, where
“hostname” is the name of your host, can be utilized to capture all the packets
coming from and going to the identified host machine. To send the packets to a
file, the “-w” option can be utilized. For more detailed information, the “-v”, “-vv”,
or “-vvv” options can be utilized which provide successively more information.

The process above makes it possible to capture the external side of a
masqueraded connection. By capturing the external side of a connection,
applications which utilize UDP can be exploited if they have vulnerabilities in
allowing unrestricted external access to the source ports. (To view a listing of the
most common applications which utilizes UDP, see the protocol description
section.)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 12 of 25

Signature of the Attack

If a company is running Linux 2.2 and has not upgraded to the patched 2.2.14
kernel listed below, the masquerading gateway should be continually monitored
for this vulnerability. Exploitation of this vulnerability can be identified by
observing incoming UDP traffic on ports 61000 to 65096 on the masquerading
gateway. Probes, which are sent from the external network to the internal
network on a masqueraded port, could potentially be an attempted exploitation.
Monitoring for this type of potential exploitation seems more difficult then simply
applying the patch. Therefore, the 2.2.14 kernel patch should be applied to all
Linux 2.2 machines.

How to Protect Against the Vulnerability

To protect again this vulnerability, the kernel should be updated from one of
SuSE’s FTP servers. A patched 2.2.14 kernel was initially provided to ensure
stability. The checksums have been included below and the checksums should
be verified before implementing the patch.

• ftp://ftp.suse.com/pub/suse/i386/update/6.4/kernel/k_deflt.rpm
765e268875a7716f681c14389a1c9b9b

• ftp://ftp.suse.com/pub/suse/i386/update/6.4/kernel/k_eide.rpm
be6ee213f0cafd4dac5c51a2a8d100f0

• ftp://ftp.suse.com/pub/suse/i386/update/6.4/kernel/k_i386.rpm
b900eb9f47c94df5cc15721e5f96a58e

• ftp://ftp.suse.com/pub/suse/i386/update/6.4/d1/lx_suse-2.2.14.SuSE-
24.i386.rpm 37deca6ee856c3242a13c2a24f32fc7f

If these sites are not available, the following sites have a listing of mirrors:

• http://www.suse.de/ftp.html
• http://www.suse.com/ftp_new.html

If the kernel is not updated, the possibility of putting a caching names server on
the masquerading gateway and then disabling the masquerading of UDP packets
becomes an option. Typically, it is not necessary to utilize UDP masquerading
on a gateway such as this. The only UDP service typically needed on a gateway
is DNS, and therefore it is better to put a caching names server on the gateway
box instead.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 13 of 25

Source Code/ Pseudo Code

No exploit code has been designed specifically for this vulnerability. However, code
which conducts a UDP scan for a given IP is available and permits one to obtain the
external access described above, which in affect does exploit this vulnerability. UDP
scanning code, which was written by Wietse Venema and is included in the SATAN
utility, is included in Appendix A. The code includes a lot of verifications including,
among other things, probing for alive machines and handling retransmission and
congestion, since UDP is a connectionless protocol. Here are short definitions of some
of the more foundational functions in use in this code:

• scan_ports: Scans the ports for a given port range.
• monitor_ports: Monitors how much activity is occurring on the socket.
• receive_answers: Receives the answer from a given probe and may call

receive_icmp for further information.
• receive_icmp: Receives and translates the ICMP messages that are returned

from the probe.
• process_reply: Processes the reply and if the ‘verbose’ option was chosen, prints

this information out, as well.
• report_and_drop_port: Reports the information that is known about the port that

was probed and drops the port.
• average: Controls the average roundtrip time for a probe.
• add_port: Records the port that is being probed.
• write_port: Writes information to the port.
• drop_port: Releases the port information for the probed port.
• init_port_info: Makes the additional collection of port information.
• find_port_info: Retrieves information about the port being queried.

