
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Advanced Incident Handling and Hacker Exploits
Practical Assignment – Option 2

Solaris Loadable Kernel Modules and Their Use in Rootkits

William S. Davis

April 4th, 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

Table of Contents:

1.0 Exploit Details
2.0 Introduction

2.1 Operating Systems and the Solaris Kernel
2.2 Booting the Kernel

3.0 Description of Protocols/Services
3.1 Loading and Linking LKMs
3.2 Kernel Symbols and Module Information
3.3 Module Coding Requirements

4.0 Description of Variants
5.0 How the Exploit Works

5.1 Stealth Modules
5.2 Redirection of System Calls
5.3 File and Directory Hiding
5.4 Process Hiding
5.5 Remote Switch
5.6 Program Redirection
5.7 Root Access
5.8 Promiscuous Flag Hiding

6.0 Diagram of Attack
7.0 Signature of the Attack

7.1 Modinfo and the Kernel Symbol Table /dev/ksyms
7.2 Sorted Modinfo Output with sit0.2 Module Installed
7.3 Output from Perl Search Program
7.4 Kernel Symbol Table Entries for sitf0.2 Module
7.5 Additional Auditing

8.0 How to Protect Against it
8.1 Creating a Monolithic Kernel is Not and Option
8.2 The Kernel Search Path
8.3 LKMs Loading from Readonly Media
8.4 Disabling Specific LKMs loading
8.5 Encryption and Authentication
8.6 Kernel Hypervisors to Secure Applications
8.7 Runtime Kernel Patching
8.8 Final Comments

9.0 References
9.1 Additional References
9.2 Useful man Pages
9.3 Location of Exploit Source Code

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

1.0 Exploit Details:

Name: Solaris Integrated Trojan Facility (sitf0.2)
Variants: linspy, heroin, itf, Knark, adore (all are for Linux)
Operating System: Solaris 7 & 8
Protocols/Services: Loadable Kernel Modules (LKMs)
Description:
 The Solaris Integrated Trojan Facility enables an attacker to hide files, processes and
installed kernel modules, while allowing the attacker to redirect program execution calls
and grant root access to the system. The software uses loadable kernel modules, code
that runs within the operating system kernel and not at the user application level.

2.0 Introduction:

The Solaris Integrated Trojan Facility (SITF) is a kernel-level rootkit. A rootkit is
generally a series of steps or procedures that an attacker, once they have gained root
access to a host or server, will use to hide their continued access and illicit activity. To
do this, the SITF installs loadable kernel modules (LKMs) that perform these procedures
by modify the functioning of the operating system itself.

In the past, a rootkit typically contained a collection of trojaned user programs that
allowed them to alter the output for their own purposes. For example, a trojaned Unix
“ps” program would be used to hide processes run by the attacker, or a trojaned Unix “ls”
program that would not list files the attacker wanted to remain unseen by anyone else.
As a defense against rootkits, system administrators began to use integrity checking,
cryptographic hashes or a program like Tripwire, to ensure that critical programs were
not altered.

What makes a kernel-level rootkit a particularly insidious exploit is that it is the operating
system kernel, rather than user programs, which is altered. This means that integrity
checking may fail to detect any modification of a system, since the user programs have
not been replaced with trojaned versions, and the operating system itself may give false
information to the integrity-checking program to begin with. For this reason, the LKMs
provide a significant, inherent vulnerability within the Solaris operating system.

2.1 Operating Systems and the Solaris Kernel

Before giving a description of LKMs and how they can be exploited, the following is a
very brief introduction to the Unix operating system, its kernel and the Solaris boot
process. It is important to understand these basic concepts to fully evaluate the risk of
kernel-level rootkits. References for much more thorough discussions of the Solaris
kernel are listed at the end of this paper.

The operating system, simply put, is a collection of system programs, which allow users
to run other application programs. By abstracting the machine hardware into a “virtual”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

machine, the operating system provides a consistent environment for the software that
runs on the machine and gives the user a “look and feel” to the computer system. (1)

The “kernel” is the core of the operating system whose primary functions are to manage
the hardware by allocating its resources among the programs running on it, and to supply
a set of system services for those programs to use. (2)

Operating systems are generally classified as having either a microkernel or monolithic
design. A microkernel design has separate processes (modules) that run in a privileged
mode, but communicate with each other by passing messages. The “microkernel” itself is
little more than a message hub, while the modules provide the functionality. The goal of
this design is to keep the microkernel as small as possible. On the other hand, the
monolithic design is one large process, which may be subdivided into modules internally,
but when run, is a single large binary image. Its modules do not pass messages, but
communicate directly by calling functions in other modules. (3)

An advantage to a microkernel design is a potential for more efficient use of memory, as
modules are loaded into memory only as they are called upon, and unneeded modules are
never loaded. The LKMs mechanism provides this dynamic capability to the operating
system kernel by loading or unloading modules in response to system calls, or the
kernel’s resource requirements. Furthermore, modules can be developed, tested and
modified, without having to add the code to the “kernel”, recompile the kernel and reboot
the system.

An advantage of a monolithic kernel design is that it provides a wholly contained binary
that cannot be altered without recompilation and rebooting. The security implication of
this is obvious. An operating system that cannot be altered while running has a lower
degree of vulnerability than one that can be modified while the system is running.
However, this does not mean a monolithic kernel has no vulnerabilities.

Solaris is a Unix operating system of a microkernel design. It is not possible to create a
monolithic Solaris kernel (4). The Unix operating systems Linux and BSD are originally
of a monolithic kernel design, but have added the ability to dynamically load or unload
modules. Although this is somewhat of a hybrid of the two kernel designs, this
functionality can be ignored, and a fully monolithic kernel produced. For this reason,
Solaris is more vulnerable to a kernel-rootkit exploit, but Linux and FreeBSD are also
susceptible to the same kind of exploit.

2.2 Booting the Kernel

Understanding the bootstrapping and initialization of the Solaris operating system can be
very helpful towards auditing and defending Solaris against kernel rootkit exploits. The
following draws heavily from “Solaris Internals” by Jim Mauro and Richard McDougall,
whose book is highly recommended.

Booting the Solaris operating system from a local disk can be divided into six steps.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

Step 1: The boot command - loading the bootblock

The first step in the boot process is to read and load the bootblock into memory. This
process uses the system’s firmware in PROM, known as Open-Boot PROM (OBP) in
Solaris, to load the bootblock located at physical sectors 1-15 of the boot disk, provide
NVRAM for setting system parameters, build the hardware device tree, and provide
bootstrap support for manual or automatic booting of the system.

Step 2: The bootblock program – loading ufsboot

The second step is for the bootblock to locate and load the secondary boot program,
ufsboot (for a local disk boot) or inetboot (for a network boot). The path and name of the
secondary boot program is hardcoded into the bootblock program as
/platform/<arch>/ufsboot, where <arch> is the hardware architecture type and can be
determined by the “uname –m” command. The bootblock program cannot be larger than
7680 bytes (15 * 512 bytes), so it contains just enough code to read a Unix file system
(UFS) directory, locate a file and load it into memory. Once ufsboot is loaded, the
bootblock passes control to ufsboot.

