
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with
PowerShell

GIAC (GCIA) Gold Certification

Author: David R Fletcher Jr, 6fletch9@gmail.com
Advisor: Manuel Humberto Santander Pelaez

Accepted: February 20th 2017
Template Version September 2014

Abstract

Microsoft Windows PowerShell has led to several exploit frameworks such as
PowerSploit, PowerView,and PowerShell Empire. However, few of these frameworks
investigate network traffic for exploitative potential. Analyzing a small amount of
network traffic can lead to the discovery of possible network-based attack vectors such as
Virtual Router Redundancy Protocol (VRRP), Dynamic Trunking Protocol (DTP), Link
Local Multicast Name Resolution (LL-MNR) and PXE boot attacks, to name a few. How
does one gather and analyze this traffic when Windows does not include an integrated
packet analysis tool? Microsoft Windows PowerShell includes several network analysis
and network traffic related capabilities. This paper will explore the use of these
capabilities with the goal of building a PowerShell reconnaissance module which will
capture, analyze, and identify commonly misconfigured protocols without the need to
install a third-party tool within a Microsoft Windows environment.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 2
	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

1. Introduction
During a typical penetration test a great deal of focus is placed on vulnerabilities

found in operating systems and software applications. However, an often-overlooked

area of vulnerability analysis deals with network configuration errors. Many computers

and network devices are deployed with default or improper configurations that expose

them to various attacks.

In some cases, the simple observation of a given protocol may indicate

vulnerability. Protocols such as Virtual Local Area Network (VLAN) trunking, network

routing, and network redundancy protocols typically should not be propagated to the

client. This is because an attacker with access to these protocols may be able to

manipulate the flow of traffic across the network, expand access to other subnets, or

cause denial of service.

In other cases, investigation into a protocol’s configuration may lead to second

order effects. In the case of Dynamic Host Configuration Protocol (DHCP), certain

options present may give an attacker the opportunity to analyze a boot image for

credentials or other sensitive information. As an alternative, the attacker could attempt to

force a user to boot a malicious image in order to expand their foothold.

Many protocol analysis tools already exist. Tools such as windump, tcpdump,

Wireshark, and Microsoft Message Analyzer allow a network analyst to troubleshoot

issues within their respective network. However, if the penetration testing rules of

engagement do not accommodate installation of software, an attacker must improvise.

This paper will investigate current protocols of interest which represent potential

exploitable vulnerabilities within an environment. After cataloging the protocols,

methods for identifying them from the perspective of a standard Microsoft Windows

client computer will be explored. These methods will then be used to generate a script

modeled after the PowerShell Empire PowerUp script to provide easy identification of

the targeted protocols without the need to install third-party tools. The resulting script

will allow both attackers and defenders to quickly evaluate an environment for common

vulnerabilities.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 3
	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

This focus of the resulting script is on identification of vulnerable protocols only.

This script currently supports IPv4 and may work with IPv6. The IPv6 header is currently

processed. However, only the first “next header” field is currently evaluated. Exhaustive

testing of each of the protocol parsers could not be accomplished in the time allotted.

Future enhancements will include full stability testing, full support for IPv6 processing,

and may include attack capabilities.

2. Background

2.1. Protocols of Interest
The following protocols are covered due to the presence of current tools to take

advantage of vulnerable configurations. This list can be expanded upon based on future

toolset expansion.

Name Resolution Protocols:

Name resolution protocols provide an opportunity for an attacker to execute

several different attacks. By manipulating the hostname to IP address relationship, an

attacker can send malicious responses to a user’s requests or to become a Man-in-the-

Middle (MitM) in the network conversation. By doing so, the attacker can observe all

traffic passing between the two communicating parties. As a result, the attacker can

gather sensitive information such as authentication credentials or manipulate information

transmitted to either party.

NetBIOS Name Service (NBT-NS) - RFC 1001 and 1002 define the components

of the NetBIOS protocol suite. One of the elements of this protocol is the NetBIOS Name

Service. This service is used to perform name resolution within a Windows environment.

 NBT-NS communication can be identified on the network by listening for packets on

TCP and UDP port 137. NBT-NS is a broadcast protocol; therefore, the destination

address of these packets will be the subnet broadcast address (IETF, 1987).

Link Local Multicast Name Resolution (LLMNR) and Multicast DNS (mDNS) -

According to RFC 4795, this protocol is meant to enable name resolution when

conventional DNS is unavailable (Aboba, Thaler, & Esibov, 2007). In recent versions of

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 4
	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

Microsoft Windows operating systems, LLMNR is included as a successor and serves as

a successor to the NBT-NS protocol.

LLMNR communication can be identified on the network by listening for packets

on TCP and UDP port 5355. The IPv4 address for LLMNR is 224.0.0.252 using MAC

address 01-00-5E-00-00-FC. The IPv6 address for LLMNR is FF02::1:3 using MAC

address 33-33-00-01-00-03 (Aboba, Thaler, & Esibov, 2007). This information is

summarized in the table below.

Ethernet IPv4 IPv6
01-00-5e-00-00-fc
33-33-00-00-01-03 224.0.0.252 ff02::1:3

Figure	1:	LLMNR	Multicast	Addresses	
	

The protocols mentioned above allow computers within the same broadcast

domain to assist one another in the face of a DNS failure. If enabled, both may allow an

attacker with access to a vulnerable network to spoof responses to observed queries.

When a Windows host receives the spoofed response, then that host will attempt to

communicate with the attacker’s target using the client’s desired protocol (Sternstein).

Typical LLMNR queries observed are for protocols such as SMB, WPAD, and

others which require authentication. As a consequence, the client automatically attempts

to complete challenge-response authentication with the attacker’s service. This results in

the attacker capturing the user’s LM or NT hash for use in pass-the-hash attacks or

password cracking (Gaffie, 2013). Credentials captured and cracked can be used for

direct access to resources within the Active Directory domain. With authenticated access,

an attacker can quickly escalate privilege and completely compromise the Active

Directory environment.

Routing and Redundancy Protocols:

Routing protocol traffic should not be propagated to access ports. This routing

information can be valuable for simple network reconnaissance. In addition, the protocol

and its configuration could expose the network to route manipulation attacks. If routing

traffic is present on an access port, an attacker can parse this information to determine

whether authentication is being used to capture credentials. Without authentication, the

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 5
	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

attacker may be able to inject routing information that causes traffic to pass through a

computer that the attacker controls.

Hot Standby Routing Protocol (HSRP) - RFC 2281 describes the Cisco

proprietary Hot Standby Router Protocol. This protocol provides default gateway

redundancy using multicast communication. The active router is used as the default

gateway until it becomes inaccessible. Once this happens, the standby router with the

next highest assigned priority will assume the IP and MAC address of the active router’s

interface resulting in failover without any service interruption (Li, Cole, Morton & Li,

1998).

HSRP can be identified by its multicast addresses, which are 224.0.0.2 using UDP

1985 (v1), 224.0.0.102 (v2) using UDP 1985, and ff02::66 using UDP 2029 (Li, Cole,

Morton & Li, 1998). These details are summarized in the table below.

Ethernet IPv4 IPv6

01-00-5e-00-00-02 224.0.0.2
224.0.0.102 ff02::66

Figure	2:	HSRP	Multicast	Addresses	
	

Virtual Router Redundancy Protocol (VRRP) - VRRP is described by RFC 5798

as an election protocol used by routers sharing an IPv4 or IPv6 address which provides

routing redundancy and dynamic failover for a network. Multiple routers are used to

provide this redundancy. The master router is used for forwarding of traffic on the

segment. Once the master router becomes unavailable, one of the secondary routers takes

over forwarding after being elected as the new master (Nadas & Ericsson, 2010).

VRRP can be identified by its multicast address, which is IPv4 224.0.0.18 and

IPv6 ff02::12 using IP protocol number 112 (Nadas & Ericsson, 2010).

If either of these protocols is not sufficiently protected and propagated to an

access port on an Ethernet switch, an attacker may be able to attempt to elect himself as

the master or active router. Once this occurs, the attacker could manipulate the flow of

network traffic to collect sensitive information or MitM sessions propagating along the

route (Wright, 2015).

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 6
	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

Open Shortest Path First (OSPF) - RFC 2328 describes this interior network

routing protocol. It is one of several interior routing protocols that allow network

infrastructure devices to determine routes to other interior layer 3 networks and that may

include a default route to the larger internet (Moy, 1998). Typically, interior routing

protocols differ in the method by which they determine the most desirable route and in

which they are either open source or proprietary.

Whether proprietary or open source, all these protocols perform the same basic

function, automated aggregation of routing information based on router to router

relationships. Some of the protocols identified above support authentication based on the

design specifications in the applicable RFC. If an attacker can attain membership in the

interior routing hierarchy, then that attacker can influence the routing of packets across

the network. As a result, the attacker can become MitM and manipulate or eavesdrop on

legitimate traffic searching for sensitive information such as session cookies or network

credentials (Wright, 2015).

OSPF traffic on the network can be identified by its multicast Ethernet and IP

addresses seen in the table below. In addition, OSPF packets use IP protocol number 89

(Moy, 1998).

Ethernet IPv4 IPv6
01-00-5e-00-00-05
01-00-5e-00-00-06
33-33-00-00-00-05
33-33-00-00-00-06

224.0.0.5
224.0.0.6

ff0::5
ff02::6

Figure	3:	OSPF	Multicast	Addresses	

Link-Layer Protocols:

Spanning Tree Protocol (STP) - STP is a layer 2 protocol defined by IEEE

802.1D. This protocol is used to prevent loops within a layer 2 mesh network. This is

accomplished through an election process whereby only one connected uplink is

permitted to forward Ethernet frames (IEEE, 2004). Since this information is primarily

valuable to layer 2 switching devices, it should not be propagated to access ports. An

attacker who can observe and manipulate STP traffic can become Man-in-the-Middle

(MitM) by electing himself as the root bridge within the STP domain (Barroso &

Andres).

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 7
	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

The various STP versions (STP, RSTP, and MST) can be identified by the

presence of the destination multicast Ethernet address 01:80:C2:00:00:00 within frames

(IEEE, 2004).

Cisco Discovery Protocol (CDP) and Logical Link Discovery Protocol (LLDP) -

CDP and LLDP are proprietary and open source information sharing protocols that may

provide valuable information to an attacker. While the CDP standard is defined by Cisco

Systems, Inc, LLDP is defined in IEEE 802.1AB. Both protocols expose the following

types of information which may be a valuable element of reconnaissance in staging

follow-on attacks (IEEE, 2009):

• Service Discovery Information

• Device Hardware Revision

• Device Software Revision

• Serial and Service Tag Numbers

Service discovery data can be used to locate Voice Over IP (VoIP) services on the

network. Hardware and software revision information can be useful in performing

vulnerability research in order to select a suitable exploit. Some human machine

interfaces such as Integrated Lights Out (ILO) and other web interfaces use device serial

numbers as an authentication mechanism.

CDP and LLDP traffic can be identified by the presence of any of the following

multicast addresses: 01-80-c2-00-00-00, 01-80-c2-00-00-03, 01-80-c2-00-00-0e or

01:00:0c:cc:cc:cc.

Dynamic Trunking Protocol (DTP) and VLAN Trunking Protocol (VTP) - DTP

and VTP are two other Cisco proprietary protocols for managing VLAN configuration on

a network. Both protocols are meant to reduce management overhead. However, both

also carry the potential to introduce vulnerabilities into an environment.

If an attacker observes VTP in use on an access port, then the attacker may have

the ability to cause a denial of service by clearing the VTP server configuration. More

interestingly, DTP is responsible for negotiating Virtual LAN (VLAN) trunk

configuration between two switches that support the protocol. An attacker who observes

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 8
	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

this protocol on an access port can masquerade as a participating switch to alter the

VLAN configuration of the attached port. This can grant the attacker the ability to hop

VLANs and consequently access resources that the administrator did not intend (Wright,

2015) (Rouiller).

DTP and VTP can be identified by their multicast MAC address. These protocols

use the same multicast Ethernet address as CDP traffic (01:00:0c:cc:cc:cc).

Boot Protocols:

 Boot protocols allow hosts on the network to obtain configuration information

necessary for proper operation on the network. Some boot protocol implementations

provide limited configuration options focusing on network parameters only. Others allow

a host to find and boot its full operating system from the network.

Protocols and options that distribute sensitive information such as boot images

with integrated credentials should be propagated to the smallest audience possible. As an

example, an attacker may download and inspect a boot image to discover credentials

which may be useful in attacks.

Dynamic Host Configuration Protocol (DHCP) and BOOTP - DHCP and

BOOTP are typically used to configure TCP/IP parameters on hosts automatically within

a network environment. Among the configuration options normally observed are IP

address, default gateways, DNS servers, network time servers, and domain suffixes.

These configuration parameters can be observed on the end host and provide little value

to an attacker.

However, DHCP can be used to supply client boot configuration information

within options 66, 67, 128, and 150 (Microsoft, 2008) for standard network boot and

options 208-210 for PXELINUX requests (IANA, 2016). This information should be

limited to the DHCP scope which employs network boot technologies. However,

administrators may configure these parameters and advertise them to an entire network

without understanding the resulting security implications. DHCP is typically used in this

fashion for thin client and operating system deployment solutions such as Windows

Deployment Services (WDS). When the client receives a DHCP response with these

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 9
	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

options configured, the client can attempt to perform a network boot (or a local user can

typically press F12 to cause the computer to network boot). The boot image identified in

the appropriate option is then retrieved from the boot server using TFTP (Microsoft,

2014).

