
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Beware of Geeks Bearing Gifts: A Windows NT Rootkit Explored

*Reproduced from www.rootkit.com

FREDRIC J CIBELLI

Incident Handling and Hacker Exploit Practical

4 April 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
2

Preface: Greg Hoglund has unveiled a surreal and frightening truth about the present computer
security landscape; a working, true to definition rootkit for the most abundantly used operating
system in the world, Microsoft Windows NT. This paper briefly explores the exploit’s code,
capabilities and techniques while discussing the impact it can have on computer systems and a
society that depends on them. This is the first, true Trojan for the Windows NT platform.

Name: NTroot, most current version 0.43, www.rootkit.com, windows rootkit

Variants: None, yet, a one of a kind

Operating System: Windows NT/2000

Protocols/Services: Microsoft Windows NT Operating System kernel, registry/drivers, etc.

Brief Description: A Windows NT rootkit that can hide processes, hide files, perform Registry
key hiding, keyboard sniffing, and redirect EXE files, all the while, providing a shell that allows
an attacker to connect remotely. It is built as a kernel mode driver, running with full privileges on
a machine.

Protocol Description:

The ‘protocol’ in this exploit is Microsoft Windows NT Operating System (a network-integrated
operating system). This exploit has been accomplished for both Windows NT 4.0 and Windows
NT 5.0 (2000).

Windows, which needs little introduction, has been the dominant operating system of personal
computers for the latter half of the last century. Before NT, Unix and Novell NetWare were the
dominant platforms for Local Area Networks that businesses used to communicate. Microsoft
had developed a product called LAN Manager (LanMan), which was to become Windows NT.
LanMan introduced an improved ‘single’ logon capability and a ‘shares’ concept, however, did
not make any lead way into the market until Microsoft upgraded it (interweaving an operating
system, and calling it Windows NT). Windows NT slowly grew into a dominant product, initially
as a client, then making inroads into the server market. By 2001, NT had entrenched itself into
the minds and operating environments of security focused solutions. Today, Windows NT
commands a 92% stronghold on the PC operating system market. Furthermore, Microsoft has
plans to integrating its Windows 9x OS with Windows NT. The fact that Microsoft’s OS are so
widely used, and relied upon, exponentially increases the importance of such a powerful and
undermining exploit as NT Rootkit.

‘Trusted Computing Base’

In Phrack Magazine, Greg Hoglund first introduced a form of NT rootkit. There he began his
discussion by exploring the concept of ‘trusted computing base.’ I believe this is a valid and
important point that needs to discussed here, because this single concept is the impetus behind

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3

rootkit’s power:

The fear amongst information security professionals, and those who rely on information
technology to survive, is an ability to undermine the ‘Trusted Computing Base’ (TCB) for single
machines and the ‘Network Trusted Computing Base’ (NTCB) for networked systems. The TCB
for a machine are those users and processes that can work at the operating system level, i.e.
‘administrators’ or ‘superusers’ or processes/software that have these privileges. These rights are
known in Windows NT code as the security privilege flag SE_TCB_PRIVILEDGE. Those who
operate with this can, pretty much, do anything to the operating system. NTCB is analogous to
TCB, however, provides users the ability to do anything to a network of systems. Furthermore, it
is a safe assumption that if one is compromised, so is the other. (These concepts and
terminology were first defined in the National Computer Security Center’s Rainbow Series)

User access to TCB is reserved for a selective community that is entrusted with the information
and security of a system, i.e. system administrators, software engineers, etc. They are corporately
tracked and scrutinized, because of the access power they have to alter, manipulate and destroy
information. However, they are ‘trusted’. What if this tightly held community had a leak?
Decisions based on the information the system delivered could become detrimental. I will not
delve into the damage this scenario can deliver, at this time, but the possibilities are as endless as
the human imagination. As a current example, the FBI has recently implemented policy that
requires system administrators to undergo the controversial and same lie detector tests that agents
and other highly secure positions do (Verton). This demonstrates a corporate acknowledgement
of the importance of the Trusted Computing Base.