Step 3: The ufsboot program – loading the core kernel and linker

The ufsboot program locates and loads the core kernel binary at
/platform/<arch>/kernel/unix and the kernel linker program at /kernel/misc/krtld. The
core kernel binary, unix, is the platform dependent component of the core kernel and is
an executable and linking format (ELF) binary image file. The ufsboot program can
parse the ELF headers, and based on that information loads the required krtld program
and passes control to krtld.

Step 4: The krtld program – loading required kernel modules

The krtld program examines the ELF header information of the unix program and
determines the dependencies the program has on other binary images. For the unix
program, this includes /kernel/genunix, the platform and hardware independent binaries
of the core kernel, /platform/<arch>/kernel/misc/platmod, the platform specific binaries
of the core kernel, and /platform/<arch>/kernel/cpu/$CPU, the processor specific binaries
of the core kernel.

As krtld encounters these dependencies, it searches for these specified modules. A key
variable determines the path for which krtld will search for these modules. This variable
is set in the OBP firmware or can be manually entered on the boot program’s command
line (boot –a). Late in the boot process, this path can be set within the /etc/system file.
This is an important point from a security aspect as will be seen in section 8.2 below.

After the core kernel binaries (unix, krtld, genunix, platmod, and $CPU) have been
loaded, krtld passes control to unix.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

Step 5: Initializing the kernel

At this point, the Solaris kernel is running and is using virtual memory address space, but
some further initialization is required before the first real user application is started. The
kernel initializes some processor registers, and makes calls to mlsetup(), main() and
startup(). These functions create the initial processes, map and initialize hardware
devices and initialize memory. When the above initializations have completed, the
operating system banner is displayed.

After some additional platform checking, the /etc/system kernel configuration file is
accessed to create a linked list of system parameter data structures in kernel memory.
The /etc/system file contains commands used to customize the operating environment of
the kernel and are useful in controlling some aspects of LKMs, notably what modules
cannot or must be loaded, and what the module search path should be.

LKMs have actually been loading at various times prior to this during the boot process.
During startup(), the modules swap, specfs, procsfs and tod were loaded. Other times
that loading occurs is during kernel subsystem or platform specific module initializations.
As intended by the microkernel design, these modules are loaded as they are called, or
dependencies are determined. However, once /etc/system has been accessed, LKMs can
be force loaded into the kernel by commands within that file.

Note that at this juncture, the preliminary memory initialization determines how much
physical memory is available after the core kernel modules have been loaded. This value
can be seen in the boot logging information as “mem” and “avail mem.”

Step 6: The init process – the first user

The kernel function newproc() is called from main() to create the init process that is the
first real user process. The kernel allocates user address space to init rather than kernel
address space, so that init does not use or execute within the kernel’s memory address
space. Init is the last process created by the kernel to get the system running. Init is the
ancestor of all subsequent unix processes and the direct parent of login shells.

The remaining bootup processes are completed by init, take place within user memory
address space and are determined by entries in the file /etc/inittab. These entries define
the system’s default state and controls the execution of scripts in the /etc/rc*.d
directories. These scripts are run to bring the system to a know status, specifying which
services are to be started. Init checks the integrity of the root and usr file systems first,
mounts local disks, performs file system cleanup, starts system and network services,
mounts remote disks, and finally, enables logins by starting getty.

3.0 Description of Protocols/Services:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

As mentioned in the introduction, LKMs are binary object files that are code modules
that can be loaded or unloaded from the running Solaris kernel based on code
dependencies and resource requirements. LKMs are defined in /usr/include/sys/modctl.h
and are one of seven types; device drivers, system calls, file systems, misc
(miscellaneous), streams modules, scheduling classes and exec file type.

Pragmatic (pseudonym), who has written in-depth articles about LKMs, loosely
compared them to “old DOS TSR programs, they were our gate to staying resident in
memory and catching every interrupt we wanted.”

3.1 Loading and Linking LKMs

Each of the LKMs types has their own specific installation steps, but the steps are similar
in nature. The module is loaded into memory and kernel address space is mapped to the
modules’ text and data segments.

The kernel function modload() starts this process, and is initiated by calls within the
running kernel, or by the user program modload(1). The kernel maintains a linked list of
structures for all the modules loaded in the kernel. These structure are defined by modctl
and module in /usr/include/sys/modctl.h and /usr/include/sys/kobj.h. Some important
structure elements that will come into play are the module name, mod_modname, the
module id, mod_id, and additional module information in mod_modinfo and
mod_linkage.

When modload() is called, it will initially search the linked list of module structures to
see if the desired module’s structure has already been created. If it does not exist, a new
structure is created and added to the linked list. It is interesting to note that even if a
module is unloaded, its module structure remains in the linked list, and an element in the
structure, mod_loaded, is cleared. Thus, all of the modules loaded while the system has
been running can be determined from this linked list.

If the module does need to be loaded, the krtld module is called to create address space
segments and bindings, and load the binary object into memory, and sets the mod_loaded
element in the module’s modctl structure. Finally, it executes the module’s _init()
routine to complete the task of initializing the module for use within the kernel.

3.2 Kernel Symbols and Module Information

Since modules can be loaded and unloaded as needed, the kernel’s table of module
symbols must remain dynamic. A pseudodevice, /dev/ksyms, contains the currently
loaded module symbols and is maintained by the device driver /usr/kernel/drv/ksyms. It
is important to understand that this list of module symbols is just a list of names of
variables and functions contained in the modules and their associated virtual addresses.
You can actually view this table using the command nm –x /dev/ksyms. I have found it
useful to modify the output using the awk command, so that the address is printed first,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

rather than the symbol id. The advantage is that you can sort the list by virtual address.
The command is as follows: nm –s /dev/ksyms | awk ‘{print $2, $1, $3, $4, $5, $6}’ | sort.

The modinfo(1M) command is another useful tool for listing what modules are currently
loaded. The output from this command lists the module’s id, the virtual address at which
it was loaded (in hex), size of the module (in hex bytes), some module-specific data
(info), a revision number, and the module’s name. The id numbers will not necessarily
be contiguous. As a module is unloaded, its id may be released for use by another
module, so that at any given time, gaps in the sequence of module ids will be present.
Solaris 7 typically has around 90 modules listed, while Solaris 8 has about 110 (5).

3.3 Module Coding Requirements

As stated above, a module must have an init() routine for the proper completion of
loading and initialization. Required within the init() function must be a call to modinstall
function, specific to the module type, which declares and initializes the associated
mod_linkage structure and a generic modlinkage for the generic module abstraction.

In addition, a module must have _fini() and _info() functions. The _fini() function
prepares a module for unloading, and the _info() function which provides information
about a module while it is loaded.

The coding of LKMs is beyond the scope of this paper, but there are several sources
listed in the references section that are helpful. The manual pages are worth looking at
(_info(9E), mod_install(9F)), but an excellent introduction to coding Solaris LKMs is
presented in the paper by plasmoid (pseudonym) entitled “Solaris Loadable Kernel
Modules.”