Boot images may include default credentials or configuration information that

would be valuable to an attacker. An attacker observing these options in use could

(Wright, 2015):

• Configure the computer he/she is using to perform a network boot to

inspect the loaded boot image.

• Download the boot image from the TFTP server using the DHCP option

values and inspect the boot image at rest.

• Attempt to spoof DHCP responses with an alternate boot server and image

using a malicious image that would be valuable to the attacker.

DHCP can be identified by observing broadcast traffic on UDP ports 67 and 68.

2.1.1. Protocol Detection

Each of the protocols identified above can be detected using either their layer 2

(MAC addresses), 3 (IP addresses), or 4 (protocol and port) characteristics. These details

have been assembled from the previous sections of this paper and consolidated into the

table seen in Figure 4 below:

Protocol Layer 2 Layer 3 (IPv4) Layer 3 (IPv6) Layer 4 Port
CDP/DTP/VTP 01-00-0c-cc-cc-cc N/A N/A N/A N/A

DHCP ff-ff-ff-ff-ff-ff Broadcast Broadcast UDP (17) 68

HSRP 01-00-5e-00-00-02 224.0.0.2
224.0.0.102 ff02::66 UDP (17) 1985

2029

LLDP
01-80-c2-00-00-00
01-80-c2-00-00-03
01-80-c2-00-00-0e

N/A N/A N/A N/A

LLMNR 01-00-5e-00-00-fc
33-33-00-00-01-03 224.0.0.252 ff02::1:3 UDP (17) 5355

mDNS 01-00-5e-00-00-fb
33-33-00-00-00-fb 224.0.0.251 ff02::fb UDP (17) 5353

NBNS ff-ff-ff-ff-ff-ff Broadcast Broadcast UDP (17) 137

OSPF

01-00-5e-00-00-05
01-00-5e-00-00-06
33-33-00-00-00-05
33-33-00-00-00-06

224.0.0.5
224.0.0.6

ff0::5
ff02::6 OSPF (89) N/A

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 1
0 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

STP 01-80-c2-00-00-00 N/A N/A N/A N/A
VRRP 01-00-5e-00-00-12 224.0.0.18 ff02::12 VRRP (112) N/A

Figure	4:	Protocol	Identifying	Information	

Prior to initiating communication at layer 3 and above, a client must determine the

layer 2 address it must use for forwarding traffic. When a client does not know the layer 2

address for a host, it uses the Address Resolution Protocol (ARP) to discover the

appropriate address for transmission. A client is likely to send many packets to the same

host during communication. As a result, the client maintains layer 2 to layer 3 address

mappings in the ARP cache of the sending host (Stevens & Wright, 1994). An example

can be seen in Figure 5 below:

Figure	5:	ARP	Cache	Example	

When a client observes network traffic from any of the protocols of interest, it

will cache the layer 2 and layer 3 addresses in the ARP cache. Inspection of the cache

entries provides a quick check indicator to determine whether the protocol has been

recently observed. This technique can be used identify all of the protocols above except

for DHCP and NBNS which use the broadcast MAC address to send traffic of interest.

At layer 3 and above, detection must occur through the reception and inspection

of packets. This can occur synchronously by using a packet sniffer to receive, parse, and

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 1
1 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

display interesting information to the user. Alternatively, asynchronous inspection can be

used as well. Instead of decoding and displaying traffic in a live environment, the packets

are stored on disk, transferred to a different computer, and analyzed using a tool like

windump, tcpdump, Wireshark, or Microsoft Message Analyzer. The former supports

quick detection and analysis on the target host while the latter requires file transfer and

offline analysis which may preclude attack. Where possible, online analysis is preferred

due to time and access constraints during an attack.

The native PowerShell interpreter on Microsoft Windows operating systems prior

to Windows 8.1 only supports saving packet data as an Event Tracing for Windows

(ETW) file. Newer Microsoft Windows operating systems can save packet captures

directly to the familiar PCAP format. Where ETW format must be used, the trace file can

be transferred to a computer with Microsoft Message Analyzer installed, opened using

this tool, and saved to the PCAP format.

With an understanding of the protocols of interest and the methods of detection

available, a solution can be developed to provide quick triage detection capabilities. In

the event that a vulnerable protocol is detected, the tester can then choose an appropriate

tool for follow-on attack.

3. Script Solution

The initial concept for this paper involved asynchronous collection and analysis

of traffic on the same computer. However, a great deal of time was spent attempting to

collect and parse the information using the native PowerShell trace capabilities. Analysis

using the produced trace files was cumbersome even within the Microsoft Message

Analyzer tool. Packet data was encapsulated within XML messages which added a layer

of indirection which was difficult to navigate and poorly documented.

Taking a step back from these difficulties caused the tool concept to evolve into a

script with three capabilities. The first capability was to parse the ARP cache for quick

identification of interesting MAC and IP addresses. The next capability was to perform

live analysis and output notifications to the console of the computer where the script was

running. The final capability was the collection of network traffic for a configurable

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 1
2 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

amount of time so that the resulting PCAP or ETW file could be analyzed on a separate

computer.

3.1.1. ARP Cache Analysis

ARP cache analysis was performed using a combination of old and new

techniques. Newer versions of Microsoft Windows (8.1 and above) support the Get-

NetAdapter and Get-NetNeighbor PowerShell commandlets. These commandlets provide

object- oriented access to the installed network adapter details and the ARP cache entries

respectively. Each was encapsulated in a try/catch block to provide fallback support if a

recent version of PowerShell was not installed. The fallback for these capabilities

involved use of the netsh command.

As an equivalent to the Get-NetAdapter commandlet, the “netsh int show int”

command was executed and the output was parsed in a format compatible with that

produced by Get-NetAdapter. This functionality was encapsulated in the PowerShell

function Get-ParsedAdapterNames.

To produce output equivalent to the Get-NetNeighbor commandlet, the “netsh int

ipv4 show neigh” and “netsh int ipv6 show neigh” commands were executed using the

adapter names produced above as arguments. The result was collected and parsed in a

fashion similar to that described above. This functionality was encapsulated in the

PowerShell function Get-ParsedArpTables.

After collecting the information necessary for analysis, the resulting data was

passed through two switch statements which simply inspected for the known multicast

MAC and IP addresses identified in Table 1. Figure 6 shows output from script

execution on a Windows 10 host, as seen below.

Figure	6:	Invoke-NeighborCacheAnalysis	Output	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 1
3 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

3.1.2. Live Analysis

The live analysis capability of this script was inspired and informed by the

Inveigh.ps1 script. The Inveigh tool was developed by Kevin Robertson as an NBNS and

LLMNR cache poisoning and attack tool (Robertson, 2015). The sniffer module and

general workflow from Inveigh were adopted due to the simplicity. The sniffer code

methodology, described below, was observed in use in several other projects as well.

This script uses a raw IP socket to collect and inspect the traffic that the host

computer is able to observe. The sniffer runs in a separate thread and communicates with

the calling script through a global “analyzer” object. This object contains an ArrayList

which is populated by the sniffer and consumed by the calling script. Messages found in

the ArrayList are emitted to the user via the console.

Each packet received by the computer is passed to the raw socket where it is

processed. First the IP header is parsed and passed to a switch statement which inspects

the embedded protocol number. If one of the identified protocols (UDP, OSPF, or VRRP)

is found, then the protocol header is processed. In the case of OSPF and VRRP, the full

payload is processed and any interesting results are passed to the user via the console.

If a UDP packet is discovered, the packet is passed to another switch statement

which inspects the destination port. If the port is found to contain the value of any of the

protocols of interest then the remaining payload is parsed (after checking for the

appropriate multicast address). Once again, results identifying the presence of any

vulnerable protocols are passed to the user via the console.

The full functionality of this script is embodied in a single PowerShell

commandlet which requires no arguments named Invoke-LiveAnalysis. While the script

is running, the user can alter its behavior through runtime interaction. The script listens

for available keystrokes and acts if one is received. Any unrecognized keystroke displays

the available keystroke options. Recognized keystroke options are used to toggle output

for specific protocols and to shut down the analyzer as described in Figure 7 below:

Keystroke Action
D Toggle DHCP Display
H Toggle HSRP Display
L Toggle LLMNR Display

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 1
4 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

M Toggle mDNS Display
N Toggle NBNS Display
O Toggle OSPF Display
V Toggle VRRP Display
Q Shut Down Analyzer

Figure	7:	Runtime	Interaction	Keystrokes	
	

Each of the embedded protocols was parsed according to the field definitions and

rules indicated by the RFC or details found in TCP/IP Illustrated (Stevens & Wright,

1994). Sufficient traffic and time were not available to perform exhaustive testing against

each one of the protocols of interest. During testing, packet captures made available at

wireshark.org and packetlife.net (Stretch) were used in conjunction with live traffic and

traffic generated using the scapy tool.

Output from the analysis console can be seen below in Figures 8-13. Each graphic

shows results from performing DHCP, LLMNR, mDNS, OSPF, NBNS, HSRP, and

VRRP analysis. In each instance, the target protocol is parsed with details from the

parsing activity printed to the console. Unfortunately, no native support for collection and

analysis of layer 2 traffic could be found during the period in which the research was

accomplished.

Figure	8:	Invoke-LiveAnalysis	Startup,	DHCP,	and	LLMNR	Processing	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 1
5 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

Figure	9:	Invoke-LiveAnalysis	mDNS	Processing	

Figure	10:	Invoke-LiveAnalysis	OSPF	Processing	
	

Figure	11:	Invoke-LiveAnalysis	NBNS	Processing	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 1
6 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

Figure	12:	Invoke-LiveAnalysis	HSRP	Processing	

Figure	13:	Invoke-LiveAnalysis	VRRP	Processing	

Full source code for the Invoke-LiveAnalysis commandlet can be found in the

appendix which accompanies this report.

3.1.3. Traffic Collection

Neither Invoke-NeighborCacheAnalysis nor Invoke-LiveAnalysis are able to

catalog the full breadth of interesting protocols individually. As a result, a final

commandlet named Invoke-TraceCollect was included to perform network packet

capture. Similar to Invoke-NeighborCacheAnalysis, recent versions of Microsoft

Windows operating systems natively support advanced PowerShell features.

Specifically, the Protocol Engineering Framework (PEF) trace module allows the

use of the “Microsoft-Windows-NDIS-PacketCapture” provider. Availability of this

module and provider captures all traffic at layer 2 and above and can be saved in PCAP

format natively. Once again, should this module fail to load, the script falls back on the

netsh command.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 1
7 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

Netsh is a component of the Microsoft Windows operating system which is able

to save a trace file in the Event Trace Log (ETL) file format. This file can be

subsequently opened using Microsoft Message Analyzer and saved in PCAP format. The

script executes the “netsh trace start provider=Microsoft-Windows-NDIS-PacketCapture”

command with arguments specifying the path and size of the trace file.

Unlike the two previous commandets, the Invoke-TraceCollect function supports

four optional parameters specifying the target folder, file name, trace duration, and

maximum trace size. If none of these parameters are provided, the script will perform

collection for five minutes saving the trace file to the C:\temp directory using the

timestamp at execution for the filename. Execution in this manner can be seen below in

Figure 14. The resulting packet capture can be seen in Figure 15:

Figure	14:	Invoke-TraceCollect	Execution	
	

	

Figure	15:	Recorded	Packet	Capture

4. Conclusion

During vulnerability analysis and penetration testing, network protocols, their

visibility, and their configuration should not be overlooked. Many of the available

vulnerability analysis tools focus largely on end host configuration and patching while

ignoring the packets traversing the network. In addition, due to the nature of the

protocols, a misconfiguration may be isolated to a small segment of the network, thus

making it difficult to detect and correct.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 1
8 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

The protocols identified in this paper represent several different opportunities for

attack via varying methods. The script produced as a result of this paper provides an easy

method to identify many of the protocols and vulnerable conditions discussed. This tool

can be used on Microsoft Windows clients without the need to install third-party

applications where rules of engagement prohibit this activity. In any case, this script

should be useful to both network defenders and penetration testers for identification of

network protocol based vulnerabilities.

5. Future Enhancements
The current version of the NetworkRecon.ps1 script is focused on the detection of

dangerous protocols and conditions as supported by IPv4. While the IPv6 header is

currently being parsed, there was not enough time to ensure that IPv6 capabilities were

operating properly. Full IPv6 support should be attained to ensure that identification is

uniform in all environments.

During development, no method of Ethernet frame collection was identified. This

prevented parsing of LLDP, CDP, DTP, and VTP traffic. The presence of these protocols

can still be identified through Invoke-NeighborCacheAnalysis. However, valuable attack

opportunities are lost due to inability to parse this data.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 1
9 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

References
	
Aboba, B., Thaler, D., & Esibov, L. (2007, January). RFC 4795 - Link-local Multicast

Name Resolution (LLMNR). Retrieved February 20, 2017, from

https://tools.ietf.org/html/rfc4795

Barroso, D., & Andres, A. (2005). Yersinia: Framework for Layer 2 Attacks. Retrieved

February 20, 2017, from https://www.blackhat.com/presentations/bh-europe-

05/BH_EU_05-Berrueta_Andres/BH_EU_05_Berrueta_Andres.pdf

Gaffié, L. (2013, January 24). Owning Windows Networks with Responder 1.7.