‘Quick Intro to Windows NT Architecture’

To understand some key points of Windows NT security, and how rootkit exploits them, we
must begin with an introduction of NT architecture, and how the operating system is set up.
Reference the diagram below for a barebones representation of the Windows NT/2000
architecture (Reproduced from Microsoft Press Online):

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
4

Starting from the bottom up, you have the hardware, which is your computer processor, physical
memory, monitor, etc. Interacting with this equipment is the Hardware Abstraction Layer
(HAL). This module provides a layer of abstraction, so Windows NT can run on different types
of hardware. Next is the heart of the OS, the kernel. The kernel keeps all the processes in line,
determines access control, management of every aspect of the OS, and so on. Windows NT also
calls this part the 'executive layer;' it is slightly higher than the kernel, organizationally. Here in
lies a key Windows NT component to this paper, the Security Reference Monitor, which will be
discussed in full, later. Device drivers allow outside processes to run in Kernel mode, and
effectively interact with the hardware (key aspect to rootkits deployment). Above that are the
User mode modules that are used to interact with the user. These are not of importance when
understanding rootkit’s capabilities. Rootkit primarily exploits kernel level processes. A point to
notice is the distinction of User mode and Kernel mode.

‘User Mode vs. Kernel Mode’

A key strategy to building an operating system is a layered approach to security. Application of
this strategy provides the capability to separate the ‘Kernel’ execution environment, where
interaction with the hardware occurs, and the user’s environment. Intel based x86 processors
supports multiple operating modes, called rings. They range from 0-3, where 0 has full control of
memory, or most privileged and 3 being the least privileged. Windows NT only uses ring 0 and
ring 3, Kernel mode and User mode respectively.

The true distinction between Kernel mode and User mode is access to memory. Objects are
defined in Windows NT as: every file, directory, synchronization object, process, thread, pipe,
access token, Registry key, etc. Objects are placed into memory and are market by a ‘privilege
level.’ However, anything in Kernel mode has access to all objects in memory and is trusted to
play nice. Processes that run in Kernel mode are trusted because Microsoft, or a system
administrator through the use of drivers, generated them. The trust of Kernel mode processes is a
fundamental concept of rootkit’s ability to undermine the TCB of Windows NT.

‘Security Descriptors and Access Control Lists’

Now you may be asking how exactly does Windows NT create these concepts, and manage
them? Me too. At the heart of Windows NT security are Access Control Lists (ACLs) and
Security Descriptors (SDs). A SD is a list of attributes that Windows NT uses to determine the
‘worthiness’ or ‘privilege level’ (as discussed previously) of a process or thread to access objects.
It contains a Security Identifier (SID) contains object owners, and other information about the
process or thread. SIDs are number representations of accounts, groups, machines and domains.
These tell the kernel what access you are allotted.

Now, ACLs act as a table or database to reference permissions assigned to an object. An ACL
consists of Access Control Entries (ACEs). There are two types of ACLs discretionary ACLs
(DACLs) and system ACLs (SACLs). DACLs define access permissions to the object they
secure, and SACLs contain audit instructions for the system. For the purpose of this
introduction, we will only concern ourselves with DACLs. ACLs are created, via an algorithm,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
5

every time an object is generated.

‘Security Reference Monitor’

Simply put, the Security Reference Monitor (SRM) determines if a process or user has access to
the Kernel mode. It is part of the executive services or Kernel mode services available to all
Windows NT processes. It is one of the most integral components of the NT operating system’s
security architecture. SRM is the Windows NT component that implements the ACL, SDs and
SIDs structures.

The SRM is the police that ensure processes have proper SDs to access objects. An
administrator account may not have access to every object, but has the capability to take
ownership and rewrite the DACL to allow access as desired. The SRM also manages security
events, alerting the user whenever access has been denied (any user of Windows NT is familiar
with this window).

A key point here is that the SRM does not manage or protect code running in Kernel mode.
Processes running in kernel mode (as stated earlier) can directly modify an object without
supervision of the SRM. Applying SRM type conditions and management to the kernel would
cause serious performance degradation, and is deemed unnecessary as long as proper security is
in place to ensure only the TCB has access to the kernel.

‘Driver Model’

One last key component of Windows NT is the driver model (reference architecture model in
previous section). When a user-mode program wants to do something it calls an application-
programming interface (API), which is passed to the Win32 module. From here it is passed to
the Kernel Mode. There, a cloud of operating system services surrounds a driver. A request is
made for an interaction with some hardware resource (i.e. read from a hard drive). The device
driver then uses the hardware abstraction layer (HAL) (drivers operate in kernel mode, and
therefore can talk directly to their hardware, however use the HAL to provide a level of
abstraction, and hence portability, configurable, etc.) to process the request. This seems
complicated, but the driver is just a part of the OS, in Kernel mode that has specific instructions
on how to interact with a piece of hardware.

Description of Variants:

None, one of a kind project accomplished by Greg Hoglund and other very smart people.

However, this team has developed multiple ways to load the malicious code into the kernel,
which is discussed under “How to protect against it,” “Integrity Protection Driver.” The
signature of the exploit can be changed, simply by finding other weaknesses in Windows NT,
making it hard to protect from at the OS abstraction.