When these modules are compiled and linked, it is necessary to include the –D_KERNEL
switch when compiling, and the –r flag when linking. Furthermore, since the kernel does
not contain many standard C functions, it may be necessary to extract them from the
/lib/libc.a library using the ar –x command, and then linking them in manually. The
process is seen below:

 ar –x /lib/libc.a c_function.o
 gcc –D_KERNEL –DSVR4 –DSOL2 –o2 module_name.c
 ld –o module_name –r module_name.o c_function.o

The binary image file must now be placed in a directory within the kernel module search
path before it can be loaded into the kernel.

4.0 Description of Variants:

This exploit has been “in the wild” for some time, though not specifically for Solaris.
SunOS 4.x did have a loadable module interface, and an attack to snoop tty used LKMs
called tap (6).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

There were earlier discussions about utilizing LKMs, but the first major article was
published in Prack 50 Article 5, “Abuse of the Linux Kernel for Fun and Profit” (April 9,
1997.) It was written by halflife (pseudonym) and discussed TTY hijacking using LKMs
in a Linux kernel. This module was called linspy.

Another extensive paper written by pragmatic entitled “(nearly) Complete Linux
Loadable Kernel Modules” was released in March of 1999, which went into extensive
detail on writing LKMs for Linux, discussed ways in which the kernel could be
subverted, and gave numerous code examples from many sources, including most of the
“classic” code on which others have based their versions of this exploit. Among the
many examples are the modules heroin, one of the first examples of an LKM used to hide
files and processes, and itf, the Integrated Trojan Facility, which was based on heroin and
in pragmatic’s words, “has everything you need to backdoor a system in a very effective
way.” Itf, was published in Prack 52, Article 18, “Weakening the Linux Kernel”
(January 26, 1998) and was written by plaguez (pseudonym). Another popular Linux
module is Knark, which was written by Creed and released around November of 1999. It
was based on itf. Also TESO has released a Linux module named adore that is similar to
itf.

Pragmatic also released a paper entitled “Attacking FreeBSD with Kernel Modules” in
June of 1999, which covered the same kinds of methods from the point of view of the
BSD kernel.

In December of 1999, plasmoid released an article entitled “Solaris Loadable Kernel
Modules” which discussed similar techniques from the point of view of Solaris.
The code examples used in his paper were taken from the Solaris Integrated Trojan
Facility (SITF), a small collection of coded modules that illustrate the basic exploit
techniques. The module sitf0.2 incorporates these techniques into one loadable module,
providing a general kernel rootkit. Sitf0.2 is also based on the itf module for Linux.

The basic set of “features” for these modules are module hiding, file and directory
hiding, process hiding, execution redirection, grant root access to a uid, and promiscuous
flag hiding.

The differences between the modules have to do with the specifics of the operating
system and the methods approach, rather than the concepts. Although it is a non-trivial
task, these modules can be ported to various Unix operating systems that support LKMs,
but attention must be paid to the details of the structures and system calls. A difference
in methods is seen by Knark’s use of a signal 31 to hide a process, while SITF uses a
remote switch to allow the attacker to hide or unhide processes based on a key embedded
in their name. As with any programming, there are many solutions for a problem, so
there may be a variety of modules providing a number of features, but the basic concepts
of exploiting LKMs remains the same, and provides a very fertile ground for future
development.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

5.0 How the Exploit Works:

It should be noted right at the beginning that the user must have root access to use this
kind of exploit. As mentioned above, the purpose of a rootkit is to cover the activity of
an attacker once they have gained root access, and ensure that they can maintain root
access.

A kernel rootkit installs LKMs that modify or replace the actions and output of other
existing LKMs that are a normal part of the operating system. These modules are able to
operate at a privileged level within the kernel, and can operate within the kernel memory
space, and to some degree, interface with the user memory space. The LKMs can hide
their presence in the running kernel, redirect kernel system calls, hide files and
directories, and redirect calls of user executable binaries.

The sitf0.2 module, within the SITF, specifically takes advantage of Solaris kernel
modules and several deficiencies in some of the Solaris module code. The sitf0.2 module
is declared as a miscellaneous operations type (misc) module which is defined by the
mod_miscops structure in /usr/include/sys/modctl.h. Once it has been loaded into the
system, it is capable of the following features detailed below.

5.1 Stealth Modules

As mentioned above, the module name is stored in the module’s linkage structure.
Normally, the module’s name is a character string and is usually a short descriptive
phrase about the module’s functionality. For example, the kb module’s name is “stream
module for keyboard” and the modinfo command would show an entry for kb such as:

 41 f5a95bf0 3b19 8 1 kb (stream module for keyboard)

However, if the module’s name is null (“”), no information about the module is printed
by the modinfo command, even though the module is loaded, has an assigned id, and is
fully operational. Plasmoid admits in his paper on Solaris LKMs “even if this protection
leaving the module’s name blank is weak, it will fit your needs, if the system
administrator is not a real system programmer.”

The reason it is considered a weak technique is that when a module is loaded, its symbols
are mapped and listed in the kernel symbols table, /dev/ksyms. Plasmoid, in his
discussion of this fact, indicated a more complete method for hiding the module would be
to patch the Solaris module that lists and manages all kernel symbols, and suggested he
would explain the technique in a second version of his article. As yet, I have been unable
to find any reference that he has ever released this second version. If the related symbols
were excluded from the list in the /dev/ksyms, it would be much more difficult to detect a
hidden module and might require “real system programmer” skills.

Another technique mentioned by pragmatic was to avoid exporting any symbols used in
the LKMs, defining a symbol table within the module itself, and thus avoiding any

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

exposure within the kernel symbol table. However, this was specific for Linux, and I
have not seen this technique used in a Solaris module, but something similar may be
possible.

5.2 Redirection of System Calls

By intercepting and redirecting system calls within the kernel, it is possible to change the
way the operating system reacts to various calls or commands. System calls are the basic
kernel functions that are used to perform most operations on a system. They are callable
interfaces available to user programs so that the user program can request the kernel to
perform specific actions on their behalf. For example, the open64() system call opens a
file in a filesystem and the read() system call extracts data from an opened file. A list of
system calls is available in the file /usr/include/sys/syscall.h.

System calls are referenced through a kernel table named sysent. Sysent contains
structures for each system call available and is indexed by a system call number,
specified in the /etc/name_to_sysnum file. Many of the system calls are implemented as
LKMs and are stored in /kernel/sys and /usr/kernel/sys directories.

Redirection of system calls requires three things. There must be a replacement function,
in jargon, a faked syscall, the sysent table must be modified to point to the faked syscalls
structure. Finally, the LKM stores the original pointer of the syscalls so that it maintains
full functionality.

An important aid to faking a system call, is the /usr/bin/truss command. Truss will
output a trace of system calls that are made for a command. The command /usr/bin/truss
touch test_file will show all the system calls that are made while executing the command
to create the file test_file. It includes such system calls as execve(), open(), stat(), fstat(),
mmap(), close(), time(), stat64(), creat64(), utime() and _exit().

By determining what system calls a particular command of interest has, will determine
what system calls might be affected by redirection.

5.3 File and Directory Hiding

There are actually two aspects to hiding files and directories. Not only are files and
directories hidden from being listed, but the user is also prevented from even opening the
file or changing the current directory to a hidden one.