Retrieved February 20, 2017, from

https://www.trustwave.com/Resources/SpiderLabs-Blog/Owning-Windows-

Networks-with-Responder-1-7/

IANA. (2016, November 17). Dynamic Host Configuration Protocol (DHCP) and

Bootstrap Protocol (BOOTP) Parameters. Retrieved February 20, 2017, from

http://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-

parameters.xhtml

IEEE. (2004, June 4). Media Access Control (MAC) Bridges. Retrieved February 20,

2017, from http://standards.ieee.org/getieee802/download/802.1D-2004.pdf

IEEE. (2009, September 17). Station and Media Access Control Connectivity Discovery.

Retrieved February 20, 2017, from

http://standards.ieee.org/getieee802/download/802.1AB-2009.pdf

IETF. (1987, March). RFC 1002 - Protocol standard for a NetBIOS service on a

TCP/UDP transport: Detailed specifications. Retrieved February 20, 2017, from

https://tools.ietf.org/html/rfc1002

IETF. (1987, March). RFC 1001 - Protocol standard for a NetBIOS service on a

TCP/UDP transport: Concepts and methods. Retrieved February 20, 2017, from

https://tools.ietf.org/html/rfc1001

Li, T., Cole, B., Morton, P., & Li, D. (1998, March). Retrieved February 20, 2017, from

https://www.ietf.org/rfc/rfc2281.txtMicrosoft. (2008, May 8). Managing Network

Boot Programs. Retrieved February 20, 2017, from

https://technet.microsoft.com/en-us/library/cc732351(v=ws.10).aspx

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 2
0 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

Microsoft. (2008, May 8). Managing Network Boot Programs. Retrieved February 20,

2017, from https://technet.microsoft.com/en-us/library/cc732351(v=ws.10).aspx

Microsoft. (2014, August 24). Windows Deployment Services Overview. Retrieved

February 20, 2017, from https://technet.microsoft.com/en-

us/library/hh831764(v=ws.11).aspx

Moy, J. (1998, April). OSPF Version 2. Retrieved February 20, 2017, from

https://www.ietf.org/rfc/rfc2328.txt

Nadas, S., & Ericsson, E. (2010, March). RFC 5798 - Virtual Router Redundancy

Protocol Version 3 for IPv4 and IPv6. Retrieved February 20, 2017, from

https://tools.ietf.org/html/rfc5798Robertson, K. (2015, April 5).

Inveigh. Retrieved February 20, 2017, from https://github.com/Kevin-Robertson/Inveigh

Rouiller, S. A. (n.d.). Virtual LAN Security: Weaknesses and Countermeasures.

Retrieved February 20, 2017, from https://www.sans.org/reading-

room/whitepapers/networkdevs/virtual-lan-security-weaknesses-countermeasures-

1090

Sternstein, J. (n.d.). Local Network Attacks: LLMNR and NBT-NS Poisoning - Stern

Security. Retrieved February 20, 2017, from

https://www.sternsecurity.com/blog/local-network-attacks-llmnr-and-nbt-ns-

poisoning

Stevens, W. R., & Wright, G. R. (1994). TCP/IP Illustrated, Volume 1 (Vol. 1). Reading,

MA: Addison-Wesley.

Stretch. (n.d.). Packet Life. Retrieved February 20, 2017, from http://packetlife.net/

Wireshark. (2008, April). NetBIOS/NBNS. Retrieved February 20, 2017, from

https://wiki.wireshark.org/NetBIOS/NBNS

Wireshark. (2013, May 6). CDP. Retrieved February 20, 2017, from

https://wiki.wireshark.org/CDP

Wireshark. (2014, September 5). LinkLayerDiscoveryProtocol. Retrieved February 20,

2017, from https://wiki.wireshark.org/LinkLayerDiscoveryProtocol

Wright, J. (2015). Network Attacks for Penetration Testers (A10_01 ed., Vol. 1).

Bethesda, MD: SANS.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 2
1 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 2
2 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

Appendix
NetworkRecon.ps1 Script

function Invoke-TraceCollect
{
<#
.SYNOPSIS

This module performs a network trace using PowerShell network tracing functionality.
After the trace is complete, the module will perform analysis based on user provided
arguments to determin whether potentially vulnerable traffic exists in the targeted
trace.

Function: Invoke-TraceCollect
Author: David Fletcher
License: BSD 3-Clause
Required Dependencies: User must be administrator to capture traffic.
Optional Dependencies: None

.DESCRIPTION

This module performs a network trace using PowerShell network tracing functionality.
After the trace is complete, the module will perform analysis based on user provided
arguments to determin whether potentially vulnerable traffic exists in the targeted
trace.

.PARAMETER Duration

This parameter is optional and will specify the duration, in minutes, that traffic
will be collected before analysis is performed. If no value is specified, then the
network trace will run for 5 minutes by default.

.PARAMETER Folder

This parameter is optional and will specify the folder where the packet capture will be
stored. This is useful if the user wants to export and convert the resulting event trace
file to .pcap format using Microsoft Message Analyzer. If no value is specified, then the
script will use the folder C:\temp

.PARAMETER File

This parameter is optional and will specify the file name used for the stored event trace
log.
If no value is specified, then the file will be named capture_[DateTime.ToString()].etl.

.PARAMETER Size

This parameter is optional and will specify the maximum size of the capture file. If no
value
is specified, then the system default will be used. This is usually 250 MB.

.EXAMPLE

C:\PS> Invoke-TraceCollect

Description

This invocation will execute a network event trace with default arguments (collect for 5
minutes, store the trace
at C:\temp\capture_[DateTime.ToString()].etl, and perform all checks.

.EXAMPLE

C:\PS> Invoke-TraceCollect -CaptureFolder "C:\Users\Test" -CaptureFile "capture.etl" -
Duration 10

Description

This invocation will execute a network event trace for 10 minutes saving the output to
"C:\Users\Test\capture.etl"
and perform allchecks

#>
Param(
 [Parameter(Position = 0, Mandatory = $false)]
 [string]
 $Folder = "C:\temp",

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 2
3 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 [Parameter(Position = 1, Mandatory = $false)]
 [string]
 $Name = ("capture_" + (Get-Date).Year + (Get-Date).Month + (Get-Date).Day + (Get-
Date).Hour + (Get-Date).Minute + (Get-Date).Second),

 [Parameter(Position = 2, Mandatory = $false)]
 [int]
 $Duration = 5,

 [Parameter(Position = 3, Mandatory = $false)]
 [int]
 $Size = 250

)
If (-NOT ([Security.Principal.WindowsPrincipal]
[Security.Principal.WindowsIdentity]::GetCurrent()).IsInRole(`
 [Security.Principal.WindowsBuiltInRole] “Administrator”))
{
 Write-Warning "Administrator rights are required in order to execute trace
collection.`nThis function uses standard Windows conventions which requires elevation."
 Break
}

Check to see if the target folder exists
If ((Test-Path "$folder") -eq $false)
{
 $createFolder = ("cmd.exe /C mkdir " + $folder)
}

Set the path to the output file
$seconds = $Duration * 60

Start the session to begin collecting packets
Write-Host "[+] Starting capture session"

Try running a PEF trace first. If the PEF module is available it is capable
of generating a cap file which can be consumed and analyzed with Wireshark.
The PEF modules are only available with Windows 8 and above. If this fails
then we fall back to running netsh trace to capture packet data using the Windows
NDIS provider.
try
{
 Write-Host " [-] Trying PEF trace first..."
 Import-Module PEF
 # We're using PEF so we can generate a cap file instead of etl
 $Path= ($Folder + "\" + $Name + ".cap")
 # Set up the session using the provided parameters. I have not found a way to specify
 # the maximum trace size, so the default of 250 MB is used. This should be plenty of
 # storage space for the resulting file.
 $session = New-PefTraceSession -Name $Name -Path $Path -SaveOnStop Linear -Force
 # Add the NDIS-PacketCapture provider to the session
 Add-PefMessageProvider -PEFSession $session -Provider "Microsoft-Windows-NDIS-
PacketCapture" > $null
 # TODO: Windows 10 Supports promiscuous mode by using Add-NetEventNetworkAdapter
commandlet.
 # Add support for this commandlet to ensure we are getting everything.
 # Create a TimeSpanTrigger to stop the capture. Once the capture starts we lose
interactive control
 $trigger = New-PefTimeSpanTrigger -TimeSpan (New-TimeSpan -Seconds $seconds)
 # Output status messages to the user
 Write-Host " [-] Successfully created PEF Trace Session..."
 Write-Host (" [-] Output will be saved to " + $Path)
 Write-Host (" [-] Trace will execute for " + $Duration + " minutes while packet
capture is running")
 # Assign the trigger event to the Stop-PefTraceSession commandlet
 Stop-PefTraceSession -PEFSession $session -Trigger $trigger > $null
 # Start the session. When the specified time has elapsed, the trace will stop
 Start-PefTraceSession -PEFSession $session > $null
 Write-Host " [-] Session stopped"
 Write-Host "[+] Packet capture complete"
}
catch
{
 Write-Host " [!] Unable to create PEF trace...falling back to netsh..."
 $Path= ($Folder + "\" + $Name + ".etl")
 Write-Host " [-] Output will be saved to " $Path
 $traceCommand = ("netsh trace start provider=Microsoft-Windows-NDIS-PacketCapture
tracefile=" + $Path + " maxSize=" + $Size + " capture=yes overwrite=yes filemode=single")
 Invoke-Expression $traceCommand

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 2
4 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 Write-Host (" [-] Sleeping for " + $Duration + " minutes while packet capture is
running")
 Start-Sleep -s $seconds

 # Stop the session to cease packet collection
 Write-Host "[+] Packet capture complete"
 Write-Host " [-] Stopping capture session"
 netsh trace stop
}

}

function Invoke-NeighborCacheAnalysis
{
<#
.SYNOPSIS

This module performs a check of the layer 2 cache on the local computer to determine
whether addresses of interest are cached. Given the frequency with which the
interesting protocols communicate, it is likely that the presence of these cached
entries identify that the host is able to observe these potentially vulnerable protocols.

Function: Invoke-NeighborCacheAnalysis
Author: David Fletcher
License: BSD 3-Clause
Required Dependencies: None
Optional Dependencies: None

.DESCRIPTION

This module performs a check of the layer 2 cache on the local computer to determine
whether addresses of interest are cached. Given the frequency with which the
interesting protocols communicate, it is likely that the presence of these cached
entries identify that the host is able to observe these potentially vulnerable protocols.

LLMNR could be a false-positive since it appears to be a static entry present on all
Windows hosts.

.EXAMPLE

C:\PS> Invoke-NeighborCacheAnalysis

Description

This invocation will inspect the layer 2 cache of each of the connected network adapters
and
identify whether multicast addresses for a given protocol are present. If so, the output
reports the presence of the protocol and which OSI layer it was observed at.