How the Exploit Works:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
6

Greg Hoglund’s trek to undermining the TCB of a Windows NT Operating System surrounds the
executable code, known as the ntoskrnl.exe, which defines all the SRM functions. It is there that
he begins the deconstruction of the TCB. As discussed earlier, SRMs have the responsibility of
checking IDs before a user/process can have access to an object. What NT Rootkit has done is
patch the SRM. Greg Hoglund learned that the SID is passed to the SRM every time a process
tries to access an object. This is very restricting.

To escape these boundaries set by Windows NT security, NT Rootkit works to undermine a set
of functions known as the Native Call Interface (NCI) (I will only brush over this part of the
exploit due to the programming intensive tricks employed by very smart people, and offer only a
quick introduction. For more information please visit www.rootkit.com or reference Greg
Hoglund’s paper “A *REAL* NT Rootkit…”). Through reverse engineering, Greg Hoglund was
able to learn that functions can be added to the NCI. Next, he determined that a table used by
ntoskernel.exe function used to determine other function calls could also be altered. Ultimately,
what NT Rookit needed to accomplish is create a table with it’s own functions and add it.
Through proper memory allocation, making room for NT Rootkit’s table of functions within the
existing tables, Greg Hoglund developed a patch that ensured the new table was recognized. He
was in. He patched the kernel giving any process access to any object in memory. From there,
with a team of programmers, NT Rootkit was born.

Building upon Greg Hoglund’s original patch of the kernel, many options were added. A recent
and interesting function is the keyboard sniffer. It is implemented through a driver hook. It
forces the victim's machine to redirect all keystrokes through itself first. This technique can be
mirrored to implement network sniffers, and other detection devices.

Diagram:

Execute
deploy.exe

Kernel Mode
Driver

deployed

Attacker deletes
deploy.exe

Execute
_root_nc.exe

NetCat: port open
for remote
connection

Execute net
start_root
command

Hides all flagged
files and
processes

Exit victim's
computer

Connect to open
NetCat backdoor

Exploit Rootkit’s Power

Transfer code to
victim

Hide Files and
Processes

Sniff keyboard
strokes

Redirect .exe
calls

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
7

How to Use the Exploit:

Rootkit is in a proof of concept stage, and has only been around for a few years. Much of the
exploit’s code has been used to prove theory, developed by Greg Hoglund. Rootkit is in no way
a fully functional hacker tool that every script kiddy can deploy, like Sub Seven or Back Orifice. I
have seen very little indication of a fully developed user interface being explored to exploit the
capabilities of the rootkit through a user-friendly medium. However, it still can be a lethal weapon
in a hacker’s toolbox.

'Getting Rooted'

So you may be wondering how do I take down my company with this? (Or whatever
deployment of this exploit you desire, I am not the moral police here) In order to load the device
driver required to employ this exploit, one must first have administrative access (Windows NT
requires administrative privileges to load drivers). I will not go into how to obtain this, as this is
not an anatomy of an attack, just a description of one part or tool of an attack. There are
numerous well-documented methods to obtain administrative access to a Windows NT machine.
From this point, an attacker will need copy and execute the appropriate code.

NT Rootkit, version 0.43, contains a device driver, _root_.sys and an executable deploy.exe. To
launch rootkit, an attacker must copy these files to the target computer, and then execute
deploy.exe. Deploy.exe will install the driver and start NT rootkit automatically. At this point
some may say that the victim has been ‘rooted’. The attacker must delete deploy.exe so not to
tip off the victim. However, all other traces of rootkit, as we will see, will become hidden. To
start and stop the program, an attacker can execute the net start_root_ and net stop_root_
commands in the rootkit shell. Now it is time to see what this baby can do.

I mentioned the ‘rootkit shell’ in the previous paragraph. This is the user interface that wraps all
the capabilities of the NT rootkit together. The following is a rootkit-shell command line
screenshot taken from www.rootkit.com for NT rootkit version 0.4a (Hoglund):

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
8

*Reproduced from www.rootkit.com

‘Hiding Files’

One of NT Rootkit’s key features is its capability to hide any file an attacker flags properly.
Whenever rootkit is running, a file beginning with _root_ is hidden from a directory listing
through either the ‘dir’ command, or Windows Explorer. Any files an attacker does not want a
user to discover can be renamed to meet rootkit’s nomenclature. Furthermore, because the
device driver, and other files that support rootkit, already begin with _root_, the exploit leaves no
traceable evidence (that is if the attacker remembers to delete deploy.exe, as stated earlier). The
following are before and after screenshots, taken from Hackers’ rootkit for NT (Prosise):