Additional Information

Articles About this Vulnerability

• http://linuxtoday.com/news_story.php3?ltsn=2000-04-27-033-04-SC - Story
about this Vulnerability

• http://www.suse.de/de/support/security/suse_security_announce_48.txt -

Security Announcement from SUSE
• http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2000-0289 - Common

Vulnerabilities and Exposures Database Documentation

• http://oliver.efri.hr/~crv/security/bugs/Linux/krnl122.html - Information on this
Vulnerability

• http://www.linuxsecurity.com/advisories/redhat_advisory-413.html -

Suggested Fix for the Vulnerability

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 14 of 25

• http://icat.nist.gov/icat.taf?_function=cve&_UserReference=2F6F0A5F515D4

0243AB6CB22&cvename=CVE-2000-0289 - Additional Information on this
Vulnerability

UDP Protocol Information

• http://www.faqs.org/rfcs/rfc768.html - RFC Documentation for the UDP
Protocol

Linux Information

• http://www.suse.de/security - Linux Security Announcements

• http://www.linuxsecurity.com/docs/SecurityAdminGuide/SecurityAdminGuide.t
xt - Linux Security Administrator’s Guide

• http://www.linuxtoday.com - Newsletters for Linux

• http://securityportal.com/research/research.wsl.html - Weekly Linux Updates

• http://securityportal.com/research/research.wsl.html - Archives with Exploit

Code

• http://securityportal.com/research/exploits/linux/ - Linux Exploits

• http://www.suse.de/patches/index.html - Patches for Linux Systems

Tools Documentation
• http://www.insecure.org/nmap/nmap_doc.html - Documentation on Nmap

• http://ciac.llnl.gov/ciac/notes/Notes07.shtml - Notes from CIAC about

SATAN(System Administrators Tool for Administering Networks)

• http://www.cerias.purdue.edu/coast/satan.html - Information about SATAN

• http://www.tcpdump.org/ - Information about Tcpdump as well as the
Tcpdump Tool

• http://netgroup-serv.polito.it/windump/ - Information on Windump

Denial of Service Attacks Information

• http://www.sans.org/ddos_roadmap.htm - “Consensus Roadmap for
Defeating Distributed Denial of Service Attacks” by SANS

• http://www.infosyssec.com/infosyssec/secdos1.htm - Background Information

on Denial of Service Attacks

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 15 of 25

Additional Security Resources

• http://www.infosyssec.net/ - Portal for Information System Security
Professionals

• http://www.securitypanel.org/security_portals.html - Listing of Security Portals

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 16 of 25

Appendix A
UDP Scanning Code from SATAN
/*
 * udp-scan - determine available udp services
 *
 * Author: Wietse Venema.
 */

#include <sys/types.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/time.h>

#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>
#include <netinet/udp.h>

#include <errno.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>

extern int errno;

#ifndef __STDC__
extern char *strerror();
#endif

extern char *optarg;
extern int optind;

#define offsetof(t,m) (size_t)(&(((t *)0)->m))

#ifndef FD_SET
#include <sys/select.h>
#endif

#include "lib.h"

#define LOAD_LIMIT 100 /* default max nr of open sockets */
#define AVG_MARGIN 10 /* safety margin */

 /*
 * In order to protect ourselves against dead hosts, we first probe UDP port
 * 1. If we do not get an ICMP error (no listener or host unreachable) we
 * assume this host is dead. If we do get an ICMP error, we have an estimate
 * of the roundtrip time. The test port can be changed with the -p option.
 */
char *test_port = "1";
int test_portno;

#define YES 1
#define NO 0

int verbose = 0; /* default silent mode */
int open_file_limit; /* max nr of open files */

 /*
 * We attempt to send as many probes per roundtrip time as network capacity
 * permits. With UDP we must do our own retransmission and congestion
 * handling.
 */
int hard_limit = LOAD_LIMIT; /* max nr of open sockets */
int soft_limit; /* slowly-moving load limit */

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 17 of 25

struct timeval now; /* global time after select() */
int ports_busy; /* number of open sockets */
int want_err = 0; /* show reachable/unreachable */
int show_all = 0; /* show all ports */

 /*
 * Information about ongoing probes is sorted by time of last transmission.
 */
struct port_info {
 RING ring; /* round-robin linkage */
 struct timeval last_probe; /* time of last probe */
 int port; /* port number */
 int pkts; /* number of packets sent */
};

struct port_info *port_info = 0;
RING active_ports; /* active sockets list head */
RING dead_ports; /* dead sockets list head */
struct port_info *find_port_info(); /* retrieve port info */