Listing files and directories uses the getdents64() system call (syscall) from such
commands as ls or du. (This can be seen by using the truss program mentioned above) If
a faked syscall routine is created to simply not list certain files, then the output will never
contain entries for those files. To avoid creating some lengthy list of files or directories
to hide, the technique used by SITF is to include a “magic” string within the file or
directory name that is specified by the attacker within the LKM. The default value in the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

sitf2.0 module is “blah” and any name containing that string is not listed in the output.
Using the methods described in 5.2 above, the attacker crafts a faked getdents64()
routine, such as faked_getdents64(), stores the original pointer of getdents64(), and loads
the new pointer to faked_getdents64() into the sysent table. When a call is made by a
user program to getdents64(), the faked_getdents64() routine handles the request, using
the actual getdents64() routine to retrieve the information, deleting any entries in the list
that contain the magic string.

A similar technique is used to prevent users from opening or entering a hidden file or
directory. Faked open64() and chdir() routines intercept the user request. If the request
is for a file that contains the magic string, the faked routine returns the error message:
“No such file or directory.” See diagram in section 6.0.

5.4 Process Hiding

Every process has an associated prot_t structure which is defined in
/usr/include/sys/proc.h. The process structure provides the basis for creating and
managing processes in the Solaris operating system. Within the prot_t structure is the
structure name user, which is defined in /usr/include/sys/user.h. One of the members of
the user structure is the member u_psargs, which contains the name of the binary image
file and its arguments.

Solaris creates special files based on the entries in prot_t and places them in the /proc
directory. This is actually a pseudo file system that exports the kernel’s process model
and abstractions by providing a file-like interface to the user so that they can retrieve
information about the processes and have the capability to control processes and debug
system problems.

Since the name of the executable can be determined for every process, and that this
information is retrieved through a filesystem type of interface, then the faked syscall for
getdents64(), mentioned above in 5.3, can be slightly modified to include the code to
search for the process name, and omit from any listing a process name which contains the
magic string. Thus, neither the use of the ps command or a directory listing of /proc
would indicate the presence of the hidden process.

5.5 Remote Switch

As mentioned in section 4.0, SITF makes use of a “remote switch” to toggle whether or
not files, directories and processes containing the magic string will be hidden or not.
This provides the attacker with a means of debugging the installed rootkit, or working
with other files that have been loaded onto the compromised system.

A faked syscall is again utilized to intercept a request that contains a special string, this
time referred to as a security “key.” If the key string is present, then the security bit is
toggled to either turn on hiding or turn off hiding of names that contain the magic string.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

SITF implements this through the touch command and its use of the syscall creat64(). A
faked version of creat64() checks for the security key string in the request to create a new
file, and if the key string is present, it toggles the security switch.

5.6 Program Redirection

Redirecting the execution of an intended user program to another alternate program is not
a new concept and there are numerous viruses and Trojan programs that exist to do this.
Usually, these programs can be detected and eradicated with antiviral or integrity
checking software.

In this technique, a faked execve() syscall is used to check the name of the requested
program to execute, and replaces the name with an alternate and then lets the original
execve() function execute.

The implication of this, is that an alternate program could be placed anywhere on the
system and hidden. When a call is made to a specific program, like passwd for example,
than an alternate program is run that would most likely perform additional functions to
passwd’s more traditional ones, like collecting passwords in a hidden file.

In SITF, only one program is redirected, with the original, and alternate program being
specified within the source code of the LKM.

5.7 Root Access

This is actually a very simple technique than can give a user full root access. A faked
setuid() syscall merely checks to see if a specific uid is being requested, and if so, makes
syscalls passing id 0 to seteuid(), setgid(), setegid() and finally the original setuid()
granting superuser rights to that uid.

What is especially disturbing about this is that the faked function is only 13 lines of code,
and if just this function was included in a LKM, it could be a very effective backdoor
with a very small signature.

5.8 Promiscuous Flag Hiding

This feature follows the same scheme as those above; fake the ioctl() syscall, modify the
output from the original ioctl() based on the status of the of the interface and return the
results to the user.

In sitf0.2, this is only done once, so that if a subsequent command by a user to actually
place the interface into promiscuous mode is given, the user would not detect that it had
previously been hidden.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

4 Faked_open64
intercepts user
request. If file
contains Magic
string, it returns:
File Not Found

2 LKM stores
pointer of open64
and replaces with
new pointer to
faked_open64

6.0 Diagram of Attack:

LKM

Faked_open64()

Open64()

Text:
 Faked_open64()

Data:
 Magic
 Old_open64_pointer

Stack

Pointer to syscall
of open64

User Process

Sysent structure

Kernel Memory

LKM binary
object on disk

File system

1 LKM is loaded into
kernel memory space

5 If request did not
contain Magic
string, original
open64 is called to
open named file

3 User process
makes request to
open64, getting
pointer from sysent
table.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

7.0 Signature of the Attack:

What makes this exploit difficult to detect is that you cannot always trust the output that
the kernel is providing you with. Since the very heart of the operating system is being
compromised, files may be hidden from any integrity checks. It may be that all the
original system files have not been modified at all, it is just that their requests are being
intercepted and their output altered without any indication this is occurring.

However, there appears to be several pieces of information that you could use as an audit
trail, in case you suspect your system has been compromised. Additionally, I have found
that comparisons of the output from modinfo, crossed referenced with the kernel symbol
table, may be of use in trying to detect the presence of an unauthorized LKM.

7.1 Modinfo and the Kernel Symbol Table /dev/ksyms

After learning how a module could keep its information from being displayed by the
command modinfo, I examined the output from the command nm –x /dev/ksyms and was
able to locate module names based on the load address in virtual memory. I decided to
try to correlate the output from the two commands to see if it was possible to identify all
of the kernel symbols with a corresponding module id in the modinfo output. I wrote a
simple perl program based on the following algorithm:

- Load all known modules from modinfo output into a hash table indexed by load
address

- Sort the output of the command nm –x /dev/ksyms by load address
- Loop through until the symbols of the core binary modules from bootup have been

passed. These are the unix, krtld, genunix, platmod and $CPU discussed in section
2.0

- Search for a function symbol (FUNC) of name _init, or a transition from an object
symbol (OBJT) to a FUNC symbol

- Using the load address of the current FUNC symbol, see if an element exists in the
modinfo hash

- If the element does not exist, flag the FUNC symbol as suspect
- If the element exists, list the FUNC symbol as a known LKM
- Using the size of the module from the modinfo hash, loop through the address range

bounded by the module load address and that address plus the size of the module
- Start searching for new function symbols

For the most part, this algorithm worked, but did give a few false positives. By
eliminating most of the symbols in the kernel symbol table, it was possible to manually
compare the symbols for the flagged functions and discern whether they were symbols
associate with modinfo-listed modules.

Below is an example of the signature I was able to detect when I loaded the sitf0.2
module on a Solaris 7, 32-bit, sparc architecture. Section 7.2 lists the output of the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

modinfo command, sorted by load address in virtual memory. Section 7.3 lists the search
results from the perl program mentioned above. The initial four functions are false
positives, but the last entry is the sitf0.2 LKM. By looking at the sorted kernel symbol
table output, and examining the symbols around the address indicated by the unknown
_init() function, it can be quickly seen that this is not a normal module. The extracted
output is listed in section 7.4. Note the references to newioctl, newcreat64, newchdir,
newopen64, newgetdents64, newexecve, and newsetuid. Definitely symbols to be
concerned about.