#>
Param(
)

Get the list of connected network adapters
Ge-NetAdapter doesn't work in Windows 7
See if we support Get-NetAdapter, if not, we have to use
netsh output and parse results
$parseOld = $false
try
{
 $adapters = Get-NetAdapter
 $parseOld = $false
}
catch
{
 $adapters = Get-ParsedAdapterNames
 $parseOld = $true
}

 foreach ($adapter in $adapters)
 {
 if ($parseOld -eq $true)
 {
 $neighbors = Get-ParsedArpTables -InterfaceIndex $adapter.Name
 }
 else
 {
 $neighbors = Get-NetNeighbor -InterfaceAlias $adapter.Name

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 2
5 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 }

 Write-Host ("[+] Checking Neighbor Entries for Known Protocol Addresses (" +
$adapter.Name + ")")
 foreach ($neighbor in $neighbors)
 {
 # Check for Known Ethernet Multicast Adddresses to Determine Potential
Exposed Protocols
 switch ($neighbor.LinkLayerAddress)
 {
 # Check for the CDP/VTP Multicast Address
 "01000ccccccc"
 {
 Write-Host " [-] Layer 2 CDP/VTP Address Found in Neighbor Cache"
 }
 # Check for the STP Multicast Address
 "0180c2000000"
 {
 Write-Host " [-] Layer 2 STP Address Found in Neighbor Cache"
 }
 # Check for the LLDP Multicast Addresses
 "0180c2000000"
 {
 Write-Host " [-] Layer 2 LLDP Address Found in Neighbor Cache"
 }
 "0180c2000003"
 {
 Write-Host " [-] Layer 2 LLDP Address Found in Neighbor Cache"
 }
 "0180c200000E"
 {
 Write-Host " [-] Layer 2 LLDP Address Found in Neighbor Cache"
 }
 # Check this one, it is listed as "All Routers" multicast group
 "01005e000002"
 {
 Write-Host " [-] Layer 2 HSRP Address Found in Neighbor Cache"
 }
 # Check for the OSPF HELLO Multicast Address
 "01005e000005"
 {
 Write-Host " [-] Layer 2 OSPF HELLO Address Found in Neighbor
Cache"
 }
 "333300000005"
 {
 Write-Host " [-] Layer 2 OSPF HELLO Address Found in Neighbor
Cache"
 }
 # Check for the OSPF DR Multicast Address
 "01005e000006"
 {
 Write-Host " [-] Layer 2 OSFP DR Address Found in Neighbor Cache"
 }
 "333300000006"
 {
 Write-Host " [-] Layer 2 OSPF DR Address Found in Neighbor Cache"
 }
 # Check for the VRRP Multicast Address
 "01005e000012"
 {
 Write-Host " [-] Layer 2 VRRP Address Found in Neighbor Cache"
 }
 # Check for the mDNS Multicast Address
 "01005e0000fb"
 {
 Write-Host " [-] Layer 2 mDNS Address Found in Neighbor Cache"
 }
 "3333000000fb"
 {
 Write-Host " [-] Layer 2 mDNS Address Found in Neighbor Cache"
 }
 # Check for the LLMNR Multicast Address
 "01005e0000fc"
 {
 Write-Host " [-] Layer 2 LLMNR Address Found in Neighbor Cache"
 }
 "333300000103"
 {
 Write-Host " [-] Layer 2 LLMNR Address Found in Neighbor Cache"
 }

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 2
6 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 }
 # Check IP Addresses for Known IP Multicast
 switch ($neighbor.IPAddress)
 {
 # Check for the IPv4 OSPF HELLO Multicast Address
 "224.0.0.5"
 {
 Write-Host " [-] IPv4 OSPF HELLO Address Found in Neighbor Cache"
 }
 # Check for the IPv4 OSPF DR Multicast Address
 "224.0.0.6"
 {
 Write-Host " [-] IPv4 OSFP DR Address Found in Neighbor Cache"
 }
 # Check for the IPv4 VRRP Multicast Address
 "224.0.0.18"
 {
 Write-Host " [-] IPv4 VRRP Address Found in Neighbor Cache"
 }
 # Check for the IPv4 mDNS Multicast Address
 "224.0.0.251"
 {
 Write-Host " [-] IPv4 mDNS Address Found in Neighbor Cache"
 }
 # Check for the IPv4 LLMNR Multicast Address
 "224.0.0.252"
 {
 Write-Host " [-] IPv4 LLMNR Address Found in Neighbor Cache"
 }
 # Check for the IPv6 OSPF HELLO Multicast Address
 "ff02::5"
 {
 Write-Host " [-] IPv6 OSPF HELLO Address Found in Neighbor Cache"
 }
 # Check for the IPv6 OSPF DR Multicast Address
 "ff02::6"
 {
 Write-Host " [-] IPv6 OSFP DR Address Found in Neighbor Cache"
 }
 # Check for the IPv6 LLMNR Multicast Address
 "ff02::1:3"
 {
 Write-Host " [-] IPv6 LLMNR Address Found in Neighbor Cache"
 }
 # Check for the IPv6 mDNS Multicast Address
 "ff0x::fb"
 {
 Write-Host " [-] IPv6 mDNS Address Found in Neighbor Cache"
 }
 }
 }
 }
}

function Get-ParsedAdapterNames
{
<#
.SYNOPSIS

This module simulates the behavior of the Get-NetNeighbor commandlet available
in Windows 8 and above. It does not return NetNeighbor objects. Only the information
(MAC and IP address) returned from the netsh commands that are used within the
functionality of the exposed commandlets in this package.

Function: Get-ParsedArpTables
Author: David Fletcher
License: BSD 3-Clause
Required Dependencies: User must be administrator to capture traffic.
Optional Dependencies: None

.DESCRIPTION

This module returns the MAC and IP addresses found within the output of the
following commands:

netsh int ipv4 show neigh interface=$InterfaceIndex
netsh int ipv6 show neigh interface=$InterfaceIndex

The results are returned in a PowerShell cusom object having the properties
LinkLayerAddress
and IPAddress which conforms with the results returned by Get-NetNeighbor.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 2
7 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

.PARAMETER InterfaceIndex

This parameter is mandatory and identifies the interface for which arp table entries are
being parsed.
This can be the integer interface index or the string interface name. The latter is
generated by the
Get-ParsedAdapterNames function.

#>
 $cmdOutput = netsh int show int
 foreach ($line in $cmdOutput)
 {
 if (($line.Trim() -eq '') -or $line.Contains('Admin State') -or $line.Contains('-
--'))
 {
 # The first line in the output is null, so skip it
 # The second line in the output is the table header, so skip it
 continue
 }
 else
 {
 $elements = ($line -replace " {2,}"," ").Split(' ')
 $adapter = @{}
 $adapter.Name = $elements[3]
 Write-Output $adapter
 }
 }
}

function Get-ParsedArpTables
{
<#
.SYNOPSIS

This module simulates the behavior of the Get-NetNeighbor commandlet available
in Windows 8 and above. It does not return NetNeighbor objects. Only the information
(MAC and IP address) returned from the netsh commands that are used within the
functionality of the exposed commandlets in this package.

Function: Get-ParsedArpTables
Author: David Fletcher
License: BSD 3-Clause
Required Dependencies: User must be administrator to capture traffic.
Optional Dependencies: None

.DESCRIPTION

This module returns the MAC and IP addresses found within the output of the
following commands:

netsh int ipv4 show neigh interface=$InterfaceIndex
netsh int ipv6 show neigh interface=$InterfaceIndex

The results are returned in a PowerShell cusom object having the properties
LinkLayerAddress
and IPAddress which conforms with the results returned by Get-NetNeighbor.

.PARAMETER InterfaceIndex

This parameter is mandatory and identifies the interface for which arp table entries are
being parsed.
This can be the integer interface index or the string interface name. The latter is
generated by the
Get-ParsedAdapterNames function.

#>
Param(
 [Parameter(Position = 0, Mandatory = $true)]
 [string]
 $InterfaceIndex
)
 # Array of netsh commands to retrieve the arp cache entries for the local computer
 $commands = ("netsh int ipv4 show neigh interface=" + $InterfaceIndex),("netsh int
ipv6 show neigh interface=" + $InterfaceIndex)

 # Process each command and process the resulting output
 foreach ($command in $commands)
 {
 # Exectute the command expression and save the results
 $cmdOutput = Invoke-Expression $command

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 2
8 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 # Process each line of output
 foreach ($line in $cmdOutput)
 {
 # Throw away unnecessary header information
 if (($line.Trim() -eq '') -or $line.Contains('Internet Address') -or
$line.Contains('---') -or $line.Contains($InterfaceIndex))
 {
 # The first line in the output is null, so skip it
 # The second line in the output is the table header, so skip it
 continue
 }
 else
 {
 # This output is space delimited but the space count is asymmetric so we
need to normalize the input
 # Here we are replacing 2 or more spaces with a single space then
splitting the result on the single space
 $elements = ($line -replace " {2,}"," ").Split(' ')

 # Create our output object to place on the pipeline
 $neighbor = @{}
 $neighbor.IPAddress = $elements[0]
 # Change the format of the MAC address to match the output of Get-
NetNeighbor
 $neighbor.LinkLayerAddress = $elements[1].Replace('-','').ToLower()

 # Write the output to the pipeline
 Write-Output $neighbor
 }
 }
 }
}

function Invoke-LiveAnalysis
{
<#
.SYNOPSIS

This module performs a network trace using PowerShell network tracing functionality.
After the trace is complete, the module will perform analysis based on user provided
arguments to determin whether potentially vulnerable traffic exists in the targeted
trace.

This module performs live analysis of network traffic observable by the host computer.
This
module can be used to confirm or augment the results returned by Invoke-
NeighborCacheAnalysis.
Unlike, Invoke-NeighborCacheAnalysis, this module will detect DHCP and NBNS traffic and
can parse
details from other protocols but cannot identify cdp/dtp/vtp or other layer 2 only
protocols.

This module borrows heavily from the sniffer module implemented in the Invoke-Inveigh
module but
currently uses this functionality to implement identify and parse capabilities. Future
enhancements
may include the ability to attack the network through information disclosure, route
manipulation,
malicious boot and other attacks currently provided by tools that are predominately
linux.

Function: Invoke-LiveAnalysis
Author: David Fletcher
License: BSD 3-Clause
Required Dependencies: User must be administrator to capture traffic.
Optional Dependencies: None

.DESCRIPTION

This module performs live analysis of network traffic observable by the host computer.
This
module can be used to confirm or augment the results returned by Invoke-
NeighborCacheAnalysis.
Unlike, Invoke-NeighborCacheAnalysis, this module will detect DHCP and NBNS traffic and
can parse
details from other protocols but cannot identify cdp/dtp/vtp or other layer 2 only
protocols.

.EXAMPLE

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 2
9 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

C:\PS> Invoke-LiveAnalysis

Description

This invocation will execute live network analysis with all default parameters (console
output provided, no log file, infinite duration).

#>
Param(
)

Get the IP Address of the network interface
This may need to be changed to support a computer with multiple interfaces
if(!$IP)
{
 $IP = (Test-Connection 127.0.0.1 -count 1 | Select-Object -ExpandProperty
Ipv4Address)
}

if(!$analyzer)
{
 $global:analyzer = [HashTable]::Synchronized(@{})
 $analyzer.console_queue = New-Object System.Collections.ArrayList
 $analyzer.show_dhcp = $true
 $analyzer.show_hsrp = $true
 $analyzer.show_llmnr = $true
 $analyzer.show_mdns = $true
 $analyzer.show_nbns = $true
 $analyzer.show_ospf = $true
 $analyzer.show_vrrp = $true
 $analyzer.rule_name = "Multicast Inbound Allow"
}

$analyzer.sniffer_socket = $null
$analyzer.running = $true

$analyzer.console_queue.Add("Analyzer started at $(Get-Date -format 's')") > $null

$firewall_status = netsh advfirewall show allprofiles state | Where-Object {$_ -match
'ON'}

if($firewall_status)
{
 $analyzer.console_queue.Add("Windows Firewall = Enabled") > $null
 $firewall_rules = New-Object -comObject HNetCfg.FwPolicy2
 $firewall_powershell = $firewall_rules.rules | Where-Object {$_.Enabled -eq $true -
and $_.Direction -eq 1} |Select-Object -Property Name | Select-String "Windows
PowerShell}"

 if($firewall_powershell)
 {
 $analyzer.console_queue.Add("Windows Firewall - PowerShell.exe = Allowed") >
$null
 }

 # The Windows firewall does not allow inbound multicast packets by default. As a
result, if the firewall
 # is enabled we won't be able to check for some of the interesting protocols.
Therefore, we can either
 # attempt to disable the firewall using
 # netsh advfirewall set allprofiles state off < This increases our exposure to
attack. We only want to see inbound traffic
 # a better option is to allow the multicast addresses we're interested in inbound
 # netsh advfirewall firewall add rule name="Multicast Inbound Allow" dir=in
action=allow localip="224.0.0.0/24"
 $analyzer.console_queue.Add("Inserted Inbound Multicast Rule") > $null
 netsh advfirewall firewall add rule name="Multicast Inbound Allow" dir=in
action=allow localip="224.0.0.0/24"
}

$analyzer.console_queue.Add("Listening IP Address = $IP") > $null

Begin ScriptBlocks

Shared Basic Functions ScriptBlock
$shared_basic_functions_scriptblock =
{

 function DataToUInt16($field)
 {
 [Array]::Reverse($field)

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 3
0 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 return [System.BitConverter]::ToUInt16($field,0)
 }

 function DataToUInt32($field)
 {
 [Array]::Reverse($field)
 return [System.BitConverter]::ToUInt32($field,0)
 }

 function DataLength2
 {
 param ([Int]$length_start,[Byte[]]$string_extract_data)

 $string_length =
[System.BitConverter]::ToUInt16($string_extract_data[$length_start..($length_start +
1)],0)
 return $string_length
 }

 function DataLength4
 {
 param ([Int]$length_start,[Byte[]]$string_extract_data)

 $string_length =
[System.BitConverter]::ToUInt32($string_extract_data[$length_start..($length_start +
3)],0)
 return $string_length
 }

 function DataToString
 {
 param ([Int]$string_start,[Int]$string_length,[Byte[]]$string_extract_data)

 $string_data =
[System.BitConverter]::ToString($string_extract_data[$string_start..($string_start +
$string_length - 1)])
 $string_data = $string_data -replace "-00",""
 $string_data = $string_data.Split("-") | ForEach-
Object{[Char][System.Convert]::ToInt16($_,16)}
 $string_extract = New-Object System.String ($string_data,0,$string_data.Length)
 return $string_extract
 }
 function DataToHexString
 {
 param ([Int]$string_start,[Int]$string_length,[Byte[]]$string_extract_data)

 $string_data =
[System.BitConverter]::ToString($string_extract_data[$string_start..($string_start +
$string_length - 1)])
 $string_data = $string_data -replace "-",""
 $string_extract = New-Object System.String ($string_data,0,$string_data.Length)
 return $string_extract.ToLower()
 }

}

$sniffer_scriptblock =
{
 param ($IP,$RunTime)