Before After

‘Hiding Processes’

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
9

A process is an executing program, (synonymous with task) utilizing computer bookkeeping
resources (Webopedia). When entering into a system, an attacker wants to hide his or her tracks.
NT Rootkit provides the capability to remove executing programs or processes from any table,
i.e. the NT Task Manager. Processes would be able to run in the background, utilize computer
resources, but be hidden from a user or system administrator. NT Rootkit tags processes in the
same format as files. Any executable program that begins with _root_ will have its process
number and generic indications removed. This is a very powerful tool, and fundamental to any
rootkit. With this capability an attackers can operate in a full stealth mode, destroying and
manipulating information at leisure.

‘Remote Control’

In order to administer the rootkit shell remotely, a slightly modified Netcat solution has been
developed. Netcat, known as the Swiss army knife of hacker tools, delivers a key capability to
NT Rootkit by providing a remote access connection to its shell. An attacker utilizes the
modified Netcat to connect to a TCP port (usually 99), which is bound to a command shell. This
means when the attacker connects to the port on the victim’s machine, the attacker will obtain a
C:> prompt, existing within the victim’s command shell. To hide this process, an attacker can
rename Netcat as _root_nc.exe, thereby hiding the file and process when NT Rootkit is enabled.
Even more noteworthy, the attacker has opened a fully hidden backdoor, unbeknown to the
victim. Telnet capabilities have also been explored as another NT Rootkit remote access solution.

‘Keyboard Sniffer’

Imagine an administrator, wakes up one morning, feeling good about the day, heads into work
early to get a head start on the server migration for his company. He executes the trusty Ctrl-Alt-
Delete key sequence so he or she can log onto the network then enters his or her login name and
password. Just like that an attacker has an administrator name and password. NT Rootkit's first
sniffer focuses on keyboard strokes. A recent addition (officially unveiled 3 February 2001), the
keyboard sniffer provides the attacker the capability to grab any keystroke made on a victim's
machine. Control of the keyboard sniffer comes from the shell, and can be turned on and off.
The following is a screen shot taken from www.rootkit.com (Hoglund):

*Reproduced from www.rootkit.com

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10

‘Other Capabilities and the Future’

Other capabilities of NT Rootkit range from the option to deliver a debug interrupt, in turn
causing a blue screen of death on a victim's machine, to the ability to hide registry entries.
However, one of the most powerful capability of NT Rootkit is the doors it opened.
Programmers now can develop code, built upon rootkit's core theory and design that can truly
exploit a Window NT box. For example, the keyboard sniffer developed a technique that can be
ported to other peripherals, USB, Ethernet network connections, etc. A capability to exercise a
sniffer on a network connection, for example, brings the scope of this exploit out of the
Operating System of one machine and into LANs, and from there, who knows. A note to repeat
here is that this exploit is only in its proof of concept stage; many more smart minds can build
upon this, making for some really nasty stuff.

Signature of the Attack:

Because of the stealth focus of this exploit, no auditing devices can detect NT Rootkit. There is
no visible disruption to an operating system that can be detected, easily. If events begin to occur
that user or a system administrator feels out of place, this may be the first indication of a rootkit
attack. From there in-depth investigating must occur to determine if NT Rootkit has rooted your
system. Some of those techniques are discussed in the following section.

How to Protect Against It:

To protect against NT Rootkit, successfully, security professionals should focus their efforts on
defending against and preventing from attackers gaining access to their machines. As we know,
administrator rights are necessary to load the rootkit driver, and once this occurs, it becomes
exponentially more difficult to detect and defend against any malicious events. This said, if NT
Rootkit has rooted you, all is not lost. However, the TCB has been violated and decisions must be
made accordingly.

'Finding the Hidden Files?'

First you may be wondering if there is a way to uncover hidden files and processes. The simple
answer is no. Using other executable programs other than ‘dir’ or Task Manager to list files and
processes, respectively, will not work. Even perfect, uncorrupted code of programs such as
POSIX compliant ls.exe and pulist.exe would not reveal objects flagged _root_ (Prosise). Chris
Prosise found that by mapping a share to the suspected victim with administrative rights, all
hidden files flagged _root_ could be viewed and copied. However, this is not a common
detection technique, but one that allows you to obtain information, once you believe you have
been rooted. Also, look for the obvious deploy.exe, _root_.sys and other programs that an
attacker may have left out in the open.