A couple of notes about this output are in order. This was produced right after the system
had been rebooted. Other times that I repeated this process, the unknown module would
appear at addresses mixed in between existing modules. This method also worked on
Solaris 7 64-bit as well as Solaris 8, though with more false positives.

As long as the kernel symbol table contains the module symbols and has not been
subverted by patching the kernel symbol table device driver, then the above concept may
be useful in locating unauthorized modules. However, additional techniques should be
attempted. These are discussed in section 7.5 below.

7.2 Sorted Modinfo Output with sit0.2 Module Installed:

Load Addr ID Load Addr Size Module Name

f59e1000 -- 5 f59e1000 4577 specfs
f59e5994 -- 78 f59e5994 1c19 tlimod
f59e7378 -- 80 f59e7378 2d8 ipc
f59e7670 -- 7 f59e7670 2ddc TS
f59ea45c -- 8 f59ea45c 4f0 TS_DPTBL
f59ea94c -- 9 f59ea94c 27c28 ufs
f5a12574 -- 10 f5a12574 ec4c rpcmod
f5a211c0 -- 11 f5a211c0 28f84 ip
f5a4bfb8 -- 12 f5a4bfb8 ce3 rootnex
f5a4cc9c -- 13 f5a4cc9c 1ec options
f5a4ce88 -- 14 f5a4ce88 76c dma
f5a4d5f4 -- 15 f5a4d5f4 cb7 sbus
f5a4e2ac -- 16 f5a4e2ac 1ae7 iommu
f5a4fd94 -- 17 f5a4fd94 1648 sad
f5a513e8 -- 18 f5a513e8 61f pseudo
f5a51a0c -- 19 f5a51a0c 103bc sd
f5a61dc8 -- 20 f5a61dc8 7136 scsi
f5a68f18 -- 21 f5a68f18 d6f5 esp
f5a78378 -- 28 f5a78378 12926 procfs
f5a89cac -- 35 f5a89cac 45d0 udp
f5a8d27c -- 77 f5a8d27c 92a3 rpcsec
f5a93ef0 -- 87 f5a93ef0 163b ptem
f5a952dc -- 71 f5a952dc 7f6 kstat
f5a95e44 -- 32 f5a95e44 616 clone
f5a9afd4 -- 34 f5a9afd4 11a1 md5
f5a9d178 -- 86 f5a9d178 e53 pts
f5a9dd04 -- 64 f5a9dd04 4c5 intpexec
f5a9e094 -- 90 f5a9e094 5dd ledma
f5a9e94c -- 26 f5a9e94c 15c3 dada
f5a9ff60 -- 30 f5a9ff60 d008 sockfs
f5aac528 -- 33 f5aac528 17b50 tcp
f5abf500 -- 38 f5abf500 45b7 timod
f5ac3ab8 -- 85 f5ac3ab8 f0f ptm
f5ac4da4 -- 40 f5ac4da4 868f zs
f5acd434 -- 41 f5acd434 58b obio
f5ad1290 -- 81 f5ad1290 29b connld
f5ad13cc -- 82 f5ad13cc 105 IA

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

f5ad1444 -- 43 f5ad1444 1800 ms
f5ad2c44 -- 44 f5ad2c44 a1c consms
f5ad3660 -- 45 f5ad3660 3d42 kb
f5ad73a4 -- 46 f5ad73a4 b55 conskbd
f5ad7efc -- 47 f5ad7efc 1955 wc
f5ad9854 -- 48 f5ad9854 d64 iwscn
f5ada5b8 -- 49 f5ada5b8 234f elfexec
f5adc908 -- 50 f5adc908 103d mm
f5add948 -- 51 f5add948 328c fifofs
f5ae0cf0 -- 52 f5ae0cf0 5926 ldterm
f5ae6618 -- 53 f5ae6618 2381 ttcompat
f5ae899c -- 54 f5ae899c 14d0 ptsl
f5ae9e6c -- 55 f5ae9e6c 2053 ptc
f5aebec0 -- 84 f5aebec0 1670 hwc
f5aed6f8 -- 88 f5aed6f8 259 redirmod
f5aed848 -- 61 f5aed848 4683 tl
f5af1ecc -- 62 f5af1ecc 160a sysmsg
f5af34d8 -- 63 f5af34d8 6d8 cn
f5af4078 -- 65 f5af4078 2fc pipe
f5af51c4 -- 68 f5af51c4 d70 fdfs
f5af71f4 -- 67 f5af71f4 730e ufs_log
f5afdc88 -- 69 f5afdc88 3e12 doorfs
f5b0153c -- 70 f5b0153c 1488 namefs
f5b026d4 -- 72 f5b026d4 d8a2 tmpfs
f5b0ff78 -- 73 f5b0ff78 9db log
f5b10954 -- 74 f5b10954 8c3 sy
f5b11218 -- 75 f5b11218 4f90 vol
f5b161a8 -- 76 f5b161a8 262f4 nfs
f5b3b138 -- 79 f5b3b138 2290 semsys
f5b3d1a8 -- 83 f5b3d1a8 2ea6 pm
f5b3fbc8 -- 42 f5b3fbc8 3c34 cgsix
f5b43230 -- 89 f5b43230 5f0e le
f5b49140 -- 37 f5b49140 51a7 arp
f5b4e2e8 -- 59 f5b4e2e8 1988 rts
f5b4fc70 -- 36 f5b4fc70 3b58 icmp
f5b537c8 -- 91 f5b537c8 858 ksyms

7.3 Output from Perl Search Program

 Modinfo entry Kernel Symbol Table entry
Status ID Loadaddr Size Mod Name Load addr size Type symbol name