 $byte_in = New-Object System.Byte[] 4
 $byte_out = New-Object System.Byte[] 4
 $byte_data = New-Object System.Byte[] 4096
 $byte_in[0] = 1
 $byte_in[1-3] = 0
 $byte_out[0] = 1
 $byte_out[1-3] = 0
 $analyzer.sniffer_socket = New-Object
System.Net.Sockets.Socket([Net.Sockets.AddressFamily]::InterNetwork,[Net.Sockets.SocketTy
pe]::Raw,[Net.Sockets.ProtocolType]::IP)
 $analyzer.sniffer_socket.SetSocketOption("IP","HeaderIncluded",$true)
 $analyzer.sniffer_socket.ReceiveBufferSize = 1024
 $end_point = New-Object System.Net.IPEndpoint([System.Net.IPAddress]"$IP",0)
 $analyzer.sniffer_socket.Bind($end_point)

$analyzer.sniffer_socket.IOControl([System.Net.Sockets.IOControlCode]::ReceiveAll,$byte_i
n,$byte_out)

 while($analyzer.running)
 {
 # Inveigh sniffer is only configured to parse IPv4 Packets

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 3
1 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 $packet_data =
$analyzer.sniffer_socket.Receive($byte_data,0,$byte_data.Length,[System.Net.Sockets.Socke
tFlags]::None)
 $memory_stream = New-Object System.IO.MemoryStream($byte_data,0,$packet_data)
 $binary_reader = New-Object System.IO.BinaryReader($memory_stream)
 $version_more = $binary_reader.ReadByte()
 $IP_version = [Int]"0x$(('{0:X}' -f $version_more)[0])"

 if ($IP_version -eq 4)
 {
 # Process the IPv4 Header
 $header_length = [Int]"0x$(('{0:X}' -f $version_more)[1])" * 4
 $type_of_service= $binary_reader.ReadByte()
 $total_length = DataToUInt16 $binary_reader.ReadBytes(2)
 $identification = $binary_reader.ReadBytes(2)
 $flags_offset = $binary_reader.ReadBytes(2)
 $TTL = $binary_reader.ReadByte()
 $protocol_number = $binary_reader.ReadByte()
 $header_checksum =
[System.Net.IPAddress]::NetworkToHostOrder($binary_reader.ReadInt16())
 $source_IP_bytes = $binary_reader.ReadBytes(4)
 $source_IP = [System.Net.IPAddress]$source_IP_bytes
 $destination_IP_bytes = $binary_reader.ReadBytes(4)
 $destination_IP = [System.Net.IPAddress]$destination_IP_bytes
 }
 elseif ($IP_version -eq 6)
 {
 # Process the IPv6 Header
 # Intially, we won't process traffic class and flow label
 # since they aren't needed for analysis
 $traffic_high = 0 # Get low order nibble from $version_more
 $traffic_flow = $binary_reader.ReadBytes(3)
 $traffic_low = 0 # Get high order nibble from $traffic_flow
 $flow_label = 0 # Zero out 4 high order bits from $traffic_flow
 $total_length = DataToUInt16 $binary_reader.ReadBytes(2)
 # This is next header but we may not need to do anything with this
 # depending on whether additional headers are typically seen in the
 # protocols we are interested in. May be useful to report this value
 # for debugging purposes. If the protocols of interest have several
 # extension headers, it may be useful to have a function dedicated to
 # IPv6 next header chain walking to deteremine if one of the interesting
 # protocols is present. Will test with IPv6.
 $protocol_number= $binary_reader.ReadByte()
 $TTL = $binary_Reader.ReadByte()
 $source_IP_bytes = $binary_reader.ReadBytes(16)
 $source_IP = [System.Net.IPAddress]$source_IP_bytes
 $destination_IP_bytes = $binary_reader.ReadBytes(16)
 $destination_IP = [System.Net.IPAddress]$destination_IP_bytes
 }
 else
 {
 continue
 }

 # Packet processing starts here. The flow consists of inspecting the embedded
protocol number first
 # OSPF and VRRP do not use standard protocol numbers (TCP and UDP). Then we will
inspect the specific protocol further
 switch ($protocol_number)
 {
 # TCP Processing
 6
 {
 $source_port = DataToUInt16 $binary_reader.ReadBytes(2)
 $destination_port = DataToUInt16 $binary_reader.ReadBytes(2)
 $sequence_number = DataToUInt32 $binary_reader.ReadBytes(4)
 $ack_number = DataToUInt32 $binary_reader.ReadBytes(12)
 $TCP_header_length = [Int]"0x$(('{0:X}' -f
$binary_reader.ReadByte())[0])" * 4
 $TCP_flags = $binary_reader.ReadByte()
 $TCP_window = DataToUInt16 $binary_reader.ReadBytes(2)
 $TCP_checksum =
[System.Net.IPAddress]::NetworkToHostOrder($binary_reader.ReadInt16())
 $TCP_urgent_pointer = DataToUInt16 $binary_reader.ReadBytes(2)
 $payload_bytes = $binary_reader.ReadBytes($total_length - ($header_length
+ $TCP_header_length))

 }
 # UDP Processing
 17

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 3
2 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 {
 $source_port = $binary_reader.ReadBytes(2)
 $endpoint_source_port = DataToUInt16 ($source_port)
 $destination_port = DataToUInt16 $binary_reader.ReadBytes(2)
 $UDP_length = $binary_reader.ReadBytes(2)
 $UDP_length_uint = DataToUInt16 ($UDP_length)
 $binary_reader.ReadBytes(2)

 switch ($destination_port)
 {
 # DHCP Packet/Options Inspection
 68
 {
 if ($analyzer.show_dhcp)
 {
 $dhcp_opcode = $binary_reader.ReadByte()

 # We are only interested in DHCP Responses which may contain
 # a boot file location which we may be able to use for boot
 # image analysis or malicious boot attack
 if ($dhcp_opcode -eq 2)
 {
 $analyzer.console_queue.Add("DHCP response received from
" + $source_IP.ToString()) > $null

 # Parse the remainder of the packet
 $dhcp_hwtype = $binary_reader.ReadByte()
 $dhcp_hwaddlength = $binary_reader.ReadByte()
 $dhcp_hopcount = $binary_reader.ReadByte()
 $dhcp_trans_id_bytes = $binary_reader.ReadBytes(4)
 $dhcp_trans_id = DataToUInt32 $dhcp_trans_id_bytes
 $dhcp_lease_duration = DataToUInt16
$binary_reader.ReadBytes(2)
 $dhcp_flags = DataToUInt16 $binary_reader.ReadBytes(2)
 $dhcp_client_ip_bytes = $binary_Reader.ReadBytes(4)
 $dhcp_sender_ip_bytes = $binary_reader.ReadBytes(4)
 $dhcp_server_ip_bytes = $binary_reader.ReadBytes(4)
 $dhcp_server_ip = [System.Net.IPAddress]
$dhcp_server_ip_bytes
 $dhcp_gateway_ip_bytes = $binary_reader.ReadBytes(4)
 $dhcp_client_hw_addr_bytes = $binary_reader.ReadBytes(6)
 $dhcp_client_hw_addr_padding =
$binary_reader.ReadBytes(10)
 $dhcp_server_hostname_bytes =
$binary_reader.ReadBytes(64)
 $dhcp_server_hostname_bytes = DataToString
$dhcp_server_hostname_bytes
 $dhcp_server_boot_filename_bytes =
$binary_reader.ReadBytes(128)
 $dhcp_server_boot_filename = DataToString
$dhcp_server_boot_filename_bytes

 if ($dhcp_server_ip.Trim() -ne "")
 {
 $analyzer.console_queue.Add(" [i] DHCP Server IP: " +
$dhcp_server_ip) > $null
 }

 if ($dhcp_server_hostname.Trim() -ne "")
 {
 $analyzer.console_queue.Add(" [i] DHCP Server Name: "
+ $dhcp_server_hostname) > $null
 }

 if ($dhcp_server_boot_filename.Trim() -ne "")
 {
 $analyzer.console_queue.Add(" [!] Boot File: " +
$dhcp_server_boot_filename) > $null
 $analyzer.console_queue.Add(" [!] This File Could
Contain Credentials") > $null
 }

 $dhcp_cookie_bytes = $binary_reader.ReadBytes(4)

 # Process DHCP Options
 $dhcp_option = $binary_reader.ReadByte()

 # DHCP Option 255 signifies "End Of Options"
 while ($dhcp_option -ne 255)
 {
 # Process padding bytes

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 3
3 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 switch ($dhcp_option)
 {
 # Handle Padding
 0
 {
 $dhcp_option = $binary_reader.ReadByte()
 continue
 }
 # Handle Standard PXE/Network Boot
 66
 {
 $dhcp_option_length =
$binary_reader.ReadByte()
 $dhcp_option_bytes =
$binary_reader.ReadBytes($dhcp_option_length)
 $tftp_server_name = DataToString
$dhcp_option_bytes
 $analyzer.console_queue.Add(" [!] TFTP Server
Name: " + $tftp_server_name) > $null
 }
 67
 {
 $dhcp_option_length =
$binary_reader.ReadByte()
 $dhcp_option_bytes =
$binary_reader.ReadBytes($dhcp_option_length)
 $tftp_boot_filename = DataToString
$dhcp_option_bytes
 $analyzer.console_queue.Add(" [!] TFTP Boot
Filename: " + $tftp_boot_filename) > $null
 $analyzer.console_queue.Add(" [!] This File
Could Contain Credentials") > $null
 }
 128
 {
 $dhcp_option_length =
$binary_reader.ReadByte()
 $dhcp_option_bytes =
$binary_reader.ReadBytes($dhcp_option_length)
 $tftp_server_ip =
[System.Net.IPAddress]$dhcp_option_bytes
 $analyzer.console_queue.Add(" [!] TFTP Server
IP: " + $tftp_server_ip) > $null
 }
 150
 {
 $dhcp_option_length =
$binary_reader.ReadByte()
 $dhcp_option_bytes =
$binary_reader.ReadBytes($dhcp_option_length)
 $tftp_server_ip =
[System.Net.IPAddress]$dhcp_option_bytes
 $analyzer.console_queue.Add(" [!] TFTP Server
IP: " + $tftp_server_ip) > $null
 }
 # Handle PXELINUX Requests
 208
 {
 $dhcp_option_length =
$binary_reader.ReadByte()
 $dhcp_option_bytes =
$binary_reader.ReadBytes($dhcp_option_length)
 $analyzer.console_queue.Add(" [!] PXELINUX
Magic Option Observed") > $null
 }
 209
 {
 $dhcp_option_length =
$binary_reader.ReadByte()
 $dhcp_option_bytes =
$binary_reader.ReadBytes($dhcp_option_length)
 $pxelinux_config = DataToString
$dhcp_option_bytes
 $analyzer.console_queue.Add(" [!] PXELINUX
Config: " + $pxelinux_config) > $null
 $analyzer.console_queue.Add(" [!] This File
Should Be Inspected") > $null
 }
 210
 {

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 3
4 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 $dhcp_option_length =
$binary_reader.ReadByte()
 $dhcp_option_bytes =
$binary_reader.ReadBytes($dhcp_option_length)
 $pxelinux_path_prefix = DataToString
$dhcp_option_bytes
 $analyzer.console_queue.Add(" [!] PXELINUX
Prefix: " + $pxelinux_path_prefix) > $null
 }
 # Handle All Others
 default
 {
 $dhcp_option_length =
$binary_reader.ReadByte()
 $dhcp_option_bytes =
$binary_reader.ReadBytes($dhcp_option_length)
 $analyzer.console_queue.Add(" [i] Observed
DHCP Option: " + $dhcp_option.ToString()) > $null
 $dhcp_option = $binary_reader.ReadByte()
 continue
 }
 }
 }
 }
 }
 }
 # NBNS Packet Inspection
 137
 {
 if ($analyzer.show_nbns)
 {
 $analyzer.console_queue.Add("NBNS packet received from " +
$source_IP.ToString()) > $null
 $nbns_queryid = DataToUInt16 $binary_reader.ReadBytes(2)
 $nbns_control = $binary_reader.ReadByte()
 # split the control field so we can tell if this is query or
response
 $nbns_control_high = [Int]"0x$(('{0:X}' -f
$nbns_version_type)[0])"
 $nbns_control_low = [Int]"0x$(('{0:X}' -f
$nbns_version_type)[1])"
 $nbns_rcode = $binary_reader.ReadByte()
 $nbns_qdcount = DataToUInt16 $binary_reader.ReadBytes(2)
 $nbns_ancount = DataToUInt16 $binary_reader.ReadBytes(2)
 $nbns_nscount = DataToUInt16 $binary_reader.ReadBytes(2)
 $nbns_arcount = DataToUInt16 $binary_reader.ReadBytes(2)

 if ($nbns_control_high -lt 8)
 {
 $analyzer.console_queue.Add(" [!] Potential for NBNS
Poisoning Attack") > $null
 $analyzer.console_queue.Add(" [i] Type: Query") > $null
 $analyzer.console_queue.Add(" [i] Query Count: " +
$nbns_qdcount.ToString()) > $null

 for ($i = 1; $i -le $nbns_qdcount; $i++)
 {
 $nbns_field_length = $binary_reader.ReadByte()
 $nbns_name = ""

 while ($nbns_field_length -ne 0)
 {
 $nbns_field_value_bytes =
$binary_reader.ReadBytes($nbns_field_length - 2)
 $nbns_query_suffix =
[System.BitConverter]::ToString($binary_reader.ReadBytes(2))
 # Used NBNS Name decoding code from Inveigh.ps1
below
 $nbns_query =
[System.BitConverter]::ToString($nbns_field_value_bytes)
 $nbns_query = $nbns_query -replace "-00",""
 $nbns_query = $nbns_query.Split("-") | ForEach-
Object{[Char][System.Convert]::ToInt16($_,16)}
 $nbns_query_string_encoded = New-Object
System.String ($nbns_query,0,$nbns_query.Length)
 $nbns_query_string_encoded =
$nbns_query_string_encoded.Substring(0,$nbns_query_string_encoded.IndexOf("CA"))
 $nbns_query_string_subtracted = ""
 $nbns_query_string = ""
 $n = 0