'Backdoor Detection'

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
11

What about detecting a back door? The netstat command that comes with windows will detect
all open ports. One in particular to notice is port 99. If it is open, most likely, Netcat may be
running on your system. Netstat will not tie the open port to a program, so we can only
speculate. However, fport and insider will map the open port to a program (Prosise). If a port is
open with Netcat as the associated program, we have indicated a backdoor has been loaded on
your machine, but is there a rootkit associated?

Loading of the NT Rootkit, via the driver, will not create a log if successful, only unsuccessful
rootkit installs show up. Also, do not look for any other information in NT auditing systems
because rootkit by passes them all. Remember it operates within the freedom of Kernel mode
processes.

‘Integrity Protection Driver’

Another thread of discussion occurring on Bugtraq, is concerned with solutions that protect from
rootkits by defending against malicious drivers being loaded. One such product, Integrity
Protection Driver (IPD) from Pedestal Software protects Windows from being victim to these
malicious drivers. However, such protection is analogous to viruses, and such anti-virus
software. Anti-virus software protects you from ‘knowns’ and so does IPD. Greg Hoglund
argues that there are multiple ways to load code into the kernel, other than a driver, making such
a security solution that fixes only a ‘known’ hole. A true defense against such NT Rootkits
would be an OS structure overhaul. Furthermore, many other points of entry have been
demonstrated that undermines the reliance on driver-loaded code into the kernel. IPD has been
argued that it should be treated as an anti-virus program, in which updates are required to protect
against this certain type of malicious logic.

Outside of directly protecting you from an NT Rootkit, security professionals should: incorporate
code check sums; programs such as Tripwire; ensure they have well documented redeployment
software; and other good security practices that will minimize the effect and damage an NT
Rootkit can do.

Source Code/Pseudo Code:

Updated code is available at www.rootkit.com and the latest build will be submitted with this
paper. It is not compiled and requires Microsoft Driver Development Kit to generate the exploit
from the attached code.

Conclusion:

NT Rootkit's proof of concept, in my opinion, is complete. Greg Hoglund has accomplished
something that will be the catalyst for many others. However lethal this exploit may be,
defending your network and computer systems relies heavily on techniques outside this paper.
Ensuring an attacker does not gain administrative access to any of your systems should be the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
12

primary focus of security professionals. NT Rootkit only provides hackers a way to truly
manipulate and destroy your information. Techniques such as perimeter defense, intrusion
detection, well-defined and enforced user policies, etc (all that is taught at SANs and other
security communities) will ultimately be the key to defending against NT Rootkit. What this
exploit will evolve into is unknown. However, the possibilities are frightening. How far it has
come since inception is a tribute to how fast the information security field is moving.
Furthermore, its impact is already being felt.

Greg Hoglund and his team have demonstrated to the computer security world a dark and
powerful exploit that undermines Windows NT security. They have forced a necessary paradigm
shift in Windows Security theory. Greg Hoglund has publicly expressed that the only true way
to protect your information from the likes of NT Rootkit, is for Microsoft to rethink their security
model. I hope such projects as this do have the impetus and influence to change such behemoths
as Microsoft, so that information security continues to evolve, forward, keeping information safe,
at least for a little while…

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
13

Bibliography

"Inside Windows NT, Second Edition." Microsoft Press Online.
<http://mspress.microsoft.com/prod/books/sampchap/1312a.htm>

Hoglund, Greg. "A *REAL* NT Rootkit, Patching the NT Kernel." Phrack Magazine 9 Sep
1999.

Hoglund, Greg. "Loading Rootkit using SystemLoadAndCallImage." BugTraq 29 Aug. 2000.

National Computer Security Center. A Guide to Understanding Discretionary Access Control in
Trusted Systems. Maryland, National Computer Security Center, 1987.

Prosise, Chris, Shah, Saumil Udayan. "Hackers’ rootkit for NT." CNET.com. 22 Feb. 2001.
<http://ciscom.cnet.com/>

Prosise, Chris, Shah, Saumil Udayan. "Stop Windows hackers." CNET.com. 8 Mar. 2001.
<http://ciscom.cnet.com/>

Scambray, Joel, Stuart McClure, George Kurtz. Hacking Exposed Second Edition. McGraw-
Hill, 2001

Schmidt, Jeff. Microsoft Windows 2000 Security Handbook. Que Corporation, 2000.

Schultz, E. Eugene. Windows NT/2000 Network Security. Macmillan Technical Publishing,
2000

Verton, Dan. “FBI to use lie detectors on its IT workers.” CNN.com. 26 Mar 2001<
www.cnn.com>

<www.webopedia.com>