UNKNOWN -- -- |0xf007e700|0x00000b20|FUNC |_kobj_boot
UNKNOWN -- -- |0xf008dda8|0x000001a0|FUNC |true_add
UNKNOWN -- -- |0xf012f8f0|0x00000020|FUNC |tsu_module_identify
UNKNOWN -- -- |0xf027c694|0x00000010|FUNC |.mul
FOUND -- 5 f59e1000 4577 specfs -- |0xf59e1000|0x00000270|FUNC |specvp
FOUND -- 78 f59e5994 1c19 tlimod -- |0xf59e5994|0x000019b4|FUNC |_init
FOUND -- 80 f59e7378 2d8 ipc -- |0xf59e7378|0x00000234|FUNC |_init
FOUND -- 7 f59e7670 2ddc TS -- |0xf59e7670|0x000026c4|FUNC |_init
FOUND -- 8 f59ea45c 4f0 TS_DPTBL -- |0xf59ea45c|0x00000050|FUNC |_init
FOUND -- 9 f59ea94c 27c28 ufs -- |0xf59ea94c|0x000001dc|FUNC |alloc
FOUND -- 10 f5a12574 ec4c rpcmod -- |0xf5a12574|0x0000c9f4|FUNC |_init
FOUND -- 11 f5a211c0 28f84 ip -- |0xf5a211c0|0x00020178|FUNC |_init
FOUND -- 12 f5a4bfb8 ce3 rootnex -- |0xf5a4bfb8|0x00000a1c|FUNC |_init
FOUND -- 13 f5a4cc9c 1ec options -- |0xf5a4cc9c|0x00000118|FUNC |_init
FOUND -- 14 f5a4ce88 76c dma -- |0xf5a4ce88|0x000004fc|FUNC |_init
FOUND -- 15 f5a4d5f4 cb7 sbus -- |0xf5a4d5f4|0x00000990|FUNC |_init
FOUND -- 16 f5a4e2ac 1ae7 iommu -- |0xf5a4e2ac|0x00001764|FUNC |_init
FOUND -- 17 f5a4fd94 1648 sad -- |0xf5a4fd94|0x000011b0|FUNC |_init
FOUND -- 18 f5a513e8 61f pseudo -- |0xf5a513e8|0x000003b8|FUNC |_init
FOUND -- 19 f5a51a0c 103bc sd -- |0xf5a51a0c|0x0000da28|FUNC |_init
FOUND -- 20 f5a61dc8 7136 scsi -- |0xf5a61dc8|0x00000010|FUNC |scsi_ifgetcap
FOUND -- 21 f5a68f18 d6f5 esp -- |0xf5a68f18|0x0000babc|FUNC |_init
PROCFS -- 28 f5a78378 12926 procfs -- |0xf5a783e8|0x000000b4|FUNC |ctlsize
FOUND -- 35 f5a89cac 45d0 udp -- |0xf5a89cac|0x000035c4|FUNC |_init
FOUND -- 77 f5a8d27c 92a3 rpcsec -- |0xf5a8d27c|0x000068d0|FUNC |_init
FOUND -- 87 f5a93ef0 163b ptem -- |0xf5a93ef0|0x000013c0|FUNC |_init
FOUND -- 71 f5a952dc 7f6 kstat -- |0xf5a952dc|0x0000062c|FUNC |_init
FOUND -- 32 f5a95e44 616 clone -- |0xf5a95e44|0x000003e0|FUNC |_init

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 18

FOUND -- 34 f5a9afd4 11a1 md5 -- |0xf5a9afd4|0x00000fa4|FUNC |_init
FOUND -- 86 f5a9d178 e53 pts -- |0xf5a9d178|0x00000b80|FUNC |_init
FOUND -- 64 f5a9dd04 4c5 intpexec -- |0xf5a9dd04|0x00000380|FUNC |_init
FOUND -- 90 f5a9e094 5dd ledma -- |0xf5a9e094|0x00000364|FUNC |_init
FOUND -- 26 f5a9e94c 15c3 dada -- |0xf5a9e94c|0x00000074|FUNC |dcd_initialize_hba_interface
FOUND -- 30 f5a9ff60 d008 sockfs -- |0xf5a9ff60|0x000000f0|FUNC |sogetvp
FOUND -- 33 f5aac528 17b50 tcp -- |0xf5aac528|0x00012a64|FUNC |_init
FOUND -- 38 f5abf500 45b7 timod -- |0xf5abf500|0x00003674|FUNC |_init
FOUND -- 85 f5ac3ab8 f0f ptm -- |0xf5ac3ab8|0x00000bec|FUNC |_init
FOUND -- 40 f5ac4da4 868f zs -- |0xf5ac4da4|0x0000002c|FUNC |zsa_null
FOUND -- 41 f5acd434 58b obio -- |0xf5acd434|0x0000038c|FUNC |_init
FOUND -- 81 f5ad1290 29b connld -- |0xf5ad1290|0x00000138|FUNC |_init
FOUND -- 82 f5ad13cc 105 IA -- |0xf5ad13cc|0x0000004c|FUNC |_init
FOUND -- 43 f5ad1444 1800 ms -- |0xf5ad1444|0x000014dc|FUNC |_init
FOUND -- 44 f5ad2c44 a1c consms -- |0xf5ad2c44|0x000006a4|FUNC |_init
FOUND -- 45 f5ad3660 3d42 kb -- |0xf5ad3660|0x000028c8|FUNC |_init
FOUND -- 46 f5ad73a4 b55 conskbd -- |0xf5ad73a4|0x000007b4|FUNC |_init
FOUND -- 47 f5ad7efc 1955 wc -- |0xf5ad7efc|0x00000d38|FUNC |_init
FOUND -- 48 f5ad9854 d64 iwscn -- |0xf5ad9854|0x00000ab4|FUNC |_init
FOUND -- 49 f5ada5b8 234f elfexec -- |0xf5ada5b8|0x000009d8|FUNC |elfexec
FOUND -- 50 f5adc908 103d mm -- |0xf5adc908|0x000000e8|FUNC |mm_attach
FOUND -- 51 f5add948 328c fifofs -- |0xf5add948|0x00002db0|FUNC |_init
FOUND -- 52 f5ae0cf0 5926 ldterm -- |0xf5ae0cf0|0x00004d40|FUNC |_init
FOUND -- 53 f5ae6618 2381 ttcompat -- |0xf5ae6618|0x00002120|FUNC |_init
FOUND -- 54 f5ae899c 14d0 ptsl -- |0xf5ae899c|0x00001124|FUNC |_init
FOUND -- 55 f5ae9e6c 2053 ptc -- |0xf5ae9e6c|0x00001cf4|FUNC |_init
FOUND -- 84 f5aebec0 1670 hwc -- |0xf5aebec0|0x0000156c|FUNC |_init
FOUND -- 88 f5aed6f8 259 redirmod -- |0xf5aed6f8|0x000000f4|FUNC |_init
FOUND -- 61 f5aed848 4683 tl -- |0xf5aed848|0x00004174|FUNC |_init
FOUND -- 62 f5af1ecc 160a sysmsg -- |0xf5af1ecc|0x00000de4|FUNC |_init
FOUND -- 63 f5af34d8 6d8 cn -- |0xf5af34d8|0x000004ac|FUNC |_init
FOUND -- 65 f5af4078 2fc pipe -- |0xf5af4078|0x000001d8|FUNC |_init
FOUND -- 68 f5af51c4 d70 fdfs -- |0xf5af51c4|0x00000a6c|FUNC |_init
FOUND -- 67 f5af71f4 730e ufs_log -- |0xf5af71f4|0x0000002c|FUNC |lufs_sv_constructor
FOUND -- 69 f5afdc88 3e12 doorfs -- |0xf5afdc88|0x00000008|FUNC |door_open
FOUND -- 70 f5b0153c 1488 namefs -- |0xf5b0153c|0x00000024|FUNC |nameinsert
FOUND -- 72 f5b026d4 d8a2 tmpfs -- |0xf5b026d4|0x00000040|FUNC |tmpfs_hash_init
FOUND -- 73 f5b0ff78 9db log -- |0xf5b0ff78|0x00000040|FUNC |log_info
FOUND -- 74 f5b10954 8c3 sy -- |0xf5b10954|0x000006a8|FUNC |_init
FOUND -- 75 f5b11218 4f90 vol -- |0xf5b11218|0x00003c38|FUNC |_init
FOUND -- 76 f5b161a8 262f4 nfs -- |0xf5b161a8|0x00000138|FUNC |nfs_validate_caches
FOUND -- 79 f5b3b138 2290 semsys -- |0xf5b3b138|0x00001fd0|FUNC |_init
FOUND -- 83 f5b3d1a8 2ea6 pm -- |0xf5b3d1a8|0x00002788|FUNC |_init
FOUND -- 42 f5b3fbc8 3c34 cgsix -- |0xf5b3fbc8|0x00003570|FUNC |_init
FOUND -- 89 f5b43230 5f0e le -- |0xf5b43230|0x000050a4|FUNC |_init
FOUND -- 37 f5b49140 51a7 arp -- |0xf5b49140|0x00003e04|FUNC |_init
FOUND -- 59 f5b4e2e8 1988 rts -- |0xf5b4e2e8|0x000011a0|FUNC |_init
FOUND -- 36 f5b4fc70 3b58 icmp -- |0xf5b4fc70|0x00002a7c|FUNC |_init
FOUND -- 91 f5b537c8 858 ksyms -- |0xf5b537c8|0x000000d4|FUNC |ksyms_mapin
UNKNOWN -- -- |0xf5b54354|0x00000b5c|FUNC |_init