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 3
5 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 do
 {
 $nbns_query_string_sub =
(([Byte][Char]($nbns_query_string_encoded.Substring($n,1))) - 65)
 $nbns_query_string_subtracted +=
([System.Convert]::ToString($nbns_query_string_sub,16))
 $n += 1
 }
 until($n -gt ($nbns_query_string_encoded.Length -
1))

 $n = 0

 do
 {
 $nbns_query_string +=
([Char]([System.Convert]::ToInt16($nbns_query_string_subtracted.Substring($n,2),16)))
 $n += 2
 }
 until($n -gt
($nbns_query_string_subtracted.Length - 1) -or $nbns_query_string.Length -eq 15)
 # Name Conversion is complete

 $nbns_name = $nbns_name + $nbns_query_string

 # Read Next Length for Loop Execution, for NBNS
there should only be one record
 $nbns_field_length = $binary_reader.ReadByte()

 if ($nbns_field_length -ne 0)
 {
 $nbns_name = ($nbns_name + ".")
 }

 switch ($nbns_query_suffix)
 {
 '41-41'
 {
 $nbns_service = "Workstation/Redirector"
 }
 '41-44'
 {
 $nbns_service = "Messenger"
 }
 '43-47'
 {
 $nbns_service = "Remote Access"
 }
 '43-41'
 {
 $nbns_service = "Server"
 }
 '43-42'
 {
 $nbns_service = "Remote Access Client"
 }
 '42-4C'
 {
 $nbns_service = "Domain Master Browser"
 }
 '42-4D'
 {
 $nbns_service = "Domain Controllers"
 }
 '42-4E'
 {
 $nbns_service = "Master Browser"
 }
 '42-4F'
 {
 $nbns_service = "Browser Election"
 }
 }
 }

 $nbns_record_type = DataToUInt16
$binary_reader.ReadBytes(2)
 $nbns_record_class = DataToUInt16
$binary_reader.ReadBytes(2)

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 3
6 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 $analyzer.console_queue.Add(" [i] Host: " +
$nbns_name) > $null
 $analyzer.console_queue.Add(" [i] Service Type: " +
$nbns_service) > $null
 }
 }
 else
 {
 $analyzer.console_queue.Add(" [i] Type: Response") >
$null
 $analyzer.console_queue.Add(" [i] Response Count: " +
$nbns_ancount.ToString()) > $null
 # May Parse NBNS Responses Further In The Future
 }
 }
 }
 # HSRP Packet Inspection
 1985
 {
 if ($analyzer.show_hsrp)
 {
 # This is for HSRP v0/1. HSRP v2 uses multicast IP
224.0.0.102
 # HSRP destination should be 224.0.0.2
 if ($destination_IP.ToString() -eq "224.0.0.2")
 {
 $hsrp_version = $binary_reader.ReadByte()
 $hsrp_opcode = $binary_reader.ReadByte()
 $hsrp_state = $binary_reader.ReadByte()
 $hsrp_hellotime = $binary_reader.ReadByte()
 $hsrp_holdtime = $binary_reader.ReadByte()
 $hsrp_priority = $binary_reader.ReadByte()
 $hsrp_group = $binary_reader.ReadByte()
 $hsrp_reserved = $binary_reader.ReadByte()
 $hsrp_auth_bytes = $binary_reader.ReadBytes(8)
 $hsrp_auth = DataToString 0 8 $hsrp_auth_bytes
 $hsrp_groupip_bytes = $binary_reader.ReadBytes(4)
 $hsrp_groupip = [System.Net.IPAddress]
$hsrp_groupip_bytes

 $analyzer.console_queue.Add("HSRP v" +
$hsrp_version.ToString() + " Packet Observed from " + $source_IP.ToString()) > $null

 switch ($hsrp_opcode)
 {
 0
 {
 $analyzer.console_queue.Add(" [i] Operation:
Hello") > $null
 $analyzer.console_queue.Add(" [i] Hello Time: " +
$hsrp_hellotime.ToString() + " seconds") > $null
 $analyzer.console_queue.Add(" [i] Hold Time: " +
$hsrp_holdtime.ToString() + " seconds") > $null
 }
 1
 {
 $analyzer.console_queue.Add(" [i] Operation:
Coup") > $null
 }
 2
 {
 $analyzer.console_queue.Add(" [i] Operation:
Resign") > $null
 }
 }

 switch ($hsrp_state)
 {
 0
 {
 $analyzer.console_queue.Add(" [i] State:
Initial") > $null
 }
 1
 {
 $analyzer.console_queue.Add(" [i] State: Learn")
> $null
 }
 2
 {

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 3
7 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 $analyzer.console_queue.Add(" [i] State: Listen")
> $null
 }
 4
 {
 $analyzer.console_queue.Add(" [i] State: Speak")
> $null
 }
 8
 {
 $analyzer.console_queue.Add(" [i] State:
Standby") > $null
 }
 16
 {
 $analyzer.console_queue.Add(" [i] State: Active")
> $null
 }
 }

 $analyzer.console_queue.Add(" [i] Priority: " +
$hsrp_priority.ToString()) > $null
 if ($hsrp_priority -lt 250)
 {
 $analyzer.console_queue.Add(" [!] Priority May Be
Low. Potential for Hijacking")
 }

 $analyzer.console_queue.Add(" [i] Group: " +
$hsrp_group.ToString()) > $null
 $analyzer.console_queue.Add(" [!] Password: " +
$hsrp_auth) > $null
 $analyzer.console_queue.Add(" [i] Group IP: " +
$hsrp_groupip.ToString()) > $null
 }
 else
 {
 $analyzer.console_queue.Add("Packet received on HSRP UDP
Port with wrong destination address") > $null
 }
 }
 }
 # mDNS Packet Inspection
 5353
 {
 if ($analyzer.show_mdns)
 {

 # Need to gather full payload up front because of DNS
compression
 $payload_bytes = $binary_reader.ReadBytes(($UDP_length_uint -
2) * 4)

 # mDNS destination should be 224.0.0.251
 if ($destination_IP.ToString() -eq "224.0.0.251")
 {
 $analyzer.console_queue.Add("mDNS Packet Observed from "
+ $source_IP.ToString()) > $null
 $mdns_queryid = DataToUInt16 $payload_bytes[0..1]
 $mdns_control = $payload_bytes[2]
 # split the control field so we can tell if this is query
or response
 $mdns_control_high = [Int]"0x$(('{0:X}' -f
$mdns_control)[0])"
 $mdns_control_low = [Int]"0x$(('{0:X}' -f
$mdns_version_type)[1])"
 $mdns_rcode = $payload_bytes[3]
 $mdns_qdcount = DataToUInt16 $payload_bytes[4..5]
 $mdns_ancount = DataToUInt16 $payload_bytes[6..7]
 $mdns_nscount = DataToUInt16 $payload_bytes[8..9]
 $mdns_arcount = DataToUInt16 $payload_bytes[10.11]

 if ($mdns_control_high -lt 8)
 {
 $analyzer.console_queue.Add(" [!] Potential for mDNS
Cache Poisoning Attack") > $null
 $analyzer.console_queue.Add(" [i] Type: Query") >
$null
 $analyzer.console_queue.Add(" [i] Count: " +
$mdns_qdcount.ToString()) > $null
 $payload_index = 12

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 3
8 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 for ($i = 1; $i -le $mdns_qdcount; $i++)
 {

 $mdns_field_length =
$payload_bytes[$payload_index]
 $payload_index = $payload_index + 1

 $name = ""

 while ($mdns_field_length -ne 0)
 {
 $mdns_field_value_bytes =
$payload_bytes[$payload_index..($payload_index + $mdns_field_length - 1)]
 $payload_index = $payload_index +
$mdns_field_length

 $mdns_field_value = DataToString 0
$mdns_field_length $mdns_field_value_bytes

 $name = $name + $mdns_field_value

 $mdns_field_length =
$payload_bytes[$payload_index]
 $payload_index = $payload_index + 1

 # When DNS Compression is in use, the record
will not be terminated with a null
 # Instead, a byte value of 192 (or C0) will
be found indicating that the next byte
 # represents the offset into the DNS packet
where the request/response continues.
 if ($mdns_field_length -eq 192)
 {
 $mdns_ptr_offset =
$payload_bytes[$payload_index]
 $payload_index = $payload_index + 1

 $mdns_field_length =
$payload_bytes[$mdns_ptr_offset]
 $mdns_ptr_offset = $mdns_ptr_offset + 1

 while ($mdns_field_length -ne 0)
 {
 $mdns_field_value_bytes =
$payload_bytes[$mdns_ptr_offset..($mdns_ptr_offset + $mdns_field_length - 1)]
 $mdns_ptr_offset = $mdns_ptr_offset +
$mdns_field_length

 $mdns_field_value = DataToString 0
$mdns_field_length $mdns_field_value_bytes

 $name = $name + $mdns_field_value

 $mdns_field_length =
$payload_bytes[$mdns_ptr_offset]
 $mdns_ptr_offset = $mdns_ptr_offset +
1

 if ($mdns_field_length -ne 0)
 {
 $name = ($name + ".")
 }
 }
 break
 }

 if ($mdns_field_length -ne 0)
 {
 $name = ($name + ".")
 }
 }

 $mdns_record_type =
$payload_bytes[$payload_index..($payload_index + 1)]
 $payload_index = $payload_index + 2

 $mdns_record_class =
$payload_bytes[$payload_index..($payload_index + 1)]
 $payload_index = $payload_index + 2

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 3
9 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 $analyzer.console_queue.Add(" [i] Host: " +
$name) > $null
 }
 }
 else
 {
 $analyzer.console_queue.Add(" [i] Type: Response") >
$null
 $analyzer.console_queue.Add(" [i] Count: " +
$mdns_ancount.ToString()) > $null
 # May Parse mDNS Responses Further In The Future
 }
 }
 else
 {
 $analyzer.console_queue.Add("Packet received on mDNS UDP
Port with wrong destination address") > $null
 }
 }
 }
 # LLMNR Packet Inspection
 5355
 {
 if ($analyzer.show_llmnr)
 {
 if ($destination_IP.ToString() -eq "224.0.0.252")
 {
 $analyzer.console_queue.Add("LLMNR Packet Observed from "
+ $source_IP.ToString()) > $null
 $llmnr_queryid = DataToUInt16 $payload_bytes[0..1]
 llmnr_control = $payload_bytes[2]
 # split the control field so we can tell if this is query
or response
 $llmnr_control_high = [Int]"0x$(('{0:X}' -f
$llmnr_control)[0])"
 $llmnr_control_low = [Int]"0x$(('{0:X}' -f
$llmnr_version_type)[1])"
 $llmnr_rcode = $payload_bytes[3]
 $llmnr_qdcount = DataToUInt16 $payload_bytes[4..5]
 $llmnr_ancount = DataToUInt16 $payload_bytes[6..7]
 $llmnr_nscount = DataToUInt16 $payload_bytes[8..9]
 $llmnr_arcount = DataToUInt16 $payload_bytes[10.11]

 if ($llmnr_control_high -lt 8)
 {
 $analyzer.console_queue.Add(" [!] Potential for LLMNR
Cache Poisoning Attack") > $null
 $analyzer.console_queue.Add(" [i] Type: Query") >
$null
 $analyzer.console_queue.Add(" [i] Count: " +
$llmnr_qdcount.ToString()) > $null
 $payload_index = 12

 for ($i = 1; $i -le $llmnr_qdcount; $i++)
 {

 $llmnr_field_length =
$payload_bytes[$payload_index]
 $payload_index = $payload_index + 1

 $name = ""

 while ($llmnr_field_length -ne 0)
 {
 $llmnr_field_value_bytes =
$payload_bytes[$payload_index..($payload_index + $llmnr_field_length - 1)]
 $payload_index = $payload_index +
$llmnr_field_length

 $llmrn_field_value = DataToString 0
$mdns_field_length $llmnr_field_value_bytes

 $name = $name + $llmnr_field_value

 $llmnr_field_length =
$payload_bytes[$payload_index]
 $payload_index = $payload_index + 1