 /*
 * Performance statistics. These are used to update the transmission window
 * size depending on transmission error rates.
 */
double avg_irt = 0; /* inter-reply arrival time */
double avg_rtt = 0; /* round-trip time */
double avg_pkts = 1; /* number of packets sent per reply */
int probes_sent = 0; /* probes sent */
int probes_done = 0; /* finished probes */
int replies; /* number of good single probes */
struct timeval last_reply; /* time of last reply */

int send_sock; /* send probes here */
int icmp_sock; /* read replies here */
fd_set icmp_sock_mask; /* select() read mask */
static struct sockaddr_in sin;

 /*
 * Helpers...
 */

#define time_since(t) (now.tv_sec - t.tv_sec + 1e-6 * (now.tv_usec - t.tv_usec))
#define sock_age(sp) time_since(sp->last_probe)
double average();
struct port_info *add_port();

/* main - command-line interface */

main(argc, argv)
int argc;
char *argv[];
{
 int c;
 struct protoent *pe;
 char **ports;

 progname = argv[0];
 if (geteuid())
 error("This program needs root privileges");

 open_file_limit = open_limit();

 while ((c = getopt(argc, argv, "al:p:uUv")) != EOF) {
 switch (c) {
 case 'a':
 show_all = 1;
 break;
 case 'l':
 if ((hard_limit = atoi(optarg)) <= 0)
 usage("invalid load limit");

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 18 of 25

 break;
 case 'p':
 test_port = optarg;
 break;
 case 'u':
 want_err = EHOSTUNREACH;
 break;
 case 'U':
 want_err = ~EHOSTUNREACH;
 break;
 case 'v':
 verbose = 1;
 break;
 default:
 usage((char *) 0);
 break;
 }
 }
 argc -= (optind - 1);
 argv += (optind - 1);
 if (argc < 3)
 usage("missing argument");

 if (hard_limit > open_file_limit - 10)
 hard_limit = open_file_limit - 10;
 soft_limit = hard_limit + 1;
 init_port_info();

 if ((pe = getprotobyname("icmp")) == 0)
 error("icmp: unknown protocol");
 if ((icmp_sock = socket(AF_INET, SOCK_RAW, pe->p_proto)) < 0)
 error("icmp socket: %m");
 FD_ZERO(&icmp_sock_mask);
 FD_SET(icmp_sock, &icmp_sock_mask);

 if ((send_sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
 error("socket: %m");

 /*
 * First do a test probe to see if the host is up, and to establish the
 * round-trip time. This requires that the test port is not used.
 */
 memset((char *) &sin, 0, sizeof(sin));
 sin.sin_addr = find_addr(argv[1]);
 sin.sin_family = AF_INET;

 gettimeofday(&now, (struct timezone *) 0);
 last_reply = now;

 /*
 * Calibrate round-trip time and dead time.
 */
 for (;;) {
 scan_ports(test_port);
 while (ports_busy > 0)
 monitor_ports();
 if (avg_rtt)
 break;
 sleep(1);
 }
 scan_ports(test_port);

 /*
 * Scan those ports.
 */
 for (ports = argv + 2; *ports; ports++)
 scan_ports(*ports);

 /*
 * All ports probed, wait for replies to trickle back.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 19 of 25

 */
 while (ports_busy > 0)
 monitor_ports();

 return (0);
}

/* usage - explain command syntax */

usage(why)
char *why;
{
 if (why)
 remark(why);
 error("usage: %s [-apuU] [-l load] host ports...", progname);
}

/* scan_ports - scan ranges of ports */

scan_ports(service)
char *service;
{
 char *cp;
 int min_port;
 int max_port;
 int port;
 struct port_info *sp;

 if (service == test_port)
 test_portno = atoi(test_port);

 /*
 * Translate service argument to range of port numbers.
 */
 if ((cp = strchr(service, '-')) != 0) {
 *cp++ = 0;
 min_port = (service[0] ? ntohs(find_port(service, "udp")) : 1);
 max_port = (cp[0] ? ntohs(find_port(cp, "udp")) : 65535);
 } else {
 min_port = max_port = ntohs(find_port(service, "udp"));
 }