7.4 Kernel Symbol Table Entries for sitf0.2 Module

Data Segment
Load addr Size Type Symbol name

|0xf5af6eb0|0x00000005|OBJT |magic
|0xf5af6eb8|0x00000006|OBJT |key
|0xf5af6ec0|0x00000009|OBJT |oldcmd
|0xf5af6ed0|0x0000001d|OBJT |newcmd
|0xf5af6ef0|0x00000004|OBJT |security
|0xf5af6ef4|0x00000004|OBJT |promisc
|0xf5af6ef8|0x00000008|OBJT |modlmisc
|0xf5af6f00|0x00000014|OBJT |modlinkage

Text Segment
Load addr Size Type Symbol name

|0xf5b53db8|0x00000000|NOTY |gcc2_compiled.
|0xf5b53db8|0x0000006c|FUNC |check_process
|0xf5b53e24|0x0000003c|FUNC |check_for_process
|0xf5b53e60|0x00000054|FUNC |sitf_isdigit

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 19

|0xf5b53eb4|0x0000007c|FUNC |sitf_atoi
|0xf5b53f30|0x000000c4|FUNC |newioctl
|0xf5b53ff4|0x00000084|FUNC |newcreat64
|0xf5b54078|0x00000074|FUNC |newchdir
|0xf5b540ec|0x00000080|FUNC |newopen64
|0xf5b5416c|0x0000010c|FUNC |newgetdents64
|0xf5b54278|0x0000008c|FUNC |newexecve
|0xf5b54304|0x00000050|FUNC |newsetuid
|0xf5b54354|0x00000b5c|FUNC |_init
|0xf5b54434|0x0000001c|FUNC |_info
|0xf5b54450|0x00000b5c|FUNC |_fini
|0xf5b544dc|0x000001f4|FUNC |_memmove
|0xf5b544dc|0x000001f4|FUNC |memmove
|0xf5b54518|0x00000000|NOTY |s1algn
|0xf5b54538|0x00000000|NOTY |s2algn
|0xf5b54554|0x00000000|NOTY |aldst
|0xf5b54558|0x00000000|NOTY |ald
|0xf5b54568|0x00000000|NOTY |w3cp
|0xf5b545c0|0x00000000|NOTY |w1cp
|0xf5b5460c|0x00000000|NOTY |w2cp
|0xf5b54660|0x00000000|NOTY |w4cp
|0xf5b54684|0x00000000|NOTY |dbytecp
|0xf5b546a8|0x00000000|NOTY |ovbc
|0xf5b546d0|0x000001b0|FUNC |_memcpy
|0xf5b546d0|0x000001b0|FUNC |memcpy
|0xf5b54880|0x00000094|FUNC |strstr

7.5 Additional Auditing

The dynamic nature of LKMs, and the number of LKMs that may be loaded make it
difficult to get a nice clean audit trail. It is worth looking at the output from modinfo, and
getting some idea of what may be considered normal for a system. Keep in mind that
hidden modules will not show, and often, the activities of the unauthorized LKMs will be
using the standard modules as well.

In section 2.2, step 5, I mentioned that as the kernel is initializing, it displays the total
physical memory and the total available memory after the core kernel was loaded. On the
test system I was using, the values were:
 unix: mem = 49152K (0x3000000)
 unix: avail mem = 44257280
The installed core kernel image was 5932K. This value is worth noting, as this size
should not usually change for a stable hardware configuration.

Another interesting audit that could be performed, but would take some system
programming, is to walk through the linked list of module structures (see section 3.1)
after the system had been running normally for some period of time. This could produce
a list of all the modules commonly accessed by the running system. It would also be
worthwhile to check this linked list occasionally for any modules with names set to null
or other strange names.

Auditing system calls might detect unusual calls to suspicious system functions, such as
newcreat64(). Performance might be a big issue if all processes had all system calls
logged. Again, I have not encountered a tool to do this and would require some system
level programming. Also, it would not be too difficult to create your own LKM that
intercepts system calls specifically to create modules, so that each time a module is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 20

loaded, it could be logged using the cmn_err() syscall. An auditing technique similar to
auditing system calls is to monitor and log execve() calls and trigger actions as a result of
irregular activity. Finally, an initial audit of the system call table sysent itself after boot
up would provide the basis for monitoring changes to the table.

There is a method available to watch, in real time, the automatic loading and unloading of
kernel modules by setting the variable moddebug in the kernel using the adb command
according as follows:

 # adb –kw /dev/ksyms /dev/mem
 physmem 1661
 moddebug /W 0x80000000
 moddebug: 0x0 = 0x80000000

While running this on my test system, the output showed the following when I loaded the
sitf0.2 module:

 unix: load ‘/home/gcih/slkm-1.0/sitf0.2’ id 92 loaded @ 0xf5b53db4/0xf5af6eac size 2985/108
 unix: installing sitf0.2, module id 92.

As seen in sections 7.2 – 7.4 above, the module was not listed by modinfo. It does correlate with
the above load addresses. The first load address indicates the text segment of the module while the
second segment indicates the data segment of the module. This is a good indication that a useful
monitoring tool or script could be developed.

8.0 How to Protect Against it

I have found no specific tools or articles that focus on hardening the kernel to protect
against unauthorized module loading, but this topic appears to be gaining attention. The
following suggestions come from a variety of sources listed in the references section.
Some of them come from those who are “exposing” this exploit to the Internet
community and after detailing what mischief can be done, offer a few suggestions on
possible techniques to protect the kernel. Others come from reliable sources within the
security community. Most are in the realm of possibilities, or proof of concept stage at
this point, rather than actual procedures available for download.

8.1 Creating a Monolithic Kernel is Not an Option

The most common suggestion I encountered was to disable the LKMs capability. This is
not possible for Solaris (4), and even for a system like Linux, this seems unfeasible, since
more modules are created as LKMs to keep the core kernel to a size that would fit on a
floppy disk.

8.2 The Kernel Search Path

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 21

When a call is made to load a LKM, the kernel searches for it based on a search path
variable as mentioned in section 2.2, step 4. By narrowly defining and protecting this
path, it may be possible to limit where the LKMs binary images may be loaded from.