 # When DNS Compression is in use, the record
will not be terminated with a null

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 4
0 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 # Instead, a byte value of 192 (or C0) will
be found indicating that the next byte
 # represents the offset into the DNS packet
where the request/response continues.
 if ($llmnr_field_length -eq 192)
 {
 $llmnr_ptr_offset =
$payload_bytes[$payload_index]
 $payload_index = $payload_index + 1

 $llmnr_field_length =
$payload_bytes[$llmnr_ptr_offset]
 $llmnr_ptr_offset = $mdns_ptr_offset + 1

 while ($llmnr_field_length -ne 0)
 {
 $llmnr_field_value_bytes =
$payload_bytes[$llmnr_ptr_offset..($llmnr_ptr_offset + $llmnr_field_length - 1)]
 $llmnr_ptr_offset = $llmnr_ptr_offset
+ $llmnr_field_length

 $llmnr_field_value = DataToString 0
$llmnr_field_length $llmnr_field_value_bytes

 $name = $name + $llmnr_field_value

 $llmnr_field_length =
$payload_bytes[$llmnr_ptr_offset]
 $llmnr_ptr_offset = $llmnr_ptr_offset
+ 1

 if ($llmnr_field_length -ne 0)
 {
 $name = ($name + ".")
 }
 }
 break
 }

 if ($llmnr_field_length -ne 0)
 {
 $name = ($name + ".")
 }
 }

 $llmnr_record_type =
$payload_bytes[$payload_index..($payload_index + 1)]
 $payload_index = $payload_index + 2

 $llmnr_record_class =
$payload_bytes[$payload_index..($payload_index + 1)]
 $payload_index = $payload_index + 2

 $analyzer.console_queue.Add(" [i] Host: " +
$name) > $null
 }
 }
 else
 {
 $analyzer.console_queue.Add(" [i] Type: Response") >
$null
 $analyzer.console_queue.Add(" [i] Count: " +
$llmnr_ancount.ToString()) > $null
 # May Parse LLMNR Responses Further In The Future
 }
 }
 else
 {
 $analyzer.console_queue.Add("Packet received on LLMNR UDP
Port with wrong destination address") > $null
 }
 }
 }
 default
 {
 # Do Nothing
 }
 }

 }
 # OSPF Processing

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 4
1 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 89
 {
 if ($analyzer.show_ospf)
 {
 if ($destination_IP.ToString() -eq "224.0.0.5")
 {
 $ospf_version = $binary_reader.ReadByte()
 $ospf_type = $binary_reader.ReadByte()
 $ospf_length = DataToUInt16 $binary_reader.ReadBytes(2)
 $ospf_router_bytes = $binary_reader.ReadBytes(4)
 $ospf_router = [System.Net.IPAddress]$ospf_router_bytes
 $ospf_area_bytes = $binary_reader.ReadBytes(4)
 $ospf_area = [System.Net.IPAddress]$ospf_area_bytes
 $ospf_checksum = DataToUInt16 $binary_reader.ReadBytes(2)
 $ospf_authType = DataToUInt16 $binary_reader.ReadBytes(2)

 $analyzer.console_queue.Add("OSPF v" + $ospf_version.ToString() +
" Packet Observed from " + $source_IP.ToString()) > $null

 switch($ospf_authType)
 {
 # Handle OSPF Packets with NULL Auth
 0
 {
 switch($ospf_type)
 {
 1
 {
 $analyzer.console_queue.Add(" [i] Type: Hello
packet.") > $null
 }
 2
 {
 $analyzer.console_queue.Add(" [i] Type: DB
Descriptor packet.") > $null
 }
 3
 {
 $analyzer.console_queue.Add(" [i] Type: LS
Request packet.") > $null
 }
 4
 {
 $analyzer.console_queue.Add(" [!] Type: LS Update
packet.") > $null
 }
 5
 {
 $analyzer.console_queue.Add(" [i] Type: LS Ack
packet.") > $null
 }
 }

 $analyzer.console_queue.Add(" [!] Auth: NULL") > $null
 }
 # Handle OSPF Packets with Password Auth
 1
 {
 switch($ospf_type)
 {
 1
 {
 $analyzer.console_queue.Add(" [i] Type: Hello
packet.") > $null
 }
 2
 {
 $analyzer.console_queue.Add(" [i] Type: DB
Descriptor packet.") > $null
 }
 3
 {
 $analyzer.console_queue.Add(" [i] Type: LS
Request packet.") > $null
 }
 4
 {
 $analyzer.console_queue.Add(" [!] Type: LS Update
packet.") > $null
 }

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 4
2 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 5
 {
 $analyzer.console_queue.Add(" [i] Type: LS Ack
packet.") > $null
 }
 }

 $analyzer.console_queue.Add(" [!] Auth: Password") >
$null
 $password_bytes = $binary_reader.ReadBytes(8)
 $ospf_authData = DataToString 0 8 $password_bytes
 $analyzer.console_queue.Add(" [!] Password: " +
$ospf_authData) > $null
 }
 # Handle OSPF Packets With Cryptographic Auth
 2
 {
 $null_bytes = $binary_reader.ReadBytes(2)
 $ospf_key_id = $binary_reader.ReadByte()
 $ospf_auth_length = $binary_reader.ReadByte()
 $ospf_auth_sequence_bytes = $binary_reader.ReadBytes(4)
 $ospf_auth_sequence = DataToUInt32
$ospf_auth_sequence_bytes

 switch($ospf_type)
 {
 1
 {
 $analyzer.console_queue.Add(" [i] Type: Hello
packet.") > $null
 $analyzer.console_queue.Add(" [i] Auth:
Cryptographic (MD5)") > $null
 $analyzer.console_queue.Add(" [i] KeyID: " +
$ospf_key_id.ToString()) > $null
 $analyzer.console_queue.Add(" [i] Auth Seq: " +
$ospf_auth_sequence.ToString()) > $null
 $ospf_netmask_bytes = $binary_reader.ReadBytes(4)
 $ospf_netmask =
[System.Net.IPAddress]$ospf_netmask_bytes
 $opsf_hello_interval = DataToUInt16
$binary_reader.ReadBytes(2)
 $ospf_hello_options = $binary_reader.ReadByte()
 $ospf_hello_router_pri =
$binary_reader.ReadByte()
 $ospf_dead_interval_bytes =
$binary_reader.ReadBytes(4)
 $ospf_dead_interval = DataToUInt32
$ospf_dead_interval_bytes
 $ospf_dr_bytes = $binary_reader.ReadBytes(4)
 $ospf_dr_ip =
[System.Net.IPAddress]$ospf_dr_bytes
 $ospf_br_bytes = $binary_reader.ReadBytes(4)
 $ospf_br_ip =
[System.Net.IPAddress]$ospf_br_bytes
 $ospf_crypt_hash_bytes =
$binary_reader.ReadBytes(16)
 $ospf_crypt_hash = DataToHexString 0 16
$ospf_crypt_hash_bytes
 $analyzer.console_queue.Add(" [i] Auth Hash: " +
$ospf_crypt_hash.ToString())
 $analyzer.console_queue.Add(" [i] Designated
Router: " + $ospf_dr_ip.ToString())
 }
 2
 {
 # May need to expand on DB Descriptor Packets
(Just to get routing table).
 $analyzer.console_queue.Add(" [i] Type: DB
Descriptor packet.") > $null
 $analyzer.console_queue.Add(" [i] Auth:
Cryptographic (MD5)") > $null
 $analyzer.console_queue.Add(" [i] KeyID: " +
$ospf_key_id.ToString()) > $null
 $analyzer.console_queue.Add(" [i] Auth Seq: " +
$ospf_auth_sequence.ToString()) > $null

 }
 3
 {
 # Link-State Request Packets are Less Interesting

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 4
3 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 $analyzer.console_queue.Add(" [i] Type: LS
Request packet.") > $null
 $analyzer.console_queue.Add(" [i] Auth:
Cryptographic (MD5)") > $null
 $analyzer.console_queue.Add(" [i] KeyID: " +
$ospf_key_id.ToString()) > $null
 $analyzer.console_queue.Add(" [i] Auth Seq: " +
$ospf_auth_sequence.ToString()) > $null

 }
 4
 {
 # Link-State Update Packets Can Be Used to Build
a Routing Table
 $analyzer.console_queue.Add(" [!] Type: LS Update
packet.") > $null
 $analyzer.console_queue.Add(" [i] Auth:
Cryptographic (MD5)") > $null
 $analyzer.console_queue.Add(" [i] KeyID: " +
$ospf_key_id.ToString()) > $null
 $analyzer.console_queue.Add(" [i] Auth Seq: " +
$ospf_auth_sequence.ToString()) > $null

 }
 5
 {
 # Link-State Acknowledgement Packets May Need to
be Used to Validate Updates
 $analyzer.console_queue.Add(" [i] Type: LS Ack
packet.") > $null
 $analyzer.console_queue.Add(" [i] Auth:
Cryptographic (MD5)") > $null
 $analyzer.console_queue.Add(" [i] KeyID: " +
$ospf_key_id.ToString()) > $null
 $analyzer.console_queue.Add(" [i] Auth Seq: " +
$ospf_auth_sequence.ToString()) > $null

 }
 }
 }
 }

 }
 elseif ($destination_IP.ToString() -eq "224.0.0.6")
 {
 $ospf_version = $binary_reader.ReadByte()
 $ospf_type = $binary_reader.ReadByte()
 $ospf_length = DataToUInt16 $binary_reader.ReadBytes(2)
 $ospf_router_bytes = $binary_reader.ReadBytes(4)
 $ospf_router = [System.Net.IPAddress]$ospf_router_bytes
 $ospf_area_bytes = $binary_reader.ReadBytes(4)
 $ospf_area = [System.Net.IPAddress]$ospf_area_bytes
 $ospf_checksum = DataToUInt16 $binary_reader.ReadBytes(2)
 $ospf_authType = DataToUInt16 $binary_reader.ReadBytes(2)

 $analyzer.console_queue.Add("OSPF v" + $ospf_version.ToString() +
" Packet Observed from " + $source_IP.ToString()) > $null

 switch($ospf_authType)
 {
 # Handle OSPF Packets with NULL Auth
 0
 {
 switch($ospf_type)
 {
 1
 {
 $analyzer.console_queue.Add(" [i] Type: Hello
packet.") > $null
 }
 2
 {
 $analyzer.console_queue.Add(" [i] Type: DB
Descriptor packet.") > $null
 }
 3
 {
 $analyzer.console_queue.Add(" [i] Type: LS
Request packet.") > $null
 }

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 4
4 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 4
 {
 $analyzer.console_queue.Add(" [!] Type: LS Update
packet.") > $null
 }
 5
 {
 $analyzer.console_queue.Add(" [i] Type: LS Ack
packet.") > $null
 }
 }

 $analyzer.console_queue.Add(" [!] Auth: NULL") > $null
 }
 # Handle OSPF Packets with Password Auth
 1
 {
 switch($ospf_type)
 {
 1
 {
 $analyzer.console_queue.Add(" [i] Type: Hello
packet.") > $null
 }
 2
 {
 $analyzer.console_queue.Add(" [i] Type: DB
Descriptor packet.") > $null
 }
 3
 {
 $analyzer.console_queue.Add(" [i] Type: LS
Request packet.") > $null
 }
 4
 {
 $analyzer.console_queue.Add(" [!] Type: LS Update
packet.") > $null
 }
 5
 {
 $analyzer.console_queue.Add(" [i] Type: LS Ack
packet.") > $null
 }
 }

 $analyzer.console_queue.Add(" [!] Auth: Password") > $null
 $password_bytes = $binary_reader.ReadBytes(8)
 $ospf_authData = DataToString 0 8 $password_bytes
 $analyzer.console_queue.Add(" [!] Password: " +
$ospf_authData) > $null
 }
 # Handle OSPF Packets With Cryptographic Auth
 2
 {
 $null_bytes = $binary_reader.ReadBytes(2)
 $ospf_key_id = $binary_reader.ReadByte()
 $ospf_auth_length = $binary_reader.ReadByte()
 $ospf_auth_sequence_bytes = $binary_reader.ReadBytes(4)
 $ospf_auth_sequence = DataToUInt32
$ospf_auth_sequence_bytes

 switch($ospf_type)
 {
 1
 {
 $analyzer.console_queue.Add(" [i] Type: Hello
packet.") > $null
 $analyzer.console_queue.Add(" [i] Auth:
Cryptographic (MD5)") > $null
 $analyzer.console_queue.Add(" [i] KeyID: " +
$ospf_key_id.ToString()) > $null
 $analyzer.console_queue.Add(" [i] Auth Seq: " +
$ospf_auth_sequence.ToString()) > $null
 $ospf_netmask_bytes = $binary_reader.ReadBytes(4)
 $ospf_netmask =
[System.Net.IPAddress]$ospf_netmask_bytes
 $opsf_hello_interval = DataToUInt16
$binary_reader.ReadBytes(2)
 $ospf_hello_options = $binary_reader.ReadByte()