 /*
 * Iterate over each port in the given range. Adjust the number of
 * simultaneous probes to the capacity of the network.
 */
 for (port = min_port; port <= max_port; port++) {
 sp = add_port(port);
 write_port(sp);
 monitor_ports();
 }
}

/* monitor_ports - watch for socket activity */

monitor_ports()
{
 do {
 struct port_info *sp;

 /*
 * When things become quiet, examine the port that we haven't looked
 * at for the longest period of time.
 */
 receive_answers();

 if (ports_busy == 0)
 return;

 sp = (struct port_info *) ring_succ(&active_ports);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 20 of 25

 if (sp->pkts > avg_pkts * AVG_MARGIN) {
 report_and_drop_port(sp, 0);
 } else

 /*
 * Strategy depends on whether transit times dominate (probe
 * multiple ports in parallel, retransmit when no reply was
 * received for at least one round-trip period) or by dead time
 * (probe one port at a time, retransmit when no reply was
 * received for some fraction of the inter-reply period).
 */
 if (sock_age(sp) > (avg_rtt == 0 ? 1 :
 2 * avg_rtt < avg_irt ? avg_irt / 4 :
 1.5 * avg_rtt)) {
 write_port(sp);
 }

 /*
 * When all ports being probed seem to be active, send a test probe
 * to see if the host is still alive.
 */
 if (time_since(last_reply) > 3 * (avg_rtt == 0 ? 1 :
 avg_rtt < avg_irt ? avg_irt : avg_rtt)
 && find_port_info(test_portno) == 0) {
 last_reply = now;
 write_port(add_port(test_portno));
 }
 } while (ports_busy && (ports_busy >= hard_limit
 || ports_busy >= probes_done
 || ports_busy >= soft_limit));
}

/* receive_answers - receive reactions to probes */

receive_answers()
{
 fd_set read_mask;
 struct timeval waitsome;
 double delay;
 int answers;

 /*
 * The timeout is less than the inter-reply arrival time or we would not
 * be able to increase the load.
 */
 delay = (2 * avg_rtt < avg_irt ? avg_irt / 3 : avg_rtt / (1 + ports_busy * 4));
 waitsome.tv_sec = delay;
 waitsome.tv_usec = (delay - waitsome.tv_sec) * 1000000;

 read_mask = icmp_sock_mask;
 if ((answers = select(icmp_sock + 1, &read_mask, (fd_set *) 0, (fd_set *) 0,
 &waitsome)) < 0)
 error("select: %m");

 gettimeofday(&now, (struct timezone *) 0);

 /*
 * For each answer that we receive without retransmissions, update the
 * average roundtrip time.
 */
 if (answers > 0) {
 if (FD_ISSET(icmp_sock, &read_mask))
 receive_icmp(icmp_sock);
 }
 return (answers);
}

/* receive_icmp - receive and decode ICMP message */

receive_icmp(sock)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 21 of 25

int sock;
{
 union {
 char chars[BUFSIZ];
 struct ip ip;
 } buf;
 int data_len;
 int hdr_len;
 struct ip *ip;
 struct icmp *icmp;
 struct udphdr *udp;
 struct port_info *sp;

 if ((data_len = recv(sock, (char *) &buf, sizeof(buf), 0)) < 0) {
 error("error: recv: %m");
 return;
 }

 /*
 * Extract the IP header.
 */
 ip = &buf.ip;
 if (ip->ip_p != IPPROTO_ICMP) {
 error("error: not ICMP proto (%d)", ip->ip_p);
 return;
 }

 /*
 * Extract the IP payload.
 */
 hdr_len = ip->ip_hl << 2;
 if (data_len - hdr_len < ICMP_MINLEN) {
 remark("short ICMP packet (%d bytes)", data_len);
 return;
 }
 icmp = (struct icmp *) ((char *) ip + hdr_len);
 data_len -= hdr_len;

 if (icmp->icmp_type != ICMP_UNREACH)
 return;

 /*
 * Extract the offending IP header.
 */
 if (data_len < offsetof(struct icmp, icmp_ip) + sizeof(icmp->icmp_ip)) {
 remark("short IP header in ICMP");
 return;
 }
 ip = &(icmp->icmp_ip);
 if (ip->ip_p != IPPROTO_UDP)
 return;
 if (ip->ip_dst.s_addr != sin.sin_addr.s_addr)
 return;