Initially, the path is retrieved from PROM. The OBP program has two security modes,
one which prevents EEPROM changes and hardware command execution while at the
OPB level, and a full security mode that adds the additional requirement that the system
will not boot without the correct OBP password. This can be set from the OBP prompt
using the command:
 Ok setenv security-mode level where level is either command or full
This can also be done from a root shell using the command:
 # eeprom security-mode=level where level is either command or full

At a later stage, the path variable is read in from the kernel configuration file /etc/system.
Obviously if the attacker already has root privilege, this file could be modified, so its
integrity would be critical.

8.3 LKMs Loading from Readonly Media

If the search path can be secured, then limiting LKMs loading from readonly media could
secure these modules. Running a system from a CD has been suggested as a general
defense against rootkits, and is used in the incident handler’s jumpkit to maintain known
good system command.

8.4 Disabling Specific LKMs Loading

Another aspect of the /etc/system file is the ability to not only forceload an LKM, but to
exclude an LKM from being loaded. A list of modules to exclude is created from all of
the exclude statements in this kernel configuration file. This might be useful in disabling
certain capabilities of a system, but is probably of limited use, based on the types of
exploit features mentioned in section 5.0.

Unfortunately, the default is to include a LKM as loadable. What would be useful is to
specify which modules could be loaded, and once loaded, which module could not be
unloaded. This generally defeats the purpose of LKMs, and is a backwards way of
creating a monolithic kernel, but it could be a way of securing critical modules during the
initial booting of a system. Pragmatic give some example code for the scheme in his
Linux paper.

8.5 Encryption and Authentication

A fellow system administrator put the need for encryption and authentication succulently.
“What is needed it a tool that verifies the kernel and LKMs signatures (md5 hashes)
before loading into memory, and that can verify these signatures on the fly. It would
provide a means of determining if the system was executing truly known code, without
having to reboot the system to get it back to a known good state.” (7)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 22

Again, pragmatic gives some example code as a starting point for authenticating module
loading in his Linux paper and some thoughts on using md5 hashes in his FreeBSD
paper. I have not seen anything for Solaris as yet.

8.6 Kernel Hypervisors to Secure Applications

An interesting paper I came across entitled “Using Kernel Hypervisors to Secure
Applications” by Mitchem, Lu and O’Brien written in December of 1997, proposed the
concept of using LKMs to provide security wrappers for user application. In essence, this
is a tcp_wrappers idea, implemented at the kernel level. Another avenue of research
might be whether this concept could be extended to wrapping other LKMs. They might
intercept system calls to other modules, verify the integrity of the module, do any
additional fine grained security controls or authentication, and logging. Their URL is:
www.securecomputing.com/khyper.

8.7 Runtime Kernel Patching

What makes defense against this kind of exploit extremely difficult is that, first of all, the
attacker has root level access, and secondly, is working with kernel processes which have
privileged access to all the kernel objects. What could be worse?

An paper released in November of 1998 by Silvio Cesare entitled “Runtime Kernel
Kmem Patching” described the technique of modifying a running Linux kernel using
direct access to kernel memory. Even a monolithic kernel would be vulnerable to such
techniques.

8.8 Final Comments

Kernel rootkits are an extremely difficult and insidious exploit to detect and defend
against. Although it requires a higher skill level, it is not that difficult, and others will
develop the nice kinds of interfaces that will broaden the base of potential attackers. For
these reasons, plus the role that Solaris servers play in the corporate world, Solaris kernel
rootkits are going to be a severe problem if counter measures are not taken. Research and
development along the lines discussed above could provide some additional lines of
defense against kernel exploits. As one individual at a website that “exposes“
vulnerabilities stated, “Security is an illusion. It’s really just called ‘risk management.’”
(8)

9.0 Sited References

(1) Rusling, David A. “The Linux Kernel.” 1999.
http://www.linuxHQ.com/guides/TLK/tlk.html (April 4, 2001)

(2) Mauro, Jim, Richard McDougall. Solaris Internals. Palo Alto, CA: Sun
Microsystems Press, 2001.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 23

(3) Maxwell, Scott. Linux Core Kernel Commentary. Scottsdale, AZ: Coriolis Open
Press, 1999.

(4) Mauro, Jim. Sun Microsystems. Personal Correspondence. March 27, 2001.
solaris-internals-feedback@devnull.eng.sun.com.

(5) Boran, Sean. “Weekly Solaris Security Digest 2001/01/22 to 2001/01/28.” January
29, 2001. http://securityportal.com/topnews/weekly/solaris20010129.html (April 4, 2001)

(6) Dittrich, Dave. “Root Kits and hiding files/directories/processes after a break-in.”
March 7, 2001. http://staff.washington.edu/dittrich/misc/faqs/rootkits.faq (April 4, 2001)

(7) Plotner, Steffen. Yankee Environment Systems. Turners Falls, MA. Personal
Correspondence. April 3, 2001.

(8) Hoglund, Greg. “A Moment of Clarity.” Unspecified 2001. http://www.rootkit.com/
(February 23, 2001)

9.1 Additional References:

Cesare, Silvio. “Runtime Kernel KMEM Patching.” November, 1998. URL:
http://www.big.net.au/~silvio/runtime-kernel-kmem-patching.txt (April 4, 2001)

Clemens, Jonathan. “Knark: Linux Kernel Subversion.” Unspecified 2000. URL:
http://www.sans.org/newlook/resources/IDFAQ/knark.htm (April 4, 2001)

Mauro, Jim. “The dynamic Solaris kernel” February, 2000. URL:
http://www.unixinsider.com/swol-02-2000/swol-02-insidesolaris.html (March 5, 2001)

Mauro, Jim. “The kernel directory” April, 2000. URL:
http://www.unixinsider.com/swol-04-2000/swol-04-insidesolaris.html (March 5, 2001)

Mitchem, Terrence, Raymond Lu, and Richard O’Brien. “Using Kernel Hypervisors to
Secure Applications.” December, 1997. URL:
http://www.securecomputing.com/khyper/acsac97.pdf (April 4, 2001)

Plaguez (pseud.). “Weakening the Linux Kernel.” Phrack. No. 52. January 26, 1998.
URL: http://packetstorm.securify.com/mag/phrack/phrack52/P52-18 (April 4, 2001)

Plasmoid (pseud.). “Solaris Loadable Kernel Modules.” Unspecified 1999.
http://packetstorm.securify.com/groups/thc/slkm-1.0.html (April 4, 2001)

Pragmatic (pseud.). “(nearly) Complete Linux Loadable Kernel Modules”, March, 1999.
URL: http:// packetstorm.securify.com/docs/hack/LKM_HACKING.html (April 4, 2001)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 24

Pragmatic (pseud.). “Attacking FreeBSD with Kernel Modules.” June, 1999. URL:
http://packetstorm.securify.com/groups/thc/bsdkern.html (April 4, 2001)

9.2 Useful Man Pages:

adb(1)
dump(1)
_info(9E)
ksyms(7D)
modinfo(1)
mod_install(9F)
modldrv(9S)
nm(1)
savecore(1M)
system(4)

9.3 Location of Exploit Source Code:

Plasmoid (pseud.) slkm-1.0.tar.gz December 20, 1999. URL:
http://packetstorm.securify.com/groups/thc/slkm-1.0.tar.gz (April 4, 2001)