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 4
5 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 $ospf_hello_router_pri =
$binary_reader.ReadByte()
 $ospf_dead_interval_bytes =
$binary_reader.ReadBytes(4)
 $ospf_dead_interval = DataToUInt32
$ospf_dead_interval_bytes
 $ospf_dr_bytes = $binary_reader.ReadBytes(4)
 $ospf_dr_ip =
[System.Net.IPAddress]$ospf_dr_bytes
 $ospf_br_bytes = $binary_reader.ReadBytes(4)
 $ospf_br_ip =
[System.Net.IPAddress]$ospf_br_bytes
 $ospf_crypt_hash_bytes =
$binary_reader.ReadBytes(16)
 $ospf_crypt_hash = DataToHexString 0 16
$ospf_crypt_hash_bytes
 $analyzer.console_queue.Add(" [i] Auth Hash: " +
$ospf_crypt_hash.ToString())
 $analyzer.console_queue.Add(" [i] Designated
Router: " + $ospf_dr_ip.ToString())
 }
 2
 {
 # May need to expand on DB Descriptor Packets
(Just to get routing table).
 $analyzer.console_queue.Add(" [i] Type: DB
Descriptor packet.") > $null
 $analyzer.console_queue.Add(" [i] Auth:
Cryptographic (MD5)") > $null
 $analyzer.console_queue.Add(" [i] KeyID: " +
$ospf_key_id.ToString()) > $null
 $analyzer.console_queue.Add(" [i] Auth Seq: " +
$ospf_auth_sequence.ToString()) > $null

 }
 3
 {
 # Link-State Request Packets are Less Interesting
 $analyzer.console_queue.Add(" [i] Type: LS
Request packet.") > $null
 $analyzer.console_queue.Add(" [i] Auth:
Cryptographic (MD5)") > $null
 $analyzer.console_queue.Add(" [i] KeyID: " +
$ospf_key_id.ToString()) > $null
 $analyzer.console_queue.Add(" [i] Auth Seq: " +
$ospf_auth_sequence.ToString()) > $null

 }
 4
 {
 # Link-State Update Packets Can Be Used to Build
a Routing Table
 $analyzer.console_queue.Add(" [!] Type: LS Update
packet.") > $null
 $analyzer.console_queue.Add(" [i] Auth:
Cryptographic (MD5)") > $null
 $analyzer.console_queue.Add(" [i] KeyID: " +
$ospf_key_id.ToString()) > $null
 $analyzer.console_queue.Add(" [i] Auth Seq: " +
$ospf_auth_sequence.ToString()) > $null

 }
 5
 {
 # Link-State Acknowledgement Packets May Need to
be Used to Validate Updates
 $analyzer.console_queue.Add(" [i] Type: LS Ack
packet.") > $null
 $analyzer.console_queue.Add(" [i] Auth:
Cryptographic (MD5)") > $null
 $analyzer.console_queue.Add(" [i] KeyID: " +
$ospf_key_id.ToString()) > $null
 $analyzer.console_queue.Add(" [i] Auth Seq: " +
$ospf_auth_sequence.ToString()) > $null

 }
 }
 }
 }
 }
 else

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 4
6 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 {
 $analyzer.console_queue.Add("Packet received for OSPF Protocol ID
with wrong destination address") > $null
 }
 }

 }
 # VRRP Processing
 112
 {
 if ($analyzer.show_vrrp)
 {
 if ($destination_IP.ToString() -eq "224.0.0.18")
 {
 $vrrp_version_type = $binary_reader.ReadByte()
 $vrrp_version = [Int]"0x$(('{0:X}' -f $vrrp_version_type)[0])"
 # Only type 1 is defined in the RFC, all others are non-existent
 $vrrp_type = [Int]"0x$(('{0:X}' -f $vrrp_version_type)[1])"
 $vrrp_rtr_id = $binary_reader.ReadByte()
 $vrrp_priority = $binary_reader.ReadByte()
 $vrrp_addr_count = $binary_reader.ReadByte()

 $analyzer.console_queue.Add("VRRP v" + $vrrp_version + " Packet
Observed from " + $source_IP.ToString()) > $null
 $analyzer.console_queue.Add(" [i] Router ID: " +
$vrrp_rtr_id.ToString())
 $analyzer.console_queue.Add(" [i] Priority: " +
$vrrp_priority.ToString())
 if ($vrrp_priority -lt 250)
 {
 $analyzer.console_queue.Add(" [!] Priority May Be Low.
Potential for Hijacking")
 }

 $analyzer.console_queue.Add(" [i] Addresses: " +
$vrrp_addr_count.ToString())

 # VRRP v2 is IPv4 Only
 if ($vrrp_version -lt 3)
 {
 $vrrp_auth_type = $binary_reader.ReadByte()
 $vrrp_advert_interval = $binary_reader.ReadByte()
 $vrrp_checksum = DataToUInt16 $binary_reader.ReadBytes(2)

 # Might be wise to validate this against packet length to
handle malformed packets
 for ($i = 1; $i -le $vrrp_addr_count; $i++)
 {
 try
 {
 $vrrp_address_bytes = $binary_reader.ReadBytes(4)
 $vrrp_address =
[System.Net.IPAddress]$vrrp_address_bytes

 $analyzer.console_queue.Add(" [i] Address " +
$i.ToString() + ": " + $vrrp_address.ToString()) > $null
 }
 catch
 {
 $analyzer.console_queue.Add(" [w] Malformed
Packet!!")
 }
 }

 try
 {
 switch ($vrrp_auth_type)
 {
 0
 {
 $analyzer.console_queue.Add(" [!] Auth: None") >
$null
 }
 1
 {
 $analyzer.console_queue.Add(" [!] Auth: Simple
Text Password") > $null
 $vrrp_auth_data_bytes =
$binary_reader.ReadBytes(8)
 $vrrp_auth_data = DataToString 0 8
$vrrp_auth_data_bytes

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 4
7 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 $analyzer.console_queue.Add(" [!] Password: " +
$vrrp_auth_data) > $null
 }
 2
 {
 $analyzer.console_queue.Add(" [i] Auth: IP Auth
Header") > $null
 }
 }
 }
 catch
 {
 }
 }
 elseif ($IP_version -eq 4)
 {
 $vrrp_rsv_advert_interval_bytes = $binary_reader.ReadBytes(4)
 $vrrp_rsv_advert_interval = DataToUInt32
$vrrp_rsv_advert_interval_bytes
 $vrrp_checksum = DataToUInt16 $binary_reader.ReadBytes(2)

 # Might be wise to validate this against packet length to
handle malformed packets
 for ($i = 1; $i -le $vrrp_addr_count; $i++)
 {
 try
 {
 $vrrp_address_bytes = $binary_reader.ReadBytes(4)
 $vrrp_address =
[System.Net.IPAddress]$vrrp_address_bytes

 $analyzer.console_queue.Add(" [i] Address " +
$i.ToString() + ": " + $vrrp_address.ToString()) > $null
 }
 catch
 {
 $analyzer.console_queue.Add(" [w] Malformed Packet!!")
 }
 }
 }
 elseif ($IP_version -eq 6)
 {
 $vrrp_rsv_advert_interval_bytes = $binary_reader.ReadBytes(4)
 $vrrp_rsv_advert_interval = DataToUInt32
$vrrp_rsv_advert_interval_bytes
 $vrrp_checksum = DataToUInt16 $binary_reader.ReadBytes(2)

 # Might be wise to validate this against packet length to
handle malformed packets
 for ($i = 1; $i -le $vrrp_addr_count; $i++)
 {
 try
 {
 $vrrp_address_bytes = $binary_reader.ReadBytes(16)
 $vrrp_address =
[System.Net.IPAddress]$vrrp_address_bytes

 $analyzer.console_queue.Add(" [i] Address " +
$i.ToString() + ": " + $vrrp_address.ToString()) > $null
 }
 catch
 {
 $analyzer.console_queue.Add(" [w] Malformed
Packet!!")
 }
 }
 }
 }
 else
 {
 $analyzer.console_queue.Add("Packet received on VRRP Protocol ID
with wrong destination address") > $null
 }
 }
 }
 }
 }

 $binary_reader.Close()
 $memory_stream.Dispose()
 $memory_stream.Close()

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 4
8 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

}

Moved sniffer to main script instead of function so thread can be properly shut down
$analyzer.console_queue.Add("Starting sniffer...") > $null
$sniffer_runspace = [RunspaceFactory]::CreateRunspace()
$sniffer_runspace.Open()
$sniffer_runspace.SessionStateProxy.SetVariable('analyzer',$analyzer)
$sniffer_powershell = [PowerShell]::Create()
$sniffer_powershell.Runspace = $sniffer_runspace
$sniffer_powershell.AddScript($shared_basic_functions_scriptblock) > $null
$sniffer_powershell.AddScript($sniffer_scriptblock).AddArgument($IP).AddArgument($RunTime
) > $null
$sniffer_powershell.BeginInvoke() > $null

 while ($analyzer.running -or ($analyzer.console_queue.Count -gt 0))
 {

 while($analyzer.console_queue.Count -gt 0)
 {
 switch -wildcard ($analyzer.console_queue[0])
 {
 "*[!]*"
 {
 Write-Host $analyzer.console_queue[0] -ForegroundColor
"DarkYellow"
 $analyzer.console_queue.RemoveAt(0)
 }
 "Windows Firewall = Enabled"
 {
 Write-Warning($analyzer.console_queue[0])
 $analyzer.console_queue.RemoveAt(0)
 }

 default
 {
 Write-Output $analyzer.console_queue[0]
 $analyzer.console_queue.RemoveAt(0)
 }

 }
 }

 if([Console]::KeyAvailable)
 {
 $key = [System.Console]::ReadKey()

 switch ($key.KeyChar)
 {
 'h'
 {
 $analyzer.show_hsrp = !$analyzer.show_hsrp
 if ($analyzer.show_hsrp)
 {
 $analyzer.console_queue.Add("HSRP Toggle: ON") > $null
 }
 else
 {
 $analyzer.console_queue.Add("HSRP Toggle: OFF") > $null
 }
 }
 'd'
 {
 $analyzer.show_dhcp = !$analyzer.show_dhcp
 if ($analyzer.show_dhcp)
 {
 $analyzer.console_queue.Add("DHCP Toggle: ON") > $null
 }
 else
 {
 $analyzer.console_queue.Add("DHCP Toggle: OFF") > $null
 }
 }
 'o'
 {
 $analyzer.show_ospf = !$analyzer.show_ospf
 if ($analyzer.show_ospf)
 {
 $analyzer.console_queue.Add("OSPF Toggle: ON") > $null
 }
 else
 {

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 4
9 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 $analyzer.console_queue.Add("OSPF Toggle: OFF") > $null
 }

 }
 'v'
 {
 $analyzer.show_vrrp = !$analyzer.show_vrrp
 if ($analyzer.show_vrrp)
 {
 $analyzer.console_queue.Add("VRRP Toggle: ON") > $null
 }
 else
 {
 $analyzer.console_queue.Add("VRRP Toggle: OFF") > $null
 }
 }
 'l'
 {
 $analyzer.show_llmnr = !$analyzer.show_llmnr
 if ($analyzer.show_llmnr)
 {
 $analyzer.console_queue.Add("LLMNR Toggle: ON") > $null
 }
 else
 {
 $analyzer.console_queue.Add("LLMNR Toggle: OFF") > $null
 }

 }
 'm'
 {
 $analyzer.show_mdns = !$analyzer.show_mdns
 if ($analyzer.show_mdns)
 {
 $analyzer.console_queue.Add("mDNS Toggle: ON") > $null
 }
 else
 {
 $analyzer.console_queue.Add("mDNS Toggle: OFF") > $null
 }

 }
 'n'
 {
 $analyzer.show_nbns = !$analyzer.show_nbns
 if ($analyzer.show_nbns)
 {
 $analyzer.console_queue.Add("NBNS Toggle: ON") > $null
 }
 else
 {
 $analyzer.console_queue.Add("NBNS Toggle: OFF") > $null
 }
 }
 'q'
 {
 Write-Host ("Shuting Down Analyzer...Please Wait") > $null
 # Set analyzer to stopped and reset show variables
 $analyzer.running = $false
 $analyzer.show_dhcp = $true
 $analyzer.show_hsrp = $true
 $analyzer.show_llmnr = $true
 $analyzer.show_mdns = $true
 $analyzer.show_nbns = $true
 $analyzer.show_ospf = $true
 $analyzer.show_vrrp = $true

 # Kill the sniffer objects
 $sniffer_powershell.Dispose()
 $sniffer_runspace.CloseAsync()
 $sniffer_runspace.Dispose()
 Write-Host ("Shutdown Complete") > $null
 return
 }
 default
 {
 $analyzer.console_queue.Add("Runtime Interactive Help:") > $null
 $analyzer.console_queue.Add("D = DHCP Toggle") > $null
 $analyzer.console_queue.Add("H = HSRP Toggle") > $null
 $analyzer.console_queue.Add("L = LLMNR Toggle") > $null
 $analyzer.console_queue.Add("M = mDNS Toggle") > $null

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Identifying Vulnerable Network Protocols with Powershell	 5
0 	

David	R	Fletcher	Jr.,	6fletch9@gmail.com	 	

 $analyzer.console_queue.Add("O = OSPF Toggle") > $null
 $analyzer.console_queue.Add("V = VRRP Toggle") > $null
 $analyzer.console_queue.Add("Q = Shut Down Analyzer") > $null
 }
 }
 }

 Start-Sleep -m 5
 }
}