 /*
 * Extract the offending UDP header.
 */
 hdr_len = ip->ip_hl << 2;
 udp = (struct udphdr *) ((char *) ip + hdr_len);
 data_len -= hdr_len;
 if (data_len < sizeof(struct udphdr)) {
 remark("short UDP header in ICMP");
 return;
 }

 /*
 * Process ICMP subcodes.
 */
 switch (icmp->icmp_code) {
 case ICMP_UNREACH_NET:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 22 of 25

 error("error: network unreachable");
 /* NOTREACHED */
 case ICMP_UNREACH_HOST:
 if (sp = find_port_info(ntohs(udp->uh_dport)))
 process_reply(sp, EHOSTUNREACH);
 break;
 case ICMP_UNREACH_PROTOCOL:
 error("error: protocol unreachable");
 /* NOTREACHED */
 case ICMP_UNREACH_PORT:
 if (sp = find_port_info(ntohs(udp->uh_dport)))
 process_reply(sp, ECONNREFUSED);
 break;
 }
}

/* process_reply - process reply */

process_reply(sp, err)
struct port_info *sp;
int err;
{
 double age = sock_age(sp);
 int pkts = sp->pkts;
 double irt = time_since(last_reply);

 /*
 * Don't believe everything.
 */
 if (age > 5) {
 age = 5;
 } else if (age < 0) {
 age = 1;
 }
 if (irt > 5) {
 irt = 5;
 } else if (irt < 0) {
 irt = 1;
 }

 /*
 * We jump some hoops for calibration purposes. First we estimate the
 * round-trip time: we use this to decide when to retransmit when network
 * transit time dominates.
 *
 * Next thing to do is to estimate the inter-reply time, in case the sender
 * has a "dead time" for ICMP replies; I have seen this happen with some
 * Cisco routers and with Solaris 2.4. The first reply will come fast;
 * subsequent probes will be ignored for a period of up to one second.
 * When this happens the retransmission period should be based on the
 * inter-reply time and not on the average round-trip time.
 */
 last_reply = now;
 replies++;
 if (pkts == 1)
 avg_rtt = (avg_rtt == 0 ? age : /* adopt initial rtt */
 average(age, avg_rtt)); /* normal processing */
 avg_irt = (avg_irt == 0 ? 1 : /* prepare for irt
 * calibration */
 avg_irt == 1 ? irt : /* adopt initial irt */
 average(irt, avg_irt)); /* normal processing */
 avg_pkts = average((double) pkts, avg_pkts);
 if (verbose)
 printf("%d:age %.3f irt %.3f pkt %d ports %2d soft %2d done %2d avrtt %.3f avpkt %.3f avirt %.3f\n",
 sp->port, age, irt, pkts,
 ports_busy, soft_limit,
 probes_done, avg_rtt, avg_pkts, avg_irt);
 report_and_drop_port(sp, err);
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 23 of 25

/* report_and_drop_port - report what we know about this service */

report_and_drop_port(sp, err)
struct port_info *sp;
int err;
{
 struct servent *se;

 if (probes_done == 0) {
 if (err == 0)
 error("are we talking to a dead host or network?");
 } else if (show_all || want_err == err || (want_err < 0 && want_err != ~err)) {
 printf("%d:%s:", sp->port,
 (se = getservbyport(htons(sp->port), "udp")) ?
 se->s_name : "UNKNOWN");
 if (err && show_all)
 printf("%s", strerror(err));
 printf("\n");
 fflush(stdout);
 }
 drop_port(sp);
}

/* average - quick-rise, slow-decay moving average */

double average(new, old)
double new;
double old;
{
 if (new > old) { /* quick rise */
 return ((new + old) / 2);
 } else { /* slow decay */
 return (0.1 * new + 0.9 * old);
 }
}

/* add_port - say this port is being probed */

struct port_info *add_port(port)
int port;
{
 struct port_info *sp = (struct port_info *) ring_succ(&dead_ports);

 ring_detach((RING *) sp);
 sp->port = port;
 sp->pkts = 0;
 ports_busy++;
 ring_append(&active_ports, (RING *) sp);
 return (sp);
}

/* write_port - write to port, update statistics */

write_port(sp)
struct port_info *sp;
{
 char ch = 0;

 ring_detach((RING *) sp);
 sin.sin_port = htons(sp->port);
 sp->last_probe = now;
 sendto(send_sock, &ch, 1, 0, (struct sockaddr *) & sin, sizeof(sin));
 probes_sent++;
 sp->pkts++;
 ring_prepend(&active_ports, (RING *) sp);

 /*
 * Reduce the sending window when the first retransmission happens. Back
 * off when retransmissions dominate. Occasional retransmissons will keep
 * the load unchanged.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 24 of 25

 */
 if (sp->pkts > 1) {
 replies--;
 if (soft_limit > hard_limit) {
 soft_limit = (ports_busy + 1) / 2;
 } else if (replies < 0 && avg_irt) {
 soft_limit = 0.5 + 0.5 * (soft_limit + avg_rtt / avg_irt);
 replies = soft_limit / 2;
 }
 }
}

/* drop_port - release port info, update statistics */

drop_port(sp)
struct port_info *sp;
{
 ports_busy--;
 probes_done++;
 ring_detach((RING *) sp);
 ring_append(&dead_ports, (RING *) sp);

 /*
 * Increase the load when a sufficient number of probes succeeded.
 * Occasional retransmissons will keep the load unchanged.
 */
 if (replies > soft_limit) {
 replies = soft_limit / 2;
 if (soft_limit < hard_limit)
 soft_limit++;
 }
}

/* init_port_info - initialize port info pool */

init_port_info()
{
 struct port_info *sp;

 port_info = (struct port_info *) mymalloc(hard_limit * sizeof(*port_info));
 ring_init(&active_ports);
 ring_init(&dead_ports);
 for (sp = port_info; sp < port_info + hard_limit; sp++)
 ring_append(&dead_ports, (RING *) sp);
}

/* find_port_info - lookup port info */

struct port_info *find_port_info(port)
int port;
{
 struct port_info *sp;

 for (sp = (struct port_info *) ring_succ(&active_ports);
 sp != (struct port_info *) & active_ports;
 sp = (struct port_info *) ring_succ((RING *) sp))
 if (sp->port == port)
 return (sp);
 return (0);
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE-2000-0289 IP Masquerading Vulnerability

Page 25 of 25

Sources
 “CVE-2000-0289 “ 13 Oct 2000. URL: http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=2000-0289 (13, March 2001).

Fyodor. “The Art of Port Scanning” 1997 Sept 6. URL:
http://www.insecure.org/nmap/nmap_doc.html (20 March 2001).

JWS. “tcpdump/libpcap” 6 Feb 2001. URL: http://www.tcpdump.org/ (23 March 2001).

Moore, H D. “Multiple Linux Vendor 2.2.x Kernel IP Masquerading Vulnerabilities” 10
November 2000. URL: http://www.securityfocus.com/bid/1078 (11 March 2001).

Postel, J. “User Datagram Protocol “ 28 August 1980. URL:
http://www.faqs.org/rfcs/rfc768.html (18 March 2001).

Purdue University. “CERIAS - Security Archive” 14 June 2000. URL:
ftp://coast.cs.purdue.edu/pub/tools/ (23 March 2001).

Ranch, David. “Linux IP Masquerade HOWTO” 14 Nov 2000. URL:
http://www.europe.redhat.com/documentation/HOWTO/IP-Masquerade-HOWTO.php3
(18 March 2001).

“Red Hat, Inc. Bug Fix Advisory” 28 April 2000. URL:
http://www.linuxsecurity.com/advisories/redhat_advisory-413.html (15 March 2001).

"SecurityFocus.com: Multiple Linux Vendor 2.2.x Kernel IP Masquerading
Vulnerabilities." 27 April 2000. URL: http://linuxtoday.com/news_story.php3?ltsn=2000-
04-27-033-04-SC (3 March 2001).

“SuSE Security Announcement” 17 May 2000. URL:
http://www.suse.de/de/support/security/suse_security_announce_48.txt (13 March
2001).

